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Abstract 

The partitioning of a spatial model into a very large number of small elements is required for 

solving partial differential equations with the finite element or finite volume method. The 

generation of such a tessellation is called mesh generation. Solving the partial differential 

equations allows the simulation of the underlying physical behavior (as for example electrical 

current and potential). 

During the past decade the demand for a robust and rigorous mesh generator for more 

complex structures has risen in the semiconductor industry. While a three-dimensional sim- 

ulation was not possible in the beginnings, today’s computers have made such a simulation 

feasible and desirable to be able to account for structure-dependent physical effects. Inves- 

tigating the state of the art in other fields where three-dimensional mesh generation was 

applied longer ago is especially important to avoid limitations of earlier approaches and to 

meet the demands of the semiconductor industry. 

The main contribution of this thesis is the development of a mesh generator based on 

the Delaunay Triangulation. An algorithm was devised to allow for robust mesh generation 

under finite precision arithmetics without the use of floating point filters. An existing but 

fairly seldom used Delaunay Triangulation algorithm was extended to work for typical de- 

generate point sets such as cospherical and cocircular point sets. A sophisticated mechanism 

avoids the use of fixed epsilon regions which can always be either too small or too large and 

which would result in a non-robust implementation. An advancing front passes through the 

desired regions and generates the tetrahedralization. Undesired regions are never meshed, 

also not temporarily. It is known that structures exist which cannot be tetrahedralized with- 

out inserting further points. The generation of a mesh is guaranteed for cases when the 

advancing front forms such a structure by allowing tetrahedra with negative volume. They 

are elegantly removed together with other badly shaped elements in a post-processing step. 

A bucket octree to store the points has proven especially efficient for tetrahedralization with 

the chosen Delaunay algorithm. 

A major part ofthe work was devoted to the refinement of a general surface triangulation 

to be integrated into a conforming Delaunay Triangulation. Several techniques such as edge 

bisection or the orthogonal projection of a triangle vertex onto the opposite triangle edge 

were tested. Since none of these techniques proved robust enough for the given purpose, a 

more elaborate solution was devised. T'he surface triangulation is at first examined for struc- 

tural edges. Afterwards, local transformations of triangles are combined with a refinement 

of structural edges. A specially developed system to derive a suitable refinement point (not 

necessarily by bisection) guarantees the termination of the refinement loop after a minimal 

number of point insertions. Finally, a triangle-based refinement follows the edge-based re- 

finement. The Voronoi edge which is the dual of a Delaunay triangle is used to derive a



refinement point. This allows an additional improvement of the quality of the surface tri- 

angles with respect to their aspect ratio and angle. The efficiency of the developed mesh 

generator is documented with a set of examples.



Kurzfassung 

Die Zerteilung eines räumlichen Modelles in eine sehr große Zahl kleiner Elemente wird für 

die numerische Lösung von partiellen Differentialgleichungen mittels der Finiten-Elemente- 

oder der Finiten-Volumen-Methode benötigt. Die Herstellung solch einer Zerteilung wird 

Gittergeneration genannt. Das Lösen der partiellen Differentialgleichungen ermöglicht die 

Simulation des zugrunde liegenden physikalischen Verhaltens (zum Beispiel Stromfluss und 

elektrisches Potential). 

In der Halbleiterindustrie stieg während des letzten Jahrzehntes der Bedarf nach einem 

robusten und rigorosen Gittergenerator für komplexere räumliche Strukturen. War eine drei- 

dimensionale Simulation in den Anfängen noch undenkbar, so wird sie mit der Rechenleistung 

heutiger Computer möglich und wünschenswert, um strukturbedingte physikalische Effekte 

erfassen zu können. Um die Restriktionen anfänglicher Gittergenerations-Methoden zu ver- 

meiden und den Anforderungen in der Halbleiterindustrie gerecht zu werden, ist es besonders 

wichtig den aktuellen Stand der Forschung anderer Gebiete, in welchen dreidimensionale 

Gittererzeugung schon länger angewandt wird, miteinzubeziehen. 

Der Hauptbeitrag dieser Dissertation ist die Entwicklung eines Gittergenerators basierend 

auf der Theorie der Delaunay-Triangulation. Ein effizienter Algorithmus wurde entworfen, 

welcher robuste Gittergeneration unter endlicher Rechengenauigkeit und ohne Verwendung 

von numerischen Fließkommafiltern ermöglicht. Hierzu wurde ein bestehender aber ver- 

gleichsweise selten genutzter Delaunay-Triangulations-Algorithmus um die Behandlung von 

degenerierten Punktmengen, wie etwa kosphärischer und kozirkularer Punktmengen, er- 

weitert. Ein ausgeklügelter Mechanismus vermeidet die Benutzung von fixen Epsilon-Um- 

gebungen, die immer zu klein oder zu groß sein können und in einer nicht robusten Imple- 

mentation resultieren würden. Eine fortschreitende Front erfasst die gewünschten Gebiete 

und erzeugt die Tetrahedrisierung. Unerwünschte Regionen werden auch nicht temporär ver- 

gittert. Es ist bekannt, dass es Strukturen gibt die nicht tetrahedrisierbar sind, ohne weitere 

Punkte einzufügen. Um die Herstellung eines Gitters garantieren zu können, auch wenn die 

fortschreitende Front so eine Struktur formt, werden Tetrahedra mit negativem Volumen er- 

laubt. Diese werden elegant und gemeinsam mit anderen nachteiligen Elementen in einem 

Nachbearbeitungsschritt eliminiert. Ein Acht-Baum/octree zur Speicherung der Punkte hat 
sich in Kombination mit dem gewählten Delaunay-Algorithmus als besonders effizient für die 

Tetrahedrisierung erwiesen. 

Ein bedeutender Teil der Arbeit ist der Verfeinerung einer allgemeinen Oberflächen- 

Triangulation gewidmet, um sie in eine konforme Delaunay-Triangulation zu integrieren. 

Hierzu wurde mit diversen Methoden experimentiert, wie zum Beispiel der Kanten-Halbierung 

oder der orthogonalen Projektion eines Dreiecks-Punktes auf die gegenüberliegende Dreiecks- 

Kante. Nachdem sich keine dieser Techniken als wirklich robust erwiesen hat, wurde eine



umfassendere Losung entwickelt. Die Oberflachen-Triangulation wird zunachst auf struk- 

turelle Kanten untersucht. Im weiteren wird die lokale Transformation von Dreiecken mit 

der Verfeinerung von strukturellen Kanten kombiniert. Ein speziell entwickeltes System zur 

Ableitung eines günstigen Verfeinerungs-Punktes (nicht unbedingt ein Halbierungs-Punkt) 

garantiert die Terminierung der Iterationsschleife nach einer minimalen Anzahl von Ver- 

feinerungen. Auf diese Kanten-basierte Zerteilung folgt letztendlich eine Dreiecks-basierte 

Zerteilung. Dabei wird die zu einem Delaunay-Dreieck duale Voronoi-Kante zur Ableitung 

eines Verfeinerungs-Punktes herangezogen. Dies erlaubt eine zusätzliche Verbesserung der 

Qualität der Oberflächen-Dreiecke im Bezug auf Seitenverhältnis und Winkel. Die Effizienz 

des entwickelten Gittergenerators wird anhand einer Sammlung von Beispielen dokumentiert.
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Chapter 1 

Introduction 

ESH generation is the partitioning of a domain into a large number of simple pieces 

called elements. The domain is usually defined through the boundary of a geometrical 

structure or given by a Computer Aided Design (CAD) model. The elements must be well 

connected, neither gaps nor overlapping elements are permitted. A numerical analysis or 

computer simulation involves the formulation of i.e. non-linear coupled partial differential 

equations which describe the physical problem on a physical domain, in terms of algebraic 

equations on the discrete domain. The large system of linear algebraic equations which is 

assembled after discretization can be solved using direct or iterative solvers. 

Among the various approaches [154, 156,193] the finite element method and the finite 

volume method or control volume method are the most established discretization schemes. All 

methods imply specific qualities of the generated mesh to ensure convergence of the iterative 

solution process and to yield correct simulation results. With the growing importance of 

three-dimensional simulation mesh generation has become a critical factor. Surprisingly the 

generation of a suitable mesh often becomes the bottle neck and poses more difficulties than 

the subsequent simulation. The amount of data in three dimensions requires efficient and more 

sophisticated algorithms and data structures. Meshing algorithms which have worked well for 

two-dimensional problems are often not feasible for higher dimensions. Manual partitioning 

techniques are not desirable and cannot be efficiently applied to model descriptions which 

contain several thousand or more vertices. At the same time automatic meshing schemes are 

challenged by the increasing topographical complexity of the CAD model. 

This situation is also experienced in semiconductor device and process simulation. The 

complexity of a modern semiconductor device often makes a three-dimensional analysis nec- 

essary to capture important physical effects which would not be exhibited by idealization 

to fewer dimensions. With the upcoming of three-dimensional device and process simula- 

tion the importance of three-dimensional mesh generation for Technology CAD (TCAD) has 
significantly increased. The stiff and highly non-linear equations governing the behavior of 

a semiconductor device [156] and the moving boundary situation during oxidation in pro- 
cess simulation require a powerful and efficient meshing tool. The need for a better fitted 

mesh with regard to certain quality or error measures necessitates fast global and local mesh 

adaptation techniques. Local remeshing also becomes important to repair mesh deformations 

resulting from moving boundaries and interfaces of the semiconductor device. 

11
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1.1 Outline of the Thesis 

After a discussion of some of the problem issues and the state of the art in three-dimensional 

mesh generation and the demands in the fields of CAD and TCAD in Chapter 2, a brief 

overview of the concept and the means of mesh generation is given in Chapter 3. Such 

a “theory” of mesh generation includes topics as mesh quality, the discretization scheme, 

the generation of a surface mesh, and mesh adaptation. The notion of control space which 

defines a control function to guide a mesh generator in making more problem-dependent than 

geometry-dependent meshes is introduced. 

Chapter 4 provides a concise summary of common meshing techniques. Most existing 

meshing methods can be distinguished in such a manner. Hybrid methods combine some 

of the given techniques. The text further concentrates on Delaunay methods. These are 

among the unstructured approaches the one with the strongest mathematical background. 

All aspects related to the theory of Delaunay are discussed in Chapter 5. This includes 

the definition of the Delaunay properties, some combinatorial facts, an overview of Delaunay 

algorithms, and the concept of Steiner Triangulations. The basic characteristics of a Delaunay 

Triangulation which is defined for a given point set are the duality to the Voronoi graph and 

the empty circumsphere property. If the reader is not at all familiar with that, he is advised 

to browse through Chapter 5 beforehand. Previous chapters which include the review of 

research and methodologies refer to Delaunay techniques frequently. 

The design and architecture of the developed mesh generator are presented in Chapter 6. 

Finally, several examples of CAD and TCAD structures are given in Chapter 7 and an 

Outlook in Chapter 8. 

1.2 Terminology 

Most technical names are self-explanatory and care has been taken to use well defined and 

precise expressions. In order to avoid any confusion a few terms require further comments 

and are given in Table 1.1.
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location a space defined by a set of coordinates 

vertex a zero-dimensional part of a higher dimensional entity, 

e.g. part of a geometry, a polygon, or polyhedron 

n-simplex (n+1) affinely independent vertices 

point a zero-simplex 

edge a one-simplex 

triangle a two-simplex 

tetrahedron a three-simplex 

node not a point, but part of a tree data structure 

facet a two-dimensional entity, e.g. a polygon 

face the verb as in “facing a direction” 

non-planar curved, but mostly used as short form for piecewise-planar 

topology the connectivity of a set of points where adjacency is given 

by the edges regardless of the location of the points 

boundary (n-1)-dimensional topology in R” 

grid n-dimensional structured topology in R", numerical grid 

mesh n-dimensional unstructured topology in R" 

surface mesh (n-1)-dimensional unstructured topology in R” 

triangulation a simplicial complex [118] where the highest order element 
is a 2-simplex in AR” 

tetrahedralization a simplicial complex where the highest order element is 

a 3-simplex in AR” 

Triangulation special triangulation or tetrahedralization as for example in 

“Delaunay Triangulation” or “Steiner Triangulation”, 

independent of the order of the simplices 

boundary consistent incorporating the boundary, as opposed to intersecting or 

overlapping 

boundary-fitted nicely aligned with the boundary and not just boundary 

consistent 

boundary conforming | This term is avoided because it is sometimes used in different 

ways throughout literature, e.g. as boundary consistent or as 

boundary-fitted.     

Table 1.1: A short glossary of important terms.
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Chapter 2 

Challenge and Demands 

CTIVITIES in three-dimensional mesh generation are examined with special respect to 

semiconductor process and device simulation. Some of the challenges encountered when 

embedding a mesh generator into a CAD-Analysis system are explored. The demands on 

meshing differ between TCAD and computational mechanics and fluid dynamics applications. 

2.1 CAD 

The conversion of the input structure, e.g. a CAD model, to obtain a meshable structure 

description can be a non-trivial process. It calls for a transformation of the input data to 

provide the mesher with more and/or different geometrical information. It will be easier 
to apply a solid model oriented mesher to a solid input model rather than to a boundary 

representation model (BREP model). On the other hand a mesh generator may require a 
consistent triangular boundary description which can be extracted from a BREP model in 

a straightforward manner. A solid model may not contain the necessary information on the 

boundary without calculating the intersection of the solids. The type and availability of 

geometrical information on the input model becomes a key issue to automate the meshing 

process. In the early beginnings of finite element analysis engineers had to create meshes 

manually exploiting their knowledge and understanding of the model’s geometry [194]. Since 

then, more general algorithms have been introduced and activities have been geared more and 

more towards automation [19, 25, 56, 105, 151, 169, 187, 191]. Often commercial CAD systems 

offer a large number of different algorithms which the user must utilize by finding a good 

selection, a good sequence, and good parameters to create and adjust a mesh interactively. 

Today most mesh generators claim to work automatically and to “understand” the geometry 

without human interaction. To some extent human interaction means additional geometrical 

information. A fully automatic mesh generator which requires very detailed input data may 

be less sophisticated than one that requires only a minimum of information. Two extremes 

can be distinguished, which both have their application: 

e Exploiting as much geometrical information as possible (parts, layers ...). Possibly 
utilizing the same data structures as for example the CAD editor with which the model 

was created. 

15
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e Accepting a minimum of information like e.g. a flat data hierarchy consisting of a single 

list of polygons on]y. 

Impressive looking meshes of, for example, an engine with many complicated mechanical 

parts, cylinders, and valves, are often easily generated because the information on each cylin- 

der and part itself is provided. Structured grids are built for all simple parts and merged to 

form the entire mesh. If a single, combined surface of all parts is the only input data, the 

meshing process becomes unproportionally more complicated. This case has to be dealt with 

when the CAD model is not manually constructed using an editor, but rather derived from 

a simulation where the topography itself has been subject to the analysis. Such topography 

simulation is a common task in semiconductor process simulation. 

On the other hand human interaction may provide engineering judgement. Not all geo- 

metrical tasks interfacing the design and the analysis phase are readily to be automated. A 

better understanding of the important balance between automation and control may save con- 

siderable computation time. Is it really necessary to mesh an entire model with all features? 

Or could some of the data be omitted to simplify the meshing process while still providing 

the desired simulation results? The input model can contain a wide variety of inconsistencies 

harmless for visualization purposes but crucial for any meshing algorithm. The order of the 

vertices in a polygon definition might not be correct or gaps in the boundary and overlapping 

elements might exist. In such cases one depends on powerful interactive tools to repair the 

problem areas [23]. A technique which is application dependent and requires the judgement 

of the engineer is the dimensional reduction [38] of the input model by means of the medial 
axis [3,169]. The medial axis or medial object is a method to detect and “understand” fea- 
tures of the geometry (Fig. 2.1). Utilizing the knowledge of these features one can perform 
various preprocessing steps like decomposing a complex structure into several simple ones 

or removing too much detail in a model (de-featuring). Such a qualitative data reduction 

results in a simplified model which may suflice for e.g. a stress analysis in computational 

mechanics. Unfortunately, the computation of the medials is very costly, because it requires 

the Delaunay Triangulation of a highly refined boundary. 

  

Figure 2.1: Medial axis and medial object, M. Price et al. [124]. 

A definition of the common term local feature size will prove useful to theoretically for- 

mulate and grasp complex geometrical constellations.
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The continous function L(x) which is defined on the entire domain satisfies the inequality 

Liz) — L(xa)| < |eı%2]| as proven in [135]. Intuitively L(z) should reflect small features 
of the input geometry but it should not reach arbitrarily small values fe ible inputs. In 

three dimensions it can therefore be advisable to slightly adjust the definition by combining 

ineidence with visibility as described in detail in [162]. 
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2.2 Semiconductor Process and Device Simulation 

The demands can be roughly categorized. 

e automatic mesh generation of complex semiconductor devices within an integrated 

framework of simulators 

e anisotropic geometrical requirements (structure dependent) 

e mesh density grading, anisotropic density requirements (application dependent) 

e finite element mesh quality and closed control volumes for finite volume methods 

Combined full scale three-dimensional process and device simulation has suffered from the lack 

of available TCAD tools for the various established data formats in the field. A framework 

of such a TCAD environment providing the necessary tools is itself still a subject to research 

and development [79, 172,182]. Aside from preliminary means to couple and control some of 

the simulators [121, 173, 185], powerful geometry processors are missing. Considerable person 

power is consumed to detect inconsistencies in a tedious manner, and to debug structures that 

the mesher should, but does not mesh. Such structures typical for semiconductor simulation 

purposes often exhibit extreme ratios between the size of the smallest and the largest features, 

where no structural simplifications can be afforded. Only quantitative data reduction may 

be performed to decrease the amount of redundant data. 

Once the mesher is provided with a valid and clean model it has to deal with the topo- 

graphical as well as topological complexity of the underlying geometry which contains many 

internal surfaces, edges sharing more than two facets, and thin layers. 

Thin Layer Two polygonal surfaces with a large area compared to the maximal local feature 

size [max measured inbetween. Less general subtypes are formed when the surfaces are 

planes. Furthermore, the planes might be parallel or have normals in the direction of 

a coordinate axis. For the simplest case of two parallel planes their normal distance 

d= aL,a € [1..2] is small compared to their lateral expansion (Fig. 2.2). 

It is relevant especially in three dimensions to detect such precisely defined thin layers in 

order to avoid an unnecessary high number of mesh elements. While standard isotropic 

elements are still manageable in two dimensions, the number of isotropic elements in three 

dimensions roughly increases quadratically with the ratio of lateral edge length to Lmax- 

It will be necessary independent of the physical application or solution quantity and due 

to a pure geometrical feasibility that the mesh generator enforces anisotropic elements at 

automatically detected regions which convey anisotropic geometrical information. The most 

general and sophisticated algorithms have to be applied in order for the mesh generator to 

deal with automatically generated structures. Computer generated topographies not only 

evolve from etching and depositon modules, but also through three-dimensional extraction of 

geometrical data from two-dimensional simulations and through solid modelers deriving their 

information from layout data. An automatic geometry preprocessor and mesh generator can 

complete the integrated framework system and enable the fast and efficient optimization of 

various design and manufacturing parameters.
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The range of the simulated magnitude (e.g. the concentration during diffusion simulation 

or in device simulation) covers several exponents and leads to difliculties when discretized with 

conventional meshes. The variation of the local mesh density over space and over direction 

(anisotropic mesh density) is the key factor to keep the size of the mesh manageable and at 

the same time the discrete distribution of the magnitude accurate. A balance between the 

number, the size, and the quality of the elements must be achieved for such a good mesh 

grading. The number should be minimized while the size should satisfy local density criteria. 

Often, the mesh is not optimally fitted and too coarse or too fine elements exist in various 

areas of the simulation domain. Alternatively, the desired accuracy of the analysis cannot 

be achieved in all areas, or the subsequent tools and simulators are pushed to limits beyond 

the scope of an average computer by a generally too fine mesh. An increased flexibility in 

refinement allowing for rapid changes of the mesh density while keeping the overall element 

count low would be ideal. This flexibility cannot be increased infinitely. The rapid change of 

element size is limited under the premise of maintaining a certain element quality. 

The finite element method requires that the elements possess a certain geometrical quality. 

It can have a very bad influence on the convergence of the solution if the elements have 

extremely obtuse angles.. The angle spanned by two planes (dihedral angle) becomes an 

important measure in three dimensions (Chapter 3). Achieving good bounds on the dihedral 
angle of the elements becomes a major demand in three-dimensional finite element mesh 

generation. 

The finite volume or control volume method which is often also called the box integration 

method is crucial for semiconductor device simulation, because it can be combined with the 

Scharfetter-Gummel scheme [58][119][146] which takes the exponential carrier concentration 
into account. As will be discussed in Chapter 3 “closed” control volumes are required which is 

usually accomplished by constructing a Voronoi [117] type mesh. The Voronoi box associated 

with each point from the mesh satisfies the requirements and possesses some advantages as 

opposed to e.g. boxes which are defined by centroids (gravity boxes). The common approach 

to obtain such a Voronoi tessellation is to construct its dual Delaunay Triangulation. (See 

Chapter 5 for a description of the Delaunay theory and its definitions.) Stable Delaunay 

meshing of a complex semiconductor structure is a demanding effort in three dimensions. The 

generalization of a two-dimensional to a three-dimensional Delaunay Triangulation poses not 

a mere quantitative but rather a qualitativ challenge (Chapter 5). Among other reasons is 

that a bounded dihedral angle between facets of the input structure becomes a crucial factor 

for a provably terminating Delaunay algorithm. With an increasing number n of points 

in three dimensions, keeping the computational complexity below O(n?) is another crucial 
requirement for success. 

The tasks can be summarized in relation to their application. 

e Meshing of comparatively simple (near 90° dihedral angles between input facets) but 
huge structures composed of a large number of vias and lines. Simulation of 3D Inter- 

connects. 

e Handling the minimum and possibly faulty information on arbitrary complex structures 

provided by topography simulation with eventually moving structure boundaries [45]. 
Semiconductor process simulation.
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e Resolving highly non-linear quantities with a directional mesh density which is not only 

limited to the three directions of the cartesian axises (physical anisotropy). Semicon- 

ductor device simulation. 

e Dealing with strongly acute dihedral angles between input facets and extreme ratios be- 

tween local edge lengths and local feature size (geometrical anisotropy). Semiconductor 

process and device simulation. 

2.3 State of the Art 

Most of the research in mesh generation is done in the fields of computational Auid dynamics 

and stress mechanics. Three-dimensional mesh generation for applications in TCAD and 

for semiconductor process and device simulation is a recent topic and leaves room for much 

innovation. The following is a summary of modern approaches respectively in the order of 

cartesian-based, octree-based, unstructured tetrahedral, advancing front, hybrid, and Delau- 

nay methods. 

Aftosmis et al. [2] developed cartesian meshes for applications in computational fluid 

dynamics. They incorporate complex boundaries with a rigorous method to intersect the 

cartesian cells with the boundary representation. A limited flexibility in refinement is ex- 

perienced, due to the cartesian nature of the mesh and the isotropic refinement technique. 

Each further refinement level yields about 2-4 times more elements. With intial 1.6 million 

elements a further increase in accuracy by adding one more refinement level would result in 

3.3-6.6 million elements according to one of the examples in [2]. Still, in some areas the 

achieved accuracy is not optimal and refinement would be appropriate. Such a high point 

propagation due to refinement and the rigorous intersection method which greatly increases 

the number of surface elements is less likely to be afforded on a typical computer available 

to a user for everyday simulation purposes. 

The cartesian-based mesh generator OMEGA well known for semiconductor simulation 

applications is described in [53]. This intersection-based method originates from previous 

works using bisection-based and octree decomposition techniques [35, 65, 66]. Improvements 

include the ability to tessellate the cartesian cells into Delaunay tetrahedra and a more 

anisotropic refinement approach. Subdivisions for higher refinement levels are performed by 

splitting the nodes at intersections or geometry-specific vertices instead of splitting the nodes 

always at bisections. However, if vertices of the geometry lie closely together without convey- 

ing important geometrical information as for instance in the case of staircase-like approxima- 

tions of slopes, too thin elements are created and unnecessarily propagated throughout the 

mesh. The key issue with cartesian methods is to merge the coordinate system aligned cells 

with the unstructured surface of the geometry. It seems that without rigorously generating 

a cell-consistent surface triangulation as in [2], difhiculties are experienced dealing with the 

boundaries and interfaces of a semiconductor device. To attain optimal flexibility regarding 

both the mesh density distribution as well as the fitting of the boundary it will be desireable 

to achieve anisotropy in arbitrary directions (not just along the three coordinate axises). 

Johnson et al. [76] use an unstructured tetrahedral method for three-dimensional flow 
problems. The mesh generator is capable to efficiently deal with moving objects in fluids.
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It is linked to an input modeler for non-uniform rational B-spline (NURBS) surface patches 
which however makes it less suitable for TCAD applications. 

Advancing front methods [19, 94] are mostly used because of their good point placement 

properties which result in better boundary-fitted meshes as opposed to mere boundary con- 

sistent meshes. Elements are not intersected with the boundary, instead they are grown 

from the boundary and are therefore well aligned with it. An interesting technique to utilize 

the efficient and well defined Delaunay Triangulation as a background mesh! for advanc- 

ing front style mesh generation has been developed by P.L. George et al. at INRIA, France 

[50]. Generally, it can be of interest to construct protection layers around physically crucial 

boundaries or interfaces to provide the required orthogonal mesh resolution for a correct 

representation of a physical magnitude of the solution. It remains an open problem how 

to effectively apply such methods to the complexity of a three-dimensional semiconductor 

device. In two dimensions approaches to enforce a certain anisotropy along inversion lay- 

ers or otherwise highly non-linear interfaces have been investigated by [4, 82, 112, 133, 177]. 
Most methods have come to a stage where they more or less rely on a triangulation en- 

gine, e.g. TRIANGLE [160], to generate a valid tessellation of a set of supporting grid lines 

and/or mesh points supplied together with the boundary. Conformal mapping techniques 

to ensure orthogonal boundary-fitted meshes by means of mathematical transformations of 

parametrized non-planar boundaries pose computation difhculties in three dimensions. The 

related partial differential equation (PDE) gridding method? seems better extendable for 

three-dimensional TCAD applications. So far the two-dimensional implementation CGG [26] 
ofthe PDE method has proven powerful for semiconductor device simulation. 

Pure octree-based solutions combined with tetrahedral templates are hardly used for to- 

days TCAD applications. Considering the variety of existing approaches in three dimensions 

one can observe that recently most methods have evolved to become hybrid methods and re- 

quire some sort of general tetrahedralization [77, 81,90, 178]. The software package LAGRIT 

formerly known as X3D provides a universal mesh generation toolkit [102]. Another hybrid 
mesh generator is MESHise [54] which is a further development of OMEGA. 

For moving boundary situations level set methods have gained great importance [1, 27, 

90, 127]. They require a mesh to define the magnitude which describes the moving boundary. 

At some stage a boundary consistent mesh must be derived from the level set representation 

by means of intersection and eventually tetrahedralization. 

The history of methodologies in two-dimensional process and device simulation leads 

to the observation that an unrestricted and stable triangulation engine is one of the most 

important tools for mesh generation purposes. 'T'he theory of Delaunay provides a mathe- 

matical foundation for provably terminating triangulation algorithms [15]. While the two- 
dimensional Delaunay Triangulation poses less difficulties and a vast amount of literature 

exists [41, 70, 86, 145, 175], the integration of boundaries into a three-dimensional Delaunay 
Triangulation remains a very active research area. An extremely thin oxide layer on top 

of a comparatively big silicon block calls for very sophisticated algorithms to automatically 

generate an unstructured Delaunay mesh consistent with the boundaries and interfaces. This 

is one of the reasons why most of the software for a three-dimensional Delaunay Triangula- 

  

! The term “background mesh” will be explained in Section 3.3. 

*See Section 4.1.2.
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tion available to the public domain is less suitable for semiconductor simulation purposes. A 

Delaunay method using local transformations is included in GEOMPACK by B. Joe [72, 74]. 
QHULL is a code which constructs a Delaunay Triangulation by computing the convex hull 

in higher dimensions [12]. Excellent work related to Delaunay refinement mesh generation 
can be found in [164]. The QMG software package for quality mesh generation based on 
octrees is described in [109]. A detailed and much more complete survey of the worldwide 

research activities in mesh generation is maintained by R. Schneiders [147]. Regarding future 
aspects of TCAD and automation issues one may refer to [34, 83].



Chapter 3 

Mesh Generation 

3.1 Geometrical Mesh Quality 

Well shaped elements are especially important for finite element methods. Certain geomet- 

rical quality measures and ratios can be defined to evaluate the shape of an element. Such 

purely geometrical criteria lead by nature to an isotropic mesh density distribution. They 

are implemented without the knowledge of the physical problem at hand. Various types of 

not so well shaped elements are depicted in Fig. 3.1. 

R     
  

  

  
Sliver Needle 

  

Cap 

Figure 3.1: Various types of not so well shaped elements and some parameters. 

23
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Some simple parameters of triangles in two dimensions and tetrahedra in three dimensions 

are the edge lengths /;, (dihedral) angles «;, volume V', circumsphere radius R, insphere radius 

r, and normal distance d; of a vertex from its opposite edge or triangle. The height of an 

element is defined as dnin- It can be desirable to avoid elements with a too small height 

or too obtuse (dihedral) angles. While such large angles are related to the error of a finite 

element approximation, small angles can have a negative effect on the condition number of 

the stiffness matrix |5, 80]. The following are some examples for the definition of an element 
measure where greater values of Q denote a higher quality shape. 

u
l
 

  

  

Q1 = m (3.1) 

Qa = u (3.2) 

Qs = % (3.3) 

= (3.4) 
V 

Qs = B (3.5) 

To be more precise one has to note that not all of these definitions provide a well behaved 

quality measure in all dimensions. For example only ()2 3 5 satisfy 

lim Q=0 (3.6) 
area,volume—0 

(23 is actually the inverted aspect ratio as it is commonly defined for three-dimensional ele- 

ments. Q5 has been used by [8,87]. Qı behaves well in two dimensions, but it is inapt to 
capture the shape of three-dimensional sliver elements as depicted in Fig. 3.1. The volume 

of such a sliver element can be made arbitrarily small while at the same time Qı remains 

a positive constant. T'he dihedral angles of the sliver element can be changed to the better 

or to the worse while the measure Qı can be kept constant. One can gradually transform a 

well shaped element into a sliver element by moving one vertex without changing Inin, R and 

hence without changing Qı. This interesting fact follows from the important relation between 

the angles of an element and its l;, R parameters. Only in two dimensions it is possible to 

derive a formula for triangles which describes the relation between the edge length and its 

opposite angle (Fig. 3.2 and Fig. 3.3). 

Li 
2R 

Assuming that R is constant, the smallest angle will correspond to the shortest edge. Hence, 

a minimum bound for Qı also is a bound to the smallest angle in the triangle. Lacking this 

relationship in three dimensions many quality criteria fail to guarantee bounded dihedral 

angles. 4 has more the nature of a one-dimensional measure. It fails even in two dimensions 

to avoid badly shaped triangles. With a fixed Qu a triangle may have any obtuse angle. It 

will depend on the application whether or not angles are important and which criteria prove 

to be useful. 

sina; = (3.7) 

An important conclusion can be drawn. Whatever means are pursued to improve the ele- 

ment quality, the employed technique must fit to the applied measure. Otherwise termination
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R sin(90- )" 
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R=const. 
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Figure 3.2: The relation between the edge Figure 3.3: With constant edge length 

length and its opposite angle in a triangle fol- and circumsphere radius the opposite di- 

lows from 2£ = 180 — 2y — 2¢ = 180 — 2¢a; and hedral angle in a tetrahedron can have ar- 

therefore I; = 2R sin(90 — €) = 2Rsin(g;). bitrary values. 

is not ensured. If the number of needles and caps should be reduced by means of refinement 

but the number of slivers by local transformations, the former must be distinguished from 

the latter. The refinement should then be controlled by e.g. Qı which will not detect the 

slivers. And the local transformations could be applied in a following step for elements which 

do not comply with e.g. Q3. 

3.2 Finite Volumes and Finite Elements 

The two important discretization methods in TCAD are the box integration method (finite 

volume or control volume method) and the finite element method. Each method imposes 

certain requirements on the mesh. For the box integration method they result in conditions 

for the triangles of the surface mesh. For the finite element method geometrical criteria, 

as discussed in the previous section, sufliice for most applications. However, for diffusion 

problems which are important in semiconductor process simulation further principles need to 

be investigated. A few simple examples will be presented to show the influence of different 

meshes on the validity of the discretization. 

3.2.1 Requirements for Finite Volume Meshes 

The box integration method was early introduced by Macneal [96]. The Scharfetter-Gummel 
scheme [58, 119, 146] which is crucial for semiconductor device simulation is applied in con- 

Junction with the box integration method. The integration domain is partitioned into well 

defined boxes (control volumes) with positive cross-sections [52, 64, 158]. At present all major 

device simulators (DESSIS [91], MEDICT [181], MINIMOS [18, 44]) require that these control 
volumes coincide with the Voronoi regions [117] of the points!. An additional discretization 

error is avoided due to a specific advantage of the Voronoi box. A Voronoi facet (part of the 
boundary of a Voronoi box) orthogonally bisects the dual edge in the mesh by definition. (It 
  

!See Chapter 5 for a description of the Voronoi diagram and the Delaunay properties.
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intersects the edge perpendicular at the midpoint.) The suitability of gravity boxes defined 

by the centroids and edge midpoints as opposed to Voronoi boxes has been investigated for 

two-dimens nulation in [165]. Further research will have to show 
whether or not such a modified di ation scheme based on gravity boxes can be applied 

fully in three dimensions and ifan additional discretization error is negligible. 

      

    onal semiconductor devic 

    

SUCC     

Because of the duality between the Voronoi diagram and the Delaunay Triangulation, the 

mesh generator is required to perform a Delaunay partitioning of which the Voronoi boxes are 

easily extracted. At the boundary the control volumes must be closed [64]. Voronoi points, 

which are the circumcenters of the Delaunay tetrahedra, are not allowed to lie outside of the 

domain. A Voronoi point located outside defines a vertex of an incident Voronoi box which 

must intersect the boundary as a result. This “cut” box is associated to an interior point 

(not part of the boundary) and forms an open control volume (Fig. 3.4). 

    

  

Figure 3.4: A Voronoi box which intersects the boundary and an outside Voronoi point M. The 
Voronoi regions for each point are shaded differently. 

If the Voronoi boxes are indeed used as the control volumes 

translate to the following criteria for the triangles 

the requirements directly 

of the surface mesh. 

      

ontains no other points ofp if the Voronoi box V„„ does not ü: 

t for all m with Pm E Pri- 

In two dimensions the smallest sphere criterion is also suflicient to guarantee closed control 

volumes. In three dimensions an empty smallest sphere (equatorial sphere of a boundary 

triangle) might not guarantee a closed control volume. It can be shown that an additionally 

applied smallest sphere criterion to the edges of a boundary triangle is in conjunction stronger 

and suffi 

    

Criterion 3.2 (smallest sphere, edges and triangle) Let P be a finite set of points in 

three-dimensional space R? and let t be a boundary triangle defined by three boundary ed; 
er. Bach e;,; with its two linear independent points pe; defines a smallest three-dimensional 
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sphere Ser .. where each sphere passes through the points pe,j. t defines a fourth smallest 

sphere Sir .. (equatorial sphere) which passes through the points pıı of the triangle. All 

points p, in P are associated with a Voronoi box V,. No Voronoi box V„m intersects t for all 

m with pm € pı,ı if and only if the four spheres Semi Sturm contain no other points of P. 

The proof essentially boils down to showing that the volume covered by the four smallest 

spheres (one triangle and three edges) “swallows” any sphere $,,r defined by a center x and 

radius R, where x is located anywhere on the triangle and R is such that the sphere $,,r 

does not contain any of the three vertices of the triangle. 

As will be seen in Chapter 5 the smallest sphere criterion (Crit. 3.1) is stronger than the 
Delaunay criteria (Crit. 5.1 and Crit. 5.2). If no Voronoi box associated with an internal 

mesh point intersects the boundary, the simplices forming the boundary must be Delaunay 

simplices. In other words: If one chooses a Delaunay Triangulation to utilize its inherently 

given Voronoi boxes as control volumes, and if the discretization scheme relies on closed 

control volumes, the boundary elements must be adapted in one way or another to satisfy 

the stronger criteria independently of the application. It follows from the well known Thales 

circle that in two dimensions the angle opposite of a boundary edge must not be obtuse. Non- 

obtuse triangulations can be guaranteed in two dimensions [7]. For three dimensions such a 
guarantee remains an open problem. In practice the mesh generator is required to construct 

a Delaunay mesh and to ensure that the surface mesh elements are at least Delaunay. 

3.2.2 Requirements for Finite Element Meshes 

Such well pronounced requirements based on a different criterion can be formulated for a 

specific application of the finite element method. The basis is the marimum principle which 

is the most important property of solutions to convection-diffusion equations. In its simplest 

form it states that both the maximum and the minimum concentrations occur on the bound- 

ary or at the initial time. This implies that if the boundary and initial values are positive, 

the solution must be positive everywhere and concentrations may never reach negative val- 

ues. It is desirable that the employed discretization also satisfies a maximum principle. As 

is well known, this is guaranteed, if the system matrix resulting from the discretization is an 

M-matrix? [69,125]. 

The system matrix K for a simple diffusion with a standard Galerkin weighted residual 

approach, linear elements, and backward Euler time discretization has the following form 

1 
K=—M+DS 3.8 AT (3.8) 

where M denotes the mass matrix, S is the stiffness matrix, and D is the diffusion constant. 

K becomes an M-matrix if the mass matrix is lumped and S is an M-matrix. Since S only 

depends on the mesh this condition translates to a constraint on the mesh. The off-diagonal 

entries s;;,3 # j of S must not be positive. These coefficients can be generally expressed as 

s5= Y, | VN;-VN;dA (3.9) 
elements” ° 

  

2 A real, nonsingular n x n matrix A where 5; <0 V i# j and A™' > 0.



28 CHAPTER 3. MESH GENERATION 
  

where N;, N; denote the basis functions and A is the area (volume) of element e. The in- 
product (VN;-VN;) has a simple geometrical meaning and leads to an angle criterion for each 

edge in the mesh, which was recently introduced by [189]. It is an important consideration 
in three-dimensional finite element mesh generation for diffusion applications with a high 

concentration gradient. 

Criterion 3.3 (sum of dihedral angles) Let e;; be an edge with n adjacent tetrahedra t;. 

For each t, two planes ezist which do not contain e;,; and which span a dihedral angle 0y. 

The two planes share an edge with length I.. The sum over k=1...n ofthe cotangens of 0, 

weighted by I, must be greater or equal than zero. 

n 

y, I, cot 4, >0 (3.10) 

k=1 

Figure 3.6 depicts an example where this criterion is violated for the interior edge e;,;. Four 

adjacent tetrahedra exist of which two span a 90° angle. Hence, cot 43 = 0 and cot 84 = O. 

As one can see from the figure cot 61 = cot & = 5 (01, 02 are obtuse, © 125.3°) and hence 

the total sum is negative. 

In two dimensions (3.10) can be written as 

cot 61 + cot a >O (3.11) 

where 0| and 63 are the angles of two triangles sharing a common edge e;,; as shown in 

Fig. 3.5. It can be assumed that 

0< 01,2 < 180° (3.12) 

and therefore 

sin 0, sing > 0 (3.13) 

Hence, multiplying (3.11) with sin 0, sin 0 results in 

sin 62 cos 6} + sin 61 cos 0a > O (3.14) 

which is equivalent to 

sin(d1 +6) > 0 (3.15) 

Due to (3.12) and (3.15) the finite element mesh criterion (Crit. 3.3) can be expressed in two 
dimensions as 

By + 0 < 180° (3.16) 

In two dimensions (3.7) describes the relation between the circumcircle radius, the edge 

length, and the opposite angle in a triangle. In three dimensions a relation for the circum- 

sphere radius, the edge length, and the opposite dihedral angle 6, (which is important for 

Crit. 3.3) in a tetrahedron does not exist as was explained in Fig. 3.3. This leads to a very 

interesting conclusion. It can be shown due to the existing relation (3.7) that the finite ele- 

ment mesh requirement (Crit. 3.3) is in two dimensions identical to the box integration mesh 
requirement which is based on empty circumcircles (Crit. 3.1 and Delaunay Crit. 5.2). To see
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Figure 3.5: Finite element mesh criterion for two dimensions. 

this equivalence of the angle condition (3.16) and the Delaunay criterion dependent on (3.7) 
consider the extreme case where (3.16) becomes 

    

01 + 0a = 180° (3.17) 

It follows that 

sind = sin 4a (3.18) 

and furthermore with (3.7) 

— 1 
2Rı 2Rsa (3.19) 

The two triangles with the common edge e;,; (Fig. 3.5) must possess circumcircles with equally 

sized radii. Because of (3.17) the circumcircles must be in fact identical. Bach circumcircle 

passes therefore through all four vertices of the two triangles and the Delaunay criterion is 

“just” fulfilled. With a decreasing sum (0, + 62) the distance between the two circumcenters 
(centers of the circumcircles) increases and the Delaunay criterion is definitely satisfied. 

As expected, in two dimensions the finite volume and the finite element method lead to 

the same discretization with identical requirements. They both rely on Delaunay meshes 

to fulfill the maximum principle. For other finite element applications than diffusion, like 

stationary problems or problems with less high gradients, the use of Delaunay meshes can be 

omitted. In three dimensions Crit. 3.3 and the Delaunay criterion are of quite different nature 

as will be shown with simple examples in the next section. In practice finite element mesh 

generators may generally try to avoid extremely obtuse (dihedral) angles and badly shaped 

elements without too much concern on the Delaunay property and without a technique to 

directly enforce Crit. 3.3. Such a technique remains open to further research. 

3.2.3 Simple, Distinctive Mesh Examples 

The pure diffusion equation is solved with the finite element and the finite volume method 

using AMIGOS [128]. This allows the comparison of the solutions on identical meshes with 
the same linear solver. A Gaussian profile is used as the initial distribution. In two dimensions
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Figure 3.7: Ts tessellation, no obtuse dihe- 
Figure 3.6: T, tessellation and Crit. 3.3. dral angles. 

correct and identical results are obtained with both methods on Delaunay meshes. In three 

dimensions the finite volume method still achieves correct results on a Delaunay mesh as 

expected. However, the finite element method fails on the same three-dimensional Delaunay 

mesh. Even for such a simple test problem the finite element solution strongly violates the 

maximum principle. The resulting concentration reaches negative values in some areas. Th. 

areas spread out in time and the absolute value of the emerging negative concentrations is 

much larger than the minimal initial concentration. The relative error between the solutions 

of the two methods illates strongly and is large in regions where the concentration is 

    

     

      

negative. These negative concentrations are particularly annoying for diffu 

in semiconductor procı imulation where the concentration varies 

within a small area. 

ion applications 

many orders of magnitude       

In the following the observed effects are investigated in terms of mesh requirements and 

simple mesh examples are constructed where the finite element method can be applied suc- 

cessfully to the diffusion problem. 

  

Mesh Example 1: A Delaunay mesh which is not suitable as a finite element mesh for 

diffusion applications.     

Mesh Example 2: A Delaunay mesh which is suitable for finite element diffusion simula- 

tion. 

Mesh Example 3: A non-Delaunay mesh with obtuse dihedral angles which is still suitable 

as a finite element mesh. 

  

The three pr: 

Crit. 3.3. They prove that in three dimensions the Delaunay crit 
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nted meshes illustrate the different scope of the Delaunay criterion and 
fici 

ry to obtain a correct finite element mesh for diffusion so that the maximum 

principle is fulfilled. The examples also show that a strict adherence to a sole non-obtuse 
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angle criterion is not necessary. This important insight complements previous research [89] 

where one example, a Delaunay mesh insufficient for such applications, was given. 

The examples were constructed by exploiting an ortho-product point distribution. A cube 

defined by eight points can be tetrahedralized in two qualitatively different ways. 

Tg Tessellation: A cube is composed of six tetrahedra (Fig. 3.6). 

T; Tessellation: A cube is composed of five tetrahedra (Fig. 3.7). 

For comparison purposes a specific tessellation 7g is used which contains sliver elements 

with obtuse dihedral angles. The tessellation 75; on the other hand does not contain such 

elements. Note that also 75 tessellations exist which do not contain obtuse angles. The 

key idea is that all elements of both tessellations fulfill the empty circumsphere Delaunay 

criterion (Crit. 5.3), because all points lie on the perimeter of a single sphere. On the other 
hand Fig. 3.6 clearly shows that the finite element mesh requirement (Crit. 3.3) is not met by 

the chosen 7g tessellation. It is only met by the 75 tessellation, because of the total absence 

of obtuse dihedral angles. A simulation with AMIGOS allows to display the stiffness matrix 

and hence to directly check the sign of the matrix entries. The resulting stiffness matrix of a 

Te tessellation is shown in Fig. 3.8 where the entries for edge (3,4) of the mesh are underlined. 

  

  

      

          

2 0 

[ 50 -16 -16 -1.6 \ 
716 83 16 -16 -50 -16 
-716 16 83 -16 -50 1.6 4 1 
16 -16 -16 116 33 -50 -5.0 | 

-50 -50 33 11.6 -16 -16 —1.6 3 
1.6 50 -16 83 16 —1.6 

716 -50 -16 16 83 -16 
\ -1.6 -16 -16 49) - 5 

TET: 4563 TET: 6432 

1.6 -16 -16 16 3.3 0-16 -16 
716 33 16 -33 0 1.6 0 —1.6 
16 16 33 -33 —1.6 0 1.6 0 

1.6 -33 -3.3 5 -16 -16 0 33 

TET: 341 2 TET: 4531 

16 16 —1.6 —1.6 1.6 0 0 —1.6 
1.6 5 -33 -33 0 33 -16 -16 
16 -33 33 16 0-16 16 0 
16 -33 16 33 -16 -16 0 33 

Figure 3.8: Global stiffness matrix for a Tg tessellation and local matrices of those four elements 
which are adjacent to edge (3, 4).
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Suitable meshes for simulation are then built by stacking a large number of such tes- 

sellated cubes. The typical characteristics of each tessellation type are thereby conserved. 

Hence, both meshes are global Delaunay meshes and yet only one satisfies Crit. 3.3. The two 

fundamentally different meshes based on an identical ortho-product point cloud are depicted 

in Fig. 3.11 and Fig. 3.12. The finite element simulation on the 75 type Delaunay mesh results 

in negative concentrations as was previously pointed out. The 75 type Delaunay mesh which 

fulfills Crit. 3.3 indeed succeeds to yield the required entries in the stiffness matrix and the 

concentrations remain positive at any time during the transient simulation. 

The most important fact however is shown by the third example. Further exploiting the 

ortho-product point set and its 75 type tessellation with slightly shifted points in certain 

locations results in a non-Delaunay mesh which still satisfies Crit. 3.3. Figure 3.9 shows an 

instance of the mesh consisting of eight cubes. T'he point in the middle has been shifted. The 

Delaunay criterion is violated, because the circumspheres of several unmodified tetrahedra 

contain the shifted point in its interior. The dashed line in the figure marks two of the non- 

Delaunay triangles. The simulation using AMIGOS for the entire mesh (Fig. 3.13) shows, 
that the requirements for the stiffness matrix are fulfilled. For example one can consider 

the edge (14,10) in Fig. 3.9. This edge is shared by elements which contain the shifted 
point and which are non-Delaunay. The matrix contributions of the six elements which are 

adjacent to this edge are given in Fig. 3.10. The first two matrices belong to the elements 

with the shifted point, and indeed possess undesirable positive off-diagonal entries. The last 

two matrices however belong to very well shaped elements which are able to compensate the 

overall sum. The resulting entry in the global stiffness matrix for the edge (14,10) equals 
(0.83 +0.83+0+0+ (-0.83) + (0.83) = 0). Again, the concentrations do not reach negative 
values at all times. The shifting of a point introduces obtuse dihedral angles and positive 

contributions to off-diagonal elements of the stiffness matrix. However, Crit. 3.3 is satisfied 

and the stiffness matrix remains an M-matrix.
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Figure 3.9: 7; type tessellation with a shifted point. 

TET: 10 6 14 2 TET: 6 10 14 18 

5 —6.6 0.83 0.83 10-66 -16 -16 
6.6 10 -16 -16 6.6 5 08 0.83 
0.83 -1.6 0.83 0 -1.6 0.83 0.83 0 

083 -16 -0 08 -16 03 -0 08 

TET: 10 17 14 26 TET: 10 14 17 16 

1.6 1.6 0 0 1.6 0 -1.6 0 

1.6 5 -16 -1.6 0 16 -16 0 
0-16 16 —0 -16 -16 5 —1.6 

0-16 -0 16 0 0 —-1.6 1.6 

TET: 2 10 16 14 TET: 10 18 26 14 

2.5 —0.83 —0.83 —0.83 2.5 0.83 —0.83 —0.83 

—0.83 2.5 -0.83 —0.83 —0.83 2.5 -0.83 —0.83 
—0.83 —0.83 2.5 —0.83 —0.83 —0.83 2.5 —0.83 
—0.83 —0.83 —0.83 2.5 —0.83 -0.83 —0.83 2.5 

Figure 3.10: Element matrices which contribute to the entry in the global stiffness matrix for the 

edge (14,10). Due to the symmetry of the mesh the three matrices on the left and on the right side 

possess the same entries.
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Figure 3.11: Delaunay mesh (Tg), 3072 tetrahedra. 

  

Figure 3.12: Delaunay mesh (75), 2560 tetrahedra. 

  

Figure 3.13: Non-Delaunay mesh, 2560 tetrahedra.
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3.3 Control Space 

In order for a specific application to influence the meshing process aside from geometrical 

concerns a control function must be defined. The stepsize h specifies the desired mesh spacing 

at a given location and a given direction. 

h = F(x,d) (3.20) 

For an isotropic mesh density the dependence on d can obviously be omitted. The control 

function is not likely to be prescribed analytically or manually. It usually depends on a 

key variable of the physical problem. Hence, the control function itself must be defined on a 

different mesh. This background mesh is used to evaluate the control function F of the discrete 

key variable given at the mesh points. The background mesh must at least cover the entire 

simulation domain and is present during the generation of the actual boundary consistent 

simulation mesh. Such a background mesh is often provided by a simple ortho-product grid 

or an octree structure. The conjunction of the control function and the background mesh 

is called the control space®. For example, in semiconductor device simulation a typical key 

variable is the electron concentration n. Let n be defined on a simple structural grid which 

is not consistent with the boundary. An appropriate definition of F = g(n) governs the mesh 

density. To achieve higher refinement and smaller elements in regions where the gradient is 

large one can define 
= A 

F(x,d) = (3.21) 
a+ |d- Vn| 

where « is a small regularizing term and Anax 15 an approximate parameter for the maximum 

allowed increase of n within a mesh element. "The spacing of mesh points h, in the direction 
- 

of the x-coordinate axis (d = €,) should be 

Amax _ > B Amax h2 = F(x,&,) < hE An (3.22) 

where h2 is the spacing in the direction of the x-coordinate axis of the background mesh and 

An is (n(x) -n(x+h2?). 

The aim to accurately discretize the solution quantities or to choose a control function 

F which depends on the solution itself leads to the problem that the required element size 

is not known a priori. A previous simulation mesh with an existing solution must be used 

as a background mesh to judge whether or not the mesh density needs to be increased. 

There exists no knowledge of how pronounced this increase should be. A solution dependent 

measure sol (x, d) must be defined to assess the existing mesh. To achieve an anisotropic 

mesh spacing this metric Q,oı must be capable to judge the mesh/solution with respect to 

the direction d. Typically, Qsoı reflects interpolation errors, error estimates, second order 

derivatives, and error indicators. Numerous approaches can be found in literature [6, 9, 17] 

/ IV (uguad — win)|? do (3.23) 

| «nuad - Ulz'n)2 dz (3.24) 
e 

  

3 A slightly different concept of control space is given in [55].
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/ |uref = Uin| dx (3.25) 
e 

where Uguad denotes a quadratic interpolant, uy„ a linear interpolant, and u,.er a reference 

solution. Error indicators or a posteriori error estimates for (U — Un) can be developed if 

specific properties of the solution, e.g. in the case of elliptic or parabolic problems, are known 

[10]. For anisotropic control the error contribution of each edge of the mesh element must be 
separately evaluated. 

The control function F can be formally expressed as 

h = F(x,d) = g(h” (x,d), Qsol (x, d)) (3.26) 
where hP is the local mesh spacing of the background mesh. For some applications, e.g. 

periodic systems, such an absolute value for h serves as an upper bound to guarantee a 

certain accuracy. An explicit function for h is also needed for global adaptation. The entire 

domain is remeshed with new elements which are not created from simple refinement of the 

old elements. The old mesh is used purely as background mesh providing the old solution 

and not for the actual construction of the adapted mesh. The meshing process guided by 

a measure (),.ı becomes an iterative process which starts on an initial coarse mesh with a 

first solution. The initial mesh can only be controlled by geometrical constraints and/or key 

variables which are independent of the solution. However, most practical codes perform a less 

sophisticated adaptation. Adaptation usually means then local adaptation by means of local 

refinement. The function F is not known, instead threshold decisions based on Q,.ı determine 

whether or not an element is locally split in half. The mesh is only adapted isotropically and 

locally to the solution. 

3.4 Local Adaptation 

Local adaptation is necessary to achieve accurate solutions with an acceptable effort in terms 

of simulation time and memory consumption. The local refinement, coarsening, or smoothing 

steps are performed to enhance purely geometrical quality aspects as discussed in Section 3.1, 

or are guided by a control function as explained in the last section. In the first case the re- 

fined regions concentrate around areas where the local feature size is small. Large elements 

which resolve small geometrical features are usually badly shaped and require refinement. In 

the latter case the mesh density is adapted to a stationary solution or dynamically for each 

timestep of a transient simulation. The regions of refinement have to migrate as the charac- 

teristics of the transient solution change over the domain. Essentially, local refining in some 

regions as well as local coarsening in other regions becomes necessary to avoid meshing the 

entire domain repeatedly. The here discussed refinement is often referred to as h-refinement 

which results in a decrease of the stepsize h. On the other hand are p-refinement techniques 

which increase the order of the polynomial form functions of the finite element approximation. 

Topics and techniques of local mesh adaptation are discussed in the following paragraphs. 

3.4.1 Moving Boundaries 

Element deformation, moving mesh points, and changing structure boundaries occur for 

instance during the oxidation step in semiconductor process simulation. The situation is often
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referred to as a local adaptation problem, because portions of the mesh remain unchanged 

and should be reused. It is not feasible to repeatedly mesh the entire domain with every 

slight change of the structure boundary and to transfer the data to the completely new set 

of mesh points. However, difficulties arise when the device structure changes qualitatively. 

The existing surface mesh topology may not be suitable to represent the new boundaries 

and interfaces correctly. More global techniques might be necessary to extract a new surface 

mesh in such cases (see Section 3.5). In this sense moving boundaries during oxidation are 

related to moving surfaces during topography simulation of etching and deposition steps. 

Although in the latter case no internal mesh points are moving and the translation velocities 

are only applied to points of the surface, techniques from etching and deposition tools might 

successfully be applied to oxidation. 

When the mesh is only distorted the following local adaptation steps suffice to maintain 

mesh quality and consistency. 

1. The mesh points are moved and the elements are deformed. Ideally this happens only 

inasmuch as certain constraints are fulfilled. An effective and simple to implement 

constraint is to check the sign of the volume of the mesh element to avoid folding and 

overlapping elements. A mesh point can then only be moved as far as none of the 

volumes of the incident elements reaches a too small value. It might be necessary to 

cover the exterior of the structure with an outside mesh to fully detect all possible areas 

of collision. 

2. Through a linear scan too small, too large, badly shaped, or extremely distorted ele- 

ments are tagged. If no constraints enforcing consistency were applied in the previous 

stage, the detection of overlapping elements would be much more costly at this stage. 

If the mesh is “folded”, elements with a negative volume could be detected easily, but 

their removal does not restore the consistency. A large number of positive elements 

would have to be checked as well for possible overlappings. 

3. Tagged elements are removed with the usual techniques of refinement and local trans- 

formation (see following paragraphs). This changes the internal mesh topology (not the 
topology of the surface) so that a further translation of the mesh points including pre- 

viously constrained points becomes possible. It is returned to step one and the process 

is repeated as long as changes are significant or the end time of the simulation is not 

reached. 

3.4.2 Hierarchical Meshes 

The initial mesh is coarse. Local refinement is performed by recursive subdivision that 

follows varying simple patterns. All recursion levels are stored in a tree data structure. 

Local coarsening of a previously refined area can be performed easily by traversing the tree. 

Such hierarchical meshes are typically employed for multigrid methods [171] which require 
changing from coarse meshes to refined meshes and vice versa iteratively. The tradeoff lies 

in a refinement limited to simple patterns, the higher memory consumption, and the more 

complex mesh management. The last issue is especially important for moving boundary 

situations. A carefully chosen tree data structure and a well designed implementation are
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important to unify mesh updates for all levels of the mesh hierarchy. It can be advantageous 

to store only one mesh and to rely on fast remeshing techniques for the purposes of adjusting 

to a moved boundary as well as coarsening and refining. 

3.4.3 Bisection and Projection 

Refinement techniques mostly involve the bisection of mesh edges. It is a simple procedure 

which in practice achieves a smoother grading of the mesh density than is acquired by tech- 

niques like the orthogonal projection of a vertex onto the opposite edge of a triangle. The 

reason can be seen easily in two dimensions. If the angles in a triangular mesh are assumed 

to be not extremely obtuse, bisection guarantees that the minimum spacing between mesh 

points does not decrease much more pronounced than by a factor of 0.5 and no mesh points 

lie too close together. Obtuse angles might be introduced, but could be eliminated by topo- 

logical modifications as dicussed later on. Orthogonal projection avoids bad angles, but even 

under the assumption of an average element quality it cannot be guaranteed that mesh points 

have a sufficient distance. Too close mesh points induce a high refinement in that region with- 

out that the physical problem calls for it. Self-induced refinement may lead to convergence 

problems of the meshing process if not properly addressed as discussed in Section 6.3. 

A new bisection-based refinement method has been introduced by Liu and Joe [92, 93]. 
Interesting research on topics like the longest edge bisection and its “propagation path” 

has been accomplished by Rivara and Hitschfeld [67, 131,132]. The order in which several 

refinement steps are performed has a great effect on the mesh. A lot of research has still to 

be done in three dimensions. 

3.4.4 Red-Green Refinement 

Red-Green refinement is based on the bisection of all edges of a simplex in one step. The 

resulting mesh topology which defines the connectivity of the split points is chosen such that 

the refined elements and the original element are self-similar. This is possible for the split 

element itself (Red refinement) but not for the neighbor elements of which not all edges 
are split (Green refinement). In such a way the original geometrical element quality can be 

preserved, but not improved. Hence, such a refinement is only justified when the mesh density 

needs to be increased according to the control space. The name “Red-Green refinement” in 

literature often refers to the two-dimensional case where the simplex is a triangle. The 

triangle is split into four triangles of the same shape and the adjacent triangles are each split 

into two triangles. The same effect could be accomplished with a more universal bisection 

technique combined with local transformations. Only the desired edges are split. With 

several adaptation steps including topological modifications the same refinement pattern can 

be reached as results from the Red-Green technique. 

In three dimensions Red-Green refinement with mixed elements has been investigated 

by [88]. Splitting all edges of the three-dimensional simplex (tetrahedron) introduces six 
refinement points which define an octahedron (Fig. 3.14). The neighbor elements (Green 
region) form the transition from the refined area to the unrefined area. The implementation 

in AMIGOS combines this refinement pattern with the concept of hierarchical meshes as
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Figure 3.14: Red-Green refinement using mixed elements in three dimensions. 

  

discussed above. The elements in the Green region are thereby not permanently fixed and 

are never refined themselves. They will be discarded and replaced by elements forming a Red 

pattern when further refinement is required. 

3.4.5 Full Freedom Point Insertion and Removal 

Arbitrary refinement can be performed by inserting new mesh points at any desired location 

not limited to e.g. the mid-points of element edges. If the topology connecting the new 

mesh point is not limited to a fixed pattern, more general algorithms for the local remeshing 

will have to be employed. If the new point does not a priori belong to the mesh element 

which motivates the refinement, a point location method will be required to determine the 

element that contains the point. Coarsening meshes which are not of the hierarchical type 

by means of point removal has less practical relevance. The most important application is to 

collapse too close points and to coarsen a t00 fine surface mesh (see Section 3.5). Such fully 

flexible techniques are required to improve the geometrical quality of the mesh elements or to 

introduce anisotropy. An important refinement method for angle bounded triangulations by 

means of arbitrary point insertion is based on the Delaunay criterion and will be discussed 

in Section 5.6.
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3.4.6 Mesh Smoothing 

Another way of adapting a mesh is the relaxation or smoothing of the mesh points. The 

position of the mesh points is modified, but the mesh topology remains unchanged. Shifting 

points can have a drastic effect on the quality of a mesh and it is more efficient than refinement 

and collapsing points especially when the translation amplitudes are small. A global optimum 

is reached by sequentially updating the mesh points in a Gauss-Seidel-type iteration [9, 49]. 

The location of each mesh point is derived from a local optimization of a certain criterion 

while holding all other mesh points fixed. Usually, only a few sweeps through the mesh 

points are required to achieve convergence, and the local optimization problem is solved with 

a damped Newton method. 

More advanced approaches define the local optimum as a maximum of a combination of 

a geometrical quality and a solution dependent quality [9]. The local displacement of a mesh 

point is then naturally constrained by the geometrical quality of the incident elements. Other 

approaches use translation forces to define attraction and repulsion between mesh points 

depending on the distance and direction. The force function is crucial for convergence and is 

often defined similarly to the physical binding forces between atoms [190]. Consistency checks 

are necessary to ensure that the displacement of a mesh point does not result in overlapping 

or zero volume elements. 

A simple and straight-forward method can be derived from a finite difference approxima- 

tion of the Laplace operator and is called Laplacian smoothing |62]. A mesh point is moved 

to the centroid of the surrounding mesh points which are topologically connected. 

1 n 

n;a (3.27) 

Several sweeps through all mesh points are required. If a set of surrounding mesh points 

forms an extremely non-convex polyhedron/polygon its center of mass may lie outside and 

overlapping elements would be generated. In such cases the mesh point is skipped. The 

weighting factors «; could be set to one, or for example be derived from the volume/area 

of the incident elements where a; is equal to n. Laplacian smoothing results in more 

homogeneous meshes and is not suitable to achieve or maintain an anisotropic mesh density. 

Only for the trivial case of an homogeneous anisotropic mesh, e.g. an ortho-product grid 

with constant spacing h,,h, over the domain where h, «< h,, would the anisotropy remain 

unaffected after smoothing. 

Another simple method aims to equally distribute the angle of the elements incident at 

each mesh point [129]. A general limitation of smoothing techniques is a bad mesh topology. 
If for example in two dimensions the number of edges incident at a given mesh point is t0o 

large or too small, it will become impossible to improve the angles. Most powerful will be a 

combination of refinement, smoothing, and local transformations. 

3.4.7 Local Transformations 

The edges in a mesh are locally modified while the mesh points are left unchanged. Such 

topological transformations of the mesh elements are an important technique to improve the
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mesh and to get rid of imperfections in an efficient and fairly straightforward manner. In 

two dimensions transformations are simple and can in fact be restricted to a single type of 

operation on a set of two triangles. The diagonal edge is flipped which is often also called 

edge swapping. The same technique applied to surface triangulations in three dimensions 

is defined more precisely in Section 6.3. Topological changes for volume elements in three 

dimensions are much more sophisticated [71, 72, 75]. A transformation generally changes the 
number of involved tetrahedra and several types of flip operations have to be defined. The 

basic operation is a 2-3 or 3-2 flip where facet swapping respectively introduces or eliminates 

a third tetrahedron (Fig. 3.15). More complex operations involve five or more tetrahedra. As 

    

  

3 tetrahedra (one sliver) 2 tetrahedra 

Figure 3.15: 3-2 or 2-3 local transformation. The internal facet which is being swapped is drawn 

shaded. 

can be seen from Fig. 3.15 local transformations can be useful to remove slivers which only 

exist in three or higher dimensions. It should be noted that an algorithm performing only 

local transformations may get stuck in local optima. 

3.5 Surface Mesh 

The generation of a suitable surface mesh is not simple. The difficulty is that the surface 

description of a CAD model and surface meshing are two different tasks. The purpose of the 

first is purely the definition of the structure. The latter will require the first, but it will also 

depend on the generation type of the volume mesh. 

An input model can be described in very different ways. Constructive solid geometry CSG 

uses boolean operations on solids to define a structure [99]. Alternatively, the same structure 

can be defined by a boundary representation BREP. The enclosing surface, in two dimensions 

the contour, is given through splines, bezier curves, non-uniform rational B-spline (NURBS) 

patches, or edges and polygons. The transition from a mere structure description to an 

actual surface mesh involves several preprocessing steps. A first conversion into a meshable 

surface description, as already mentioned earlier, is not trivial and depends on the type of 

solid modeling [97]. Figure 3.16 shows an example of a structure description which makes 

intersection calculations necessary to derive the boundary representation. After extracting



42 CHAPTER 3. MESH GENERATION 
  

    

  

  

NE 
a 

Figure 3.16: Splitting an edge to ensure a well connected surface topology. Correctly splitting a 
polygon requires an expensive caleulation of all intersections. 

the well connected surface topology, it must be adjusted to work with the generation type of 

the volume mesh. 

A method based on graph theory and network flow techniques for bidirected flow problems 

has been developed by [111]. A boundary given by curved polygon refined into quadrilat- 

erals (four point mesh elements for surk n three dimensions) so that the resulting surface 

suitable for numerical analys The theoretical approach avoids typical standard 

traps where patches stay unresolved because the number of remaining points and edges does 

not allow a tessellation into quadrilaterals with the available templates. 

  

     

    

mesh is     

Many tetrahedral mesh generators, e.g. most advancing front and Delaunay methods, 

require a surface triangulation. Furthermore, providing a refined, coarsened, or smoothened 

surface triangulation will prove eflicient prior to the generation of the volume mesh. In some 

cases the elements of the surface mesh are required to fulfill certain mesh criteria as for 

example Crit. 3.1. Such special surface triangulations can be generated through complex 

refinement procedures. A new technique will be described in detail in Section 6.3. It will 

also be useful if the volume meshing method is capable to adapt the surface mesh a poste- 

riori. Other methods, e.g. some cartesian and octree techniques, generate the surface mesh 

indirectly by caleulating the intersections of th. rface representation with the elements of 

the volume mesh. Again, a surface which is represented by a triangulation may simplify this 

  

  

   

         

  

  

proce: 

Where in computational fluid dynamics and related fields the triangulation of NURBS 

patches is important [2,120], quite different solid modeling techniques are employed in semi- 

conductor proc simulation [188]. The structures might be defined through 
layout data [101]. Or they might be rasterized and composed of a large number of equally 
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sized small cells (cellular data). Such an output, e.g. from topography simulation, contains 

too many cells to be directly used for the surface or the volume mesh. Simple cartesian solid 

modelers produce staircase-like surfaces where the normal vector of each facet is parallel to 

a coordinate axis (Fig. 3.17). These c arily complicate the meshing procı 

can be avoided with a preceding data reduction and/or smoothing step. Such techniques 

also gain importance for level set methods. An iso surface of a continous volumetric data set 

forms the structure description. Extracting a surface mesh from such an iso surface may not 

be straightforward because the data set is itself discretized on a mesh. Coarse mesh elements 
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Figure 3.17: Staircase effects approximate slopes and result in unnecessary large meshes. 

and interpolation can cause an extremely rough and unsuitable surface mesh. 

3.5.1 Surface Extraction From Cellular Data 

For certain applications a cellular data representation! enables the use of problem adapted 

and efficient algorithms. During the simulation of etching and deposition processes topolog- 

ical changes of the surface structure are handled without special surface trace algorithms or 

algorithms to avoid the formation of surface loops. At the cost of a higher memory con- 

sumption due to the sampling of the structure moving boundary situations are managed in a 

straightforward manner with image pro: ıg techniques. The polygonal surface d ption 

is later retrieved through the marching cubes algorithm [95]. The original method which gen- 

    

        

    

  

    

  

"An image which consists of pixels in two and voxels in three dimensions,
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erates fairly smooth iso surfaces for continous data is adapted in such a way that it constructs 

the interfaces between a discrete distribution of several materials as shown in Fig. 3.18 and 

Fig. 3.19. The value of the magnitude on the cell corners is thereby not arbitrary but rather 

an integer reflecting the material type. The cell edges are never split differently than through 

ul optimal representation with angles limited to a multiple of 

45°. The selection of the templates depending on the material type at each cell corner 

straightforward (Fig. 3.19). A detailed description of such an implementation 

can be found in [85]. During the sampling and retrieval process it will be desireable to pre- 

serve as much of the polygonal information as possible in areas where the boundary remains 

unchanged [110]. 
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It is interesting to see that the original marching cubes algorithm which operates on 

continous data can be utilized to extract surfaces from level set computations on ortho- 

product grids. Often such level set methods are performed on tetrahedral meshes and a to 

the marching cubes analogous algorithm becomes necessary. 
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Figure 3.18: Marching cubes algorithm B 1a u s 
applied to discrete data which describes 
the distribution of a finite number of ma- Figure 3.19: Pathological cases and alternative 

terials. templates. 

3.5.2 Surface Coarsening, Data Reduction 

Surface triangulations can consist of a too large number of very small triangles which do 

not convey important geometrical information. For example surface triangles which have 

been extracted from cellular data are of the same size as the sampling cells. In this case 

data reduction is mandatory. An algorithm based on the standard method as proposed in 

[153] allows such a decimation of a general triangulation including edges with more than two 

adjacent facets [85]. By taking various parameters like the aspect ratio and the distance ofa 

point to a plane into account, redundant points are discarded together with incident triangles. 

The resulting hole (ring) is triangulated. A smoothing effect can be observed under certain 

conditions but it cannot be guaranteed. The local operation and an example is depieted in 

Fig. 3.20. At the top of the trench the original structural edge has been converted into a less 

smooth surface. Depending on the locally applied parameters either the reduction effect is 

limited or ripple effects might occur. More global techniques, e.g. extracting all contour and 
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Figure 3.20: Detail of a trench consisting of 2912 triangles before and 288 triangles after data re- 
duction by locally discarding points. 

  

structural information beforehand (see Section 6.3) or generally elaborated schemes utilizing 

for instance energy functions [68] can be employed. 

3.5.3 Surface Smoothing 

  

Surface smoothing for the above mentioned purposes similar to the function of a low 

pass filter. The critical question is how to get rid of ripples and staircase effe« 

conserving structure corn Obviously this can only be achieved by either user interaction 

through parameters, or by preserving a complete information flow from the solid modeler to 

all preprocessors and to the mesh generator. 
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3.6 Point Placement 

The distribution of the mesh points should only depend on the application and the device 

structure. In practice it is trivial to see that it also depends on the chosen mesh generation 

method. It is difficult to find and to generate with an algorithm the optimal placement of 

points without following some trial and error scheme. "The mesh points are often sprayed 

over the simulation domain with a simple method and only afterwards adapted to the ap- 

plication/solution. Many existing and applied methods are not fully flexible with regard to
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the placement of the mesh points. Two negative and frequently encountered effects can be 

observed: 

e Rotating and translating a model relative to the coordinate system can have a heavy 

impact on the resulting mesh. 

e The location of the mesh points is limited to certain positions within the coordinate 

system. 

Some methods might even fail if the model is slightly tilted relative to the coordinate system. 

Other methods, e.g. advancing front methods, are fairly independent of such an alignment 

and produce better boundary-fitted meshes. Unstructured meshes do not possess a regular 

topology by definition. Some unstructured methods, e.g. cartesian and octree methods, 

exhibit a certain regularity concerning the distribution of the mesh points. Therefore it 

is useful to further distinguish unstructured methods with regard to the point placement 

mechanism. Throughout this text the term fully unstructured will refer to methods which 

allow an arbitrary placement of the mesh points.



Chapter 4 

Methodologies 

HE enormous variety of existing meshing algorithms and the many different hybrid meth- 

ods make an extensive overview difficult. This chapter is an attempt to give a complete 

classification of the main techniques which form the basis for practical mesh generation meth- 

ods. Some of the techniques are suitable for tetrahedral as well as hexahedral mesh generation. 

Hexahedral meshes are created from, or result in quadrilateral surface meshes as for example 

depicted in Fig. 4.1. Purely hexahedral methods like whisker weaving and the spatial twist 

continuum [180] for the generation of unstructured hexahedral meshes are not discussed. 

  

Figure 4.1: Unstructured quadrilateral surface mesh, MENTAT II [98]. 

4.1 Structured Grid Generation 

Structured grids have a regular topology where the neighborhood relation between all points 

is captured with a two- or three-dimensional array. By incrementing or decrementing the 

array index the point neighbors can be directly accessed. Historically, structured grid gen- 

eration was a first attempt to automate the meshing process for simple shapes. Through 

47
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mathematical transformations an ortho-product grid of the unit square/cube is mapped onto 

the simulation domain. In literature it is often referred to as numerical grid generation 

[24, 60, 78,184]. Multi block structured grid generation combines several simple blocks to form 

more complex shapes. Cutting the simulation domain into these blocks is strictly speaking 

the same task as unstructured mesh generation and poses the same difhiculties. The Chimera 

or overlapping approach allows overlapping blocks. Each structured grid component can be 

generated independently from the other parts. It must only be guaranteed that the blocks 

overlap sufficiently to allow interpolation between the component grids. A more detailed 

overview can be found in [61]. The two mathematically different mapping techniques are 
shortly summarized in the next paragraphs. 

4.1.1 Algebraic Method 

The parametrized boundary surfaces are algebraically combined to create the interior grid. 

The mapping of the unit square/cube with coordinates u, v, w onto the domain is performed 

by the transfinite interpolation [184]. In two dimensions it can be written as 

M(wu,v) = (1- v)Bsottom (u) + WBrignt(%) + VBiop(u) + (1 - u)Biefı(v) 

-(1-u)(1-v)Vı -ull - v)Va — uvV3 — (1 —u)vVy 

where B are the boundaries, V the four corner vertices, and M is the mapping function to 

calculate the coordinates z,y in the real domain. The mapping function satisfies 

M(u, 0) = Bottom (u) 

M(u,1) = Binplu) 

M(0,v) = Biesi(v) 

M(1,v) = Brignt(v) 
M(0,0) = Vı 
M(1,0) = V; 
M(1,1) = V3 

M(0,1) = v4 

The resulting grid is useful if the boundaries are convex or not too twisted. A three- 

dimensional example of the mesh of a LOCOS which was generated with a package described 

in [13] is shown in Fig. 4.2-a. 

4.1.2 PDE Method 

The mapping is a transformation based on a system of partial differential equations. The 

system is solved on a reference mesh to generate the structured grid. Depending on the type 

of the equations two classes can be distinguished. 

e Elliptic grid generation 

e Hyperbolic grid generation
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Figure 4.2: LOCOS: (a) structured mesh, 2000 tetrahedra (b) unstructured mesh, 957 tetrahedra. 

The latter uses hyperbolic operators and is suitable to grow a structured grid from a boundary. 

The first commonly utilizes the regularizing properties of the Laplace operator [103, 168, 183]. 

In two dimensions two systems with corresponding boundary conditions are solved. 

  

Urt uy= 0 

Vgg + Uy = 0 

Extra control of the grid spacing and orthogonality can be introduced by using Poisson equa- 

tions. The resulting grids are of high quality, boundary-fitted, and po: 

  

good orthogonality. 

The application of conformal mapping techniques to semiconductor device simulation, where 

boundary-fitted and possibly orthogonal meshes are a great concern, has been tested so far 

in two dimensions [26]. Non-planar thin layers (geometrical anis    tropy) and protection layers 

(physical anisotropy near boundaries) should be manageable in three dimensions. In prac- 

tice the structured grid must often become a part of a larger mesh with regions of different
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anisotropic requirements. The region between the various structured grid parts could for 

example be filled with an unstructured mesh. 

4.2 Product Methods 

Product methods generate a n-dimensional mesh by multiplying a mesh of dimension (n — 1) 
with a one-dimensional mesh. Numerous variations can be found which exploit application 

dependent structural characteristics. The multiplication is performed by rotation (cylindrical 

topology) or by extrusion in the direction of one coordinate axis. The mesh of dimension 

(n — 1) can be of any type with triangle or quadrilateral elements. From the many pos- 
sible combinations one particular approach has proven useful for interconnect simulations. 

Structures defined through layout data exhibit characteristics which can be exploited by the 

layer-based product method. 

4.2.1 Layer-Based Method 

The layered structure of many devices allows a simplified generation of three-dimensional 

meshes. Overlaying all layer descriptions into a two-dimensional graph unifies all lateral 

structural information (Fig. 4.3). An unstructured triangular mesh is generated for this 

  

— 
  

  

                  
  

  

  

              

  

  

Figure 4.3: Overlaying two layer descriptions and lateral two-dimensional unstructured mesh. 

graph. The resulting triangles are extruded into the third dimension and multiplied for 

every layer of the device. A following tessellation of the prisms yields the three-dimensional 

tetrahedral mesh. Local adaptation can be applied to the lateral unstructured mesh, but it 

will be propagated throughout the third dimension. A detailed description of this method can 

be found in [13]. Figures 4.4 and 4.5 show an example where a part of the interconnect layout 
is analyzed for parasitic effects. = Regarding the suitability for anisotropy, lateral planar 

thin layers can be managed in a trivial way. The orthogonality of the elements resolving
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Figure 4.4: Layout structure description. 

such a lateral thin layer is a trivial and welcome by-product of this method. With some 

limitations thin layers formed by parallel planes which are normal to the lateral expansion — 

they lie in the direction of the extrusion — can be managed as well: If the two-dimensional 

unstructured method is not capable of producing anisotropic two-dimensional elements for 

the lateral structure, the resulting lateral mesh will contain a large number of very small 

triangles. Due to the missing third dimension the number will still be at limits manageable. 

The following extrusion will introduce a number of needle elements which has the same order 

of magnitude as the number of small triangles. Hence, the thin layer which is normal to the 

lateral orientation is not ideally meshed but managed. Arbitrary thin layers (non-planar, 

non-parallel, non-aligned) cannot be handled with this method. 

4.3 Cartesian and Octree Methods 

A naive and intuitive approach is to generate a simple regular grid which entirely covers up 

the simulation domain. For example, an ortho-product point cloud can be used to fill the 

bounding box which is defined by the minimum and maximum of each coordinate with mesh
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points. T'he cells are then classified according to their location. 

e T'he cells in the interior of the structure boundaries are used as mesh elements. 

e T'he cells which completely lie outside of the simulation domain are suppressed. 

e The cells which intersect the boundaries have to be split into mesh elements and exterior 

parts. 

The selection of the stepsize or cell size is crucial to resolve features of the boundary and 

to limit the complexity of the split cells near the boundaries. Unfortunately, the resulting 

surface mesh cannot be controlled well. It is a matter of luck how the boundaries intersect 

the cells. Sharp intersections or cells which are cut off close to their corners result in very thin 

or degenerate elements. This situation becomes worse when the boundary is slightly tilted 

relative to the coordinate system (Fig. 4.6). Depending on the type of solver and discretiza- 

  

    

    
Figure 4.6: Intersection of the cartesian cells with the boundary, M. Berger et al. [2]. 

tion the cell elements must be further processed. Interior cells can be split into tetrahedra 

according to a set of templates. For the cells near the boundary templates and distortion 

(warping, [|141]) might not be suflicient and a more general subdivision into tetrahedra may 

become necessary. The evolving mesh is boundary consistent but not boundary-fitted, and 

its topology will generally be of an unstructured nature. 

An important remedy to the evenly sized mesh across the entire simulation domain is to 

allow the local subdivision into smaller cells. This leads to octree decomposition techniques 

with tetrahedral and even hexahedral [148] mesh templates. Spatial tree data structures
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provide great efficiency in storing and locating geomet 

is applied to each node of the tree until a state of subdivision is reached where the leafs of the 

tree contain single entities of the boundary. These rules must be designed carefully, especially 

under finite precision arithmet to avoid deadlocks and to guarantee a subdivision process 

which terminates. The o of gularity of the tree is defined as the maximum difference 

between the levels of subdivision of neighboring leafs. For instance an order of one guarantees 

that a cell’s edge cannot be smaller or greater than half or twice the length of the neighbor 

ical information [142]. A set: of rules 
        

           

        

   
    

  

  

cell. 

  

A tradeoff which is quite important to observe lies in the selection of the irregularity of 

the tree. A one irregular tree enables the use of less complex templates to further tessellate 

the cells. It will be easier to construct elements with non-obtuse angles [116]. For example an 
interior quad cell (not intersected by the boundary) with four edges of which any combination 

is split in half can be fitted with non-obtuse triangular templates. Note that this is valid only 

for square quads and not general rectangles. This advantage is inherited from ortho-produet 

grids where non-obtuse triangular/tetrahedral templates are trivial due to the rectangular 

    

    

because     cells. However, a one irregular tree induces a very high number of mesh elemen! 

the refinement propagates through large portions of the mesh. In fact it is not unusual 

that the number of mesh points becomes unmanageable as experiments with point clouds 

generated from one irregular octrees have shown [192]. Higher irregular trees complicate the 

vocabulary of templates to fit all possible cell constellations and make the creation of good 

elements diffieult. 
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Figure 4.7: Intersection based octree mesh of Flash EEPROM, ISE ETH [52].
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The long history of octree methods has lead to quite elaborated schemes [22, 152, 159]. 

However, the difficulties to control the element quality near boundaries also with regard to 

the mesh requirements for surface triangles are inherent. Boundary-fitted meshes cannot 

be achieved. Anisotropy can only be implemented in a limited way by intersection based 

instead of bisection based splitting of the cells. Thereby, it is dificult to maintain the good 

properties of the original octree and some advantages like the possibility to define non-obtuse 

triangular/tetrahedral templates are lost. Thin layers can only be managed as long as they 

are planar, parallel, and have a normal vector of which two components are equal to zero 

(Fig. 4.7). Thin layers with a normal vector of which one component is zero can theoretically 

be managed similar to the layer-based method with needle elements. As long as these struc- 

tural requirements are met, octree methods will be of practical relevance. Quite advanced 

methods which can handle such a limited kind of anisotropy are applied in practice. However, 

it is questionable how much further such methods can be developed and how significant the 

improvements can be. 

4.4 Advancing Front Methods 

The mesh is constructed by progressively adding mesh elements starting at the boundaries. 

This iteration results in a propagation of a front which is the border (internal boundary) 
between the meshed and the unmeshed region. The difficulty with this method lies in the 

merging of the advancing front. A new triangular/tetrahedral mesh element is added by 

inserting one new point!. The location of this point is crucial and is determined by the 

following criteria. 

e The quality of the resulting element. 

e The desired mesh spacing given by the control space. 

e Neighborhood constraints like other parts of the boundary /front. 

e T'he point must be inside of the domain. 

Adjusting the location of a point to meet all of these criteria requires a very complex analysis 

of the surrounding region. A previously generated point which belongs to a different part 

of the front may have to be preferred. In such a case no new point will be created and the 

two parts of the front merge. This results in a decrease of the size of the active front. The 

final step of the mesh iteration is a full merge where no active front remains. A few example 

situations are depicted in Fig. 4.8. The last two criteria must be checked by extensive search 

algorithms and intersection tests. 

e None of the created edges which are connected to the new point may intersect any 

edge/facet of the two-dimensional/three-dimensional front. 

e None of the created facets containing the new point may intersect any edge of the 

three-dimensional front. 
  

!Quadrilateral/hexahedral elements require more points.
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Figure 4.8: Various situations in two dimensions and different patterns depending on the angle «a. 

  

  

      
Figure 4.9: Three necessary tests to avoid collisions in three dimensions. The arrows show the 

direction of the advancing front and the tetrahedron which is tested and built. 

e T'he new element must not contain any other points. 

In three dimensions the second test is required additionally to the first. All three cases are 

illustrated in Fig. 4.9. If a more or less ideal initial guess for the location of a new point fails 

the intersection tests, the question how to alter the position successfully will arise. Sacrifices 

with regard to element quality and mesh spacing have to be made. A background mesh as 

explained in Section 3.3 can be utilized to evaluate the neighborhood constraints and to help 

the decision process. For example a volume mesh of the boundary/front without internal 

mesh points, a boundary mesh, contains much required information like distances and closest 

neighbors. This “background boundary mesh” must be locally updated each time the front 

advances. A Delaunay mesh seems most suitable for such purposes and was integrated as 

a background boundary mesh into an advancing front method by [50] as already briefly 
discussed in Section 2.3. 

The surface mesh of the boundary from which the advancing front departs has a great 

influence on the volume mesh. A high quality surface triangulation is required for the gen- 

eration of a tetrahedral mesh. Which and in what order the surface triangles are effectively
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used as launching seeds for the advancing front is another important opportunity to influence 

the final mesh. In fact, it is the advantage of advancing front methods that the elements 

near the boundary can be controlled directly. Protection layers around physically crucial 

boundaries can be constructed by departing from those boundaries with several very small 

stepsizes. However, orthogonality is not a priori guaranteed by the original advancing front 

method. Enhancements to the algorithm are needed to provide perpendicular and parallel 

grid lines near boundaries. Arbitrary thin layers pose no difficulties in theory, but in practice 

require intelligent mechanisms to evaluate the neighborhood constraints. The advancing front 

method produces fully unstructured meshes and allows general anisotropic mesh elements. 

4.5 Delaunay Methods 

The Delaunay Triangulation which will be discussed in detail in Chapter 5 can be efficiently 

utilized as robust tetrahedralization engine for practical meshing applications. A Delaunay 

based meshing approach is a concept which consists of two tasks. One addresses the mesh 

topography which is defined through the placement of mesh points. The other task is to 

create the mesh topology by performing the Delaunay Triangulation for a known point set. 

The sequence in which the two tasks are carried out is a matter of choice and therefore two 

classes can be distinguished. 

e The mesh points are first created by a variety of techniques. The Delaunay Triangula- 

tion is performed afterwards on the complete set of points. 

e The Delaunay Triangulation is first computed for the boundary without internal points 

(boundary mesh). The mesh points are then inserted incrementally into the trian- 
gulation/tetrahedralization and the topology is updated according to the Delaunay 

definition. 

The two approaches can also be combined. Both gain advantages from the Delaunay Trian- 

gulation. The creation of an initial set of points by e.g. advancing front, octree, or structured 

methods is much easier, because the constraint to avoid overlapping or inconsistent elements 

(in this case only points) is much simpler to handle. All topological issues will be addressed 

later by the Delaunay Triangulation in a rigorous and precisely defined way. On the other 

hand a Delaunay boundary mesh provides a lot of information on the structure. Internal 

mesh points can be added in an intelligent way (in what order and where) based on the size 

and location of the elements of the boundary mesh?. The local topology update after the 

insertion of a point poses no problem and is taken care of by many Delaunay algorithms3. 

A tetrahedralization engine based on the Delaunay Triangulation allows a fast generation 

of elements without for instance the expensive intersection tests of advancing front methods. 

The reason can be seen in the global definition of the topology*. It is therefore not necessary 

to check and compare one region of the mesh with every other region to verify the mesh 

  

*For instance see Section 5.6. 
Section 5.3. 
“This is strietly only valid for a unique Delaunay Triangulation, Section 5.4 and 6.4.3.
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consistency. Instead only a locally confined test of the Delaunay definition is required and 

the knowledge of other regions is implicit. 

Fully unstructured meshes with anisotropic capabilities can be generated. Figure 4.10 de- 

picts a detail of the Flash EEPROM in comparison to Fig. 4.7. However, the concept where 

  

Figure 4.10: Boundary mesh of the floating gate structure, 36 tetrahedra. 

the mesh topography is dealt with separately from the mesh topology is for anisotropic appli- 

cations not always advantageous. The topology for a given set of mesh points might not be as 

expected and might destroy the desired anisotropy. For the last of the following anisotropic 

schemes the construction of protection layers depends on the ability of the Delaunay method 

to cope with thin layers. 

e T'he mesh points are for example distributed in an advancing front style with a small 

stepsize compared to the lateral distances. The tetrahedralization engine is supplied 

with the point set. Adverse effects can occur when additional points are inserted and 

the topology is updated. 

e In two dimensions the triangulation engine is supplied with grid lines to enforce a cer- 

tain topology. It can be advantageous if these grid lines are not split. A Delaunay 

Triangulation can be employed without the insertion of additional points®. The Delau- 

nay criterion for elements near those grid lines and at the boundaries is not necessarily 

fulfilled. 

e The triangulation/tetrahedralization engine is supplied with grid lines/facets. The 
Delaunay Triangulation results in a refinement and the Delaunay criterion is fulfilled. 

An anisotropic refinement technique which can handle thin layers is mandatory. 

Alltypes of thin layers including planar and bounding box aligned layers require sophisticated 

algorithms to be managed well. The ideal case is when a minimum of refinement is induced 

which occurs at corner regions of thin layers to satisfy the Delaunay criterion. How many 

refinement points are required and how close they must lie to a corner vertex depends on 

the angles formed by a non-planar thin layer in relation to its thickness. In the example of 

Fig. 4.10 absolutely no refinement was necessary. A thinner layer containing sharper angles 

complicates the situation. 
  

°The constrained Delaunay Triangulation can only be guaranteed in two dimensions, see Section 5.5.
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Another characteristic of Delaunay methods which is important for meshing applications 

is the global optimization of the element quality®. Unfortunately it is not always identical to 

the desired mesh quality, e.g. non-obtuse dihedral angles or more specific mesh requirements 

as described in Section 3.2. However, interesting results have been obtained which show that a 

three-dimensional Delaunay Triangulation combined with a local optimization of the required 

mesh quality is superior to methods which only perform local optimizations without concern 

of the Delaunay criterion [71, 73, 100]. Local improvements of the dihedral angle results in a 
topology which can be globally far from optimal. Alternating between the Delaunay criterion 

and a minimum maximum dihedral angle criterion can achieve better results. 

  

6 The max-min and min-max-min Delaunay properties are discussed in Section 5.1.



60 CHAPTER 4. METHODOLOGIES 
 



Chapter 5 

Delaunay Triangulation 

5.1 Tetrahedralization of a Point Set 

Euler’s formula is a fundamental corollary in homology theory and describes for three- 

dimensional complexes the relationship between the number of vertices n, the number of 

edges e, the number of facets f, and the number of solids s. 

n-e+f-s=0 

The number of solids includes the infinite solid “outside” of the complex. In this sense all 

facets are boundaries between solids. For the example of a cube it becomes (8-12+6-2 =0). 

Splitting one facet of the cube into two triangles results in (8 — 1347 —2 = 0). For a general 
tetrahedralization Euler’s formula can be written as 

n-e+t-T=]1 

where t is the number of triangles and 7’ the number of tetrahedra. Based on this equation 

simple bounds on the number of tetrahedra can be deduced 

n—1 
n—3STS( )—nhuu-l-? 

where n7.1 is the number of points on the convex hull. A detailed combinatorial analysis and 

the investigation of various types of tetrahedralizations with different characteristics, worst 

case scenarios, as well as construction algorithms can be found in [40]. 

The three-dimensional Delaunay Triangulation is a special type of tetrahedralization|36]. 
In two dimensions a Delaunay Triangulation is known to minimize the largest circumcircle, 

to minimize the largest minimum-containment circle, and to maximize the minimum angle of 

all triangulations. The minimum-containment circle of a triangle is the smallest circle which 

contains the triangle. The circumcircle of an obtuse triangle is larger. The optimization of 

the angle seems to be due to the in two dimensions existing relation between edge length, 

circumceircle, and opposite angle (3.7). In three dimensions the Delaunay Triangulation is 

only known to minimize the largest minimum-containment sphere [15,130]. An important 

61
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difference between two and three dimensions is the number of triangles/tetrahedra as a func- 
tion of the number of points n. While the number of triangles in any triangulation grows 

with O(n), the number of Delaunay tetrahedra in a tetrahedralization can grow with O(n?) 
[123]. 

5.2 Definition and Delaunay Properties 

The definition of the Delaunay Triangulation is based on the Voronoi diagram through the 

principle of duality (Fig. 5.1). Voronoi diagrams and their application in an enormous amount 
of fields are described in detail with many original references in [117]. 

Definition 5.1 (Voronoi) Let P= {pı,...,pr} be a finite set of points in the n-dimensional 

space R” and their location vectors x; #xX; Vi # j. The region given by 

vn) = ix | Ir xill s Ir = x5 Vi # 4} 

is called Voronoi region (Voronoi box) associated with p; and 

k 

V(P) =] V(pi) 
=1 

15 said to be the Voronoi diagram of P. 

A Voronoi box is formed through the intersection of planes and is therefore a general irregular 

polyhedron. The facets of the Voronoi boxes correspond in the dual graph to the Delaunay 

edges which connect the points of P. 

Criterion 5.1 (Delaunay edge) Let P be a finite set of points in a sub-domain Q" of the 
n-dimensional space R”. Two points p; and p; are connected by a Delaunay edge e if and 

only if there exists a location z € N" which is equally close to p; and p; and closer to p;,p; 

than to any other p, € P. The location x is the center of an n-dimensional sphere which 

passes through the points p;,p; and which contains no other points py of P. 

E Delaunay (Pi, P;) < 3% 

ze” A 

|z — pill = llz — pill A 
Vk#4,7 ||lz—pill < |z — perl 

Combining this criterion for the three edges of a triangle and furthermore for the four triangles 

of a tetrahedron leads to the following criteria for Delaunay simplices. A Delaunay triangle 

is thereby the dual of a Voronoi edge. 

Criterion 5.2 (Delaunay triangle) Let P be a finite set of points in a sub-domain N” 

of the n-dimensional space R”. Three non-collinear points p;,p; and p, form a Delaunay 

triangle t ıf and only ıf there exists a location x € N” which is equally close to p;,p; and
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Delaunay non-Delaunay 

Figure 5.1: Each Voronoi box associated with a point is differently shaded. Two triangles tı,t3 
with their circumcenters My, My which are the vertices of the Voronoi boxes are depicted for the 
correct Delaunay case and for the non-Delaunay case. Incorreet Voronoi boxes which are derived from 
non-Delaunay triangles overlap. 

pr and closer to pi,pj, pr than to any other pm € P. The location x is the center of an 

n-dimensional sphere which passes through the points pi, pj :ontains no other 

points pm of P. Forn= 2 only one such sphere e: 
   

    

tDelaunay(Pi, Pj.Pr) — 3x2 
zeQ" A 

Iz =pill = lz = pjll = Iz = pell A 
Vo # i gk o= pill <z = pmll 

Crit. 5.2 implies that an empty circumcircle is necessary but not sufficient for Delaunay 

surface triangles in three dimensions. Thi: the reason why a two-dimensional Delaunay 

Triangulation code is of limited use to construct a three-dimensional Delaunay surface tri- 

angulation. The Delaunay edge and Delaunay triangle criteria are depicted in Fig. 5.2. A 

Delaunay tetrahedron corresponds to a point in the Voronoi diagram, which is the vertex of 

four! incident Voronoi boxes. 

  

    

  

Criterion 5.3 (Delaunay tetrahedron) Let P be a finite set of points in a sub-domain 

0" of the n-dimensional space R", where n > 3. Four non-coplanar points pi, pj,pr and pı 

form a Delaunay tetrahedron T if and only if there exists a location x € 0" which is equally 

close to pi,pj,pr and pı and closer to pi,pj,pr,pı Ihan to any other pm € P. The location 

x is the center of an n-dimensional sphere which passes through the points pi, Pj, Pr, pı and     

    

UIf in three dimensions more than four Voronoi boxes are incident at a Voronoi point, the Delaunay 
Triangulation is non-unique 
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(a) (b) 

Figure 5.2: The Delaunay edge (a) and Delaunay triangle (b) criteria. 

which contains no other points pm of P. Forn=3 only one such sphere exists which is the 

circumsphere of T. 

T Delaunay (Pi, Pj, Pr, PI) < dz 

ze" A 

|z — pill = lz —pill = llz — p&ll = llz =2l A 
Vm F 1,5, k,l II | < II — Prm|| 

A Delaunay tetrahedron must consist of Delaunay edges and Delaunay triangles. The edge 

and triangle criteria are implicit, because the existence of the n-dimensional sphere in Crit. 5.1 

and in Crit. 5.2 is guaranteed by the sphere in Crit. 5.3. 

An anisotropic Delaunay Triangulation [20] can be defined through a simple linear trans- 

formation. The empty circumcircle criterion is applied in the transformed space and results 

in an empty ellipse in the mesh space. The transformation must be allowed to change over the 

domain to be practically useful. This leads to difficulties in the grading of the mesh. For an 

extremely inhomogeneous transformation the Delaunay Triangulation cannot be applied in 

a consistent way and the excellent property to always guarantee a valid tessellation without 

special consistency checks is lost. 

5.3 Algorithms for Constructing a Delaunay Triangulation 

This section briefly overviews Delaunay Triangulation algorithms for a given point set P 

without constraining boundaries. In two dimensions a naive edge swapping approach is 

less optimal, because the number of required flip operations grows with O(n?) where n is 

the number of points. Optimal algorithms run in O(nlogn) time and depend on eflicient 
data structures and point bucketing schemes. For randomized point sets in two dimensions 

algorithms with expected linear running time exist. In three dimensions the number of 

tetrahedra grows in the worst case quadratically with the number of points. In practice for
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normal point sets O(nlogn) algorithms are possible. It again depends on the implementation 

of special data structures, search trees, and sorting. A detailed comparison of Delaunay 

Triangulation algorithms can be found in [15,47,174]. The following paragraphs provide 

sketches of the algorithms with simplified explanations for the two-dimensional case. The 

three-dimensional versions are analogous. The divide-and-conquer and the sweepline method 

have been thoroughly tested in two dimensions. For a practical extension to three dimensions 

the incremental methods seem most suitable. 

5.3.1 Divide-and-Conquer 

The point set P is recursively divided into halves until the subsets contain a minimum number 

of points. These smallest sets of two or three points can be linked yielding edges or triangles. 

The following conquer step merges the subsets. Thereby the convex hull of a subset is 

traversed and linked to the other subset. Re-connecting the points by e.g. flip operations to 

satisfy the Delaunay criterion is equivalent to finding the dividing polygonal chain between 

the Voronoi diagrams of the two subsets. The dividing chain which consists of Voronoi edges 

can be constructed in linear time which results in an overall O(nlogn) performance [123]. 

5.3.2 Sweepline 

Sweepline methods form another general class of algorithms in computational geometry as 

do the divide-and-conquer techniques. For example in two dimensions a vertical line is swept 

from left to right. "The sweepline is halted at so called event locations where the status of 

the sweepline is updated. Between events the sweepline does not have to be halted because 

its status does not change. In such a way the domain is partitioned into stripes which are 

sequentially processed. The status of the sweepline and the type of events depend on the 

application. For the construction of the Delaunay Triangulation such an algorithm has been 

implemented by [46]. The boundary edges of the current (incomplete) state of the mesh are 
stored in a tree data structure. An event occurs when the sweepline reaches a point of P or 

when it passes a circle formed by three adjacent vertices of the current mesh boundary. New 

elements are created and the status of the boundary edges is updated. 

5.3.3 Incremental Construction 

An initial triangulation which covers the domain is constructed. For example the bounding 

box is split into two triangles. The points of P are incrementally inserted into the triangu- 

lation. The triangle which contains the inserted point is first located and then split. Two 

variations to this algorithm exist. The topology around the inserted point can be updated by 

flip operations to restore the Delaunay property [84]. Alternatively, all triangles whose cir- 

cumcircles contain the inserted point are removed and the resulting cavity is triangulated by 

linking the inserted point to all vertices of the cavity boundary. This simple linking scheme 

automatically guarantees the Delaunay property of the new elements. The technique is re- 

ferred to as the Bowyer/Watson algorithm because it was simultaneously published [21, 186]. 
The cavity is star-shaped [123] because at least one location exists (the location of the newly
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inserted point) from which straight line segments can be drawn to all vertices of the cavity 

without intersecting the cavity boundary. 

5.3.4 Incremental Search 

Starting with an initial Delaunay edge the Delaunay Triangulation is incrementally con- 

structed by attaching triangles to the current boundary of the triangulation. The search for 

the correct point to be linked to the current edge so that the circumcircle of the resulting 

triangle contains no other points constitutes the main factor in the overall performance of the 

algorithm. From an initial edge the triangulation grows until the convex hull of the point set 

P is triangulated. It can be observed that the growing boundary of the incomplete triangu- 

lation forms an advancing front. Nevertheless, one must be aware of the differences between 

an advancing front meshing method as described in Section 4.4 and an advancing front style 

triangulation algorithm [104, 106] for a given point set P. The incremental search algorithm 
appears to originate from [63] and [179]. It forms the foundation of the modified advancing 
front algorithm for constraining boundaries which will be discussed in detail in Section 6.4. 

5.3.5 Convex Hull 

An n-dimensional Delaunay Triangulation can be deduced from a computation of the convex 

hull in (n+1) dimensions. For example a two-dimensional Delaunay Triangulation of a point 
set P is equivalent to the projection of the convex hull of a three-dimensional point set P 

which is derived from P through a lifting transformation [15, 114]. 

r = x 

gy =y 

2 = 2’4y 

A detailed discussion of convex hull algorithms can be found in [123]. 

5.4 Non-Uniqueness 

The definition of the Delaunay Triangulation for a given point set P usually results in a unique 

triangulation/tetrahedralization of P. No two different triangulations/tetrahedralizations 
exist for the same point set which both satisfy the Delaunay property. However, degenerate 

subsets of points in P can be formed which lead to non-uniqueness. 

Definition 5.2 (cospherical point set) Let P be a finite set of points in n-dimensional 

space R”. At least n-+2 points p; are said to be cospherical if and only if they are located on 

the perimeter of an n-dimensional sphere S where $ does not contain any other points in P. 

In such cases the length of a Voronoi edge or the area of a Voronoi facet is zero. Hence, the 

corresponding Delaunay edges and facets are missing in the dual graph, and non-simplicial 

polygons/polyhedra are formed. These can be arbitrarily triangulated/tetrahedralized, be- 

cause their topology remains undefined by the Delaunay criterion.
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In two dimensions such point sets are often called cocircular. However, one should be 

aware that cocircularity in three dimensions refers to a more specific degeneracy. It is useful 

to distinguish this special degenerate case which only occurs in dimensions higher than two. 

Definition 5.3 (cocircular point set) Let P be a finite set of points in three-dimensional 

space R?. More than three coplanar points are said to be cocircular in R® if and only if they 

are located on the perimeter of a two-dimensional circle s in R? where s defines a disk which 

contains no other points ın P. 

In fact a cocircular point set in three dimensions implies the existence of two intersecting 

cospherical point sets. This is true as long as at least one other point exists in each half space 

defined by the plane of the cocircular point set. 

Degenerate cases require specially enhanced algorithms to ensure a robust Delaunay Tri- 

angulation engine. None of the above listed Delaunay algorithms remain entirely unaffected. 

For the incremental search based algorithm the consequences are discussed in detail in Sec- 

tion 6.4.3 and the implementation of a new and unconventional solution is presented. A more 

typical approach to avoid degenerate cases is to apply perturbations to the location of the 

points [81, 114, 115]. However, this technique is not as straightforward as it appears and other 

difficulties arise. 

e It must be guaranteed that the perturbations destroy all cospherical subsets and that 

they do not create new cospherical subsets. 

e It can be shown that the number of sliver elements increases greatly when cospherical 

point sets are perturbed. Additive noise does not affect a random point set by nature, 

but the quality of a tetrahedralization of an ortho-product point set is significantly 

reduced. 

e If it is not permitted to dislocate certain points, e.g. vertices of the boundary, the 

temporary additive noise must be removed when the topology is set which is after the 

triangulation/tetrahedralization. This is not easy because the sliver elements which 

have been caused by the additive noise reach zero volume when the points are re- 

positioned to their original location. 

5.5 Boundary Integrity 

Constraining boundaries are usually defined as a set / of vertices, edges, and facets which 

are closed under intersection. All intersections between entities in / must be present in I. 

The facets are bounded by edges of I. All vertices of facets and edges must be contained in 

I. In two dimensions such a set is called a planar straight line graph (PSLG) and in higher 

dimensions piecewise linear complex (PLC). A Delaunay Triangulation of the vertices of I 

will generally not be conform with the edges and facets of I (Fig. 5.3-a). Special means are 
required to incorporate / into the Delaunay Triangulation. Two different theoretical concepts 

exist which extend the definition ofthe Delaunay Triangulation for boundaries. Furthermore, 

two different approaches exist when to incorporate the boundaries from an algorithmic point 

of view.
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(b) 

(©) 

Figure 5.3: (a) Boundaries which are not conform with the Delaunay Triangulation (b) A const 
Delaunay Triangulation (c) A conforming Delaunay Triangulation 
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5.5.1 Constrained Delaunay Triangulation 

A constrained Delaunay Triangulation (CDT) [155] is depicted in Fig. 5.3-b. The boundary 

edges are preserved and not split into smaller edges by avoiding the in 

ints. Their presence in the CDT is ensured through local modifications where Delaunay 

edges are removed or flipped. The resulting Delaunay Triangulation is 

by the boundary. Elements near the boundary are not guaranteed to satisfy the Delaunay 

eriterion. Even though the smallest sphere criterion (Crit. 3.1) for boundary edges is stronger 

than the Delaunay criterion, it can paradoxically be of advantage for meshing applications 

to use CDT. The reason lies in the for meshing applications different perception of proximity 

as can be seen in Fig. bility the mesh elements, the 

point P in Fig. 5.4 is invisible from the edge e. Therefore, for the mesh element adjacent at 

edge e the point P can be ignored and the smallest sphere criterion is in this sense fulfilled, 

"tion of additional     

       

  

said to be constrained 

    

5.4. If one defines as medium for vis     

  

although the edge e is not even a Delaunay edge. If the boundary depieted in the figure 

were an interface between the meshes of two regions, the point P would certainly inflict the 

smallest sphere erion of edge e, and the Delaunay eriterion for the interface edges would 

not be sufficient but necı 
   

  

Figure 5.4: A constrained Delaunay Triangulation with a non-Delaunay edge e. The point P does 
not affeet edge e. The half of the smallest sphere which lies inside the mesh is highlighted. 

Contrary to the two-dimensional case a constrained Delaunay Triangulation does not 

Constellations of boundary facets exist which cannot 

be tetrahedralized without the insertion of additional points on the boundary. In other 

words no tetrahedralization can be found regardless of Delaunay criteria which allows the 

preservation of the boundary facets. An example of such a constellation is the twisted prism 

or Schönhardt polyhedron [149] which requires the insertion of at least one additional vertex 

(Fig. 5.5). No tetrahedron can be attached to the bottom facet: with any of the top three 

vertices as fourth point without that it intersects one of the diagonal side edges. This leads 

to the important question how to determine whether or not additional vertices are required 

exist a priori in three dimensio:     
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Figure 5.5: An untetrahedralizable twisted prism where the diagonals of the three side facets almost 
intersect. 

to tessellate a general polyhedron. Unfortunately it has been shown that this problem is 

NP-complete? [14. 136,137]. A condition for the existence of a higher dimensional CDT is 

examined in [163]. An important question is how to insert the additional vertices to guarantee 
a tessellation without further refinement of the boundary. 

    

5.5.2 Conforming Delaunay Triangulation 

A conforming Delaunay Triangulation (RDT) is shown in Fig. 5.3-c. The boundary edges 

are split into smaller edges by inserting additional points. The refinement of the boundary 

extends the initial set of vert: The Delaunay Triangulation of this extended set of point: 

conform with the boundary edges. All elements satisfy the Delaunay criterion. A key ques 

is how to insert those additional points to ensure that all boundary edges are contained in 

the Delaunay Triangulation and that the number of required points is minimal [59,139]. It 

is especially in three dimensions a challenge to avoid overrefinement due to small boundary 

features. The insertion of points can induce further refinement in other areas and an endless 

feedback loop can evolve. The problem to guarantee a bound on refinement has not been 

solved for arbitrary three-dimensional inputs I and one must rely on heuristic techniques 

[162]. If the facets of I form dihedral angles of no less than 90° the complexity of the situation 

  

      

ion     

  

  

         

     2Many outstanding and famous problems exist in computer science for which no deterministic polynomial 
time algorithms are known. Exponential time algorithms are useless regardle of the speed of a computer, 
because finding a solution is in any case too expensive. Problems which can be solved by deterministi 
algorithms in polynomial time are said to be in P. Problems which can only be solved by nondetermini 
algorithms in polynomial time are said to be in NP. In other words if the solution is not efficiently found but 
guessed and then checked for validity by a polynomial time algorithm the problem is in NP. The trouble is 
that no one has been able to prove that a problem is in NP and not in P. It is unclear whether an efficient 

deterministic polynomial time algorithm for a problem in NP remains undiscovered or simply does not exist, 
Problems exist which can be proven to represent all problems in NP. These problems are said to be NP- 
complete. If an NP-complete problem could be solved by a deterministic polynomial time algorithm, it would 
be proven t! P=NP. This would mean that to all outstanding and famous problems efficient but undiscovered 

solutions e: Otherwise one must rely on heuri: nd hope that they do not fail for most prac 
of the problem. Some well known NP-complete problems are traveling-salesman, Hamilton-cycle, 
and longest-path. 
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alleviates [108, 164]. However, for small dihedral angles the heuristics remain to be optimized. 
A special refining scheme designed for sharp angles often exhibited by semiconductor devices 

is presented in Section 6.3. It should be noted that due to the lack of existence of a three- 

dimensional CDT the refinement of the boundary cannot be entirely avoided for any method 

which aims to integrate a boundary into a Delaunay Triangulation. 

One can distinguish two approaches when to perform the refinement of the boundary. 

Convex Hull and Segmentation This is the commonly used approach where a Delaunay 

Triangulation algorithm is first applied to the points of /. This results in a mesh which 

covers the convex hull. Afterwards follows a refinement to recover the missing edges 

and facets of I. At last a segmentation step is necessary to carve out those parts of the 

mesh of the convex hull which form the desired tessellation of the geometrical model. 

Modified Advancing Front The boundary refinement precedes the tetrahedralization. It 

is guided by the Delaunay criterion which is applied to the edges and facets of I. 

The following step is the construction of the Delaunay Triangulation by an incremental 

search/advancing front style algorithm. The mesh is grown from the boundary as initial 

front only in regions where it is required (Section 6.4). A mesh which covers the convex 

hull and the necessary segmentation step is avoided. 

Regarding the first approach the location of refinement points is often derived from intersec- 

tions between the Delaunay Triangulation and the not yet recovered edges and facets. This 

is not always ideal and a refinement based on geometrical quality measures as for example 

discussed in the next section is of advantage. The triangulation of a refined edge of I is 

trivially unique. However, the triangulation of a refined facet of / can be non-unique which 

complicates the identification and recovery into a three-dimensional Delaunay Triangulation. 

Although the second approach seems more obvious and possesses some advantages it is 

not common at all. This is probably due to three reasons. First, the refinement cannot 

be based on intersections of the boundary with the Delaunay Triangulation, because it is 

performed prior to the tetrahedralization. This is not a big disadvantage, because anyhow 

such a refinement proves to be not ideal for complex inputs in three dimensions as was 

mentioned above. Second, the advancing front style Delaunay algorithm is not common itself. 

Its performance depends heavily on the efficiency of the point location. Third, a robust 

implementation of the advancing front style Delaunay algorithm especially for degenerate 

cases under finite precision arıthmetics is a quite difficult task. Chapter 6 addresses these 

issues. The developed boundary refinement scheme and the robust implementation of the 

modified advancing front algorithm combined with a fast point location will be discussed in 

detail. 

5.6 Steiner Points and Steiner Triangulation 

In the context of a Delaunay Triangulation and other optimal triangulations/tetrahedral- 

izations Steiner points refer to points which are added to the set of vertices of the input 

PSLG/PLC I. The name does not indicate a specific location for the added point. While 

refinement is quite naturally considered for mesh generation purposes, the addition of Steiner
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points to a Delaunay Triangulation is a powerful concept in computational geometry which 

allows quite theoretical investigations. It forms the basis for many provable optimal triangu- 

lation algorithms for various quality eriteria [15, 16. 134]. 

ac 
Figure 5.6: Steiner point insertion at the eircumeenter, removal of non-Delaunay elements, and 
triangulation of the resulting cavity. 

        

One of the most important techniques is the insertion of a Steiner point at the c 

ter of a badly shaped element. The element is not necessarily refined itself, because its 

eircumcenter might be located in an adjacent element. In a subsequent step the Delau- 

nay property is restored which ensures the destruction of the undesired element because its 

circumsphere is not empty. The minimum distance between two points cannot be reduced 

unproportionally. The circumsphere of a Delaunay element contains no other points, hence 

the inserted c! er cannot lie arbitrarily close to another point. This allows a proof of 

good grading. The refinement can be bounded by disallowing the insertion of ci 

for eircumsphei maller than a given limit. Then, the insertion procı 

because it runs out of space. 

       um- 

    

     

  

sumcent:     

    

  

cumcenters 

terminate, 

    

       mus 

  

For example in two dimensions a scheme can be devised to guarantee angles between 30° 

and 120° as long as the length of the boundary edges is within a specified range [28]. Figure 5.6 

shows an obtuse triangle which is removed by inserting its circumcenter and restoration of 

the Delaunay property. An example triangulation is shown in Fig. 5.7. The key idea is 
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   Figure 5.7: Delaunay Triangulation vs. quality improved Steiner Triangulation. The original 130 

triangles (94 points) were refined with 128 Steiner points resulting in 376 triangles. 

  

that a Steiner point at the circumcenter di ly affects the shortest edge to circumradius 

ratio quality measure Qı (3.1). To see this it is assumed without loss of generality that the 

minimum distance between two points of the input I is b. Steiner points are inserted as long 

as elements exist with circumradius greater than b. The restoration of the Delaunay property 

after each point insertion is possible with flip operations. Hence, it can be guaranteed due 

to the Delaunay property that the inserted points are also not closer than b to any other 

point. Simultaneously it is guaranteed that no circumradius is greater than b. Termination 

is guaranteed because each point defines a disk with radius equal to the minimum distance 

b in which no other points may be located. All such dis 

available space and no more points can be inserted. The resulting edge length ranges between 

the minimum distance b and the maximum 25 which is possible for the maximum eircumeircle 

with radius b. Hence, the worst (minimal) quality is Qı = Tin = r =1 (Fig. 5.8). Because 

of (3.7) the minimum angle is a = arcsin 3 = 30°. 

  

    

    

sooner or later cover the entire 

      

    An analysis which includes the boundary is more complex [29, 135]. Certain restrietions 

have to be applied to the edges and facets of I. As already mentioned the edge lengths must 

be within a certain range or the edges must form angles of e.g. no less than 90°. Naturally, 

edges of the input I can form a sharp angle which is forced into the triangulation and which 

cannot be resolved. If a Steiner point lies outside of the domain defined by I, it cannot be 

inserted. Figure 5.9 shows an obtuse element of which the longest edge is a boundary edge
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Figure 5.8: The worst case element with a 30° angle and minimum edge length b. The largest 
cumcircle has radius b.     

  

  

  

  

  

        
    Figure 5.9: A naive approach where the bisection of boundary edges and the insertion of 

ters runs into an endless loop. The small angle which causes the insertion of a Steiner point at the 

center of the dotted circumcircle is shaded. A better solution can be obtained and is shown in the 
bottom left corner. 

  

cumcen- 

    

and the circumcenter is outside. An intuitive approach to bisect the longest edge to destroy 

the obtuse angle combined with a minimum angle criterion enforced through Steiner point 

insertion at circumcenters may run into an endless loop (Fig. 5.9). Alternately the boundary 

edge is further bisected and a Steiner point added at the circumcenter of the new element. 

The boundary edge can never be flipped and the angle never improves. A solution is to check 

whether or not a Steiner point candidate inflicts the smallest sphere criterion of a boundary 

edge. As can be seen in Fig. 5.9 the inserted circumcenters are always located inside of 

the smallest eircle passing through the two vertices of the boundary edge. In such cases 

the Steiner point candidate should be discarded and the boundary edge should be instead 

refined itself. Generally, a Steiner point insertion algorithm must stop the attempt to resolve 

bad angles in impossible situations due to special constellations of the edges and facets of I, 

rather then to cause excessive refinement. Restrictions on I are not acceptable for practical 

implementations.
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A detailed comparison of Steiner Triangulation algorithms is given in [162]. Depending on 

how the boundary is handled different angle bounds can be achieved [28, 29,135]. Often it is 
experienced that a theoretical minimum angle bound of e.g. 20° can be increased in practice 

up to 30°. A Steiner Triangulation with ¢ just as powerful in three dimensions 

to improve the shortest edge to circumradius quality eriterion Q, [30.37]. Howeve 

pointed out in Section 3.1 sliver elements are not captured by Qı and are not removed by 

inserting circumcenters as Steiner points. A three-dimensional method which promises to 

  

    
     ımcenter: 

    

as was 

  

  

avoid all badly shaped elements and which is based on a two-dimensional approach with 

Steiner points [16] is proposed in [109]. 

5.7 Delaunay Slivers 

  

A sliver has been introduced in Section 3.1 as an element with a very sp bad shape 

in the context of mesh generation. They are sometimes also called flat t a. Here, in 

the context of a Delaunay Triangulation and for the following chapter it is worthwhile to 

distinguish three sliver versions (Fig. 5.10). 

    ahe 

e A sliver tetrahedron which does not satisfy the Delaunay criterion. 

e A sliver tetrahedron which satisfies the Delaunay criterion in a strict sense. Its vertices 

are not part of a set of cospherical points and the Delaunay Triangulation around the 

sliver is unique. 

e A sliver tetrahedron which satisfies the Delaunay criterion, but which is composed of 

vertices out of a set of cospherical points. The Delaunay Triangulation is not unique.     

  

  

(a) (b) (c) 

Figure 5.10: (a) Non-Delaunay sliver with circumsphere and two adjacent tetrahedra in the back (b) 
Strict sense Delaunay sliver with an empty 
set. 

  

ircumsphere (c) Delaunay sliver with a cospherical point 

The first type is of less importance and will clearly be absent in a Delaunay Triangulation. 

The second type, a Delaunay sliver, unfortunately exists in a Delaunay Triangulation for
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a given point set P in three dimensions. The various optimality properties of a Delaunay 

Triangulation were given in Section 5.1. The minimum dihedral angle is not guaranteed 

to be optimal in three dimensions. A different non-Delaunay tetrahedralization might exist 

which avoids slivers with small dihedral angles but which is in other sense less optimal. In 

theory manipulation of P by constructing a Steiner Triangulation with Steiner points at 

circumcenters does not help to eliminate Delaunay slivers. The question arises whether a 

different type of Steiner point insertion is capable to manipulate P such that a Delaunay 

Triangulation results which does not contain Delaunay slivers. Alternatively, it would be of 

interest to examine how pronounced the occurrence of Delaunay slivers is in a practical mesh 

and how often they really survive the insertion of Steiner points at circumcenters in practice. 

Also, there is a chance that the third type sliver which is less critical exists much more often 

than a strict sense Delaunay sliver. Local transformations can be applied while maintaining 

the Delaunay property. The Delaunay Triangulation is not unique. The mesh examples in 

Section 3.2.3 have shown two different Delaunay Triangulations of an identical ortho-product 

point set where only one tetrahedralization contained sliver elements. A similar distinction 

of types can be made for the twisted prism. Its relation to slivers will be important in the 

next chapter (Section 6.4.3, Fig. 6.29).



Chapter 6 

Architecture and Implementation 

6.1 Meshing Strategy and Overall Concept 

The implemented meshing strategy follows the concept of Delaunay methods as described in 

Chapter 4. The design consists of four parts respectively placing mesh points, preprocessing 

the surface, tetrahedralization, and further insertion of Steiner points for adaptation purposes 

and quality improvement (Fig. 6.1). No restrictions are imposed on the generated and/or 
provided initial mesh point distribution. Mesh points may overlap the structure boundary 

or cover the entire bounding box. Fully unstructured meshes can be constructed. The 

tetrahedralization engine does not require to remove or change mesh points. Among the 

advantages of such a logical separation in a place points and link [169] approach are stability, 

modularity, and a higher flexibility in combining different techniques for various applications. 

An example for the success of this approach in two dimensions is the triangulation engine 

described in [160]. 

The goal of surface preprocessing is the actual management of complex structure bound- 

aries in an intelligent way, consistency checks, conversion issues, and the generation of a 

high quality Delaunay surface mesh. The minimum information defining a multi-segment 

geometry such as one unsorted list of general polygons is a sufficient input. In fact, only the 

non-convex regions of the structure boundaries have to be specified. It is not required to 

provide a closed surface. For example the surface of the top region of a semiconductor struc- 

ture after etching and deposition simulation without the bulk boundary suflices to generate a 

volume mesh. Various discretization criteria for surface elements as discussed in Section 3.2 

can be applied. The initial distribution of mesh points is taken into account by the surface 

preprocessor. Situations where unconnected points are too close to the boundary or collapse 

with the boundary can be cleaned up on the fly. The developed surface refinement algorithm 

ensures the integration of the boundary into the Delaunay mesh. 

The tetrahedralization engine uses the modified advancing front Delaunay algorithm as 

briefly introduced in Section 5.5. The preprocessed surface description provides the initial 

front. The mesh generation process is constrained to the regions of interest by the Delau- 

nay boundary representation. The tetrahedralization of the convex hull of the vertices and 

mesh points is not even temporarily necessary. It also means that initial mesh points which 

17
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are located outside of structure boundaries never affect the meshing procedure. A robust 

implementation was developed for degenerate cases combined with an efficient non-uniform 

point bucketing scheme. Many existing variations of the advancing front style Delaunay 

algorithm are either two-dimensional or experience difficulties with cospherical point sets 

[31,33, 39, 42,43, 122]. A recent three-dimensional implementation uses a perturbation ap- 

proach to handle degenerate cases [81]. 

Other advantages of the modified advancing front algorithm are an easier parallelization 

[32] and the possible real time visualization of the meshing process for debugging purposes. 

The process can be interrupted at any time and the resulting snapshot is a valid mesh of 

part of the domain. Those parts of the domain which are not of interest are never meshed 

which saves computation time especially for extremely non-convex domains. The approach is 

therefore also well suited for local mesh adaptation. The cavities in the mesh where elements 

have been discarded due to local modifications form local fronts which can directly be used 

as advancing fronts to grow tetrahedra and to remesh the gaps. In such a way Steiner points 

can be inserted to improve geometrical quality measures. 

6.2 Initial Point Generation 

Many different styles to generate an initial mesh point distribution can be conceived. Cor- 

responding algorithms are more easy to design, because of the lack of restrictions applied to 

the point set. 

e The octree-type generation can be extended to use special point templates for each 

octree leaf instead of using corner points exclusively. The edges of the octree leafs as 

shown in Fig. 6.2 can be bisected, or more complex patterns similar to crystal lattices 

can be utilized. 

e An advancing front technique to place the mesh points can produce boundary-fitted 

meshes. 

e Random point distributions to fit inhomogeneous density requirements can be addi- 

tionally smoothened. 

Note that the generation of a Steiner point distribution as described in Section 5.6 does not 

require an initial point set and is based on a boundary mesh. A detailed investigation of 

finite octree point generation can be found in [192]. A test example of the finite octree and 
the resulting mesh is shown in Fig. 6.2 and Fig. 6.3.



80 CHAPTER 6. ARCHITECTURE AND IMPLEMENTATION 
  

    
Figure 6.2: Finite octree point generation.
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6.3 Surface Triangulation 

  

Given a set of constraining input facets I (polygonal representation, Fig. 6.11) a surface 

triangulation is derived. All polygons are triangulated by a recursive splitting algorithm. 

The polygons may be non-convex, more than two polygons may share an edge, and they do 

not have to form a closed surface. Depending on the choice of mesh and discretization a 

refinement algorithm is further applied to either enforce the smallest sphere or the Delaunay 

criteria (Crit. 5.1, Crit. 5.2, Crit. 3.1, and Crit. 3.2). An important operation is defined to 

reduce the number of refinement points. 
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The term flip saturation is introduced. A triangle may not satisfy the smallest sphere criterion 

and may not be flip-able. The triangle may become flip-able after a certain number of flip 

operations are applied on other triangles (Fig. 6.4). This situation i 

It is desired to reach the state of flip saturation before unnecessary refinement occurs. This 

is achieved by employing the recursive triangle flip. 

id to be unsaturated. 

    

Figure 6.4: A triangle which is at first not flip-able and the state of flip saturation. 

Recursive Triangle Flip 

Two triangles tı,ta are flipped. The resulting triangles Tı and fa are each checked if 

they are flip-able. If any of the two triangles i),y is flip-able with a triangle t; where 

i@1,2 it will be flipped as well. Repeat for the flipped triangle 7; until no further flip 

operations are possible. 
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This operation is performed once on each triangle during a linear scan over all exi 

triangles. The procedure during which no refinement is allowed is only ne 

to ensure flip saturation. Afterwards, during refinement the flip saturation 

afteı ertion of a point by applying the recursive fip locally on the affected triangle only. 
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form a dihedral angle « = 180° + -y where |y| > €ace and Eae 
the edge uctural edge or S-edge. If |y| < €ac 

Ifa an edge Eopen with no existent adjacent 

will be called a structural edge as well. If a triangle t pos: 
ngle. be 

    

   

  

    

  

ses an edge €y with more than 

called a st 

  

one e:        he edge Emuli wi elural edge as well. 

An example of an edge shared by more than two triangle: 

  

shown in Fig. 6.5. Edges with 

  

Figure 6. 

  

: Multiple connected edges. 

  

only one adjacent facet are structural and a potential inconsistency. They may indicate an 

undesired gap in the surface representation. The current implementation allows to repair 

such faults by tracing these edges and linking them to construct a three-dimensional ring. If 

this ring consists of a large number of edges, it can be assumed that the boundary does not 

   

  

forın a closed surface intentionally and no action will be taken. On the other hand if the ring 

is relatively small, it can be assumed that a hole in the surface has been detected. The hole 

can be patched by a non-planar triangulation of the ring. This is performed by the general 

polygon triangulation algorithm which was used for the facets of the input I. 

Note that two triangles need not be flip-able if they share a flip-able edge (Fig. 6.6). 

All S-edges are detected and stored in a special data structure for further proc: 

smalle: 

in this 

  

ng. The 

st sphere criterion will be enforced for S-edges by a novel refinement scheme presented 

ection (Fig. 6.7). The idea is to avoid overrefinement due to a feedback situation 
where an inserted point causes further point insertions for other S-edges. This is especially 

important when incident S-edges span angles of less than 90°. The S-edges are drawn in bold, 
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Figure 6.6: Non-convex coplanar triangles. The common edge is by definition flip-able, while the 

triangles are not. 

the dashed circles illustrate the minimal edge length up to which refinement is permitted, and 

the solid circles symbolize sphere tests. 'T'here are two possible types how a refinement point 

is derived from points which inflict the sphere criterion. Such points will be called disturbing 

points. 

Type P Insertion An orthogonal projection of the disturbing point onto the S-edge is used. 

Type R Insertion The disturbing point is rotated onto the S-edge. The rotation axis passes 

through the point at which the two S-edges are incident. 

If more than one disturbing point exists, a best candidate is selected by comparing the relative 

distance and choosing the closest. The simple cases are PIandRI.InPIL RIIL, and RIV 

the minimal edge length is limited and the inserted point receives an oflset. If the ratio 

between the length of the two S-edges is close to one, the most complex situation case R III 

evolves. An offset as in case R IV would not produce a good result and the sphere test 

depicted by the left solid circle in case R IV could fail due to the inserted point. An overall 

improved situation results from an intended first order feedback where actually two points 

will be inserted in two consecutive steps R IIT + RI. The circle for the sphere test which 

causes the insertion in the first place is omitted in all sketches. Once the location of the new 

point has been determined and prior to its insertion, sphere tests are performed for some 

of the new edges to avoid feedback (solid circles). Note that the algorithm is designed for 

three dimensions in spite of the two-dimensional sketches. Figure 6.8 shows the result for the 

trivial case of a planar polygon. The S-edges (outline) satisfy the smallest sphere criterion 

after refinement. 

The triangles are processed after the $-edges. If desirable, the refinement can be reduced 

by omitting the smallest sphere criterion for triangles (Crit. 3.1). The weaker Delaunay 

criterion (Crit. 5.2) cannot be checked easily, because the number of spheres to test can 

theoretically be infinite as the criterion requires a sphere of any size to be empty. Hence, the 

insphere test would have to be repeated for different sizes until an empty sphere has been 

found. An equivalent criterion was devised which needs at most two insphere tests. It uses a 

metric A which will be described later on in Section 6.4. 

Criterion 6.1 (double sphere) Let P be a finite set of points in three-dimensional space 

R°® and let t be a boundary triangle with a non-empty smallest sphere Smin. The point Dk 
min
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Figure 6.8: Refining structural edges for the trivial case of a planar polygon. 

      

  

imizes a me 

  

ontained in Syn and mi X = HM, 7. The 
ngle if and only if the sphere Sguye defined by ¢ and py . contai 

gle t is a Delaunay 
Lin P.    no other po 

  

A non-Delaunay triangle and a Delaunay triangle with two disturbing points located inside 

of the smallest sphere and the empty double sphere are depicted in Fig. 6.9. 

sed in Section 5.6. 

  

A key idea for Steiner point refinement with provable bounds was dis 

    

      

  

The ımcenter of a triangle is a very well suited location for a new point to be inserted. 

The triangle which will actually be split can be different from the triangle which causes the 

refinement. Hence, a triangle search by e.g. a jump and walk algorithm is required. An 

algorithm was implemented which extends this concept for non-planar surfaces (Fig. 6.10). 

The location of the new point $ is derived from the circumcenter M by an orthogonal 

projection. S$ is the point M projected onto the surface ($ = Mproj): It is checked if 

the refinement point $ really violates the sphere criterion of the bad triangle. The point 

5 might fall outside of the sphere in which case a Steiner point refinement would not be 

justified, because the bad triangle would survive the Delaunay update step. A point location 

ary to find the triangle containing S for a given M. The direction of projection is 

orthogonal to the plane spanned by the bad triangle. The triangle search can be performed 

by a walk algorithm. 

     

  

is necı 

  

Locate Triangle 

Starting with a triangle £ = tyaa and a given point P a triangle is searched for which 

contains Pproj. (Usually P is the circumcenter M.) The direction of projection is 

defined by the normal vector fiyaa Of tyaa. An edge e oft and füyaa define a plane which 

separates two half spaces. The edge e is said to face the point P, if P and t do not lie
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Figure 6.9: Double sphere criterion. Figure 6.10: Locating the triangle 
which contains the projection of the 
circumcenter and flipping of the non- 
structural edge. 

in the same half space. Determine one edge e oft which faces P and which is a flip-able 

edge (Def. 6.2). Follow edge e by finding the adjacent triangle ¢,4;. Repeat for t = to4; 

until an S-edge has been encountered or until the triangle t p s no edge e which 

faces P. In either case the search is terminates. In the latter case t contains P,..j. The 

Steiner point $= Pyroj on t is caleulated by intersecting the found triangle ¢ with the 

line defined by P and the direction of projection. 

  

      

The point P was used in the d: 

points where PZ M. Thi 

points instead of circumcente 

:ription to show that the algorithm can search for arbitrary 

mportant when Steiner points are derived from disturbing 

    

    

    

If the triangle is not extremely obtuse, M will be contained in the triangle itself or in 

an adjacent triangle. Then, no iterations or only a few will be required. If an S-edge is 

encountered the triangle will not be refined. Instead the S-edge will be refined as described 

above. Th! important for several reasons. Insertion of $ is usually followed by triangle 

flip operations which eliminate the bad triangle. Hence, the edge to follow must be flip-able. 

Also, it is of limited sense to project M onto the surface for regions with sharp dihedral 

angles. 

  

Originally, this type of refinement should only be applied to Delaunay triangles with an 

empty circumsphere to improve quality angle criteria. If the circumsphere is not empty, 

points could be inserted too close to each other. In the present case this is not ne: 

In fact the Steiner point refinement of non-Delaunay triangles proves succe: 
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the Delaunay criterion as long as the state of flip saturation is guaranteed and maintained 

after each point insertion. 

  

At the same time it is possible to define minimum angle and maximum area criteria upon 

which Delaunay surface triangles are adapted by the insertion of Steiner points. These can 

be applied inhomogeneously according to a control function. For the example in Fig. 6.11 

the structural edges are shown in Fig. 6.12, the Delaunay surface triangulation in Fig. 6.13, 

and the adapted surface mesh in Fig. 6.14. 

  

Figure 6.11: Polygonal boundary_descrip- Figure 6.12: Structural edges of the MOS 
tion of a MOS Transistor with a spacer. transistor example. 

  LEN 
NN ET 

  

Figure 6.13: Delaunay surface triangulation. Figure 6.14: Adapted surface mesh after 
Steiner point insertions.
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6.4 Volume Tetrahedralization 

6.4.1 Algorithm Overview 

Figure 6.15 shows the flow diagram of the modified advancing front algorithm. Delaunay 

triangles are extracted from the surface triangulation to form an oriented initial front. These 

triangles have the purpose of a seed which is inserted into a queue to “grow” tetrahedra. The 

  

Surface mesh 

  

Initial Delaunay front 
  

    
  

        

  

  

  

  

  

Seed triangle extraction 

local regridding 
of a cavity 

Queue empty ? END yes 
no 

Get triangle from queue CD 
= I 

T Queue: 
[Find 4th node to build tet Advancing 
[POINT LOCATION front 

T ‘composed 

[Attach new tetrahedron to rn 1 
the oriented triangle       

    

New triangles exist?     
    

Merge with old | [Create 1-3 
triangles new triangles 

I 1 1 

Figure 6.15: Modified advancing front algorithm. 

            
algorithm starts with a non-empty queue. It does not require the queue to hold all surface 

triangles which represent the boundary. One triangle per enclosed segment is sufficient. The 

surface triangulation has two purposes. 

1. It provides the initial front for the advancing front algorithm to start with. One triangle 

per segment is enough and is called a seed triangle. 

2. It provides a border for the advancing front algorithm which cannot be passed. 

The triangles of the initial front and all later generated triangles of the advancing front have 

an orientation defined by the order of their vertices. Given a seed triangle (which is taken
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from the queue) a tetrahedron is attached to that side of the triangle which faces the half 

space in which its normal vector is directed. The tetrahedron is constructed with a a fourth 

point which has a positive distance to the seed triangle relative to its normal vector. In this 

way a front side and a back side of triangle stinguished. Repeatedly attaching tetrahedra 

   

  

    

Figure 6.16: The triangle to which the next tetrahedron is attached is shaded for each step. 

to the front sid! 

    

s of the triangles of the queue, removing them from the queue when they 

have been processed, and inserting new triangles into the queue leads to a growth pro of 

tetrahedra (Fig. 6.16, Fig. 6.17). Hence, the queued triangles form the advancing front at all 

times. It advances when a new tetrahedron (attached to a triangle which is removed from 

the queue) generates new triangles which are inserted into the queue. Generally, a created 

tetrahedron can produce any number between 0 and 3 new triangles. During the beginning 

of the tetrahedralization process each created tetrahedron will more likely produce 3 new 

triangles and the size of the queue will increase rapidly. Later on the advancing front will 

merge with itself or parts of the surface triangulation and fewer new triangles are produced. 

A tetrahedron consi 

    

    

      

s of n new triangles, (3 —n) previously generated triangles, and the 

triangle to which it is attached. The (3 — n) previously generated triangles must have been 

previously inserted into the queue or belong to the initial surface triangulation. They are part 

ofthe advancing front. When they are encountered during the creation of a new tetrahedron, 

they are removed from the queue and the advancing front is stopped. If n i 

of the tetrahedron results in a decrease of the size of the queue. When the queue has run 

empty the meshing process terminates. 

  

zero the creation 

    

The following questions ari; 

  

1. What degree of freedom does the algorithm have to choose a tetrahedron to be attached 

to a triangle of the queue ? What kind of tetrahedron will be chosen ? 

2. How is it guaranteed that the advancing front does not pass through itself or the given 

boundary triangulation ? 

3. How is it guaranteed that no part of the domain remains untetrahedralized ? 

First it is assumed that the Delaunay Triangulation is unique and degenerate point sets do 

not exist. Given a fixed mesh point distribution and an oriented triangle only one point can 

complement the triangle to form a valid Delaunay tetrahedron to be attached to the triangle’s 

front side. The meshing algorithm will choose to create exactly this tetrahedron. Intrinsically 

it is not able to create non-Delaunay tetrahedra as will b 

  

To answer the second question the following is observed.
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Figure 6.17: A snapshot of the growing mesh generated by the modified advancing front algorithm. 

  

Lemma 6.1 The advancing front cannot build loops, intersect or overlap with itself, or pass 

through Delaunay borders as long as it is guaranteed that identical triangles are never stored 

more than once. 

Proof 6.1 Under the assumption of a unique Delaunay Triangulation any Delaunay ngle 

must be present within the tetrahedralization. No Delaunay triangle exists which is not part of 

the tetrahedralization. If one or more such triangles would the Delaunay Triangulation 

would not be unique. Given the facts that the algorithm only produces Delaunay 

the advancing front separates the tetrahedralized domain from the untetrahedralized domain, 

it follows that at all t the advancing front c s entirely of Delaunay trianglı 
that one part of the advancing front passes 

part of the front must be located in the int 

c ; of Delaunay triangles they must be part of the unique 

g the tetrahedralization Delaunay have been produced and stored wh: 

identical copies already 

        

etrahedra and 

  

   

    

   

        

      

    

    N. 
du 

  

u 

Such a test whether or not an identical triangle already exists is trivial and does not 

cost performance. It guarantees that the algorithm terminates. Since no Delaunay triangles 

are generated more than once and the overall number of Delaunay triangles t in a Delaunay 

    

Triangulation is finite, the algorithm terminates after at most t steps. 

To see that complex structures are rigorously meshed regardle: 

are multiple connected the following is examined. 

of whether or not they       

Lemma 6.2 No volume is left untetrahedralized unless it is enclosed by a surface triangula- 

tion to which no seed was provided.
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Proof 6.2 Assume that part of the domain remains untetrahedralized and the algorithm has 

terminated. The algorithm must only terminate     the queue holding the advancing front is 

empty. The untetrahedralized region must be separated from the tetrahedralized region or the     

outside of the domain by a surface t     ngulation Tyep. Fü 

rahedron and was 
that Tyep contains at 

ng the 

ed into the queue. It can be attached to at 

       angle that enerated du rahedralization 

Th this t 

part of a te 
iangle must have been in 

         

      

n the tetrahedralized and 

  

    t would have only been removed from the queue if a second 

tetrahedron would have been attached to it, the queue cannot be empty and the algorithm 

cannot have terminated. Second, assume that Tyep does not contain 

the tetrahedralization. Then, it must entirely consist of triangles p: 

surface triangulation. a clos 
equüi nt that at leas 

algorithm canı 

    

  

triangles produced during 

sent in the given boundary 

segment. Under the 

into the queue the 

    

    

  

       a     

   eme     

6.4.2 Point Location 

  

  

    

  

  MIN}   

  

sub-bucket B           
| 

local minima and maxima 
defining the search region 
in sub-bucket B 

  

Figure 6.18: A non-uniform point bucketing s 
with the bounding box and which is 
analogy). 

  

‘heme and a rectangular 
ated with a 

arch region which is aligned 
cle and a given A value (two-dimensional 

  

  assoc!     

An efficient data structure for point bucketing is 

  

rucial to quickly locate the fourth 

vertex among all mesh points which completes a triangle from the queue to form a Delaunay 

tetrahedron. The currently processed triangle which was taken from the queue is called a 

base triangle. The advaneing front holds Delaunay triangles, hence any base triangle satisfies 
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the Delaunay criterion. A local region around the base triangle needs to be searched for to 

find the correct fourth point. The border of this 

the ci 

region is defined by a sphere containing 

> of the base triangle. The radius of the sphere will be increased as long as 

the sphere does not contain other points. A sketch for the two-dimensional case is depicted 

in Fig. 6.18 where an edge corresponds to the base triangle. It is evident that one sphere 

must exist which does not hold any other points due to the Delaunay property of the base 

triangle. In fact, the way the region around the base triangle is examined resembles closely 

  

  cumcircl      

the Delaunay sphere criterion. The size of the sphere is increased so that exactly one other 

point (than the three points of the base triangle) is located on the perimeter of the sphere. 

This point is the seeked fourth vertex of the tetrahedron. It is evident that the tetrahedron 

must satisfy the Delaunay criterion, beca its circumsphere does not contain any other 

point. For one base triangle two spheres exist that correspond to a tetrahedron on each 

side. The algorithm will only attach a tetrahedron to the front side of the base triangle as 

previously explained. It will therefore increase the size of the sphere into the direction of 

the normal vector of the base triangle. Thi 

distance A between the 

    

    is expr: 1 by a signed increase of the normal 

enter M of the sphere and the base triangle. The normal distance 

can be positive or negative. The point H denotes the circumcenter of the base triangle and 

n its unit length normal vector. The smallest sphere is characterized by A = 0. A negative 

    

A denotes a sphere which covers a larger area on the back side than on the front side of the 

triangle. 

A:=HM-n 

The spherical search region fits into a cubic search region which can always be aligned 

with the bounding box (Fig. 6.18). This allows for an efficient non-uniform point bucketing 

scheme to locate points within the search region. All points are stored and maintained at all 

times in a point bucket octree [142]. Any rectangular area aligned with the bounding box 

can be searched by traversing the tree data structure. 

  

Figure 6.19: Every found point P; in the search region defines a Ay. 

The gradual increase of the size of the search region does not cost much performance. If 

the sphere is too small no points will be located inside the search region and the effort of 

traversing the octree is minimal. The case when exactly one point (the fourth vertex of the 

tetrahedron) is found, is ideal. Usually, the search region will contain several points. In such 

a case the size of the sphere defining the search region will not be reduced until only a single 
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  point is contained. Instead X; is computed from M; which is the center of the sphere defined 

by the point P; and the base triangle (Fig. 6.19). X is the location vector of one of the three 

of the base triangle. 

    

= (M; - X)-7 

From the collection of points P; the correct fourth point can be chosen by minimizing A;. 

    Criterion 6.2 (Minimum X) Let P; with co ponding A; be a complete set of all poih 

which are located in a spherical search region in R? defined by a Delaunay triangle t and a 
;. The point P; and the Delaunay triangle ¢ form a Delaunay tetrahedron, if 

and only if A; = Amin. 
       value Amax > 

front side    

  

   back side 

Figure 6.20: The scope of A for the two-dimensional case. Depending on the location of a point its 
A value can reach a critical value. Singular regions of A are indicated. 

The scope of the possible A values is numerically a delicate matter. The robust implemen- 

tation applies an additional insphere test. Figure 6.20 shows the two-dimensional analogy. 

The normal distance of a point P to the plane containing the base triangle (in two dimensions 

an edge) is d. The point Pı has d= 0 and the point P3 has a positive d. The algorithm has to 

determine which of the two points Pı and P» is the correct point. The correct triangle in the 

e is drawn with dashed lines. The various possible locations of a point 

ponding A values. The location of points with A = 0 is shown by 

cal location: 

  

two-dimensional ca: 

are denoted with the co: 

the dashed circle. The point Pı is on a numerical cı 

  

    

  

lim ApR = + 
d>0+ 
lim Ap = -x 
d>0
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Figure 6.21: An open surface description and the growing mesh. 

  

Figure 6.22: Complete boundary representation after tetrahedralization. 

A more flexible algorithm allows boundaries which do not form a closed surface. This 

generalization is implemented as follows. If no fourth vertex can be found after gradually 

increasing the search region up to the size of the bounding box, the base triangle will be 

converted and stored as a boundary triangle. In this way new boundary triangles can be 

at locally convex regions of the mesh point 

ribution. Figure 6.21 shows an example of an open surface d tion and a snapshot 

Figure 6.22 depicts the complete boundary including the generated 

    

generated during the tetrahedralization procı 

di 
of the meshing procı 

boundary triangles after tetrahedralization. 

    

  

The octree search and the X criterion introduce the logarithm into the overall time com- 

plexity O(nlogn) where n is the number of tetrahedra. For randomized point distributions 

the number of tetrahedra grows approximately linear with the number of points (Fig. 6.23). 

The algorithm runs in optimal time. The performance is given in Tab. 6.1.
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Figure 6.23: Runtime on an HP 9000-735/100Mhz 

6.4.3 Degenerate Point Sets 

For a practical tetrahedralization engine any restrietion on the location of mesh points is 

unacceptable. The assumption of a unique Delaunay Triangulation is now removed. A 

scheme is devised how to extend the modified advancing front algorithmn for degenerate cases 

as defined in Section 5.4. 

  

Cospherical Point Sets 

Under exact arithmetics degenerate cases result ina compound of points P, ; with identical A.. 

The fourth vertex cannot anymore be determined by minimizing A (Crit. 6.2). Given a set of 

points P.,; with A, the original algorithm results in overlapping tetrahedra and crossed edg: 

Several two-dimensional situations are depieted in Fig. 6.24. Figure 6.25 shows an error prone 

situation with a three-dimensional cospherical point set. A valid tessellation cuts the domain 

in such pieces that the union of all pieces yields exactly the domain. Theoretically, minimizing 

A suflices to produce a valid tessellation if no such point se! y Practically, this is not 

even the case for a unique Delaunay Triangulation due to finite precision arithmetics. The 

strict adherence to the X criterion may force the generation of overlapping elements due to 

numerical errors [176]. The problem of finite preeision arithmeties and of degenerate point 

ts are closely related. 

     

   Si 

  

    

    
  

    

    

s 

    

If one wants to avoid the costly implementation of adaptive precision algorithms and float- 

ing point filters [11, 48, 54, 161], one cannot rely on a solution for exactly cospherical points 

j, but has to detect and treat approzimately cospherical points P.; with corresponding A.,;    

  

m an algorithmic point of view. 

At first must be a robust detection of P. ‚ which is a crucial task and cannot be achieved 

by a simple epsilon region where A.,; € [Amin: Amin + &]. Inconsistencies due to points that lie 

close to the border of the epsilon region would be inherent. Numerically they might appear 

at one time inside of the epsilon region and at another time outside of it. Therefore, an 
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quantity of... CPU time 
points | tetrahedra | triangles (in sec) 

103 939 1098 0.2 

903 3016 6112 1.4 

703 4323 8739 2.1 

1003 6268 12635 3.3 

1503 9494 19107 5.1 

2003 12713 25597 6.8 

2503 16076 32300 8.8 

3003 19394 38967 11.1 

4003 25969 52140 15.6 

9003 32691 65605 19.7 

10003 65927 132160 46.5 

20003 132854 266133 92.0 

30003 199613 399756 145.0 

40003 266899 534405 207.0           
Table 6.1: Runtime on an HP 9000-735/100Mhz 

adaptive epsilon region has been implemented which involves a sorting algorithm. 

Mi © DiAzseesdiseess And A 
Al = Amin A 

Ai < A A 

At di < e A 

Anti -An > € 

Another critical situation can be observed in Fig. 6.26. The indicated point belongs to an 

epsilon region, but it somehow cannot be considered to belong to the set of cospherical points. 

An algorithm to deal with approximately cospherical points Pi must be prepared for such 

cases as well. 

The solution is to treat the points Pi as an isolated tetrahedralization sub-problem 

forming a single step in the overall modified advancing front algorithm. Thereby the tetra- 

hedralization technique for the sub-problem is performed by a local instance of the modified 

advancing front algorithm with a specific alteration described in the following paragraphs. A 

local instance of the algorithm means that a second queue is built to hold the local advancing 

front of the tetrahedralization of the sub-problem. An ortho-product point distribution con- 

sists of a large number of cospherical point subsets which are regularly stacked. The global 

advancing front for such an example is shown in Fig. 6.27. One can clearly observe how each 

subset is treated in a single step from a global point of view. 

The local second queue can only provide the frame for the entire solution to the problem 

of cospherical point sets. Another specific alteration of the tetrahedralization algorithm 

is required. The enhancement is at first explained for the ideal case of exact cospherical 

points P.,;. The local boundary of the point set is convex (Fig. 6.24-d, convex LSPB). The 

special tetrahedralization of this sphere is constructed in the following way. Consider a 

tetrahedralization with a convex boundary. A tetrahedron can be created by linking a point
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Figure 6.24: (a) Overlapping triangles which share two points (b) Only one common point (c) No 
points are shared (d) The convex local sphere boundary, LSPB 

located anywhere outside the tetrahedralization to any triangle of the boundary that has a 

positive minimum distance to that point. Regardless which triangle of the boundary (with 

positive minimum distance) is taken the created tetrahedron cannot penetrate the existing 

tetrahedralization. If this single point is not only linked to one triangle, but to all triangles 

of the convex boundary that have positive minimum distance to the point, the result is again 

a tetrahedralization with a convex boundary. The tetrahedralization can be expanded point 

by point while keeping the temporary boundary convex. The gain from such a method can 

be immediately seen in Fig. 6.25. Ifthe boundary would have been kept convex during the 

generation of the in the figure depieted tetrahedron, the error prone situation would have 

been avoided. The creation of a new tetrahedron could not lead to penetrations. 

      

If the points are located on the perimeter of a sphere, the order in which the points are 

added to the tetrahedralization will not matter. Any point will be outside of the tetrahedral- 

ization of the other points. Also, any tetrahedralization of such points will be a Delaunay 

Triangulation. Thus, the convex LSPB can be tetrahedralized in this way with a slightly 

altered advancing front algorithm. 

Starting with a base triangle a fourth point from the set of cospherical points is chosen 

to generate a tetrahedron. The first tetrahedron of the sphere forms a temporary convex 

boundary to which the other points of the sphere are added one after another. The temporary
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Figure 6.25: Possible error in a 
dimensional tetrahedralization of a cospheri- 
cal point set. 

Figure 6.26: Approximately cospherical 
points can form unexpected constellations. 

boundary is kept convex by “looking back” from each fourth point of the last generated 

tetrahedron to link it to all triangles with a positive minimum distance and thereby creating 

several tetrahedra in one step. 

Once the LSPB i 

unn: 

    

    s completely tetrahedralized, the “looking back” algorithm becomes 

sary and it is returned to the normal tetrahedra growth process. Note that “looking 

back” and checking the minimum distance to the triangles is only required for triangles 

which belong to the tetrahedralization of the LSPB. As expected the implementation uses a 

temporary second higher priority queue for the advancing front within the sphere. Once the 

encountered and processed no later penetrations are possible. 

    

   s 

    

The algorithm is generalized to tetrahedralize the points which possess general lo- 

cations not exactly on the perimeter of a sphere. They do not nec ily form a convex 

Delaunay boundary. The A criterion (Crit. 6.2) is applied for each generated tetrahedron. 

The point location must take all points in the search region into account (not only points 

from the subset P.i). If the criterion cannot be satisfied by a point of the subset P.i with a 

small tolerance ¢, the tetrahedron will not be created. The temporary boundary to which the 

points P,; are added thus can contain non-convex regions which will be specially marked. If 

a point is being linked to all triangles with positive minimum distance such marked triangles 

are excluded. 

  

    

      

Cocircular Point Sets 

A cocircular point set (Def. 5.3) usually forms the intersection of two cospherical point sets 

ribed in Section 5.4. 'Thereby, a facet is defined by the cocircular point set which 

forms the interface between the LSPBs of the two cospherical point sets. This facet does 

not possess a unique Delaunay Triangulation. The presence of such degenerate cases further 

complicates the tetrahedralization of the LSPB. When processing the second queue adjacent 

triangles must: be taken into account to avoid facet connectivity inconsistencies (Fig. 6.28). 

as d 
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Figure 6.27: The advancing front of the global queue does not pass through a subset of cospherical 
points. 
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     Figure 6.28: (a) One adjacent triangle to merge (b) Oftwoadj 
correctly (c),(d) No adjacent triangles exist 

cent triangles only one can be merged 
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The implementation generally aims to merge with adjacent triangles when choosing the 

fourth point for the construction of a tetrahedron. In theory such a degree of freedom exists 

due to the existence of several equal X;. In practice under finite precision arithmetics a small 

deviation e from the minimal Amin (Crit. 6.2) must be tolerated to allow a consistent merge 

with an adjacent triangle. The adjacent triangles in Fig. 6.28-b can be distinguished by 

calculating and maximizing normal distances of points to triangles. For each fourth point 

candidate from Pai the normal distance to adjacent triangles is computed. The candidate 

which has maximal positive distance to all other adjacent triangles wins. 

These techniques ensure a consistent tessellation in most cases. However, without fur- 

ther enhancements to the algorithm a consistent facet connectivity cannot be achieved in all 

cases due to the existence of untetrahedralizable polyhedra or twisted prisms (Section 5.5). 

For the advancing front style Delaunay algorithm it is useful to distinguish a general unte- 

trahedralizable polyhedron and an untetrahedralizable cavity formed by Delaunay triangles. 

The modified advancing front algorithm will not create or encounter a general non-Delaunay 

twisted prism cavity. This follows from the fact that the advancing front consists of Delau- 

nay triangles only. Thus, such a case may only occur if the facets from the input form a 

Schönhardt polyhedron. It will be transformed or refined by the surface preprocessor, be- 

cause the triangles do not fulfill {he Delaunay criterion. The question remains how to deal 

with the Delaunay twisted prism case, of which it can be guaranteed that it is formed by 

cospherical vertices. 

Lemma 6.3 If an untetrahedralizable pocket is formed by Delaunay triangles, its vertices 

must form a cospherical point set. 

Proof 6.3 The Delaunay Triangulation of any point set as the dual of the Voronoi diagram 

must exist. Assuming a point set with a unique Delaunay Triangulation (no cospherical point 

set), a Delaunay triangle composed of any three points from the set must be contained in the 

tetrahedralization. Thus, it is not possible to form an untetrahedralizable pocket with a subset 

of the Delaunay triangles from the tetrahedralization. W 

Figure 6.29 shows a twisted prism which is formed by a cospherical point set P.,;. Hence, all 

its surface triangles are Delaunay triangles. No correct fourth point can be chosen for any of 

its surface triangles to perform a correct merge with the adjacent triangles. By rotation of 

the upper three vertices relative to the lower three vertices two variations of the prism can be 

constructed while the vertices remain cospherical (Fig. 6.29). Hence, all versions of the prism 

satisfy the Delaunay criterion and can occur during the formation of the advancing front. 

Without rotation three subsets of cocircular points are formed on each side of the prism. 

Recall the problem of facet connectivity which was the motivation for the examination of the 

twisted prism. While the first type in the figure, a convex polyhedron, poses no difficulties 

except that a bad sliver element will be created, the other two types seem a dramatic dead 

end for the advancing front Delaunay tetrahedralization engine. But in practice for very small 

rotation angles the three versions of the prism cannot even be distinguished numerically. This 

leads to the idea to find an algorithm which treats all cases in the same way as can be dealt 

with the harmless convex polyhedron type. T'herefore one should observe the relationship 

between slivers and the twisted prism. As shown in Fig. 6.29 an additive or subtractive 

combination of slivers with one prism type always results in another type. A convex prism
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Cocircular Points in 3D 

tetrahedralization produces 
at least 1 inconsistency 
(sliver volume =0) 

Convex Polyhedron Untetrahedrizable 
tetrahedralization produces 
at least 1 sliver 
(sliver volume >0) 

Twisted Prism 

(sliver volume <0) 

  

  

  

equivalent equivalent ; 
to poly + to poly - 
3 slivers 3 slivers 

    Figure 6.29: A twisted prism with cospherical vertie . It can 

be converted into a convex polyhedron or into an untetrahedralizable polyhedron while keeping the 
spherical. Thus, in all cases all triangles satisfy the Delaunay c 
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can be formed by attaching slivers to the sides of the untetrahedralizable prism. Hence, the 

mesh topology and facet connectivity can be kept consistent elegantly for all cases if one 

allows the creation of slivers with negative, zero, or positive volume (orientation). For such a 

robust algorithm it is indifferent whether the volume of an extremely flat sliver tetrahedron 

appears to be exactly zero, positive, or negative. 

After the volume tetrahedralization an adaptation step which is responsible for geomet- 

rical quality and slivers must guarantee the removal of all zero and negative volume slivers. 

Various Delaunay sliver types were discussed in Section 5.7. The type of sliver which will be 

created here in the context of the twisted prism is one with vertices from a cospherical point 

set. Such a sliver can be removed by a local transformation without modifying the points. 

The Delaunay property is thereby maintained. 

The implementation of the tetrahedralization had to be extended for such sliver elements 

of zero or negative volume. The tetrahedralization of the LSPB may produce negative sliver 

elements when it merges with adjacent triangles which are already attached to tetrahedra. If 

adjacent triangles are not yet attached to tetrahedra, e.g. boundary triangles, the creation of 

slivers is avoided. Instead the implementation of the tetrahedralization engine possesses the 

power to flip triangles on the fly. 

An important advantage is that no intersection tests are required to check for such cases. 

The test if an identical triangle exists (Lemma 6.1) is extended for cocircular point sets. If at 
least one not yet merged triangle exists with vertices from a cocircular point set which has the 

opposite orientation of the base triangle, zero or negative sliver elements are required. This 

becomes clear if one considers that the tetrahedralization of the LSPB occurs in a single step. 

Hence the plane spanned by the cocircular point set as part of the cospherical point set is 

either entirely triangulated or possesses no triangles at all. Without going further into detail 

it can roughly be said that all triangles from the triangulation of the (coplanar) cocircular 

point set are identically oriented. 

In practice, one realizes that zero or negative volume elements are hardly required and in 

most cases the tetrahedralization of the LSPB can be directly fitted to the adjacent triangle 

constraints. 

6.5 Local Adaptation 

The implemented fully unstructured volume decomposition algorithm is well suited for re- 

meshing purposes. Mesh points can be erased as well as inserted, and deformed elements can 

be discarded. This full freedom point insertion and removal allows many different kinds of 

adaptation techniques. One possibility is the insertion of circumcenters of not well shaped 

tetrahedra. T'he necessary steps are similar to the described method for inserting Steiner 

points at the surface (Section 6.3). 

e Find elements which need to be checked for deformations or which require a mesh 

update. For example locate the element which contains the circumcenter of a badly 

shaped tetrahedron. 

e Delete or insert a mesh point by updating the mesh topology and thereby creating
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unverified, possibly non-Delaunay tetrahedra. For example insert the circumcenter as 

a new mesh point into the found element. 

e Verify the Delaunay criterion for all connected elements and remove non-Delaunay 

elements. 

e Recurse by removing non-Delaunay elements which are connected to already removed 

elements. This is a reversal of the tetrahedra growth process by the modified advancing 

front algorithm. 

e Reprocessing the combination of the resulting cavity and the mesh points. No surface 

preprocessing of the cavity surface is required. The modified advancing front algorithm 

performs the tetrahedralization of the local region by queuing the unconnected triangles. 

These triangles must already be Delaunay due to the previous recursive removal process. 

All required functions to maintain a consistent data structure have been implemented for 

all simplices. 

Create: These functions allocate point, triangle, or tetrahedron entities. The data structure 

which is composed of a set of consistent links and references is not yet updated. Only 

the forward references will be set. These are the coordinates of a point, the vertices of 

a triangle, and a triangle/vertex combination for a tetrahedron. 

Insert: These functions actually insert the created entities by making the data structure con- 

sistent. A consistent data structure is thereby defined by correct forward and backward 

references. For example each point possesses a list of pointers to incident triangles. A 

triangle contains pointers to attached tetrahedra. 

Remove: These functions are necessary to delete or modify elements. T'he element must be 

cut out leaving a consistent data structure behind. If a point is removed, all incident tri- 

angles and tetrahedra will be removed to maintain consistency. If a triangle is removed, 

the possibly attached tetrahedra will be removed as well. All backward references have 

to be updated by setting the corresponding pointers to removed higher-dimensional 

elements to null. This applies only to the maintained data structure and not to the cut 

out elements. Thus, through the cut out element all connected and removed elements 

are still accessible for e.g. modification purposes. For example a cut out point may hold 

references to removed triangles and tetrahedra. 

Erase: These functions finally free the memory space consumed by cut out elements and 

their connected higher-dimensional simplices. 

Search: Search functions only operate on a consistent data structure with correct backward 

references. 

Refine: These functions allow the insertion of a point at an arbitrary position on a given 

element. Depending on the type of function edges of triangles, triangles, edges of 

tetrahedra, triangles of tetrahedra, and tetrahedra can be refined. All backward and 

forward references will be updated automatically.
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Experiments showed that a tetrahedron is ideally represented by a pointer to a triangle and a 

pointer to the fourth vertex which closely reflects the modified advancing front algorithm. In 

this way the memory space consumed by a tetrahedron is reduced to two pointers instead of 

e.g. four pointers for each vertex. This type of data structure severely complicated the coding 

of the necessary manipulation functions. Especially the refinement functions were required to 

evaluate geometric constellations to find a correct combination of existing oriented triangles 

and existing points for the creation of new tetrahedra during the insertion of a refinement 

point. Fortunately, only the coding and not the performance during runtime was affected. 

Local transformations were implemented to swap facets and their attached tetrahedra. 

With this technique the negative volume (orientation) sliver elements can be removed. For the 

example of such a sliver with a small negative volume the facet swapping technique modifies 

the local connectivity between the neighboring elements in such a way that the sliver element 

can be removed and the overlap between two tetrahedra due to the untetrahedralizable LSPB 

is resolved. In this case the resulting topology still fulfills the Delaunay criterion, because 

the elements are formed by point sets F. ;.
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Chapter 7 

Examples 

7.1 CAD 

A few mesh examples are shown which are not related to semiconductor process or device 

simulation. A wide field of applications exists ranging from computational fluid dynamics or 

stress mechanics to computer tomography, anthropology, or computer graphics. Models were 

obtained from some of these areas to show the versatility of the implemented mesh generator. 

The modified advancing front algorithm allows to pause the meshing process to take a 

snapshot of the incomplete mesh. The advantage is that such a snapshot reveals those parts 

ofthe mesh which are finished and those parts which were not yet touched at all. The finished 

parts will stay unchanged in the final mesh. In such a way it can be quickly determined where 

faults in the surface description exist. Ifthe program runs into problems or shows unexpected 

behavior, the developer can halt the process and view the current state of the front and the 

problem region. 

Scientific visualization is a challenging task and is important to grasp the results from 

a three-dimensional simulation [51]. To provide a meaningful feedback to the user different 
techniques must be developed to appropriately prepare scalar or vector data and to expose 

the interior of a mesh which becomes inherently difiicult in three dimensions [57]. A powerful 
visualization toolkit [150] was used to render some of the more complex images shown in this 

chapter. 

The first example is a model of a hand. Snapshots of the advancing front are shown in 

Fig. 7.1. The second example is a model of Beethoven’s bust. The surface mesh is depicted in 

Fig. 7.2. Extracting all structural edges results in a contour plot (Fig. 7.3). Figure 7.4 shows 
the model of a cow. The meshes for all three examples are depicted in Fig. 7.5, Fig. 7.6, and 

Fig. 7.7. The edges and points of the mesh of the hand rendered as tubes and spheres can be 

seen in Fig. 7.6. Computation time is minimal (less than a minute) and the mesh contains 

4344 tetrahedra. For the example of the cow and Beethoven’s bust the tetrahedral elements 

are itself visualized by shrinking them (Fig. 7.5, Fig. 7.7). The mesh of Beethoven’s bust 
contains 17665 tetrahedra and the mesh of the cow 11608 tetrahedra. 

The tetrahedralization domain for a quite different example, a human skull (Fig. 7.8), is 
extremely non-convex. In fact, only the outer shell has been tetrahedralized and the region of 

107
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eral moments during the meshing proc 

   

Figure 7.1: The advancing front at s 
meshed region from the empty parts of the volume. 

 
 

 
 

 
 

Figure 7.3: Structural edges form a contour 
plot. 

Figure 7.2: Surface mesh of Beethoven’s 
bust.
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Figure 7.4: The model of a cow. 

  
Figure 7.5: The mesh of a cow with 11608 elements.



CHAPTER 7. EXAMPLES 110   

‘souwr 
[euy 

oYy 
Jo 

sjurod 
pue 

sa3py 
:9°2 

3
I
N
S
I
 g 

 



7.1. CAD 111 
  

   
     

   -
 

> 
Di
n 

s 
\‘J

k 4 
x
 

| 

' 
‘ 

N
 

N
 

S 
7
 

w
i
:
 

/ 
4 

AN
 

R
 
s
 

r
e
 

¢ 
A 

» 
- 

\
 

%G
 

. 
Q
.
 

\ 
) 

Fr
 

! 
P
 

] 
" 

- 
i 

X
 

i
n
.
 

g 
N
 

N
e
 

2 
N
 

-~
 

= 
1.
 

' 
x 

/ 
P
 

ok
 

_ 
D
E
 

/ 
P 

AR
IN
 
I
 
M
e
 

‘ 
o
l
 

u 
> 
—
 

"/
 

P
X
 

»
 

Z 
\ 

4 
: 

4 
v 

>
 

N 
&
 

A
N
 

4 

— 
B
e
 

S 7 
-
 

M
i
r
 

% 

[ 
4
{
<
 

~
 

7 

A
,
 

£ 
.7

.-
:‘

 
5 
=
v
;
 

Figure 7.7: Final mesh of Beethoven’s bust with 17665 elements.
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the brain itself was never processed. Figure 7.9 shows cross-sections of the mesh at interesting 

parts of the skull. It can be seen that the meshed volume is much smaller than the volume 

covered by the convex hull. The top left picture in Fig. 7.9 shows the cross-section of the jaw 

area. In the following pictures one can see the nasal cavity, nasal bone, and nasal septum. 

The bottom right picture contains the cross-section of the skull above the nose and eye area.
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Figure 7.8: Human skull, mesh with 28512 elements.
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Figure 7.9: Crossections of the human skull mesh.
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7.2 Interconnects 

  

An important field of application 

terconnec! 

for electro-thermal interconnect 

is the capacitance extraction and thermal analysis of in- 

The finite element package SAP [140] can be used 
imulation. It contains a layer-based preproc r to gen- 

tions. This limited approach forces a uniform 

element size along one coordinate axis as was described in Section 4.2.1. The lateral mesh 

density must be identical for all cr: ections. Figure 7.10 shows the interconnects for a 

region of a DRAM. With some restricetions the layer-based preprocessor of SAP allows to 

apply a linear transformation function to a layer. The conductors depicted in Fig. 7.10 were 

modeled in such a way. The mesh generated with SAP for such a layered solid model is 

shown in Fig. 7.11. The same interconnect structure meshed with the fully unstructured 

modified advancing front method is presented in Fig. 7.12. The variation of the element size 

in Fig. 7.12 compared to the mesh in Fig. 7.11 shows the inc ed flexibility ofthe approach. 

  

in semiconduetor dev 

      

  

erate three-dimensional meshes from er     

    

       

    

Figure 7.10: Structure of the discretized conductors in a DRAM (0.8um x 3.2um). 

A much bigger challenge ar if the solid model is not edited but rather derived from 

process simulation. The structures evolving after etching and deposition steps are more 

complex than can be handled with methods such as the layer-based method. The output 

of a topography simulator is often highly refined to match the required resolution for the 

manipulation of the structure. Such a more complex two layer interconnect structure typically 
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Figure 7.11: Mesh generated with the layer- Figure 7.12: Fully unstructured Delaunay 
based method, 6480 tetrahedra. The vertical mesh of the DRAM, 5290 tetrahedra. 
propagation of refinement through all layers 
can be observed. 

  

    

  

evolving from the simulation of 

In this example the layout co! 

the two layers. 

  

miconductor proce; is shown in Fig. 7.13 and Fig. 7.14. 

of two masks which define the metal lines for each of 

A three-dimensional etch simulation with ETCH3D [170] is used to derive 
the structure from this layout data. Each layer results from directional etching of a metal 

film which is masked with the resist pattern. After stripping the resist for the first layer, 

an isolating oxide layer is deposited. The second layer metal film is deposited on top of this 

oxide layer. The structure depicted in Fig. 7.13 shows the state after stripping the resist for 

the second layer. The isolating oxide layer between the two metal films and before further 

oxidation is shown separately in Fig. 7.14. 

   

  

  

      

The geometrical data available to the mesh generator consisted in this case only of the 

polygonal description of the material interfaces. The closed boundary representations of 

the material segments were generated during the meshing proc The seed triangles for 

the enclosed segments of each material were extracted from the interface data given by the 

topography simulator. 
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7.3 Chemical Vapor Deposition and Reaction Kinetics 

High pressure chemical vapor deposition CVD of Tungsten is used for a Ti/TiN/W plug fill 

process. The geometry results from an initial low pressure deposition of a TiN barrier layer 

into the via. This physical vapor deposition PVD proc: determined by ballistie transport 

of the sputtered Ti particles. For the subsequent high pressure CVD pro: it is assumed 

that W is reduced from WF, using Ha and forming HF as by-product. The three gas sp: 

diffuse in the via and the reduction takes place at its surface. Depending on the diffu 

coeflicients and the reaction rates a steady state of the gas distribution is reached leading to a 

depletion of WFg at the bottom of the via and to non-uniform deposition rates. This results 

in a characteristic overhang in the layer profile. The simulated structure is located at an off 

center position of the wafer. Thus the TiN layer, formed by sputter deposition prior to the 

Tungsten CVD is strongly asymmetric requiring the rigorous three-dimensional simulation 

of the CVD film formation. 

    
      

  

           

  

      on 

  

h with AMIGOS [128] which provides an 
ential equations. Figure 7.16 shows the 

ction of the mesh is 

The chemistry model is calculated on the me: 

analytic interface for < zing and solving diff 

mesh of the cylindrical via and the WFg concentration. A cı 

depicted in Fig. 7.17. A different mesh with a highly refined region near the boundary and in 

the interior of the via was generated by constructing a non-uniform mesh point distribution 

  

     

    

  

  

  

  

  

derived from the boundary vertices (Fig. 7.18). 

3D Meshing ofthe 
Initial Geometry Surface Extracion | Surface] Reactor Volume 

above the Feature 

88 
8: onen 2 
&a 

Time Control 3D FEM Solver 
Final Geometry Surface Propagation (Diffusion Equations 

Void Detection and Reaction Kinetics) 

Figure 7.15: Flow diagram for the high pressure CVD model. 

  

  

        
    
  

The caleulated deposition rates are further used to advance the structure surface through 

topography simulation with ETCH3D. As shown in Fig. 7.15 the complete setup consi: 

of several tools which are directly linked to allow a fully automatic simulation sequence for 

as many iterations as desired [126]. After extracting the surface of the initial geometry, 

a three-dimensional mesh of the gas domain above the considered structure is generated. 

The differential equations describing the mass transfer and the reaction kinetics are set up 

and evaluated with AMIGOS on this unstructured mesh. The resulting deposition rates 

are transfered to ETCH3D. The topography simulator controls the time step for the surface 

propagation which is especially important during the formation of voids. Underestimating 

the size ofsuch a void is avoided by reducing a too large time step so that the first closure 

of the void can be observed. The surface of the resulting cellular geometry is extracted and 

s 
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the procedure is repeated for each time step. The parameters for the meshing tool and the 

description of the rate model are set up in control files and remain unchanged during all time 

steps. In this way the process runs fully automatic without any user interaction. 

The required CPU time on an Alpha-station 600/333 for the example shown in Fig. 7.19 

is approximately 60 minutes for the complete, automatically controlled simulation sequence, 

including surface extraction, meshing, calculation of the deposition rates, time step control, 

void detection, and surface propagation. Depending on the size of the structure between 

10.000 and 30.000 tetrahedra were used for the continuum transport model. The same model 

was calculated on a damascene structure and the resulting WFge concentration is shown in 

Fig. 7.20.
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Figure 7.16: A cylindrical via, mesh with 7324 elements
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Figure 7.17: A cross-section of a cylindrical via with a uniform mesh point distribution, 7324 ele- 

ments.
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Figure 7.18: The cross-section of the same cylindrical via meshed differently shows the non-uniform 
distribution of mesh points, 75720 elements.
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Figure 7.20: Iso surfaces of the WF«, concentration in a damascene structure, mesh with 18148 

elements.
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7.4 NMOS Transistor 

The example in Fig. 7.22 shows a NMOS transistor in 0.18um technology. Two regions of 

field oxide isolate the bottom silicon bulk from the poly-silicon. The gate is formed in the 

center of the depicted structure between the field oxides under the crossing poly-silicon. The 

gate-oxide which isolates the poly-silicon from the silicon at the gate area is önm thick and 

not visible in the figure. The size of the gate is given by the width of the poly-silicon and the 

distance between the field oxides (0.18um x 0.18um). A 30nm thin oxide layer covers the 
entire structure. The structural edges of the device can be seen in Fig. 7.21. 

Devices with high ratios between local feature sizes pose a challenge to most existing 

meshing methods. The difficulty lies in the anisotropic grading of the mesh density. Isotropic 

grading results in a mesh with a too large number of elements in three dimensions. The 

above described device exhibits such a geometrical anisotropy which was managed through 

a specific technique for the generation of the internal mesh points. As can be observed in 

Fig. 7.23 the mesh possesses long and thin elements to resolve the thin layer. The mesh 

points were generated at cross-sections of the structure. The tetrahedralization performed 

by the modified advancing front algorithm produced the desired anisotropic elements. As 

can be seen from the left side wall in Fig. 7.23 the mesh is fully three-dimensional and could 

not have been generated by extruding a two-dimensional mesh as for example through a 

layer-based product method which was described in Section 4.2.1). However, the resulting 

mesh elements are not completely ideal, because their anisotropy is one-dimensional. Flat 

prismatic elements may be preferred to resolve the thin layer. 
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Figure 7.21: Structural edges.
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Figure 7.22: NMOS Transistor with a thin oxide layer. 

2.55e+19 

2.31e+17 

2.09e+15 

1.90e+13 

1.72e+11 

1.56e+09   
Figure 7.23: Boron implantation profile, mesh with 134374 elements.
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7.5 CMOS Inverter 

A more complicated structure which consists of two transistors is shown in Fig. 7.24. The 

NMOS transistor and the PMOS transistor form a typical complementary MOS (CMOS) 
device. While the geometrical structures of the two transistors cannot be distinguished from 

each other (Fig. 7.24), it is the doping profile which differs. The blue material segments 
denote the two poly-silicon gate regions. The green segment of the structure is the silicon 

which is separated from the gate by a thin oxide layer. This oxide layer covers a shallow 

trench around all four sides of each transistor to ensure a proper isolation (shallow trench 

isolation, STT). The mesh density in the oxide layer is of no relevance. However in the silicon 

region the mesh density is crucial to resolve the doping profile and the electrical current 

density. The source and drain contacts penetrate the oxide layer to reach the silicon. 

The red segments are silicon-nitride spacers which help to isolate the gate from the source 

and drain regions and which prevent adversary effects due to a source-gate or drain-gate 

capacitor. From a process technology point of view the spacers allow a further separation 

between the deep drain/source implant regions and the gate. The source/drain extensions 

with a shallow doping profile reach under the spacer. 

The metallization as shown in the figure consists of the Aluminum conductors which 

connect the two gates and the two drain contacts. The passive oxide layers which cover the 

entire device and which form the isolation between the metal layers are stripped to make the 

interconnects visible in the figure. A quite coarse mesh is depicted in Fig. 7.25. It consists 

of 1016 and 1005 tetrahedra for the two gate regions, 3199 tetrahedra for the four spacers, 

13620 tetrahedra in the oxide layer, 15511 tetrahedra for the silicon, and 1283 tetrahedra for 

the metallization.
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Chapter 8 

Outlook 

The present state of the meshing tool forms a foundation for the future to cope with coming 

issues and already important aspects of mesh generation for semiconductor process and device 

simulation. Further development is required from a scientific as well as software engineering 

point of view. The chosen approach — the type of Delaunay kernel algorithm and the a 

priori boundary integration — seem promising to meet the demands. The ultimate goal is 

a robust tetrahedralization engine which satisfies the special boundary triangle requirements 

of a Voronoi type box integration and which handles extremely thin oxide layers without 

compromising the mesh in the silicon bulk region. The engine must be versatile to allow 

a combination with special techniques for semiconductor device simulation, as for example 

elliptical grid generation techniques. Ideally, the engine is to some extent itself capable to 

produce boundary-fitted meshes at e.g. the channel of a semiconductor device. For none- 

Voronoi type box integration the strict boundary triangle requirements can be disabled to 

not become a limitation of the mesh generator and to utilize the efficiency of a Delaunay 

kernel for the generation of hybrid, prismatic meshes or generally meshes where not all 

elements possess the Delaunay property. This is especially important for the optimization of 

meshes with regard to slivers for finite element computations. In summary the following are 

important further steps: 

e Continuing the research and the improvements of the Delaunay surface preprocessor 

especially with regard to thin layers. 

e Investigation of various point generation methods such as advancing front style methods 

for boundary-fitted meshes and a better control of the local mesh density. A generation 

of hybrid tetrahedral/prismatic meshes might be an important step. 

e Utilizing the already implemented tetrahedral refinement functions to test various types 

of Steiner Triangulations. 

e Implementation of additional element quality measures like aspect ratio and minimum 

dihedral angle of a tetrahedron also with regard to anisotropy. 

e Other software engineering aspects as for example the enhancement of the existing 

library interface to improve the link between the application and the mesh generator. 

An implementation of the control space is required for mesh adaptation. 
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