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Kurzfassung 

Die numerische Simulation der Herstellung und des elektrischen Verhaltens elektronischer 

Halbleiterbauelemente spielt eine wesentliche Rolle in der Entwicklung und Fabrikation in- 

tegrierter Schaltkreise für die Verkürzung der Entwicklungszyklen und -kosten moderner Very 

Large Scale Integration (VLSI) Produkte. Technology Computer Aided Design (TCAD) um- 

faßt alle Computerprogramme und computerunterstützte Verfahren, die der Entwickung und 

Analyse von Halbleiterbauelementen und -prozessen dienen. 

Diese Dissertation stellt eine TCAD Umgebung für die Simulation vollständiger VLSI-Her- 

stellungsprozesse vor. Besonderes Gewicht wird auf die Integration unterschiedlicher Simula- 

toren, die Darstellung von Herstellungsprozessen und die Automatisierung komplexer Analy- 

seabläufe gelegt. VISTA/SFC stellt eine Erweiterung des Vienna Integrated System for TCAD 

Applications (VISTA), einem Integrations- und Entwicklungsframeworks, im Hinblick auf die 
praktische Anwendung im industriellen Einsatz dar. 

Die Integration unterschiedlicher Prozeß- und Bauelementsimulatoren erfolgt über standar- 

disierte Schnittstellen zwischen dem steuernden Framework und externen Programmen. Ex- 

terne Gittergeneratoren werden herangezogen, um die Konsistenz des Wafermodels nach den 

einzelnen Simulationsschritten zu gewährleisten. Externe Programme werden über LISP- 

Funktionen and das Framework angebunden. Als primäres Datenaustauschformat findet das 

Profile Interchange Format (PIF) Verwendung. 

Die Darstellung von Herstellungsprozessen erfolgt mittels simulatorspefizischer Kommandos, 

wobei in einem Transformationsschritt prozeßspezifische und herstellungsspezifische Daten 

entsprechend umgewandelt werden. Prozeßsimulationsaufgaben werden parallel abgearbeitet 

und auf alle zur Verfügung stehenden Rechner verteilt, wobei Mehrfachberechnungen identer 

Teilaufgaben automatisch vermieden werden. Die wesentlichsten Gesichtspunkte bei der Real- 

isierung der graphischen Benutzeroberfläche für die Prozeßflußerstellung, die Ablaufsteuerung 

und die Datenverwaltung bildeten Zuverlässigkeit, Fehlertoleranz und sichere Bedienbarkeit. 

Die Erstellung und Bearbeitung komplexerer Simulations- und Analyseaufgaben wird durch 

eine Klasse von Objekten unterstützt, die verschiedene Operationen wie Design of Experi- 

ments (Doe), Response Surface Modeling (RSM) und Optimierungsaufgaben in kompakter 
Weise beschreiben; darüber hinaus stellen sie einfache Datenverwaltungs- und Nachbear- 

beitungsfunktionen zur Verfügung. 

Zwei Beispiele beleuchten die Anwendbarkeit und Gebrauchstüchtigkeit der vorgestellten 

Lösungen: Ein kompletter CMOS-Prozeß wird unter Zusammenspiel unterschiedlicher Sim- 

ulatoren durchgerechnet, die Durchführung einer komplexen Optimierungsaufgabe wird an- 

hand des Beispiels der Minderung des Kurzkanaleflekts auf die Schwellspannung eines NMOS 

Transistors mittels zusätzlicher Pocket Implants gezeigt.



Abstract 

The design and fabrication of semiconductor devices in modern integrated circuit technol- 

ogy rely crucially on the numerical simulation of fabrication processes and device behavior 

for achieving competitive cycle times and reducing development costs for Very Large Scale 

Integration (VLSI) products. Technology Computer Aided Design (TCAD) comprises all 

software tools, strategies, and methodologies that support the development and verification 

of semiconductor processes and devices. 

This dissertation presents a TCAD environment for the simulation of complete VLSI fabri- 

cation processes that emphasizes tool integration, process-flow representation, and task-level 

automation. VISTA/SFC is based on the Vienna Integrated System for TCAD Applications 

(VISTA), a TCAD integration and development framework, and extends concepts and mech- 

anism found in VISTA towards the production use of the framework. 

The integration of heterogeneous process and device simulation tools is realized by providing 

standardized interfaces between the a task control layer and external executables. External 

gridding tools are used to automatically ensure the consistency of the wafer model after 

each process simulation step. LISP functions are used to bind external executables to the 

environment. The Profile Interchange Format (PIF) is used as a primary wafer-data exchange 
format. 

The representation of process flows is based on simulator-specific statements, with a mapping 

step being used to transform factory-specific and process-specific statements to appropriate 

tool calls. Execution of process flow experiments is done in parallel across the computing 

network, dynamic split-point generation minimizes the computation load. Robustness and 

easy of use have been major concerns in the design and implementation of the graphical user 

interface (GUI) for process flow definition, experiment control, and data management. 

For the convenient definition and representation of more complex tasks, a class of objects 

has been added to the environment that encapsulate task-level applications like Design of 

Experiments (DoE), Response Surface Modeling (RSM), and optimization, and provide built- 

in data management and post-processing capabilities. 

The applicability and usefulness of the implemented prototype is demonstrated by two ex- 

amples. A complete CMOS fabrication process is simulated using a variety of heterogeneous 

simulation tools, and the encapsulation of a complex optimization task for the reduction 

of the short-channel effect on the threshold voltage of an NMOS transistor by means of an 

additional pocket implantation step is shown. 
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Terminology 

1-D simulation: One-dimensional simulation. In TCAD, refers to the numerical analysis 

of semiconductor fabrication processes and devices with all physical quantities assumed 

to be constant in all directions except for the vertical direction perpendicular to the 

wafer surface. 

2-D simulation: Two-dimensional simulation. Inquiry into the nature and causes of the 

behavior of a semiconductor wafer (during process simulation) or a semiconductor de- 

vice (during device simulation) with all quantities assumed to be constant in a direction 

parallel to the wafer surface. T'he cross-section under scrutiny is a plane perpendicular 

to the wafer surface, usually cutting through the active area and the electrodes of the 

device. 

1-D/2-D simulation: Combines a set of one-dimensional (and two-dimensional) simula- 
tions to build a two-dimensional model. 

Chip: A minute square of thin semiconductor material cut off from a processed wafer. Most 

valuable when carrying an integrated circuit. 

Device: Semiconductor device that is the basic component of an integrated circuit. Most of 

the times, a transistor. 

Equipment: Piece of equipment found in semiconductor fabs used to apply treatments onto 

wafers. 

Fab: Fabrication unit for manufacturing semiconductor devices. Comprises a clean room 

and numerous pieces of equipment; very expensive (new ones start at one billion dollar 

(US)). 

Flow: Sequence of processing or simulation statements to be carried out one after the other 

to fabricate or simulate a device. 

Integrated Circuit: Electronic circuitry realized on a single semiconductor chip. Usually 

comprises a lot of transistors (up to several million), but rather few inductances. Most 

prominent examples are microprocessors and memory components. 

LISP: Interpreting programming language primarily used in artificial intelligence and CAD. 

Its basic data types are lists, hence the name, and atoms, which are not lists. 

xvi
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Threshold Voltage: Characteristic voltage applied to the gate electrode of a MOS tran- 

sistor that marks the transition from an off state to an on state. Definitions for real 

devices vary from company to company. Internally, it indicates the onset of strong 

inversion in the device [Wol95a]. 

Tool: Simulator or other computer programm that serves a similar purpose for the ends of 

the user as does, e.g., a hammer for a carpenter. More specifically, a process, device, 

capacitance, or circuit simulator. 

Wafer: Piece of semiconductor material that is gradually transformed into an electronic 

device during fabrication. 

Widget: Building block of graphical user interfaces. 

Yield: Ratio of chips accepted over chips started. The higher, the better, usually around 

90% (for memory products) to 60% (for microprocessors).
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Chapter 1 

Introduction 

Semiconductor manufacturing relies to a large extend on computer simulation of fabrica- 

tion processes and devices to reduce costs associated with experimental runs and to keep 

development times short. 

1.1 Semiconductor Technology 

The design and fabrication of an integrated circuit is a complicated endeavor [Bon91]. Mod- 

ern Very Large Scale Integration (VLSI) technology uses fabrication processes that consist 

of several hundred process steps being applied one after the other to the raw semiconductor 

wafer to manufacture an integrated circuit. The development of new device generations con- 

tinuously pushes the limits of knowledge of the physics involved, at the same time making 

equipment and fabrication installations more expensive and increasing the costs of experi- 

ments. 

To cope with these challenges, semiconductor technology makes extensive use of computer- 

aided design (CAD) methodologies to reduce technology development costs and to improve 

product quality. Figure 1.1 gives an overview of the realms of Electronic CAD (ECAD), 
Technology CAD (TCAD), and Computer-Integrated Manufacturing (CIM) in VLSI manu- 
facturing. 

1.1.1 ECAD - Electronic Computer Aided Design 

ECAD is concerned with the design of an integrated circuit in terms of schematics, netlists, 

and layout. An integrated VLSI circuit consists of up to several millions of active devices 

that are interconnected on a chip to implement the desired functions, i.e., to build a mem- 

ory module or a microprocessor. T'he layout contains a description of the entire integrated 

circuit, including all active devices and interconnect structures, in terms of material layers!. 

Circuit simulation uses a netlist of the circuit, together with compact models of the electri- 

cal components, to compute the behavior of the integrated circuit. Model parameters are 
  

! Material layer, in this context, also includes local material modifications such as implantation regions.
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extracted from device data obtained from measurements or from simulation. Some parame- 

ters — mostly concerned with interconnects — can be directly inferred from the layout?. The 

output of circuit simulation is used to verify the entire design. From the layout, lithography 

masks are generated to be used in fabrication and process simulation. 

1.1.2 CIM - Computer Integrated Manufacturing 

CIM takes care of the smooth, automated operation of the fabrication unit and all equipment. 

Raw wafers are processed by applying treatments — thermal treatment, ion implantation, gas 

atmospheres, etc. — to induce physical and chemical processes to alter the material surface 

structure and the distribution of dopants in the material bulk. Up to several hundred treat- 

ments are applied sequentially to each wafer before an integrated circuit is completed. Most 

fabrication equipment is controlled by workstations that manage recipes, monitor equipment 

state and operation, and detect malfunctions. The location of each wafer lot in the fab at 

any given moment is tracked automatically together with the processing history and the 

remaining process flow. 

1.1.3 TCAD - Technology Computer Aided Design 

TCAD uses process flow information and layout data to simulate the fabrication process as 

well as the device behavior prior to actual fabrication to determine viable technologies and 

to improve existing ones. For each fabrication step, numerical simulation tools are used to 

compute the changes of the wafer model in accordance with the real-world effect. The final 

wafer model contains the complete device structure including material layers and dopant 

distributions. On a two-dimensional or three-dimensional sub-domain of wafer model, the 

semiconductor equations are solved to compute the electrical behavior of the device at various 

operating points and under different conditions. The extracted device characteristics are the 

basis for optimizations of the fabrication process as well as of the circuit design. 

As a single wafer takes many weeks to be fabricated, semiconductor process and device 

design can substantially benefit from the use of simulation and modeling to reduce the cost 

and time required to develop new or extend existing technology [Mar93] [Mar96]. A concise 
introduction into the use of simulation in semiconductor technology development is given in 

Cole et al. [CBFF90). 

As the complexity of the processes is steadily increasing — with respect to the number of 

fabrication steps as well as to the physics involved when going to smaller device dimensions 

—, the demands on simulation are constantly growing. At the same time, competitive markets 

call for shorter product development cycles. To help TCAD keep the pace with these trends, 

TCAD frameworks are used to share common tasks among simulation tools and applications, 

organize the management of simulation data, and assist the process and device engineers with 

tasks that are beyond the context of a single TCAD tool. For a brief evaluation of design 

frameworks in general, see Kleinfeldt et al. [KGMBS94]; for a summary of TCAD frameworks, 
refer to Halama [Hal94] 
  

?]f additional technology parameters — sheet resistances, layer thicknesses, etc. — are supplied.
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1.2 The VISTA/SFC TCAD Environment 

In this work, an integrated environment for TCAD analysis is presented that intends to 

support a wide variety of TCAD tasks from tool development and calibration to process flow 

simulation and design optimization. Special emphasis has been put on using the generic 

concepts and mechanism found in VISTA (see Section 1.2.1) to support process and device 

engineering tasks in actual industrial settings. Although a thorough treatment of all aspects 

of the concepts, design, and implementation is not feasible, the points of main concern are 

discussed. 

1.2.1 The VISTA Project 

This work has been carried out as part of the VISTA project [HFF93] [FTS94] [HPR*95] 
and continues a series of doctoral theses on the VISTA framework’s architecture [Hal94], on 

its data level [Fas94] [Rie96], and on its application to CMOS process optimization tasks 

[Pim93]. CASE tools, system libraries, and the LISP interpreter used in VISTA are treated 
in [Tup96]. Examples of process simulators developed in the VISTA project can be found in 

[Str94] and [Puc96]. A graphical editor for defining semiconductor devices in two and three 
dimensions is described in [Rie96]. 

1.2.2 Outline 

The following chapter gives a more detailed account of the application of TCAD in indus- 

try and presents typical TCAD tasks and tools. Chapter 3 outlines the architecture of 

the VISTA/SFC simulation environment and discusses basic concepts and mechanisms. In 

Chapter 4, the tool integration methodology adopted is presented. Chapter 5 focuses on 

the representation of semiconductor process flows for simulation purposes, Chapter 7 deals 

with the management of simulation data for TCAD experiments. Chapter 8 presents the 

task level management and encapsulation mechanisms available in VISTA/SFC. A uniform 
representation of various TCAD tasks is described. 

Chapter 9 sketches two typical TCAD analysis and synthesis tasks. Section 9.1 demonstrates 

the simulation of a complete CMOS fabrication process with heterogeneous simulation tools, 

Section 9.2 shows the automated interplay of task-level components to optimize a given 

process for a reduced short-channel effect. Finally, this thesis concludes with a brief discussion 

and gives some suggestions for future work.



Chapter 2 

TCAD Scenario 

Industrial TCAD applications cover a broad range of analysis and synthesis tasks aimed at 

characterizing fabrication processes, tuning device performance, improving yield numbers, 

and evaluating and selecting technology alternatives. The role of TCAD and TCAD applica- 

tions differ from company to company, ranging from the characterization of critical process 

sequences in a stand-alone fashion using manually written simulator scripts to fully integrated 

modeling and simulation of actual factory-floor processes and procedures. However, the fact 

that the number of experimental wafers that can be processed is being steadily reduced by 

escalating equipment costs and more complex and therefore increasingly time-consuming pro- 

cesses makes TCAD an indispensable methodology for continuing progress in semiconductor 

development [Mar96]. 

Figure 2.1 sketches VLSI design loops from circuit specification to process design. The in- 

nermost design loop! is based on device fabrication and represents the most expensive tasks. 

The target process has to be tuned to yield devices matching the device specifications derived 

from circuit design. Circuit modeling reads device parameters extracted from device data to 

simulate the behavior of the target circuit prototype. Deviations from the circuit specifica- 

tions — themselves being imposed by system and product design - lead to an adjustment of 

the circuit prototype. 

This chapter gives an overview of typical TCAD tasks found in the semiconductor industry 

and in research laboratories together with a brief summary of applicable TCAD tools and 

methodologies. 

2.1 TCAD Tasks 

TCAD tasks range from unit-process analysis and device characterization to yield optimiza- 

tion and technology selection. With tools and application strategies gradually maturing, 

emphasis is being shifted from point-tool applications to fully integrated and automated 

VLSI design modeling. Two dimensional simulation is the regular case, although shrinking 
  

!Not shown in the picture are loops at equipment level used to adjust equipment settings according to 

process step specifications. See [SGHH91] for an example of an equipment-level process control system.
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device dimensions? and topologically more complex designs render three-dimensional simu- 

lation more and more important. Mixed one-dimensional and two-dimensional simulation is 

still being used in cases where trends have to be analyzed quickly or extremely expensive 

models are being used. 

2.1.1 Unit Process Analysis 

The traditional application of TCAD focuses on the analysis of unit fabrication processes used 

in VLSI manufacturing. All of the basic physical processes, including ion implantation, diffu- 

sion and oxidation, epitaxy, lithography, and etching and deposition, have been successfully 

modeled and implemented as numerical simulation modules, and form an indispensable basis 

for all further TCAD applications [Sel84] [Eng86] [Sze88] [DY93] [Mey95]. The objectives for 
unit process modeling are twofold: 

1. Numerical simulation provides insight into the physical nature of fabrication processes 

that are not observable otherwise. A prominent example is given by the simulation of ion 

implantation, where the spatial distribution of dopants in the semiconductor material 

can only be measured with a spatial resolution far coarser than the typical feature size 

in modern devices. T'herefore, a picture of the two-dimensional and three-dimensional 

dopant distribution can only be found by simulation. 

2. The effects of variations of process settings for new or unfamiliar device geometries, 

for new materials or etchants can be most conveniently studied by process simulation. 

Unit processes can be tuned to a nominal target behavior before being grouped together 

with other process steps to form process modules for fabrication. 

2.1.2 Device Analysis and Characterization 

The numerical simulation of semiconductor devices represents the most important means of 

characterizing and evaluating both fabrication processes and device designs. Based on a nu- 

merical model of the device structure, including wafer geometry and dopant distribution, the 

distribution of the electric potential, the current density, carrier densities, and the temper- 

ature are computed as a function of externally applied voltages. Most types of devices can 

be simulated; available simulation tools range from simulators specialized on certain device 

types [SSP80] to general semiconductor structure simulators [Fis94] [SKRS95] [Sim96]. The 
fact that the distribution of physical quantities in the semiconductor device is not observ- 

able in nature due to the limited resolution of measurement techniques holds even more for 

device operation. Simulation provides the only means for looking into the active device. For 

example, |RSS95] treats the analysis of the transient behavior of charged-coupled devices. 

2.1.3 Interconnect Simulation 

The increasing complexity of integrated circuits causes metalization layers t0 become more 

and more important, as more complex circuitry needs more interconnections and therefore 
  

*According to [Dav96], channel lengths are expected to reach 0.05um by 2004, gate oxide thicknesses 

2.5nnm. See [Ass94] for a summary of expected trends and developments in semiconductor technology.



CHAPTER 2. TCAD SCENARIO 8 

a larger number of more densely packed interconnect layers. Together with the increase of 

chip size, the electrical behavior of the interconnecting layers gets more and more important 

for the operation of the whole circuit. Interconnect simulation analyzes the capacitances 

between different parts of the interconnect system to predict dynamic load and propagation 

delay. Simulations are performed in two or three spatial dimensions, sometimes including the 

non-linear behavior of the semiconducting material. Capacitances and resistances obtained 

from interconnect simulation are used in circuit simulation — together with data for the active 

devices — to compute the electrical behavior of the whole system. 

2.1.4 Circuit Simulation 

Although not part of the traditional TCAD domain, circuit simulation forms an important 

part of the VLSI design loop as it establishes an interface between the “vertical” and the 

“Jateral” analysis of semiconductor devices. From the electrical behavior obtained by device 

simulation, device model parameters are derived and used in models of electrical circuits to 

verify the circuit design. 

2.1.5 Process Tuning 

Combining process and device simulation to compute the fabrication and operation of semi- 

conductor devices allows to study the influence of process parameters on the device character- 

istics. In a typical industrial environment, circuit designers ask for a certain device behavior 

that has to be met — within a certain range — by the devices leaving the fabrication unit in 

order for the integrated circuits to work properly and meet their respective specifications®. 

By adjusting the process flow sequence and process parameters?, process design aims at en- 

suring that a large fraction of all devices fabricated fall into the acceptable range. Due to the 

extremely high costs of real-silicon experiments and the notorious lack of time and man-power 

in a highly competitive industry, the necessary parameter adjustments are frequently done in 

the virtual world of simulation, with only a very small number of actual experimental wafer 

runs granted to the process designers. 

2.1.6 Calibration 

For simulators to accurately predict the results of fabrication process steps as well as the 

device behavior, calibration is of utmost importance. By adjusting certain calibration param- 

eters®, the computed results can be made to agree with measured data over a certain range of 

variation in the process parameters and operation conditions. In general, the more accurate 

the result has to be, the smaller is the valid range of a calibration. Only calibrations and 

uncalibrated model together form a valid model for a given application. Depending on the 
  

3Traditionally, circuit design has been at the demanding side, while process design strives for fulfilling these 
demands. 

* A modification of the process sequence is opted for only very reluctantly, as it introduces additional degrees 

of freedom; existing process flows are used as long as possible. 
°Calibration parameters are either explicitly provided by the simulator, or they may be introduced artifi- 

cially in a pre-processing fashion.
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level of detail that is of interest as well as on the data available, calibration can either be 

performed locally on the tool level or globally for the complete process.   

Tool Calibration 

Provided measured data and a calibration mechanism exists for a tool, single simulation 
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given fabrication setting. Figure 2.2 shows this approach for a sequence of three tools, each 

being calibrated separately. In principle, the individual calibration of each simulator is mos      

  
  

  

  Parameters Tool 1 Calibration 
    

  

  
  

  

  Parameters | Tool2 Calibration r— O-—I 
    

  

  

  

N 

"
E
L
 

: 
: 

    
Parameters | Tool3 Calibration P— + — Measurements]                         
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In most c: the exact numerical solutions of intermediate steps during process simulation 

are not of pronounced int to the process designer. Rather, overall trends of the system 

behavior should be modeled accurately to guide design decisions. To make the simulation 

results comparable to target specifications, only the very last stages of the simulation task 

— usually device simulation — need calibration. Figure 2.3 shows the principal mechanism 

for globally calibrating a sequence of tools. All calibration data is subsumed in a single 
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Experimental Data 

One of the main complications in calibrating models and simulation tools is caused by the 

fact that in many cases, experimental data are not easily obtained. The numerical results are 

usually much more accurate than available measurements, with respect to both the spatial 

solution as well as the significance of the readings. 

2.1.7 Sensitivity Analysis 

A typical process has a large number of control parameters that can have a significant im- 

pact on the performance of the circuit as well as on the yield of the product. To establish a 

basic knowledge of the behavior of a design under variation of input parameter values and to 

estimate the relative importance of the input parameters, sensitivity analysis applies small 

changes to the nominal values of input parameters according to an axial design scheme. For 

measurements and numerical simulation, variations of the input parameter values cannot 

be made infinitely small. The sensitivity of an output variable x; with respect to an input 

parameter x; is therefore defined as Ax;/Az,, with Az; sufficiently small. In order to com- 

pensate for highly nonlinear system responses, it is useful to transform the input parameters 

appropriately before computing sensitivity numbers. For example, the dose parameter of 

most ion implantation steps exhibit a logarithmic influence on the device behavior; to obtain 

comparable sensitivity data, Az, is computed from log z instead of x, x being the dose setting 

incm”. 

2.1.8 Design Centering and Yield Optimization 

As opposed to the “ideal” world of computer simulation, where numbers are exact, the real 

fabrication process has to deal with fluctuations and variations in all parameters. "Therefore, 

for a given process and given process parameters, the measured electrical characteristics of 

the fabricated devices vary within certain ranges’. These variations are modeled as appearing 

at the input of the fabrication units, e.g., a statistical variation is assigned to a process pa- 

rameter, with the system itself assumed to behave completely deterministic. The parameters 

of these statistical variations can be obtained from long-term measurements in the fabrication 

unit. Given a model of the fabrication process — either a sequence of process simulators of 

a global model -, a large number of experiments can be generated from the nominal values 

and the statistical parameters®. In order to optimize the yield of the product, the fraction of 

experiments that leads to results that fall into the manufacture acceptance window has to be 

maximized. By adjusting the nominal process parameter values, the design is centered with 

respect to the output distribution. In practical applications, the system is represented by a 

response surface model, and experiments are generated by using the Monte Carlo method”. 

Figure 2.5 shows the experimental loop used for design centering. 

  

"So do, of course, the processing results after each fabrication process steps. As these effects are, in the 

general case, statistically uncorrelated, only the overall impact is of interest. 

8See [AAY+88] for the application of statistical methods to VLSI design. 
°See [HH83] for an introduction to Monte Carlo methods.
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2.1.9 Device Matching 

Circuit design requires devices of different types — NMOS and PMOS transistors — to be 

closely matched in order to be used in complementary circuits. Matching devices exhibit 

an identical electrical behavior when discounting for the sign of the electrical currents and 

voltages. More precisely, the respective threshold voltages are identical. Due to process 

variations and different process sequences!® for the N and P type devices, the distributions 

of these electrical parameters do not coincide automatically. In a fashion similar to the 

one described in the previous section, statistical simulation can be used to establish a set 

of nominal process parameters that minimizes statistically the differences between the two 

groups. 

2.1.10 Technology Development and Evaluation 

At the early stages of the development of a new process technology, unexplored territory has 

to be probed to limit the number of potential technology alternatives and select the most 

promising one. Although no accurate calibrations exist at this stage of process development, 

the existing body of information can be used to extrapolate process characteristics to a new 

technology or generation [Mas95] [Mar96]. 

2.1.11 Process Synthesis 

Given the layout of a device, the sequence of process steps required to build the material layers 

needed can be determined automatically [YGM94] [HM96]. A number of possible solutions 
can be obtained, that are fed into process and device simulation to select the best result. 

2.1.12 Inverse Modeling 

As mentioned above, process and device simulation often provide the only means of look- 

ing into the semiconductor material to determine the distribution of physical quantities like 

dopant concentration or carrier density. Given a “real” device, one can combine these tech- 

niques to indirectly measure two-dimensional dopant profiles!! by matching electrical mea- 

surements obtained from experiments and simulation [Kha95] |[KFBS95]. Figure 2.6 shows 
the optimization loop identifying a doping profile by means of electrical device characteriza- 

tion and inverse modeling. Given a parameterized model of the doping profile, an optimizer 

tries to minimize the deviation of the simulated device parameters from measured data by 

adjusting the parameters of the doping model. The model may be an implantation simulator, 

a sequence of process simulation tools, or an analytical model of the doping profile. In the 

latter case, care has to be taken not to introduce false or unjustified assumptions on the 

nature of the solution sought. 
  

10]n the sense that some implants are only applied to one type of device. 

I! As of now, no measurement techniques exist for determining the two-dimensional distribution of dopants 

in the wafer material.
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Figure 2.6: Inverse modeling of doping profile. 

2.2 TCAD Tools 

A large variety of process and device simulation tools exist in the TCAD realm, each having 

been designed for sp: l purposes and applications. Simulators model processes and devices 

in one dimension, two dimensions, and three dimensions. Pro: simulators are either geared 

towards the detailed analysis of single process steps or towards modeling complete process 

flows. The application of tools to a TCAD task is supported by frameworks, that cover data 

management and automation aspects. 

    

  

       

  

2.2.1 Point Simulators 

Point simulators focus on the accurate and sound modeling of single fabrication processing 

steps and are used primarily to analyze advanced effects. They do not intend to support 

pro integration tas but to gain insight into the underlying physical mechanisms of 

treatiments and proces: 

      

    

  

2.2.2 Multi-Step Simulators 

flow simulation 

  

Multi-step simulators or process flow simulators emphasize complete pro 

capabilities and usually neglect to a certain degree the physically sound treatment of every 

single one of the available individual process steps. This approach is in good agreement with 

the fact that even the most advanced tools need to be calibrated in order to deliver results 

matching the “real life 

     

  

  

situation; trends are often enough to characterize a technology.



CHAPTER 2. TCAD SCENARIO 15 

2.2.3 Response-Surface Models 

Response-surface models (RSM) provide analytical models for arbitrary systems, with the 

dependency of each output variable on the set of input parameters being formulated as 

an analytical function. The most common RSM use polynomial functions of second order, 

although in principle, any function can be used'2. 

2.2.4 TCAD Frameworks and Virtual Fabs 

While TCAD frameworks try to support different aspects of TCAD applications, with empha- 

sis on the tool control, experiment generation, and data handling tasks, virtual fabs aim at 

modeling the complete VLSI design cycle, from single process simulation to statistical analysis 

and optimization. Widely used applications include PDF Solution’s pdFab [WKKS93], Sil- 

vaco’s MASTER framework [HB93], and TMA’s CAESAR [AGJ93]. NORMAN/DEBORA 
ICBK*t93] offers powerful experiment generation capabilities for response-surface modeling. 

  

!?See, for instance, [SC96] for a completely unstructured alternative to polynomial modeling.



Chapter 3 

The VISTA/SFC TCAD Environment 

3.1 Introduction 

The VISTA/SFC TCAD environment has been designed to support the development of semi- 

conductor processes and devices at different stages of the design process. It has evolved from 

early attempts based on the VISTA TCAD framework [SFF+91] [Fas94] [Hal94] to create a 
tool for controlling and automating the sequential execution of semiconductor process sim- 

ulation tools [PS93a] [PS93b]. At the present stage of development, it comprises simulation 
tool integration, process flow representation, process flow simulation, and task-level automa- 

tion for optimization, calibration, and response-surface modeling tasks. The remainder of 

this chapter gives an account of the objectives and the overall architecture of the simulation 

environment. 

3.2 Objectives 

3.2.1 Tool Integration 

At the early stages of development, the primary goal of the Simulation Flow Control module 

(SFC) [PS93b] was to use a set of single-process simulation tools like PROMIS! and SAMPLE 
[Ele91] to automatically simulate complete VLSI fabrication processes, the main concern 

being the integration of process simulation tools by providing uniform interfaces for the 

exchange of simulation data and for controlling the execution of the tools. Chapter 4 presents 

in detail the strategies adopted in VISTA/SFC for coupling heterogeneous process and device 

simulation tools. 

  

"Initially, the PROMIS process simulator [HPW91] [HHW*90] was capable of simulating fabrication process 
sequences including ion implantation and diffusion processes. In order to make different numerical and process- 

modeling related components independent from each other and to foster the modularization of the simulator, 

it has been divided into a set of tools each modeling only a single fabrication process [Sti93] [Puc96]. 

16
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3.2.2 Experiment Management 

In addition to simulating sequences of fabrication processes, the support of large-scale simula- 

tion experiments plays another important role in the TCAD domain. Simulation experiments 

are an indispensable aid in the development of VLSI processes and devices for studying the 

influence of parameter changes on the behavior of the fabricated device. T'ypical tasks involve 

about five to ten independent process parameters that are varied independently of each other, 

leading to up to several hundred simulation experiments for every system aspect under con- 

sideration. Due to the high costs? of two-dimensional and three-dimensional simulation, the 

number of simulator calls — the actual invocation of an executable to numerically simulate a 

given fabrication process or device characteristic — submitted to a workstation or other type 

of computer needs to be made as small as possible, with automatically enforcing the reuse 

of existing results where possible. Tool control and data management necessary for such 

experiments in a fashion suitable for application in an industrial setting constitutes another 

core part of this work (cf. Chapter 6). 

3.2.3 Task Automation 

The generation of a set of design-space sample points by process and device simulation ex- 

periments forms the basis for further analysis. As described in Section 2.1, various TCAD 

tasks aim at characterizing a VLSI process in terms of statistical behavior and sensitivity 

to uncertain control parameter values as well as at tuning its performance to specifications 

derived from chip design and management. Furthermore, TCAD creates a number of tasks 

on its own dealing with the calibration of simulation tools and the generation of response 

surface models, to name a few. To liberate the TCAD engineer from defining and performing 

these tasks manually?, automation and programming support on the task level are a major 

concern for a TCAD environment. VISTA/SFC offers evaluable entity (EVE) objects that 
establish an object-oriented approach to many task-level tasks; they shall be addressed in 

more depth in Chapter 8. 

3.3 Architecture and Components 

The VISTA/SFC simulation environment comprises several internal modules as well as external 
applications?. Figure 3.1 gives an overview of the TCAD environment’s principal functional 

components. 

3.3.1 Task Control Layer 

As the central coordinating instance, the task control layer takes care of controlling all 

activities initiated via the GUI, the ASCII interface, or a batch file. It is implemented as a 

set of dedicated VLISP functions and establishes object-oriented interfaces for all task-level 
  

*In terms of CPU time, disk space, network traffic, and user patience. 

®].e, manual setup of scripts for optimization, design of experiments, etc. 

* External applications run as separate processes on the operating system.
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Figure 3.1: Main components of the VISTA/SFC TCAD environment. 

cate external executables. 

  

  
    

Dark rectangles indi-
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services. The VLISP shell interpreter — not shown in the figure — provides the basis for the 

implementation of all other internal modules. It provides interfaces to the operating system, 

the graphical user interface (GUT), and the PIF Application Interface (PAI) [FFS?91] to 
conveniently access simulation data stored in the Profile Interchange Format (PIF) [Duv83]. 
All operating-system dependent services are encapsulated by the VLISP interpreter, which 

ensures portability over a wide variety of operating systems and platforms; see below in 

Section 3.6 for more details. 

3.3.2 Simulation Flow Control 

The flow editor offers an intuitive and convenient graphical interface for writing process flows. 

It supports the definition of process flows in a hierarchical and modular manner in terms of 

tool-independent process statements as well as explicit tool statements. Chapter 5 discusses 

the capabilities of the flow editor as well as the highlights of the process flow representation 

used. Process flow information is interpreted by the run controller, which together with the 

run data base forms the core components for the management of iterative and parallel split-lot 

experiments. The run controller takes care of the detection of splits, of scheduling multiple 

runs in parallel operation on workstation clusters, and offers a number of operation modes to 

facilitate development and debugging of both processes and simulation tools. The run data 

base stores and retrieves simulation output data and extracted data of any format, with the 

PIF format being used as primary exchange format for wafer data. 

3.3.3 Tool Binding 

All simulation tools and auxiliary data-manipulation tools and gridders? are accessed through 

a layer of binding functions that encapsulate tool specifica, establishing a set of VLISP func- 

tions to allow the invocation of all simulation tools in a uniform manner as simple function 

calls. All tool parameters as well as output and error redirections are passed as arguments to 

the binding function, ensuring a maximum of independence of the tool binding layer and the 

task control layer. All binding functions together are organized as the tool application layer 

that makes all tools available to the task control layer. 

At the other end of the functional hierarchy, task-level tools are interfaced with the task 

control layer by interface agents that establish communication channels with concurrent ex- 

ecutables like optimizers, design-of-experiment (DoE) tools, and response-surface-modeling 

(RSM) modules. While being run as clients of the task control layer, they also operate as 
servers for more complex applications, and are linked together by callback® connections. In- 

terface agents are fully integrated with the EVE class of objects; see below in Section 3.5 for 

more details. 

  

SVISTA/SFC uses external gridding tools to ensure data consistency after simulation steps; see Section 4.3. 
6See Appendix B.
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3.4 VISTA/SFC and the VISTA Framework 

While the VISTA framework as described in [HPR95] provides a host of functionalities and 
services for a variety of simulation tasks in the TCAD domain and elsewhere, implementing, 

e.g., abstractions of the operating system and the X Window-based graphical user interface 

to ensure portability across platforms, as well as providing a PIF data base interface and 

higher-level libraries for PIF data manipulation, and additional support for tool development, 

VISTA/SFC bridges the gap between generic versatility and practical application. 

3.4.1 Graphical User Interface 

The VISTA/SFC graphical user interface as shown in Figure 3.2 intends to make all tools and 
services available directly at the user’s fingertips’. It is subdivided into several windows that 

VISTA TCAD Shell Version 1.0-0 on 337.iue.tuwien.ac.at 
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Figure 3.2: Main GUI shell of VISTA/SFC. 

can be made visible and invisible by the user according to the current task. The Input window 
  

"The level of task abstraction presently supported by the VISTA/SFC GUI does not completely reflect all 

available functionality. Future work is required to establish concepts for the representation of complex TCAD 

tasks.
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lets the user enter commands for the VLISP interpreter in the same way as at the normal 

command line, with the added benefit of providing a command history and a recall mechanism 

as well as full screen-edit support. For the programmer’s convenience, information can be 

inquired for all symbols known to the VLISP interpreter. The Message window essentially 

prints out all messages generated by the VLISP interpreter; the destination of these messages 

can be dynamically configured to the message window, or to the terminal where the session 

was started, or to both. 

The $FC window gives access to the run controller and the run data base, which will be 

discussed in more detail. The top organizational entity for all work to be carried out in the 

environment is the project. A project contains a design, which contains a process flow and 

mask data, and additional information necessary to build the design. T'hese additional data 

are stored as project resources, containing settings for global parameters and user preferences 

defined for a project. Table 3.1 gives examples of available project resources. Due to the 

  

  

      

Resource Description 

directory Top directory for all project data. 
direct-tool-output | Writes all tool output directly to terminal to avoid buffering when 

debugging. 

discard-tool-output | Discards all tool output to save space. 

echo-tool-output Echoes all tool output to the terminal for monitoring progress of 

operation. 

single-step-mode Executes flows in single step mode for debugging; see Section 6.5.2. 

file-check-mode Selects policy to check for existing output files; see Section 6.2.1. 

purge-mode Allows purging of tool output data that is not needed in the cur- 

rent split experiment. 

float-epsilon Maximum relative difference of two floating point numbers for 
split checking. 

gridding-tool Gridding tool for wafer-state update; see Section 4.3.4. 
  

Table 3.1: Examples of project resources. 

object-oriented design of the environment, any number of projects can be active at the same 

time. However, whereas more than one project may be in progress at a time, only one can 

be simultaneously accessed through the GUI. 

The System Jobs window gives an overview of all active and queued system jobs, including 

executing host, working directory, and command line arguments, with direct access for ter- 

minating jobs as well as for sending data to a process in case its input is connected to the 

environment. The Hosts window shows all computers enabled for execution with color codes 

indicating availability and idle state. An automatic load balancing mechanism [KPR196] 
distributes the computation load evenly across the computing environment. Specific hosts 

may be marked as restricted to indicate that they should only be used if a job explicitly asks 

for it; see Section 4.6 for more details on the interface between the computing environment 

and the simulation environment.
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3.5 Concurrent Clients 

A central concept that the VISTA/SFC simulation environment concentrates on concurrent 
clients. Concurrent clients are external executables or processes® that run concurrently with 

the controlling process — the simulation environment — and communicate with it. Most numer- 

ically extensive or critical applications, especially optimization tasks, are not implemented as 

internal services but are delegated to concurrent clients. To establish access to these external 

modules, an encapsulation strategy has been developed and implemented. 

3.5.1 Encapsulation of External Clients 

For several TCAD tasks, external clients? are used by the VISTA/SFC environment to gener- 
ate the desired results. For the internal representations of external clients agents are provided 

that take care of all data and message handling required for smooth operation. For example, 

when an optimization task is initiated by the framework, an agent is assigned to the optimizer 

tool, which establishes a connection between the task-level EVE interface!® and the optimizer. 

The agent is represented by a VLISP object and can be subclassed to implement encapsula- 

tions of other external clients. It takes care of passing messages between the optimizer and 

the environment by means of a callback-based, asynchronous connection, allowing for the 

execution of multiple optimization tasks at the same time. Figure 3.3 shows the interaction 

between the optimizer agent and the EVE interface on the one hand, and between the agent 

and the external optimizer on the other hand. T'he environment passes a description of the 

model to the optimizer, defining the model’s type and its control and response variables. 

During the course of the optimization, the optimizer requests the evaluation of the model for 

a certain set of control values by sending a message to the environment. Messages between 

the optimizer and the agent are transmitted using VISTA’s operating-system independent 

standard-input/standard-output redirection capabilities. The details of this connection, how- 

ever, are encapsulated by the agent, and other means of communication like TCP/IP sockets 

can be supported as well. Depending on the internal operation of the optimizer, evaluation 

requests may be sent synchronously, or a number of requests may be sent at a time. Upon 

termination of the optimization, the result found and diagnostic information are passed back 

to the environment. 

3.6 Implementation 

All modules of the VISTA/SFC environment are coded in VLISP and are run by the VLISP 
interpreter of the VISTA framework. The entire VLISP code amounts to approximately 1.8 

megabyte of ASCII source text, 1 MB being attributed to the implementation of the core 

functional modules shown in Figure 3.1 and 0.4 MB each being alloted to the interfaces for 
  

®Processes also include daemons and servers that run completely independent of the simulation environ- 

ment, whereas executables are started on behalf of it. 

°The distinction between client and server sometimes cannot be clearly made. In the example of an 

optimizer, for instance, it can be regarded as a server that provides the optimization service and delivers the 

optimum found, or as a client that requests evaluations from the simulation environment. 

10See Section 8.3 for a description of the class of Evaluable Entity (EVE) objects.
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Figure 3.3: Communication between EVE interface, optimizer agent, and external optimizer. 

currently integrated external tools and to basic funetionality for GUI generation, system 

interface, message handling, and resource handling. Figure 3.2 gives an overview of the 

various VLISP modules constituting the simulation environment. 

  

Module | Description 

PIL PIF Interface Layer for reading and writing PIF data. 

SVG Graphics library for plotting. 

VBS Base-system libraries providing operation-system indepen- 

dent acı file system, 

ystem timers. 

VuI High-level interface to X window system. 

  

     

8 

  

  to system proce 

urce data base, 

  

gular expr     

  

    

  

sions, r         
Table 3.2: VISTA/SFC VLISP modules. 

VLISP was chosen as the implementation language for a variety of reasons that are related 

to the LISP language itself [WH89], to the XLISP implementation [Bet89], and to various 
extensions available in VLISP!!. The following list highlights those aspects that were 

in the context of the VISTA/SFCenvironment. 

vant       

  

in the decision pro 

ions. 

  

e Interpreter allows fast prototyping and code-update and code-reload during se: 

«e Automatic memory management supports problem-oriented programming. 

e Run-time code generation capability 

!!See [Tup96] for more information on the Vienna Base System and the Vienna LISP Interpreter. Appendix 
A gives a brief overview of the LISP programming language and the XLISP and VLISP implementations
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e Built-in debugging interface facilitates code development and debugging. 

e Runs on various operating systems and platforms. 

e Vienna Operating System (VOS) provides powerful support for file handling and process 

management tasks in an operating-system independent way. 

e Vienna User Interface library (VUI) provides high-level functionality for defining graph- 
ical user interfaces quickly and comfortably. 

e Built-in error handling and error message system standardizes error handling. 

e Built in object classes support object-oriented design. 

e Multiple inheritance facilitates the reuse of object classes spread across different 

modules. 

e PIF Application Interface (PAI) |FFS?91] [Fas94] provides direct access to simulation 

data stored in PIF format. 

e HBasily extensible by binding external functions and libraries coded in C or C++ to the 

interpreter automatically using the Tool Abstraction Concept (TAC). 

e Built-in regular expression library simplifies text-based data exchange. 

e Byte-code compiler increases speed of execution and enforces syntax and type checking 

at compile-time. 

e Variety of additional LISP data types improve code quality and form basis for compile- 

time and run-time type checking. Type-specific print and read routines liberate the 

programmer from handling different types explicitly. Some examples of valuable data 

type extensions are given in Table 3.3. 

  

  
Node Type | Description 

PROCESS Running or terminated system process 

QUANTITY Real number with units“ 

REGEXP Compiled regular expression 

TIMEOUT Timer entry 

TIMESTAMP File time stamp, system time stamp 

VOSPEC Operating-system independent file specification         

Table 3.3: Selected VLISP data types. 
  

“All arithmetic operations available for floating point numbers are also supported 

for quantities. The VUI library provides widgets for the direct GUI representation of 
quantities.



Chapter 4 

Integration of Simulation Tools 

The simulation of complete VLSI fabrication processes and devices involves the cooperation 

of a variety of different simulation tools to generate a model of the desired semiconductor 

and to extract characteristic 

4.1 gives an overview of all 

  

structure, to compute the behavior of the resulting device, 

electrical parameters for further use in eircuit simulation!. Figur 

simulation stages involved in the computer-aided analysis of an integrated circuit; feedback 

  

loops of the design process are omitted for clarity. 
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Figure 4.1: Simulation stages of TCAD analysis of integrated circuits. 

Each stage shown in the pieture calls for running one or several simulators, with process sim- 

ulation almost always requiring the complex interplay of many dissimilar programs, reflecting 

the fact that the fabrication process itself consists of a sequence of numerous process steps 

ofa broad variety of types applied one after the other onto the semiconductor wafer. Inter- 

facing these tools with one another and controlling them in a uniform way for the purpose of 

completely automating the entire procedure outlined in Figure 4.1 are the main concerns of 

this chapter. 

    !Note that the scope ofthis chapter does not include device characterization or eircnit simulation, although 
most of the concepts and solutions presented can be extended to these domains
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4.1 Heterogeneous Process Simulation Tools 

Among the components shown in Figure 4.1, process simulation plays an outstanding role 

with respect to tool integration for the large variety of available tools on the one hand 

and for the need of arbitrarily changing the order in which tools are invoked on the other 

hand. Moreover, whereas device simulation, device characterization?, and circuit simulation 

transform their respective inputs to outputs of entirely different domains, process simulation 

is domain-invariant inasmuch as process simulation tools produce output that again serves as 

input for other process simulation tools®. More precisely, a device simulator reads a model of 

the wafer structure and writes numerical values for electrical quantities; a diffusion simulator 

reads a wafer model and writes a wafer model. 

4.1.1 Tool Specialization 

The large — and constantly growing — number of available process simulation tools can be 

explained with the rapid evolution of semiconductor technology as well as with the lack of a 

unified and established basis for the development and implementation of TCAD tools. Fast 

technology changes call for the development of specialized simulation tools, each holding an 

expert’s position for a particular process simulation task. For example, the definition of 

arbitrary diffusion models on each material segment of a wafer is an advanced feature of 

the PROMIS NT process simulator [PS95] [Puc96], which other diffusion simulators do not 
offer. Of all available tools, to optimally model a process technology, it is of paramount 

importance to use the tool best suited for each process step instead of confining oneself to 

a particular product’s or vendor’s solutions. (Cf. Table 4.1 for some examples for existing 

process simulators; this list shows only a negligible fraction of all process simulation tools in 

use at universities and in industry). 

4.1.2 Tool Categories 

Apart from being specialized in particular physical processes, process simulation tools fall in 

three categories with respect to the usability for process flow simulation: 

1. Tools that model the effects of a single fabrication process. 

2. Tools that model the effects of a short sequence of closely related fabrication process 

steps. 

3. Tools capable of simulating a complete semiconductor process flow in its entirety. 

Moreover, tools differ with respect to the completeness of the solution produced: Tools either 

generate a complete model of the wafer as it appears at the end of a process step considered, 

or they produce only a partial model, limiting the output, for instance, to dopant distribution 
  

*In lieu of device characterization, the term parameter eztraction is often used. 

3Trivial as it sounds, this fact is not always present when process simulation tools are being devised. Rumor 

has it that even at the most prestigious institutions tool developers are sometimes baflled when learning of 

the requirement for a tool to be able to understand its own output.
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data or geometry data. Table 4.1 gives some examples of process simulation tools belonging 

to either of these two categories. 

  

Tool Supported Processes Output   

  

ATHENA [Sil94] 

CREEP [SOK87) 
FLOOPS [Law95] 
IMPACT-4 [BCF*95] 
PROMIS Analytical Implant [Sti93] 
PROMIS Monte Carlo Implant [Boh96] 
PROMIS Diffuse [Wim93] 

PROMIS NT [Puc96] 
PROMIS ETCH [SS95] 
SAMPLE [Ele91] 

SKETCH 
SPEEDIE [MRC*90] 
SPLAT [Toh88] 
SUPREM4 [Tec95]   

All processes 

Oxidation, Reflow 

All processes 

Diffusion, Oxidation 

Ion Implantation 

Ion Implantation 

Diffusion 

Diffusion 
Deposition/Etching 
Deposition/Etching/Litho- 

graphy 
Deposition/Lithography 
Deposition/Etching 
Imaging 

All processes 

Complete output 

Complete output 

Complete output 

Complete output 

Geometry, new doping 

Geometry, new doping 

Geometry, all doping on sil- 
icon segment 

Complete output 

Geometry 
Geometry 

Geometry 
Geometry 
Light intensity distribution     Complete output 

  

Table 4.1: Process simulation tools, processes, and output. Complete output indicates a 

complete description of the wafer at the end of the process step. 

The ability to integrate a broad variety of heterogeneous simulators and to present them in 

a uniform manner is one of the main concerns of this work. The following sections present in 

more detail the tool integration methodology used in VISTA/SFC. 

4.1.3 Tools and Tool Applications 

As shown in Table 4.1, some tools are capable of providing a number of different services 

to the simulation environment. For example, the SKETCH program serves as a simple 

deposition tool as well as a lithography tool, depending on a command line option; the 

TSUPREMA4[Tec95] simulator is capable of simulating a number of different fabrication pro- 
cesses, which are specified in an input deck. From the framework’s point of view, only the 

service rendered is of interest, not the executable invoked. To reflect this fact, a service 

provided by a tool is called a tool application. Figure 4.2 shows the relation between tool 

applications and tools in the light of the SKETCH simulator. On the other hand, a particular 

service may need more than one tool to be called in a strict order. On the right side of 

Figure 4.2, a tool application is shown that provides an encapsulation of all simulator calls 

and intermediate data manipulations required for an oxidation simulation“. 

  

“See Section 6.2.1 on how to avoid the potential computational overhead arising from this abstraction.
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Figure 4.2: Applications and Tools. A single tool may used for several distinct applications, 

a single application may call for several tools to be invoked. 

4.2 Tool Integration 

The integration of external tools into the broader context of a simulation environment requires 

coupling on the data level, ‚ the exchange and conversion of tool input and output data 

between syntactically and possibly semantically different data representations, and on the 

control level, i.e., parameter passing, input deck generation, tool invocation, and handling 

of diagnostic messag Furthermore, on the pi ce has to be 

provided to allow editing of tool settings in an error-proof and intuitive way, supporting both 

    

  

   
   

  

entation level a user inte:       

graphical as well as text-terminal operations. 

Tool integration in this context deals with executable simulators that themselves remain 

unchanged by the integration process. In contrast to this approach, other methodologies 

have been devised to integrate tools by linking numerical modules that perform the solution 

of the physical equations with generic server modules that manage the data produced. For 

an example of this strategy, see Sahul et al. [SWH*+96]. 

    

    

4.3 Data Level 

Integration at the data level is concerned with the exchange of simulation results between 

simulation tools. The two fundamental problems in this domain arise from different data 

formats and from different information models employed for ıting simulation data. In 

general, the first problem is easily solved by a data format converter that maps a given data 

format onto another one. The second problem poses by far the greater challenge. Care has to 

be taken to correctly convey all information represented in one model to another one and vice 

versa. In general, this problem cannot be solved completely, and a certain loss of information 

L1 . g can help to limit 

the loss of information to the position of a particular tool in a sequence of tool steps; after 

        

    
nei
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that step, information can be regained by appropriate merging operations (Figure 4.3). For 

Merge 

Tool B I—>O—> Tool I- - 

Figure 4.3: Different information models of tools A and B lead to loss of information for tool 

B. Bypassing data regains that loss for tools subsequent to B. 

    

   
    

   

the general case, it is more instructive to focus on the subsequent modifications of a wafer 

state model instead of thinking of chaining tools together. In Figure 4.4, the wafer model is 

modified from step to step by the operation of tools whose respective inputs and outputs are 

derived from, and merged with, the current contents of the model. According to this scheme, 

a tool’s input may be completely unrelated to state of the model. 

    

    

  

-- State 2 O 
Merge Merge   

Figure 4.4: Wafer model and tool input and output: The state of the model is iteratively 

modified by the operation of tools. 

4.3.1 PIF - Profile Interchange Format 

The Profile Interchange Format (PIF) [Duv88] is used as the primary data format for repre- 
senting wafer data and for exchanging simulation data between tools. It allows a hierarchical 

boundary representation of geometries and defines a set of distributed or concentrated at- 

tributes on geometry segments and on grids to store material and dopant distribution data. 

Grids are built from elements of a variety types, including triangular and rectangular e] 

[Fas94]. Dopant concentration data, e.g., are subdivided into int 
with the total (chemical) concentration of a dopant species being the sum of the two. Fig- 

ure 4.5 gives a summary of the obj found in a typical PIF wafer file. Arrows represent 

om an object to another one. Ifa PIF object is a collection of smaller ent 

an index specifies the entity addressed’. Figure 4.6 

    ments     

  

itial and active fractions, 

  

   s 

  

      

      hows the navigation tool provided in 

  

5Geometry objects like points, lines, and faces are not represented as separate objects, but are organized 
in lists. E.g., a pointList object contains all points of a geometry, a segmentList contains all segments. To 
access a single point from a point list, an indexed reference is used.
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BoundaryDescription 

J |MaterialType U 3rdDimension D BoundaryCondition 

    

   

  

Concentration 

Figure 4.5: PIF objects in PIF wafer state file. 

VISTA/SFC to view and manipulate PIF data. 

PIF data are acı :d by applications using the PIF Application Interface (PAI) [FFS*91], 

one of VISTA’s core components. The original PIF specification [Duv88] leaves ample room 

for defining different data models. The PAI implementation enfor 

the structure of PIF objects while still allowing ambiguities in the definition of geometrical 

objects. To avoid any ambiguities, a wafer state convention has been devised that: impo: 

number of restrietions on acceptable data representations for a wafer state model and greatly 

enhances the practical usability of the PIF format with respect to inter-tool data exchange. 

tions are given in Table 4.2; see also [Rie96]. 

    

s some conventions on     

      

  

sa 

  

    

    The most important restri 

  

  

  

  

        

    

    

Item PIF Wafer State 

Geometry orientation® arbitrary | counter-clockwise 

Geometry connectivity® undefined | single 

Number of grids per segment | any 1° 

Numbers of points per line >2 2 

“ Geometry orientation refers to the orientation of lines in faces and faces in solids. 

PGeometry connectivity refers to the topological dimension of faces and solids      
“In the VISTA/SFC wafer state convention, grids have to be boundary-conform to their respective 

segments, 

Table 4.2: Original PIF specification vs. VISTA/SFC PIF wafer state convention. 

For accessing PIF data, tools are either linked with the PAI or use external wrappers to 

convert data to the PIF format (Figure 4.7). The second approach is often preferable as no 

changes of tool code are ne. simplified. 

  

ary and tool upgrading is 
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well.pbt:iM_outiile —Ascil 
PIF (Attribute Activity_Phosphorus_01 

- GattributeType "ActivityType’) 
paintList Kelle rn ee Tan 
mais (valuelist "interstitia 

& facelist 
B segmentlist] 

geometry = 

  

pointtist 
Si SegmentDeseription [1] *| 

[2] 

  

Poly SegmentDescription [4] * 
interstitial Phospharus |   rityDescription 

hosphorus MaterialType 
Concentration| 

m Armen) nem Deite an | 
  

Figure 4.6: GUI for viewing PIF data. The left part of the window provides navigation 

through the hierarchical data structure, the right part shows the data in ASCII representa- 

tion. 

  
  

          
  

  

      
      

  

            
          

    

Linking with PAI Linking with Wrapper External Wrapper 

VLISP Shell VLISP Shell VLISP Shell 

1 
Tool Tool 

Tool 
i Pre/Post 

Processor| 1 1 'Wrapper ~—     
      

    

=T 
PIF PIF PIF 
File File File 

  
  

      
      

                  

Figure 4.7: Data level integration schemes.
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4.3.2 Native Tool Formats 

Although a single common data format is highly desirable for the integration of heterogeneous 

   simulation tools, enforcing the conversion to a common data format after each simulation step 

causes a significant overhead in computing time and a lı 

data and can be avoided iftwo subsequently executed 

or if, as it is often the case, only tools of a single family are used in one project. To take 

advantage of this potential increase in speed and numerical accuracy, native tool formats are 

also fully supported, with conversions taking place as necessary. A prominent example for a 

native tool format that is supported by the VISTA/SFC environment is the TIF format used 

by TSUPREMA4 [Tec95]. In addition to predefined data types, new ones may be defined to 
specify appropriate conversion routines and tools (cf. Section 7.1.3). 

in numerical stability of the overall 

mulators share a common data format, 

  

   

    

  

  

  

4.3.3 Consistent Wafer Representation 

Tool specialization has led to expert tools dealing with isolated aspects of a wafer only. For 

example, the SAMPLE [ONS+80] [Ele91] and PROMIS [SS95] etch and deposition modules 
operate only on the wafer geometry, causing inconsis between the grid-based dopant 

distribution data and the geometry boundary information, as they do not take care of rec- 

onciling the two after updating the geometry®. To ensure a corr: 

wafer representation after each process simulation step, data merge operations have to be 

performed to reflect geometry alterations in the grid structure, to purge superfluous grid 

elements, and to merge dopant information from before and after a simulator call (cf. Figure 

4.4). Figure 4.8 sketches the data flow in the case of a PROMIS etch operation. Starting 
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Figure 4.8: Data flow for creating a consistent wafer model after a PROMIS etch operation. 

  

from the geometry information present in the PIF wafer state model, the tool call generates 

$These inconsistencies are not a consequence of negligent behavior on part of the tools in question, but 
necessary simplifications to let tool developers focus on the core issues of the simulation task,   
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the new wafer geometry reflecting the effects of the simulated etch or deposition process. In 

the subsequent merge and update operation, segment grids on all segments of the geometry 

are checked and adjusted to conform with their pective segments’. After the merge and 

grid-update operation, a complete model of the wafk available for further processing. For 

the general case, Figure 4.9 shows the basic flow graph for updating the PIF wafer state 

representation after termination of a tool. 

     

  

    

    

  

    
    

    
  

   

   
   

     

Output Geometry ? 

Get Geometry from No \V Yes Get Geometry 
Previous Result from Tool Output 

Output Doping ? 

No Get Doping from 
Tool Output 

Previous Doping ? Valid Previous Doping ? 

Get Doping from 
Previous Result 

  

  

Figure 4.9: Flow graph for updating the PIF wafer state repr 

simulation tool call. 

"For a detailed analysis of grid-related tasks during merging see [Hal94]
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4.3.4 Gridding 

During process flow simulation, the PIF wafer model is subsequently undergoing a number 

of modifications of the boundaries of the material segments defining the wafer geometry and 

of the dopant distribution data in the bulk and along material interfaces of the wafer. To 

fulfill the requirements of the PIF wafer state convention adopted in VISTA/SFC for the PIF 
representation of a wafer model (cf. Section 4.3.1), grids have to conform to the boundaries 
of their respective segments to form a valid wafer state. 

The reconciliation of existing grid and dopant data, modified grid and dopant data, and 

existing and modified geometry data is taken care of by external gridding tools that are called 

automatically by the framework. The selection of an appropriate gridding tool potentially 

poses problems similar to the choice of the right simulator. Various gridding tools have been 

reported, with new developments constantly challenging established solutions. Therefore, it 

is advisable to provide a mechanism for using the gridding tool of one’s choice in a fashion 

similar to selecting the simulator best suited for a process step. At present, VISTA/SFC offers 

a choice of three grid generators, TRIANGLE [She96], TRIGEN [Ban90], and VOrONOI [Hal94], 

for re-gridding purposes, with a clear interface provided for the integration of additional 

gridders. In the GUI, gridders are selectable by mouse click similar to other configuration 

parameters (Figure 4.10). 

—| switchShell 1 

  

Abort on error | on 

Clean up mode on 

Keep intermediate PIF files On 

Run queue delay [1/10 s] i : 

Save run information after each step | on 

Sync run display on 

“> Triangle 

Wafer State Gridder ‚ Trigen 

x, Voronoi 

Cancel Hein 
            

Figure 4.10: Selection of wafer state gridders: GUI module. 

At present, TRIANGLE has proven the most reliable and robust gridder of the three alterna- 

tives. It is based on a highly flexible delaunay gridder and takes care of enforcing the wafer 

state convention with respect to grid and dopant data, re-gridding of the entire structure from 

scratch, using local grid refinement with respect to dopant concentrations, merging existing 

dopant data and additional data generated by an implantation or diffusion step, and for
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merging a geometry arising from a topography simulation step with the dopant data of the 

original wafer. As it makes use of existing grids, numerical inaccuracy is reduced to a mini- 

mum and the creation of additional grid points is restricted to areas where it is necessary®. 

TRIANGLE provides a mechanism for the generation of quality meshes by means of various 

grid constraints including minimum angles and maximum areas of triangles and dopant dose 

conservation criteria. An enhanced refinement technique delivers rapid variations of grid 

density and thus minimizes the global number of grid points. 

In general, the choice of gridding parameters and constraints exerts a strong influence on 

the quality of the simulation result. Therefore, all gridding-related resources are specific for 

a project and do not need to be specified globally. For example, the max-triangle-area 

parameter specifies the maximum size in um? of all triangles generated by TRIANGLE, the 

min-angle parameter defines the minimum angle in degrees. Typical values for these re- 

sources are 0.1 and 15, respectively. 

Wafer state gridding is mainly concerned with the storage of distributed quantities, not with 

requirements arising from numerical and computational considerations. Most simulation tools 

employ their own strategy to construct an internal grid representation that is determined by 

numerical aspects of the equations to solve. In general, it is not possible to find a grid that is 

optimally designed for all possible computational strategies. T'herefore, data representation 

on grids is supported by the environment, whereas the generation of computational grids is 

declared responsibility of the simulation and solver modules®. 

4.4 Control Level 

The control level takes care of all aspects of tool invocation and tool run-time management: 

1. Command line assembly. 

2. Input deck generation. 

3. Input and output redirection for establishing communication links and for message and 

error logging. 

4. Tool invocation. 

d. Return code interpretation 

6. Extraction of results from output files. 

7. Interpretation of diagnostic messages. 

One fundamental problem in TCAD tool integration is caused by the fact that many simu- 

lators understand complex input deck languages that are rather difiicult to represent on the 
  

®In a typical multi-tool process flow simulation scenario, numerous calls to the gridding utility are made to 

reconcile tool output with pre-existing data. We have found it to be extremely helpful to differentiate between 

“new” data generated by a simulator, and “old” data that already is the result of a re-gridding operation. 

°PIF-tool developers can rely on powerful libraries that support the internal handling of grids [Fas94].
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framework level in a uniform manner. Therefore, we treat each functional subset of a simu- 

lator as a separate task-level application(cf. Section 4.1.3). For each fabrication process we 

define an application that appears to the framework as an independent tool. The application 

is accessed by calling a binding function that reads resources derived from local and global 

settings. 

4.4.1 Binding Function 

Applications are either based on external executables or on functions internal to the envi- 

ronment. All operations necessary to invoke an application and to return its output data 

are encapsulated by a binding function, which establishes a uniform interface between the 

environment and the application!". Applications can be defined and added to the frame- 

work during sessions without need for interrupting any active tasks. Figure 4.11 shows a 

piece of code used to define an application based on an external simulator. A GUI is gener- 

ated completely automatically on demand from this declaration without any further coding 

required. Nevertheless, to reflect complex interdependencies of an applications parameters, 

more sophisticated interfaces can be defined by the user via an object-oriented GUI generator 

[Str96]. 

4.4.2 Tool Resources 

Each application is represented as a resource client that understands a set of resources. 

Similar to the resource mechanism employed in the X Window system [Jon89$], a resource 
is identified by its name, which is unique in the context of a given client, and a resource 

type. Interdependencies and default values may be specified for all resources of a client. All 

command-line arguments, required and optional parameters, operation modes, etc. of a tool 

are accessible as resources. This mechanism ensures that: 

1. All tool parameters are explicitly accessed, and 

2. Parameters of all tools are accessed in a uniform way. 

Resources and resource clients are implemented as object classes in VLISP. Resource types 

comprise all basic LISP data types!! plus additional ones defined by the application. 

4.4.3 Input Deck Templates 

Specialized simulators often understand a rich input deck syntax, enabling the experienced 

user to formulate complex analysis tasks. From the process engineer’s point of view, however, 

only a few variables in the input deck may be of interest. T'herefore, a given simulator together 
  

1OUsing a standardized VLISP function pointer as interface between the run controller and external tools 

keeps the interface as flexible as possible, while still allowing for the automatic generation of the function code 

from a more abstract tool description to minimize manual coding efforts. As VLISP does not differentiate 
between code and data, it is ideally suited for code generation applications. 

!!For the sake of clarity, the LISP representations of boolean data, T and NIL, are mapped to a pair of 

strings, e.g., "on" - "off" or "yes" — "no".
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;s; binding code for SKETCH simulator 

(defun sfc::sketch (&key 

;3 ——--- standard keys ----- 

cob ;s; context object containing input data, working 

;; directory, input/output streams 

;3 777-- input file key ----- 

pif-file ;s; physical PIF file 

pif-logical ;; logical PIF file 

;3 ———--- tool-specific resources ----- 

(process "subdomain") ; type of process 

(material "Si") ; 

(length 3.0) 
(depth 2.0) 

;; ————-- local variables ----- 

kaux 

output-plb 

) 

5 0 define local callback function for system call ----- 

(flet ((sketch-done (process client-data return-code) 

;3 7707 pass output file to context ----- 

(send cob :check-output output-plb :type ’pif-file) 

;3 7007 pass return code back to context and return ----- 

(send cob :call-done return-code))) 

35 777 create output file name ----- 

(setq output-plb (list (send cob :base-name :suffix "sketch" :ext "pbf") 

"Sketch_Dutfile")) 

55 777 queue system command for execution on network ----- 

(sfe::queue "sketch" ;3 system command 

;3 77077- pass command line arguments ----- 

(append (list pif-file ;s physical PIF file 

pif-logical ;3 logical PIF file 

) 
(list ’opbf (first output-plb) 

’oplb (second output-plb)) 

;3 07707- read key arguments from local environment ----- 

(get-keys :begin ’process :end ’depth) 

) 
;3 ———-- pass working directory and output/error streams ----- 

:directory (send cob :inquire ’directory) 

:output (send cob :inquire ’output) 

:error (send cob :inquire ’error) 

;3 ———--- set termination callback of system ----- 

ss call to local function 

:term-cbl #’sketch-done 

) 
) 

Figure 4.11: Example code for tool binding function for SKETCH simulator.
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with a specific input deck template that implements an analysis task may be defined as an 

application by itself. The template is derived from an existing input deck by simply marking 

relevant fields with enclosing them in <( and )> as shown in Figure 4.12. The simplest 

substitution statement just assigns a name and a default value to a field in the input deck, 

while additional statements are used to define units, value ranges, and numerical expressions 

to derive a field’s value; Figure 4.13 gives some examples of template substitution statements. 

Table 4.3 gives a summary of currently implemented additional statements. 

TITLE MOS CHARACTERISTIC 

COMMENT Y.MAX=0.8 MODEL,METHOD SOLVE **x* 

mesh infile=<(mesh-file input.pi)> tsuprem4 elec.bot poly.elec y.max=0.8 

models conmob fldmob srfmob 

contact number=Gate n.poly 

symbolic newton carriers=1 hole 

solve v(Substrate)=0.0 electrod=Substrate vstep=0.1 nstep=6 

solve elec=Substrate V(Substrate)=<((bulk-bias :units "V") 0.0)> 

solve elec=1 continu c.vmin=-3.3 c.vstep=-0.05 

log outfile=<(log-file md.log)> 
solve elec=Gate continu c.vmin=-0.1 c.vstep=-0.02 

solve v(Gate)=-0.1 electrod=Gate vstep=-0.1 nstep=15 

PLOT.1D infile=<(log-file md.log)> 
+ device=1/post 

Y.AXIS=I1 X.AXIS=V(Gate) Y.LOG POINTS 

left=0 right=-3.2 bottom=1E-22 top=1E-2 

title="DATA" SYMBOL=1 "ORDER color=1 

outf=<(data-file md.dat)> 

+ 

+ 

+ 

+ 

Figure 4.12: Input deck template example. Expressions enclosed in matching angle-bracket 

— parenthesis pairs <(...)> are replaced by values supplied by the simulation environment 

to generate the simulator input deck. 

<(alpha 15.0)> 

<((alpha :units "deg") 15.0)> 

<((alpha :units "%" :calc "0.15 * alpha") 100)> 

Figure 4.13: Template substitution statements examples. 

If the value of a parameter is to be used more than once in a template, a simpler syntax 

can be used: Names preceded by the dollar sign $ will be replaced by the current value 

of the parameter. Both the expression delimiters <( and )> and the substitution prefix 

$ can be replaced by other characters to avoid conflicts with a simulator’s native syntax. 

Using substitution expressions with the :nooutput flag along with substitution prefixes in a 

template allows all variable parameters to be declared in the header of the template, making 

for a more easily readable file. 

For interactive editing, a graphical user interface is automatically created from the field 

definitions in the template file (Figure 4.14). Both the template and the input deck derived 

from the template — after substituting the default values from the parameter definitions in
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Statement | Description 

:text Text string to be displayed in editor instead of the parameter name. 

:eval LISP Expression to be evaluated in the context of the substitution to derive the 

value of the parameter. All parameters read up to that point in the template 

can be used. 

:calc Same as :eval, but expression is assumed to be given in infix notation instead 

of prefix (LISP) notation. 
:use Value to be used if an error occurs during expression evaluation. 

:string Indicates that the value derived after substitution is to be printed enclosed in 
double quotes to the input deck generated. 

:log Parameter exhibits logarithmic behavior with respect to the system’s responses. 

:min Hard-wired parameter minimum value. 

:max Hard-wired parameter maximum value. 

:units Units string to be displayed together parameter value. 

:type Parameter data type if not derivable from default value. 
:choices List of choices for parameter value. 

:noedit Disable interactive editing. 

:nooutput | Skip entire statement when substituting.         

Table 4.3: Template substitution expressions. 

the template — can be viewed alternatively (Figure 4.15). In this fashion, pre-existing process 

and device simulation input deck libraries can be easily integrated without need to rewrite 

them in a new language. 

4.4.4 Tool Description 

Ideally, all aspects of tool integration are based on a standardized and appropriately abstract 

tool description that contains all information for control level and presentation level inte- 

gration. Unfortunately, many tools have proven rather elusive with respect to a complete 

description of their signature!?, behavior, and output. Therefore, a hybrid approach has been 

chosen that combines the flexibility and versatility of unrestrained LISP code with the power 

of abstraction of a formal description. The LISP code contains a function of standardized 

form (cf. Figure 4.11); a registration call assigns the function to an application. Parameters 

are automatically extracted from the function definition, additional information on ranges, 

defaults, types!?, etc. can be specified. 

4.5 Calibration 

A calibration refines a tool application for a specific purposes. The combination of an existing 

application and a calibration can be dynamically defined as a new application on its own, 
  

1?2In analogy with the terminology of many programming language, the signature of a tool refers to the 
names, positions, and respective ranges of its input parameters. 

13]n most cases, the data type can be derived from the default value.
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Template Editor 

  

    

TITLE MOS CHARACTERISTIC | mesh-file input. pi 
COMMENT Y.MAX=0.8 MODEL, METHOD SOLVE *** 
mesh infile=<{mesh-file input.pi)> tsuprem4 elec.bot bulk-bias io a 
poly.elec y.max=0.8 Fr] 
models conmob fldmob srfmob log-file |imd.log 
contact number=Gate n.poly sa 
symbolic newton carriers=1 hole _fi 
solve v(Substrate)=0.0 electrod=Substrate vstep=0.1 data- file imd.dat 
nstep=6 
solve elec=Substrate V(Substrate)=<(bulk-bias 0.0)> 
solve elec=1 continu c.vmin=-3.3 c.vstep=-0.05 
log outfile=<{log-file md.log)> 
solve elec=Gate continu c.vmin=-0.1 c.vstep=-0.02 
solve v(Gate)=-0.1 electrod=Gate vstep=-0.1 nstep=15 

PLOT.1D infile=<{log-file md.log)> 
+ device=|/post 
+ Y.AXIS=11 X.AXIS=V(Gate) Y.LOG POINTS 

+ left=0 right=-3.2 bottom=1E-22 top=1E-2 
+ title="DATA" SYMBOL=1 JORDER color=1 

+ outf=<(data-file md.dat)>               
  

Ok Rescan Preview Cancel Hein       
Figure 4.14: Graphical template editor generated automatically from 

template file. 

  

Template Editor 
    

TITLE MOS CHARACTERISTIC | mesh-file Iinput.pi 
COMMENT Y.MAX=0.8 MODEL, METHOD SOLVE *** 
mesh infile=input.pi tsuprem4 elec.bot poly.elec bulk-bias | al 
y.max=0.8 Fr] 
models conmob fldmob srfmob log-file mag 
contact number=Gate n.poly A 
symbolic newton carriers=1 hole fi 
solve v(Substrate)=0.0 electrod=Substrate vstep=0.1 data-file imd.dat 
nstep=6 
solve elec=Substrate V(Substrate)=0. 
solve elec=1 continu c.vmin=-3.3 c.vstep=-0.05 
log outfile=md.log 
solve elec=Gate continu c.vmin=-0.1 c.vstep=-0.02 
solve v(Gate)=-0.1 electrod=Gate vstep=-0.1 nstep=15 

PLOT.1D infile=md.log 
+ device=|/post 
+ Y.AXIS=11 X.AXIS=V(Gate) Y.LOG POINTS 

+ left=0 right=-3.2 bottom=1E-22 top=1E-2 
+ title="DATA" SYMBOL=1 ORDER color=1 

+ outf=md.dat             
  

Ok Rescan Cancel Hein       
Figure 4.15: Template editor in preview mode. 

40
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nted as a    making a calibrated tool available under a unique name. A calibration is rep: 

pre-processor for an application’s input parameter vector that maps parameter settings on 

tool invocation to calibrated settings. In the simplest case, the calibration only supplies 

sible in the tool that do not depend on the 

input parameter values (static calibration). 1 the calibration represents a sp set of 

default values for a given purpose (cf. Figure 4.16). In the general case, all input parameter 
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   Figure 4.16: Static calibration vs. 

    

    

values of the application depend on all paramet, 

multiplication of the invocation settings vector with a calibration matrix (matri. 

In both cases, the actual calibration parameters and factors can be derived using a pro 

outlined in Section 8.8. Instead of a matrix, it is also possible to use a 

model for mapping input parameters to calibrated parameters 

not sufficient. 

  

PSpons       
  if a linear transformation i 

4.6 System Tool Interface 

The lowest level of abstraction in the tool control layer of the VISTA/SFC environment is 
represented by the System Tool Interface (STI), that provides access to system executables 

in a uniform way. The purpose of this ce is to hide details of tool invocation that 

are related to queuing systems, file location of executables, authorized host 

cutable, and site-specific invocation procedures; basic logging and work-in-progre: 

are also offered. In this way, external tools can be accessed by symbolic names throughout 

all source code files and user-defined task-level applications. The actual mapping from the 

symbolic name to the operating system’s command line is defined in a central configuration 

file!!. 

   
     5 inter! 

    

for a given exe- 

facilities 

      

4.6.1 Configuration 

Figure 4.17 gives a simple example of the encapsulation of a non-standard call to a sim- 

ulation tool. By the deftool statement, residing in a configuration file loaded on start- 

up of VISTA/SFC, the pro mulator TSUPREMA4 is defined to be called via the script 

    

It is not required to define an external tool before calling the STI. By default, an unknown name is used 
as-is on the command line.
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local-ts4, which needs additional options. The VLISP command vos: :tool returns an ob- 

ject job that represents the tool call. The last line of the example shows the UNIX command 

line that is generated by the tool call!®. Figure 4.18 gives an example of a tool that is only 

authorized to run on certain hosts. In this case, only two hosts, h50 and h51 are allowed 

for the simulator to run on. On invocation time, the VISTA/SFC load balancing mechanism 
[KPR 96] selects the best available host and starts the simulator. 

(deftool "tsuprem4" (deftool "tsuprem4" 

:command #"local-ts4" :hosts ’("h50" "h51") 

:options ’(c z #\t 60) ) 
) 

(setq job (vos::tool "tsuprem4" #"deck.inp")) (setq job (vos::tool "tsuprem4" #"deck.inp")) 

myhost:”$ local-ts4 -c -z -t 60 deck.inp h51:“$ tsuprem4 deck.inp 

Figure 4.17: System tool encapsulation. Figure 4.18: System tool encapsulation. 

Non-standard calling procedure. Authorized execution hosts. 

4.6.2 _ UNIX Networking 

A second STI task is the encapsulation of typical deficiencies occurring in a distributed com- 

puting environment. As VISTA/SFC is designed to distribute simulation tasks on a number 

of hosts connected by a network, with different tools executing on different machines and 

accessing data files on local and remote disks, the stable operation of the network layer is 

of greatest concern. As shown in Figure 4.19, on UNIX systems, remote executables are 

started using the remote procedure protocol (RPC), while data files are accessed across the 

network using the network file system (NFS)!$. Due to the large size of simulation data files 

— typically several hundred kilobytes — reading and writing data from the remote host might 

take more or less time, depending on the bandwidth and the load of the network connection. 

If two tools are run one after the other, one reading the output of the previous one, situa- 

tions occur where the RPC for the first tool has already terminated, but its output file has 

not been written completely by the NFS, or file locking is not synchronized. Starting the 

second tool immediately after the first one will result in a read error because of incomplete 

file data!”. The STI takes care of appropriately scheduling the submission of system jobs to 

avoid network-induced malfunctions. 

  

15VISTA/SFC is fully operational on both UNIX and VMS systems. 
!6As a matter of fact, NFS is based on RPC. See [Ste90b] for a detailed introduction to UNIX network 

programming. 

17” This might not cause trouble with sequential files; for random access files, it is disastrous.
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Figure 4.19: Remote tool call and local file: Propagation delay differences between remote 

job execution and network file data transfer causes loss of synchronization between job ter- 

mination and file update.



Chapter 5 

Semiconductor Process Flow 

Representation 

The fabrication of modern semiconductor devices involves several hundred individual pro- 

cessing operations that are carried out sequentially on the initial semiconductor substrate 

(raw wafer) to manufacture the desired product [Wol90] [SS91] [WMF96]. VLSI process op- 
erations comprise a wide variety of different physical and chemical treatments. As they are 

applied one after the other on the - more or less — planar surface of semiconductor wafer, we 

speak of planar technology. 

5.1 Fabrication Process Steps 

Process operations include ion implantation for the introduction of dopant materials into 

the semiconductor substrate, thermal treatments to induce dopant diffusion and oxidation 

processes, etch and deposition processes to structure the semiconductor surface, spin-on pro- 

cesses to create resist coatings and protective films, optical and other varieties of lithography 

processes to transfer patterns from masks onto the semiconductor surface to determine the 

affected regions for subsequent etch and ion implantation processes, chemical-mechanical pol- 

ishing (CMP) to create an even wafer surface, and others. See [Rug84] [WT86] [Sze88] for a 
more detailed discussion. 

These processes can roughly be subdivided into four main groups that are used (1) to build 

material layers atop the wafer surface, (2) to transfer geometrical patterns onto the wafers 

surface, (3) to etch and remove material from the exposed part of the wafer, and (4) to 

incorporate doping in the wafer bulk. Table 5.1 gives a short list of common fabrication 

processes. 

In addition to these primary types of process operations, other treatments are applied to the 

wafer to remove dust and oxides from the surface, to increase surface adhesion for subsequent 

coatings, to harden resist coatings by baking, etc. They do not serve a particular purpose in 

altering the wafer’s surface geometry or in modifying the distribution of dopants in its interior, 

but are necessary to ensure the smooth and reliable operation of the primary treatments. As 

a consequence, these steps are usually not explicitly referred to when a process technology 

44
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Layer Growth | Epitaxy 

Thermal Oxidation 

Spin-On 
Chemical Vapor Deposition 

Physical Vapor Deposition 

Pattern Transfer | Optical Lithography 
Electron-Beam Lithography 

Etching | Wet (Chemical) Etching 
Chemical-Mechanical Polishing 
Physical Dry Etching 

Chemical-Physical Dry Etching 
Doping | Ion Implantation 

Diffusion 

  

  

          

Table 5.1: Examples of VLSI fabrication processes. 

is discussed. Nevertheless, their importance for manufacturing must not be underestimated, 

and they play a crucial role in achieving a sufficiently high yield. 

5.2 Process Simulation Tools 

For almost all fabrication processes, numerical simulators are available that compute the 

effects of a given process step or treatment on the wafer. T'he wafer is represented as some 

kind of data model in one, two, or three dimensions, depending on the nature of the problem to 

solve. Some simulators are specialized on one kind of process step, e.g., lithography simulators 

[KS96a] [KS96b] concentrate on the light-propagation and resist-bleaching phenomena during 
exposure, while others are capable of computing a sequence of related process steps |Ele91] 

[STHN91] [WN95] or complete process flows including etching, deposition, ion implantation, 

and thermal treatments [Tec95]. 

The level of abstraction for specifying a fabrication step varies from tool to tool. E.g., etch 

and deposition processes in SUPREM [Tec95] are specified on an effects-basis, i.e., the user 

has to pass the expected effect in terms of the thickness of material removed to the program, 

whereas the etch and deposition modules PROMIS [SS93] [Str94] and SAMPLE [Ele91] expect 
etch and deposition rates to be given!. Therefore, a clear correspondence between process 

step parameters and simulator input in general cannot be defined easily. 

5.3 Operations, Steps, and Flows 

The sequence of process operations that is required to manufacture a given device is called 

a process flow. A process flow is only valid for a given technology (usually named after the 

minimum achievable feature size), and reads a fixed number of lithography masks which are 
  

!Etch and deposition rates are again an abstraction from the treatment of the wafer, e.g., aCVD or RIE 

process taking place in a given piece of equipment.
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derived from layout information provided by the device designer. Figure 5.1 gives a s 

overview of the fabrication of a semiconductor device. 
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Figure 5.1: Fabrication of an integrated circuit from layout and process flow. 

  

In this text, a process step refers to a primary process operation as described above and 

reflects the fact that an operation is applied to achieve a desired effect in the wafer or in 

the behavior of the semiconductor device. It is perceived as an atomic building block of a 

ss flow and is u 

  

      

    

ually carried out in a single p of equipment. As a matter of fact, 

granularity depends on what a given piece of equipment is expecting. Although a proc: 

step usually represents an indivisible unit of fabrication, it should rather be perceived as a 

    

milestone on the run traveler. 

Most: types of equipment are controlled by recipes that specify the internal operation of the 

machine during a process step. A recipe in itself contains a sequence of statements and can 

be viewed as a flow similar to a process flow. To clearly mark the difference from statements 

appearing in a pro flow, we define an equipment step to be the basic building block of a 

recipe. Example of equipment steps include temperature ramp commands, gas flow switches, 

wafer pull operations, etc. 

      

      

5.4 Process Flow Representations 

Throughout the semiconductor industry, process flow representations (PFR) of various for- 

mats are being used to capture, communicate, and store technology data. Unfortunately, 

these protocols are not shared across different companies, as a lot of implicit information is
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required to actually translate a design given as process flow and mask data to silicon. These 

hidden data include silent agreements on proprietary procedures, recipes, and etchants, as 

well as detailed knowledge of the fabrication equipment available in a particular fab. 

5.4.1 PFR for Manufacturing 

A standardized representation of process flow information forms the basis for process de- 

velopment, process optimization, process centering, and yield improvement, and facilitates 

process data exchange between TCAD groups and fabrication sites. Attempts to define a 

standardized vocabulary for representation and interchange of process flow information have 

met several challenges from the complexity of the physical processes and the variety of equip- 

ments and recipes in a rapidly evolving technology. 

Boning and co-workers [BMPS92] propose a general semiconductor process modeling frame- 

work based on state and state transformation information of wafers, machines, and facilities, 

and aims at establishing a rigorous mathematical model for the interactions between material 

and equipment during processing. 

The Berkeley Process Flow Language (BPFL) [WR87] [HRW90] provides a procedural de- 
scription of the fabrication of semiconductor devices; it is based on COMMON LisP [Ste90a] 

and supports different views of a process sequence for different applications. Interpreters 

are used to translate a BPFL description into the appropriate format for a given tool or 

equipment. 

Wenstrand [HRW90] presents an object-oriented approach to process flow representation, 

aiming at the integration of manufacturing, simulation, and design information. 

The CAD Framework Initiative’s Semiconductor Process Representation [GG91] [SG92] seeks 
to define an informational and procedural, generic and versatile model to capture all process- 

related information for semiconductor manufacturing. 

Durbeck and co-workers [DCB93] focus on the capture and management of fabrication process 
information by means of objects organized in layers corresponding to the equipment, step, 

process, and flow views? 

The process specification system SPEC [KN95] employs a similar conceptual approach as 

[DCB93], subdividing process information into equipment, step, sequence, and wafer levels. 

Moreover, as part of the Microelectronics Manufacturing Science and Technology (MMST) 
program [BCDH94]| [MHM94], it stresses concurrent engineering and revision control of pro- 
cess data items, and is also used for actual wafer processing. 

5.4.2 Simulator Input Languages 

Some process simulators capable of simulating more than one process step provide process 

flow specification mechanisms in their input languages [Ele91] [HPW91] [Tec95]. Tailored to 
a particular tool’s view of semiconductor technology, these process flow descriptions cannot 
  

? Equipment recipes, process steps, and process flows contain a great deal of information, and many different 

kinds of users generate or consume that information, including unit process developers, facility operators, 

technicians, and managers, as well as process flow and device developer [DCB93].
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ent tools. The existence of multiple formats for multiple tools 

to the integration and use of these tools [GGY2]. 

  

be communicated between difl 

has been identified as a significant barı       

5.5 The VISTA/SFC Process Flow Representation 

entation provides a convenient format for defining large The VISTA/SFC proc 
mulator-independent statements. It process flows as sequences of 

has been designed primarily for the purpose of chaining together and controlling indepen- 

dently developed, heterogeneous process and device simulators, focusing on an open concept 

that allows additional statements to be defined and added to the vocabulary easily. 

s flow repr:     

  

imulator-dependent and 

  

      

A set of simulator-dependent statements forms the core layer for all process and device 

simulation applications. They provide direct acı to simulator parameters and are primarily 

used during tool development and tool calibration. Atop of the s 

pecific and equipment-specific statements are provided. 

   

stem-near, simulator- 

  

dependent layer, layers for procı 

Figure 5.2 shows the the structure of these layers. 
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Figure 5.2: Simulator-specific, proc: 

  

mulator-specific layer the numerical problem to be solved is completely de- 

and 

Only at the 

fined in terms of tool calls and respective input parameters’. For both the proc 

the equipment layers, statements have to be mapped to simulator statements before actual 

  

computation. 

in terms of the executables invoked on the 
stem need not produce the 

inties and ambiguities still exi    

    

PAs a matter of fact, uncer 
system level and their respective versions. Two identical s Is on the same s 
same result, if, e.g., the search path (on UNIX) or the definition of a symbol or logical (on VMS) get changed 
between the calls. Furthermore, installing a new version of a tool may also lead to changes in the results 
computed. Some of these pitfalls may be circumvented by specifying complete path names, checking the file 
modification time of executables invoked, etc., but such procedures are rather cumbersome and therefore not 

     

widespread,
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5.6 Equipment, Processes, and Simulators 

A process representation for manufacturing purposes differs greatly from a description of 

simulation sequences required to simulate a process flow. Although process simulation tools 

have been devised to correspond - in more or less detail — to fabrication processes steps, this 

correspondence usually ends at sharing the same set of variables to describe basic processing 

conditions such as processing time and temperature. 

Beyond this set of common parameters, fabrication equipments and simulation tools require 

quite different input data. While equipment reads instructions and parameter values for wafer 

movement, gas flow control, etc., which have no representation in the simulator, the simulator 

needs a host of additional information concerning numerical and computational aspects of its 

internal operation, which, in general, cannot be derived from process settings. Nevertheless, 

they might have some influence on the solutions calculated and have to be calibrated to 

accurately model a fabrication process step taking place in a given piece of equipment. 

Process statements in the flow description specify fabrication process steps in a simulator- 

independent way. They form a technology-focused vocabulary that is used as common repre- 

sentation for TCAD and manufacturing. To capture all relevant technology information, each 

step can carry any number of attributes such as the precise type of equipment or additional 

parameters not available in the basic process step. 

Equipment statements address specific pieces of equipment and describe equipment settings 

and procedures as used on the factory floor. Both process and equipment steps have to be 

mapped to simulator statements before starting simulation. 

5.6.1 Mapping 

In VISTA/SFC, mapping from process statements to simulator steps is accomplished by tool 

agents, which reconcile equipment and process views with simulator models and input re- 

quirements. Figure 5.3 shows the basic mechanism for converting a tool-independent process 

flow description into a simulator-specific flow. 

A tool agent generates the required input for a simulation tool from the data in a process 

or equipment statement. Each step has attributes attached to specify the simulator and to 

supply values for simulator-specific parameters. 

When determining the sequence of simulation steps corresponding to a process sequence, both 

the names of the tools to call as well as their respective inputs have to be established. In the 

first place, the number of possible tool candidates has to be reduced by means of exclusion or 

explicit preference stated in the flow or in global resources. Once a tool has been decided on, 

parameter values get filled in from locally defined data, global defaults as well as calibration 

data by the tool agent, to yield a complete set of simulator input data. 

  

“In many TCAD groups, only one dedicated simulation tool exists for a given process step, rendering the 

tool selection stage trivial. In general, though, a number of choices exist for each process step.
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Figure 5.3: Mapping from pro 

statements for each step in the proce: 

  

steps to tool steps. Tool agents generate simulator input 

flow. 

  

5.7 Structure 

  

The VISTA/SFC process flow representation consists of a sequence of steps to be carried out 

one after the other. Steps may be grouped in modules to define typical sequences. 

    

5.7.1 Steps 

  

Each step in a process flow is identified by a name. This name ssigned by the user on 

entering a new step into the flow and is used to reference split points and output data during 

simulation. Typical names can be registered for a given technology to reflect a company’s 

standards. All input parameters as well as output data items generated during simulation 

ssible by symbolic names for use in process analysis and optimization tasks. 

    s 

  

    

  are accı 

5.7.2 Operations 

While a step corresponds to a wafer fabrication step, operations are further subdivisions of 

describing in detail the 

ide the equipment, forming a 

are considered building blocks of proc: 

simulation tools. Operations are not interpreted by the controller, but repr: 

information for tool agents and tools. 

tep:     quence of manipulations or treatments applied to a 

pe for a given procı tep. Whereas process steps 

flows, operations are interpreted by equipments and 

sent additional 

  

      

  

      

  

5.7.3 Modules 

To foster modularity as well as design knowledge encapsulation and rei and to reflect 

the subdivision of industrial process flows in pro modules, process submodules, proc: 

steps, and operations, the process flow representation supports hierarchical and parameterized 
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flows in terms of predefined blocks 

  

process modules that allow the definition of large proce: 

(Figure 5.4). 
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Figure 5.4: Hierarchical process 

operations and corresponds to a step in a procı 

flow. 

  

    

form a procı 

    

Modules contain any number of subordinate modules and pro steps. They are either 

flow description or referenced by symbolic names, the former option 

s flow for convenient data exchange with remote 

s module libraries by various 

     inserted into the process 

ensuring a compact capture of the proce 

sites, the latter supports sharing of externally stored proc: 

  

  

ust 

  

A module allows local symbols to be defined that can be used as parameters for all steps and 

sub-modules belonging to the module. Moreover, step output data can be assigned to local 

symbols and thus be passed to other steps or upstream in the flow hierarchy. 

  

5.7.4 Libraries 

s can be defined that hold 

s steps sequences. 

librari     To build up process flows from predefined modules, proc 

collections of related, possibly parameterized, technology-specific proc 

New statements are defined as specializations of existing steps by assigning a symbolic name. 

A library contains customized steps and modules, including resources for calibration and tool 

  

selection. 

5.7.5 Data Flow 

  

or. 

  

By default, it is assumed that each step reads the output of its predec: 

step’s output data may be assigned to a symbol that is read by another step further down in 

  

the process flow.
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5.7.6 Variational Flows 

For production use, a semiconductor process description contains a sequence of process steps 

to be carried out on the wafer substrate, with additional constraints and target values for 

certain physical and electrical parameters measured during fabrication. During process devel- 

opment, on the other hand, process engineers wish to specify conditional statements, loops, 

and branch operation in a fashion similar to writing computer programs. However, in order to 

separate the nominal process description from experimental alterations, modifications to the 

process flow can be assigned externally, using step names and parameter names and leaving 

the process flow description file unchanged’. See Section 8.4.1 for details. 

5.8 Statements 

Table 5.2 gives a list of presently integrated simulation tools, respective fabrication processes, 

and symbolic names. Additional simulators and applications can be easily added by register- 

ing a binding function, a set of default values, and some additional information for editing 

and validity checks. 

Table 5.3 gives a list of available basic process steps. To accommodate additional processes 

and to specify process steps in greater detail, the process flow statement vocabulary is ex- 

tendible by defining new entries. For a given statement, any number of specializations can 

be added as new statements with certain parameters set to the desired values without need 

for additional coding. For example, a EVD ozide step is derived from a more general ÜVD 

step by permanently assigning the value SiO,° to the material parameter. 

5.9 Programming Interface 

For programming purposes, an object-oriented interface has been implemented that simplifies 

creation and modification of flow descriptions by user-written applications (Figure 5.5), and 

also provides interactive editing functions for plain text terminal operation. 

This interface forms the standard entry point for the generation and manipulation of process 

flows by other application and tools. For example, an automatic conversion tool uses this 

interface to produce a VISTA flow description from input deck specifications in a NORMAN 

[CBK 93] input file. 

  

°This approach is also aimed at sharing process flow files among several users, with each of them running 

different experiments and performing different analyses without need to create private versions of the complete 

file. 

Possible ambiguities in material names are resolved by a material data base [Ins96b] that uses an 
inheritance-based strategy to identify material specifications.
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Simulator Process Symbolic Name 
  

PROMIS Analytical Implant Ion Implantation promis-implant 
  

PROMIS Monte Carlo Implant Ion Implantation promis-mc-implant 
  

  

  

  

  

      Ion Implantation   

PROMIS Diffuse Diffusion promis-diffuse 

PROMIS-NT Diffusion promis-nt-diffuse 

PROMIS Etch Hemispherical Deposition | promis-hemi-depo 

Isotropic Deposition promis-iso-depo 

Unidirectional Deposition | promis-uni-depo 

Anisotropic Etching promis-aniso-etch 

Isotropic Etching promis-iso-etch 

Reactive Ion Etching promis-ri-etch 

SAMPLE Conical Deposition sample-conical-depo 

Dual-Source Deposition sample-dual-source-depo 

Hemispherical Deposition | sample-hemi-depo 

Isotropic Deposition sample-iso-depo 

Planetary Deposition sample-planetary-depo 

Unidirectional Deposition | sample-uni-depo 

Anisotropic Etching sample-aniso-etch 

Isotropic Etching sample-iso-etch 

SKETCH® Expose sketch-expose 

Spin-On sketch-spin-on 
Strip sketch-strip 

SUPREM4 Diffusion ts4-diffuse 

ts4-implant     

  

33 

*SKETCH is an auxiliary geometry manipulation tool used for “faking” lithography, deposition and etch 
processes where no actual numerical simulation of the physical process is required. 

Table 5.2: Simulation tools and processes for process simulation. 

  

Process Step 
  
Deposition 

Etch 

Expose 

Furnace 

Ion Implantation 

Spin On     

process-depo 

process-etch 

process-expose 

process-furnace 

process-ion-implantation 

process-spin-on     

Table 5.3: Basic fabrication processes.
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> (SelectFlow #"~/FLOWS/schumicki.sfe") 

#<Object(sfc::flow-edit-class): #140b8a230> 

> (ShowFlow) 

1 Start: START 

2 CREATE SUBSTRATE: sketch-create-subdomain 

3 Oxidation: sketch-spin-on 

4 N-well Definition: BLOCK 

32* Adjust Punch Through: BLOCK 

33 Mask N-well Lithography: BLOCK 

34 Deposit Resist: sketch-spin-on 

36 Expose: sketch-strip 

37 Develop: sketch-strip 

38 Etch Pad-UOxide: promis-ri-etch 

40 THA IMPLANT: promis-implant 

42 PT IMPLANT: promis-implant 

44 Strip Resist: sketch-strip 

45 Field Oxidation: ts4-diffuse 

46 Strip Nitride: sketch-strip 

47 Etchback: promis-ri-etch 

48 Gate Oxidation: ts4-diffuse 

49 Gate Formation: BLOCK 

62 LDD: BLOCK 

75 SOURCE DRAIN REGIONS: BLOCK 

95 Contacts: BLOCK 

106 Metall: BLOCK 

117 CVD-Oxide: promis-iso-depo 

118 PLAN: sketch-spin-on 

119 BACK: promis-iso-etch 

120 CONTACTS 2: BLOCK 

123 METAL2: BLOCK 

> (GotoStep "tha implant") 

#<0bject(sfc::flow-class): #140b30£d8> 

> (ShowStep) 

THA IMPLANT: promis-implant 

anginc = 0. 

damage = off 

dose = be+l13 

rmoden = 16. 

#<0bject(sfc::flow-class): #140b30£d8> 

> (SetStep :dose 2.7e13) 

#<0bject(sfc::flow-class): #140b30£d8> 

> (GetStep :dose) 

2.7e13 

> 

Figure 5.5: Object-oriented flow description interface forinteractive and automatic editing.
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5.9.1 File Format 

Flow information is stored on the file system using an easily readable, LISP-like format with 

non-positional parameter passing’. Figure 5.6 shows a short sequence of simulator-specific 

steps defining a lithography module as a block of a larger process flow. The file format is 

completely encapsulated and need not be accessed by the user or by any application, but 

only through the programming interface and the GUI for the flow description. It is easy 

to read with any LISP interpreter or, for C or FORTRAN applications, through a library 

for hierarchical data exchange (HDX) |[Pla96], which provides an object-oriented memory 

representation of nested data structures and supports reading and writing of nested lists of 

data. 

5.10 Graphical Flow Editor 

Defining and maintaining process flows is supported by an interactive GUI-based flow editor 

(Figure 5.7). In the left part of the window, a hierarchy browser provides direct access to 

all levels of the flow description, the right part shows details of the currently selected entry. 

Figure 5.8 shows the selection window for all available simulation tools. 

The flow editor is implemented as a layer atop the flow programming interface (see Section 

5.9). It operates independently of any file representation, using directly the interface’s object- 

encapsulation. 

5.11 Layout Data 

The interface between device design and process simulation is based on lithography mask 

data that are either specified as numerical coordinates or derived directly from the device 

layout. For two-dimensional simulation, mask coordinates define a one-dimensional sequence 

of transparent and dark areas. Figure 5.9 shows a two-dimensional cross-section of the wafer 

with the one-dimensional lithography mask cross-section defining the poly-silicon gate atop 

the gate oxide layer during exposure and after removing the exposed photo resist and etching 

the poly-silicon not covered by photo resist. 

Cut-lines and cross-sections for defining simulation areas are specified in an integrated layout 

editor [MS96] based on the PIF editor [RHS95] [Rie96]° Figure 5.10 gives an overview of the 
generation of one-dimensional mask data from layout data imported either from a ECAD 

system or entered manually by the user using the PIF editor. The one-dimensional mask file 

is used in process simulation to define mask coordinates at lithography steps in the process 

flow. Lithography masks are specified by name, boolean operations are used to to define a 

location on the wafer surface as a function of various mask geometries. 
  

? Non-positional parameter passing does not enforce a strict order for passing parameter values, but allows 

each value to be specified together with the parameter’s name. A default value may be specified for each 
parameter that is not required to be set explicitly. 

8The editor supports different modes of operation, one providing editing capabilities for layout data as well 

as for cut-line and sub-domain definition.
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(node ((assignments NIL) 
(block t) 

(comment NIL) 

(focus NIL) 

(label "SN-Lithography") 

(name "BLOCK") 
(settings NIL) 

(skip NIL) 
(body ((node ((assignments NIL) 

(block NIL) 
(comment NIL) 

(focus NIL) 

(label "Spin On Resist") 

(name "spin-on") 

(settings ((dope NIL) 
(material "Resist") 

(ortho-ticks 3) 

(thickness 2.) 

(unit "um"))) 

(skip NIL))) 
(node ((assignments NIL) 

(block NIL) 
(comment NIL) 

(focus NIL) 

(label "SN-Mask") 

(local-symbols NIL) 

(name "expose") 

(settings ((invert NIL) 
(mask-name "SN"))) 

(skip NIL))) 
(node ((assignments NIL) 

(block NIL) 
(class tool) 

(comment NIL) 

(focus NIL) 

(label "Develop") 

(local-symbols NIL) 

(name "strip-material") 

(settings ((material "Exposed"))) 
(skip NIL))))))) 

Figure 5.6: ASCII representation using LISP syntax of a lithography process module. The 

module comprises a resist spin-on step, an exposure step (with mask), and a develop step. 

NIL is the LISP representation for the empty set or void.
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Figure 5.7: Graphical flow editor for hierarchical flow definition: hierarchy browser/editor 

and step editor.
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Figure 5.8: Graphical tool selection interface for available simulators in VISTA/SFC. 
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Figure 5.9: Two-dimensional wafer cross-section and one-dimensional lithography mask cross- 

section during exposure and after etching the poly-silicon layer.
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Figure 5.10: Generation of one-dimensional mask data from layout data. A cut-line is entered 

interactively by the user or supplied by the controlling environment. A converter is available 

to import layout data from other layout programs. 

  

          
  

  

      

  

          
    

5.11.1 Variational Masks 

  

When analyzing the behavior of a semiconductor device as a function of geometrical 

e.g., the dependence of the threshold voltage and other characteristics of a MOS 

transistor on the gate length (short channel effects”), all lithography steps have to be supplied 

with varying coordinate values. These variations are usually performed after the link between 

ECAD and TCAD has been severed, i.e., in a stand-alone fashion just generating appropriate 

values without using mask files. While this approach is acceptable when there exists only a 

loose link with the ECAD domain, is impo: evere limitations on the application of ECAD 

tools for checking the coordinates generated against constraints stemming from design rules 

or from the two-dimensional (mask) situation. 

dimensio:    

      

2 

    

  

To couple ECAD and TCAD more tightly, and also to facilitate the feed-back proc 

optimum coordinates have been found for a geometrical optimization problem, the variations 

must already be applied at the layout stage. To this end, layout needs to be parameterized 

and subjected to modification for each design space point to analyze. Figure 5.11 shows the 

principal mechanism for deriving varying coordinate values from the layout. As the challenges 

that arise when parameterizing geometrical data are far from being trivial, active arch 

has still to be done in this area. 

  

   
     

      

Parameters Cutline 

A A 1 Layout 
ayon Cut Mask Datal 

  

        
    

    
Check I Simulation 

Figure 5.11: Generation of mask data from variational layout. Before data is used, geometrical 

checks can be run on the layout produced from the template. 

See Section 9.2 for an overview, [WoI95b] for a concise treatment



Chapter 6 

Run Control 

The VISTA/SFC simulation environment has been designed to support different stages of 

TCAD process development, from tool development and process design to automatic schedul- 

ing and parallelization of split-lot experiments. The automatic simulation of process flows 

on a computer network using a variety of heterogeneous simulation tools represents the main 

objective of this work. 

Process flows are submitted for simulation either from the graphical user interface, from a text 

terminal, or from a batch file. In visual mode, a comfortable interface is used to access the 

run control module and the run data base. Due to the asynchronous nature of the operation 

of the framework, all user interactions are fully available during active simulations. Moreover, 

process flow simulations can also be requested by other applications in a client-server manner. 

For instance a series of process simulation runs may be requested by a design-of-experiments 

module or an external optimizer, which are notified upon completion to read the generated 

wafer data and extracted parameters for further processing!. 

6.1 Projects 

All tasks to be accomplished are organized in projects. A project contains a description of the 

design to work on, holds work-in-progress information, and carries additional resources and 

user settings that modify the behavior of the framework. Projects are represented as objects 

at run-time and stored to files between sessions. Figure 6.1 shows a selection of customizable 

project resources as they appear in the graphical user interface. 

6.1.1 Multiple Projects 

Due to the asynchronous nature of the operation of the framework and the internal represen- 

tation of all functional components as objects, it is possible to have any number of projects 

active at the same time within a single framework session. For instance, a large-scale ex- 

periment may be defined and submitted. After that, the user may choose to start working 

on a different analysis of the problem in question, or on a completely different task. While 
  

!See Chapter 8 for more details. 
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Figure 6.1: GUI for customizable project resources. 
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all other proje« main active, the user interface focı on the new project and provides 

state monitoring and direct access to all data and information. Switching between active 

projects gives complete control over all work in progress, while at the same time allowing a 

more detailed view of the selected project. 

         

    

6.2 Experimental Splits 

flow split points? define positions in the flow where variations in parameter values 

or process steps occur. Recomputing new experiments only from split points on is a powerful 

strategy to minimize the total computational effort and to yield results more quickly. Split 

points are generated by comparing runs to be submitted against: the split tree of all existing 

and determining the most similar one that contains valid output 

Proc 

  

   

runs of a given proces: 

data. Comparison is based on the complete tool parameter set actually used to invoke the 

tool rather than a potentially incomplete — with respect to the computation of output data 

— specification of process steps. Figure 6.2 shows three runs with parameter modification 

at the second and the third step. As the specifications - and thus the results - of the first 

steps of all runs and of the second steps of runs two and three are identical, they need not 

be computed. Split points are defined to reflect the flow of data taking place. 

      

    

    

    

    

                      

Runi Run 2 Run3 Run 1 Run 2 Run 3 

Step 1 Step 1 

Step 2|dose=1el5 dose=2e15 dose=2el5 Step 2|aose=1e15 dose=2el5 

Step 3| a=100 d=100 a=90 Step 3| a=100 d=100 d=90                     

Figure 6.2: Reduction of total computation by splitting. Splitting avoids recomputation of 

results that remain unchanged across different runs. 

When comparing step parameter sets, the numerical accuracy of the comparison has to be 

limited to an appropriate relative difference, i.e., two floating point numbers are treated as 

equal when their relative difference is smaller that a given number. In VISTA/SFC, this 

silon is adjustable by the user (see Figure 6.1), a value of le 4 has proven to be well-suited 
    

  

for most applications. 

6.2.1 Data Sharing Across Split Branches 

A single step in a flow, in general, leads to the invocation of a small number of system 

executables one after the other in fixed sequence. For instance, a pre-processing tool has to 

be called before a process simulator can be started®. Figure 6.3 depicts the case where a step 

  

      

  

  

?While a split point denotes the location the first difference between two runs, a split branch represents 
the part of a run that: differs from its split parent. 

®See Chapter 4 for more details
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leads to the invocation of a sequence of two executables, the first one preparing the data for 

the second one in a uniform manner without being influenced by any parameter settings. As 
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Figure 6.3: Data sharing across splits. 

splitting occurs on the step level, and chaining of the two executables is defined at a lower 

level, the same splitting would only prevent step 1 to be recomputed, but it would not prevent 

running the pre-processing tool twice on the same input. 

  

    exci 

  

computations, a mechanism has been implemented that takes care 

S S ng ılts. Figure 6.4 gives an overview of the 

events occuring during simultaneous submission of two runs splitting at a step that requi 

a sequence of tools to be run. Before the pre-pro: 

To prevent these 

   

es 

  

  

  

ing operation is started, existing results 

are looked up using a formal description of the operation. In general, this description is a 

string containing all information that specifies the operation completely, i.e., the name of the 

tool, the input files, and all parameters that affect the result. If no existing results are found, 

the operation is started and a work-in-progress entry is generated to indicate that the result 

is being computed. At the successful completion, the entry is marked as done. The next step 

that intends to run this operation receives the existing output file. 

    

    

  

    

During parallel operation, the second inquiry may appear any time after the first one, espe- 

cially during the time the first operation executes. In this case, no output is available yet, 

but there is no need to compute it, either, as it is in progr: Therefore, a callback can be 

registered that gets called when an operation completes to deliver the generated output. 

    

    

In addition to checking the existence of an operation’s result, it is also checked for validity in 

terms of file modification times. If an operation’s result exi 

  

s and is inquired, the existing 

output file is checked for being younger than all files that: were used as input to the operation. 

Otherwise, recomputation is initiated. This strategy is similar to the one employed by the 

UNIX make utility. 
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Figure 6.4: Detailed view of the events taking place during data sharing between split 

branches.
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6.3 Incremental and Parallel Simulation 

Exploring the design space of a new process usually takes place in an iterative fashion, 

with one run after the other being submitted by the user for execution. Unless split point 

generation is disabled by the user, every time a new version of a process flow is submitted, 

split points are generated automatically at the locations of differences in the process flow; 

there is no need to specify split points explicitly or in advance. 

Due to the asynchronous operation of the run control module, it is possible to submit new 

process flows while others are still in progress. If a split point is detected at a location 

that has not yet been computed, the split branch is set to a waiting state and continues 

after the split parent has reached and completed the split point. If a number of runs are 

started simultaneously, split points are determined, and only completely independent runs 

start execution. 

Once more than one run is active, an automatic load-balancing mechanism [KPR96] ensures 

optimum load distribution and minimum total execution time for parallel experiments. All 

run scheduling information remains consistent across sessions. 

6.4 Robust Operation and Error Handling 

To achieve smooth and stable execution of large-scale experiments and complex analysis 

tasks, fault-tolerance is a top priority for a simulation environment. The effect of an error, 

e.g., a failing system call or a numerical error, has to be limited to the affected experiment, 

with all other tasks in progress remaining undisturbed‘. 

For the integration of external tools, the main concern lies on the detection of errors. To this 

end, several standard procedures are available in the VISTA/SFC environment to check the 

return code of system calls, to verify the existence of output files, and to examine the data 

generated. For instance, generated PIF files are automatically checked for containing the 

desired dopant distributions or geometry data. These procedures are encapsulated in a class 

of system tool objects automatically employed on every system call issued by the framework. 

If necessary, additional error handling routines can be defined for each system executable as 

well as for each application. 

Robust operation is a an indispensable prerequisite for taking full advantage of CAD sup- 

port for technology development and analysis. The reluctance usually encountered when 

proposing to perform several hundred (or thousand) process flow simulation runs, each in- 

volving a number of process steps and leading to the invocation of a variety of simulation 

tools, is very much based on the fact that in most cases, human interaction is required at 

many stages of the simulation, making large experiments cumbersome and time-consuming?. 

Therefore, response-surface modeling plays a very important role in technology design and 

optimization, as it allows to reduce the numbers of actually simulated design space points 
  

“One invaluable advantage of subdividing numerical modules and controlling instances into separate ex- 

ecutables lies in the fact that segmentation faults, floating point exceptions, and so forth, which otherwise 

would have a detrimental effect on the framework, affect only the tool they occur in. 
°In terms of time spent by the user. CPU time, in general, is available in plenty, although shortages occur 

during peak hours.
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[AAYtss] [MOAT91] [CBKT93] [KKW93] [BM94] [GW94] [STA195] [SLW96]; in Chapter 8, 
the integration of RSM techniques is treated in more detail. 

6.4.1 Error Recovery 

Error recovery plays a very crucial role for the convenient and efficient operation ofthe TCAD 

environment. A number of error modes can be selected from to determine the behavior of the 

framework on the occurrence oferrors. The options include halting execution of all framework 

operation, halting the affected run, automatically retrying the erroneous step for a specified 

number of times, and ignoring the error condition. Furthermore, great care has been exerted 

to design framework modules as fault tolerant as possible. As a consequence, the user is 

liberated from almost all manual interference on errors and malfunctions; even after a crash 

in full operation the session can be resumed by just restarting the framework. 

6.5 Development and Debugging 

During the early stages of TCAD support for a new technology, the point of main effort 

shifts from the adaption of existing tools or the development of new tools to the application 

of these tools to technology analysis and development®. Errors, flaws, and mistakes occur 

in both realms. The VISTA/SFC TCAD environment is designed as a development and 
production platform and tries to cover all aspects of technology development equally. 

6.5.1 Process Development 

When designing a new process flow for technology modeling, often several trials have to be 

made before a process completely runs without any user interference. This is especially true 

when using different simulation tools together, as they are usually very intolerant with respect 

to even the slightest flaws in their input data. Critical settings have to be chosen carefully to 

generate a stable configuration capable of modeling a process for a wide variety of parameter 

settings”. 

From the simulation environment point of view, some helpful support can be provided to 

ease the pains of these design stages. Keeping all temporary simulation results available 

for back-stepping purposes aims at efficiently supporting the early stages of TCAD process 

design; see Section 7.2 for details. Single-step operation, stop-and-resume operation, and 

simple reworking further add in exploring possible solutions. 

  

6A tendency exists with some companies to delegate some of these aspects, e.g., the tool development part, 

to external institutions, arguing that the expert status of such dedicated providers increases the quality of the 

service rendered and decreases its costs. Nevertheless, we feel that the close interaction between technology 
and TCAD groups is of vital interest for both parties, because it minimizes reaction time and fosters each 

side’s insight into the other one’s needs and concerns. 

"Variations of the device geometry by changing lithography mask dimensions exert the most harmful 

influence on the stability of the final simulation results as they induce changes in the grids used by process 

and device simulation tools.
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6.5.2 Single-Step Operation 

A single-step mode allows walking through a process flow on a step-by-step basis, examining 

the computed results and applying changes to parameter settings as necessary. If a graphical 

user interface is available, a confirmation dialog prompts the user before each step (Figure 

6.5). The available choices are to start the next step, to continue in normal operation mode, 

and to stop the run. 

  

Run 19 reached step 2 in single step mode. 

Next command: analytical-implant 

  

Step Continue Stop Heip 
      
  

Figure 6.5: GUI dialog for single-step operation. 

6.5.3 Stop and Resume 

The stop and resume commands provide a convenient way to halt execution of selected runs 

or of all active runs, and to continue at a later time without any inconsistencies in the data 

or control information. When a run is stopped, if waits for all its active system processes to 

terminate and halts before the next step is started. 

6.5.4 Rework 

The rework command initiates reworking of a run from a specified step on with option- 

ally modified parameters, providing the quickest way possible to explore the effects of code 

alterations on otherwise unchanged tasks, or to quickly apply variations to parameter values®. 

6.6 Graphical User Interface 

For interactive operation, a graphical user interface has been designed and implemented that 

intends to present all important information on work-in-progress, data base contents, system 

status, etc., in an intuitive and convenient way and to support all available functionality 

without imposing restrictions or enforcing “unnatural” procedures of operation”. 
  

®Note that code modifications can be quickly applied to the VISTA/SFC environment by loading appropriate 

LISP files. Being read by the interpreter, such modifications have immediate effect; there is no need to leave 

a session for this purpose. 

°A major complication in building graphical user interfaces atop any application arises from the inherently 

parallel nature of access through the GUI. Strict and rigorous state checking is indispensable to ensure robust 

and reliable operation.
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Great care has been exerted to design the visual user interface as ergonomic and unobtrusive 

as possible!®, refraining especially from using a multitude of pop-up windows, but using a 

rather rigid screen layout with fixed locations for most widget items. Nevertheless, the screen 

layout is customizable to fit all applications’ needs. Adding functionality to the visual user 

interface and changing its look-and-feel are simplified by a set of functions that provide 

simplified access to the framework’s widget library. User interface reactions may be modified 

at run time without need for interrupting a session. 

Figure 6.6 shows the visual user interface during parallel execution of a split-lot experiment 

on a UNIX workstation cluster. The upper part of the screen displays the experiment split 

tree generated for all known experiments for the selected process flow. The middle part of 

the screen shows a monitor window listing all queued and active system jobs for external 

simulators and auxiliary tools. T'he lower part indicates the states of all available machines 

that are being used by the simulation environment. 

In the upper part, runs appear from left to right, the step sequence flows from top to bottom. 

The topmost entry of each column, carrying a number, represents the entire experiment, the 

leftmost column shows the step names as defined in the flow description. The remaining 

matrix has an entry for each step of each experiment. Split branches are shown to the right 

of the split parent. To find the parent run of a split run, move left until you run into a step 

entry. 

6.6.1 Color Coding 

Widget color-coding capability has been added to the framework’s GUI functionality, because 

it has become clear that the consistent use of colors for the indication of system states is 

very helpful in quickly assessing the state and operation of TCAD tools and framework 

components. For the run table display, white is used for waiting runs, red for active, and 

dark green for done runs. Aborted runs are shown in an aggressive orange tone. Additional 

states not displayed are stopped, indicated by a dark blue appearance, and empty (light 

green), the latter indicating a successful completion with output data already purged to save 

disk space. Table 6.1 summarizes the color assignments chosen!!. 

6.6.2 Managing Runs 

At each run entry, a pop-up menu is available to directly access run information, to remove 

entire runs, and to stop and resume execution. All operation modes and debugging aids as 

described in section 6.5 are directly accessible in the GUI. 

  

!0See [KGMB94] for a detailed account of import design aspects of graphical user interfaces for CAD 

frameworks. 

I! As a matter of fact, the actual value of the colors used for displaying states is specified in the user’s X 

resource file, e.g., .Xresources. The environment uses names like "active" or "busy" to modify the display 

state of visible objects. The colors presented here have proven to convey most concisely the intended meaning.
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Figure 6.6: GUI for work-in-progress and status information for runs, system jobs, and hosts. 
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State | Color Description 

aborted | orange An error has occurred during execution and the the 

run has been aborted. 

active | red Run: Currently in progress, submitting system jobs 

and stepping down the flow. 

Step: Handling system jobs and data for this step. 

done | dark green | Run: All steps completed successfully. 

Step: Successfully completed, data available. 

empty | light green | Step: Successfully completed, data has been purged. 
stopped | dark blue | Run: Stopped by the user and deactivated. 

stopping | light blue | Run: Stopped by the user and waiting for system 
jobs to complete. 

waiting | light green | Run: Activated and waiting for another run’s results 
at the split point to become available.           

Table 6.1: Summary of color-coding for state display. 

6.6.3 Viewing Output Data 

At each step entry, all available output can be directly accessed and displayed in accordance 

with its data type. For example, Figure 6.7 shows the available choices after a MINIMOS 

step. The highlighted selection DATA DRAINCURRENT 1.18E-11 ... identifies a series of 

drain current values of a NMOS transistor calculated by MINIMOS. On selecting this entry, 

a plotting tool!? is activated to display a graph of the the drain current values. Figure 

6.8 shows the interactive plotting tool xpif1d!? displaying the set of drain current values 

generated by the MINIMOS step. 

For wafer data that is stored in the PIF format, not only the PIF file, but also the different 

data sets contained in the file are directly accessible!?. 

In this manner, at a simple glance one can check, e.g., what kind of dopants are present at a 

given position of a run, and invoke the xpif2d visualization program for further examination 

of the dopant distribution in the wafer. 

6.7 Text-Terminal and Batch-Mode Operation 

Although most of the concerns employed in the design of the VISTA/SFC simulation envi- 

ronment are geared towards easy, convenient, and robust interactive operation, TCAD ap- 

plications exist where a graphical user interface is of no help, or even detrimental to smooth 

operation. 
  

'?The actual program to invoke is determined by the user as a configuration variable of the framework. 
Available plotting tools on UNIX include gnuplot, xmgr, xpifid, and a built-in visualization module based 
on the SVG library [Hal94]; additional plotting tools can be added to this list easily. 

'3Xpifld is a one-dimensional visualization tool based on Sander’s XgPlot [San92]. 
14One invaluable advantage of the PIF data format lies in the random access it provides. Therefore, names 

and types of all data items present in a PIF file can be easily inquired. The handles returned may then be 

used for reading the data at a later time.
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Output Selection 

Items 
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DATA BULKYOLTAGE © ... 

  

  

DATA BULKCURRENT -3,71E-16 ... 
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| DATA DRAINCURRENT 1.18E-11 ... 
  

  

OK | next | last | Cancel Help | 
          

71 

Figure 6.7: Output data selection dialog. Direct access is provided to all data generated by a 

step. The data type determines the viewer that is used for displaying the data item selected. 
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Figure 6.8: Xpif1d is one of a number of available plotting tools for viewing one-dimensional 

data sets.
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6.7.1 Why a GUI is not enough 

Whereas the GUI provides valuable support for the interactively defining new tasks and for 

some restriction on the versatility of the 

  

viewing and analyzing simulated results, it impos: 

simulation environment. 

« First of all, it requires a connection to a display, which makes it impractical for use 

‚once a task has been defined, the user might wish to 

leave the terminal and have the task completed autonomously. With a permanent GUI, 

the display has to remain active all the time, and the user cannot log out of the 

without stopping the application. 

  

across phone lines. Furthermor: 

session   

e Secondly, the representation of the functional components at the GUI level, in general, 

cannot completely reflect all possible operations, but supports only a subset of possible 

applications. One can imagine to define tasks and applications that are very difhieult 

to support on the GUL level. 

    

« Thirdly, when intending to integrate the VISTA/SFC environment with other tools in 
a client-server fashion, a permanent GUI is a severe impediment for all automation 

ver for a larger TCAD group, 

the GUI is provided by some client application that goes in between the user and the 

Figure 6.9 sketches the situation. 

  

  

tasks. For instance, when operated as a simulation s 

  

server Proc: 

  

  
Doaoo 
  

GUI 

          

Server 
  

    
              

Client 

Figure 6.9: When operated as a server for other applications, VISTA/SFC is run in text- 

terminal mode, the GUI being provided by the client. 

Therefore, emphasis has been put on completely separating the graphical user interface from 

the rest of the simulation environment. Both text-terminal and batch-mode operations are 

fully supported. 

6.7.2 Text-Terminal Operation 

All functionality of the simulation environment is always accessible by entering commands at 

the prompt ofthe VLISP interpreter. fa GUL is present, it correctly reflects the internal state 

produced by all commands entered, i.e., the text-input mode may be used simultaneously with 
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. In a typical application, a file is loaded at the beginning of the 

s to perform, and the user enters commands to start and stop 

  

    ribes the t, 

  

jobs, to view work-in-progress information, to switch between projects, etc. 

6.7.3 Batch-Mode Operation 

Starting the simulation environment with an input deck allows the evaluation of arbitrary 

taking full advantage of the functionality of the VLISP interpreter and all other mod- 

ules. The input deck contains LISP code to define process flows (see Section 5.9), to create 

ed tasks (see Section 8.9), and to submit simulation jobs. 

  

    parameteı 

To establish a communication mechanism with the VISTA/SFC environment even in detached 

operation, , without connection to a terminal or a display, and without using socket con- 

nections, a simple, file-based, one-directional data transfer mechanism has been implemented. 

A temporary input file is loaded by the environment upon reception of a signal (Figure 6.10). 

The input file can contain any statements valid in an input deck and provides a simple means 

     

  

VISTA/SFC 

Signal 
_——— 

Commands - 

Temporary File 

     Figure 6.10: Simple signal-based remote control mechanism. Signals are used to initiate 

reading input files during detached operation. 

of inquiring status information, viewing available results, and starting or halting operation 

of the detached proc 

 



Chapter 7 

Data Management 

Automatic execution of multiple versions of large process flow and device simulation tasks 

generates great amounts of data that have to be managed by the simulation environment 

in order to liberate the user from tedious file and directory manipulations. Persistent and 

failure-save storage as well as simple and straightforward retrieval and presentation of existing 

results to avoid unnecessary re-computations during sessions as well as across sessions form 

the key issues of this chapter. 

7.1 Simulation Data 

Semiconductor process and device simulation typically generates large amounts of data at 

each step. During process simulation, each step produces a two-dimensional! representation 

of the semiconductor wafer that includes a boundary representation of the wafer domain un- 

der consideration, material data for different areas of the wafer, grids for carrying distributed 

quantities along boundaries and in the wafer bulk, and the values of these distributed quan- 

tities on their respective grids. In process simulation, distributed quantities include the 

concentrations of total and electrically active dopants, of silicon interstitials, of dopant clus- 

ters, and the distributions of amorphization, strain, and stress in the material; in device 

simulation, the distributions of the carrier velocities, of the current density, of the electrical 

potential, and of the temperature. 

During device simulation, electrical quantities — either as lump values or as distributed values 

on grids — are generated. A MINIMOS [SSP80] [FHH*94] simulation of a MOS transistor, 
e.g., calculates voltages and currents for all electrodes, parameters such as the maximum 

values of mobility and drift velocity of electrons and holes, and their respective distributions. 

All these data are produced at each operating point and make for an impressive pile of 

numbers. 
  

" Although the operation of the VISTA/SFC environment is independent of the geometrical dimension of the 
simulation, two-dimensional applications are the most common ones. One-dimensional simulations of modern 

VLSI technology cannot accurately enough model the complex topological situation found in state-of-the-art 

devices, three-dimensional simulations are still too slow and produce too much data to be applied routinely 

in an automatic fashion. 

74
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In general, the number and diversity of physical quantities computed during simulation de- 

pends only on the sophistication of the models employed. Therefore, no restrictions should 

be established or enforced with respect to the nature of simulation data handled by a TCAD 

environment. 

For the sheer amount of data generated during simulation, it is not feasible to store tool 

output data in a database and extract it again when necessary, but it was decided to use a 

file-based concept to keep data transfer overhead as small as possible. 

7.1.1 Data Formats 

Designed to operate independently of any given data format, the VISTA/SFC simulation 

environment supports arbitrary types of data files. 

Wafer Representation 

For wafer representation, the Profile Interchange Format PIF[Duv88] [FFSt91]? and the Tech- 
nology Interchange Format (TIF) [Tec95] are the most commonly used within VISTA/SFC®. 

The PIF format is considered the native data format of the framework; built in pre-processors 

and post-processors for geometry editing and viewing of grids and distributed quantities are 

provided [Rie96] [Ins96c], and VLISP function calls are available to write and read data in 
PIF format. 

7.1.2 Data Files 

By default, all files generated by tools are kept on the file system until they are purged 

explicitly by the user. These files include output data files, log files, and others. In situations 

where disk space is an issue, automatic purging can be enabled. In this case, output files 

that are no longer needed are deleted automatically. 

7.1.3 Tool Output Data 

In addition to wafer data, tools may generate any number of data items of arbitrary types. 

These data are made available to the controlling environment by registering them after ter- 

mination of the tool run, specifying a name and a type. Types either belong to a group 

of predefined, standard data types (Table 7.1), or are defined by the user. For instance, a 

threshold type would denote a data item that contains the extracted threshold voltage after 

a device simulation step*. Type specifiers are used to search for required input data during 

run-time of simulation, to select appropriate post-processing and display tools, 
  

”Other implementations exist apart from [FFS*91]. See [WN91] [BHW91] for details. . 
°The Semiconductor Wafer Representation (SWR) [ot CTT92a] [ot CTT92b] offers an alternative that has 

not been used too widely yet. 

* A type specifier not only determines the data format of a data item, but may also contain information on 

its meaning.
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DATA | Generic LISP data 

DOPING | PIF dopant data 

FILE | Text file 

GEOMETRY | PIF geometry data 

MEDICI-FILE | MEDICI output file 

PLB | PIF logical 

PS-FILE | Postscript file 

STR-FILE | SUPREM structure file         

Table 7.1: Examples of available tool output data types. 

7.1.4 Meta-Data 

Meta-Data holds information about the contents of data and about their relation with other 

data. E.g., the fact that a given file on the file system has been generated by a certain 

simulation tool on behalf of a certain process step in a process flow is called meta-information; 

all meta-data are stored in a data-base implemented as a class of VLISP objects. 

7.1.5 Persistence and Robustness 

While in principle all data generated by simulation tools is completely derivable from a 

simulator-specific flow description, computation costs (in terms of time and efforts) demand 

that all results be kept accessible from the moment they are produced on until they are 

explicitly removed. This holds for mere sequential operation as well as for parallel compu- 

tation of split-lot experiments. More precisely, it is not acceptable to lose precious data due 

to malfunctions of a tool, the framework, the operating system, the network, or some other 

component of the computing environment. In VISTA/SFC, great care has been exerted to 

ensure a continual update of information stored on the file system to reflect the current state 

of all tasks in progress. 

7.2 Splitting and Data Dependency 

During multi-step simulation, a step uses its predecessor’s output to generate output on its 

own. Therefore, all data produced by a step depend on the data produced by previous step. 

For split-experiments, all runs — and all data of all pertaining steps — that branch after a 

given step depend on the the parent’s step data. Figure 7.1 shows three runs created from a 

flow with three steps, with runs number 2 and 3 splitting from run 1 after step 1. Ifrun 1 is 

removed, runs 2 and 3 are said to be orphaned, indicating the fact that their split parent is 

not available any more . Note that only data from the second step on are available in runs 2 

and 3.
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Figure 7.1: Runs 2 and 3 split from run 1 after step 1. Data for step 1 is only available in 

run 1. After removing run 1, runs 2 and 3 are orphaned. Information about how step 1 was 

produced is maintained, but output data are not available.



Chapter 8 

Task—Level TCAD Applications 

The process flow simulation capabilities presented in the previous chapters provide a sound 

basis for applications that use results from simulation to model and analyze semiconductor 

technology. The term task level carries different meanings in the literature, depending on 

the point of view and the objectives in a particular context. See [KGMB94] for an extensive 

discussion of the subtle differences in terminology, approach, and philosophy regarding the 

definition of task in the CAD domain!. In this work, it r to TCAD applications that us 

results obtained from process and device simulation for further analysis. Figure 8.1 shows 

the relation between tasks, tools, and tool control level in the VISTA/SFC environment. 

Task Level 

Tool Control Level 

      

  

To
ol
 

To
ol
 

To
ol
 

Figure 8.1: Tasks, tools, and tool control level in VISTA/SFC. 

    

s simulation, thus, is not regarded as a task-level application on its own, but just 

delivers the necessary results for more complex analyses. All of these applications seek to 

gain insight into a particular process or process technology by sampling the design space and 

identifying and modeling the underlying mechanism. Simulation? 

        

     

is used as a substitute for 

8.2). 

! Agreement exists as to the meaning of the word itself in the English language. In [AHD83], a task means 
a difficult or tedious undertaking, [|Web81] defines it as something hard or unpleasant that has to be done 

?Almost all process and device simulators expect exact values as inputs and generate exact values as 
outputs, in stark contrast with physical reality. See Section 2.1.8 for methodologies employed to represent 
nature’s fuzziness in the virtual world of TCAD 

   measurements and real-observations for cost and time reasons (Figu: 
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Design Space 

Figure 8.2: Design-space probing and simulation. Only three dimensions of the n-dimensional 

design space are shown for clarity. 

  

Design space probing does not necessarily lead to a valid result, but there exists always the 

possibility of selecting a design point that is not allowed for a given design. Consequently, 

the failure of a 

    

imulation tool should not be regarded as an unlikely event, but rather as 

indicating a range fault in the design space. If this fundamental insight is 

a more stable and robust operation 

    a regular ca: 

applied properly to the design of tool-control framewor! 

is achieved. 

  

8.1 Design Parameterization and Variational Design 

As a prerequisite for all further anal, 

subjected to automatic exploration of the design space. If the modification affects only the 

value of certain parameter settings while leaving the structure of the problem untouched, we 

speak of a parameterized design. In the case where the structure of the problem is modified, 

e.g., the sequence of process steps is altered or different paths are taken from the beginning 

to the end of the flow, we call it ational for short. 

a design has to be able to be modified in order to be 

      

ucturally variational, or var       

  

Obviously, this difference depends on the level of abstraction at which the design is described. 

In many cases, and, most prominently, in geometry modeling, the modification of parameter 

values leads to structurally different results, e.g., changing layout parameters such as line 

widths or distances between lines may lead to completely different lithography mas] 

sulting in wafer geometries that are topologically dissimilar (Figure 8.3). In an analogous 

fashion, the modification of an etch rate in an etch process step, e.g., may lead to completely 

      

, re- 

  

distinct wafer topologies. 

For process-flow related task-level applications, no structural changes in the pro 

the structure of the design, are admitted. In the case where comparisons between procı 

flows with different step sequences have are to be made, the difference in the sequence has 

to be mapped to differences in some parameter values that modulate the impact of a given 

step. For example, ifa comparison is to be made between two different process options, 

including an additional implantation step that the other one is lacking, the problem is most 

  

flow, i.e      

    

  

ne 
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Figure 8.3: Layout parameter modifications cause topologically distinet wafer geometries 

conveniently modeled by using a very low value for the dose parameter of the implantation 

step in the flow that, in reality, entirely lacks that step. 

  

There are two justifications for this approach. Firstly, instabilities of the numerical solution 

of the overall problem are likely to blur the results due to different grids generated for the two 

. Secondly, most task-level applications are aimed at adjusting parameter 

sequence to meet a given target rather than changing the sequence 

  

different sequence: 

settings of a given pro 

itself. 

  

8.2 Task Encapsulation 

  

When focusing on the system responses of process flows and devices, all simulation-related 

hould not be dealt with, but rather be handed down to some service that delivers 

;pect to the kind 

of procedure to invoke to get these results. More precisely, task-level applications should be 

liberated as far as possible from subtleties regarding the invocation of simulators, the precise 

format of input decks, the proper interpretation of generated files and return values, etc. To 

this end, the VISTA/SFC simulation environment provides a class of objects that encapsulate 

all evaluation tasks on the task level and establish a uniform interface between task-level 

modules such as optimizers, response surface models, database queries, etc. 

   

    

      

  

  

8.3 EVE - Evaluable Entities 

A class of evaluable entity (EVE) objects has been defined to provide uniform access to basic 

s like process flow simulation and RSM evaluation as well as to more complex, user- 

defined tasks. For example, the minimization of the bulk current for a given process could be 

encapsulated in an object that is evaluated for a set of initial value vectors for the optimizer 

generated by a DoE module or by a simple LISP loop. Figure 8.4 shows the basic idea of an 

  

    serv;     

  

   

  

3These fluctuat in general, are far below the tolerances and measurement limits of all factory settings 
and measurement procedures. Nevertheless, as simulators produce eract numbers, grid alterations or other 
numerical phenomena may introduce artificial effects that lead to erroneous results.
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EVE object representing a process flow simulation task. In order to avoid any ambiguity, the 

left side of the EVE object in Figure 8.4 is called client side, the right one server side. 
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Figure 8.4: Process flow encapsulation with evaluable entity (EVE) obj 

After specifying those proc parameters and measurements that are to be used as input         

  variables (controls) and output variables (respons s)', respectively, for subsequent analysis 

tasks, the EVE object hides all evaluation details of the underlying simulation. Different 

cla: of EVE objects exist for different purpo: e Section 8.4 for a detailed description.         

8.3.1 Basic Functionality 

An EVE object offers a set of basic functions that can be invoked uniformly across all classes 

of EVE objects. Table 8.1 gives a summary of their names together with short explanations. 

The define-control and define-response methods of an EVE object usually are invoked 

only once to establish a link with the server-side module. In general, a single control variable 

      

“Experience shows th s a good idea to refrain from using case-sensitive names at all, considering 
the difficulty in communicating verbally the cases of letters. As a matter of fact, the advantage of a greater 
number of available names due to case-sensitivity is more than compensated for by the increase in typing and 
reading efforts. Within the TCAD world, only chemical formulas seem to justify a case-sensitive interpretation 
of names. Wherever a significant distinction between the cases of letters is made, ambiguity and confusion 
arise. Furthermore, I would go as far as to claim that significance should only be attributed to the sequence of 
letters and digits in a name, disregarding their cases. In other words, two names should be considered equal if 
they agree in the sequence of their constituting letters and digits, skipping all other characters such as spaces 
dashes, underscores, etc. The VLISP functions name and name= implement this philosophy. 
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Symbolic Name Description 

define-control Defines a new control variable. All variables are identified by case- 

insensitive names that are unique in the context of an EVE object. 

Used to define the position of a process parameter in a process flow 

or to select one out of a number of available parameters. 

set-control Defines a default value and ranges for a control variable. Addi- 
tionally, a control variable may be marked as internal if it is not 

to be accessed from the client side. 

set-control-expression | Defines a LISP expression used to derive a control variable’s value 
from other control variables (Figure 8.5). 

set-control-conversion | Defines a LISP expression used to convert a control variable’s 

value to a different representation before handing down to the 
server side. 

eval Request the evaluation of the underlying model for a given set of 

control values. Ifthe set of control values is not complete, missing 

values are taken from the default values of the respective control 

variables. After termination of the evaluation, the responses are 

returned in a callback. 

  

        
Table 8.1: Summary of basic EVE functionality. For the sake of conciseness, operations that 

are equivalent for both controls and responses are not listed separatel,y. 

(Eve-Define-Control "alpha") 

(Eve-Define-Control "beta" :eval-expr ’(if (plusp alpha) (sqart alpha) 0.) P P 1Y P q P 

:internal T) 

(Eve-Define-Control "gamma" :conversion ’(strin amma) ) g g g 

Figure 8.5: Three examples of the command Define-Control for defining control variables. 

alpha is declared as a control variable. beta’s value is derived from a LISP expression using 

alpha. The internal attribute marks the beta to be inaccessible to the client side. gamma’s 

value is converted to a string on the server side, but not on the client side. 

can have any number of connections to the server side. T'his mechanism is particularly useful 

when encapsulating process flows to map a single control variable to all appearances of a 

certain class of process or simulation parameter. 

8.3.2 Nested Tasks 

Given a set of EVE objects, they can be linked together to represent more complex applica- 

tions. Figure 8.6 shows in principal how a process simulation module and a device simulation 

module are encapsulated to appear as a single task on the client side of the leftmost EVE.
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Figure 8.6: EVE objects are combined to build complex tasks from simpler ones. 

8.3.3 Interface with Tool Agents 

via the uniform 

  

A variety of clients can request evaluatio 

interface established by EVE obj (Figure 8.7) For instance, an optimizer sends requests to 

an EVE object without having to care about the class of the underlying module on the 

side. External task-level clients are interfaced by tool agents; see Section 3.5.1 for details. 

s for certain input parameter 

  

      

  

ver 

Uniform Interface 

Optimizer 

  

1 

Interface 1 

Agent 

Figure 8.7: EVE objects establish a uniform interface for evaluation requests by internal and 

external clients and applications.
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8.4 EVE Classes 

For different applications, different classes of EVE objects exist that all share the basic func- 

tionality described in Section 8.3. The most important ones for many TCAD applications 

are the Flow EVE class and the RSM EVE class. 

8.4.1 Flow-EVE 

A complete process flow contains several thousands of potential design parameters. For 

practical purposes, a small number has to be selected for TCAD analysis. Defining the 

position of control variables in the process flow is accomplished by specifying a pattern for 

the labels of the affected steps and parameters. Built-in as well as user-defined parameters of 

steps and flow modules are accessible. When using the graphical flow editor (Section 5.10), 
a parameter selection mode allows direct access to all possible choices. In batch-mode or 

text-terminal operation, a short command establishes the link between a flow EVE variable 

and variable in the process flow. Figure 8.8 shows the definition of two control parameters 

for a flow EVE. The control ntai-dose is assigned to the process parameter dose in the 

step labeled N TAI. The control grid-lines is assigned to the parameter nxm in all steps of 

type analytical-implant. For implementing conditional execution of a process flow, the 

(Eve-Define-Control "ntai-dose" ;; symbolic name 

"N TAI" ;3 step label 

"dose" ;3 Process parameter name 

) 
(Eve-Define-Control "grid-lines" ;; symbolic name 

’(:type "analytical-implant") ;; step type 

"nxm" ;; step parameter name 

) 

Figure 8.8: Text-mode commands for defining control variables in a flow EVE. 

symbolic parameter skip can be used at any step. Assigning an expression, a simple mapping 

mechanism from numerical values to conditional branching can be realized. 

8.4.2 RSM-EVE 

The class of RSM EVE objects encapsulates response surface models built from a set of exper- 

iments (see Section 8.7) and hides the RSM evaluation from the client side. In VISTA/SFC, 
RSM evaluation is performed by an external tool that communicates via a tool-agent with 

the simulation environment (see Section 3.5.1). 

8.4.3 RSM-EVE Calibration 

In order to calibrate an RSM with measured data from a fabrication unit, not only its control 

and response variables have to be accessible, but also internal parameters of the RSM need 

to be accessible. For this purpose, the RSM EVE class provides access to the coefficients of
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the RSM in terms of names that are constructed from the control variables they are attached 

to. For example, when modeling the threshold voltage (vth) as a function of the gate length 

(1g) and the threshold adjust implant dose (dose) with a polynomial model of second order, 
possible control names would be c-1g-2, c-1g-dose, c-dose-2, and c-vth-0. If a conflict 

ar with names already used as control or response variable names of the model, these 

standard assignments can be overwritten. 

      

Fitting the coefficients of aRSM to experimental data is a powerful method for modeling the 

overall behavior of a fabrication process [Mas95]. 

8.4.4 Opt-EVE 

A special class of EVE objects has been defined that encapsulates an optimization task, 

presenting the initial values for the optimizer run as control variab) o the outside world. In 

a fashion similar to the previous s 1 by names constructed from 

the names of the variables they correspond to. For instan. the system to be optimized 

has a parameter alpha, the corresponding initial value is sible as alpha-init. Asa 

respo: he optimum found by the optimizer is returned. Communication with the external 

optimizer executable is taken care of by tool agent as described in Section 3.5.1. Figure 8.9 

shows an optimizer working on an RSM model. The initial values of the optimization loop 

are available as control variables in the OPT EVE. 

     

  

ction, initial values are acce:    
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Figure 8.9: Optimizer and RSM connected with EVE 

objects.
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8.4.5 LISP-EVE 

The most generic class of EVE objects allows to specify arbitrary LISP expressions to be eval- 

uated upon an evaluation request. s a simple interface for all kinds of applications 

without a dedicated EVE cl: The names of the control variables are automatically derived 

from the names of the arguments of the LISP functions if a function is passed; otherwise, 

they have to be specified by the u: 

  

It serve,     

    

8.5 EVI- Evaluation Instances 

During the pro of trying different design paths, a lot of intermediate data is generated, 

that is too volatile to be stored in a full-Hedged data base, but nevertheless has to be main- 

tained for a certain period of time during the exploration of the design space. These tempo- 

rary — with respect to the time frame of the whole project — data are stored as evaluation 

    

    

       

instances, belonging to a given EVE. In addition to defining a standardized interface, EVE 

objects take care of some simple data management services for all evaluation instances (EVI) 

that have been created (Figure 8.10). Each EVI represents a point in the design space. Indi-     
   

  

     vidual EVIs can be assigned to groups for convenient access for further processing. Groups are 

maintained by the EVE object and can be overlapping. Both groups and individual instances 

offer slots for recording the history of creation of the data point; slots are set automatically 

by design generators, or manually by the user. Together with its evaluation instancı 

EVE offers rudimentary spread-sheet. capabilities. In Section 8.10, a graphical user interface 

for acce: 

an 

    

  ssing and managing EVIs is shown. 

EV
Is
 

EVE 

Figure 8.10: Evaluation instance (EVI) objects are managed by EVE objects. 

8.6 Design of Experiments 

The automatic generation of experiments is taken care of by a DoE module that runs as an 

external executable and communicates with the environment using a tool agent. A number 

available (Table 8.2)['KPR +96]. The screening analysis design SA provides 
a simple means to generate a number of experiments along each axis of the design space 

with all other coordinates remaining at their respective default values. The supplementary 

design SUP is an implementation of [STA +95], aiming at minimizing the number of additional 

experiments required when adding a new control variable to an existing set of experiments 
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at the cost of a slightly sub-optimum design with respect to the standard CCC design. See 

[LA91] for an extensive treatment of the design of experiments. For each experiment generated 

  

NOM | Nominal Design 
SA Screening Analysis 
FUL | Full Factorial Design 

CCF | Central Composite Face-Centered Design 
CCC | Central Composite Circumscribed Design 
CCI | Central Composite Inscribed Design 
RAN | Random Design 

DIA | Diagonal Design 

GRI | 2D - Grid Design 
LAT | Latin Hypercube Design 

FRA | Fractional Factorial Design 
PLA | Plackett-Burman Design 

OME | Orthogonal Main Effect Design 
SUP | Supplementary Design       
  

Table 8.2: Summary of design types provided by the DoE module. 

by the DoE module, an EVI is added to the active EVE and submitted for evaluation. On 

return, the computed results are read and written to the EVI. Optionally, control values 

generated automatically may be modified interactively before starting an evaluation. 

8.7 Response Surface Modeling 

Given a number of completed experiments in an EVE, a response surface model can be con- 

structed to represent the system’s behavior analytically with — mostly polynomial — functions 

by fitting the polynomial coefficients to the data points |BD87]. The resulting coefficient val- 

ues, together with information on the valid ranges for all controls and on the quality of the 

fit achieved, are stored as a response surface model for evaluation by the RSM evaluator (cf. 

Figure 8.9). In Section 8.10, glimpses of the GUI module for interactive exploration response 

surface models are shown. 

8.7.1 System Linearization 

Both DoE and RSM modules work best if all system responses behave more or less linearly 

with respect to the control variables. Unfortunately, this behavior is very rarely encoun- 

tered in real applications, To accurately model the system behavior, transformations of the 

parameter space are used to to linearize the dependence of the output variables on the trans- 

formed input parameters. Subdivision of the parameter space as well as fitting of the response 

surfaces takes place in transformed space. 

For each input parameter, a transformation function can be selected from a set of predefined 

transformations. If the transformation function needs parameters (transformation parame- 

ters), these parameters may either be specified explicitly, e.g., in the case when a physical
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formula has been established, or they may be determined automatically from a set of sample 

points. Additionally, it is also possible to select the best one of a given set of transforma- 

tion functions for a given set of sample points. Thus, the user does not need to specify the 

transformation to use. 

  

It is important to note that all transformation functions have to be defined by specifying 

code for both the forward and reverse dir gning a reference name to the 

transformation before they can be used. All information on transformations is stored centrally 

and accessed exclusively by the reference name. E.g., for a given technology, a transformation 

called vth-1g can be defined, which analytically refl: the short-channel effect and is 

to linearize the dependence of the threshold voltage on the gate length for DoE and RSM. 

    ctions and a: 

  

    

  

    sed 

  

8.8 Optimization and Calibration 

  

Being the most ubiquitous, and at the same time the most mystic, terms in TCAD appli- 

cations, they refe entially to the same thing: the minimization of the value of a target 

function that is constructed from the inputs and outputs of an arbitrary system. (Figure 

8.11). The minimization starts at a given set: of initial values for the system inputs. The 

result of the minimization task are the values of the inputs and the outputs at the minimum 

value of the target function. 

    

    

  

tem 

Output         

  

- 
Optimum Results 

Figure 8.11: Optimization as minimization of target function. 

For calibration, the output values for the minimization tasks are computed as the fit error 

that describes the quality of the correspondence of the system with a set of fit data. The fit    

5In principal, the inputs need not be explicitly dealt with but could be modeled as additional system 
outputs. They appear here for the sake of clarity only.
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error is usually defined as the sum over all fit data points of the squares of the differe; 

of fit data and system output data. The input values for the calibration task are the fit 

parameters of the system to calibrate (Figure 8.12). 
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Figure 8.12: Calibration as minimization of the fit error. 

  

calibration for short, is the set of optimum fit parameters obtained. In the second case, also 

the optimum transformation pertains to the calibration. 

  rs to the 

the 

In TCAD, the term optimization refe: 

behavior. In most c; 

search of a set of procı 

  

       

    

evaluation 

not feasible.      and device simulation sequence for each step of the optimizer 

On the other hand, the term calibration is used to indicate that a set of parameters has to 

be computed that optimally fits a system to a set of measured data. For tool calibration, the 

system is represented by a single simulator run including pre-proce: 

for global pro‘ calibration, the s 

are used as parameters (cf. Section 8.4.3). 

    ng and post-proc 

stem is a response surface model the coeflicients of which 

  

    

8.8.1 Combining Tool and Calibrations 

After succı 

  

sful calibration, the parameter values obtained have to stay with the calibrated 

tool. Several options exist: 

1. Generating a calibrated executable by compiling the parameter values into the tool.
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Figure 8.13: Calibration by transformation of input variables. 

2. Storing the parameter values in an input deck include file to be loaded by the tool each 

time the calibration is required. 

3. Writing a shell script that sets the parameter values on the tool’s command line on 

invocation. 

4. Defining a new application in VISTA/SFC as a combination of the tool and the calibrated 

parameter values. 

8.8.2 Available Optimizers 

In VISTA/SFC, different external optimizers can be integrated using tool agents as described 

in Section 3.5.1. For optimizing device performance parameters over a given input variable 

  

space, a constrained optimizer with sequential quadratic approximations has been integrated. 

It minimizes the target function, which can be assembled out of the input and output values. 

The gradient is caleulated by evaluating finite difl s, and the Hessian matrix is built by 

an BFGS update.* For the calibration and fitting applications, an optimizer based on the 

Levenberg-Marquardt algorithm” [Kha95][PKSS95] is available. 

  

  

  

ren 

    

öSee [GMWS95] for optimization techniques and algorithms 
"The Levenberg-Marquardt algorithm includes the minimization task as well as the fit error caleulation in 

Figure 8.12
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8.9 Programming Interface 

The programming interface is directly based on the VLISP interpreter, providing access to 

a variety of framework services on different levels of abstraction. Besides using all services 

directly as function calls, it is possible to define new operations or customize existing ones, 

store them in a file, and retrieve them at a later time, or add them to a list of startup files 

to permanently enhance the environment’s functionality. In Section 9.2, a detailed example 

of the capabilities of the programming interface is given. Table 8.3 gives a summary of 

commands available for defining task-level applications. 

  

  

    

Symbolic Name | Description 

Eve-Eval Generates an experiment for the values given as arguments. 

Eve-Doe Generates experiments with the DoE module. 

Eve-Plot Displays a 1-D plot of selected data entries. 

Eve-Rsm Generates a response surface model from the values present 

in the EVE object. 

Eve-Stop Prevents the evaluation of new EVis. 
Eve-Start Enables the evaluation of new EVIs and starts evaluation of 

all waiting ones. 

Flow-Eve Creates a flow EVE in the current project.     
Table 8.3: Summary of EVE commands for task-level applications. 

8.10 Graphical User Interface 

On the GUI level an EVE and its pertaining evaluation instances are represented as a spread- 

sheet with direct access to plot tools, DoE generation, and RSM generation (Figure 8.14). 

Furthermore, new evaluations can be requested or removed from the list of existing ones, and 

all kinds of editing tasks with respect to the definition of control and response variables can 

be performed. 

Figure 8.15 shows the GUI for exploring an RSM built from data points in an EVE object. 

One-dimensional and two-dimensional cuts of the N-dimensional parameter space can be 

selected and displayed using the gnuplot tool (Figure 8.16) or any other plot program®. 

  

® Access to an external plot tool is again encapsulated by an agent object; therefore, any number of different 
programs can be easily integrated using the standardized agent interface.



CHAPTER 8. TASK-LEVEL TCAD APPLICATIONS 

  

Experiments 

EVE-VUI 

  

1R § 

ntai-dose E ntai-enerf tox E sd-dose | sd-ener } sd-time | ioff ! 
  
9,74419e+11 13,5735 0,00193466 4,64283e+13 3.1531 17,8978 
  

2R2 § 2,56563e+12 14,4205 0,00193466 4,64283e+13 9,1531 17,8978 
  

3 R3 2,56563e+12 
  

13,5735 
  
0,00256534 

  
4,64283e+13 9,1531 17,3978 

  

  4 R4 9,74419e+11 14,4205 0,00256534 4,64283e+13 321531 17,8978 
  

5 RS 2,56563e+12 13,5795 0,00193466 4,30771e+14 9,1591 17,8978 
  

ERBE | 9,74419e+11 14,4205 0,00193466 4,30771e+14 9,1531 17,3978 
  

7 R7 9,74419e+11 
  

13,5735 
  
0,00256534 

  
4,30771e+14 9,1531 17,3978 

  

8 RS   2,56563e+12 14,4205 0,00256534 4,30771e+14 321531 17,8978 
  

3Ry § 2,56563e+12 13,5795 0,00193466 4,64283e+13 10,8403 17,8978 
  

10 R10 § 9,74419e+11 14,4205 0,00193466 4,64283e+13 10,8403 17,8978 
  

11 R11 9,74419e+11 
  

13,5735 
  
0,00256534 

  
4,64283e+13 10,8403 17,8978 

  

12 R12   2,56563e+12 14,4205 0,00256534 4,64283e+13 10,8409 17,8978 
  

13 R13 § 9,74419e+11 13,5795 0,00193466 4,30771e+14 10,8403 17,8978 
  

14 R14 § 2,56563e+12 14,4205 0,00193466 4,30771e+14 10,8409 17,8978 
  

15 R15 § 2,56563e+12 1386795 0,00256534 4,30771e+14 10,8403 17,8978 
  

16 R16 § 9,74419e+11 14,4205 0,00256534 4,30771e+14 10,8409 17,8978 
  

17 R17 § 2,56563e+12 13,5795 0,00193466 4,64283e+13 9,1591 22,1022 
  

18 R18 § 9,74419e+11 14,4205 0,00193466 4,64283e+13 Jeisal 22,1022 
    19 P19 i   Q 744190411     12 6795     N NNIEEEZA     A E42025412     q 41691     22 1099         

v OK! Build! Show! RSM| Build] 
        

92 

Figure 8.14: EVE spreadsheet-GUI provides a convenient interface for initiating new evalua- 

tions and experiments, generate one-dimensional plots, and build and view response surface 

models.
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Figure 8.15: Graphical user interface for viewing response surface models. One or two pa- 

rameters can be selected as plot axes, the remaining ones are parameters of the plot, used to 

interactively explore the model.
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Figure 8.16: Two-dimensional plot of response surface model.



Chapter 9 

Application Examples 

9.1 Standard CMOS Process 

To demonstrate the application of the VISTA/SFC environment to the modeling and analysis 

of VLSI fabrication processes, a complete standard silicon-gate LOCOS CMOS process [SS91] 

was simulated using a set of heterogeneous simulation tools. The process flow contains all 

types of fabrication process steps occurring in modern VLSI technology and uses eleven 

lithography masks. Simulation was carried out up to the second metalization layer, which 

forms the gate lines, using 55 tool steps. The simulated structure is a CMOS inverter, 

containing most of the relevant intrinsic and parasitic devices. The final topography is shown 

in Figure 9.1. An overview of the process is given in Table 9.1, a detailed description can be 

found in [SS91], p. 370. 

To achieve accurate and realistic modeling of etching and deposition processes, the PROMIS 

etch module [SS93] [SS95] was used. It is based on extremely stable cell-based algorithms 
and contains a number of physically sound models for a variety of topography processes. 

Lithography steps are performed by the SKETCH tool which operates as a simple geometry 

manipulator and provides mask pattern transfer and material strip capabilities where no 

accurate simulation of optical phenomena is needed. All implantation steps have been carried 

out with the PROMIS implantation module [Sti93] [Boh96]. Diffusion has been realized 
with the PROMIS-NT diffusion module [PS95] [Puc96], which offers the possibility of solving 

different models on each material segment and therefore greatly facilitates the investigation of 

advanced effects in state-of-the-art devices. Oxidation and diffusion in reactive environment 

have been carried out with TSUPREMA [Tec95]. 

Figure 9.2 shows the resulting net doping concentration in both the N and P devices. Despite 

the interaction of fundamentally different simulation tools and the large number of simulation 

steps, fully automatic simulation has been performed without the necessity for user interaction 

at any point of the simulation. Figure 9.3 shows a detail of the resulting triangular grid after 

the last process step. 13000 grid nodes are used to accurately resolve arsenic, boron, and 

phosphorus distributions generated by PROMIS, PROMIS-NT, and TSUPREMA. All grid 

operations, from the generation of the initial grid to merging and updating grid data at 

various points in the process flow, have been carried out by the TRIANGLE [She96] gridding 

95
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Ped 

File Command Display Edit Utils Scope Config 

  

          File: /loe/users/pichlei | Logical: LI_XOutfile_1 | |Scope: geometry_-eaa: 

Figure 9.1: The final CMOS structure including two metal layers. 

96
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tool. Using the framework’s built-in dynamic load balancing mechanism on a DEC 3000- 

600 workstation cluster, the total computation time for all process simulation and regrid 

operations amounts to less than 17 hours of real time. 

NetDoping-Si-Concentration 1/cm*3 
  

1/
cm
”3
 

  

    
  

Figure 9.2: Net doping distribution in CMOS inverter after simulation of second metal layer. 

The N-device on the left side uses an LDD structure and an anti-punch-through implant.
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tox = 30nm 

c (100keV, 5 - 10°°cm” 
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toxz = 800nm 

3 HQ, 

  
Table 9.1: CMOS process sequence. 55 simulation tool steps are used to simulate the entire 

fabrication process.
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NetDoping-Si-Concentration 1/cm*3 
  

  

      
Figure 9.3: Grid detail of N-device spacer region with LDD implant, source/drain implant, 

channel implant, and anti-punch-trough implant after simulation of metal 2.
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9.2 Short-Channel-Effect Reduction with Pocket Implants 

Reducing the gate-length of aMOS transistor to dimensions smaller than about 2 um alters 

the electrical behavior of the device in a characteristic way. The influence of the source and 

drain regions on the channel grow, i.e., the fraction of the channel that is controlled by the 

gate decreases with respect to the long channel device!, where the transition region from the 

channel to the source and drain regions is small in comparison to the gate length. These short 

channel effects? cause considerable distress for the device designers, because one-dimensional 

device equations — widely used in circuit-design applications — do not any more give accurate 

results. In consequence, it is a declared goal of VLSI process design to sustain long-channel 

behavior even for short-channel devices. 

9.2.1 Threshold Voltage Reduction 

One well understood effect found at decreasing channel lengths is a reduction of the threshold 

voltage?. 

Th
re
sh
ol
d 

Vo
lt
ag
e 

[V
] 

  
Gate Length [um} 

Figure 9.4: Short channel effect in a simulated NMOS transistor. 

Figure 9.4 shows the threshold voltage of an NMOS transistor versus the gate length, with 

the gate length being varied from 0.25um to 1.5um. For lengths smaller than a quarter of 
  

' A transistor which can be sufficiently described by one-dimensional equations. 

”A concise treatment of short channel effects can be found in [Wol95b]. 
3The threshold voltage itself represents a rather elusive term, as no universal agreement exists as to a single 

— physically motivated — definition of such voltage. In this example, it is pragmatically defined as the value 
of the gate voltage at a drain current of 1nA.
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a micron, the device shown does not turn off any more and no threshold voltage can be 

established. The decrease of the threshold voltage is caused by the increased fraction of 

the channel-depletion region that is occupied by the space charge in the junction depletion 

regions between source and channel, and channel and drain, respectively, and the resulting 

decrease in gate charge needed to cause inversion in the channel. 

9.2.2 Large-Angle-Tilt Implant Optimization 

To compensate the influence of the source/drain regions on the channel below the gate edges, 

it is possible to artificially raise the p doping level below the gate edges by local boron 

implants into the transition region between the source/drain regions and the channel. One 

way of realization is to use a large-angle tilt (LAT) implant of boron ions into the NMOS 
device after the formation of the LDD structure [HKS*91]. 

A frequently encountered process engineering task deals with determining the optimum pa- 

rameter settings for the LAT implant. The procedure for establishing these values consists 

of several tasks: 

1. For the nominal device, screen the influence of the three LAT parameters to determine 

ranges for the optimization. 

2. Select nominal parameter settings from the results of the screening analysis. 

3. Create a response surface model for the dependence of the device behavior on the LAT 

parameters in the vicinity of the nominal point. 

4. Use the RSM model to optimize the LAT parameter values. 

The creation of the response surface model — or any other analytical model the can be 

evaluated sufficiently fast — is not a necessity, as the optimization process could also be 

carried out on the process and device simulations directly*. 

9.2.3 Process Simulation 

To demonstrate the applicability of the VISTA/SFC simulation environment to the optimiza- 

tion of the LAT implant parameters, an NMOS device was designed for a nominal gate length 

of 0.5um and simulated using two-dimensional process and device simulation. Table 9.2 gives 

the main process parameters for the nominal device, Figure 9.5 shows the doping profiles in 

the nominal device for the three dopant species boron, arsenic, and phosphorus. 

  

“Given the high degree of autonomy, robust operation, efficient disk space usage, and automatic load 

balancing as provided by VISTA/SFC, running an optimizer directly on the simulators is not an infeasible task 

and avoids many drawbacks associated with derived models.
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Diff Seg 1 ImpurityDescription Concentration cm*-3 
  

cm
“-

3 

  

      

Figure 9.5: Nominal NMOS device doping profile without pocket implants for a gate length 

of 1.1211, including threshold-adjust implant, LDD implant, and source/drain implant.
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Substrate p, 5ettem ™3 

Threshold adjust implant | Boron, 1e!?cm”?, 40keV 

Gate oxide 10nm 

LDD Phosphorus, 1e!’cm?, 45keV 

Spacer 100nm 

Source/Drain Arsenic, 1e!’’cm?, 80keV 

Anneal 30min, 900°C 

Usp 2V         

Table 9.2: Process parameters for NMOS device. 

9.2.4 Task Definition 

Using the task-level encapsulation mechanisms presented in Chapter 8, the complete analysis 

and optimization task outline above can be defined in VISTA/SFC by a list of statements. 

Figures 9.6 through 9.10 show the code for batch-mode operation®. 

In Figure 9.6, the first statement defines a new project that uses a process flow description 

file. (The LAT implant is realized by using two subsequent implantation steps, POCKET-L and 

POCKET-R, of opposite implantation angles). Table 9.3 lists the relevant process parameters 

and responses. The second statement creates an EVE object to manage all experiments of the 

optimization task. The symbolic name "flow-eve" is assigned to identify this object unequiv- 

ocally in the case several EVE instances exist simultaneously. The Eve-Define-Control 

  

  

  

Step Operation Parameter | Description 

POCKET-L | Ion implantation | PD Implantation dose 

PE Implantation energy 

PA Implantation angle 

POCKET-R | Ion implantation | PD Implantation dose 

PE Implantation energy 

PAR Implantation angle with 

opposite sign 

DEVICE Device simulation | vd Drain voltage 

vth Threshold voltage 

ib Maximum bulk current 

id-on Maximum drain current 

id-off Minimum drain current             

Table 9.3: Optimization parameters and extracted responses for LAT implant. 

statements (cf. Section 8.4.1) define the position of the experimental control variables in 
the process flow. For example, the implantation angle anginc in the process step labeled 

POCKET-R is assigned the symbolic name PAR. T'he value of PAR is derived from the value of 
  

° All parameter definition, experiment generation and management, response-surface modeling, and opti- 

mization operations are also supported by the GUI.
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;; define a new project for this task 

(Project "pockets" :flow-file #"“/processes/pockets.sfe") 

;s; create a new EVE object for data and experiment management 

(Flow-Eve "flow-eve") 

;; define control variables in process flow 

(Eve-Define-Control "L"  "INIT" :conversion ’(string L)) 

(Eve-Define-Control "PD" "POCKET-L" "dose") ;; LAT implant dose 

(Eve-Define-Control "PD" "POCKET-R" "dose") ;s; same for negative 

;; angle 

(Eve-Define-Control "PE" "POCKET-L" "rmoden") ;3 LAT implant energy 

(Eve-Define-Control "PE" "POCKET-R" "rmoden") ;3 LAT implant energy 

(Eve-Define-Control "PA" "POCKET-L" "anginc") ;; LAT implant angle 

(Eve-Define-Control "PAR" "POCKET-R" "anginc" ;; negative implant angle 

:eval-expr ’(and PA (* -1 PA))) 

(Eve-Define-Control "vd" "DEVICE" "drain-bias") ;; drain bias for 

;; device simulation 

(Eve-Set-Control "L" 0.5 :min 0.25 :max 1.5 :trans ’log) 
(Eve-Set-Control "PD" 1e13 :min 1e12 :max 3e13 :trans ’log) 
(Eve-Set-Control "PE" 50. :min 40. :max 60.) 
(Eve-Set-Control "PA " 25. :min 20. :max 30.) 
(Eve-Set-Control "vd" 2.) 

;; define response variables in process flow 

(Eve-Define-Response "vth" "DEVICE" "THRESHOLDVOLTAGE") 

(Eve-Define-Response "ib" "DEVICE" "BULKCURRENT" 

:eval-expr ’(* 1e10 (last ib))) 

(Eve-Define-Response "id-on" "DEVICE" "DRAINCURRENT" 

:eval-expr ’(last id-on)) 

(Eve-Define-Response "id-off" "DEVICE" "DRAINCURRENT" 

:eval-expr ’(first id-off)) 

Figure 9.6: Definition of process control and response variables for a process-flow EVE.
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the control variable PA by multiplying with -1, leading to symmetric implantation profiles. 

The Eve-Set-Control statements define default values and ranges for the control variables. 

Responses are defined with the Eve-Define-Control statement. In the example the device 

simulation generates sets of data points for gate voltages between 0OV and the drain bias vd. 

Using the LISP functions last and first to derive the values of the response variables from 

these sets is a simple way to get the minimum and maximum drain current and bulk current 

values. 

Once the controls and responses are defined, the Eve-Eval statement is used to simulate the 

nominal device. After termination of the simulation, the results can be examined (Figure 

9.7). Parameter value settings can be given to study interactively the behavior of the design. 

;; simulate nominal device 

(Eve-Eval) 

‚; show all evaluation instances 

(Eve-Show) 

L TAI PD PE PL PAR vd vth ib id-on id-off 

DEFAULT: 0.5 10. 1E+10 50. 25. -- 2. 

iR 1: 0.5 10. 1E+10 50. 25. -25. 2. 0.463 2.5E-05 9.35E-05 2.87E-13 

;; simulate device with modified LAT implant dose 

(Eve-Eval :LD 2e12) 

(Eve-Show) 

L PD PE PA PAR vd vth ib id-on id-off 

DEFAULT: 0.5 1E+10 50. 25. -- 2. 

iR 1: 0.5 1E+10 50. 25. -25. 2. 0.463 2.5E-05 9.35E-05 2.87E-13 

2R 2: 0.5 1E+12 50. 25. -25. 2. 0.36 4.11E-06 0.000118 2.08E-12 

Figure 9.7: The simulation of the nominal device is started by using the Eve-Eval command. 

Parameter value settings can be given. Note that ib represents 101° times the maximum 

bulk current (see Figure 9.6). 

Figure 9.8 shows the VISTA/SFC sequence® statement calling three DoE steps to create two 

times 7 experiments, varying the gate length L from 0.25um to 1.5um in equidistant steps 

for PD set to 10!° and 101, respectively, plus 15 experiments from a full-factorial CCI design 

for the three process parameters. The Eve-Stop command prevents the new experiments 

from being submitted for simulation immediately; Eve-Start starts evaluation for all 29 

scheduled instances. They are run simultaneously by the run controller and distributed 

across the network. 

After computation of the sample points, a response surface is built from the data generated” 

for the three responses vth, ib, and id-on. Figure 9.9 shows the sequence of statements to 
  

Both the sequence and parallel statements create objects that provide basic control capabilities for 
executing a set of asynchronous VLISP statements — user-defined or built-in — sequentially or in parallel, 

respectively. They liberate the user from explicitly taking care of connecting the statements by means of 
callbacks. The sequence and parallel statements can be arbitrarily nested. 

"Simulations are only started if no results exist in the run data base for the given process flow and parameter 
settings.
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(sequence 

’(Eve-Stop) 

’(Eve-Doe ’SA :nsp 7 :select "L") 

’(Eve-Doe ’SA ’(("PD" 1el12)) :nsp 7 :select "L") 

’(Eve-Doe ’CCI :cube "FF" :select ’("PD" "PE" "PA")) 

’(Eve-Start) 

) 

Figure 9.8: Design of experiments for screening analysis of LAT implant. The DoE module 

is called for the design type SA and override nominal settings for the dose parameter PD. The 

sequence operator is used to chain a sequence of asynchronous LISP commands. 

run the RSM generator, define a target function for the optimization process, and start the 

optimization for a set of initial values. From the available optimizers, the donopt program 

is selected. The target function for the optimizer is constructed from the threshold and 

maximum bulk current values to raise the threshold voltage at L=0.5um and keep the bulk 

current as low as possible. If one wishes to run the optimizer directly on the simulation 

(sequence 

’(Opt-Rsm-Eve "rsm-eve" :select ’("PD" "PE" "PA" "vth" "ib" "id-on") 

:eve "flow-eve") 

’(Eve-Define-Response "target" 

:eval-expr ’(and vth ib (abs (/ (* 1e3 ib) vth))) 

:eve "rsm-eve") 

’(Eve-Optimize "target" :eve "rsm-eve" 

:range-eve "flow-eve" 

:optimizer ’donopt 

:init ?’CC"PD" 1e12)C"PE" 20.)("PA" 0.)) 

) 

Figure 9.9: VISTA/SFC statements for RSM model generation and optimization. 

server, the RSM generation step is skipped and the target function is defined directly in the 

"flow-eve'" object to provide input for the optimizer (Figure 9.10). 

(sequence 

’(Eve-Define-Response "target" 

:eval-expr ’(and vth ib (abs (/ (* 1e3 ib) vth))) 

:eve "flow-eve") 

’(Eve-Optimize "target" :eve "flow-eve" 

:optimizer ’donopt 

:init ?’CC"PD" 1e12)("PE" 20.)C"PA" 10.)) 

) 

Figure 9.10: Calling the optimizer directly on the process flow simulation task encapsulated 

in the "flow-eve' EVE object.
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9.2.5 Optimization Result and Verification 

Table 9.4 gives the parameters found by the procedure shown in Figure 9.9, Figure 9.11 

depicts the threshold-voltage vs. gate-length characteristic for the optimum device. 

  
Dose PD 9.64e'2cm 2 

Energy PE | 42.9keV 

Angle PA | 21.9°         
Table 9.4: Optimum implantation parameters for pocket implants. 
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Figure 9.11: Vy,—L behavior after optimum pocket implants. T'he onset of the V;, roll-off 

shifts towards smaller gate lengths in comparison with the original device (Figure 9.4). 

For comparison with the nominal device, Figure 9.12 shows the LDD, source/drain, and 

threshold-adjust implants around the gate edge (at 0.554m) ofthe 1.14 NMOS device, looking 
from the surface into the bulk. The (n-type) LDD doping compensates the (p-type) threshold- 

adjust implant inside the channel region and causes a reduction of the effective channel length. 

Figure 9.13 shows the channel region around the gate edge with a pocket implant, using the 

parameters established by the optimization procedure. In the critical region between 0.5um 

and 0.6um, the threshold-adjust implant is enhanced by the pocket implant; the total p-type 

doping is high enough to compensate the influence of the LDD and source/drain implants 

around the gate edge.
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Figure 9.12: Short-channel device doping profile without pocket implants. 
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Figure 9.13: Short-channel device doping profile with pocket implants. 
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In many cases, an optimization task gets stuck in a local minimum and does not reach the 

global optimum. Starting the optimizer at different initial points is a helpful strategy to find 

the global optimum. Taking advantage of VISTA/SFC’s task-level programming facilities, 

the dependence of the optimization result on the choice of initial values for the optimization 

problem can be easily investigated by specifying the optimization problem itself as en EVE 

object and submitting it to a set of experiments. Figure 9.14 shows the list of statements 

used for running the optimization task for three values for each of the optimization variables, 

generating a total of nine optimization runs that are executed in parallel by VISTA/SFC. 

(sequence 

’(Eve-Define-Response "target" 

:eval-expr ’(and vth ib (abs (/ (* 1e3 ib) vth))) 

:eve "rsm-eve") 

’(Lisp-Eve "lisp-eve" :control ’("PDO" "PEO" "PAO") 

:expression 

’(Eve-Optimize "target" :eve "rsm-eve" 

:range-eve "flow-eve" 

:optimizer ’domopt 

:init ‘(("PD" ,PDO) 

("PE" ,PEO) 

("PA" ,PAO)))) 

’(Select-Eve "lisp-eve") 

’(Eve-Set-Control "PDO" 1e12 :min 1e10 :max lel4 :tramns ’log) 
’(Eve-Set-Control "PEO" 30. :min 10. :max 50.) 
’(Eve-Set-Control "PAO" 20 :min 5. :max 35.) 
’(Eve-Doe ’SA :nsp 3) 

) 

Figure 9.14: Verification of optimization by sampling the initial value space for the optimiza- 

tion task using three experiments each along the axes of the Lisp-EVE object encapsulating 

the optimization task. 

9.3 Summary 

Given the capability of analyzing complete VLSI designs by means of process and device 

simulation using heterogeneous tools, more complex tasks can be encapsulated by objects 

that provide basic flow control and data management functionality. Additionally, the encap- 

sulation defines standard interfaces with optimization and RSM tools that can be used for a 

variety of applications.
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Discussion 

10.1 Benefits of TCAD Environments 

With respect to simulation environments, the question is frequently raised if they are at all 

necessary, if they are beneficiary for industrial applications, or if they present merely a nicely 

designed cover-up for missing functionality and methodological flaws. Should VLSI engineers 

bother to get accustomed to a new environment, with new concepts, procedures, and possible 

drawbacks ? Or should they rather stay with existing solutions that have proven viable ? 

The costs of migrating to new procedures and employing new methodologies should not 

be neglected. As with any transition process, failures and frustrations are to be expected. 

However, the benefits gained from such transition should outweigh the costs incurred. In 

general, a software environment should guide the user through a large number of complex 

decisions and operations, providing abstractions of frequently encountered tasks and limiting 

the number of erroneous design paths taken without imposing unjustified restrictions. 

VISTA/SFC helps to liberate the users’ time and energy to focus on creative design tasks by 

offering full programmability atop of a wide range of built-in functionality. 

10.2 Side Effects on Simulators 

Automatic control and execution of heterogeneous simulation tools does not only concern the 

controlling environment, but also the tools themselves. Aside from the basic need to accept 

initial data from other tools in some form!, a certain conduct has to be followed in order 

to cooperate with other simulators. The reasonable treatment of error conditions, including 

the generation of concise and helpful error messages, returning appropriate exit codes, and 

closing files that have been opened during the program run before the program exits, as 

well as refraining from producing large amounts of unsolicited output that is only helpful 

for the tool developer, are to be mentioned. Moreover, a certain degree of tolerance and 

flexibility with respect to the input data and to the class of problems to solve proved to be 
  

!As opposed to solve problems that are hard-coded in the program-m code and can only be altered by 

re-compilation. 
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extremely important. Given the ability to automatically control large sets of experiments, 

many deficiencies and nuisances have been eliminated from the tools used as a result of 

deploying them in a greater context. 

10.3 Implementation 

The VLISP interpreter has proven to be a powerful, convenient, and flexible programming 

environment very well suited for highly dynamic applications. As a prototype development 

tool, it probably has no peer. For industrial applications, though, two drawbacks can be 

identified, which potentially limit the widespread use of VLISP-based applications: 

1. The general reluctance of most people not familiar with LISP and LISP-like syntax to 

get involved with the language. 

2. The fact that, in comparison to a compiled language, consistency checks automatically 

applicable to the body of code loaded by applications are limited in their effectiveness 

and number. 

Although these drawbacks are more than compensated for by the flexibility and ease of use 

during code developing stages, the production use of the VISTA/SFC simulation environment 

might gain considerably in long-term stability from using compiled versions of critical modules 

and routines?. 

10.4 Development Process 

The Simulation Flow Control Module as well as the VISTA/SFC environment have been 
in active use from the very beginning of the project on. Therefore, all modifications of 

interfaces and file formats that go along with the maturation of a software product had to 

keep the compatibility with previous versions in order not to render existing results generated 

with these tools obsolete. Up to three different versions of a submodule were found to 

simultaneously exist at a given time in VISTA/SFC. Although the continuing support of 

different versions did not add to the maintainability of the system during development, it 

was crucial for acceptance by the users who did not want to throw away existing data. 

Changing critical definitions and forcing all existing data to be rebuilt is the most simple, 

but not the most user-friendly solution. 

10.5 The Road Ahead 

VISTA/SFC has reached an intermediate state with respect to unrestrained industrial appli- 

cation. A high level of stability and robustness of operation has been achieved. Due the 
  

”The VLISP mechanisms to automatically interface with C or C++ code, making it available to the LISP 
user, seems to provide a sound basis for translating to C or C++ much of the LISP-code presently used in 
VISTA/SFC.
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openness for new tools and applications, a reasonable degree of penetration of the TCAD 

world can be expected. As work is still in progress, a couple of issues remain to be addressed 

by future developments. Comparing VISTA/SFC with a generic framework like Nelsis [Dim96] 
gives some hints for the direction to go. 

10.5.1 Tool Integration and Task Abstraction 

The integration of new tools still requires some manual coding, and the ones already in- 

tegrated stem from different epochs of development and follow slightly different lines of 

thoughts. To make the integration procedure less cumbersome, some interactive support 

has to be added to the environment to at least automate the interfacing of standard tools, 

1.e., tools that follow a standard scheme for data input and output, input deck format, and 

invocation. An added benefit of this undertaking would be the definition of standard tool 

development guidelines to aid in the design of the data and control interfaces of new simula- 

tors. 

The EVE concept introduces a certain degree of abstraction on the task level, but a lot of 

work remains to be done to define a terminology and supporting object classes. Furthermore, 

the different tasks encapsulated by EVE objects have to be provided with representations on 

the GUI level to be more easily accessible without losing the flexibility of the programming 

interface. 

10.5.2 Concurrent Design 

Concurrent engineering and design becomes more and more important as design tasks grow 

more complex and an increasing number of people have to cooperate. Shared access to design 

data plays a key role for efficient interaction if the access mechanisms are realized properly. 

Supporting the notion of a design repository with import and export procedures available for 

obtaining and providing data that can be used within one’s own design could be a first step. 

In the long run, a separation of different tasks into different applications acting as servers for 

user clients seems to be the preferred solution. 

10.5.3 Version Control 

Both for stand-alone operation as well - and even more so - in a concurrent design envi- 

ronment, the management of different versions of design data should be supported by the 

simulation environment, instead of relying on file-oriented tools like RCS [Tic85] being di- 
rectly accessed by the user. 

10.5.4 PIF Wafer Processor 

One of the applications that could potentially spawn from VISTA/SFC at its present state 

would take care of all simulation and data manipulation carried out on PIF wafer data. Con- 

ceptually, all simulation tools, gridding tools, and auxiliary tools (cf. Appendix C) operating 

on PIF data form a PIF wafer processor that encapsulates wafer model manipulations and
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ver     mediates between proce: mulation requests and wafer data manipulation. It acts as a sı 

for all physical and non-physical wafer model operations (Figure 10.1). The server paradigm’ 
effectively enhances the file-based tool integration and data exchange approach as it is able 

to maintain context information during sequences of operations that would otherwise be lost. 
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Figure 10.1: PIF Wafer Processor. 

  

Furthermore, calibration data can be down-loaded to the wafer processor to tune it to mea- 

surements obtained from the fab. For practical purposes, inserting calibration data into the 

data flow to the simulation tools could be done in a pre-processing module (Figure 10.2). 

Calibration can be implemented as outlined in Sections 4.5 and 8.8. 
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Figure 10.2: Calibration pre-processor for PIF Wafer Process 

3As VLISP intrinsically supports multiple parallel processes and contexts, the server need not necessarily 
be implemented as a program separate from the framework



CHAPTER 10. DISCUSSION 114 

10.5.5 Internet Collaboration and WWW 

As pointed out in [Los96], the Internet in its incarnation as World Wide Web offers an 
attractive means of cooperation between designers and design groups at distant locations. The 

architecture of VISTA/SFC has taken into account many aspects prerequisite for interfacing 

with all kinds of clients, as the built-in GUI is completely independent of the rest of the 

framework, which can run as background process servicing requests from other processes. 

The implementation of network functions consistent with the overall architecture is currently 

being addressed.



Appendix A 

LISP, XLISP, and VLISP 

For the reader unfamiliar with the LISP programming language, the following few paragraphs 

give a brief overview of the peculiarities of the language. For more detailed information, the 

literature should be consulted [WH89] [Bet89] [Ins96a]. 

The programming language LISP has been designed primarily for use in artificial intelligence 

research and applications. It is an interpreting language, byte-code compilers exist. LISP 

provides automatic memory management and dynamic type binding. Due to its unique — 

some say, ugly — syntax, LISP, despite its many advantages, has not grown very popular 

with the scientific community. LISP uses operators in prefix notation and is notorious for 

the multitude of parentheses that intersperse the code. Figure A.1 shows the same statement 

twice, on the left side coded in C [KR88], on the right side coded in LISP, Figure A.2 shows 
the definition of a simple function in the C and in LISP. 

{ 
integer x; 

X = 666; (setq x 666) 

} 

Figure A.1: Value assignment in C and LISP. setq is the LISP assignment statement and 

reads set quote to indicate that x should not be evaluated but should be used as a name. 

integer times10 (integer x) (defun times10 (x) 

{ (* 10 x) 
return(10 * x); ) 

} 

Figure A.2: Function declaration and definition in C and LISP. Note that no type declaration 

is provided in LISP, allowing values of any types to be passed to the function. If necessary, 

the type of an argument can be checked. A LISP function automatically returns the result 

of the last statement of the function code. 
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A LISP function declaration may contain various classes of function arguments as shown in 

Figure A.3. The list of arguments starts with required symbols that have to be assigned 

when the function is invoked. After the &optional statement, optional arguments may be 

passed. The &key statement starts the list of key parameters which are passed by specifying 

the name together with the value. &optional and &key parameters can also carry default 

values to be used when they are not specified by the caller. 

(defun print-time (time 

&optional (destination *standard-output*) 

&key pretty) 

;;; printing function code ... 

) 

(print-time time) 

(print-time time file) 

(print-time time :pretty T) 

(print-time time file :pretty T) 

Figure A.3: LISP function header. A LISP function accepts required, optional, and key 

arguments. The given function print-time prints the time information passed in time to 

the standard output or to an optionally specified file. The pretty key selects a pretty-print 

mode. The semicolon is used as the comment character in LISP. 

All LISP data are stored in nodes, which are allocated, collected, and reused automatically by 

the interpreter; no explicit memory management is required. As long as a node is visible to 

any procedure it is protected from garbage collection. LISP uses lexical scoping to determine 

the visibility of a symbol. 

LISP nodes carry type information, which is established at the moment when a symbol is 

bound to a specific value. In the example of Figure A.3, the symbol time of the function 

print-time accepts a value of any type. In order to work properly, however, a value of the 

correct type has to be passed to the print routine (not shown in the figure). LISP provides 

predicate functions to inquire the type of a symbol at run-time. 

XLISP by D. Betz [Bet89] is a publicly available LISP implementation including object- 

oriented extensions completely written in the programming language C; it is easily extended 

with user written built-in functions and classes. 

Vienna LISP (VLISP)is based on XLISP version 2.1 and has been enhanced by various 
extensions of the original implementation. New data types and procedure libraries have 

been added to support handling of system processes, regular expressions, operating-system 

independent file-specifications, timeouts, and time stamps (cf. Tables 3.2 and 3.3). The main 

event loop has been adapted to accommodate the callback mechanism (cf. Appendix B) used 

throughout VLISP as means of asynchronous communication with system processes, the 

graphical user interface, and timers. It runs on a variety of operating systems and platforms 

and has proven a very reliable and robust basis of implementation even for very large systems.



Appendix B 

Callback Mechanism 

The callback concept as a means of asynchronous communication in a computing environment 

plays a very crucial role for the operation of the VISTA/SFC environment. All modules 

communicate with the user interface, with external programs, and with each other by using 

VLISP’s callback mechanism to synchronize 

  

ynchronous operations on the task level and on 

the tool level. Figure B.1 shows the basic principle. After calling the callee, e.g., an external 

Caller 

  

  ti
me
 

  

Figure B.1: Callback concept for asynchronous communication between modules. 

executable or a pop-up window, the caller remains idle until the callee signals termination 

by calling the callback function passed as an argument by the caller. The callback function 

returns exit code, output data, and diagnostic information in a uniform format. In the time 

   

between call and callback, the caller is able to service other callbacks to initiate new calls. 

The callback mechanism forms the basis for the parallelization of tool calls, proc: 

projects. 

  

‚and     
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Appendix C 

Auxiliary PIF Tools 

The manipulation of large PIF files in VISTA/SFC is supported by a number of auxiliary tools 

to perform operations that are time-consuming or computationally intensive. Table C.1 gives 

a brief summary of tools and purposes. 

  

pifcopy 

pifmaid 

pifrm 

pifstat   

Copies and renames logical PIF files. 
Generates net doping and total doping distributions; generates grids; removes doping 

information from segments; deletes PIF objects from a logical file; merges dopant 

data; analyzes contents of logical PIF files and prints wafer information (Figure C.1). 

Deletes logical PIF files. 

Checks accessibility of PIF files.   
  

Table C.1: Auxiliary PIF tools. 

X-Min: -5.000000e+00, Y-Min: -2.000000e+00 

X-Max: 5.000000e+00, Y-Max: 3.660000e-01 

Units: um 

POINTS: 18 in pointList_-paaa 

LINES: 22 in lineList_-gaaa 

FACES: 2 in faceList_-raaa 

SEGMENTS: 2 in segmentList_-saaa 

GRIDS: 2 

GRID: Diff_Grid, TYPE: TRI3, DIMENSION: 2, POINTS: 4851 

GRID: Diff_Grid_-faaa, TYPE: TRI3, DIMENSION: 2, POINTS: 61 

IMPURITIES: 1 

IMPURITY: Diff_Seg_1_ImpurityDescription 

MATERIALTYPE: Boron, ACTIVITYTYPE: active, GRID: Diff_Grid 

SEGMENTS: 2 

SEGMENTNAME: Diff_Seg_1_SegmentDescription 

MATERIALTYPE: Si, FACES: 1 

SEGMENTNAME: Diff_Seg_2_SegmentDescription 

MATERIALTYPE: Si02, FACES: 1 

BOUNDARIES: O 

Figure C.1: Summary of PIF wafer information generated by pifmaid. 
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