
Modern Automata Theory

Zoltán Ésik
University of Szeged
ze@inf.u-szeged.hu

Werner Kuich
Technische Universität Wien

kuich@tuwien.ac.at

2

Contents

0 Preface 5

1 Finite automata 9
1.1 Introduction . 9
1.2 Semirings and formal power series 10
1.3 Kleene’s Theorem for Conway semirings 33
1.4 The computation of the star of a matrix 36

2 Context-Free grammars 41
2.1 Introduction . 41
2.2 Preliminaries . 42
2.3 Algebraic systems . 50
2.4 Normal forms for algebraic systems 60

3 Pushdown automata and algebraic series 67
3.1 Introduction . 67
3.2 Infinite matrices . 67
3.3 Automata and linear systems . 70
3.4 Pushdown automata and algebraic systems 73
3.5 A Kleene Theorem for algebraic power series 79

4 Transducers and abstract families 85
4.1 Introduction . 85
4.2 Transducers . 85
4.3 Abstract families of elements . 92

5 Finite and infinite words 103
5.1 Introduction . 103
5.2 Preliminaries . 105
5.3 Conway semiring-semimodule pairs 111
5.4 Kleene’s Theorem for Conway quemirings 121
5.5 Linear systems over quemirings 128
5.6 !-Context-Free grammars . 136
5.7 Transductions and abstract !-families 145

3

4 CONTENTS

6 Formal tree series 157
6.1 Introduction . 157
6.2 Preliminaries . 158
6.3 Tree automata and systems of equations 167
6.4 Kleene’s Theorem for recognizable tree series 174
6.5 Pushdown tree automata . 180
6.6 Tree series transducers . 196
6.7 Full abstract families of tree series 203
6.8 Connections to formal power series 206

Chapter 0

Preface

In this book we will give a survey on several topics in language and automata
theory and will report on generalizations of some classical results on formal lan-
guages, formal tree languages, formal languages with finite and infinite words,
automata, tree automata, etc. These generalizations are achieved by an alge-
braic treatment using semirings, formal power series, formal tree series, fixed
point theory and matrices. By the use of these mathematical constructs, defi-
nitions, constructions, and proofs are obtained that are very satisfactory from
a mathematical point of view. The use of these mathematical constructs yields
the following advantages:

(i) The constructions needed in the proofs are mainly the usual ones.

(ii) The descriptions of the constructions by formal series and matrices do not
need as much indexing as the usual descriptions.

(iii) The proofs are separated from the constructions and do not need the
intuitive contents of the constructions. Often they are shorter than the
usual proofs.

(iv) The results are more general than the usual ones. Depending on the
semiring used, the results are valid for classical grammars and automata,
classical grammars and automata with ambiguity considerations, proba-
bilistic grammars or automata, etc.

The prize to pay for these advantages is a knowledge of the basics of semiring
theory (see Kuich, Salomaa [88], Kuich [78]) and fixed point theory (see Bloom,
Ésik [10]). The reader is assumed to have some basic knowledge of formal
languages and automata (see Hopcroft, Ullman [65], Salomaa [106], Gluschkow,
Zeitlin, Justschenko [55]).

Many results in the theory of automata and languages depend only on a
few equational axioms. For example, Conway [25] has shown that Kleene’s fun-
damental theorem equating the recognizable languages with the regular ones

5

6 CHAPTER 0. PREFACE

follows from a few simple equations defining Conway semirings. Such semi-
rings are equipped with a star operation subject to the sum-star-equation and
product-star-equation.

The use of equations has several advantages. Proofs can be separated into
two parts, where the first part establishes the equational axioms, and the sec-
ond is based on simple equational reasoning. Such proofs have a transparent
structure and are usually very easy to understand, since manipulating equa-
tions is one of the most common ways of mathematical reasoning. Moreover,
since many results depend on the same equations, the first part of such proofs
usually provides a basis to several results. Finally, the results obtained by equa-
tional reasoning have a much broader scope, since many models share the same
equations.

Essentially, this book is a compilation from Ésik, Kuich [40, 41, 43, 42, 45,
38], Sections 3, 4, 5, 7 of Kuich [78], Kuich [79] and Karner, Kuich [69].

The first chapter of this book deals with the basic results in the theory of
finite automata. The presentation and the proofs of these results are based on
Conway semirings. A Conway semiring is a starsemiring that satisfies the sum-
star-equation and the product-star-equation. We introduce semirings, formal
power series and matrices, define Conway semirings and state some of their
important properties. Then we prove a Kleene Theorem for Conway semirings.
Eventually, we discuss the computation of the star of a matrix with entries in
a Conway semiring. The presentation of this chapter follows the lines of Ésik,
Kuich [40, 41].

The second chapter deals with the basic results in the theory of algebraic
systems. These are a generalization of context-free grammars. The presentation
and the proofs of these results are based on continuous semirings. We introduce
continuous semirings, state some of their important properties, and report on
the basics of fixed point theory. Then we consider the components of the least
solutions of algebraic systems. These are a generalization of the context-free
languages. Eventually, we show equivalence results for the Chomsky normal
form, the operator normal form and the Greibach normal form. Parts of the
presentation of this chapter follow the lines of Sections 3 and 5 of Kuich [78].

The third chapter introduces pushdown automata and proves that pushdown
automata and algebraic systems are mechanisms of the same power both charac-
terizing the algebraic power series. Furthermore, a characterization of algebraic
power series by means of algebraic expressions is given. The presentation of this
chapter follows the lines of Section 4 of Kuich [78] and Kuich [79].

The fourth chapter deals with a generalized version of rational transducers.
This leads to a generalization of the concept of a (full) abstract family of lan-
guages to the concept of an abstract family of elements. The presentation of
this chapter follows the lines of Section 7 of Kuich [78] and Karner, Kuich [69].

The fifth chapter deals with the basic results in the theory of finite au-
tomata and !-algebraic systems over quemirings generalizing the classical finite
automata accepting and the classical context-free grammars generating lan-
guages over finite and infinite words. The presentation of these results is based

7

on semiring-semimodule pairs, especially Conway semiring-semimodule pairs.
A Conway semiring-semimodule pair is a pair consisting of a Conway semi-
ring and a semimodule that satisfies the sum-omega-equation and the product-
omega-equation. We define these Conway semiring-semimodule pairs and state
some of their important properties. Then we introduce finite automata over
quemirings and prove a Kleene Theorem. Furthermore, we introduce linear sys-
tems over quemirings as a generalization of regular grammars with finite and
infinite derivations, and connect certain solutions of these linear systems with
the behavior of finite automata over quemirings. We then define !-algebraic
systems and characterize their solutions of order k by behaviors of algebraic
finite automata. These solutions are then set in correspondence to !-context-
free languages. Eventually, we introduce rational and algebraic transducers,
and abstract !-families of power series over quemirings and prove that rational
and algebraic power series of finite and infinite words constitute such abstract
!-families of power series. The presentation of this chapter follows the lines of
Ésik, Kuich [43, 42, 45].

The sixth chapter deals with tree (series) automata and systems of equations
over tree series. The main topics of this chapter are the following:

1. Tree automata (resp. finite, polynomial tree automata), whose behaviors
are tree series over a semiring, and systems of equations (resp. finite, polynomial
systems of equations), whose least solutions are tuples of tree series over a
semiring, are equivalent.

2. A Kleene result: the class of recognizable tree series is characterized by
rational tree series expressions.

3. Pushdown tree automata, whose behaviors are tree series over a semiring,
and algebraic tree systems are equivalent; moreover, the class of algebraic tree
series is characterized by algebraic tree series expressions (a Kleene result).

4. The class of recognizable tree series is closed under nondeterministic
simple recognizable tree series transductions.

5. The families of recognizable tree series and of algebraic tree series are full
abstract families of tree series (full AFTs).

6. The macro power series, a generalization of the indexed languages, and
the algebraic power series are exactly the yields of algebraic tree series and of
recognizable tree series, respectively; there is a Kleene result for macro power
series; the yield of a full AFT is a full abstract family of power series.

The presentation of this chapter follows the lines of Ésik, Kuich [38].

We have benefited from discussions with or comments from Manfred Droste,
Zoltán Fülöp, Ferenc Gécseg, Martin Goldstern, Alois Panholzer, Libor Polak,
Arto Salomaa and Heiko Vogler. The difficult task of typing the manuscript
was performed in an excellent fashion by Friedrich J. Urbanek.

Finally, we want to thank Stiftung Aktion Österreich-Ungarn and Stiftung
Aktion Österreich-Tschechien for financial support.

8 CHAPTER 0. PREFACE

Szeged/Wien Zoltán Ésik Werner Kuich

Chapter 1

Finite automata

1.1 Introduction

This chapter consists of this and three more sections. In Section 2 we introduce
semirings, formal power series and matrices. Then we define Conway semirings
and state their important properties: the matrix-star-equation is satisfied, and
power series semirings and matrix semirings over Conway semirings are again
Conway semirings. Very important classes of Conway semirings are complete
semirings and k-closed semirings.

In Section 3 we define A′-finite automata, A′ being a subset of a Conway
semiring A, and prove a Kleene Theorem: the collection of all behaviors of
A′-finite automata coincides with the substarsemiring of A generated by A′.
Moreover, we construct for each finite automaton an equivalent finite automaton
without "-moves.

In Section 4 we discuss the computation of the star of a matrix. We state
an algorithm valid for all matrices with entries in Conway semirings, compute
its complexity and compare it to known algorithms valid for all matrices with
entries in a complete semiring. We extend then a theorem of Mehlhorn [94]
from complete semirings to Conway semirings, stating that the computation
of the product of two matrices and the computation of the star of a matrix
are of equal complexity. Eventually, we discuss the all-pairs shortest-distance
problem, the all-pairs k-shortest distance problem and the all-pairs k-distinct-
shortest distance problem for directed graphs.

The presentation of this chapter follows the lines of Ésik, Kuich [40, 41].
We now give a typical example which will be helpful for readers with some

background in semiring theory and automata theory. Readers without this back-
ground should consult it when the used structures are defined in the following
sections.

Example 1.1.1. Let A = (Q,Σ, �, 1, {1}) be a finite automaton (a definition is
given at the end of Section 3), where Q = {1, 2}, Σ = {a, b, c, d}, and �(1, a) =
{1}, �(1, b) = {2}, �(2, c) = {1}, �(2, d) = {2} are the only non-empty images

9

10 CHAPTER 1. FINITE AUTOMATA

of �.
The graph of A is

and the adjacency matrix of this graph is

M =

(
{a} {b}
{c} {d}

)
.

(Whenever we use matrices in this example, they are 2 × 2-matrices and their
entries are formal languages over Σ.)

Consider the powers of M , e. g.,

M2 =

(
{aa, bc} {ab, bd}
{ca, dc} {cb, dd}

)
,M3 =

(
{aaa, abc, bca, bdc} {aab, abd, bcb, bdd}
{caa, cbc, dca, ddc} {cab, cbd, dcb, ddd}

)
.

It is easily proved by induction on k that (Mk)ij is the language of inscriptions
of the paths of length k from state i to state j, k ≥ 0, 1 ≤ i, j ≤ 2. Define
M∗ by (M∗)ij =

∪
k≥0(Mk)ij , 1 ≤ i, j ≤ 2. Then (M∗)ij is the language of

inscriptions of all the paths from state i to state j, 1 ≤ i, j ≤ 2.
We now construct regular expressions for the entries of M∗. Consider the

inscriptions of paths from 1 to 1 not passing 1: they are a and bdnc. Hence,
the language of inscriptions of these paths is {a} ∪ {b}{d}∗{c}. Consider now
the language of inscriptions of paths from 1 to 1: it is ({a} ∪ {b}{d}∗{c})∗.
Hence, (M∗)11 = ({a} ∪ {b}{d}∗{c})∗. We obtain (M∗)12, if we concatenate
(M∗)11 with the language of inscriptions of all paths from 1 to 2 not passing
through 1: {b}{d}∗. Hence, (M∗)12 = (M∗)11{b}{d}∗. By symmetry, we obtain
(M∗)22 = ({d} ∪ {c}{a}∗{b})∗ and (M∗)21 = (M∗)22{c}{a}∗. Hence,

M∗ =

(
({a} ∪ {b}{d}∗{c})∗ ({a} ∪ {b}{d}∗{c})∗{b}{d}∗

({d} ∪ {c}{a}∗{b})∗{c}{a}∗ ({d} ∪ {c}{a}∗{b})∗
)

The language ∣∣A∣∣ accepted by the finite automaton A is the language of
inscriptions of all paths from the initial state 1 to the final state 1, i. e., ∣∣A∣∣ =
(M∗)11 = ({a} ∪ {b}{d}∗{c})∗.

1.2 Semirings and formal power series

By a semiring we mean a set A together with two binary operations + and ⋅
and two constant elements 0 and 1 such that

(i) ⟨A,+, 0⟩ is a commutative monoid,

(ii) ⟨A, ⋅, 1⟩ is a monoid,

(iii) the distribution laws a ⋅ (b+ c) = a ⋅ b+ a ⋅ c and (a + b) ⋅ c = a ⋅ c+ b ⋅ c
hold for every a, b, c,

1.2. SEMIRINGS AND FORMAL POWER SERIES 11

(iv) 0 ⋅ a = a ⋅ 0 = 0 for every a.

A semiring is called commutative if a ⋅ b = b ⋅ a for every a and b. It is called
idempotent if 1 + 1 = 1, i. e., a+ a = a for every a.

If the operations and the constant elements of A are understood then we
denote the semiring simply by A. Otherwise, we use the notation ⟨A,+, ⋅, 0, 1⟩.
In the sequel, A will denote a semiring.

Intuitively, a semiring is a ring (with unity) without subtraction. A typical
example is the semiring of nonnegative integers ℕ. A very important semiring
in connection with language theory is the Boolean semiring B = {0, 1} where
1+1 = 1⋅1 = 1. Clearly, all rings (with unity), as well as all fields, are semirings,
e. g., integers ℤ, rationals ℚ, reals ℝ, complex numbers ℂ etc.

Let ℕ∞ = ℕ ∪ {∞}. Then ⟨ℕ∞,+, ⋅, 0, 1⟩ and ⟨ℕ∞,min,+,∞, 0⟩, where +,
⋅ and min are defined in the obvious fashion (observe that 0 ⋅ ∞ = ∞ ⋅ 0 = 0),
are semirings.

Let ℝ+ = {a ∈ ℝ ∣ a ≥ 0} and ℝ∞+ = ℝ+ ∪ {∞}. Then ⟨ℝ+,+, ⋅, 0, 1⟩,
⟨ℝ∞+ ,+, ⋅, 0, 1⟩ and ⟨ℝ∞+ ,min,+,∞, 0⟩ are semirings. The semirings ⟨ℕ∞+ ,min,+,∞, 0⟩,
⟨ℝ∞+ ,min,+,∞, 0⟩ are called tropical semirings.

Let Σ be an alphabet and define, for formal languages L1, L2 ⊆ Σ∗, the
product of L1 and L2 by

L1 ⋅ L2 = {w1w2 ∣ w1 ∈ L1, w2 ∈ L2}.

Then ⟨2Σ∗ ,∪, ⋅, ∅, {"}⟩ is a semiring, called the semiring of formal languages
over Σ. Here 2S denotes the power set of a set S and ∅ denotes the empty set.

If S is a set, 2S×S is the set of binary relations over S. Define, for two
relations R1 and R2, the product R1 ⋅R2 ⊆ S × S by

R1 ⋅R2 = {(s1, s2) ∣
(s1, s) ∈ R1 and (s, s2) ∈ R2}
there exists an s ∈ S such that

and, furthermore, define
Δ = {(s, s) ∣ s ∈ S}.

Then ⟨2S×S ,∪, ⋅, ∅,Δ⟩ is a semiring, called the semiring of binary relations over
S.

A starsemiring is a semiring equipped with an additional unary operation
∗. The following semirings are starsemirings:

(i) The Boolean semiring ⟨B,+, ⋅, ∗, 0, 1⟩ with 0∗ = 1∗ = 1.

(ii) The semiring ⟨ℕ∞,+, ⋅, ∗, 0, 1⟩ with 0∗ = 1 and a∗ =∞ for a ∕= 0.

(iii) The tropical semiring ⟨ℕ∞,min,+, ∗,∞, 0⟩ with a∗ = 0 for all a ∈ ℕ∞.

(iv) The semiring ⟨ℝ∞+ ,+, ⋅, ∗, 0, 1⟩ with a∗ = 1/(1 − a) for 0 ≤ a < 1 and
a∗ =∞ for a ≥ 1.

(v) The tropical semiring ⟨ℝ∞+ ,min,+, ∗,∞, 0⟩ with a∗ = 0 for all a ∈ ℝ∞+ .

12 CHAPTER 1. FINITE AUTOMATA

(vi) The semiring ⟨2Σ∗ ,∪, ⋅, ∗, ∅, {"}⟩ of formal languages over Σ with L∗ =∪
n≥0 L

n for all L ⊆ Σ∗.

(vii) The semiring ⟨2S×S ,∪, ⋅, ∗, ∅,Δ⟩ of binary relations over S with R∗ =∪
n≥0R

n for all R ⊆ S × S. The relation R∗ is called the reflexive and
transitive closure of R, i. e., the smallest reflexive and transitive binary
relation over S containing R.

(viii) The idempotent commutative semiring ⟨{0, 1, a,∞},+, ⋅, ∗, 0, 1⟩, with 1 +
a = a, 1 +∞ = a+∞ =∞, a ⋅ a = a, a ⋅ ∞ =∞ ⋅∞ =∞, 0∗ = 1∗ = 1,
a∗ =∞∗ =∞.

The semirings (i)–(v) and (viii) are commutative, the semirings (i), (iii), (v),
(vi), (vii), (viii) are idempotent.

A morphism of semirings is a mapping that preserves the semiring operations
and constants. Let A and A′ be semirings. Then a mapping ℎ : A → A′ is a
morphism from A into A′ if ℎ(0) = 0, ℎ(1) = 1, ℎ(a + b) = ℎ(a) + ℎ(b) and
ℎ(a ⋅ b) = ℎ(a) ⋅ ℎ(b) for all a, b ∈ A. A morphism of starsemirings is a mapping
that preserves additionally the star operation, i. e., ℎ(a∗) = ℎ(a)∗ for all a ∈ A.

We now define formal power series (see Kuich, Salomaa [88]). Let Σ be a
(finite) alphabet. Mappings r from Σ∗ into A are called (formal) power series.
The values of r are denoted by (r, w), where w ∈ Σ∗, and r itself is written as
a formal sum

r =
∑
w∈Σ∗

(r, w)w.

The values (r, w) are also referred to as the coefficients of the series. The
collection of all power series r as defined above is denoted by A⟨⟨Σ∗⟩⟩.

This terminology reflects the intuitive ideas connected with power series. We
call the power series “formal” to indicate that we are not interested in summing
up the series but rather, for instance, in various operations defined for series.

Given r ∈ A⟨⟨Σ∗⟩⟩, the subset of Σ∗ defined by

{w ∣ (r, w) ∕= 0}

is termed the support of r and denoted by supp(r). The subset of A⟨⟨Σ∗⟩⟩
consisting of all series with a finite support is denoted by A⟨Σ∗⟩. Series of
A⟨Σ∗⟩ are referred to as polynomials.

Examples of polynomials belonging to A⟨Σ∗⟩ for every A are 0, w, aw, a ∈ A,
w ∈ Σ∗, defined by:

(0, w) = 0 for all w,
(w,w) = 1 and (w,w′) = 0 for w ∕= w′,
(aw,w) = a and (aw,w′) = 0 for w ∕= w′.

Note that w equals 1w.
We now introduce two operations inducing a semiring structure to power

series. For r1, r2 ∈ A⟨⟨Σ∗⟩⟩, we define the sum r1 +r2 ∈ A⟨⟨Σ∗⟩⟩ by (r1 +r2, w) =

1.2. SEMIRINGS AND FORMAL POWER SERIES 13

(r1, w) + (r2, w) for all w ∈ Σ∗. For r1, r2 ∈ A⟨⟨Σ∗⟩⟩, we define the (Cauchy)
product r1r2 ∈ A⟨⟨Σ∗⟩⟩ by (r1r2, w) =

∑
w1w2=w(r1, w1)(r2, w2) for all w ∈ Σ∗.

Clearly, ⟨A⟨⟨Σ∗⟩⟩,+, ⋅, 0, "⟩ and ⟨A⟨Σ∗⟩,+, ⋅, 0, "⟩ are semirings.
For a ∈ A, r ∈ A⟨⟨Σ∗⟩⟩, we define the scalar products ar, ra ∈ A⟨⟨Σ∗⟩⟩ by

(ar, w) = a(r, w) and (ra, w) = (r, w)a for all w ∈ Σ∗. Observe that ar = (a")r
and ra = r(a"). If A is commutative then ar = ra.

A series r ∈ A⟨⟨Σ∗⟩⟩, where every coefficient equals 0 or 1, is termed the
characteristic series of its support L, in symbols, r = char(L).

The Hadamard product of two power series r1 and r2 belonging to A⟨⟨Σ∗⟩⟩
is defined by

r1 ⊙ r2 =
∑
w∈Σ∗

(r1, w)(r2, w)w.

It will be convenient to use the notations A⟨Σ ∪ "⟩, A⟨Σ⟩ and A⟨"⟩ for
the collection of polynomials having their supports in Σ ∪ {"}, Σ and {"},
respectively. In the sequel Σ will denote a finite alphabet.

Clearly, 2Σ∗ is a semiring isomorphic to B⟨⟨Σ∗⟩⟩. Essentially, a transition
from 2Σ∗ to B⟨⟨Σ∗⟩⟩ and vice versa means a transition from L to char(L) and
from r to supp(r), respectively. The operation corresponding to the Hadamard
product is the intersection of languages. If r1 and r2 are the characteristic series
of the languages L1 and L2 then r1 ⊙ r2 is the characteristic series of L1 ∩ L2.

Let ri ∈ A⟨⟨Σ∗⟩⟩, i ∈ I, where I is an arbitrary index set. Define, for w ∈ Σ∗,
Iw = {i ∣ (ri, w) ∕= 0}. Assume now that for all w ∈ Σ∗, Iw is finite. Then we
can define the sum

∑
i∈I ri by

(
∑
i∈I

ri, w) =
∑
i∈Iw

(ri, w)

for all w ∈ Σ∗.
The Hurwitz product (also called shuffle product) is defined as follows. For

w1, w2 ∈ Σ∗ and x1, x2 ∈ Σ, we define w1 ⊔⊔ w2 ∈ A⟨⟨Σ∗⟩⟩ by

w1 ⊔⊔ " = w1 , " ⊔⊔ w2 = w2 ,

and
w1x1 ⊔⊔ w2x2 = (w1x1 ⊔⊔ w2)x2 + (w1 ⊔⊔ w2x2)x1 .

For r1, r2 ∈ A⟨⟨Σ∗⟩⟩, the Hurwitz product r1⊔⊔ r2 ∈ A⟨⟨Σ∗⟩⟩ of r1 and r2 is then
defined by

r1 ⊔⊔ r2 =
∑

w1,w2∈Σ∗

(r1, w1)(r2, w2)w1 ⊔⊔ w2 .

This Hurwitz product is welldefined since

(r1 ⊔⊔ r2, w) =
∑

∣w1∣+∣w2∣=∣w∣

(r1, w1)(r2, w2)(w1 ⊔⊔ w2, w)

is a finite sum for all w ∈ Σ∗.

14 CHAPTER 1. FINITE AUTOMATA

In language theory, the shuffle product is customarily defined for languages
L and L′ by

L ⊔⊔ L′ = {w1w
′
1 . . . wnw

′
n ∣ w1 . . . wn ∈ L, w′1 . . . w′n ∈ L′, n ≥ 1} .

If r1, r2 ∈ B⟨⟨Σ∗⟩⟩ then this definition is “isomorphic” to that given above for
formal power series.

Generalizations of formal power series over the free monoid to formal power
series over graded monoids and skew formal power series can be found in Sakarovitch [105],
Droste, Kuske [28] and Kuich [87], respectively.

In a starsemiring, we define, for r ∈ A⟨⟨Σ∗⟩⟩, the star r∗ ∈ A⟨⟨Σ∗⟩⟩ of r
inductively as follows:

(r∗, ") = (r, ")∗, (r∗, w) = (r, ")∗
∑

uv=w, u ∕="

(r, u)(r∗, v), w ∈ Σ∗, w ∕= " .

(See Theorem 3.5 of Kuich, Salomaa [88] and the forthcoming Theorem 2.27.)
If ⟨A,+, ⋅, ∗, 0, 1⟩ is a starsemiring then the star operation in the starsemiring
⟨A⟨⟨Σ∗⟩⟩,+, ⋅, ∗, 0, "⟩ will be always defined as above.

We now introduce matrices. Let m,n ≥ 1. Mappings M from {1, . . . ,m} ×
{1, . . . , n} into a semiring A are called matrices. The values of M are denoted
by Mij , where 1 ≤ i ≤ m, 1 ≤ j ≤ n. The values Mij are also referred to as
the entries of the matrix M . In particular, Mij is called the (i, j)-entry of M .
The collection of all matrices as defined above is denoted by Am×n. If m = 1
or n = 1 then M is called row or column vector, respecively.

We introduce some operations and special matrices inducing a monoid or
semiring structure to matrices. For M1,M2 ∈ Am×n we define the sum M1 +
M2 ∈ Am×n by (M1 +M2)ij = (M1)ij + (M2)ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Furthermore, we introduce the zero matrix 0 ∈ Am×n. All entries of the zero
matrix 0 are 0. By these definitions, ⟨Am×n,+, 0⟩ is a commutative monoid.

For M1 ∈ Am×n and M2 ∈ An×p we define the product M1M2 ∈ Am×p by

(M1M2)i1i3 =
∑

1≤i2≤n

(M1)i1i2(M2)i2i3 for all 1 ≤ i1 ≤ m, 1 ≤ i3 ≤ p.

Furthermore, we introduce the matrix of unity E ∈ An×n. The diagonal entries
Eii of E are equal to 1, the off-diagonal entries Ei1i2 , i1 ∕= i2, of E are equal to
0, 1 ≤ i, i1, i2 ≤ n.

It is easily shown that matrix multiplication is associative, the distribution
laws are valid for matrix addition and multiplication, E is a multiplicative unit
and 0 is a multiplicative zero. So we infer that ⟨An×n,+, ⋅, 0, E⟩ is a semiring
for each n ≥ 1.

Let A be a starsemiring. Then for M ∈ An×n we define M∗ ∈ An×n induc-
tively as follows:

(i) For n = 1 and M = (a), a ∈ A, we define M∗ = (a∗).

1.2. SEMIRINGS AND FORMAL POWER SERIES 15

(ii) For n > 1 we partition M into blocks M =

(
a b
c d

)
and define M∗ =(

� �
 �

)
with a, � ∈ A1×1, b, � ∈ A1×(n−1), c, ∈ A(n−1)×1, d, � ∈

A(n−1)×(n−1), by

� = (a+ bd∗c)∗, � = �bd∗, = �ca∗, � = (d+ ca∗b)∗ .

(See Theorem 3.3 of Conway [25], Theorem 4.21 of Kuich, Salomaa [88], The-
orem 2.5 of Kuich [78], the forthcoming Theorem 2.26 and Example 1.1.) If
⟨A,+, ⋅, ∗, 0, 1⟩ is a starsemiring then the star operation in the starsemiring
⟨An×n,+, ⋅, ∗, 0, E⟩ will always be defined as above.

Three equations are important for applications in automata theory:

(i) The sum-star-equation is valid in the starsemiring A if

(a+ b)∗ = (a∗b)∗a∗

for all a, b ∈ A. (See the forthcoming Theorem 2.24 and Example 2.2.1.)

(ii) The product-star-equation is valid in the starsemiring A if

(ab)∗ = 1 + a(ba)∗b

for all a, b ∈ A. (See the forthcoming Theorem 2.24 and Example 2.2.2.)

(iii) Let M and M∗ be given as in (ii) of the definition of M∗ above, but with
a, � ∈ An1×n1 , b, � ∈ An1×n2 , c, ∈ An2×n1 , d, � ∈ An2×n2 , n1 + n2 =
n. Then the matrix-star-equation is valid in the starsemiring A if M∗

is independent of the partition of n in summands. (See the forthcoming
Theorems 2.26 and 3.2.1 and Example 2.2.3.)

A Conway semiring is now a starsemiring that satisfies the sum-star-equation
and the product-star-equation. All the starsemirings in (i)–(viii) are Conway
semirings.

Conway [25] und Bloom, Ésik [9, 10] have shown that An×n and A⟨⟨Σ∗⟩⟩ are
Conway semirings if A is a Conway semiring. Moreover, they have shown that
the matrix-star-equation is valid for Conway semirings.

Since complete elementary proofs of these results are not well documented,
we give complete elementary proofs that An×n and A⟨⟨Σ∗⟩⟩ are Conway semi-
rings and that the matrix-star-equation is valid for Conway semirings.

In the proofs, we use the notation a+ = aa∗ = a∗a, a ∈ A.
We will prove in the sequel that the sum-star-equation and the product-star-

equation hold in A(n+1)×(n+1), n ≥ 0, if A is a Conway semiring. This means
that A(n+1)×(n+1) is again a Conway semiring. The proofs are by induction on
n. There are no problems with n = 0. So we assume, up to Theorem 2.13 that
n ≥ 1. Furthermore, we will prove that the matrix-star-equation is valid for
Conway semirings.

Firstly, we prove that some particular cases of the sum-star-equation are
satisfied in the matrix semiring A(n+1)×(n+1).

16 CHAPTER 1. FINITE AUTOMATA

Lemma 1.2.1 Let A be a Conway semiring. Then, for a, f ∈ A1×1, g ∈ A1×n,
ℎ ∈ An×1, d, i ∈ An×n, the following equality is satisfied:((

a 0
0 d

)
+

(
f g
ℎ i

))∗
=

((
a 0
0 d

)∗(
f g
ℎ i

))∗(
a 0
0 d

)∗
.

Proof. The left side and the right side of the equality are equal to(
� (a+ f)∗g�

(d+ i)∗ℎ� �

)
and

(
�′ (a∗f)∗a∗g�′

(d∗i)∗d∗ℎ�′ �′

)
,

respectively, where � = (a + f + g(d + i)∗ℎ)∗, � = (d + i + ℎ(a + f)∗g)∗,
�′ = (a∗f + a∗g(d∗i)∗d∗ℎ)∗a∗, �′ = (d∗i+ d∗ℎ(a∗f)∗a∗g)∗d∗.

We now obtain � = (a∗f +a∗g(d+ i)∗ℎ)∗a∗ = (a∗f +a∗g(d∗i)∗d∗ℎ)∗a∗ = �′

and (d+ i)∗ℎ� = (d∗i)∗d∗ℎ�′. The substitution d↔ a, i↔ f , ℎ↔ g shows the
symmetry of the proof for the remaining two entries of the matrices.

Lemma 1.2.2 Let A be a Conway semiring. Then, for f ∈ A1×1, b, g ∈ A1×n,
c, ℎ ∈ An×1, i ∈ An×n, the following equalities are satisfied:((

0 b
0 0

)
+

(
f g
ℎ i

))∗
=

((
0 b
0 0

)∗(
f g
ℎ i

))∗(
0 b
0 0

)∗
,((

0 0
c 0

)
+

(
f g
ℎ i

))∗
=

((
0 0
c 0

)∗(
f g
ℎ i

))∗(
0 0
c 0

)∗
.

Proof. The left side and the right side of the first equality are equal to(
� �(g + b)i∗

�ℎf∗ �

)
and

(
�′ �′b+ �′(g + bi)i∗

�′ℎ(f + bℎ)∗ �′ℎ(f + bℎ)∗b+ �′

)
,

respectively, where � = (f + (g + b)i∗ℎ)∗, � = (i+ ℎf∗(g + b))∗, �′ = (f + bℎ+
(g + bi)i∗ℎ)∗, �′ = (i+ ℎ(f + bℎ)∗(g + bi))∗.

We now obtain �′ = (f + bℎ + gi∗ℎ + bii∗ℎ)∗ = (f + gi∗ℎ + bi∗ℎ)∗ =
�, �′b + �′(g + bi)i∗ = �′b + �′gi∗ + �′bii∗ = �′bi∗ + �′gi∗ = �(g + b)i∗,
�′ℎ(f + bℎ)∗ = (i + ℎ(f + bℎ)∗(g + bi))∗ℎ(f + bℎ)∗ = (i + ℎ(f∗bℎ)∗f∗(g +
bi))∗ℎ(f∗bℎ)∗f∗ = (i + (ℎf∗b)∗ℎf∗(g + bi))∗(ℎf∗b)∗ℎf∗ = (i + (ℎf∗b)∗ℎf∗g +
(ℎf∗b)∗ℎf∗bi)∗(ℎf∗b)∗ℎf∗ = ((ℎf∗b)∗ℎf∗g + (ℎf∗b)∗i)∗(ℎf∗b)∗ℎf∗ = (ℎf∗b +
ℎf∗g+i)∗ℎf∗ = �ℎf∗, �′ℎ(f+bℎ)∗b+�′ = ((ℎf∗b)∗ℎf∗g+(ℎf∗b)∗i)∗(ℎf∗b)∗ℎf∗b+
(i+ℎ(f∗bℎ)∗f∗(g+bi))∗ = ((ℎf∗b)∗ℎf∗g+(ℎf∗b)∗i)∗(ℎf∗b)∗ℎf∗b+((ℎf∗b)∗ℎf∗g+
(ℎf∗b)∗i)∗ + ((ℎf∗b)∗ℎf∗g + (ℎf∗b)∗i)∗(ℎf∗b)∗ = (ℎf∗b+ ℎf∗g + i)∗ = �.

The left side and the right side of the second equality are equal to(
� �gi∗

�(c+ ℎ)f∗ �

)
and

(
�′ + �′g(cg + i)∗c �′g(cg + i)∗

�′(cf + ℎ)f∗ + �′ �′

)
,

respectively, where � = (f +gi∗(c+ℎ))∗, � = (i+(c+ℎ)f∗g)∗, �′ = (f +g(cg+
i)∗(cf + ℎ))∗, �′ = (cg + i + (cf + ℎ)f∗g)∗. The substitution f ↔ i, ℎ ↔ g,
b↔ c shows the symmetry to the first equality of the lemma.

1.2. SEMIRINGS AND FORMAL POWER SERIES 17

Lemma 1.2.3 Let A be a Conway semiring. Then, for b ∈ A1×n, c ∈ An×1

and M ∈ A(n+1)×(n+1), the following equality is satisfied:

((
0 b
c 0

)
+M

)∗
=

((
0 b
c 0

)∗
M

)∗(
0 b
c 0

)∗
.

Proof.

((
0 b
c 0

)
+M

)∗
=

((
0 b
0 0

)
+

(
0 0
c 0

)
+M

)∗
=((

0 b
0 0

)∗(
0 0
c 0

)
+

(
0 b
0 0

)∗
M

)∗(
0 b
0 0

)∗
=((

bc 0
c 0

)
+

(
1 b
0 E

)
M

)∗(
1 b
0 E

)
=((

bc 0
0 0

)
+

(
0 0
c 0

)
+

(
1 b
0 E

)
M

)∗(
1 b
0 E

)
=((

(bc)∗ 0
0 E

)(
0 0
c 0

)
+

(
(bc)∗ 0

0 E

)(
1 b
0 E

)
M

)∗
⋅(

(bc)∗ 0
0 E

)(
1 b
0 E

)
=((

0 0
c 0

)
+

(
(bc)∗ (bc)∗b

0 E

)
M

)∗(
(bc)∗ (bc)∗b

0 E

)
=((

1 0
c E

)(
(bc)∗ (bc)∗b

0 E

)
M

)∗(
1 0
c E

)(
(bc)∗ (bc)∗b

0 E

)
=((

(bc)∗ (bc)∗b
c(bc)∗ (bc)∗

)
M

)∗(
(bc)∗ (bc)∗b
c(bc)∗ (bc)∗

)
=((

0 b
c 0

)∗
M

)∗(
0 b
c 0

)∗
.

Theorem 1.2.4 Let A be a Conway semiring. Then the sum-star-equation
holds in the semiring A(n+1)×(n+1).

18 CHAPTER 1. FINITE AUTOMATA

Proof. Let a ∈ A1×1, b ∈ A1×n, c ∈ An×1, d ∈ An×n, M ∈ A(n+1)×(n+1). Then
we obtain((

a b
c d

)
+M

)∗
=((

a 0
0 d

)∗(
0 b
c 0

)
+

(
a 0
0 d

)∗
M

)∗(
a 0
0 d

)∗
=((

0 a∗b
d∗c 0

)
+

(
a∗ 0
0 d∗

)
M

)∗(
a∗ 0
0 d∗

)
=((

0 a∗b
d∗c 0

)∗(
a∗ 0
0 d∗

)
M

)∗(
0 a∗b
d∗c 0

)∗(
a∗ 0
0 d∗

)
=((

(a∗bd∗c)∗a∗ a∗b(d∗ca∗b)∗d∗

d∗c(a∗bd∗c)∗a∗ (d∗ca∗b)∗d∗

)
M

)∗
⋅(

(a∗bd∗c)∗a∗ a∗b(d∗ca∗b)∗d∗

d∗c(a∗bd∗c)∗a∗ (d∗ca∗b)∗d∗

)
=((

(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)
M

)∗
⋅(

(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)
=((

a b
c d

)∗
M

)∗(
a b
c d

)∗
.

Secondly, we prove that some particular cases of a variant of the sum-star-
equality are satisfied in the matrix semiring A(n+1)×(n+1). The variant is (a +
b)∗ = a∗(ba∗)∗, a, b ∈ A.

Lemma 1.2.5 Let A be a Conway semiring. Then, for a, f ∈ A1×1, g ∈ A1×n,
ℎ ∈ An×1, d, i ∈ An×n, the following equality is satisfied:((

a 0
0 d

)
+

(
f g
ℎ i

))∗
=

(
a 0
0 d

)∗((
f g
ℎ i

)(
a 0
0 d

)∗)∗
.

Proof. The left side and the right side of the equality are equal to(
� (a+ f)∗g�

(d+ i)∗ℎ� �

)
and

(
�′ (fa∗)∗gd∗�′

(id∗)∗ℎa∗�′ �′

)
,

respectively, where � = (a + f + g(d + i)∗ℎ)∗, � = (d + i + ℎ(a + f)∗g)∗,
�′ = a∗(fa∗ + gd∗(id∗)∗ℎa∗)∗, �′ = d∗(id∗ + ℎa∗(fa∗)∗gd∗)∗.

Since �′ = (a∗f + a∗g(d∗i)∗d∗ℎ)∗a∗ and �′ = (d∗i + d∗ℎ(a∗f)∗a∗g)∗d∗, the
rest of the proof is identical with the proof of Lemma 2.1.

Lemma 1.2.6 Let A be a Conway semiring. Then, for f ∈ A1×1, b, g ∈ A1×n,
c, ℎ ∈ An×1, i ∈ An×n, the following equalities are satisfied:((

0 b
0 0

)
+

(
f g
ℎ i

))∗
=

(
0 b
0 0

)∗((
f g
ℎ i

)(
0 b
0 0

)∗)∗
,((

0 0
c 0

)
+

(
f g
ℎ i

))∗
=

(
0 0
c 0

)∗((
f g
ℎ i

)(
0 0
c 0

)∗)∗
.

1.2. SEMIRINGS AND FORMAL POWER SERIES 19

Proof. The left side and the right side of the first equality are equal to

(
� f∗(g + b)�

i∗ℎ� �

)

and

(
�′ + b(ℎb+ i)∗ℎ�′ f∗(fb+ g)�′ + b�′

(ℎb+ i)∗ℎ�′ �′

)
,

respectively, where � = (f + (g+ b)i∗ℎ)∗, � = (i+ℎf∗(g+ b))∗, �′ = (f + (fb+
g)(ℎb+ i)∗ℎ)∗, �′ = (ℎb+ i+ ℎf∗(fb+ g))∗.

We now obtain �′ + b(ℎb + i)∗ℎ�′ = (1 + b(i∗ℎb)∗i∗ℎ)�′ = (bi∗ℎ)∗�′ =
(bi∗ℎ)∗(f∗(fb+ g)i∗(ℎbi∗)∗ℎ)∗f∗ = (bi∗ℎ)∗(f∗(fb+ g)i∗ℎ(bi∗ℎ)∗)∗f∗ = (bi∗ℎ+
f∗fbi∗ℎ+ f∗gi∗ℎ)∗f∗ = (f∗bi∗ℎ+ f∗gi∗ℎ)∗f∗ = (f + bi∗ℎ+ gi∗ℎ)∗ = �, (ℎb+
i)∗ℎ�′ = i∗(ℎbi∗)∗ℎ�′ = i∗ℎ(bi∗ℎ)∗�′ = i∗ℎ�, �′ = (ℎb + i + ℎf∗(fb + g))∗ =
(i+ ℎf∗b+ ℎf∗g)∗ = �, f∗(fb+ g)�′ + b�′ = f∗b�′ + f∗g�′ = f∗(g + b)�.

The left side and the right side of the second equality are equal to

(
� f∗g�

i∗(c+ ℎ)� �

)

and

(
�′ (f + gc)∗g�′

c�′ + i∗(ℎ+ ic)�′ c(f + gc)∗g�′ + �′

)
,

respectively, where � = (f + gi∗(c+ ℎ))∗, � = (i+ (c+ ℎ)f∗g)∗, �′ = (f + gc+
gi∗(ℎ + ic))∗, �′ = (i + (ℎ + ic)(f + gc)∗g)∗. The substitution f ↔ i, ℎ ↔ g,
b↔ c shows the symmetry to the first equality of the lemma.

Lemma 1.2.7 Let A be a Conway semiring. Then, for b ∈ A1×n, c ∈ An×1

and M ∈ A(n+1)×(n+1), the following equality is satisfied:

((
0 b
c 0

)
+M

)∗
=

(
0 b
c 0

)∗(
M

(
0 b
c 0

)∗)∗
.

20 CHAPTER 1. FINITE AUTOMATA

Proof.

((
0 b
c 0

)
+M

)∗
=

((
0 b
0 0

)
+

(
0 0
c 0

)
+M

)∗
=(

0 b
0 0

)∗((
0 0
c 0

)(
0 b
0 0

)∗
+M

(
0 b
0 0

)∗)∗
=(

1 b
0 E

)((
0 0
c cb

)
+M

(
1 b
0 E

))∗
=(

1 b
0 E

)((
0 0
0 cb

)
+

(
0 0
c 0

)
+M

(
1 b
0 E

))∗
=(

1 b
0 E

)(
1 0
0 (cb)∗

)((
0 0
c 0

)(
1 0
0 (cb)∗

)
+

M

(
1 b
0 E

)(
1 0
0 (cb)∗

))∗
=(

1 b(cb)∗

0 (cb)∗

)((
0 0
c 0

)
+M

(
1 b(cb)∗

0 (cb)∗

))∗
=(

1 b(cb)∗

0 (cb)∗

)(
1 0
c 1

)(
M

(
1 b(cb)∗

0 (cb)∗

)(
1 0
c 1

))∗
=(

(bc)∗ b(cb)∗

(cb)∗c (cb)∗

)(
M

(
(bc)∗ b(cb)∗

(cb)∗c (cb)∗

))∗
=(

0 b
c 0

)∗(
M

(
0 b
c 0

)∗)∗
.

Theorem 1.2.8 Let A be a Conway semiring. Then, for a ∈ A1×1, b ∈ A1×n,
c ∈ An×1, d ∈ An×n, and M ∈ A(n+1)×(n+1) the following equality is satisfied:

((
a b
c d

)
+M

)∗
=

(
a b
c d

)∗(
M

(
a b
c d

)∗)∗
.

1.2. SEMIRINGS AND FORMAL POWER SERIES 21

Proof. ((
a b
c d

)
+M

)∗
=(

a 0
0 d

)∗((
0 b
c 0

)(
a 0
0 d

)∗
+M

(
a 0
0 d

)∗)∗
=(

a∗ 0
0 d∗

)((
0 bd∗

ca∗ 0

)
+M

(
a∗ 0
0 d∗

))∗
=(

a∗(bd∗ca∗)∗ a∗bd∗(ca∗bd∗)∗

d∗ca∗(bd∗ca∗)∗ d∗(ca∗bd∗)∗

)
⋅(

M

(
a∗(bd∗ca∗)∗ a∗bd∗(ca∗bd∗)∗

d∗ca∗(bd∗ca∗)∗ d∗(ca∗bd∗)∗

))∗
=(

(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)
⋅(

M

(
(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

))∗
=(

a b
c d

)∗(
M

(
a b
c d

)∗)∗
.

The next theorem splits the product-star-equation into two more simple
equations. The proof is easy and is omitted.

Theorem 1.2.9 Let A be a starsemiring. Then the equalities

a∗ = aa∗ + 1 and (ab)∗a = a(ba)∗ ,

a, b ∈ A, are equivalent to the product-star-equation.

Theorem 1.2.10 Let A be a Conway semiring. Then, for M ∈ A(n+1)×(n+1),

M∗ = MM∗ + E .

Proof. Let M =

(
a b
c d

)
, a ∈ A1×1, b ∈ A1×n, c ∈ An×1, d ∈ An×n. Then

MM∗ + E =(
a b
c d

)(
(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)
+

(
1 0
0 E

)
=(

(a+ bd∗c)(a+ bd∗c)∗ + 1 (aa∗b+ b)(d+ ca∗b)∗

(c+ dd∗c)(a+ bd∗c) (ca∗b+ d)(d+ ca∗b)∗ + E

)
=(

a+ bd∗c a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)
= M∗ .

Thirdly, we prove that some particular cases of the product-star-equation
are satisfied in the matrix semiring A(n+1)×(n+1).

22 CHAPTER 1. FINITE AUTOMATA

Lemma 1.2.11 Let A be a Conway semiring. Then, for a ∈ A1×1, b, g ∈ A1×n,
c, ℎ ∈ An×1, d ∈ An×n, the following equality is satisfied:((

a b
c d

)(
0 g
ℎ 0

))∗(
a b
c d

)
=(

a b
c d

)((
0 g
ℎ 0

)(
a b
c d

))∗
.

Proof. The left side and the right side of the equality are equal to(
�a(gc)∗ �b+ �ag(cg)∗d

�dℎ(bℎ)∗a+ �c �d(ℎb)∗

)
and (

(bℎ)∗a�′ a(gc)∗gd�′ + b�′

c�′ + d(ℎb)∗ℎa�′ (cg)∗d�′

)
,

respectively, where � = (bℎ + ag(cg)∗dℎ)∗, � = (cg + dℎ(bℎ)∗ag)∗, �′ = (gc +
gd(ℎb)∗ℎa)∗, �′ = (ℎb+ ℎa(gc)∗gd)∗.

We now obtain �a(gc)∗ = ((bℎ)∗ag(cg)∗dℎ)∗(bℎ)∗a(gc)∗ = (bℎ)∗a((gc)∗gdℎ(bℎ)∗a)∗(gc)∗ =
(bℎ)∗a�′; moreover, since ℎ� = ℎ((b+ag(cg)∗d)ℎ)∗ = (ℎ(b+a(gc)∗gd))∗ℎ = �′ℎ,
we obtain �b + �ag(cg)∗d = �(b + ag(cg)∗d) = (1 + (bℎ + a(gc)∗gdℎ)�)(b +
a(gc)∗gd) = b + a(gc)∗gd + bℎ�(b + a(gc)∗gd) + a(gc)∗gdℎ�(b + a(gc)∗gd) =
b + a(gc)∗gd + b�′ℎ(b + a(gc)∗gd) + a(gc)∗gd�′ℎ(b + a(gc)∗gd) = b(1 + �′ℎ(b +
a(gc)∗gd)+a(gc)∗gd(1+�′ℎ(b+a(gc)∗gd)) = b�′+a(gc)∗gd�′. The substitution
b↔ c, ℎ↔ g, a↔ d yields �↔ � and �′ ↔ �′. Hence, we obtain by analogous
computations �d(ℎb)∗ = (cg)∗d�′ and �dℎ(bℎ)∗a+ �c = c�′ + d(ℎb)∗ℎa�′.

Lemma 1.2.12 Let A be a Conway semiring. Then, for a, f ∈ A1×1, b ∈ A1×n,
c ∈ An×1, d, i ∈ An×n, the following equality is satisfied:((

a b
c d

)(
f 0
0 i

))∗(
a b
c d

)
=(

a b
c d

)((
f 0
0 i

)(
a b
c d

))∗
Proof. The left side and the right side of the equality are equal to(

�a+ �bi(di)∗c �b(id)∗

�c(fa)∗ �c(af)∗b+ �d

)
and (

a�′ + b(id)∗ic�′ (af)∗b�′

(di)∗c�′ c(fa)∗fb�′ + d�′

)
,

respectively, where � = (af + bi(di)∗cf)∗, � = (di + cf(af)∗bi)∗, �′ = (fa +
fb(id)∗ic)∗, �′ = (id+ ic(fa)∗fb)∗.

Since f� = f((a + bi(di)∗c)f)∗ = (f(a + b(id)∗ic))∗f = �′f , we obtain
�a + �bi(di)∗c = (1 + (af + bi(di)∗cf)�)(a + bi(di)∗c) = a + b(id)∗ic + (a +

1.2. SEMIRINGS AND FORMAL POWER SERIES 23

b(id)∗ic)�′f(a + b(id)∗ic) = a(1 + �′f(a + b(id)∗ic)) + b(id)∗ic(1 + �′f(a +
b(id)∗ic) = a�′+b(id)∗ic�′; moreover, we obtain �b(id)∗ = (af+bi(di)∗cf)∗b(id)∗ =
(af)∗(b(id)∗icf(af)∗)∗b(id)∗ = (af)∗b((id)∗ic(fa)∗fb)∗(id)∗ = (af)∗b(id+ic(fa)∗fb)∗ =
(af)∗b�′. The substitution a ↔ d, f ↔ i, b ↔ c yields � ↔ � and �′ ↔ �′.
Hence, we obtain by analogous computations �c(af)∗b+ �d = c(fa)∗fb�′ + d�′

and �c(fa)∗ = (di)∗c�′.

Theorem 1.2.13 Let A be a Conway semiring, and let M ∈ A(k+1)×(m+1) and
M ′ ∈ A(m+1)×(k+1), k,m ≥ 0. Then the following equality is satisfied:

(MM ′)∗M = M(M ′M)∗ .

Proof. We consider three cases: (i) k = m = n, (ii) k = n > m, (iii) m = n > k.
In all three cases the proof is by induction on n.

(i) DenoteM ′ =

(
f g
ℎ i

)
, where f ∈ A1×1, g ∈ A1×n, ℎ ∈ An×1, i ∈ An×n.

Then we obtain(
M

(
f g
ℎ i

))∗
M =

(
M

(
f 0
0 i

)
+M

(
0 g
ℎ 0

))∗
M =((

M

(
f 0
0 i

))∗
M

(
0 g
ℎ 0

))∗(
M

(
f 0
0 i

))∗
M =(

M

(
f 0
0 i

))∗
M

((
0 g
ℎ 0

)(
M

(
f 0
0 i

))∗
M

)∗
=

M

((
f 0
0 i

)
M

)∗((
0 g
ℎ 0

)
M

((
f 0
0 i

)
M

)∗)∗
=

M

((
f 0
0 i

)
M +

(
0 g
ℎ 0

)
M

)∗
= M

((
f g
ℎ i

)
M

)∗
.

(ii) Partition M and M ′ into

M =

(
a 0
b 0

)
and M ′ =

(
f g
0 0

)
,

where a, f ∈ A(m+1)×(m+1), b ∈ A(n−m)×(m+1) and g ∈ A(m+1)×(n−m). We
obtain

(MM ′)∗M =

(
af ag
bf bg

)∗(
a 0
b 0

)
=(

(af + ag(bg)∗bf)∗(a+ ag(bg)∗b) 0
(bg + bf(af)∗ag)∗(bf(af)∗a+ b) 0

)
=(

(a(gb)∗f)∗a(gb)∗ 0
(b(fa)∗g)∗b(fa)∗ 0

)
=

(
a(gb+ fa)∗ 0
b(fa+ gb)∗ 0

)
,

M(M ′M)∗ =

(
a 0
b 0

)(
fa+ gb 0

0 0

)∗
=

(
a(fa+ gb)∗ 0
b(fa+ gb)∗ 0

)
.

24 CHAPTER 1. FINITE AUTOMATA

(iii) Partition M and M ′ into

M =

(
a c
0 0

)
and M ′ =

(
f 0
ℎ 0

)
,

where a, f ∈ A(k+1)×(k+1), c ∈ A(k+1)×(n−k) and ℎ ∈ A(n−k)×(k+1). We obtain

(MM ′)∗M =

(
af + cℎ 0

0 0

)∗(
a c
0 0

)
=(

(af + cℎ)∗a (af + cℎ)∗c
0 0

)
,

M(M ′M)∗ =

(
a c
0 0

)(
fa fc
ℎa ℎc

)∗
=(

(a+ c(ℎc)∗ℎa)(fa+ fc(ℎc)∗ℎa)∗ (a(fa)∗fc+ c)(ℎc+ ℎa(fa)∗fc)∗

0 0

)
=(

(cℎ)∗a(f(cℎ)∗a)∗ (af)∗c(ℎ(af)∗c)∗

0 0

)
=

(
(cℎ+ af)∗a (af + cℎ)∗c

0 0

)
.

Corollary 1.2.14 Let A be a Conway semiring. Then the product-star-equation
holds in the semiring A(n+1)×(n+1), n ≥ 0.

In fact, Theorems 2.10 and 2.13 prove that

(MM ′)∗ = E +M(M ′M)∗M ′

holds for all rectangular matrices M ∈ A(k+1)×(m+1) and M ′ ∈ A(m+1)×(k+1).

Corollary 1.2.15 (Conway [25]) If A is a Conway semiring then, for n ≥ 0,
A(n+1)×(n+1) again is a Conway semiring.

We prove now the matrix-star-equation.

Lemma 1.2.16 Let A be a Conway semiring. Let, for n1, n2, n3 ≥ 0, f ∈
An1×n1 , g ∈ An1×n2 , ℎ ∈ An1×n3 , i ∈ An2×n1 , a ∈ An2×n2 , b ∈ An2×n3 ,
j ∈ An3×n1 , c ∈ An3×n2 , d ∈ An3×n3 . Then f + g(a + bd∗c)∗i + ga∗b(d +
ca∗b)∗j + ℎd∗c(a+ bd∗c)∗i+ ℎ(d+ ca∗b)∗j = f + ℎd∗j + g(a+ bd∗c)∗i+ g(a+
bd∗c)∗bd∗j + ℎd∗c(a+ bd∗c)∗i+ ℎd∗c(a+ bd∗c)∗bd∗j.

Proof. We denote the i-th term on the left side by Li, 1 ≤ i ≤ 5, and the
i-th term on the right side by Ri, 1 ≤ i ≤ 6. Then we obtain L1 = R1,
L2 = R3, L4 = R5, L3 = R4 by ga∗b(d + ca∗b)∗j = ga∗b(d∗ca∗b)∗d∗j =
g(a∗bd∗c)∗a∗bd∗j = g(a + bd∗c)∗bd∗j and L5 = R2 + R6 by ℎ(d + ca∗b)∗j =
ℎ(d∗ca∗b)∗d∗j = ℎd∗j + ℎ(d∗ca∗b)∗d∗ca∗bd∗j = ℎd∗j + ℎd∗c(a∗bd∗c)∗a∗bd∗j =
ℎd∗j + ℎd∗c(a+ bd∗c)∗bd∗j.

1.2. SEMIRINGS AND FORMAL POWER SERIES 25

Lemma 1.2.17 Let A be a Conway semiring. Let f, g, ℎ, i, a, b, j, c, d be as
in Lemma 2.16. Then a + if∗g + b(d + jf∗ℎ)∗c + if∗ℎ(d + jf∗ℎ)∗c + b(d +
jf∗ℎ)∗jf∗g+if∗ℎ(d+jf∗ℎ)∗jf∗g = a+bd∗c+i(f+ℎd∗j)∗g+bd∗j(f+ℎd∗j)∗g+
i(f + ℎd∗j)∗ℎd∗c+ bd∗j(f + ℎd∗j)∗ℎd∗c.

Proof. We denote the i-th term on the left (resp. right) side by Li (resp. Ri),
1 ≤ i ≤ 6. Then, similarly to the proof of Lemma 2.16, we obtain the following
equalities: L1 = R1, L2 + L6 = R3, L3 = R2 +R6, L4 = R5, L5 = R4.

Theorem 1.2.18 (Conway [25]) Let A be a Conway semiring. Then the matrix-
star-equation holds.

Proof. The proof uses the proof idea of the proof of Theorem 2 of Conway [25] on
page 110. It is by induction on the dimension of the matrix. For 2× 2-matrices
there is no problem. Let M ∈ An×n, n ≥ 3, and partition M into nine blocks

M =

⎛⎝ f g ℎ
i a b
j c d

⎞⎠
with dimensions as in Lemma 2.16. The proof reduces then to showing that
when we compute ∗ of

M =

⎛⎝ f g ℎ
i a b
j c d

⎞⎠ and M ′ =

⎛⎝ f g ℎ
i a b
j c d

⎞⎠
in the indicated ways we get the same result. Hence, we have to verify nine
equalities in nine variables.

(i) First we compute M∗. We denote the blocks of M∗ by (M∗)ij , 1 ≤ i, j ≤
3. We obtain

(M∗)11 =

(
f + (g ℎ)

(
a b
c d

)∗(
i
j

))∗
=(

f + (g ℎ)

(
(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)(
i
j

))∗
=

(f + g(a+ bd∗c)∗i+ ga∗b(d+ ca∗b)∗j + ℎd∗c(a+ bd∗c)∗i+
ℎ(d+ ca∗b)∗j)∗ ,(

(M∗)21

(M∗)31

)
=

(
a b
c d

)∗(
i
j

)
(M∗)11 =(

(a+ bd∗c)∗i+ a∗b(d+ ca∗b)∗j
d∗c(a+ bd∗c)∗i+ (d+ ca∗b)∗j

)
(M∗)11 ,(

(M∗)22 (M∗)23

(M∗)32 (M∗)33

)
=

((
a b
c d

)
+

(
i
j

)
f∗(g ℎ)

)∗
=(

a+ if∗g b+ if∗ℎ
c+ jf∗g d+ jf∗ℎ

)∗
.

26 CHAPTER 1. FINITE AUTOMATA

Hence,

(M∗)22 = (a+ if∗g + (b+ if∗ℎ)(d+ jf∗ℎ)∗(c+ jf∗g))∗ ,
(M∗)23 = (a+ if∗g)∗(b+ if∗ℎ)(M∗)33 ,
(M∗)32 = (d+ jf∗ℎ)∗(c+ jf∗g)(M∗)22 ,
(M∗)33 = (d+ jf∗ℎ+ (c+ jf∗g)(a+ if∗g)∗(b+ if∗ℎ))∗ .

Eventually, we obtain

((M∗)12, (M
∗)13) = f∗(g ℎ)

(
(M∗)22 (M∗)23

(M∗)32 (M∗)33

)
=

(f∗g(M∗)22 + f∗ℎ(M∗)32, f
∗g(M∗)23 + f∗ℎ(M∗)33 =

((f∗g + f∗ℎ(d+ jf∗ℎ)∗(c+ jf∗g))(M∗)22,
(f∗g(a+ if∗g)∗(b+ if∗ℎ) + f∗ℎ)(M∗)33).

(ii) We now compute M ′∗. We denote the blocks of M ′∗ by (M ′∗)ij , 1 ≤
i, j ≤ 3. We obtain(

(M ′∗)11 (M ′∗)12

(M ′∗)21 (M ′∗)22

)
=

((
f g
i a

)
+

(
ℎ
b

)
d∗(j c)

)∗
=(

f + ℎd∗j g + ℎd∗c
i+ bd∗j a+ bd∗c

)∗
.

Hence,

(M ′∗)11 = (f + ℎd∗j + (g + ℎd∗c)(a+ bd∗c)∗(i+ bd∗j))∗ ,
(M ′∗)21 = (a+ bd∗c)∗(i+ bd∗j)(M ′∗)11 ,
(M ′∗)12 = (f + ℎd∗j)∗(g + ℎd∗c)(M ′∗)22 ,
(M ′∗)22 = (a+ bd∗c+ (i+ bd∗j)(f + ℎd∗j)∗(g + ℎd∗c))∗ .

Furthermore, we obtain

((M ′∗)31, (M
′∗)32) = d∗(j c)

(
(M ′∗)11 (M ′∗)12

(M ′∗)21 (M ′∗)22

)
=

((d∗j + d∗c(a+ bd∗c)∗(i+ bd∗j))(M ′∗)11,
(d∗j(f + ℎd∗j)∗(g + ℎd∗c) + d∗c)(M ′∗)22 ,(

(M ′∗)13

(M ′∗)23

)
=

(
(f + ga∗i)∗ f∗g(a+ if∗g)∗

a∗i(f + ga∗i)∗ (a+ if∗g)∗

)(
ℎ
b

)
(M ′∗)33 =(

((f + ga∗i)∗ℎ+ f∗g(a+ if∗g)∗b)(M ′∗)33

(a∗i(f + ga∗i)∗ℎ+ (a+ if∗g)b)(M ′∗)33

)
,

and eventually

(M ′∗)33 =

(
d+ (j c)

(
f g
i a

)∗(
ℎ
b

))∗
=(

d+ (j c)

(
(f + ga∗i)∗ f∗g(a+ if∗g)∗

a∗i(f + ga∗i)∗ (a+ if∗g)∗

)(
ℎ
b

))∗
=

(d+ j(f + ga∗i)∗ℎ+ jf∗g(a+ if∗g)∗b+ ca∗i(f + ga∗i)∗ℎ+
c(a+ if∗g)∗b)∗ .

1.2. SEMIRINGS AND FORMAL POWER SERIES 27

(iii) We now show the equality of (M∗)ij = (M ′∗)ij , 1 ≤ i, j ≤ 3. We first
compare the diagonal entries and obtain (M∗)11 = (M ′∗)11 by Lemma 2.16,
(M∗)22 = (M ′∗)22 by Lemma 2.17, and (M∗)33 = (M ′∗)33 by Lemma 2.16 with
the substitution f ↔ d, ℎ↔ j, g ↔ c, i↔ b, a↔ a.

Next, we obtain (M∗)12 = (M ′∗)12 by f∗g + f∗ℎ(d + jf∗ℎ)∗(c + jf∗g) =
f∗g + f∗ℎ(d∗jf∗ℎ)∗d∗c + f∗ℎ(d∗jf∗ℎ)∗d∗jf∗g = f∗g + (f∗ℎd∗j)∗f∗ℎd∗c +
f∗ℎd∗j(f∗ℎd∗j)∗f∗g = (f + ℎd∗j)∗(g + ℎd∗c),

(M∗)13 = (M ′∗)13 by f∗g(a + if∗g)∗(b + if∗ℎ) + f∗ℎ = f∗g(a + if∗g)∗b +
f∗g(a∗if∗g)∗a∗if∗ℎ + f∗ℎ = f∗g(a + if∗g)∗b + f∗ga∗i(f∗ga∗i)∗f∗ℎ + f∗ℎ =
f∗g(a+ if∗g)∗b+ (f + ga∗i)∗ℎ,

(M∗)21 = (M ′∗)21 by (a+bd∗c)∗i+a∗b(d+ca∗b)∗j = (a+bd∗c)∗i+a∗b(d∗ca∗b)∗d∗j =
(a+ bd∗c)∗i+ (a∗bd∗c)∗a∗bd∗j = (a+ bd∗c)∗i+ (a+ bd∗c)∗bd∗j,

(M∗)31 = (M ′∗)31 by d∗c(a + bd∗c)∗i + (d + ca∗b)∗j = d∗c(a + bd∗c)∗i +
(d∗ca∗b)∗d∗j = d∗c(a+ bd∗c)∗i+ d∗j + (d∗ca∗b)∗d∗ca∗bd∗j = d∗c(a+ bd∗c)∗i+
d∗j + d∗c(a∗bd∗c)∗a∗bd∗j = d∗c(a+ bd∗c)∗i+ d∗j + d∗c(a+ bd∗c)∗bd∗j,

(M∗)23 = (M ′∗)23 by (a+ if∗g)∗(b+ if∗ℎ) = (a+ if∗g)∗b+ (a∗if∗g)∗a∗if∗ℎ =
(a+ if∗g)∗b+ a∗i(f∗ga∗i)∗f∗ℎ = (a+ if∗g)∗b+ a∗i(f + ga∗i)∗ℎ,

and eventually (M∗)32 = (M ′∗)32 by (d + jf∗ℎ)∗(c + jf∗g) = (d∗jf∗ℎ)∗d∗c +
(d∗jf∗ℎ)∗d∗jf∗g = d∗c + (d∗jf∗ℎ)∗d∗jf∗ℎd∗c + d∗j(f∗ℎd∗j)∗f∗g = d∗c +
d∗j(f + ℎd∗j)∗ℎd∗c+ d∗j(f + ℎd∗j)∗g.

We now prove that A⟨⟨Σ∗⟩⟩ is a Conway semiring if A is a Conway semiring
and Σ is an alphabet. The proofs are by induction on the length of words.

Theorem 1.2.19 Let A be a Conway semiring an Σ be an alphabet. Then the
sum-star-equation holds in A⟨⟨Σ∗⟩⟩.

Proof. Let r, s ∈ A⟨⟨Σ∗⟩⟩. Then we proof by induction on the length of w ∈ Σ∗

that ((r + s)∗, w) = ((r∗s)∗r∗, w). The case w = " is clear. Assume now w ∕= ".
Then we obtain ((r + s)∗, w) = ((r + s)∗, ")

∑
uv=w, u ∕="(r + s, u)((r + s)∗, v) =

((r + s)∗, ")
∑
uv=w, u ∕="(r, u)((r + s)∗, v) + ((r + s)∗, ")

∑
uv=w, u ∕="(s, u)((r +

s)∗, v). We call the first and second of these terms L1 and L2, respectively.
Moreover, we obtain

((r∗s)∗r∗, w) =
∑
w1w2=w((r∗s)∗, w1)(r∗, w2) =

((r∗s)∗, ")(r∗, w) +
∑
w1w2=w, w1 ∕="((r

∗s)∗, w1)(r∗, w2) =

((r∗s)∗, ")(r∗, w)+
((r∗s)∗, ")

∑
w1w2=w

∑
u1v1=w1, u1 ∕="(r

∗s, u1)((r∗s)∗, v1)(r∗, w2) =

((r∗s)∗, ")(r∗, w) + ((r∗s)∗, ")⋅∑
w1w2=w

∑
u1v1=w1, u1 ∕="

∑
w3w4=u1

(r∗, w3)(s, w4)((r∗s)∗, v1)(r∗, w2) =

((r∗s)∗, ")(r∗, w)+
((r∗s)∗, ")

∑
w1w2=w

∑
u1v1=w1, u1 ∕="(r

∗, ")(s, u1)((r∗s)∗, v1)(r∗, w2)+

((r∗s)∗, ")⋅∑
w1w2=w

∑
u1v1=w1

∑
w3w4=u1, w3 ∕="(r

∗, w3)(s, w4)((r∗s)∗, v1)(r∗, w2).

We call the first, second and third of these terms R1, R2 and R3, respectively.

28 CHAPTER 1. FINITE AUTOMATA

Eventually, we obtain

R2 = ((r + s)∗, ")
∑
u1z=w, u1 ∕="(s, u1)((r∗s)∗r∗, z) =

((r + s)∗, ")
∑
u1z=w, u1 ∕="(s, u1)((r + s)∗, z) = L2

and

R1 +R3 = ((r∗s)∗, ")(r∗, ")
∑
uv=w, u ∕="(r, u)(r∗, v)+

((r∗s)∗, ")
∑
w1w2=w

∑
u1v1=w1

∑
w3w4=u1

(r∗, ")⋅∑
u2v2=w3, u2 ∕="(r, u2)(r∗, v2)(s, w4)((r∗s)∗, v1)(r∗, w2) =

((r + s)∗, ")
∑
uv=w, u ∕="(r, u)(r∗, v)+

((r + s)∗, ")
∑
u2z=w, u2 ∕="(r, u2)((r∗s)+r∗, z) =

((r + s)∗, ")
∑
u2z=w, u2 ∕="(r, u2)((r∗s)∗r∗, z) =

((r + s)∗, ")
∑
u2z=w, u2 ∕="(r, u2)((r + s)∗, z) = L1 .

Hence, L1 + L2 = R1 +R2 +R3 and the sum-star-equality holds in A⟨⟨Σ∗⟩⟩.

Theorem 1.2.20 Let A be a Conway semiring and Σ be an alphabet. Then,
for r ∈ A⟨⟨Σ∗⟩⟩, the following equation is satisfied:

r∗ = "+ rr∗ .

Proof. We prove by induction on the length of w ∈ Σ∗ that (r∗, w) = ("+rr∗, w).
The case w = " is clear. Assume now w ∕= ". Then we obtain

("+ rr∗, w) =
∑
w1w2=w(r, w1)(r∗, w2) =

(r, ")(r∗, w) +
∑
w1w2=w, w1 ∕="(r, w1)(r∗, w2) =

(r, ")(r∗, ")
∑
uv=w, u ∕="(r, u)(r∗v) +

∑
w1w2=w, w1 ∕="(r, w1)(r∗, w2) =

(r+, ")
∑
uv=w, u ∕="(r, u)(r∗v) +

∑
w1w2=w, w1 ∕="(r, w1)(r∗, w2) =

(r∗, ")
∑
uv=w, u ∕="(r, u)(r∗v) = (r∗, w) .

Theorem 1.2.21 Let A be a Conway semiring and Σ be an alphabet. Then,
for r, s ∈ A⟨⟨Σ∗⟩⟩, the following equation is satisfied:

r(sr)∗ = (rs)∗r .

1.2. SEMIRINGS AND FORMAL POWER SERIES 29

Proof. We prove by induction on the length of w ∈ Σ∗ that (r(sr)∗, w) =
((rs)∗r, w). The case w = " is clear. Assume now w ∕= ". Then we obtain

(r(sr)∗, w) =
∑
w1w2=w(r, w1)((sr)∗, w2) =

(r, ")((sr)∗, w) +
∑
w1w2=w, w1 ∕="(r, w1)((sr)∗, w2) =

(r, ")((sr)∗, ")
∑
uv=w, u ∕="(sr, u)((sr)∗, v)+∑

w1w2=w, w1 ∕="(r, w1)((sr)∗, w2) =

(r(sr)∗, ")
∑
uv=w, u ∕="

∑
w3w4=u(s, w3)(r, w4)((sr)∗, v)+∑

w1w2=w, w1 ∕="(r, w1)((sr)∗, w2) =

(r(sr)∗, ")
∑
uv=w, u ∕="(s, ")(r, u)((sr)∗, v)+

(r(sr)∗, ")
∑
uv=w

∑
w3w4=u, w3 ∕="(s, w3)(r, w4)((sr)∗, v)+∑

w1w2=w, w1 ∕="(r, w1)((sr)∗, w2) =

((rs)+, ")
∑
uv=w, u ∕="(r, u)((sr)∗, v)+

(r(sr)∗, ")
∑
uv=w

∑
w3w4=u, w3 ∕="(s, w3)(r, w4)((sr)∗, v)+∑

w1w2=w, w1 ∕="(r, w1)((sr)∗, w2) =

((rs)∗, ")
∑
uv=w, u ∕="(r, u)((sr)∗, v)+

(r(sr)∗, ")
∑
w3z=w, w3 ∕="(r(sr)

∗, z) ,

and

((rs)∗r, w) =
∑
w1w2=w((rs)∗, w1)(r, w2) =

((rs)∗, ")(r, w) +
∑
w1w2=w, w1 ∕="((rs)

∗, w1)(r, w2) =

((rs)∗, ")(r, w)+∑
w1w2=w((rs)∗, ")

∑
uv=w1, u ∕="(rs, u)((rs)∗, v)(r, w2) =

((rs)∗, ")(r, w) +
∑
w1w2=w((rs)∗, ")⋅∑

uv=w1, u ∕="
∑
w3w4=u(r, w3)(s, w4)((rs)∗, v)(r, w2) =

((rs)∗, ")(r, w) +
∑
w1w2=w((rs)∗, ")⋅∑

uv=w1, u ∕="(r, ")(s, u)((rs)∗, v)(r, w2) +
∑
w1w2=w((rs)∗, ")⋅∑

uv=w1

∑
w3w4=u, w3 ∕="(r, w3)(s, w4)((rs)∗, v)(r, w2) =

((rs)∗, ")(r, w) + ((rs)∗r, ")
∑
uz=w, u ∕="(s, u)((rs)∗r, z)+

((rs)∗, ")
∑
w3z=w, w3 ∕="(r, w3)((sr)+, z) =

((rs)∗, ")(r, w) + ((rs)∗r, ")
∑
uz=w, u ∕="(s, u)((rs)∗r, z)+

((rs)∗, ")
∑
w3z=w, w3 ∕=", z ∕="(r, w3)((sr)∗, z)+

((rs)∗, ")(r, w)((sr)+, ") =
((rs)∗r, ")

∑
uz=w, u ∕="(s, u)((rs)∗r, z)+

((rs)∗, ")
∑
w3z=w, w3 ∕="(r, w3)((sr)∗, z) .

Hence, (r(sr)∗, w) = ((rs)∗r, w).

Corollary 1.2.22 (Bloom, Ésik [9]) If A is a Conway semiring and Σ is an
alphabet then A⟨⟨Σ∗⟩⟩ is again a Conway semiring.

Corollary 1.2.23 Let A be a Conway semiring, Σ be an alphabet and n ≥ 1.
Then (A⟨⟨Σ∗⟩⟩)n×n is again a Conway semiring.

30 CHAPTER 1. FINITE AUTOMATA

A semiring A is called complete if it is possible to define sums for all families
(ai ∣ i ∈ I) of elements of A, where I is an arbitrary index set, such that the
following conditions are satisfied (see Conway [25], Eilenberg [29], Kuich [78]):

(i)
∑
i∈∅

ai = 0,
∑
i∈{j}

ai = aj ,
∑

i∈{j,k}

ai = aj + ak for j ∕= k,

(ii)
∑
j∈J

(∑
i∈Ij

ai

)
=
∑
i∈I

ai, if
∪
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j ∕= j′,

(iii)
∑
i∈I

(c ⋅ ai) = c ⋅
(∑
i∈I

ai

)
,

∑
i∈I

(ai ⋅ c) =
(∑
i∈I

ai

)
⋅ c.

This means that a semiring A is complete if it is possible to define “infinite
sums” (i) that are an extension of the finite sums, (ii) that are associative and
commutative and (iii) that satisfy the distribution laws.

In complete semirings for each element a, the star a∗ of a is defined by

a∗ =
∑
j≥0

aj .

Hence, each complete semiring is a starsemiring called a complete starsemiring.
The semirings (i)–(vii) are complete starsemirings. The semiring (viii) is a
complete semiring, but not a complete starsemiring.

If ⟨A,+, ⋅, 0, 1⟩ is a complete semiring, then so are ⟨A⟨⟨Σ∗⟩⟩,+, ⋅, 0, "⟩ and
⟨An×n,+, ⋅, 0, E⟩ by the following definitions:

If ri ∈ A⟨⟨Σ∗⟩⟩ for i ∈ I, then
∑
i∈I ri =

∑
w∈Σ∗

(∑
i∈I(ri, w)

)
w;

if Mi ∈ An×n for i ∈ I, then
(∑

i∈IMi

)
kj

=
∑
i∈I(Mi)kj for 1 ≤ k, j ≤ n.

Here I is an arbitrary index set. Moreover, each complete starsemiring is a
Conway semiring (see Conway [25], Bloom, Ésik [10], Kuich [76], Hebisch [64])
and the star operation in the complete semirings A⟨⟨Σ∗⟩⟩ and An×n is the same
as the star operation in the Conway semirings A⟨⟨Σ∗⟩⟩ and An×n, respectively.
We prove the first statement.

Theorem 1.2.24 Each complete starsemiring is a Conway semiring.

Proof. LetA be a complete starsemiring and let a, b ∈ A. Let ā, b̄ be letters. Note
that to each word w̄ = c̄1c̄2 . . . c̄n, c̄i ∈ {ā, b̄}, 1 ≤ i ≤ n, there corresponds the
element w = c1c2 . . . cn ∈ A. Let A′ be the complete starsemiring generated by
1 and consider the complete starsemiring A′⟨⟨{ā, b̄}∗⟩⟩. Since A′ is commutative,
ā 7→ a, b̄ 7→ b induces a starsemiring morphism from the complete starsemiring
A′⟨⟨{ā, b̄}∗⟩⟩ → A.

By straightforward proofs by induction the following equalities can be proved
for a, b ∈ A, n,m ≥ 0:

(ā+ b̄)n =
∑

0≤j≤n

āj ⊔⊔ b̄n−j ,

ān ⊔⊔ b̄m =
∑

0≤j≤n

(āj ⊔⊔ b̄m−1)b̄ān−j

1.2. SEMIRINGS AND FORMAL POWER SERIES 31

and
ā∗ ⊔⊔ b̄n =

∑
j≥0

āj ⊔⊔ b̄n = (ā∗b̄)nā∗ .

Hence, we infer the equality

(ā+ b̄)∗ =
∑
n≥0

∑
j≥0

āj ⊔⊔ b̄n = ā∗ ⊔⊔ b̄∗ ,

which implies immediately

(ā+ b̄)∗ = (ā∗b̄)∗ā∗ .

Moreover, we obtain

(āb̄)∗ = 1 +
∑
n≥0(āb̄)n = 1 + ā

(∑
n≥0(b̄ā)n

)
b̄ =

1 + ā(b̄ā)∗b̄ .

Applying the starsemiring morphism defined above we obtain the sum-star-
equation and the product-star-equation in A:

(a+ b)∗ = (a∗b)∗a∗ and (ab)∗ = 1 + a(ba)∗b .

We now prove the first part of the second statement before Theorem 2.24
after the next lemma.

Lemma 1.2.25 Let A be a complete starsemiring. Then, for all f, g ∈ A,

(f + g)∗ = (f + gf∗g)∗(1 + gf∗) .

Proof. (f + gf∗g)∗(1 + gf∗) = (f∗gf∗g)∗f∗(1 + gf∗) =
∑
n≥0(f∗g)2nf∗ +∑

n≥0(f∗g)2n+1f∗ = (f∗g)∗f∗ = (f + g)∗.

Theorem 1.2.26 If A is a complete starsemiring so is An×n, n ≥ 1.

Proof. The case n = 1 is clear. Let now n ≥ 2 and partition M ∈ An×n into

M =

(
a b
c d

)
,

where, for some n1, n2 ≥ 1 with n1 + n2 = n, a is an n1 × n1-matrix and d is
an n2 × n2-matrix. Consider now the matrices

f =

(
a 0
0 d

)
and g =

(
0 b
c 0

)
.

The computation of (f + gf∗g)∗(E+ gf∗) and application of Lemma 2.25 prove
our theorem.

32 CHAPTER 1. FINITE AUTOMATA

Observe that the proof of Theorem 2.26 shows again that the matrix-star-
equation is valid in the complete starsemiring An×n.

We now prove the second part of the second statement before Theorem 2.24
after some definitions needed in the proof.

For w ∈ Σ∗, w ∕= ", we define

p(w) = {(u, v, . . . , z) ∣ uv . . . z = w, u,w, . . . , z ∕= "} .

Observe that, for w ∈ Σ∗, w ∕= ", and x ∈ Σ, we obtain

p(xw) = {(x, u, v, . . . , z) ∣ (u, v, . . . , z) ∈ p(w)} ∪
{(xu, v, . . . , z) ∣ (u, v, . . . , z) ∈ p(w)} .

Theorem 1.2.27 If A is a complete starsemiring and Σ is an alphabet then
A⟨⟨Σ∗⟩⟩ is again a complete starsemiring.

Proof. We first prove by induction that, for r ∈ A⟨⟨Σ∗⟩⟩ and w ∈ Σ∗, w ∕= ",

(r∗, w) =
∑

(u,v,...,z)∈p(w)

(r, ")∗(r, u)(r, ")∗(r, v) . . . (r, ")∗(r, z)(r, ")∗ .

The case w ∈ Σ is clear by the definition of r∗. Let now x ∈ Σ and w ∈ Σ∗,
w ∕= ". Then

(r∗, xw) = (r, ")∗(r, x)(r, w)∗ + (r, ")∗
∑
pq=w, p ∕="(r, xp)(r

∗, q) =

(r, ")∗(r, x)
∑

(u,v,...,z)∈p(w)(r, ")
∗(r, u)(r, ")∗(r, v) . . . (r, ")∗(r, z)(r, ")∗+

(r, ")∗
∑

(p,v,...,z)∈p(w)(r, xp)(r, ")
∗(r, v)(r, ")∗ . . . (r, ")∗(r, z)(r, ")∗ =∑

(u,v,...,z)∈p(xw)(r, ")
∗(r, u)(r, ")∗(r, v) . . . (r, ")∗(r, z)(r, ")∗ .

We now show that, for r ∈ A⟨⟨Σ∗⟩⟩ and w ∈ Σ∗,

(r∗, w) =
∑
n≥0

(rn, w) .

By definition,

(r∗, ") = (r, ")∗ =
∑
n≥0

(r, ")n = (
∑
n≥0

rn, ") .

Let now w ∕= ". Then we obtain

(
∑
n≥0 r

n, w) =
∑
n≥0(rn, w) =

∑
n≥∣w∣

∑
u1...un=w(r, u1) . . . (r, un) =∑

n≥∣w∣
∑

(u,...,z)∈p(w)

∑
iu+...+iz+i=n−∣w∣(r, ")

iu(r, u) . . . (r, ")iz (r, z)(r, ")i =∑
(u,...,z)∈p(w)(

∑
iu≥0(r, ")iu)(r, u) . . . (

∑
iz≥0(r, ")iz)(r, z)

∑
i≥0(r, ")i =∑

(u,...,z)∈p(w)(r, ")
∗(r, u) . . . (r, ")∗(r, z)(r, ")∗ = (r∗, w) .

A semiring A is k-closed, k ≥ 0, if for each a ∈ A,

1 + a+ . . .+ ak = 1 + a+ . . .+ ak + ak+1 .

1.3. KLEENE’S THEOREM FOR CONWAY SEMIRINGS 33

(See Carré [19], Mohri [95], Ésik, Kuich [37].) If ⟨A,+, ⋅, 0, 1⟩ is a k-closed
semiring, then define the star of a ∈ A by

a∗ = 1 + a+ . . .+ ak .

By Ésik, Kuich [37] the starsemiring ⟨A,+, ⋅, 0, 1⟩ is then a Conway semiring if
k = 0, 1 or if A is commutative.

1.3 Kleene’s Theorem for Conway semirings

In the sequel, A denotes a Conway semiring and A′ denotes a subset of A.
A finite A′-automaton A = (n,M, S, P), n ≥ 1 is given by

(i) a transition matrix M ∈ (A′ ∪ {0, 1})n×n,

(ii) an initial state vector S ∈ (A′ ∪ {0, 1})1×n,

(iii) a final state vector P ∈ (A′ ∪ {0, 1})n×1.

The behavior ∣∣A∣∣ of A is defined by

∣∣A∣∣ =
∑

1≤i1,i2≤n

Si1(M∗)i1,i2Pi2 = SM∗P .

The (directed) graph of A is constructed in the usual manner. It has nodes
1, . . . , n and an edge from node i to node j if Mij ∕= 0. The weight of this edge
is Mij ∈ A′. The initial (resp. final) weight of a node i is given by Si (resp. Pi).
A node is called initial (resp. final) if its initial (resp. final) weight is unequal
to 0. The weight of a path is the product of the weigths of its edges. It is easily
shown that (Mk)ij is the sum of the weights of paths of length k from node
i to node j. If A is a complete semiring and, hence, (M∗)ij =

∑
k≥0(Mk)ij ,

then (M∗)ij is the sum of the weights of the paths from node i to node j.
Hence, Si1(M∗)i1,i2Pi2 is this sum for nodes i1 and i2, properly multiplied on
the left and right by the initial weight of node i1 and the final weight of node
i2, respectively. Eventually, the behavior of A is the sum of all these terms with
summation over all initial states i1 and all final states i2.

Two finite A′-automata A and A′ are equivalent if ∣∣A∣∣ = ∣∣A′∣∣. A finite
A′-automaton A = (n,M, S, P) is called normalized if n ≥ 2 and

(i) S1 = 1, Si = 0, 2 ≤ i ≤ n;

(ii) Pn = 1, Pi = 0, 1 ≤ i ≤ n− 1;

(iii) Mi,1 = Mn,i = 0, 1 ≤ i ≤ n.

Hence, the directed graph of a normalized finite A′-automaton has the unique
initial node 1 and the unique final node n, both with weight 1; moreover, no
edges are leading to the initial node and no edges are leaving the final node.

34 CHAPTER 1. FINITE AUTOMATA

Theorem 1.3.1 Each finite A′-automaton is equivalent to a normalized finite
A′-automaton.

Proof. Let A = (n,M, S, P) be a finite A′-automaton. Define the finite A′-
automaton A′ by

A′ = (1 + n+ 1,

⎛⎝ 0 S 0
0 M P
0 0 0

⎞⎠ , (1 0 0),

⎛⎝ 0
0
1

⎞⎠) .

Then A′ is normalized. Applying the matrix-star-equation yields the proof that
∣∣A′∣∣ = ∣∣A∣∣.

The substarsemiring of A that is generated by A′ is denoted by ℜat(A′).
The collection of all behaviors of finite A′-automata is denoted by ℜec(A′). The
classical Theorem of Kleene essentially states that, in the semiring 2Σ∗ of formal
languages over Σ, ℜat(Σ) and ℜec(2Σ) coincide.

As a generalization of this Theorem of Kleene we show that ℜat(A′) =
ℜec(A′). (See Schützenberger [108], Conway [25], Kuich [78], Berstel, Reutenauer [7],
Ésik, Kuich [39]).

Theorem 1.3.2 Let A be a Conway semiring and A′ ⊆ A. Then ℜat(A′) =
ℜec(A′).

Proof. (i) An easy proof by induction on n using the matrix-star-equation shows
that M∗ ∈ ℜat(A′)n×n if M ∈ A′n×n. This implies immediately ℜec(A′) ⊆
ℜat(A′).

(ii) Easy constructions yield A′∪{0, 1} ⊆ ℜec(A′). Let now A = (n,M, S, P)
and A′ = (n′,M ′, S′, P ′) be normalized finite A′-automata. Then we define
finite A′-automata A+A′, A ⋅A′ and A∗ with behaviors ∣∣A∣∣+ ∣∣A′∣∣, ∣∣A∣∣ ⋅ ∣∣A′∣∣
and ∣∣A∣∣∗, respectively:

A + A′ = (n+ n′,

(
M 0
0 M ′

)
, (S S′),

(
P
P ′

)
) ,

A ⋅ A′ = (n+ n′,

(
M PS′

0 M ′

)
, (S 0),

(
0
P ′

)
) ,

A∗ = (1 + n,

(
0 S
P M

)
, (1 0),

(
1
0

)
) .

Application of the matrix-star-equality shows that the equations ∣∣A + A′∣∣ =
∣∣A∣∣+ ∣∣A′∣∣, ∣∣A ⋅ A′∣∣ = ∣∣A∣∣ ⋅ ∣∣A′∣∣ und ∣∣A∗∣∣ = ∣∣A∣∣∗ are valid.

A finite A⟨Σ∪"⟩-automaton A = (n,M, S, P) is called finite automaton (over
A and Σ) without "-moves if M ∈ (A⟨Σ⟩)n×n, S ∈ (A⟨"⟩)1×n with S1 = ",
Sj = 0 for 2 ≤ j ≤ n, P ∈ (A⟨"⟩)n×1. For A = B this is the usual definition,
i. e., such a finite B⟨Σ⟩-automaton is a finite automaton without "-moves in the
classical sense.

We now show that each finite A⟨Σ ∪ "⟩-automaton is equivalent to a finite
automaton without "-moves.

1.3. KLEENE’S THEOREM FOR CONWAY SEMIRINGS 35

Theorem 1.3.3 Each finite A⟨Σ∪ "⟩-automaton is equivalent to a finite auto-
maton over A and Σ without "-moves.

Proof. For each finite A⟨Σ∪"⟩-automaton there exits, by Theorem 3.1, an equiv-
alent normalized finite A⟨Σ∪"⟩-automaton. Let A = (n,M, S, P) be such a nor-
malized finite A⟨Σ∪ "⟩-automaton. Let M0 = (M, ")" and M1 =

∑
x∈Σ(M,x)x

and define the finite automaton without "-moves A′ = (n,M∗0M1, S,M
∗
0P).

Then

∣∣A′∣∣ = S(M∗0M1)∗M∗0P = S(M0 +M1)∗P = SM∗P = ∣∣A∣∣ .

Here we have applied in the second equality the sum-star-equation.

Corollary 1.3.4 ℜat(A⟨Σ ∪ "⟩) = ℜec(A⟨Σ ∪ "⟩) = {∣∣A∣∣ ∣ A is a finite auto-
maton over A and Σ without "-moves}.

Corollary 1.3.5 ℜat(B⟨Σ⟩) = ℜec(B⟨Σ⟩) = {∣∣A∣∣ ∣ A is a finite automaton
over B and Σ without "-moves}.

For the definition of nondeterministic finite automata, we need matrices
which are indexed by Q × Q′, Q,Q′ finite index sets, and whose entries are in
the semiring 2Σ∗ . The collection of all these matrices is denoted by (2Σ∗)Q×Q

′
.

If ∣Q∣ = n, then ⟨(2Σ∗)Q×Q,+, ⋅, 0, E⟩ and ⟨(2Σ∗)n×n,+, ⋅, 0, E⟩ are isomorphic.
Furthermore, for M ∈ (2Σ∗)n×n and its isomorphic copy M ′ ∈ (2Σ∗)Q×Q we
obtain that M ′∗ is the isomorphic copy of M∗.

Usually, a nondeterministic finite automaton without "-moves is defined as
follows (see Hopcroft, Ulman [65]). A nondeterministic finite automaton (in the
classical sense)

A = (Q,Σ, �, q1, F)

is given by

(i) a finite non-empty set of states Q,

(ii) an input alphabet Σ,

(iii) a transition function � : Q× Σ→ 2Q,

(iv) an initial state q1 ∈ Q,

(v) a set of final states F ⊆ Q.

The transition function � is extended to a mapping �̂ : Q× Σ∗ → 2Q by

�̂(q, ") = {q}, �̂(q, wx) = {p ∣ p ∈ �(r, x) for some r ∈ �̂(q, w)} ,

for q ∈ Q, w ∈ Σ∗ and x ∈ Σ.
A word w ∈ Σ∗ is accepted by A if �̂(q1, w) ∩ F ∕= ∅. The language ∣∣A∣∣

accepted by A, is defined by

∣∣A∣∣ = {w ∈ Σ∗ ∣ �̂(q1, w) ∩ F ∕= ∅} .

36 CHAPTER 1. FINITE AUTOMATA

We now connect the notion of a finite automaton A over S and Σ without
"-moves, ∣∣A∣∣ ⊆ 2Σ∗ , with the notion of a nondeterministic finite automaton A
as defined above.

Assume that A = (n,M, S, P) and A = (Q,Σ, �, q1, F). Then A and A
correspond to each other if the following conditions are satisfied:

(i) ∣Q∣ = n; so we may assume Q = {q1, . . . , qn}, where i corresponds to qi,
1 ≤ i ≤ n.

(ii) x ∈Mij ⇔ qj ∈ �(qi, x), 1 ≤ i, j ≤ n, x ∈ Σ.

(iii) Sq1 = {"}, Sqi = ∅, 2 ≤ i ≤ n.

(iv) Pq = {"} ⇔ q ∈ F , Pq = ∅ ⇔ q /∈ F .

It is easily seen that ∣∣A∣∣ = ∣∣A∣∣ if A and A correspond to each other. This is
due to the fact that

w ∈ (Mk)ij ⇔ qj ∈ �̂(qi, w), 1 ≤ i, j ≤ n, k ≥ 0, w ∈ Σ∗, ∣w∣ = k ,

and
w ∈ (M∗)ij ⇔ qj ∈ �̂(qi, w), 1 ≤ i, j ≤ n, w ∈ Σ∗ .

(In the complete starsemiring (2Σ∗)n×n we have M∗ =
∪
n≥0M

n.) Hence,

∣∣A∣∣ = SM∗P =
∪

1≤i,j≤n Si(M
∗)ijPj =

∪
qj∈F (M∗)1j =∪

qj∈F {w ∣ qj ∈ �̂(q1, w)} = {w ∣ �̂(q1, w) ∩ F ∕= ∅} = ∣∣A∣∣ .

Corollary 1.3.6 (Kleene’s Theorem) In the semiring 2Σ∗ , ℜat(Σ) = ℜec(2Σ) =
{∣∣A∣∣ ∣ A is a nondeterministic finite automaton (in the classical sense) }.

1.4 The computation of the star of a matrix

In Section 3 we have seen that the computation of M∗, where M is the transition
matrix of a finite A′-automaton A, is essential for the computation of ∣∣A∣∣.
We now give an algorithm for computing M∗ ∈ An×n for M ∈ An×n. The
next theorem can be found in Mehlhorn [94], page 145, and Bloom, Ésik [10],
page 291.

Theorem 1.4.1 Let M,M̄ ∈ An×n, n ≥ 2, be partitioned into blocks M =(
a b
c d

)
and M̄ =

(
�̄ �̄
̄ �̄

)
, where a, �̄ ∈ An1×n1 , b, �̄ ∈ An1×n2 , c, ̄ ∈

An2×n1 , d, �̄ ∈ An2×n2 , n1 + n2 = n. Assume that �̄ = (d + ca∗b)∗, ̄ = �̄ca∗,
�̄ = a∗b�̄, �̄ = a∗ + a∗b�̄ca∗. Then M̄ = M∗.

Proof. We start with the matrix-star-equations for M∗ and transform the equa-
tions stepwise by the sum-star-equation and the matrix-star-equation for ma-
trices.

1.4. THE COMPUTATION OF THE STAR OF A MATRIX 37

Let �, �, , � be the right sides of the matrix-star-equations for M∗. Then
� = �̄, = ̄, � = (a + bd∗c)∗bd∗ = (a∗bd∗c)∗a∗bd∗ = a∗b(d∗ca∗b)∗d∗ =
a∗b(d+ca∗b)∗ = a∗b�̄, � = (a+bd∗c)∗ = (a∗bd∗c)∗a∗ = a∗+(a∗bd∗c)∗a∗bd∗ca∗ =
a∗ + a∗b(d∗ca∗b)∗d∗ca∗ = a∗ + a∗b(d+ ca∗b)ca∗ = a∗ + a∗b�̄ca∗.

Theorem 4.1 with n1 = 1, n2 = n − 1, gives rise to the following algorithm
computing M∗ for M ∈ An×n.

Algorithm 1. Compute �1, �2, �
′
2, �3 by

(1) �1 = a∗,

(2) �2 = c�1, �′2 = �1b,

(3) �3 = �2b = c�′2 (only one of the computations is needed; take that with
the lower complexity),

Compute now �̄, �̄, ̄, �̄ by

(4) �̄ = (d+ �3)∗,

(5) ̄ = �̄�2, �̄ = �′2�̄,

(6) �̄ = �1 + �′2̄ = �1 + �̄�2 (only one of the computations is needed; take
that with the lower complexity).

Let T∗, T×, T+ be the worst costs performing the operations ∗,×,+, respec-
tively, on elements of A. Let Tn1 , n ≥ 1, be the worst costs of computing the star
of M ∈ An×n by Algorithm 1. Then the time complexity of the steps (1)–(6) is
as follows:

(1) T∗ ,

(2) 2(n− 1)T× ,

(3) (n− 1)2T× ,

(4) (n− 1)2T+ + Tn−1
1 ,

(5) 2(n− 1)2T× + 2(n− 1)(n− 2)T+ ,

(6) T+ + (n− 1)T× + (n− 2)T+ .

Hence, we obtain, for n ≥ 2, the recursion

Tn1 = Tn−1
1 + T∗ + 3n(n− 1)T× + (3n− 4)(n− 1)T+ , with T 1

1 = T∗ .

It has, for n ≥ 1, the solution

Tn1 = nT∗ + (n+ 1)n(n− 1)T× + n(n− 1)2T+ .

We now compare our Algorithm 1 with the standard algorithm for computing
M∗ for M ∈ An×n, where A is a complete starsemiring.

Algorithm 2. Compute d
(k)
ij , (M

∗)ij , for 1 ≤ i, j ≤ n, 0 ≤ k ≤ n, by

38 CHAPTER 1. FINITE AUTOMATA

(1) d
(0)
ij = Mij ,

(2) For 1 ≤ k ≤ n, d
(k)
ij =

{
(d

(k−1)
kk)∗ for i = j = k ,

d
(k−1)
ij + d

(k−1)
ik (d

(k−1)
kk)∗d

(k−1)
kj otherwise .

(3) (M∗)ij = d
(n)
ij .

This algorihm is originally due to Kleene [70]. We have given the variant of
Mehlhorn [94], pages 138 and 139. The worst costs Tn2 , n ≥ 1, of computing
the star of M ∈ An×n by Algorithm 2 are

Tn2 = nT∗ + 2(n+ 1)n(n− 1)T× + (n+ 1)n(n− 1)T+ .

Hence, Tn1 < Tn2 for all n ≥ 2. But more important is that Algorithm 1 is valid
in all Conway semirings.

We now consider Algorithm 1 for 0-closed semirings A, i. e., for each a ∈ A
we have a∗ = 1 + a = 1, and call it Algorithm 3. The worst costs Tn3 , n ≥ 1, of
computing the star of M ∈ An×n by Algorithm 3 are then

Tn3 = n(n− 1)(n− 2)(T× + T+) ,

since all the diagonal elements of �̄ are 1.
The following variant of Algorithm 2 is usually used for computations in the

complete semiring ⟨ℝ∞+ ,min,+,∞, 0⟩.

Algorithm 4. Compute d
(k)
ij , (M

∗)ij , for 1 ≤ i, j ≤ n, 0 ≤ k ≤ n, by

(1) d
(0)
ij =

{
0 for i = j ,
Mij for i ∕= j ,

(2) For 1 ≤ k ≤ n, d
(k)
ij =

{
d

(k−1)
ij for i = k or j = k or i = j ,

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj) otherwise .

(3) (M∗)ij = d
(n)
ij .

Let Tmin and T+ be the worst costs performing the operations min and + on
elements of ℝ∞+ , respectively, and let Tn4 , n ≥ 1, be the worst costs of computing
the star of M ∈ (ℝ∞+)n×n. Then

Tn4 = n(n− 1)(n− 2)(T+ + Tmin), n ≥ 1 .

Hence, if Algorithm 3 is applied in the tropical semiring ℝ∞+ then Tn4 = Tn3
for all n ≥ 1. But Algorithm 3 has the advantage that it works in all 0-closed
semirings.

Let M ∈ (ℝ∞+)n×n be the transition matrix of a finite ℝ∞+ -automaton. Then
(M∗)ij can be interpreted as the length of a shortest path from node i to node
j in its directed graph. Hence, the computation of the star of matrices solves
the all-pairs shortest-distance problem for directed graphs with weights in the

1.4. THE COMPUTATION OF THE STAR OF A MATRIX 39

tropical semiring ℝ∞+ , i. e., computes the shortest distances between all pairs of
nodes of a directed graph.

If negative distances are to be considered then the complete semiring ⟨ℝ ∪
{−∞,∞},min,+,∞, 0⟩ with (−∞) + ∞ = ∞ + (−∞) = ∞, a∗ = −∞ for
a < 0, a∗ = 0 for a ≥ 0, has to be taken. Then the computation of the star of
matrices solves the all-pairs shortest-distance problem for directed graphs with
weights in ℝ ∪ {−∞,∞}. Algorithm 4 yields wrong results in this semiring if
a negative cycle appears in the directed graph. Hence, in this case one has to
take Algorithm 1 or Algorithm 2.

Theorem 4.1 is also the basis for comparing the complexities of computing
the product of two matrices versus computing the star of a matrix. The next
two theorems are stated in Mehlhorn [94], on pages 143 and 144 as Theorems 3
and 4 for complete semirings. Inspection of the proofs of these theorems as given
by Mehlhorn [94] shows that these proofs are valid also for Conway semirings.

Theorem 1.4.2 Let A be a Conway semiring and let T : ℕ→ ℝ+ be a function
with T (3n) ≤ cT (n) for some c ∈ ℝ+ and all n ∈ ℕ. If there is an algorithm
which computes the star of an n × n-matrix with entries in A with T (n) addi-
tions, multiplications and star operations of semiring elements of A then there
is an algorithm to multiply two n× n-matrices with entries in A with O(T (n))
additions and multiplications of semiring elements of A.

Theorem 1.4.3 Let A be a Conway semiring and let T : ℕ→ ℝ+ be a function
with T (1) = 1, 4T (2k−1) ≤ T (2k) for all k ≥ 1, and T (2n) ≤ cT (n) for some
c ∈ ℝ+ and all n ≥ 1. If the product of two n × n-matrices with entries in A
can be computed with T (n) additions and multiplications of semiring elements
of A then the star of an n × n-matrix with entries in A can be computed with
O(T (n)) additions, multiplications and star operations of semiring elements of
A.

We now will consider, for k ≥ 1, the semirings Tk and T′k. They will be used
to solve the all-pairs k-shortest distance problem and the all-pairs k-distinct-
shortest distance problem for directed graphs by computing the star of a matrix
with entries in Tk and T′k, respectively (see Mohri [95]).

We first define the semiring Tk for a fixed k ≥ 1. Let (a1, . . . , am) ∈ (ℝ∞+)m,
m ≥ k, and define mink(a1, . . . , am) = (b1, . . . , bk), where (b1, . . . , bk) is the
ordered list of the k least elements of (a1, . . . , am) with repetitions using the
usual order of ℝ∞+ (e. g., min4(2, 1, 3, 1) = (1, 1, 2, 3)).

Consider Tk = {(a1, . . . , ak) ∣ a1 ≤ . . . ≤ ak, ai ∈ ℝ∞+ , 1 ≤ i ≤ k} and
define the two operations ⊕k and ⊗k over Tk by

(a1, . . . , ak)⊕k (b1, . . . , bk) = mink(a1, . . . , ak, b1, . . . , bk) ,
(a1, . . . , ak)⊗k (b1, . . . , bk) =

= mink(a1 + b1, . . . , a1 + bk, . . . , ak + b1, . . . , ak + bk) .

Define 0k = (∞, . . . ,∞) and 1k = (0,∞, . . . ,∞). Then by Mohri [95], Propo-
sition 2, ⟨Tk,⊕k,⊗k, 0k, 1k⟩ is a (k − 1)-closed commutative semiring. Observe
that, for k = 1, Tk = ℝ∞+ is the tropical semiring.

40 CHAPTER 1. FINITE AUTOMATA

Consider now a matrix M ∈ Tn×nk and its directed graph: It has n nodes
{1, . . . , n}; if Mij = (a1, . . . , am,∞, . . . ,∞), 1 ≤ i, j ≤ n, at ∈ ℝ+, 1 ≤ t ≤ m,
0 ≤ m ≤ k, then there are m different edges from node i to node j with weights
(i. e., lengths) a1, . . . , am. Observe that some or all of the weights can be equal.

The entries (M∗)ij , 1 ≤ i, j ≤ n of the star of M ∈ Tn×nk can be interpreted
as follows: if (M∗)ij = (a1, . . . , am,∞, . . . ,∞), at ∈ ℝ+, 1 ≤ t ≤ m, 0 ≤ m < k,
then there are exactly m different paths from node i to node j with weights
(i. e., lengths) a1, . . . , am; if (M∗)ij = (a1, . . . , ak), at ∈ ℝ+, 1 ≤ t ≤ k, then
the k paths with shortest lengths from node i to node j have lengths a1, . . . , ak.
Again, some or all of the weights can be equal. Hence, computing the star of a
matrix over Tk solves the all-pairs k-shortest distance problem.

Since Tk is (k − 1)-closed, the computation of the star of a matrix over Tk
can be performed by Algorithm 1.

We now define the semiring T′k for a fixed k ≥ 1. Consider (a1, . . . , am) ∈
(ℝ∞+)m, m ≥ 1. Let (ai1 , . . . , ait) be the ordered list without repetitions of the
non-∞ elements of (a1, . . . , am) (i. e., ai1 < . . . < ait). Define min′k(a1, . . . , am) =
(ai1 , . . . , aik) if t ≥ k and min′k(a1, . . . , am) = (ai1 , . . . , ait ,∞, . . . ,∞) ∈ (ℝ∞+)k

if t < k (e. g., min′4(2, 1, 3, 1) = (1, 2, 3,∞)).
Consider T′k = {(a1, . . . , at,∞, . . . ,∞) ∣ a1 < . . . < at, ai ∈ ℝ+, 1 ≤ i ≤

t, 0 ≤ t ≤ k} and define the two operations ⊕′k and ⊗′k over T′k by

(a1, . . . , ak)⊕′k (b1, . . . , bk) = min′k(a1, . . . , ak, b1, . . . , bk) ,
(a1, . . . , ak)⊗′k (b1, . . . , bk) =

= min′k(a1 + b1, . . . , a1 + bk, . . . , ak + b1, . . . , ak + bk) .

Then by Mohri [95], Proposition 3, ⟨T′k,⊕′k,⊗′k, 0k, 1k⟩ is a (k−1)-closed commu-
tative semiring. Moreover, T′k is idempotent. Similarly as above, computing the
star of a matrix over T′k solves the all-pairs k-distinct-shortest-distance problem.

Since T′k is (k − 1)-closed, the computation of the star of a matrix over T′k
can be performed by Algorithm 1.

Chapter 2

Context-Free grammars and
algebraic systems

2.1 Introduction

In this chapter, we deal with continuous semirings and algebraic systems. These
algebraic systems are a generalization of the context-free grammars. This chap-
ter consists of this and three more sections.

In Section 2, we introduce continuous monoids and semirings and give the
basic facts of fixed point theory. These are needed in Section 3 to apply the
fixed point theory to algebraic systems in order to get least solutions. The
components of the least solutions of algebraic systems are a generalization of
the context-free languages. In Section 4, we introduce normal forms and show
equivalence results for the Chomsky normal form, the operator normal form and
the Greibach normal form.

We now give a typical example which will be helpful for readers with some
background in algebraic systems. Readers without this background should con-
sult it when algebraic systems are defined in the following sections.
Example 2.1.1. Let G = ({y},Σ, P, y) with Σ = {x, x̄} and P = {y →
xyx̄y, y → "} be a context-free grammar. The context-free language L(G)
generated by G is called restricted Dyck language (see Berstel [4]) and is the set
of wellformed expressions with parantheses x, x̄. We consider now the derivation
of a word w in L(G) according to the levels of the (unique) derivation tree of w:

y ⇒ " ,
y ⇒ xyx̄y ⇒2 xx̄ ,
y ⇒ xyx̄y ⇒2 xxyx̄yx̄xyx̄y ⇒4 xxx̄x̄xx̄ ,
y ⇒ xyx̄y ⇒2 xxyx̄yx̄⇒2 xxx̄x̄ ,
y ⇒ xyx̄y ⇒2 xx̄xyx̄y ⇒2 xx̄xx̄ , . . .

We now associate to G the equation y = {x}y{x̄}y ∪ {"} and construct its
(unique) solution in the semiring 2Σ∗ by the following procedure (due to the

41

42 CHAPTER 2. CONTEXT-FREE GRAMMARS

forthcoming Theorem 2.9): We start with �0 = ∅ and substitute �n into the
right side of the equation to obtain �n+1. Hence,

�0 = ∅, �1 = {"}, �2 = {xx̄, "},
�3 = {x}{xx̄, "}{x̄}{xx̄, "} ∪ {"} =

{xx̄x̄x̄xx̄, xxx̄x̄, xx̄xx̄, "} , . . .

Observe that �n contains exactly those words of L(G) that are the results of
derivation trees of height at most n, n ≥ 1. The sequence �0, �1, . . . , �n, . . .
is called approximation sequence. Since it is monotonic, its least upper bound
equals

∪
n≥0 �

n and coincides by the forthcoming Theorem 2.9 with L(G).

2.2 Preliminaries

In this section we first consider commutative monoids. The definitions and
results on commutative monoids are mainly due—sometimes in the framework
of semiring theory—to Eilenberg [29], Goldstern [57], Karner [67, 68], Krob [72,
73], Kuich [76, 78], Kuich, Salomaa [88], Manes, Arbib [92], Sakarovitch [104].
Our notion of continuous monoid is a specialization of the continuous algebras
as defined, e. g., in Guessarian [61], Goguen, Thatcher, Wagner, Wright [56],
Adamek, Nelson, Reiterman [1].

In the second part of this section we consider algebraic properties of formal
power series.

In our book we often will need certain results of fixed point theory. Hence,
in the third part of this section, we give a short introduction into the fixed point
theory of continuous functions and refer to a few results of this theory.

A commutative monoid ⟨A,+, 0⟩ is called ordered iff it is equipped with a
partial order ≤ preserved by the + operation such that 0 ≤ a holds for all a ∈ A.
It then follows that a ≤ a + b, for all a, b ∈ A. In particular, a commutative
monoid ⟨A,+, 0⟩ is called naturally ordered iff the relation ⊑ defined by: a ⊑ b
iff there exists a c such that a+ c = b, is a partial order. Morphisms of ordered
monoids preserve the order.

A monoid ⟨A,+, 0⟩ is called complete iff it has sums for all families (ai ∣ i ∈ I)
of elements of A, where I is an arbitrary index set, such that the following
conditions are satisfied:

(i)
∑
i∈∅ ai = 0,

∑
i∈{j} ai = aj ,

∑
i∈{j,k} ai = aj + ak, for j ∕= k,

(ii)
∑
j∈J(

∑
i∈Ij ai) =

∑
i∈I ai, if

∪
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j ∕= j′.

A morphism of complete monoids preserves all sums. Note that any complete
monoid is commutative.

Recall that a non-empty subset D of a partially ordered set P is called
directed iff each pair of elements of D has an upper bound in D. Moreover, a
function f : P → Q between partially orderet sets is continuous iff it preserves
the least upper bound of any directed set, i.e., when f(supD) = sup f(D), for

2.2. PRELIMINARIES 43

all directed sets D ⊆ P such that supD exists. It follows that any continuous
function preserves the order.

An ordered commutative monoid ⟨A,+, 0⟩ is called a continuous monoid iff
each directed subset of A has a least upper bound and the + operation preserves
the least upper bound of directed sets, i.e., when

a+ supD = sup(a+D) ,

for all directed sets D ⊆ A and for all a ∈ A. Here, a+D is the set {a+x ∣ x ∈
D}. A morphism of continuous monoids is a continuous monoid homomorphism.

It is known that an ordered commutative monoid A is continuous iff each
chain in A has a least upper bound and the + operation preserves least upper
bounds of chains, i. e., when a + supC = sup(a + C) holds for all non-empty
chains C in A. (See Markowsky [93].)

Proposition 2.2.1 Any continuous monoid ⟨A,+, 0⟩ is a complete monoid
equipped with the following sum operation:∑

i∈I
ai = sup{

∑
i∈E

ai ∣ E ⊆ I, E finite} ,

for all index sets I and all families (ai ∣ i ∈ I) in A. Any morphism between
continuous monoids is a complete monoid morphism.

A semiring ⟨A,+, ⋅, 0, 1⟩ is called ordered if ⟨A,+, 0⟩ is an ordered monoid
and multiplication preserves the order. When the order on A is the natural
order, ⟨A,+, ⋅, 0, 1⟩ is automatically an ordered semiring. A morphism of ordered
semirings is an order preserving semiring morphism.

A semiring ⟨A,+, ⋅, 0, 1⟩ is called continuous if ⟨A,+, 0⟩ is a continuous
monoid and if multiplication is continuous, i.e.,

a ⋅ (sup
i∈I

ai) = sup
i∈I

(a ⋅ ai) and (sup
i∈I

ai) ⋅ a = sup
i∈I

(ai ⋅ a)

for all directed sets {ai ∣ i ∈ I}. It follows that the distribution laws hold for
infinite sums:

a ⋅ (
∑
i∈I

ai) =
∑
i∈I

(a ⋅ ai) and (
∑
i∈I

ai) ⋅ a =
∑
i∈I

(ai ⋅ a)

for all families (ai ∣ i ∈ I).
A morphism of continuous semirings is a semiring morphism which is a

continuous function. Note that every continuous semiring is an ordered semiring
and every continuous semiring morphism is an ordered semiring morphism.

Corollary 2.2.2 Any continuous semiring is complete.

Corollary 2.2.3 Any continuous semiring is a Conway semiring.

44 CHAPTER 2. CONTEXT-FREE GRAMMARS

Proof. By Theorem 1.2.24.

Examples of continuous semirings include B,ℕ∞,ℝ∞+ , the tropical semirings,

the semiring 2Σ∗ of formal languages over Σ, and the semiring 2S×S of binary
relations over S.

Suppose that A is a semiring and Σ is an alphabet. Recall from Chapter 1
the definitions of the polynomial semiring A⟨Σ∗⟩ and the power series semiring
A⟨⟨Σ∗⟩⟩. We now exhibit a universal property of these constructions. Note that
A⟨⟨Σ∗⟩⟩ may be equipped with a scalar multiplication A × A⟨⟨Σ∗⟩⟩ → A⟨⟨Σ∗⟩⟩,
(a, s) 7→ as, defined by (as, u) = a(s, u), for all u ∈ Σ∗. Here and in the sequel,
Σ denotes a finite alphabet. When s ∈ A⟨Σ∗⟩, then also as ∈ A⟨Σ∗⟩. This
operation satisfies the following equations:

a(bs) = (ab)s (2.1)

1s = s (2.2)

(a+ b)s = as+ bs (2.3)

a(s+ s′) = as+ as′ (2.4)

a0 = 0 , (2.5)

for all a, b ∈ A and s, s′ ∈ A⟨⟨Σ∗⟩⟩. It follows that

0s = 0 ,

for all s. Moreover, when A is commutative, we also have that

(as)(bs′) = (ab)(ss′) (2.6)

for all a, b ∈ A and s, s′ ∈ A⟨⟨Σ∗⟩⟩.

Theorem 2.2.4 Suppose that A is a commutative semiring and S is a semiring
equipped with a scalar multiplication A × S → S, (a, s) 7→ as, which satisfies
the equations (6.1)–(6.6). Then any function ' : Σ → S extends to a unique
semiring morphism '♯ : A⟨Σ∗⟩ → S preserving scalar multiplication.

Proof. It is well-known that ' extends to a unique monoid morphism morphism
'̄ : Σ∗ → S. We further extend '̄ to '♯ by defining

'♯(s) =
∑
u∈Σ∗

(s, u)'̄(u) ,

for all s ∈ A⟨Σ∗⟩. It is a routine matter to show that '♯ extends ' and is a
semiring morphism that preserves scalar multiplication. Since the definition of
'♯ was forced, the extension is unique.

A similar result holds when A is a complete commutative semiring, so that
A⟨⟨Σ∗⟩⟩ is a complete semiring equipped with a scalar multiplication defined
above.

2.2. PRELIMINARIES 45

Theorem 2.2.5 Suppose that A is a complete commutative semiring and S is a
complete semiring equipped with a scalar multiplication A×S → S, (a, s) 7→ as,
which satisfies the equations (6.1)–(6.6). Moreover, assume that

(
∑
i∈I

ai)s =
∑
i∈I

ais (2.7)

a
∑
i∈I

si =
∑
i∈I

asi , (2.8)

for all a, ai ∈ A and s, si ∈ S, i ∈ I, where I is any index set. Then any function
' : Σ → S extends to a unique complete semiring morphism '♯ : A⟨⟨Σ∗⟩⟩ → S
preserving scalar multiplication.

Proof. The proof of this result parallels that of Theorem 2.4. First we extend '
to ' : Σ∗ → S, and then define

'♯(s) =
∑
u∈Σ∗

(s, u)'(u),

for all s ∈ A⟨⟨Σ∗⟩⟩. This sum makes sense since S is complete. The details of the
proof that '♯ is a complete semiring morphism preserving scalar multiplication
are routine. The definition of '♯ was again forced.

When A is ordered by ≤, we may order A⟨⟨Σ∗⟩⟩, and thus A⟨Σ∗⟩, by the
pointwise order: We define s ≤ s′ for s, s′ ∈ A⟨⟨Σ∗⟩⟩ iff (s, u) ≤ (s′, u) for all
u ∈ Σ∗. Equipped with this order, both A⟨⟨Σ∗⟩⟩ and A⟨Σ∗⟩ are ordered semirings
if A is an ordered semiring. Moreover, scalar multiplication preserves the order
in both arguments. Finally, if A is a continuous semiring, then A⟨⟨Σ∗⟩⟩ is also
continuous, and scalar multiplication preserves least upper bounds of directed
sets in both arguments.

Corollary 2.2.6 Suppose that A is an ordered commutative semiring and S
is an ordered semiring equipped with an order preserving scalar multiplication
A × S → S, (a, s) 7→ as, which satisfies the equations (6.1)–(6.6). Then
any function ' : Σ → S extends to a unique ordered semiring morphism
'♯ : A⟨Σ∗⟩ → S preserving scalar multiplication. Moreover, when A is a con-
tinuous commutative semiring and S is a continuous semiring equipped with a
continuous scalar multiplication A × S → S, (a, s) 7→ as, which satisfies the
above equations, then any function ' : Σ → S extends to a unique continuous
semiring morphism '♯ : A⟨⟨Σ∗⟩⟩ → S preserving scalar multiplication.

Let A denote a continuous (and thus complete) commutative semiring where
sums are defined by Proposition 2.1. Let s be a formal series in A⟨⟨Σ∗⟩⟩, and let S
denote a continuous semiring equipped with a scalar multiplication A× S → S
satisfying (6.1)–(6.6) which is also continuous. The set SΣ of all functions
Σ → S is also a continuous semiring equipped with the pointwise operations
and ordering as is the set of all continuous functions SΣ → S. Moreover, it is

46 CHAPTER 2. CONTEXT-FREE GRAMMARS

equipped with the pointwise scalar multiplication which again satisfies (6.1)–
(6.6) and is continuous. Now s induces a mapping sS : SΣ → S, ℎ 7→ ℎ♯(s) for
ℎ ∈ SΣ.

Proposition 2.2.7 The function sS is continuous. Moreover, the assignment
s→ sS defines a continuous function of s.

Proof. It is known that when u ∈ Σ∗, then the function uS : SΣ → S induced by
u is continuous, since it can be constructed from continuous functions (namely,
the projections and product operation of S) by function composition, see, e.g.,
Guessarian [61]. Since scalar multiplication and + are continuous, so is any
function induced by a series in A⟨Σ∗⟩. But sS is the pointwise supremum of the
functions induced by the polynomials

∑
u∈F (s, u)u, where F is a finite subset

of Σ∗. Since the pointwise supremum of continuous functions is continuous, see
Guessarian [61], the result follows.

To show that the assignment s 7→ sS defines a continuous function, let D
denote a directed set in A⟨⟨Σ∗⟩⟩. We need to prove that

(sup
s∈D

s)S = sup
s∈D

sS .

But for any ℎ : Σ→ S,

(sup
s∈D

s)S(ℎ) = ℎ♯(sup
s∈D

s)

= sup
s∈D

ℎ♯(s)

= sup
s∈D

sS(ℎ)

= (sup
s∈D

sS)(ℎ).

From now on we will write just ℎ for ℎ♯ and denote sS by just s.
In particular, formal series induce continuous mappings called substitutions

as follows. Let Y denote a non-empty set of variables, where Y ∩ Σ = ∅, and
consider a mapping ℎ : Y → A⟨⟨(Σ∪ Y)∗⟩⟩. This mapping can be extended to a
mapping ℎ : (Σ ∪ Y)∗ → A⟨⟨(Σ ∪ Y)∗⟩⟩ by setting first ℎ(x) = x, x ∈ Σ. Now,
by the above result, for any series s ∈ A⟨⟨(Σ ∪ Y)∗⟩⟩, the mapping ℎ 7→ ℎ(s)
is a continuous function of ℎ. By the arguments outlined above, ℎ(s) can be
constructed as follows. First, extend ℎ to words u = u1 . . . uk with ui ∈ Σ ∪ Y
by defining

ℎ(u) = ℎ(u1) ⋅ . . . ⋅ ℎ(uk) =∑
v1,...,vk∈(Σ∪Y)∗(ℎ(u1), v1) . . . (ℎ(uk), vk)v1 . . . vk .

One more extension of ℎ yields a mapping ℎ : A⟨⟨(Σ∪Y)∗⟩⟩ → A⟨⟨(Σ∪Y)∗⟩⟩ with
ℎ(s) =

∑
u∈(Σ∪Y)∗(s, u)ℎ(u), for all s ∈ A⟨⟨(Σ∪Y)∗⟩⟩. Now s(ℎ) is just the value

of this extended function on s. If Y = {y1, . . . , yn} is finite, we use the following

2.2. PRELIMINARIES 47

notation: ℎ : Y → A⟨⟨(Σ ∪ Y)∗⟩⟩, where ℎ(yi) = si, 1 ≤ i ≤ n, is denoted by
(si, 1 ≤ i ≤ n) or (s1, . . . , sn) and the value of s with argument ℎ is denoted by
s(si, 1 ≤ i ≤ n) or s(s1, . . . , sn). Intuitively, this is simply the substitution of
the formal series si ∈ A⟨⟨(Σ∪Y)∗⟩⟩ into the variables yi, 1 ≤ i ≤ n, of s ∈ A⟨⟨(Σ∪
Y)∗⟩⟩. By Proposition 2.7, the mapping s : (A⟨⟨(Σ ∪ Y)∗⟩⟩)Y → A⟨⟨(Σ ∪ Y)∗⟩⟩,
i. e., the substitution of formal series into the variables of Y , is a continuous
mapping. Moreover, s(s1, . . . , sn) is also continuous in s. (So it is continuous in
s and in each si.) Observe that s(s1, . . . , sn) =

∑
u∈(Σ∪Y)∗(s, u)u(s1, . . . , sn).

In certain situations, formulae are easier to read if we use the notation
s[si/yi, 1 ≤ i ≤ n] for the substitution of the formal series si into the variables
yi, 1 ≤ i ≤ n, of s instead of the notation s(si, 1 ≤ i ≤ n). So we will use
sometimes this notation s[si/yi, 1 ≤ i ≤ n].

In the same way, s ∈ A⟨⟨(Σ ∪ Y)∗⟩⟩ also induces a mapping s : (A⟨⟨Σ∗⟩⟩)Y
→ A⟨⟨Σ∗⟩⟩.

The construction of series and the above freeness results can be generalized
to a great extent. Suppose that M is any monoid and A is any complete com-
mutative semiring. Then the set of functions M → A, denoted A⟨⟨M⟩⟩, is a
complete semiring. We call the elements of A⟨⟨M⟩⟩ series and denote them as∑
m∈M (s,m)m, or

∑
m∈supp(s)(s,m)m. The sum of any family of series is their

pointwise sum. The zero series serves as zero. In this semiring A⟨⟨M⟩⟩, for each
s1, s2 ∈ A⟨⟨M⟩⟩,

s1s2 =
∑
m∈M

(
∑

m=m1m2

(s1,m1)(s2,m2))m.

Note also that A⟨⟨M⟩⟩ is equipped with a scalar multiplication A × A⟨⟨M⟩⟩ →
A⟨⟨M⟩⟩. Moreover, equations (6.1)–(6.6) and (6.7), (6.8) hold. When A is
a continuous semiring then, equipped with the pointwise order, A⟨⟨M⟩⟩ is a
continuous semiring and scalar multiplication is continuous. We are now ready
to state the promised generalization of Theorem 2.5 and Corollary 2.6.

Theorem 2.2.8 Suppose that A is a complete commutative semiring and S is a
complete semiring equipped with a scalar multiplication A×S → S which satisfies
the equations (6.1)–(6.6) as well as (6.7) and (6.8). Moreover, assume that M
is a monoid. Then any monoid morphism ' : M → S extends to a unique
complete semiring morphism '♯ : A⟨⟨M⟩⟩ → S preserving scalar multiplication.
When A is a continuous commutative semiring and S is continuous, moreover,
the scalar multiplication A× S → S is continuous, then so is the function '♯.

Proof. Given ', we are forced to define

'♯(s) =
∑
m∈M

(s,m)'(m), (2.9)

for all s ∈ A⟨⟨M⟩⟩. On the other hand, it is a routine matter to verify that (6.9)
defines a complete semiring morphism '♯ : A⟨⟨M⟩⟩ → S that extends '.

Suppose now that A and S are continuous and that the scalar multiplication
A× S → S is also continuous. In order to prove that '♯ is continuous, suppose

48 CHAPTER 2. CONTEXT-FREE GRAMMARS

that D is a directed set in A⟨⟨M⟩⟩. Then for each m ∈M , the set {(s,m) : m ∈
D} is also directed, moreover, (supD,m) = supd∈D(d,m). Using this, and the
continuity of scalar multilication and summation, we have that

'♯(supD) =
∑
m∈M

(supD,m)'(m)

=
∑
m∈M

(sup
d∈D

(d,m))'(m)

=
∑
m∈M

sup
d∈D

(d,m)'(m)

= sup
d∈D

∑
m∈M

(d,m)'(m)

= sup{'♯(d) : d ∈ D}
= sup'♯(D).

Theorem 2.4 can be generalized in the same way.
In the sequel, we shall make use of some basic facts about least fixed points

of continuous functions that we review next.
A complete partially ordered set, or cpo, for short, is a partially ordered set P

which has a bottom element, usually denoted ⊥, such that supD exists for each
directed set D ⊆ P . Note that continuous monoids and continuous semirings are
cpo’s. When P and Q are cpo’s, a function f : P → Q is called continuous if f
preserves the least upper bound of directed sets (see also above). It is clear that
any composition of continuous functions is continuous, and any direct product
of cpo’s is a cpo equipped with the pointwise order. Moreover, when P,Q are
cpo’s, the set of continuous functions P → Q equipped with the pointwise order
is also a cpo.

Suppose that P and Qi, i ∈ I, are cpo’s and let
∏
i∈I Qi denote the direct

product of theQi. Then for any j ∈ I, the jth projection function
∏
i∈I Qi → Qj

is continuous. Moreover, a function f : P →
∏
i∈I Qi is continuous iff each

“component function” fi : P → Qi is continuous. And when I is finite, say
I = {1, . . . , n}, then a function f :

∏
i∈I Qi → P is continuous iff it is continuous

separately in each argument, i.e., when

f(a1, . . . , supD, . . . , an) = sup f(a1, . . . , D, . . . , an)

holds for each 1 ≤ i ≤ n, aj ∈ Qj , j ∕= i, and for each directed set D ⊆ Qi. In
the sequel, we will use these facts without any further mention.

Due to a well-known fixed point theorem, that we recall now, cpo’s and
continuous functions have been used widely to give semantics to recursive defi-
nitions, see, e.g., Bloom, Ésik [10], Guessarian [61].

Theorem 2.2.9 Suppose that P and Q are cpo’s and f is a continuous function
P ×Q→ P . Then for each q ∈ Q there is a least p ∈ P with p = f(p, q), called

2.2. PRELIMINARIES 49

the least fixed point of f with respect to the parameter q. Moreover, the function
Q→ P that takes q to the least fixed point p is continuous.

Proof. For the sake of completeness, we give a proof here. For each q ∈ Q,
define fq : P → P by fq(x) = f(x, q), for each x ∈ P . Since the partial order
on P × Q is the pointwise order, fq is also continuous. Now define xq0 = ⊥,
the least element of P , and xqn+1 = fq(x

q
n), for all n ≥ 0. Since f is monotone,

it follows that the elements xqn, n ≥ 0 form a chain, hence xq = supn≥0 x
q
n

exists. Moreover, since fq is continuous, we have f(xq) = f(supn≥0 x
q
n) =

supn≥0 f(xqn) = supn≥1 x
q
n = xq, so that xq is a fixed point of fq. Also, if

fq(y) ≤ y, then it follows by induction on n that xqn ≤ y, for all n. Thus, xq

is the least fixed point of fq and thus the least y ∈ P with y = f(y, q). Let f†

denote the function q 7→ supn≥0 x
q
n. Then, for every directed set D ⊆ Q and

each n ≥ 0, supd∈D, n≥0 x
d
n exists and

sup
n≥0

xsupD
n = sup

d∈D, n≥0
xdn = sup

d∈D
sup
n≥0

xdn.

This follows by noting that for each n, xsupD
n = supd∈D x

d
n. Thus,

f†(supD) = sup
n≥0

xsupD
n

= sup
d∈D

sup
n≥0

xdn

= sup
d∈D

f†(d),

proving that f† is continuous.
Note that by the above proof, f†(q) is also the least pre-fixed point of the

function p 7→ f(p, q), p ∈ P .

In Bloom, Ésik [10], the function Q → P arising from Theorem 2.9 that
provides the parameterized least fixed point for a given continuous function
f : P ×Q→ P is denoted f†. Here, we will mainly use the notation �x.f(x, y)
or, for f : P → P , also fix(f).

We now recall three very important elementary facts about least fixed points
of continuous functions. Theorem 2.10 is independently due to Bekić [3] and De
Bakker, Scott [27]. For Proposition 2.11, see also Niwiński [98].

Theorem 2.2.10 Suppose that f : P × Q × R → P and g : P × Q × R → Q
are continuous functions, where P,Q,R are cpo’s. Let ℎ : P ×Q×R→ P ×Q
denote the “target pairing” of f and g, so that ℎ(x, y, z) = (f(x, y, z), g(x, y, z)).
Then

�(x, y).ℎ(x, y, z) = (�x.f(x, k(x, z), z), k(�x.f(x, k(x, z), z), z))

where �(x, y).ℎ(x, y, z) : R→ P ×Q and k(x, z) = �y.g(x, y, z) : P ×R→ Q.

50 CHAPTER 2. CONTEXT-FREE GRAMMARS

Proposition 2.2.11 Suppose that f : P ×P ×Q→ P is a continuous function,
where P and Q are cpo’s. Then

�x.�y.f(x, y, z) = �x.f(x, x, z).

Proposition 2.2.12 Suppose that f : P ×Q→ P and g : R→ Q are continu-
ous functions, where P,Q,R are all cpo’s. Then

�x.f(x, g(z)) = ℎ(g(z)) ,

where ℎ(y) = �x.f(x, y).

We refer to the equation in Theorem 2.10 as the Bekić-De Bakker-Scott rule.
The equation in Proposition 2.11 is usually referred to as the diagonal equa-
tion, or the double iteration equation. In the terminology of Bloom, Ésik [10],
Proposition 2.12 asserts that the parameter identity holds.

The above results describe three equational properties of the least fixed
point operation on continuous functions. For a complete description, we refer
the reader to Bloom, Ésik [10], Ésik [36]. Least fixed points of continuous
functions on cpo’s are also least pre-fixed points. In Ésik [35], it is shown
that the equational properties of the least fixed point operation on continuous
functions on cpo’s are exactly the same as those of the least pre-fixed point
operation on order preserving functions on partially ordered sets in general.

2.3 Algebraic systems

In this section we introduce semiring-polynomials and consider algebraic systems
over continuous semirings as a generalization of the context-free grammars. We
show that least solutions of these algebraic systems exist. The components of
the least solutions of algebraic systems are a generalization of the context-free
languages. Our development of the theory concerning algebraic systems parallels
that of Eilenberg [30] and uses fixed point theory.

In the sequel, A denotes a continuous semiring and Y = {y1, . . . , yn} denotes
a finite set of variables. We denote by A(Y) the polynomial semiring over the
semiring A in the set of variables Y (see Lausch, Nöbauer [90], Chapter 1.4).
To distinguish the polynomials in A(Y) from the polynomials in A⟨Σ∗⟩, we call
them semiring-polynomials.

Each semiring-polynomial has a representation as follows. A product term t
has the form

t(y1, . . . , yn) = a0yi1a1 . . . ak−1yikak, k ≥ 0,

where aj ∈ A and yij ∈ Y . The elements aj are referred to as coefficients of
the product term. Observe that for k = 0 we have t(y1, . . . , yn) = a0. If k ≥ 1,
we do not write down coefficients that are equal to 1; e. g., y1y2 stands for

2.3. ALGEBRAIC SYSTEMS 51

1 ⋅ y1 ⋅ 1 ⋅ y2 ⋅ 1. Each semiring-polynomial p has a representation as a finite sum
of product terms tj , i. e.,

p(y1, . . . , yn) =
∑

1≤j≤m

tj(y1, . . . , yn).

The coefficients of all the product terms tj , 1 ≤ j ≤ m, are referred to as
the coefficients of the semiring-polynomial p. For a non-empty subset A′ of A
we denote the collection of all semiring-polynomials with coefficients in A′ by
A′(Y).

If the basic semiring is given by A⟨⟨Σ∗⟩⟩ then A⟨(Σ ∪ Y)
∗⟩, the set of poly-

nomials over Σ ∪ Y , can be regarded as a subset of the set A′(Y) of semiring-
polynomials, where A′ = {aw ∣ a ∈ A, w ∈ Σ∗}.

We are not interested in the algebraic properties of A(Y), but only in the
mappings induced by semiring-polynomials. These mappings are called polyno-
mial functions on A (see Lausch, Nöbauer [90], Chapter 1.6).

Each product term t (resp. semiring-polynomial p) with variables y1, . . . , yn
induces a mapping t (resp. p) from An into A. For a product term t represented
as above, the mapping t is defined by

t(�1, . . . , �n) = a0�i1a1 . . . ak−1�ikak ;

for a semiring-polynomial p, represented by a finite sum of product terms tj as
above, the mapping p is defined by

p(�1, . . . , �n) =
∑

1≤j≤m

tj(�1, . . . , �n)

for all (�1, . . . , �n) ∈ An.
In the sequel we denote the mapping p induced by p also by p. This should

not lead to any confusion.
We now define the basic notions concerning algebraic systems. Let A′ be

a non-empty subset of A. An A′-algebraic system (with variables in Y =
{y1, . . . , yn}) is a system of equations

yi = pi, 1 ≤ i ≤ n,

where each pi is a semiring-polynomial in A′(Y). A solution to the A′-algebraic
system yi = pi, 1 ≤ i ≤ n, is given by (�1, . . . , �n) ∈ An such that

�i = pi(�1, . . . , �n), 1 ≤ i ≤ n.

A solution (�1, . . . , �n) of the A′-algebraic system yi = pi, 1 ≤ i ≤ n, is termed
a least solution iff

�i ≤ �i, 1 ≤ i ≤ n,

for all solutions (�1, . . . , �n) of yi = pi, 1 ≤ i ≤ n.

52 CHAPTER 2. CONTEXT-FREE GRAMMARS

Often it is convenient to write the A′-algebraic system yi = pi, 1 ≤ i ≤ n, in
matrix notation. Defining the two column vectors

y =

⎛⎜⎝ y1

...
yn

⎞⎟⎠ and p =

⎛⎜⎝ p1

...
pn

⎞⎟⎠ ,

we can write our A′-algebraic system in the matrix notation

y = p(y) or y = p.

A solution to y = p(y) is now given by � ∈ An such that � = p(�). A solution
� of y = p is termed a least solution iff � ≤ � for all solutions � of y = p.

One of our main results in this section will be that an A′-algebraic system
has a unique least solution.

Since addition and multiplication in a continuous semiring are continuous
functions, we have:

Proposition 2.3.1 Let A be a continuous semiring and let p be a semiring-
polynomial in A(Y). Then the mapping p : An → A is continuous.

Let now p ∈ A(Y)
n×1

, i. e., p is a column vector of semiring-polynomials.
Then p induces a mapping p : An → An by (p(a1, . . . , an))i = pi(a1, . . . , an),
1 ≤ i ≤ n, i. e., the i-th component of the value of p at (a1, . . . , an) ∈ An is
given by the value of the i-th component pi of p at (a1, . . . , an).

The next corollary follows by the observation that any target tupling of
continuous functions is continuous.

Corollary 2.3.2 Let A be a continuous semiring and let p ∈ A(Y)
n×1

. Then
the mapping p : An → An is continuous.

Consider now an A′-algebraic system y = p. The least fixpoint of the map-
ping p is nothing else than the least solution of y = p.

Theorem 2.3.3 Let A be a continuous semiring and A′ be a non-empty subset
of A. Then the least solution of an A′-algebraic system y = p exists in An and
equals

fix(p) = sup(pi(0) ∣ i ∈ ℕ).

Proof. By Theorem 2.9.

Theorem 2.9 indicates how we can compute an approximation to the least
solution of an A′-algebraic system y = p. The approximation sequence �0,
�1, �2,. . . ,�j ,. . . , where each �j ∈ An×1, associated to an A′-algebraic system
y = p(y) is defined as follows:

�0 = 0, �j+1 = p(�j), j ∈ ℕ.

2.3. ALGEBRAIC SYSTEMS 53

Clearly, (�j ∣ j ∈ ℕ) is a chain and fix(p) = sup (�j ∣ j ∈ ℕ), i. e., we obtain the
least solution of y = p by computing the least upper bound of the approximation
sequence associated to it.

The collection of the components of the least solutions of all A′-algebraic
systems, where A′ is a fixed subset of A, is denoted by Alg(A′). In the sequel,
A′ denotes always a subset of A containing 0 and 1. But observe that most
of the definitions and some of the results involving a subset A′ of A are valid
without this restriction as well, i. e., are valid for arbitrary subsets A′ of A.

An A′-algebraic system yi = pi, 1 ≤ i ≤ n, is called finite A′-linear system if
pi =

∑
1≤j≤nMijyj+Ri, where Mij , Ri ∈ A′. Let M ∈ A′n×n (resp. R ∈ A′n×1)

be the matrix (resp. column vector) with entries Mij (resp. Ri). Then such a
finite A′-linear system can be written in matrix notation as y = My + R. The
approximation sequence �0, �1, �2, . . . , �j , . . ., where each �j ∈ An×1, associated
to the finite A′-linear system y = My +R is given by:

�0 = 0, �j+1 =
∑

0≤i≤j

M iR, j ≥ 0 .

Hence, we have proved the following result.

Theorem 2.3.4 Let A be a continuous semiring and A′ be a non-empty subset
of A. Then M∗R is the least solution of the finite A′-linear system y = My+R,
where M ∈ A′n×n and R ∈ A′n×1.

Corollary 2.3.5 Let a ∈ A. Then a is a component of the least solution of a
finite A′-linear system iff a ∈ ℜec(A′).

Proof. By Theorem 1.3.1.

Example 2.3.1. Let A be a continuous semiring and a, b ∈ A. We consider the
A-linear system y = (a+ b)y + 1 and compute its unique least solution by two
different methods.

(i) By Theorem 3.4, the least solution of y = (a+b)y+1 is given by (a+b)∗.
(ii) We compute the least solution of y = ay+by+1 by the diagonal equation,

Proposition 2.12: We first compute the least solution of y = ay + bz + 1. It is
a∗(bz+ 1). Then we compute the least solution of z = a∗bz+ a∗. It is (a∗b)∗a∗.
By the diagonal equation, (a∗b)∗a∗ is then the least solution of y = (a+ b)y+ 1.

(iii) Since the least solution is unique, we obtain the sum-star-equation

(a+ b)∗ = (a∗b)∗a∗ .

Formally, we obtain

(a+ b)∗ = �y.((a+ b)y + 1) =
�z.�y.(ay + bz + 1) =
�z.a∗(bz + 1) = (a∗b)∗a∗ .

54 CHAPTER 2. CONTEXT-FREE GRAMMARS

Example 2.3.2. Let A be a continuous semiring and a, b ∈ A. We consider the
A-linear system y1 = by2, y2 = ay1 + 1 and compute its unique solution by two
different methods.

(i) We solve y1 = by2. Its least solution is �1(y2) = by2. Then we substitute
�1(y2) into the second equation and obtain the equation y2 = aby2 + 1. Its least
solution is �2 = (ab)∗. Hence, by the Bekić-De Bakker-Scott rule, Theorem 2.10,
the least solution of our original system is given by (b(ab)∗, (ab)∗).

(ii) We solve y2 = ay1 + 1. Its least solution is �2(y1) = ay1 + 1. Then we
substitute �2(y1) into the first equation and obtain the equation y1 = bay1 + b.
Its least solution is �1 = (ba)∗b. Hence, by the Bekić-De Bakker-Scott rule, the
least solution of our original system is given by ((ba)∗b, a(ba)∗b+ 1).

(iii) Since the least solution is unique, we obtain the equality

b(ab)∗ = (ba)∗b

and the product-star-equation

(ab)∗ = a(ba)∗b+ 1 .

Observe that, for a = 1, we obtain the equalities

bb∗ = b∗b

and
b∗ = b∗b+ 1 .

We now formalize the computations. The Bekić-De Bakker-Scott rule, Theo-
rem 2.10, where R is a singleton, reads

�(x, y).(f(x, y), g(x, y)) = (�x.f(x, �y.g(x, y)), �y.g(�x.f(x, �y.g(x, y)), y) .

We now substitute y1 for x, y2 for y, by2 for f(y1, y2) and ay1 + 1 for g(y1, y2)
and obtain

�(y1, y2).(f(y1, y2), g(y1, y2)) =
(�y1.b�y2.(ay1 + 1), �y2.(a�y1.b�y2.(ay1 + 1) + 1) =
(�y1.(bay1 + b), �y2.(a�y1.(bay1 + b) + 1)) =
((ba)∗b, �y2.(a(ba)∗b+ 1)) =
((ba)∗b, a(ba)∗b+ 1) .

Another formulation of the Bekić-De Bakker-Scott rule is obtained by symmetry:

�(x, y).(f(x, y), g(x, y)) = (�x.f(x, �y.g(�x.f(x, y), y)), �y.g(�x.f(x, y), y)) .

We obtain, by the same substitution as above,

�(y1, y2).(f(y1, y2), g(y1, y2)) =
(�y1.b�y2.(a�y1.by2 + 1), �y2.(a�y1.by2 + 1)) =
(�y1.b�y2.(aby2 + 1), �y2.(aby2 + 1)) =
(�y1.b(ab)

∗, (ab)∗) =
(b(ab)∗, (ab)∗) .

2.3. ALGEBRAIC SYSTEMS 55

Hence,
((ba)∗b, a(ba)∗b+ 1) = (b(ab)∗, (ab)∗) .

Example 2.3.3. Let A be a continuous semiring. Then, for n ≥ 1, An×n is again
a continuous semiring. We consider the An×n-linear system y = My + E and
compute its unique solution by two different methods.

(i) The least solution of y = My + E is given by M∗.

(ii) We partition M into blocks M =

(
a b
c d

)
, where a ∈ An1×n1 , b ∈

An1×n2 , c ∈ An2×n1 , d ∈ An2×n2 , n1 + n2 = n, and write the equation y =
My + E in the form(

y11 y12

y21 y22

)
=

(
a b
c d

)(
y11 y12

y21 y22

)
+

(
1 0
0 1

)
.

Computation of the right side of this matrix equation yields the two systems

y11 = ay11 + by21 + 1
y21 = cy11 + dy21

and
y12 = ay12 + by22

y22 = cy12 + dy22 + 1

We now solve the first system and apply the Bekić-De Bakker-Scott rule: We
solve y21 = cy11 + dy21. Its least solution is �21(y11) = d∗cy11. Then we
substitute �21(y11) into the first equation and obtain the equation y11 = ay11 +
bd∗cy11 + 1. Its least solution is �11 = (a + bd∗c)∗. We now substitute �11 into
the second equation y21 = c(a+bd∗c)∗+dy21. Its least solution is �21 = d∗c(a+
bd∗c)∗. Applying the sum-star-equation and the equality f(gf)∗ = (fg)∗f of
Example 3.2 (iii) yields

�21 = d∗c(a∗bd∗c)∗a∗ = (d∗ca∗b)∗d∗ca∗ = (d+ ca∗b)∗ca∗ .

Hence, � = (a + bd∗c)∗, = (d + ca∗b)∗ca∗ is the least solution of the first
system. By symmetry, the least solution of the second system is given by � =
(a+ bd∗c)∗bd∗, � = (d+ ca∗b)∗.

(iii) Since the least solution is unique, we obtain the matrix-star-equation

M∗ =

(
� �
 �

)
.

(iv) The computations in (ii) can be formalized by substituting into the
Bekić-De Bakker-Scott rule, Theorem 2.10, as given in Example 3.2 (iii), y11 for
x, y21 for y, ay11 + by21 + 1 for f(y11, y21) and cy11 + dy21 for g(y11, y21):

�(y11, y21).(f(y11, y21), g(y11, y21)) =
(�y11.(ay11 + b�y21.(cy11 + dy21) + 1),
�y21.(c�y11.(ay11 + by21.(cy11 + dy21) + 1) + dy21)) =
(�y11.(ay11 + bd∗cy11 + 1), �y21.(c�y11.(ay11 + bd∗cy11 + 1) + dy21)) =
((a+ bd∗c)∗, �y21.(c(a+ bd∗c)∗ + dy21)) =
((a+ bd∗c)∗, d∗c(a+ bd∗c)∗) =
((a+ bd∗c)∗, (d+ ca∗b)∗ca∗) .

56 CHAPTER 2. CONTEXT-FREE GRAMMARS

We are now ready to discuss the connection between algebraic systems and
context-free grammars.

Consider a context-free grammar G = (Y,Σ, P, y1). Here Y = {y1, . . . , yn} is
the set of variables or nonterminal symbols, Σ is the set of terminal symbols, P
is the set of productions and y1 is the initial variable. The language generated
by G is denoted by L(G). Changing the initial variable yields the context-free
grammars Gi = (Y,Σ, P, yi), 1 ≤ i ≤ n, and the context-free languages L(Gi)
generated by them. Clearly, L(G) = L(G1). We now assume that the basic
semiring is given by 2Σ∗ . We define a {{w} ∣ w ∈ Σ∗}-algebraic system yi = pi,
1 ≤ i ≤ n, whose least solution is (L(G1), . . . , L(Gn)):

pi =
∪

yi→∈P
{}.

Whenever we speak of a context-free grammar corresponding to a {{w} ∣
w ∈ Σ∗}-algebraic system, or vice versa, then we mean the correspondence in
the sense of the above definition. The next theorem is due to Ginsburg, Rice
[54]. (See also Salomaa, Soittola [107], Theorem IV.1.2 and Moll, Arbib, Kfoury
[96], Chapter 6.)

Theorem 2.3.6 (Ginsburg, Rice [54], Theorem 2) Assume that G = (Y,Σ, P, y1)
is a context-free grammar and yi = pi, 1 ≤ i ≤ n, is the corresponding {{w} ∣
w ∈ Σ∗}-algebraic system with least solution (�1, . . . , �n). Let Gi = (Y,Σ, P, yi),
1 ≤ i ≤ n. Then

�i = L(Gi), 1 ≤ i ≤ n.

Corollary 2.3.7 A formal language over Σ is context-free iff it is in Alg({{w}
∣ w ∈ Σ∗}).

We now consider the case where the basic semiring is given by A⟨⟨Σ∗⟩⟩, and
A is a commutative continuous semiring. Let A′ = {aw ∣ a ∈ A, w ∈ Σ∗}. Then
Alg(A′) is equal to the collection of the components of the least solutions of A′-
algebraic systems yi = pi, 1 ≤ i ≤ n, where pi is a polynomial in A⟨(Σ ∪ Y)

∗⟩.
This is due to the commutativity of A: any polynomial function on A⟨⟨Σ∗⟩⟩ that
is induced by a semiring-polynomial of A′(Y) is also induced by a polynomial of
A⟨(Σ ∪ Y)

∗⟩. In this case, Alg(A′) is usually denoted by Aalg⟨⟨Σ∗⟩⟩. The power
series in Aalg⟨⟨Σ∗⟩⟩ are called algebraic power series. Whenever we speak of an
algebraic system yi = pi, pi ∈ A⟨(Σ ∪ Y)

∗⟩, 1 ≤ i ≤ n, in connection with the
basic semiring A⟨⟨Σ∗⟩⟩, then we assume that A is commutative and mean an
A′-algebraic system as described above.

We generalize the connection between algebraic systems and context-free
grammars as discussed above. Define, for a given context-free grammar G =
(Y,Σ, P, y1), the algebraic system yi = pi, pi ∈ A⟨(Σ ∪ Y)

∗⟩, 1 ≤ i ≤ n, by

(pi,) = 1 if yi → ∈ P and (pi,) = 0, otherwise.

2.3. ALGEBRAIC SYSTEMS 57

Conversely, given an algebraic system yi = pi, pi ∈ A⟨(Σ ∪ Y)
∗⟩, 1 ≤ i ≤ n,

define the context-free grammar G = (Y,Σ, P, y1) by

yi → ∈ P iff (pi,) ∕= 0.

Whenever we speak of a context-free grammar corresponding to an algebraic
system yi = pi, pi ∈ A⟨(Σ ∪ Y)

∗⟩, 1 ≤ i ≤ n, or vice versa, then we mean the
correspondence in the sense of the above definition. If attention is restricted to
algebraic systems with coefficients 0 and 1 then this correspondence is one-to-
one. The correspondence between context-free grammars and algebraic systems
yi = pi, pi ∈ A⟨(Σ ∪ Y)

∗⟩, 1 ≤ i ≤ n, is a generalization of the correspondence
between context-free grammars and {{w} ∣ w ∈ Σ∗}-algebraic systems defined
earlier. This is seen by taking in account the isomorphism between the semirings
2Σ∗ and B⟨⟨Σ∗⟩⟩. The next theorem is due to Chomsky, Schützenberger [22].

Theorem 2.3.8 (Salomaa, Soittola [107], Theorem IV.1.5) Assume that G =
(Y,Σ, P, y1) is a context-free grammar and yi = pi, pi ∈ ℕ∞⟨(Σ ∪ Y)

∗⟩, 1 ≤ i ≤
n, is the corresponding algebraic system with least solution (�1, . . . , �n). Denote
by di(w) the number (possibly ∞) of distinct leftmost derivations of w from the
variable yi, 1 ≤ i ≤ n, w ∈ Σ∗. Then

�i =
∑
w∈Σ∗

di(w)w, 1 ≤ i ≤ n.

Corollary 2.3.9 Under the assumptions of Theorem 3.8, G is unambiguous iff,
for all w ∈ Σ∗,

(�1, w) ≤ 1

Example 2.3.4. (See Chomsky, Schützenberger [22], Kuich [74].) Consider the
context-free grammar G = ({y}, {x}, {y → y2, y → x}, y). If the basic semiring
is 2{x}

∗
, the corresponding algebraic system is given by y = y2 ∪ {x}. The j-th

element of the approximation sequence is {x2j−1

, x2j−1−1, . . . , x}, j ≥ 1. Hence,
{x}+ is the least solution of y = y2 ∪ {x}. Observe that {x}∗ is also a solution.

If the basic semiring is ℕ∞⟨⟨{x}∗⟩⟩, the corresponding algebraic system is
given by y = y2 + x. The first elements of the approximation sequence are
�0 = 0, �1 = x, �2 = x2 + x, �3 = x4 + 2x3 + x2 + x. It can be shown that∑

n≥0

Cnx
n+1, where Cn =

(2n)!

n!(n+ 1)!
, n ≥ 0,

is the least solution of y = y2+x. This means that xn+1 has Cn distinct leftmost
derivations with respect to G.

In a continuous semiring A, the three operations +, ⋅, ∗ are called the rational
operations. A subsemiring of A is called rationally closed iff it is closed under
the rational operations.

Theorem 2.3.10 ⟨Alg(A′),+, ⋅, 0, 1⟩ is a rationally closed semiring.

58 CHAPTER 2. CONTEXT-FREE GRAMMARS

Proof. Let a and a′ be in Alg(A′). Then there exist A′-algebraic systems yi = pi,
1 ≤ i ≤ n, and y′j = p′j , 1 ≤ j ≤ m, such that a and a′, respectively, are the
first components of their least solutions. Assume that the sets of variables are
disjoint and consider the A′-algebraic systems

(i) y0 = y1 + y′1
yi = pi
y′j = p′j

(ii) y0 = y1y
′
1

yi = pi
y′j = p′j

(iii) y0 = y1y0 + 1
yi = pi

where 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let � and �′ be the least solutions of yi = pi,
1 ≤ i ≤ n, and y′j = p′j , 1 ≤ j ≤ m, respectively. It follows from the Bekić-
De Bakker-Scott rule that (a + a′, �, �′), (aa′, �, �′) and (a∗, �) are the least
solutions of the A′-algebraic systems (i), (ii) and (iii), respectively.

Corollary 2.3.11 The family of context-free languages over Σ is closed under
the rational operations.

According to our convention, the continuous semiring A is commutative in
the next corollary.

Corollary 2.3.12 ⟨Aalg⟨⟨Σ∗⟩⟩,+, ⋅, 0, "⟩ is a rationally closed semiring.

Our next result shows that Alg is an idempotent operator (Berstel [4], Wech-
ler [115]).

Theorem 2.3.13 Alg(Alg(A′)) = Alg(A′).

Proof. Let yi = pi, 1 ≤ i ≤ n, be an Alg(A′)-algebraic system with least solution
�. Consider the coefficients a of the semiring-polynomials pi, 1 ≤ i ≤ n, where
a ∈ Alg(A′) and a ∕∈ A′. For each of these coefficients a there exists an A′-
algebraic system zaj = qaj with least solution �a whose first component is equal
to a. Perform now the following procedure on the Alg(A′)-algebraic system
yi = pi, 1 ≤ i ≤ n: each coefficient a, a ∈ Alg(A′), a ∕∈ A′, in pi is replaced
by the variable za1 and the equations zaj = qaj are added to the system for all
these a.

Using the Bekić-De Bakker-Scott rule, it follows that the newly constructed
system is an A′-algebraic system whose least solution is given by � and all the
�a. Hence, the components of � are in Alg(A′).

In the last part of this section we will obtain similar results for ℜat(A′).
In language theory, a formula telling how a given regular language is obtained

from the languages {x}, x ∈ Σ, and ∅, by the rational operations +, ⋅, ∗, is
referred to as a regular expression (see Salomaa [106]).

Analogously to these regular expressions we define now rational expressions.
Assume that A, Σ and U = {+, ⋅, ∗, [,]} are pairwise disjoint. A word E over
A ∪ Σ ∪ U is a rational expression over (A,Σ) if

(i) E is a symbol of A ∪ Σ, or

(ii) E is of one of the forms [E1 +E2], [E1 ⋅E2] or [E∗1], where E1 and E2 are
rational expressions over (A,Σ).

2.3. ALGEBRAIC SYSTEMS 59

Each rational expression E over (A,Σ) denotes a power series ∣E∣ ∈ A⟨⟨Σ∗⟩⟩
according to the following conventions.

(i) If E = a ∈ A then ∣E∣ = a"; if E = x ∈ Σ then ∣E∣ = x.

(ii) For rational expressions E1 and E2 we define ∣[E1 + E2]∣ = ∣E1∣ + ∣E2∣,
∣[E1 ⋅ E2]∣ = ∣E1∣ ⋅ ∣E2∣, ∣[E∗1]∣ = ∣E1∣∗.

Corollary 2.3.14 Let r ∈ A⟨⟨Σ∗⟩⟩. Then the following statements are equiva-
lent:

(i) r is a component of the least solution of a finite A⟨Σ ∪ "⟩-linear system,

(ii) r ∈ {∣∣A∣∣ ∣ A is a finite A⟨Σ ∪ "⟩-automaton},

(iii) r ∈ {∣∣A∣∣ ∣ A is a finite automaton over A and Σ without "-moves},

(iv) r is denoted by a rational expression over (A,Σ).

Proof. (iv) ⇔ (ii) ⇔ (iii) is implied by Corollary 1.3.4, (i) ⇔ (ii) follows by
Corollary 3.5.

If r ∈ A⟨⟨Σ∗⟩⟩ satisfies one condition (and, hence, all conditions) of Corol-
lary 3.14, it is called rational power series (over Σ). The collection of all rational
power series over Σ is denoted by Arat⟨⟨Σ∗⟩⟩. Clearly, Arat⟨⟨Σ∗⟩⟩ = ℜec(A⟨Σ∪"⟩).

The definitions of ℜat(A′), A′ ⊆ A, and Arat⟨⟨Σ∗⟩⟩ imply the following two
corollaries.

Corollary 2.3.15 ⟨ℜat(A′),+, ⋅, 0, 1⟩ and ⟨Arat⟨⟨Σ∗⟩⟩,+, ⋅, 0, "⟩ are rationally
closed semirings.

Corollary 2.3.16 ℜat(ℜat(A′)) = ℜat(A′).

This trivial corollary to the definition of ℜat(A′) has a nontrivial corollary.

Corollary 2.3.17 If A is a ℜat(A′)-finite automaton then ∣∣A∣∣ is in ℜat(A′).
If A is a Arat⟨⟨Σ∗⟩⟩-finite automaton then ∣∣A∣∣ is in Arat⟨⟨Σ∗⟩⟩.

Proof. We obtain ℜat(A′) = ℜec(ℜat(A′)) by Theorem 1.3.2. This proves the
first statement of our corollary. The second statement follows from the first one
by ℜat(A⟨Σ ∪ "⟩ = Arat⟨⟨Σ∗⟩⟩.

Let 2Σ∗ be the basic semiring and consider a finite 2Σ∪{"}-linear system y =
My+R, where M ∈ (2Σ∪{"})n×n and R ∈ (2Σ∪{"})n×1. Then the corresponding
context-free grammar is in fact an extended regular grammar. Vice versa, the
algebraic system corresponding to a regular grammar is a finite 2Σ∪{"}-linear
system.

A rational expression over (B,Σ) is called regular expression over Σ. A
regular expression denotes, via the isomorphism between B⟨⟨Σ∗⟩⟩ and 2Σ∗ , a
regular language over Σ.

60 CHAPTER 2. CONTEXT-FREE GRAMMARS

Theorem 2.3.18 Let L be a formal language over an alphabet Σ. Then the
following statements are equivalent:

(i) L is a component of the least solution of a finite 2Σ∪{"}-linear system,

(ii) L is a regular language,

(iii) L is the behavior of a finite automaton (in the classical sense),

(iv) L is denoted by a regular expression.

Proof. By the above considerations and Corollary 3.14.

2.4 Normal forms for algebraic systems

In this section, we will show that elements of Alg(A′) can be defined by A′-
algebraic systems that are “simple” in a well-defined sense. In other words, we
will exhibit a number of normal forms that correspond to well-known normal
forms in language theory, e. g. the Chomsky normal form, the operator normal
form and the Greibach normal form. Apart from the beginning of this section,
we will only consider power series in Aalg⟨⟨Σ∗⟩⟩.

An A′-algebraic system is in the canonical two form (see Harrison [63]) iff
its equations have the form

yi =
∑

1≤k,m≤n

aikmykym +
∑

1≤k≤n

aikyk + ai, 1 ≤ i ≤ n,

where aikm, a
i
k ∈ {0, 1} and ai ∈ A′.

Consider an A′-algebraic system yi = pi, 1 ≤ i ≤ n, whose least solu-
tion is given by �. Perform the following procedure on the product terms
a0yi1a1 . . . ak−1yikak, k ≥ 1, of the semiring-polynomials pi, 1 ≤ i ≤ n: re-
place each coefficient aj ∕= 1 by a new variable z and add an additional equa-
tion z = aj ; shorten now each product term z1z2 . . . zk, k > 2, to z1u1 and
add additional equations u1 = z2u2,. . . ,uk−2 = zk−1zk, where u1, . . . , uk−2 are
new variables. Then, by the Bekić-De Bakker-Scott rule, the components �i,
1 ≤ i ≤ n, of � are components of the least solution of the newly constructed
A′-algebraic system in the canonical two form.

Theorem 2.4.1 Each a ∈ Alg(A′) is a component of the least solution of an
A′-algebraic system in the canonical two form.

We will now consider a very useful transformation of an A′-algebraic system.
In the next theorem, we write an A′-algebraic system in the form y = My+ P ,
where M ∈ A′n×n and P ∈ A′(Y)

n×1
. Here the entries of My contain product

terms of the form ayi, a ∈ A′, yi ∈ Y .

Theorem 2.4.2 The least solutions of the A′-algebraic system y = My + P
and of the ℜat(A′)-algebraic system y = M∗P , where M ∈ A′

n×n
and P ∈

A′(Y)
n×1

, coincide.

2.4. NORMAL FORMS FOR ALGEBRAIC SYSTEMS 61

Proof. We use the proof method of Ésik, Leiß [46]. By the diagonal equation,
Proposition 2.11, and by Theorem 3.4:

�y.(My + P (y)) = �y.�x.(Mx+ P (y)) = �y.M∗P (y) .

For the remainder of this section, our basic semiring will be A⟨⟨Σ∗⟩⟩, where
A is commutative, and we will consider algebraic systems yi = pi, 1 ≤ i ≤ n,
where pi ∈ A⟨(Σ ∪ Y)

∗⟩.

Corollary 2.4.3 The least solutions of the algebraic systems y = My + P and
y = M∗P , where M ∈ (A⟨"⟩)n×n and supp(Pi) ⊆ (Σ ∪ Y)

∗ − Y , 1 ≤ i ≤ n,
coincide.

Observe that the context-free grammar corresponding to the algebraic sys-
tem y = M∗P has no chain rules, i. e., has no productions of the type yi → yj .
(Compare with Salomaa [106], Theorem 6.3; Harrison [63], Theorem 4.3.2;
Hopcroft, Ullman [65], Theorem 4.4.)

We now consider another useful transformation of an algebraic system. It
corresponds to the transformation of a context-free grammar for deleting "-rules
(i. e., productions of the type yi → ").

Theorem 2.4.4 Let yi = pi, 1 ≤ i ≤ n, pi ∈ A⟨(Σ ∪ Y)
∗⟩, be an algebraic

system with least solution �. Let � = (�, ")" + � , where (�, ") = 0. Then there
exists an algebraic system yi = qi, 1 ≤ i ≤ n, qi ∈ A⟨(Σ ∪ Y)

∗⟩, (qi, ") = 0,
whose least solution is � .

Proof. Substitute (�j , ")"+ yj for yj , 1 ≤ j ≤ n, into pi and define

qi(y) =
∑

�∈(Σ∪Y)+

(pi((�, ")"+ y), �)�, 1 ≤ i ≤ n.

The equalities

pi((�, ")"+ �) = pi(�) = � = (�, ")"+ �, 1 ≤ i ≤ n,

imply, by comparing coefficients,

qi(�) = �, 1 ≤ i ≤ n.

Hence, � is a solution of the algebraic system yi = qi, 1 ≤ i ≤ n. Consider now
an arbitrary solution � ′ of yi = qi, 1 ≤ i ≤ n. Then �′ = (�, ")"+� ′ is a solution
of yi = pi, 1 ≤ i ≤ n. Since � is the least solution of yi = pi, 1 ≤ i ≤ n, we infer
that � ≤ �′. But this implies � ≤ � ′. Hence, � is the least solution of yi = qi,
1 ≤ i ≤ n.

Observe that the context-free grammar corresponding to the algebraic sys-
tem yi = qi, 1 ≤ i ≤ n, has no "-rules. (Compare with Salomaa [106], Theo-
rem 6.2; Harrison [63], Theorem 4.3.1; Hopcroft, Ullman [65], Theorem 4.3.)

An algebraic system yi = pi, 1 ≤ i ≤ n, pi ∈ A⟨(Σ ∪ Y)
∗⟩, is termed proper

iff supp(pi) ⊆ (Σ ∪ Y)
+ − Y for all 1 ≤ i ≤ n. Proper algebraic systems

correspond to context-free grammars without "-rules and chain rules.

62 CHAPTER 2. CONTEXT-FREE GRAMMARS

Corollary 2.4.5 Let r ∈ Aalg⟨⟨Σ∗⟩⟩. Then there exists a proper algebraic sys-
tem such that

∑
w∈Σ+(r, w)w is a component of its least solution.

Proof. Apply the constructions of Theorem 4.4 and Corollary 4.3, in this order.

Corollary 2.4.6 For every context-free language L there exists a context-free
grammar G without "-rules and chain rules such that L(G) = L− {"}.

An algebraic system yi = pi, 1 ≤ i ≤ n, pi ∈ A⟨(Σ ∪ Y)
∗⟩, is termed strict

iff supp(pi) ⊆ {"} ∪ (Σ ∪ Y)
∗
Σ(Σ ∪ Y)

∗
for all 1 ≤ i ≤ n. For a proof of the

next result see Salomaa, Soittola [107], Theorem IV.1.1 and Kuich, Salomaa
[88], Theorem 14.11.

Theorem 2.4.7 Let yi = pi, 1 ≤ i ≤ n, pi ∈ A⟨(Σ ∪ Y)
∗⟩, be an algebraic

system with least solution �.
If yi = pi, 1 ≤ i ≤ n, is a proper algebraic system then (�, ") = 0 and � is

the only solution with this property.
If yi = pi, 1 ≤ i ≤ n, is a strict algebraic system then � is its unique

solution.

Example 2.4.1. Consider an Arat⟨⟨Σ∗⟩⟩-algebraic system that can be written in
matrix notation in the form Z = M1ZM2 +M , where Z is an n× n-matrix of
variables and M1,M2,M ∈ (Arat⟨⟨Σ∗⟩⟩)n×n. Then, by computing the approxi-
mation sequence, it is easily seen that S =

∑
i≥0M1

iMM2
i ∈ (A⟨⟨Σ∗⟩⟩)n×n is

the least solution of Z = M1ZM2 + M . (See also Berstel [4], Section V.6 and
Kuich [75].)

Consider the linear context-free grammar

G = ({y1, y2}, {a, b}, {y1 → ay2, y2 → ay2, y2 → ay2b, y2 → b}, y1)

and the corresponding strict algebraic system y1 = ay2, y2 = ay2 + ay2b + b.
Denote its unique solution by � = (�1, �2). We infer by Theorem 4.2 that � is the
unique solution of the Arat⟨⟨Σ∗⟩⟩-algebraic system y1 = ay2, y2 = a+y2b + a∗b.
Hence,

�2 =
∑
n≥0

(a+)
n
a∗bn+1 =

∑
n≥0

a∗(a+)
n
bn+1 and �1 =

∑
n≥0

(a+)
n+1

bn+1.

This implies

L(G) = {a}∗
∪
n≥1

{a}n{b}n = {ambn ∣ m ≥ n ≥ 1}.

IfA = ℕ∞, �1 =
∑
m≥n≥1

(
m−1
n−1

)
ambn.Hence, by Theorem 3.8, the word ambn ∈

L(G) has
(
m−1
n−1

)
distinct leftmost derivations according to G.

We are now ready to proceed to the various normal forms. Our next result
deals with the transition to the Chomsky normal form. By definition, an alge-
braic system yi = pi, 1 ≤ i ≤ n, is in the Chomsky normal form (Chomsky [20])
iff supp(pi) ⊆ Σ ∪ Y 2, 1 ≤ i ≤ n.

2.4. NORMAL FORMS FOR ALGEBRAIC SYSTEMS 63

Theorem 2.4.8 Let r ∈ Aalg⟨⟨Σ∗⟩⟩. Then there exists an algebraic system in
the Chomsky normal form such that

∑
w∈Σ+(r, w)w is a component of its least

solution.

Proof. We assume, by Theorem 4.1, that r is a component of the least solution
of an algebraic system in the canonical two form. Apply now the constructions
of Theorem 5.4 and Corollary 5.3, in this order. The resulting algebraic system
is in the Chomsky normal form.

We now introduce operators w−1, for w ∈ Σ∗, mapping A⟨⟨Σ∗⟩⟩ into A⟨⟨Σ∗⟩⟩.
For u ∈ Σ∗, we define uw−1 = v if u = vw, uw−1 = 0 otherwise. As usual we
extend these mappings to power series r ∈ A⟨⟨Σ∗⟩⟩ by

rw−1 =
∑
u∈Σ∗

(r, u)uw−1 =
∑
v∈Σ∗

(r, vw)v.

Observe that, if (r, ") = 0 then r =
∑
x∈Σ(rx−1)x. In language theory the

mappings corresponding to w−1 are usually referred to as right derivatives with
respect to the word w.

Our next result deals with the transition from the Chomsky normal form to
the operator normal form. By definiton, an algebraic system yi = pi, 1 ≤ i ≤ n,
is in the operator normal form iff supp(pi) ⊆ {"}∪Y Σ∪Y ΣY . Operator normal
forms are customarily defined in language theory to be more general: there are
no two consecutive nonterminals on the right sides of the productions. (See
Floyd [48], Harrison [63].)

Theorem 2.4.9 Let r ∈ Aalg⟨⟨Σ∗⟩⟩. Then there exists an algebraic system in
the operator normal form such that r is a component of its unique solution.

Proof. By Theorem 4.8 we may assume that
∑
w∈Σ+(r, w)w is the first compo-

nent of the least solution � of an algebraic system yi = pi, 1 ≤ i ≤ n, in the
Chomsky normal form. We write this system as follows:

yi =
∑
x∈Σ

(pi, x)x+
∑

1≤k,m≤n

(pi, ykym)ykym, 1 ≤ i ≤ n.

We now define a new algebraic system. The alphabet of new variables will be
Y ′ = {z0}∪{zxi ∣ x ∈ Σ, 1 ≤ i ≤ n}. The equations of the new algebraic system
are

z0 = (r, ")"+
∑
x∈Σ

zx1x,

zxi = (pi, x)"+
∑
x′∈Σ

∑
1≤k,m≤n

(pi, ykym)zx
′

k x
′zxm, x ∈ Σ, 1 ≤ i ≤ n.

We claim that the components of the unique solution of this new algebraic
system are given by r (z0-component) and �ix

−1 (zxi -component). The claim is

64 CHAPTER 2. CONTEXT-FREE GRAMMARS

proven by substituting the components of the unique solution into the equations:

(r, ")"+
∑
x∈Σ(�1x

−1)x = (r, ")"+ �1 = (r, ")"+
∑
w∈Σ+(r, w)w = r,

(pi, x)"+
∑

1≤k,m≤n(pi, ykym)(
∑
x′∈Σ(�kx

′−1
)x′)(�mx

−1) =

(pi, x)xx−1 +
∑

1≤k,m≤n(pi, ykym)(�k�m)x−1 = �ix
−1, x ∈ Σ, 1 ≤ i ≤ n.

Observe that the equalities are valid for � because (�, ") = 0. They are not
valid for solutions � of yi = pi, 1 ≤ i ≤ n, with (�, ") ∕= 0.

By definition, an algebraic system yi = pi, 1 ≤ i ≤ n, is in the Greibach nor-
mal form iff supp(pi) ⊆ {"}∪Σ∪ΣY ∪ΣY Y . (See Greibach [59], Rosenkrantz [100],
Jacob [66], Urbanek [114], Ésik, Leiß [46].)

Theorem 2.4.10 Let r ∈ Aalg⟨⟨Σ∗⟩⟩. Then there exists an algebraic system in
the Greibach normal form such that r is a component of its unique solution.

Proof. By Theorem 4.9 we may assume that r is the first component of the
unique solution of an algebraic system yi = pi, 1 ≤ i ≤ n, in the operator
normal form. We write this system as follows:

yT = yTM(y) + P,

where yT = (y1, . . . , yn) is the transpose of y, M ∈ (A⟨(Y ∪ Σ)
∗⟩)n×n,

Mj,i =
∑
x∈Σ

(pi, yjx)x+
∑

1≤m≤n

∑
x∈Σ

(pi, yjxym)xym, 1 ≤ i, j ≤ n,

and P = ((p1, ")", . . . , (pn, ")"). Let Z be an n× n-matrix whose (i, j)-entry is
a new variable zij , 1 ≤ i, j ≤ n. We now consider the algebraic system in the
Greibach normal form

yT = PM(y)Z + PM(y) + P

Z = M(y)Z +M(y).

We show that (�,M(�)
+

) is its unique solution:

PM(�)M(�)
+

+ PM(�) + P = PM(�)
∗

= �T,

by a row vector variant of Theorem 4.2, and

M(�)M(�)
+

+M(�) = M(�)
+
.

Hence, r = �1 is a component of the unique solution of the new algebraic system
in the Greibach normal form.

In language theory, the two most important normal forms are the Chom-
sky normal form and the Greibach normal form. By definition, a context-free
grammar G = (Y,Σ, P, y1) is in the Chomsky normal form iff all productions
are of the two forms yi → ykym and yi → x, x ∈ Σ, yi, yk, ym ∈ Y . It is in the
Greibach normal form iff all productions are of the three forms yi → xykym,
yi → xyk and yi → x, x ∈ Σ, yi, yk, ym ∈ Y . (Usually, productions yi → " are
not allowed in the Greibach normal form.)

2.4. NORMAL FORMS FOR ALGEBRAIC SYSTEMS 65

Corollary 2.4.11 For every context-free language L there exist a context-free
grammar G1 in the Chomsky normal form and a context-free grammar G2 in
the Greibach normal form such that L(G1) = L(G2) = L− {"}.

Proof. By Theorem 4.8, and by Theorem 4.10 together with Theorem 4.4.

If our basic semiring is ℕ∞⟨⟨Σ∗⟩⟩, we can draw some even stronger conclusions
by Theorem 3.8.

Corollary 2.4.12 Let d : Σ∗ → ℕ. Then the following three statements are
equivalent:

(i) There exists a context-free grammar G with terminal alphabet Σ such that
the number of distinct leftmost derivations of w, w ∈ Σ∗, from the start
variable is given by d(w).

(ii) There exists a context-free grammar G1 in the Chomsky normal form with
terminal alphabet Σ such that the number of distinct leftmost derivations
of w, w ∈ Σ+, from the start variable is given by d(w).

(iii) There exists a context-free grammar G2 in the Greibach normal form with
terminal alphabet Σ such that the number of distinct leftmost derivations
of w, w ∈ Σ+, from the start variable is given by d(w).

Corollary 2.4.13 For every unambiguous context-free grammar G there exist
an unambiguous context-free grammar G1 in the Chomsky normal form and an
unambiguous context-free grammar G2 in the Greibach normal form such that
L(G1) = L(G2) = L(G)− {"}.

66 CHAPTER 2. CONTEXT-FREE GRAMMARS

Chapter 3

Pushdown automata and
algebraic series

3.1 Introduction

In Section 2, we introduce (possibly infinite) matrices and show how the blocks
of the star of an infinite matrix can be computed by applying the rational op-
erations on the blocks of the infinite matrix. This can be considered to be a
generalization of the matrix-star-equation of Theorem 1.2.18 to infinite matri-
ces. In Section 3, we consider automata that may have an infinite state set and
(possibly infinite) linear systems. We show the connection between these au-
tomata and linear systems. In Section 4, we introduce pushdown automata and
prove the equivalence of pushdown automata and algebraic systems in the sense
that both characterize the algebraic power series. In our last section, Section 5,
we show a Kleene Theorem for algebraic power series that is a generalization of
a result of Gruska [60].

3.2 Infinite matrices

We now introduce matrices in a more general manner as we did in Chapter 1.
Consider two non-empty index sets I and I ′ and a set S. Mappings M of I × I ′
into S are called matrices. The values of M are denoted by Mi,i′ , where i ∈ I
and i′ ∈ I ′. The values Mi,i′ are also referred to as the entries of the matrix M .
In particular, Mi,i′ is called the (i, i′)-entry of M . The collection of all matrices

as defined above is denoted by SI×I
′
.

If both I and I ′ are finite, then M is called a finite matrix. If I or I ′ is a
singleton, M is called a row or column vector, respectively. If M ∈ SI×1 (resp.
M ∈ S1×I′) then we often denote the i-th entry of M , i ∈ I (resp. i ∈ I ′), by
Mi instead of Mi,1 (resp. M1,i).

We introduce some operations and special matrices inducing a monoid or

67

68 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

semiring structure to matrices. For M1,M2 ∈ AI×I
′

we define the sum M1 +
M2 ∈ AI×I

′
by (M1 +M2)i,i′ = (M1)i,i′+(M2)i,i′ for all i ∈ I, i′ ∈ I ′. Further-

more, we introduce the zero matrix 0 ∈ AI×I′ . All entries of the zero matrix 0
are 0. By these definitions, ⟨AI×I′ ,+, 0⟩ is a commutative monoid.

If I2 is finite or if A is complete, then, for M1 ∈ AI1×I2 and M2 ∈ AI2×I3 ,
we define the product M1M2 ∈ AI1×I3 by

(M1M2)i1,i3 =
∑
i2∈I2

(M1)i1,i2(M2)i2,i3 for all i1 ∈ I1, i3 ∈ I3.

Furthermore, we introduce the matrix of unity E ∈ AI×I . The diagonal entries
Ei,i of E are equal to 1, the off-diagonal entries Ei1,i2 , i1 ∕= i2, of E are equal
to 0, i, i1, i2 ∈ I.

It is easily shown that matrix multiplication is associative, the distribution
laws are valid for matrix addition and multiplication, E is a multiplicative unit
and 0 is a multiplicative zero. So we infer that ⟨AI×I ,+, ⋅, 0, E⟩ is a semiring if
I is finite or if A is complete.

If A is complete, infinite sums can be extended to matrices. Consider AI×I
′

and define, for Mj ∈ AI×I
′
, j ∈ J , where J is an index set,

∑
j∈JMj by its

entries: (∑
j∈J

Mj

)
i,i′

=
∑
j∈J

(Mj)i,i′ , i ∈ I, i′ ∈ I ′.

By this definition, AI×I is a complete semiring.
If A is ordered, the order on A is extended pointwise to matrices M1 and

M2 in AI×I
′
:

M1 ≤M2 iff (M1)i,i′ ≤ (M2)i,i′ for all i ∈ I, i′ ∈ I ′.

If A is continuous then so is AI×I .
For the rest of this section we assume A to be a complete semiring. For the

remainder of this book I (resp. Q), possibly provided with indices, denotes an
arbitrary (resp. finite) index set.

We now introduce blocks of matrices. Consider a matrix M in AI×I . Assume
the existence of a non-empty index set J and of non-empty index sets Ij for j ∈ J
such that I =

∪
j∈J Ij and Ij1 ∩ Ij2 = ∅ for j1 ∕= j2. The mapping M , restricted

to the domain Ij1×Ij2 , i. e., M : Ij1×Ij2 → A is, of course, a matrix in AIj1×Ij2 .
We denote it by M(Ij1 , Ij2) and call it the (Ij1 , Ij2)-block of M .

We can compute the blocks of the sum and the product of matrices M1 and
M2 from the blocks of M1 and M2 in the usual way:

(M1 +M2)(Ij1 , Ij2) = M1(Ij1 , Ij2) +M2(Ij1 , Ij2),

(M1M2)(Ij1 , Ij2) =
∑
j∈J

M1(Ij1 , Ij)M2(Ij , Ij2).

In a similar manner the matrices of AI×I
′

can be partitioned into blocks.
This yields the computational rule

(M1 +M2)(Ij , I
′
j′) = M1(Ij , I

′
j′) +M2(Ij , I

′
j′).

3.2. INFINITE MATRICES 69

If we consider matrices M1 ∈ AI×I
′

and M2 ∈ AI
′×I′′ partitioned into compat-

ible blocks, i. e., I ′ is partitioned into the same index sets for both matrices,
then we obtain the computational rule

(M1M2)(Ij , I
′′
j′′) =

∑
j′∈J′

M1(Ij , I
′
j′)M2(I ′j′ , I

′′
j′′).

In the sequel we will need the following isomorphisms:

(i) The semirings

(AQ×Q)
I×I

, A(I×Q)×(I×Q), A(Q×I)×(Q×I), (AI×I)
Q×Q

are isomorphic by the correspondences between

(Mi1,i2)q1,q2 , M(i1,q1),(i2,q2), M(q1,i1),(q2,i2), (Mq1,q2)i1,i2

for all i1, i2 ∈ I, q1, q2 ∈ Q.

(ii) The semirings AI×I⟨⟨Σ∗⟩⟩ and (A⟨⟨Σ∗⟩⟩)I×I are isomorphic by the corre-
spondence between (M,w)i1,i2 and (Mi1,i2 , w) for all i1, i2 ∈ I, w ∈ Σ∗.

Observe that these correspondences are isomorphisms of complete semirings,
i. e., they respect infinite sums. We will use these isomorphisms without further
mention. Moreover, we will use the notation Mi1,i2 , i1 ∈ I1, i2 ∈ I2, where
M ∈ AI1×I2⟨⟨Σ∗⟩⟩: Mi1,i2 is the power series in A⟨⟨Σ∗⟩⟩ such that the coefficient
(Mi1,i2 , w) of w ∈ Σ∗ is equal to (M,w)i1,i2 . Similarly, we will use the notation

(M,w), w ∈ Σ∗, where M ∈ (A⟨⟨Σ∗⟩⟩)I1×I2 : (M,w) is the matrix in AI1×I2

whose (i1, i2)-entry (M,w)i1,i2 , i1 ∈ I1, i2 ∈ I2, is equal to (Mi1,i2 , w).
The next theorem is central for automata theory and is a generalization of

the matrix-star-equation to infinite matrices (see Conway [25], Lehmann [91],
Kuich, Salomaa [88], Kuich [76], Kozen [71], Bloom, Ésik [10], the definition of
the star of a matrix in Section 2 of Chapter 1). It allows to compute the blocks
of the star of a matrix M by sum, product and star of the blocks of M . For
notational convenience, we will denote M(Ii, Ij) by Mi,j , 1 ≤ i, j ≤ 3.

Theorem 3.2.1 Let A be a complete starsemiring, let M ∈ AI×I and I =
I1 ∪ I2, I1 ∩ I2 = ∅. Then

M∗(I1, I1) = (M1,1 +M1,2M
∗
2,2M2,1)

∗
,

M∗(I1, I2) = (M1,1 +M1,2M
∗
2,2M2,1)

∗
M1,2M

∗
2,2,

M∗(I2, I1) = (M2,2 +M2,1M
∗
1,1M1,2)

∗
M2,1M

∗
1,1,

M∗(I2, I2) = (M2,2 +M2,1M
∗
1,1M1,2)

∗
.

Proof. Consider the matrices

M1 =

(
M1,1 0

0 M2,2

)
and M2 =

(
0 M1,2

M2,1 0

)
.

The computation of (M1 +M2M
∗
1M2)

∗
(E+M2M

∗
1) and application of Lemma 1.2.25

prove our theorem.

70 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

Corollary 3.2.2 If M2,1 = 0 then

M∗ =

(
M∗1,1 M∗1,1M1,2M

∗
2,2

0 M∗2,2

)
.

Corollary 3.2.3 If M2,1 = 0, M3,1 = 0 and M3,2 = 0 then

M∗ =

⎛⎝ M∗1,1 M∗1,1M1,2M
∗
2,2 M∗1,1M1,2M

∗
2,2M2,3M

∗
3,3 +M∗1,1M1,3M

∗
3,3

0 M∗2,2 M∗2,2M2,3M
∗
3,3

0 0 M∗3,3

⎞⎠
In the next theorem, I is partitioned into Ij , j ∈ J , and j0 is a distinguished
element in J .

Theorem 3.2.4 Let A be a complete starsemiring and assume that the only
non-null blocks of the matrix M ∈ AI×I are M(Ij , Ij0), M(Ij0 , Ij) and M(Ij , Ij),
for all j ∈ J and a fixed j0 ∈ J . Then

M∗(Ij0 , Ij0) =
(
M(Ij0 , Ij0) +

∑
j∈J, j ∕=j0

M(Ij0 , Ij)M(Ij , Ij)
∗
M(Ij , Ij0)

)∗
.

Proof. We partition I into Ij0 and I ′ = I − Ij0 . Then M(I ′, I ′) is a block-
diagonal matrix and (M(I ′, I ′)

∗
)(Ij , Ij) = M(Ij , Ij)

∗
for all j ∈ J − {j0}. By

Theorem 2.1 we obtain

M∗(Ij0 , Ij0) =
(
M(Ij0 , Ij0) +M(Ij0 , I

′)M(I ′, I ′)
∗
M(I ′, Ij0)

)∗
.

The computation of the right side of this equality proves our theorem.

3.3 Automata and linear systems

In this section we generalize the finite automata and finite linear systems in-
troduced in Chapter 1. These finite automata are generalized in the following
direction: An infinite set of states will be allowed in the general definition.
When dealing with pushdown automata in Section 4 this will enable us to store
the contents of the pushdown tape in the states.

Our model of an automaton will be defined in terms of a (possibly infinite)
transition matrix. As explained in Chapter 1, Section 3, the semiring element
generated by the transition of the automaton from one state i to another state
i′ in exactly k computation steps equals the (i, i′)-entry in the k-th power of
the transition matrix. Consider now the star of the transition matrix. Then the
semiring element generated by the automaton, also called the behavior of the
automaton, can be expressed by the entries (multiplied by the initial and final
weights of the states) of the star of the transition matrix.

In the sequel, A will denote a continuous semiring and A′ will denote a
subset of A containing 0 and 1.

An A′-automaton
A = (I,M, S, P)

is given by

3.3. AUTOMATA AND LINEAR SYSTEMS 71

(i) a non-empty set I of states,

(ii) a matrix M ∈ A′I×I , called the transition matrix,

(iii) S ∈ A′1×I , called the initial state vector,

(iv) P ∈ A′I×1
, called the final state vector.

The behavior ∥A∥ ∈ A of the A′-automaton A is defined by

∥A∥ =
∑

i1,i2∈I
Si1(M∗)i1,i2Pi2 = SM∗P.

An A′-automaton is termed finite iff its state set is finite.
Usually, an automaton is depicted as a directed graph. The nodes of the

graph correspond to the states of the automaton. A node corresponding to a
state i with Si ∕= 0 (resp. Pi ∕= 0) is called initial (resp. final). The edges (i, j)
of the graph correspond to the transitions unequal to 0 and are labeled by Mi,j .

Consider the semiring B. Then, for an arbitrary B-automaton A, we obtain
∥A∥ = 1 iff there is a path in the graph from some initial node to some final
node.

Let now ℕ∞ be the basic semiring and let A be a {0, 1}-automaton. Then
∥A∥ is equal to the number (including ∞) of distinct paths in the graph from
the initial nodes to the final nodes.

Assume that the basic semiring is one of the tropical semirings and consider
an {∞, 1, 0}-automaton A = (I,M, S, P) such that the entries of M are in
{∞, 1}, and the entries of S and P are in {∞, 0}. (Observe that a node i is
initial or final if Si = 0 or Pi = 0, respectively.) Then ∥A∥ is equal to the length
of the shortest path in the graph from some initial node to some final node.
There is no such path iff ∥A∥ =∞. (See Carré [19].)

Consider the semiring ℝ∞+ and let [0, 1] = {a ∈ ℝ+ ∣ 0 ≤ a ≤ 1}. A
[0, 1]-automaton, whose transition matrix is stochastic, can be considered as a
Markov chain (see Paz [99], Seneta [110]).

We now generalize the finite A′-linear systems introduced in Chapter 2,
Section 3. An A′-linear system is now of the form

y = My + P ,

where y is a variable, M is a matrix in A′
I×I

and P is a column vector in A′
I×1

.
A column vector T ∈ AI×1 is called solution to y = My + P iff T = MT + P .
It is called least solution iff T ≤ T ′ for all solutions T ′.

Theorem 3.3.1 Let y = My + P be an A′-linear system. Then M∗P is its
least solution.

Proof. A proof analogous to the proof of Theorem 2.3.4 shows that M∗P is the
least solution.

72 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

Corollary 3.3.2 Let A = (I,M, S, P) be an A′-automaton and let T be the
least solution of the A′-linear system y = My + P . Then ∥A∥ = ST .

A matrix M ∈ (A⟨⟨Σ∗⟩⟩)I×I is called cycle-free iff there exists an n ≥ 1 such
that (M, ")

n
= 0. An A⟨⟨Σ∗⟩⟩-linear system y = My + P is called cycle-free iff

M is cycle-free.

Theorem 3.3.3 (Kuich, Urbanek [89], Corollary 3.) The cycle-free A⟨⟨Σ∗⟩⟩-linear
system y = My + P has the unique solution M∗P .

An A⟨⟨Σ∗⟩⟩-automaton A = (I,M, S, P) is called cycle-free iff M is cycle-free.

Corollary 3.3.4 Let A = (I,M, S, P) be a cycle-free A⟨⟨Σ∗⟩⟩-automaton and
let T be the unique solution of the cycle-free A⟨⟨Σ∗⟩⟩-linear system y = My+P .
Then ∥A∥ = ST .

Example 3.3.1. (Kuich, Salomaa [88], Example 7.2.) Let Σ = {x1, x2, x3},
Q = {q1, q2},

C =

(
x1 0
0 0

)
, D =

(
0 0
0 x3

)
and Bn =

(
0 xn2
0 0

)
, n ≥ 0.

Define M ∈ ((A⟨Σ∗⟩)Q×Q)
ℕ×ℕ

, S ∈ ((A⟨"⟩)1×Q
)
1×ℕ

and P ∈ ((A⟨"⟩)Q×1
)
ℕ×1

by their non-null blocks:

Mn,n+1 = C, Mn+1,n = D, Mn,n = Bn, n ≥ 0,

S0 = (" 0), P0 =

(
0
"

)
.

Consider the A⟨Σ∗⟩-automaton A = (I,M, S, P), where I = ℕ × Q. (Strictly

speaking, we should take the copies of M , S and P in (A⟨Σ∗⟩)(ℕ×Q)×(ℕ×Q)
,

(A⟨"⟩)1×(ℕ×Q)
and (A⟨"⟩)(ℕ×Q)×1

, respectively.) Let

Tn =

(∑
j≥n x

j−n
1 xj2x

j
3

xn3

)
, n ≥ 0,

be the n-th block of the column vector T ∈ ((A⟨⟨Σ∗⟩⟩)Q×1
)
ℕ×1

. We claim that
T is a solution (and hence, the unique solution) of the cycle-free A⟨Σ∗⟩-linear

system y = My+P ((M, ")
2

= 0). This claim is proved by showing the equalities
(MT + P)n = Tn, n ≥ 0:

(MT + P)0 = B0T0 + CT1 + P0 = T0,

(MT + P)n = DTn−1 +BnTn + CTn+1 = Tn, n ≥ 1.

This yields ∥A∥ = ST = S0T0 =
∑
j≥0 x

j
1x
j
2x
j
3.

3.4. PUSHDOWN AUTOMATA AND ALGEBRAIC SYSTEMS 73

3.4 Pushdown automata and algebraic systems

We now defineA′-pushdown automata and consider their relation toA′-algebraic
systems. It turns out that, for a ∈ A, a ∈ Alg(A′) iff it is the behavior of an
A′-pushdown automaton. This generalizes the language theoretic result due
to Chomsky [21] that a formal language is context-free iff it is accepted by a
pushdown automaton.

A′-pushdown automata are finite automata (with state set Q) augmented
by a pushdown tape. The contents of the pushdown tape is a word over the
pushdown alphabet Γ. We consider an A′-pushdown automaton to be an A′-
automaton in the sense of Section 3: the state set is given by Γ∗ × Q and its

transition matrix is in A′
(Γ∗×Q)×(Γ∗×Q)

. This allows us to store the contents
of the pushdown tape and the states of the finite automaton in the states of
the A′-pushdown automaton. Because of technical reasons, we do not work in

the semiring A(Γ∗×Q)×(Γ∗×Q) but in the isomorphic semiring (AQ×Q)
Γ∗×Γ∗

. A

matrix M ∈ (A′
Q×Q

)
Γ∗×Γ∗

is termed an A′-pushdown transition matrix iff

(i) for each p ∈ Γ there exist only finitely many blocks Mp,�, � ∈ Γ∗, that are
unequal to 0;

(ii) for all �1, �2 ∈ Γ∗,

M�1,�2
=

⎧⎨⎩ Mp,� if there exist p ∈ Γ, �′ ∈ Γ∗ with
�1 = p�′ and �2 = ��′,

0 otherwise.

The above definition implies that an A′-pushdown transition matrix has a fini-
tary specification: it is completely specified by its non-null blocks of the form
Mp,�, p ∈ Γ, � ∈ Γ∗. Item (ii) of the above definition shows that only the
following transitions are possible: if the contents of the pushdown tape is given
by p�′, the contents of the pushdown tape after a transition has to be of the
form ��′; moreover, the transition does only depend on the leftmost (topmost)
pushdown sympol p and not on �′. In this sense the A′-pushdown transition
matrix represents a proper formalization of the principle “last in—first out”.

An A′-pushdown automaton

P = (Q,Γ,M, S, p0, P)

is given by

(i) a finite set Q of states,

(ii) a finite alphabet Γ of pushdown symbols,

(iii) an A′-pushdown transition matrix M ∈ (A′
Q×Q

)
Γ∗×Γ∗

,

(iv) S ∈ A′1×Q, called the initial state vector,

74 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

(v) p0 ∈ Γ, called the initial pushdown symbol,

(vi) P ∈ A′Q×1
, called the final state vector.

The behavior ∥P∥ of the A′-pushdown automaton P is defined by

∥P∥ = S(M∗)p0,"
P.

We now describe the computations of an A′-pushdown automaton. Initially, the
pushdown tape contains the special symbol p0. The A′-pushdown automaton
now performs transitions governed by the A′-pushdown transition matrix until
the pushdown tape is emptied. The result of these computations is given by
(M∗)p0,"

. Multiplications by the initial state vector and by the final state vector
yield the behavior of the A′-pushdown automaton.

Let now 2Σ∗ be our basic semiring. We connect our definition of an 2Σ∪{"}-
pushdown automaton P = (Q,Γ,M, S, p0, P) to the usual definition of a push-
down automaton P′ = (Q,Σ,Γ, �, q0, p0, F) (see e. g., Harrison [63]), where Σ is
the input alphabet, �, a function from Q × (Σ ∪ {"}) × Γ to the set of all finite
subsets of Q × Γ∗, is the transition function, q0 ∈ Q is the initial state and
F ⊆ Q is the set of final states.

Assume that a pushdown automaton P′ is given as above. The transition
function � defines the pushdown transition matrix M of P by

x ∈ (Mp,�)q1,q2 iff (q2, �) ∈ �(q1, x, p)

for all q1, q2 ∈ Q, p ∈ Γ, � ∈ Γ∗, x ∈ Σ∪{"}. Let now ⊢ be the move relation over
the instantaneous descriptions of P′ inQ×Σ∗×Γ∗. Then (q1, w, �1) ⊢k (q2, ", �2)
iff w ∈ ((Mk)�1,�2

)
q1,q2

and (q1, w, �1) ⊢∗ (q2, ", �2) iff w ∈ ((M∗)�1,�2
)
q1,q2

for

all k ≥ 0, q1, q2 ∈ Q, �1, �2 ∈ Γ∗, w ∈ Σ∗. Hence, (q0, w, p0) ⊢∗ (q, ", ") iff
w ∈ ((M∗)p0,"

)
q0,q

. Define the initial state vector S and the final state vector

P by Sq0 = {"}, Sq = ∅ if q ∕= q0, Pq = {"} if q ∈ F , Pq = ∅ if q ∕∈ F . Then
a word w is accepted by the pushdown automaton P′ by both final state and
empty store iff w ∈ S(M∗)p0,"

P = ∥P∥.
In our first theorem we show that an A′-pushdown automaton can be re-

garded as an A′-automaton.

Theorem 3.4.1 For each A′-pushdown automaton P there exists an A′-automa-
ton A such that ∥A∥ = ∥P∥.

Proof. Let P = (Q,Γ,M, S, p0, P). We define the A′-automaton A = (Γ∗ × Q,
M ′, S′, P ′) by M ′(�1,q1),(�2,q2) = (M�1,�2

)q1,q2 , S′(p0,q)
= Sq, S

′
(�,q) = 0, if � ∕=

p0, P ′(",q) = Pq, P
′
(�,q) = 0, if � ∕= ". Then

∥A∥ = S′M ′
∗
P ′

=
∑

(�1,q1),(�2,q2)∈Γ∗×Q

S′(�1,q1)(M
′∗)(�1,q1),(�2,q2)P

′
(�2,q2)

3.4. PUSHDOWN AUTOMATA AND ALGEBRAIC SYSTEMS 75

=
∑

q1,q2∈Q
S′(p0,q1)(M

′∗)(p0,q1),(",q2)P
′
(",q2) =

=
∑

q1,q2∈Q
Sq1((M∗)p0,"

)
q1,q2

Pq2 = S(M∗)p0,"
P = ∥P∥.

Consider an A′-pushdown automaton with A′-pushdown transition matrix
M and let � = �1�2 be a word over the pushdown alphabet Γ. Then our next
proposition states that emptying the pushdown tape with contents � has the
same effect (i. e., (M∗)�,") as emptying first the pushdown tape with contents
�1 (i. e., (M∗)�1,"

) and afterwards (i. e., multiplying) the pushdown tape with
contents �2 (i. e., (M∗)�2,"

). (See also Kuich, Salomaa [88], Theorem 10.5.)

In the sequel, F ∈ (A′
Q×Q

)
Γ∗×1

is defined by F" = E and F� = 0 if � ∈ Γ+.

Proposition 3.4.2 Let M ∈ (A′
Q×Q

)
Γ∗×Γ∗

be an A′-pushdown transition ma-
trix. Then

(M∗)�1�2,"
= (M∗)�1,"

(M∗)�2,"

holds for all �1, �2 ∈ Γ∗.

Proof. We consider the A′Q×Q-linear system y = My + F and denote its ap-
proximation sequence by (� j ∣ j ∈ ℕ). Define � = sup(� j ∣ j ∈ ℕ). Then,
by Theorem 3.1, �� = (M∗)�," for all � ∈ Γ∗. Hence, we have to prove that
��1�2 = ��1��2 holds for all �1, �2 ∈ Γ∗. Clearly, the equation holds for �1 = ".

(i) Our first claim is that, for �1 ∕= ", � j�1�2
≤ ��1

��2
, j ≥ 0. We prove it

by induction on j. Since the case j = 0 is trivial, we proceed by j > 0 and ob-
tain � j�1�2

= (M� j−1)�1�2
=
∑
�∈Γ∗M�1�2,��

j−1
� =

∑
�′∈Γ∗M�1�2,�′�2

� j−1
�′�2

≤∑
�′∈Γ∗M�1,�′��′��2 = (M�)�1��2 = ��1��2 . Here the third equality follows by

M�1�2,� = 0 if �1 ∕= " and � ∕= �′�2; the inequality follows by M�1�2,�′�2 =
M�1,�′ if �1 ∕= " and by induction hypothesis.

(ii) Our second claim is that, for �1 ∕= ", � j�1
��2
≤ ��1�2

, j ≥ 0. We prove it
by induction on j. Since the case j = 0 is trivial, we proceed by j > 0 and ob-
tain � j�1

��2 = (M� j−1)�1��2 =
∑
�∈Γ∗M�1,��

j−1
� ��2 ≤

∑
�∈Γ∗M�1�2,��2���2 =∑

�′∈Γ∗M�1�2,�′��′ = (M�)�1�2
= ��1�2

.
Eventually, the first and the second claim imply ��1�2 = ��1��2 .

Let M ∈ (A′
Q×Q

)
Γ∗×Γ∗

be an A′-pushdown transition matrix and let {yp ∣
p ∈ Γ} be an alphabet of variables. We define y" = " and yp� = ypy� for p ∈ Γ,

� ∈ Γ∗, and consider the A′
Q×Q

-algebraic system

yp =
∑
�∈Γ∗

Mp,�y�, p ∈ Γ.

Given matrices Tp ∈ AQ×Q for all p ∈ Γ, we define matrices T� ∈ AQ×Q for
all � ∈ Γ∗ as follows: T" = E, Tp� = TpT�, p ∈ Γ, � ∈ Γ∗. By these matrices

we define a matrix T̃ ∈ (AQ×Q)
Γ∗×1

: the �-block of T̃ is given by T�, � ∈ Γ∗,
i. e., T̃� = T�.

76 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

Proposition 3.4.3 If (Tp)p∈Γ, Tp ∈ AQ×Q, is a solution of yp =
∑
�∈Γ∗Mp,�y�,

p ∈ Γ, then T̃ ∈ (AQ×Q)
Γ∗×1

is a solution of y = My + F .

Proof. Since M is an A′-pushdown transition matrix, we obtain, for all p ∈ Γ
and � ∈ Γ∗,

(MT̃)p� =
∑
�1∈Γ∗

Mp�,�1
T̃�1

=
∑
�2∈Γ∗

Mp�,�2�T̃�2� =

=
∑
�2∈Γ∗

Mp,�2
T̃�2

T̃� = (MT̃)pT̃�.

Since (Tp)p∈Γ is a solution of yp =
∑
�∈Γ∗Mp,�y�, p ∈ Γ, we infer that

T̃p = Tp =
∑
�∈Γ∗Mp,�T� =

∑
�∈Γ∗Mp,�T̃� = (MT̃)p. Hence, (MT̃ + F)p� =

(MT̃)p� = T̃pT̃� = T̃p�, p ∈ Γ, � ∈ Γ∗. Additionally, we have T̃" = E and

(MT̃ + F)" = F" = E. This implies that T̃ is a solution of y = My + F .

Theorem 3.4.4 The A′
Q×Q

-algebraic system yp =
∑
�∈Γ∗Mp,�y� has the least

solution ((M∗)p,")p∈Γ
.

Proof. We first show that ((M∗)p,")p∈Γ
is a solution of the A′

Q×Q
-algebraic

system by substituting (M∗)�," for y�:∑
�∈Γ∗

Mp,�(M∗)�," = (M+)p," = (M∗)p,", p ∈ Γ.

Assume now that (Tp)p∈Γ is a solution of yp =
∑
�∈Γ∗Mp,�y�. Then, by

Proposition 4.3, T̃ is a solution of y = My + F . Since M∗F is the least
solution of this A′Q×Q-linear system, we infer that M∗F ≤ T̃ . This implies
(M∗F)� = (M∗)�," ≤ T̃� = T� for all � ∈ Γ∗. Hence, (M∗)p," ≤ Tp for all
p ∈ Γ, and ((M∗)p,")p∈Γ

is the least solution of yp =
∑
�∈Γ∗Mp,�y�, p ∈ Γ.

Let P = (Q,Γ,M, S, p0, P) be an A′-pushdown automaton and consider the
A′-algebraic system

y0 = Syp0
P,

yp =
∑
�∈Γ∗

Mp,�y�, p ∈ Γ,

written in matrix notation: yp is a Q × Q-matrix whose (q1, q2)-entry is the
variable [q1, p, q2], p ∈ Γ, q1, q2 ∈ Q; if � = p1 . . . pr, r ≥ 1, then the (q1, q2)-
entry of y� is given by the (q1, q2)-entry of yp1

. . . ypr , p1, . . . , pr ∈ Γ; y0 is a
variable. Hence, the variables of the above A′-algebraic system are y0, [q1, p, q2],
p ∈ Γ, q1, q2 ∈ Q.

Corollary 3.4.5 Let P = (Q,Γ,M, S, p0, P) be an A′-pushdown automaton.
Then ∥P∥, ((M∗)p,")p∈Γ

is the least solution of the A′-algebraic system

y0 = Syp0
P,

yp =
∑
�∈Γ∗

Mp,�y�, p ∈ Γ.

3.4. PUSHDOWN AUTOMATA AND ALGEBRAIC SYSTEMS 77

Corollary 3.4.6 The behavior of an A′-pushdown automaton is an element of
Alg(A′).

Theorem 2.3.13 admits another corollary.

Corollary 3.4.7 Let P be an Alg(A′)-pushdown automaton. Then ∥P∥ ∈
Alg(A′).

We now want to show the converse of Corollary 4.6.

Theorem 3.4.8 Let a ∈ Alg(A′). Then there exists an A′-pushdown automa-
ton P such that ∥P∥ = a.

Proof. We assume, by Theorem 2.4.1, that a is the first component of the least
solution � of an A′-algebraic system in the canonical two form

yi =
∑

1≤k,m≤n

aikmykym +
∑

1≤k≤n

aikyk + ai, 1 ≤ i ≤ n.

We define the A′-pushdown transition matrix (with ∣Q∣ = 1) M ∈ A′Y
∗×Y ∗

by

Myi,ykym = aikm, Myi,yk = aik, Myi," = ai, 1 ≤ i, k,m ≤ n,

and write the above A′-algebraic system in the form

yi =
∑

1≤k,m≤n

Myi,ykymykym +
∑

1≤k≤n

Myi,ykyk +Myi,", 1 ≤ i ≤ n.

By Theorem 4.4, the least solution of this A′-algebraic system is given by
((M∗)y1,"

, . . . , (M∗)yn,"). Hence, �i = (M∗)yi,", 1 ≤ i ≤ n. Consider now
the A′-pushdown automata Pi = ({q}, Y,M, 1, yi, 1), 1 ≤ i ≤ n. Then we ob-
tain ∥Pi∥ = (M∗)yi," = �i, 1 ≤ i ≤ n. Hence, ∥P1∥ = a and our theorem is
proven.

This completes the proof of the main result of Section 4:

Corollary 3.4.9 Let a ∈ A. Then a ∈ Alg(A′) iff there exists an A′-pushdown
automaton P such that ∥P∥ = a.

Corollary 3.4.10 Let r ∈ A⟨⟨Σ∗⟩⟩. Then r ∈ Aalg⟨⟨Σ∗⟩⟩ iff there exists an
A⟨Σ ∪ "⟩-pushdown automaton P such that ∣∣P∣∣ = r.

If our basic semiring is 2Σ∗ then Corollary 4.9 is nothing else than the well-
known characterization of the context-free languages by pushdown automata.

Corollary 3.4.11 A formal language is context-free iff it is accepted by a push-
down automaton.

Observe that the construction proving Corollary 4.5 is nothing else than
the well-known triple construction. (See Hopcroft, Ullman [65], Theorem 5.4;
Harrison [63], Theorem 5.4.3; Bucher, Maurer [17], Sätze 2.3.10, 2.3.30.) By

78 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

the proof it is clear that [q1, p, q2] ⇒∗ w in G iff w ∈ ((M∗)p,")q1,q2
in P iff

(q1, w, p) ⊢∗ (q2, ", ") in P′, q1, q2 ∈ Q, p ∈ Γ, w ∈ Σ∗. This means that there
exists a derivation of w from the variable [q1, p, q2] iff w empties the pushdown
tape with contents p by a computation from state q1 to state q2.

If our basic semiring is ℕ∞⟨⟨Σ∗⟩⟩, we can draw some even stronger conclusions
by Theorem 2.3.8. In Corollary 4.12 we consider, for a given pushdown auto-
maton P′ = (Q,Σ,Γ, �, q0, p0, F), the number of distinct computations from the
initial instantaneous description (q0, w, p0) for w to an accepting instantaneous
description (q, ", "), q ∈ F .

Corollary 3.4.12 Let L be a formal language over Σ and let d : Σ∗ → ℕ∞.
Then the following two statements are equivalent:

(i) There exists a context-free grammar with terminal alphabet Σ such that
the number (possibly ∞) of distinct leftmost derivations of w, w ∈ Σ∗,
from the start variable is given by d(w).

(ii) There exists a pushdown automaton with input alphabet Σ such that the
number (possibly ∞) of distinct computations from the initial instanta-
neous description for w, w ∈ Σ∗, to an accepting instantaneous description
is given by d(w).

A pushdown automaton with input alphabet Σ is termed unambiguous iff,
for each word w ∈ Σ∗ that is accepted, there exists a unique computation
from the initial instantaneous description for w to some accepting instantaneous
description.

Corollary 3.4.13 A formal language is generated by an unambiguous context-
free grammar iff it is accepted by an unambiguous pushdown automaton.

Example 3.4.1. (Hopcroft, Ullmann [65], Example 5.3.) Let Σ = {a, b}, Q =
{q0, q1}, Γ = {p0, p} and P′ = (Q,Σ,Γ, �, q0, p0, ∅) be a pushdown automaton,
where � is given by

�(q0, a, p0) = {(q0, pp0)}, �(q0, a, p) = {(q0, pp)}, �(q1, ", p0) = {(q1, ")},
�(q0, b, p) = {(q1, ")}, �(q1, b, p) = {(q1, ")}, �(q1, ", p) = {(q1, ")}.

We construct a 2Σ∪{"}-pushdown automaton P = (Q,Γ,M, S, p0, P) such that
w ∈ Σ∗ is accepted by P′ by empty store iff w ∈ ∥P∥:

Mp0,pp0
= Mp,p2 =

(
{a} ∅
∅ ∅

)
, Mp," =

(
∅ {b}
∅ {", b}

)
, Mp0," =

(
∅ ∅
∅ {"}

)
,

S = ({"} ∅), P =

(
{"}
{"}

)
.

By the construction of Corollary 4.5, the following algebraic system in matrix
notation corresponds to P:

y0 = Syp0P, yp0 = Mp0,pp0ypyp0 +Mp0,", yp = Mp,p2y2
p +Mp,".

3.5. A KLEENE THEOREM FOR ALGEBRAIC POWER SERIES 79

Hence, we obtain

y0 = [q0, p0, q0] + [q0, p0, q1](
[q0, p0, q0] [q0, p0, q1]
[q1, p0, q0] [q1, p0, q1]

)
=

=

(
{a}[q0, p, q0] {a}[q0, p, q1]

∅ ∅

)(
[q0, p0, q0] [q0, p0, q1]
[q1, p0, q0] [q1, p0, q1]

)
+

(
∅ ∅
∅ {"}

)
(

[q0, p, q0] [q0, p, q1]
[q1, p, q0] [q1, p, q1]

)
=

=

(
{a}[q0, p, q0] {a}[q0, p, q1]

∅ ∅

)(
[q0, p, q0] [q0, p, q1]
[q1, p, q0] [q1, p, q1]

)
+

(
∅ {b}
∅ {", b}

)
Inspection shows that the components of [q0, p0, q0], [q0, p, q0], [q1, p0, q0], [q1, p, q0]
in the least solution are equal to ∅. This yields

y0 = [q0, p0, q1],

[q0, p0, q1] = {a}[q0, p, q1][q1, p0, q1], [q1, p0, q1] = {"},
[q0, p, q1] = {a}[q0, p, q1][q1, p, q1] ∪ {b}, [q1, p, q1] = {", b}.

Denoting [q0, p0, q1] and [q0, p, q1] by y1 and y2, respectively, and simplifying
yields the algebraic system

y1 = {a}y2, y2 = {a}y2{", b} ∪ {b}.

The context-free grammar of Example 2.4.1 corresponds to this algebraic sys-
tem. Hence, P′ accepts exactly the words ambn, m ≥ n ≥ 1, by empty store.
Moreover, by Corollary 4.12, the number of distinct computations from the
initial instantaneous description (q0, a

mbn, p0), m ≥ n ≥ 1, to the accepting in-
stantaneous description (q1, ", ") is

(
m−1
n−1

)
. (There are no computations leading

to (q0, ", ").)

3.5 A Kleene Theorem for algebraic power se-
ries

In this section we show a Kleene Theorem for algebraic power series. It is a
generalization of a result of Gruska [60]. The presentation follows the lines of
Kuich [79].

In the sequel, Σ∞ denotes an infinite alphabet, Σ denotes a finite subalpha-
bet of Σ∞, and A denotes a continuous commutative semiring. All occuring
symbols and variables are elements of Σ∞. Our basic semiring will be A⟨⟨Σ∗∞⟩⟩.

We remind the reader to Proposition 2.2.7 and the remarks below this propo-
sition, which justify the following notation. If ℎ : Σ∞ → A⟨⟨Σ∗∞⟩⟩ is a mapping
such that ℎ(x) = x, x ∈ Σ∞ − {y1, . . . , yn} where y1, . . . , yn are variables,
ℎ# : A⟨⟨Σ∗∞⟩⟩ → A⟨⟨Σ∗∞⟩⟩ is its extension to A⟨⟨Σ∗∞⟩⟩, and r ∈ A⟨⟨Σ∗∞⟩⟩, then

80 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

we write r = r(y1, . . . , yn) and ℎ#(r) = r(ℎ(y1), . . . , ℎ(yn)). This is called the
substitution of the power series ℎ(y1), . . . , ℎ(yn) into the variables y1, . . . , yn,
respectively.

For the convenience of the reader, we formulate Theorem 2.2.10 (Bekić-
De Bakker-Scott rule) and Proposition 2.2.12 in the setting of A⟨⟨Σ∗∞⟩⟩.

Consider disjoint alphabets {y1, . . . , yn} and {z1, . . . , zm} of variables and let
Σ̂∞ = Σ∞ − {y1, . . . , yn, z1, . . . , zm}. Let pi(z1, . . . , zm, y1, . . . , yn), 1 ≤ i ≤ n,
and qj(z1, . . . , zm, y1, . . . , yn), 1 ≤ j ≤ m, be power series in A⟨⟨Σ∗∞⟩⟩ and
consider the system of equations

zj = pj(z1, . . . , zm, y1, . . . , yn), 1 ≤ j ≤ m,
yi = qi(z1, . . . , zm, y1, . . . , yn) , 1 ≤ i ≤ n .

Let (t1(z1, . . . , zm), . . . , tn(z1, . . . , zm)) ∈ (A⟨⟨(Σ̂∞∪{z1, . . . , zm})∗⟩⟩)n and (r1, . . . , rm) ∈
(A⟨⟨Σ̂∗∞⟩⟩)n be the least solutions of the systems yi = qi(z1, . . . , zm, y1, . . . , yn),
1 ≤ i ≤ n, and zj = pj(z1, . . . , zm, t1(z1, . . . , zm), . . . , tn(z1, . . . , zm)), 1 ≤ j ≤
m, respectively. Then (r1, . . . , rm, t1(r1, . . . , rm), . . . , tn(r1, . . . , rm)) is the least
solution of the original system.

In the next proposition we use a vectorial notation: z = (z1, . . . , zm), y =
(y1, . . . , yn), p = (p1, . . . , pm), q = (q1, . . . , qn), etc.

Theorem 3.5.1 (Bekić-De Bakker-Scott rule) Consider the system of equations

z = p(z, y), y = q(z, y).

Let t(z) and r be the least solutions of the systems y = q(z, y) and z = p(z, t(z)),
respectively. Then (r, t(r)) is the least solution of the system z = p(z, y), y =
q(z, y).

Moreover, r is the least solution of the system z = p(z, t(r)).

We introduce the following notation: Let r(y1, . . . , yi, . . . , yn) ∈ A⟨⟨Σ∗∞⟩⟩,
where y1, . . . , yi, . . . , yn are variables that may occur in r (besides, there may
occur also other variables). We denote the least � ∈ A⟨⟨(Σ∞ − {yi})∗⟩⟩ such
that r(y1, . . . , �, . . . , yn) = � by �yi.r(y1, . . . , yi, . . . , yn), 1 ≤ i ≤ n. This means
that � is the least solution of the equation yi = r(y1, . . . , yi, . . . , yn) and �yi is a
fixed point operator. Observe that �yi.r(y1, . . . , yi, . . . , yn) ∈ A⟨⟨(Σ∞−{yi})∗⟩⟩.

Proposition 3.5.2 Let r(y1, . . . , yn, y) ∈ A⟨⟨Σ∗∞⟩⟩ and �i ∈ A⟨⟨(Σ∞ − {y})∗⟩⟩,
1 ≤ i ≤ n. Let s(y1, . . . , yn) = �y.r(y1, . . . , yn, y). Then

s(�1, . . . , �n) = �y.r(�1, . . . , �n, y).

Proof. By Propositions 2.2.7 and 2.2.12.
A subsemiring Ā of A⟨⟨Σ∗∞⟩⟩ is called equationally closed iff, for all r ∈ Ā

and y ∈ Σ∞ the power series �y.r is again in Ā.
Let A{Σ∗∞} = {r ∈ A⟨Σ∗⟩ ∣ Σ ⊂ Σ∞ finite} and Aalg{{Σ∗∞}} = {r ∈

Aalg⟨⟨Σ∗⟩⟩ ∣ Σ ⊂ Σ∞ finite}. Denote by Aequ{{Σ∗∞}} the least equationally closed
semiring containing A{Σ∗∞}. We will prove in this section that Aequ{{Σ∗∞}} =
Aalg{{Σ∗∞}}.

3.5. A KLEENE THEOREM FOR ALGEBRAIC POWER SERIES 81

Theorem 3.5.3 Let t(y1, . . . , yn), �j ∈ Aequ{{Σ∗∞}}, 1 ≤ j ≤ n. Then t(�1, . . . , �n) ∈
Aequ{{Σ∗∞}}.

Proof. The proof is by induction on the number of applications of the operations
+, ⋅ and � to generate t(y1, . . . , yn).

(i) Let t(y1, . . . , yn) ∈ A{Σ∗∞}, i. e., t(y1, . . . , yn) ∈ A⟨Σ∗⟩ for some Σ ⊂ Σ∞.
Since t(�1, . . . , �n) is generated from �1, . . . , �n by applications of sum, product
and scalar product, we infer that t(�1, . . . , �n) ∈ Aequ{{Σ∗∞}}.

(ii) We only prove the case of the operator �. Let �1, . . . , �n ∈ Aequ{{Σ∗∞}}∩
A⟨⟨Σ∗⟩⟩ for some Σ and choose a y ∈ Σ∞ that is not in Σ ∪ {y1, . . . , yn}.
Without loss of generality assume that t(y1, . . . , yn) = �y.r(y1, . . . , yn, y) (the
variable y is “bound”), where r(y1, . . . , yn, y) ∈ Aequ{{Σ∗∞}}. By induction
hypothesis, we obtain r(�1, . . . , �n, y) ∈ Aequ{{Σ∗∞}}. Hence, t(�1, . . . , �n) =
�y.r(�1, . . . , �n, y) ∈ Aequ{{Σ∗∞}} by Proposition 5.2.

Theorem 3.5.4 Aalg{{Σ∗∞}} ⊆ Aequ{{Σ∗∞}}.

Proof. The proof is by induction on the number of variables of algebraic systems.
We use the following induction hypothesis: If � ∈ (Aalg{{Σ∗∞}})n, n ≥ 1, is the
least solution of an algebraic system yi = qi(y1, . . . , yn), 1 ≤ i ≤ n, with n
variables y1, . . . , yn where qi ∈ A{Σ∗∞}, then �i ∈ Aequ{{Σ∗∞}}.

(1) Let n = 1 and assume that r is the least solution of the algebraic system
z = p(z). Then r = �z.p(z) ∈ Aequ{{Σ∗∞}}.

(2) Let z, y1, . . . , yn be variables and p, q1, . . . , qn be polynomials in A{Σ∗∞},
and consider the algebraic system z = p(z, y), y = q(z, y), where y = (y1, . . . , yn)
and q = (q1, . . . , qn). Let t(z) ∈ (Aalg{{Σ∗∞}})n be the least solution of y =
q(z, y). By our induction hypothesis we obtain t(z) ∈ (Aequ{{Σ∗∞}})n. Since
p(z, y) is a polynomial, it is in Aequ{{Σ∗∞}}. Hence, by Theorem 5.3, p(z, t(z))
is in Aequ{{Σ∗∞}}. This implies �z.p(z, t(z)) ∈ Aequ{{Σ∗∞}}. Again, by Theo-
rem 5.3, t(�z.p(z, t(z)) ∈ (Aequ{{Σ∗∞}})n). By Theorem 5.1, (�z.p(z, t(z)), t(�z.p(z, t(z))))
is the least solution of the algebraic system z = p(z, y), y = q(z, y) and is, by
Theorem 5.3, in (Aequ{{Σ∗∞}})n+1. Hence, the components of the least solution
of this algebraic system are in Aequ{{Σ∗∞}}.

We now show the converse to Theorem 5.4.

Theorem 3.5.5 Aequ{{Σ∗∞}} ⊆ Aalg{{Σ∗∞}}.

Proof. We show that Aalg{{Σ∗∞}} is an equationally closed semiring that contains
A{Σ∗∞}. By Corollary 2.3.12, Aalg{{Σ∗∞}} is a semiring containing A{Σ∗∞}.
Hence we have only to show that �z.r, r ∈ Aalg{{Σ∗∞}} and z ∈ Σ∞, is in
Aalg{{Σ∗∞}}.

Let r ∈ Aalg{{Σ∗∞}} be the first component of the least solution of the
algebraic system yi = pi(y1, . . . , yn, z), 1 ≤ i ≤ n. Then, by Theorem 5.1,
�z.r is the z-component of the least solution of the algebraic system z = y1,
yi = pi(y1, . . . , yn, z), 1 ≤ i ≤ n.

We have now achieved the main result of this section.

82 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

Theorem 3.5.6 Let A be a continuous commutative semiring. Then Aequ{{Σ∗∞}} =
Aalg{{Σ∗∞}} and Aequ{{Σ∗∞}} ∩A⟨⟨Σ∗⟩⟩ = Aalg⟨⟨Σ∗⟩⟩, Σ ⊂ Σ∞, Σ finite.

Analogous to the rational expressions (see Chapter 2, Section 3) and similar
to the context-free expressions of Gruska [60], we define algebraic expressions.

Assume that Σ∞, A and U = {+, ⋅, �, [,]} are mutually disjoint. A word E
over Σ∞ ∪A ∪ U is an algebraic expression over A{Σ∗∞} iff

(i) E is a symbol of A, or

(ii) E is a symbol of Σ∞, or else

(iii) E is of one of the forms [E1 + E2], [E1 ⋅ E2], or �y.E1, where E1 and E2

are algebraic expressions and y is a symbol of Σ∞.

Each algebraic expression E over A{Σ∗∞} denotes a formal power series ∣E∣ in
A{{Σ∗∞}} according to the following conventions:

(i) The power series denoted by a ∈ A is a" in A{Σ∗∞}.

(ii) The power series denoted by x ∈ Σ∞ is x in A{Σ∗∞}.

(iii) For algebraic expressions E1, E2 over A{Σ∗∞} and y ∈ Σ∞, ∣[E1 + E2]∣ =
∣E1∣+ ∣E2∣, ∣[E1 ⋅ E2]∣ = ∣E1∣ ⋅ ∣E2∣, ∣�y.E1∣ = �y.∣E1∣.

Let � be the mapping from the set of algebraic expressions over A{Σ∗∞} into
the finite sets of 2Σ∞ defined by

(i) �(a) = ∅, a ∈ A.

(ii) �(x) = {x}, x ∈ Σ∞.

(iii) �([E1 +E2]) = �([E1 ⋅E2]) = �(E1)∪�(E2), �(�y.E1) = �(E1)−{y}, for
algebraic expressions E1, E2 and y ∈ Σ∞.

Given an algebraic expression E, �(E) contains the “free symbols” of E. This
means that ∣E∣ is a formal power series in A⟨⟨�(E)∗⟩⟩. Theorem 5.6 and the
above definitions yield some corollaries.

Corollary 3.5.7 A power series r is in Aalg{{Σ∗∞}} iff there exists an algebraic
expression E over A{Σ∗∞} such that r = ∣E∣.

Corollary 3.5.8 Let A be a continuous commutative semiring and r ∈ A⟨⟨Σ∗⟩⟩.
Then the following statements are equivalent:

(i) r ∈ Aalg⟨⟨Σ∗⟩⟩,

(ii) r is the behavior of an A⟨Σ ∪ "⟩-pushdown automaton,

(iii) there exists an algebraic expression E over A{Σ∗∞}, where �(E) ⊆ Σ, such
that r = ∣E∣.

3.5. A KLEENE THEOREM FOR ALGEBRAIC POWER SERIES 83

Proof. By Corollary 4.10.

Observe that B{{Σ∗∞}} is isomorphic to the semiring L(Σ∞) = {L ∣ L ⊆
Σ∗,Σ ⊂ Σ∞} of formal languages over Σ∞. Hence, if A = B then each algebraic
expresssion E over B{Σ∗∞} denotes by this isomorphism a formal language in
L(Σ∞) according to the following conventions:

(i) The language denoted by 0 or 1 is ∅ or {"}, respectively.

(ii) The language denoted by x ∈ Σ∞ is {x}.

(iii) For algebraic expressions E1, E2 over B{Σ∗∞} and y ∈ Σ∞, ∣[E1 + E2]∣ =
∣E1∣ ∪ ∣E2∣, ∣[E1 ⋅ E2]∣ = ∣E1∣ ⋅ ∣E2∣, ∣�y.E1∣ = �y.∣E1∣.

Corollary 3.5.9 (Gruska [60]) A formal language L in L(Σ∞) is context-free
iff there exists an algebraic expression E over B{Σ∗∞} such that L = ∣E∣.

Corollary 3.5.10 The following statements on a language L ⊆ Σ∗ are equiva-
lent:

(i) L is a context-free language,

(ii) L is accepted by a pushdown automaton,

(iii) there exists an algebraic expression E over B{Σ∗∞}, where �(E) = Σ, such
that L = ∣E∣.

Proof. By Corollary 4.11.

84 CHAPTER 3. PUSHDOWN AUTOMATA AND ALGEBRAIC SERIES

Chapter 4

Transducers and abstract
families

4.1 Introduction

In Section 2 we generalize the concept of a rational transducer by replacing
the rational representations in the usual definition by certain complete rational
semiring morphisms. Moreover, we introduce algebraic transducers. It turns out
that ℜat(A′) and Alg(A′) are closed under rational and algebraic transductions,
respectively.

In Section 3, these generalized rational transducers lead to the generalization
of the concept of a full AFL (abbreviation for “abstract family of languages”) to
the concept of an AFE (abbreviation for “abstract family of elements”): these
are fully rationally closed semirings that are also closed under the application
of generalized rational transducers. These AFEs are then characterized by au-
tomata of a certain type. Additionally, the concept of an AFE generalizes the
concepts of an AFL, an AFP (abbreviation for “abstract family of power series”)
and a full AFP.

The presentation of this chapter follows the lines of Kuich [78] and Karner,
Kuich [69].

4.2 Transducers

In the sequel, A and Â will denote continuous semirings. A semiring morphism
ℎ : Â→ A is termed complete semiring morphism if, for all families (ai ∣ i ∈ I)
in Â, ℎ(

∑
i∈I ai) =

∑
i∈I ℎ(ai). Note that a complete semiring morphism is a

continuous mapping.
Given a mapping ℎ : Â → AQ1×Q2 , we define the mappings ℎ′ : ÂI1×I2 →

A(I1×Q1)×(I2×Q2) and ℎ′′ : ÂI1×I2 → (AQ1×Q2)
I1×I2 by

ℎ′(M)(i1,q1),(i2,q2) = (ℎ′′(M)i1,i2)
q1,q2

= ℎ(Mi1,i2)q1,q2

85

86 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

for M ∈ ÂI1×I2 , i1 ∈ I1, i2 ∈ I2, q1 ∈ Q1, q2 ∈ Q2. In the sequel, we use the
same notation ℎ for the mappings ℎ, ℎ′ and ℎ′′.

Consider the two mappings ℎ : A → AQ×Q and ℎ1 : A → AQ1×Q1 . The
functional composition ℎ ∘ℎ1 : A→ A(Q1×Q)×(Q1×Q) is defined by (ℎ ∘ℎ1)(a) =
ℎ(ℎ1(a)) for a ∈ A.

Easy computations yield the following two technical results.

Theorem 4.2.1 Let ℎ : Â → AQ×Q be a complete semiring morphism. Then

ℎ : ÂI×I → A(I×Q)×(I×Q) and ℎ : ÂI×I → (AQ×Q)
I×I

are again complete
semiring morphisms.

Theorem 4.2.2 Let ℎ : Â → A be a complete semiring morphism. Then, for
all a ∈ Â, ℎ(a∗) = ℎ(a)

∗
.

In the sequel, A′ and Â′ denote subsets of A and Â, respectively, both
containing the respective neutral elements 0 and 1.

A semiring morphism ℎ : Â → AQ×Q is called (Â′, A′)-rational or (Â′, A′)-

algebraic if, for all a ∈ Â′, ℎ(a) ∈ ℜat(A′)
Q×Q

or ℎ(a) ∈ Alg(A′)
Q×Q

, re-
spectively. If Â = A and Â′ = A′, these morphisms are called A′-rational or
A′-algebraic, respectively.

Theorem 4.2.3 Let ℎ : A → AQ×Q and ℎ′ : A → AQ
′×Q′ be complete A′-

rational semiring morphisms. Then the functional composition ℎ ∘ ℎ′ : A →
A(Q′×Q)×(Q′×Q) is again an A′-rational semiring morphism.

Proof. Clearly, ℎ′(a)q1,q2 ∈ ℜat(A′) for a ∈ A′, q1, q2 ∈ Q′. Since ℜat(A′) is
generated by the rational operations from A′, Theorems 2.1 and 2.2 imply that
the entries of ℎ(ℎ′(a)), a ∈ A′, are again in ℜat(A′).

Before we show a similar result for A′-algebraic semiring morphisms, some
considerations on A′-algebraic systems are necessary.

Let ℎ : A → AQ×Q be a semiring morphism and extend it to a mapping
ℎ : A(Y)→ AQ×Q(Y) as follows:

(i) If a semiring-polynomial is represented by a product term a0yi1a1 . . .
ak−1yikak, k ≥ 0, where aj ∈ A and yij ∈ Y , then its image is repre-
sented by the product term ℎ(a0)yi1ℎ(a1) . . . ℎ(ak−1)yikℎ(ak).

(ii) If a semiring-polynomial is represented by a sum of product terms
∑

1≤j≤m tj ,
then its image is represented by the sum of product terms

∑
1≤j≤m ℎ(tj).

Then, by the proof of Theorem 1.4.31 of Lausch, Nöbauer [90], this extension
is well-defined and again a semiring morphism.

Theorem 4.2.4 Let ℎ : A → AQ×Q be a complete semiring morphism. Con-
sider an A-algebraic system y = p with least solution �. Then ℎ(�) is the least
solution of the AQ×Q-algebraic system y = ℎ(p).

4.2. TRANSDUCERS 87

Proof. Let (�j ∣ j ∈ ℕ) be the approximation sequence of y = p. Then (ℎ(�j) ∣
j ∈ ℕ) is the approximation sequence of y = ℎ(p) and we obtain

fix(ℎ(p)) = sup(ℎ(�j) ∣ j ∈ ℕ) = ℎ(sup(�j ∣ j ∈ ℕ)) = ℎ(�).

The second equality follows by the fact that a complete semiring morphism
is a continuous mapping. Since fix(ℎ(p)) is the least solution of y = ℎ(p) by
Theorem 2.3.3, we have proved our theorem.

Corollary 4.2.5 Let ℎ : A→ AQ×Q be a complete A′-algebraic semiring mor-
phism. Then ℎ(a) ∈ Alg(A′)

Q×Q
for a ∈ Alg(A′).

Proof. By Theorem 2.4, ℎ(a), a ∈ Alg(A′), is a component of the least solution of
an Alg(A′)Q×Q-algebraic system. Hence, the entries of ℎ(a) are in Alg(Alg(A′)).
Now apply Theorem 2.3.13.

Theorem 4.2.6 Let ℎ : A → AQ×Q and ℎ′ : A → AQ
′×Q′ be complete A′-

algebraic semiring morphisms. Then the functional composition ℎ ∘ ℎ′ : A →
A(Q′×Q)×(Q′×Q) is again an A′-algebraic semiring morphism.

Proof. Clearly, ℎ′(a)q1,q2 ∈ Alg(A′) for a ∈ A′, q1, q2 ∈ Q′. Now, Corollary 2.5
implies that the entries of ℎ(ℎ′(a)), a ∈ A′, are again in Alg(A′).

We are now ready to introduce the notions of a rational and an algebraic
transducer.

An (Â′, A′)-rational transducer

T = (Q, ℎ, S, P)

is given by

(i) a finite set Q of states,

(ii) a complete (Â′, A′)-rational semiring morphism ℎ : Â→ AQ×Q,

(iii) S ∈ ℜat(A′)
1×Q

, called the initial state vector,

(iv) P ∈ ℜat(A′)
Q×1

, called the final state vector.

The mapping ∥T∥ : Â → A realized by an (Â′, A′)-rational transducer T =
(Q, ℎ, S, P) is defined by

∥T∥(a) = Sℎ(a)P, a ∈ Â.

A mapping � : Â → A is called an (Â′, A′)-rational transduction if there exists
an (Â′, A′)-rational transducer T such that �(a) = ∥T∥(a) for all a ∈ Â. In this
case, we say that � is realized by T. An (A′, A′)-rational transducer (in case
Â = A and Â′ = A′) is called an A′-rational transducer and an (A′, A′)-rational
transduction is called an A′-rational transduction.

An (Â′, A′)-algebraic transducer T = (Q, ℎ, S, P) is defined exactly as an
(Â′, A′)-rational transducer except that ℎ is now a complete (Â′, A′)-algebraic

88 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

semiring morphism, and the entries of S and P are in Alg(A′). The definition
of the notions of (Â′, A′)-algebraic transduction, A′-algebraic transducer and
A′-algebraic transduction should be clear.

The next two theorems show that (Â′, A′)-rational (resp. (Â′, A′)-algebraic)
transductions map ℜat(Â′) (resp. Alg(Â′)) into ℜat(A′) (resp. Alg(A′)).

Theorem 4.2.7 Assume that T is an (Â′, A′)-rational transducer and that a ∈
ℜat(Â′). Then ∥T∥(a) ∈ ℜat(A′).

Proof. Let a be the behavior of the finite Â′-automaton A = (Q,M,S, P). As-
sume that T = (Q′, ℎ, S′, P ′). We consider now the finite ℜat(A′)-automaton
A′ = (Q × Q′, ℎ(M), S′ℎ(S), ℎ(P)P ′). Since ℜat(ℜat(A′)) = ℜat(A′) we ob-
tain ∥A′∥ ∈ ℜat(A′). Since ∥A′∥ = S′ℎ(S)ℎ(M)

∗
ℎ(P)P ′ = S′ℎ(SM∗P)P ′ =

∥T∥(∥A∥), our theorem is proved.

Theorem 4.2.8 Assume that T is an (Â′, A′)-algebraic transducer and that
a ∈ Alg(Â′). Then ∥T∥(a) ∈ Alg(A′).

Proof. Let a be the behavior of the Â′-pushdown automaton P = (Q,Γ,M, S,
p0, P). Assume that T = (Q′, ℎ, S′, P ′). We consider now the Alg(A′)-pushdown
automaton P′ = (Q×Q′,Γ, ℎ(M), S′ℎ(S), p0, ℎ(P)P ′). By Corollary 3.4.9 and
Theorem 2.3.13 we obtain ∥P′∥ ∈ Alg(A′).

Since ∥P′∥ = S′ℎ(S)(ℎ(M)
∗
)p0,"

ℎ(P)P ′ = S′ℎ(S)ℎ((M∗)p0,"
)ℎ(P)P ′ =

S′ℎ(S(M∗)p0,"
P)P ′ = ∥T∥(∥P∥), our theorem is proved.

We now consider the functional composition ofA′-rational (resp.A′-algebraic)
transductions.

Theorem 4.2.9 The family of A′-rational (resp. A′-algebraic) transductions
is closed under functional composition.

Proof. Let Tj = (Qj , ℎj , Sj , Pj), j = 1, 2, be two A′-rational (resp. A′-algebraic)
transducers. We want to show that the mapping � : A → A defined by �(a) =
∥T2∥(∥T1∥(a)), a ∈ A, is an A′-rational (resp. A′-algebraic) transduction.

Consider T = (Q1×Q2, ℎ2 ∘ℎ1, S2ℎ2(S1), ℎ2(P1)P2). By Theorem 2.3 (resp.
Theorem 2.6) the mapping ℎ2 ∘ℎ1 is a complete A′-rational (resp. A′-algebraic)
semiring morphism. Furthermore, the entries of S2ℎ2(S1) and ℎ2(P1)P2 are in
ℜat(A′) (resp. Alg(A′)). Hence, T is an A′-rational (resp. A′-algebraic) trans-
ducer. Since, for a ∈ A,

∥T∥(a) = S2ℎ2(S1)ℎ2(ℎ1(a))ℎ2(P1)P2 = S2ℎ2(S1ℎ1(a)P1)P2 =

= S2ℎ2(∥T1∥(a))P2 = ∥T2∥(∥T1∥(a)),

our theorem is proved.
Most of the definitions and results developed up to now in this section are

due to Kuich [77]. They are generalizations of definitions and results which
we will consider now. We specialize our definitions and results to semirings of
formal power series (see Nivat [97], Jacob [66], Salomaa, Soittola [107], Kuich,
Salomaa [88]). We make the following conventions for the remainder of this

4.2. TRANSDUCERS 89

section: The set Σ∞ is a fixed infinite alphabet, and Σ, possibly provided with
indices, is a finite subalphabet of Σ∞.

In connection with formal power series, our basic semiring will be A⟨⟨Σ∗∞⟩⟩,
where A is commutative. The semiring containing all power series whose sup-
ports are contained in some Σ∗ is denoted by A{{Σ∗∞}}, i. e.,

A{{Σ∗∞}} = {r ∈ A⟨⟨Σ∗∞⟩⟩ ∣
such that supp(r) ⊆ Σ∗}.
there exists a finite alphabet Σ ⊂ Σ∞

It can be identified with a subsemiring of A⟨⟨Σ∗∞⟩⟩. For Σ ⊂ Σ∞, A⟨⟨Σ∗⟩⟩ is
isomorphic to a subsemiring of A{{Σ∗∞}}. Hence, we may assume that A⟨⟨Σ∗⟩⟩ ⊂
A{{Σ∗∞}}.

Furthermore, we define three subsemirings of A{{Σ∗∞}}, namely, the semi-
ring of algebraic power series Aalg{{Σ∗∞}}, the semiring of rational power series
Arat{{Σ∗∞}} and the semiring of polynomials A{Σ∗∞} by

Aalg{{Σ∗∞}} = {r ∈ A{{Σ∗∞}} ∣
such that r ∈ Aalg⟨⟨Σ∗⟩⟩},
there exists a finite alphabet Σ ⊂ Σ∞

Arat{{Σ∗∞}} = {r ∈ A{{Σ∗∞}} ∣
such that r ∈ Arat⟨⟨Σ∗⟩⟩}, and
there exists a finite alphabet Σ ⊂ Σ∞

A{Σ∗∞} = {r ∈ A{{Σ∗∞}} ∣ supp(r) is finite}.

Moreover, we define A{Σ∞ ∪ "} = {r ∈ A{Σ∗∞} ∣ supp(r) ⊂ Σ∞ ∪ {"}}
and A{Σ∞} = {r ∈ A{Σ∗∞} ∣ supp(r) ⊂ Σ∞}. Observe that Arat{{Σ∗∞}} =
ℜat(A{Σ∞ ∪ "}) and Aalg{{Σ∗∞}} = Alg(A{Σ∞ ∪ "}).

A multiplicative morphism � : Σ∗∞ → (A{{Σ∗∞}})
Q×Q

is called a representa-
tion if there exists a Σ such that �(x) = 0 for x ∈ Σ∞−Σ. Observe that if � is
a representation, there exist only finitely many entries �(x)q1,q2 ∕= 0, x ∈ Σ∞,

q1, q2 ∈ Q. Hence, there is a Σ′ such that �(w)q1,q2 ∈ A⟨⟨Σ
′∗⟩⟩ for all w ∈ Σ∗∞.

A representation can be extended to a mapping � : A⟨⟨Σ∗∞⟩⟩ → (A⟨⟨Σ∗∞⟩⟩)
Q×Q

by the definition

�(r) = �
(∑
w∈Σ∗∞

(r, w)w
)

=
∑
w∈Σ∗∞

diag((r, w))�(w), r ∈ A⟨⟨Σ∗∞⟩⟩,

where diag(a) is the diagonal matrix whose diagonal entries all are equal to a.
(Observe that diag((r, w))�(w) = (r, w)⊗�(w), where ⊗ denotes the Kronecker
product. For definitions and results in connection with the Kronecker product
see Kuich, Salomaa [88].) Note that we are using the same notation “�” for
both mappings. However, this should not lead to any confusion. Observe that
in fact � is a mapping � : A⟨⟨Σ∗∞⟩⟩ → (A{{Σ∗∞}})

Q×Q
.

The following theorem states an important property of the extended mapping
� and is proved by an easy computation.

Theorem 4.2.10 Let A be a commutative continuous semiring. If � : Σ∗∞ →
(A{{Σ∗∞}})

Q×Q
is a representation then the extended mapping � : A⟨⟨Σ∗∞⟩⟩ →

(A{{Σ∗∞}})
Q×Q

is a complete semiring morphism.

90 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

A representation � is called rational or algebraic if

� : Σ∗∞ → (Arat{{Σ∗∞}})
Q×Q

or � : Σ∗∞ → (Aalg{{Σ∗∞}})
Q×Q

,

respectively.

Theorem 4.2.11 Let A be a commutative continuous semiring and let �j :

Σ∗∞ → (A{{Σ∗∞}})
Qj×Qj , j = 1, 2, be rational (resp. algebraic) representations.

Then � : Σ∗∞ → (A{{Σ∗∞}})
(Q1×Q2)×(Q1×Q2)

, where �(x) = �2(�1(x)) for all
x ∈ Σ∞, is again a rational (resp. an algebraic) representation.

Furthermore, for all r ∈ A⟨⟨Σ∗∞⟩⟩, �(r) = �2(�1(r)).

Proof. By Theorem 2.3 (resp. Theorem 2.6), the entries of �(x) are inArat{{Σ∗∞}}
(resp. Aalg{{Σ∗∞}}) for all x ∈ Σ∞. Hence, � is a rational (resp. an algebraic)
representation.

We now prove the second part of our theorem. We deduce, for all r ∈
A⟨⟨Σ∗∞⟩⟩,

�2(�1(r)) = �2

(∑
w∈Σ∗∞

diag((r, w))�1(w)
)

=
∑
w∈Σ∗∞

diag((r, w))�2(�1(w)) =
∑
w∈Σ∗∞

diag((r, w))�(w) = �(r).

We now specialize the notions of A′-rational (resp. A′-algebraic) transducers
and consider A{Σ∞ ∪ "}-rational (resp. A{Σ∞ ∪ "}-algebraic) transducers T =
(Q,�, S, P), where � is a rational (resp. an algebraic) representation. Hence,
there exist finite alphabets Σ and Σ′ such that �(x) = 0 for x ∈ Σ∞ − Σ and
the entries of �(w), w ∈ Σ∗ are in Arat⟨⟨Σ′∗⟩⟩ (resp. Aalg⟨⟨Σ′∗⟩⟩). Furthermore,
we assume that the entries of S and P are in Arat⟨⟨Σ′∗⟩⟩ (resp. Aalg⟨⟨Σ′∗⟩⟩). We
call these A{Σ∞ ∪ "}-rational (resp. A{Σ∞ ∪ "}-algebraic) transducers simply
rational (resp. algebraic) transducers.

A rational or an algebraic transducer T = (Q,�, S, P) specified as above can
be considered to be a finite automaton equipped with an output device. In a
state transition from state q1 to state q2, T reads a letter x ∈ Σ and outputs
the rational or algebraic power series �(x)q1,q2 . A sequence of state transitions
outputs the product of the power series of the single state transitions. All
sequences of length n of state transitions from state q1 to state q2 reading a
word w ∈ Σ∗, ∣w∣ = n, output the power series �(w)q1,q2 . This output is
multiplied with the correct components of the initial and the final state vector,
and Sq1�(w)q1,q2Pq2 is said to be the translation of w by transitions from q1 to
q2. Summing up for all q1, q2 ∈ Q,

∑
q1,q2∈Q Sq1�(w)q1,q2Pq2 = S�(w)P is said

to be the translation of w by T. A power series r ∈ A⟨⟨Σ∗∞⟩⟩ is translated by T
to the power series

∥T∥(r) = S�(r)P = S
(∑
w∈Σ∗∞

diag((r, w))�(w)
)
P

=
∑
w∈Σ∗∞

(r, w)S�(w)P =
∑
w∈Σ∗∞

(r, w)∥T∥(w) ∈ A⟨⟨Σ′∗⟩⟩.

4.2. TRANSDUCERS 91

Observe that ∥T∥(r) = ∥T∥(r⊙ char(Σ∗)). Hence, in fact, T translates a power
series in A⟨⟨Σ∗⟩⟩ to a power series in A⟨⟨Σ′∗⟩⟩.

Specializations of Theorems 2.7 and 2.8 yield the next result.

Corollary 4.2.12 Assume that T is a rational (resp. an algebraic) transducer
and that r ∈ Arat⟨⟨Σ∗⟩⟩ (resp. r ∈ Aalg⟨⟨Σ∗⟩⟩). Then ∥T∥(r) ∈ Arat⟨⟨Σ′∗⟩⟩ (resp.
Aalg⟨⟨Σ′∗⟩⟩) for some Σ′.

We now introduce the notion of a substitution. Assume that � : Σ∗∞ →
A{{Σ∗∞}} is a representation, where �(x) = 0 for x ∈ Σ∞−Σ and the entries of
�(x), x ∈ Σ, are in A⟨⟨Σ′∗⟩⟩. Then the mapping � : A⟨⟨Σ∗∞⟩⟩ → A⟨⟨Σ′∗⟩⟩, where
�(r) =

∑
w∈Σ∗∞

(r, w)�(w) for all r ∈ A⟨⟨Σ∗∞⟩⟩, is a complete semiring morphism.

We call this complete semiring morphism a substitution. If � : Σ∗∞ → Arat⟨⟨Σ′∗⟩⟩
or � : Σ∗∞ → Aalg⟨⟨Σ′∗⟩⟩ then we call the substitution rational or algebraic,
respectively. Clearly, a rational or algebraic substitution is a particular rational
or algebraic transduction, respectively.

Corollary 4.2.13 If � is a rational (resp. algebraic) substitution and r is a
rational (resp. algebraic) power series then �(r) is again a rational (resp. alge-
braic) power series.

We now turn to language theory (see Berstel [4]). The basic semiring is now
2Σ∗∞ . Let L(Σ∞) be the subset of 2Σ∗∞ containing all formal languages, i. e.,

L(Σ∞) = {L ∣ L ⊆ Σ∗, Σ ⊂ Σ∞}.

A representation is now a multiplicative morphism � : Σ∗∞ → L(Σ∞)
Q×Q

. If
the representation is rational or algebraic then the entries of �(x), x ∈ Σ∞, are
regular or context-free languages, respectively. A rational or an algebraic trans-
ducer T = (Q,�, S, P) is specified by a rational or an algebraic representation �
as above; moreover, the entries of S and P are regular or context-free languages,
respectively.

Corollary 4.2.14 Assume that T is a rational (resp. algebraic) transducer.
Then ∥T∥(L) is a regular (resp. context-free) language if L is regular (resp.
context-free).

A substitution is now a complete semiring morphism � : Σ∗∞ → L(Σ∞) such
that �(x) = ∅ for x ∈ Σ∞−Σ. It is defined by the values of �(x) ⊆ Σ′

∗
for x ∈ Σ.

Since � is a complete semiring morphism, we obtain �(w) = �(x1) . . . �(xn) ⊆
Σ′
∗

for w = x1 . . . xn, xi ∈ Σ, 1 ≤ i ≤ n, and �(L) =
∪
w∈L �(w) ⊆ Σ′

∗
for

L ⊆ Σ∗.
A substitution is called regular or context-free if each symbol is mapped to

a regular or context-free language, respectively.

Corollary 4.2.15 A regular (resp. context-free) substitution maps a regular
(resp. context-free) language to a regular (resp. context-free) language.

92 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

4.3 Abstract families of elements

We start with some basic definitions. Given A′ ⊆ A, we define [A′] ⊆ A to
be the least complete subsemiring of A that contains A′. The semiring [A′]
is called the complete semiring generated by A′. Each element a of [A′] can
be generated from elements of A′ by multiplication and summation (including
“infinite summation”):

a ∈ [A′] iff a =
∑
i∈I

ai1 . . . aini ,

where I is an index set, aij ∈ A′ and ni ≥ 0.
From now on, we assume that [A′] = A. Furthermore we make the notational

convention that all sets Q, possibly provided with indices, are finite and non-
empty, and are subsets of some fixed countably infinite setQ∞ with the following
property: if q1, q2 ∈ Q∞ then (q1, q2) ∈ Q∞.

Consider the family of all semiring morphisms ℎ : A → AQ×Q, Q ⊂ Q∞, Q
finite, and let ℌ be a non-empty subfamily of this family. Then we define the
subset [ℌ] of A as follows. For ℎ ∈ ℌ, ℎ : A → AQ×Q, let Bℎ = [{ℎ(a)q1,q2 ∣
a ∈ A, q1, q2 ∈ Q}]. Then [ℌ] =

∪
ℎ∈ℌBℎ. A family of morphisms ℌ is called

closed under matricial composition if the following conditions are satisfied for
arbitrary morphisms ℎ : A→ AQ×Q and ℎ′ : A→ AQ

′×Q′ in ℌ:

(i) A′ ⊆ [ℌ].

(ii) For each a ∈ [ℌ] there is an ℎa ∈ ℌ with ℎa(a) = a.

(iii) If Q̄ ⊂ Q∞ and there exists a bijection � : Q̄ → Q, then ℎ̄ : A → AQ̄×Q̄,
defined by ℎ̄(a)q1,q2 = ℎ(a)�(q1),�(q2) for all a ∈ A, q1, q2 ∈ Q̄, is in ℌ.

(iv) The functional composition ℎ ∘ ℎ′ : A→ A(Q′×Q)×(Q′×Q) is again in ℌ.

(v) If Q ∩Q′ = ∅ then the mapping ℎ+ ℎ′ : A→ A(Q∪Q′)×(Q∪Q′) defined by

(ℎ+ ℎ′)(a) =

(
ℎ(a) 0

0 ℎ′(a)

)
, a ∈ A,

where the blocks are indexed by Q and Q′, is again in ℌ.

From now on, we assume that ℌ is a non-empty family of complete A′-
rational semiring morphisms that is closed under matricial composition.

Next we deal with properties of [ℌ] and denote B = {Bℎ ∣ ℎ ∈ ℌ}.

Lemma 4.3.1 B is directed by set inclusion and for every finite F ⊆ [ℌ] there
exists an ℎ ∈ ℌ such that F ⊆ Bℎ.

Proof. Consider Bℎ1
, Bℎ2

∈ B, where ℎ1 : A→ AQ1×Q1 and ℎ2 : A→ AQ2×Q2 .
Assume that Q1∩Q2 = ∅ by (iii). Then Bℎ1

, Bℎ2
⊆ Bℎ1+ℎ2

. From this, F ⊆ Bℎ
follows directly.

4.3. ABSTRACT FAMILIES OF ELEMENTS 93

Theorem 4.3.2 [ℌ] is a starsemiring.

Proof. Since A′ ⊆ [ℌ], we infer that 0, 1 ∈ [ℌ]. The closure of [ℌ] under addition
and multiplication follows from Lemma 3.1. Now consider a ∈ [ℌ]. Then there
is a B ∈ B with a ∈ B. Since B is a complete subsemiring of A, a∗ ∈ B ⊆ [ℌ].

An ℌ-A′-rational transducer is an A′-rational transducer T = (Q, ℎ, S, P)
where ℎ : A → AQ×Q is in ℌ. A mapping � : A → A is called an ℌ-A′-
rational transduction if there exists an ℌ-A′-rational transducer T such that
�(a) = ∥T∥(a) for all a ∈ A.

An ℌ-A′-family of elements is just a subset of [ℌ]. Let L be an ℌ-A′-family
of elements. We define

M(L) = {�(a) ∣ a ∈ L, � : A→ A is an ℌ-A′-rational transduction}.

Note that we always have L ⊆M(L) by (ii). The family L is said to be closed
under ℌ-A′-rational transductions if M(L) ⊆ L.

The notation F(L) is used for the smallest substarsemiring of A that is closed
under ℌ-A′-rational transductions and contains L. Note that M(L) ⊆ F(L).
(We have tried to use in our notation letters customary in AFL theory to aid
the reader familiar with this theory. See Ginsburg [53].)

An ℌ-A′-family of elements L is called ℌ-A′-abstract family of elements
(briefly ℌ-A′-AFE) if F(L) ⊆ L. These ℌ-A′-abstract families of elements will
now be characterized. We assume ℌ to be fixed. Recall that, by our convention,
ℌ is a non-empty family of complete A′-rational semiring morphisms that is
closed under matricial composition.

First, we consider an important special case.

Theorem 4.3.3 If ℌ is a non-empty family of complete A′-rational semiring
morphisms that is closed under matricial composition then ℜat(A′) is a ℌ-A′-
AFE.

Proof. By Theorems 2.7 and 3.2.
Observe that every ℌ-A′-AFE L satisfies ℜat(A′) ⊆ L by definition. Thus

by Theorem 3.3, ℜat(A′) is the smallest ℌ-A′-AFE.
In the sequel, Δ = {a ∣ a ∈ A} ∪ Z is an alphabet. Here {a ∣ a ∈ A} is a

copy of A and Z is an infinite alphabet of variables. A multiplicative monoid
morphism ℎ : Δ∗ → AQ×Q is compatible with ℌ if the following conditions are
satisfied:

(i) The mapping ℎ′ : A→ AQ×Q defined by ℎ′(a) = ℎ(a), a ∈ A, is a complete
A′-rational semiring morphism in ℌ,

(ii) ℎ(a), ℎ(z) ∈ ℜat(A′)Q×Q for a ∈ A′, z ∈ Z, and ℎ(z) = 0 for almost all
variables z ∈ Z.

If ℎ : Δ∗ → AQ×Q is compatible with ℌ and if ℎ1 : A→ AQ1×Q1 is a complete
A′-rational semiring morphism in ℌ then ℎ1∘ℎ : Δ∗ → A(Q×Q1)×(Q×Q1) is again
compatible with ℌ.

94 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

We introduce now the notions of a type T , a T -matrix, a T -automaton and
the automaton representing T . Intuitively speaking this means the following.
A T -automaton is a finite automaton with an additional working tape, whose
contents are stored in the states of the T -automaton. The type T of the T -
automaton indicates how information can be retrieved from the working tape.
For instance, pushdown automata can be viewed as automata of a specific type.

A type is a quadruple

(ΓT ,ΔT , T, �T),

where

(i) ΓT is the set of storage symbols,

(ii) ΔT ⊆ {a ∣ a ∈ A′} ∪ Z is the alphabet of instructions,

(iii) T ∈ (ℕ∞{ΔT })Γ∗T×Γ∗T is the type matrix,

(iv) �T ∈ Γ∗T is the initial contents of the working tape.

In the sequel we often speak of the type T if ΓT , ΔT and �T are understood.

A matrix M ∈ (ℜat(A′)
Q×Q

)
Γ∗T×Γ∗T

is called a T -matrix if there exists a
monoid morphism ℎ : Δ∗ → AQ×Q that is compatible with ℌ such that M =
ℎ(T). If M = ℎ(T) is a T -matrix and ℎ′ : A→ AQ

′×Q′ is a complete A′-rational
semiring morphism in ℌ then, by Theorems 2.2.5 and 2.3, ℎ′ ∘ ℎ is compatible
with ℌ and ℎ′(M) = ℎ′(ℎ(T)) is again a T -matrix.

A T -automaton

A = (Q,ΓT ,M, S, �T , P)

is defined by

(i) a finite set Q of states,

(ii) a T -matrix M , called the transition matrix,

(iii) S ∈ ℜat(A′)
1×Q

, called the initial state vector,

(iv) P ∈ ℜat(A′)
Q×1

, called the final state vector.

Observe that ΓT and �T are determined by T . The behavior of the T -automaton
A is given by

∥A∥ = S(M∗)�T ,"
P.

Clearly, for each such T -automaton A there exists a ℜat(A′)-automaton
A′ = (Γ∗T × Q,M ′, S′, P ′) such that ∥A′∥ = ∥A∥. This is achieved by choosing
M ′(�1,q1),(�2,q2) = (M�1,�2

)q1,q2 , S′(�T ,q)
= Sq, S

′
(�,q) = 0, � ∕= �T , P ′(",q) = Pq,

P ′(�,q) = 0, � ∕= ", q1, q2, q ∈ Q, �1, �2, � ∈ Γ∗T .

The automaton AT representing a type (ΓT ,ΔT , T, �T) is an ℕ∞{ΔT }-
automaton defined by

AT = (Γ∗T , T, ST , PT),

4.3. ABSTRACT FAMILIES OF ELEMENTS 95

where (ST)�T
= ", (ST)� = 0, � ∈ Γ∗T , � ∕= �T , (PT)" = ", (PT)� = 0, � ∈ Γ∗T ,

� ∕= ". The behavior of AT is ∥AT ∥ = (T ∗)�T ,"
.

In a certain sense, AT generates an A′-family of elements. Let Â = ℕ∞⟨⟨Δ∗T ⟩⟩
and Â′ = {d ∣ d ∈ ΔT } ∪ {", 0} and consider (Â′, A′)-rational transducers
T = (Q, ℎ, S, P), where ℎ : Δ∗ → AQ×Q is a monoid morphism compatible
with ℌ. Given an (Â′, A′)-rational transducer T = (Q, ℎ, S, P), consider the
T -automaton A = (Q,ΓT ,M, S, �T , P), where M = ℎ(T). We apply T to ∥AT ∥
and obtain

∥T∥(∥AT ∥) = Sℎ((T ∗)�T ,")P = S(M∗)�T ,"
P = ∥A∥.

Conversely, for each T -automaton A there exists an (Â′, A′)-rational transducer
T such that ∥A∥ = ∥T∥(∥AT ∥).

We define now the set

ℜatT (A′) = {∥A∥ ∣ A is a T -automaton} ⊆ A.

Hence, ℜatT (A′) contains exactly all elements ∥T∥(∥AT ∥), where T = (Q, ℎ, S, P)
is an (Â′, A′)-rational transducer and ℎ : Δ∗ → AQ×Q is compatible with ℌ. Ob-
serve that in the definitions of a T -matrix, of a T -automaton and of ℜatT (A′),
A′ and ℌ are implicitly present.

It will turn out that ℜatT (A′) is an ℌ-A′-AFE if T is a restart type. Here
a type (ΓT ,ΔT , T, �T) is called a restart type if �T = " and the non-null entries
of T satisfy the conditions T"," = z0 ∈ Z, T",� ∈ ℕ∞{Z − {z0}}, T�,�′ ∈
ℕ∞{ΔT −{z0}} for all � ∈ Γ+

T , �′ ∈ Γ∗T , and for some distinguished instruction
z0 ∈ ΔT . Observe that the working tape is empty at the beginning of the
computation.

Now we want to show that ℜatT (A′) is an ℌ-A′-AFE.

Theorem 4.3.4 (Kuich [77], Theorems 4.2, 4.3, 4.4, 4.5) If T is a restart type
then ℜatT (A′) is a starsemiring containing ℜat(A′) and closed under ℌ-A′-
rational transductions.

Proof. We prove only closure under star and under ℌ-A′-rational transductions.
Assume that A = (Q,ΓT ,M, S, ", P), where M = ℎ(T), is a T -automaton.

We give the construction of a T -automaton A′ = (Q,ΓT ,M
′, S, ", P) with

∥A′∥ = ∥A∥+.
Let ℎ′ : Δ∗ → AQ×Q be defined by ℎ′(z0) = ℎ(z0) + PS, ℎ′(d) = ℎ(d), d ∈

Δ−{z0}. Then ℎ′ is compatible with ℌ. Define M̃ ∈ (ℜatT (A′)
Q×Q

)
Γ∗T×Γ∗T

by
M̃"," = PS, M̃�1,�2

= 0 for (�1, �2) ∕= (", "). Let M ′ = ℎ′(T). Then we obtain

M ′ = M+M̃ and M ′
∗

= (M∗M̃)
∗
M∗. We compute (M∗M̃)",� = 0 for � ∈ Γ+

T ,

(M∗M̃)"," = (M∗)","PS, ((M∗M̃)
∗
)"," = ((M∗)","PS)

∗
and ((M∗M̃)

∗
)",� = 0,

� ∈ Γ+
T . Hence,

(M ′∗)"," = ((M∗M̃)
∗
)","(M

∗)"," = ((M∗)","PS)
∗
(M∗)","

96 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

and
∥A′∥ = S((M∗)","PS)

∗
(M∗)","P = ∥A∥+.

Since ℜat(A′) is a subset of ℜatT (A′) and ℜatT (A′) is closed under addition,
∥A∥+ + 1 = ∥A∥∗ is in ℜatT (A′).

We now prove closure under ℌ-A′-rational transductions. Assume that
A = (Q,ΓT ,M, S, ", P), where M = ℎ(T), is a T -automaton and that T =
(Q′, ℎ′, S′, P ′) is an ℌ-A′-rational transducer. Since ℎ : Δ∗ → AQ×Q is compat-
ible with ℌ and ℎ′ : A → AQ

′×Q′ is in ℌ, the monoid morphism ℎ′ ∘ ℎ : Δ∗ →
A(Q×Q′)×(Q×Q′) is again compatible with ℌ. We prove now that the behavior
of the T -automaton A′ = (Q × Q′,ΓT , (ℎ′ ∘ ℎ)(T), S′ℎ′(S), ", ℎ′(P)P ′) is equal
to ∥T∥(∥A∥):

∥A′∥ = S′ℎ′(S)(((ℎ′ ∘ ℎ)(T))
∗
)","ℎ

′(P)P ′ = S′ℎ′(S)ℎ′((ℎ(T)
∗
)",")ℎ

′(P)P ′

= S′ℎ′(S(ℎ(T)
∗
)","P)P ′ = S′ℎ′(∥A∥)P ′ = ∥T∥(∥A∥).

Theorem 4.3.5 If T is a restart type then ℜatT (A′) is a ℌ-A′-AFE.

Proof. By Theorem 3.4, we have only to show that ℜatT (A′) ⊆ [ℌ]. Assume
that a = S(M∗)�T ,"

P . By Lemma 3.1, there are BS and BP ∈ B containing
the entries of S and P , respectively. Similarly, for every z ∈ Z, there is Bz ∈ B
containing all entries of ℎ(z), z ∈ Z. Moreover, Bℎ ∈ B contains all entries of
all ℎ(a), a ∈ A. Now by Lemma 3.1 there is a B0 ∈ B containing BS , BP , Bℎ,
and all Bz, z ∈ Z, with ℎ(z) ∕= 0. (Note that we only have to consider finitely
many Bz, z ∈ Z.) Then a ∈ B0 ⊆ [ℌ].

We now consider a second special case and show that Alg(A′) is a ℌ-A′-AFE.
In this section Γ∞ denotes a countably infinite set of storage symbols containing
the symbol p0. We now introduce the two types T pd

Γ and T rpd
Γ , called pushdown

type and reset pushdown type with pushdown alphabet Γ, respectively.
The pushdown type with pushdown alphabet Γ (Γ,Δpd

Γ , T pd
Γ , p0) is specified

as follows: Γ ⊂ Γ∞ is a finite set of storage symbols containing p0, Δpd
Γ = {dp,� ∣

p ∈ Γ, � ∈ Γ∗} ⊆ Z, and the non-null entries of T pd
Γ are

(T pd
Γ)p�′,��′ = dp,� for all p ∈ Γ, � ∈ Γ∗ .

The reset pushdown type with pushdown alphabet Γ (Γ,Δrpd
Γ , T rpd

Γ , ") is specified
as follows: Γ ⊂ Γ∞ is a finite non-empty set of storage symbols not necessarily
containing p0, Δrpd

Γ = {cp,� ∣ p ∈ Γ∪{"}, � ∈ Γ∗} ⊆ Z, and the non-null entries

of T rpd
Γ are

(T rpd
Γ)",� = c",�, (T rpd

Γ)p�′,��′ = cp,� for all p ∈ Γ, � ∈ Γ∗ .

Since Δpd
Γ ⊆ Z, the T pd

Γ -automata are exactly the ℜat(A′)-pushdown au-
tomata with pushdown alphabet Γ. Hence,∪

Γ⊂Γ∞ finite, p0∈Γ

ℜatTpd
Γ

(A′) = Alg(A′)

4.3. ABSTRACT FAMILIES OF ELEMENTS 97

by Corollary 3.4.9 and Theorem 2.3.13. The T rpd
Γ -automata are called ℜat(A′)-

reset pushdown automata with pushdown alphabet Γ. Their computations are
defined like the computations of the ℜat(A′)-pushdown automata (see Sec-
tion 3.4) with the exception that they start with the empty tape and can, in a
computational step, write a pushdown symbol on the empty tape. Observe that
T rpd

Γ is a restart type.

Lemma 4.3.6 For all Γ ⊂ Γ∞, Γ finite and p0 /∈ Γ,

ℜatT rpd
Γ

(A′) ⊆ ℜatTpd
Γ∪{p0}

(A′) .

Proof. Consider the type (Γ ∪ {p0},ΔT , T, p0), where ΔT = {cp,� ∣ p ∈ Γ ∪
{"}, � ∈ Γ∗} ∪ {c} and the non-null entries of T are

Tp�,�� = cp,�, Tp0�,�p0� = c",�, Tp0�,� = c
for all p ∈ Γ, � ∈ Γ∗, � ∈ (Γ ∪ {p0})∗ .

Observe that the following equalities for the Γ∗{p0}×Γ∗{p0}-block and Γ∗{p0}×
((Γ ∪ {p0})∗ − (Γ∗{p0} ∪ {"}))-block of T hold:

T (Γ∗{p0},Γ∗{p0})�1p0,�2p0
= (T rpd

Γ)�1,�2
for all �1, �2 ∈ Γ∗ ,

and
T (Γ∗{p0}, (Γ ∪ {p0})∗ − (Γ∗{p0} ∪ {"})) = 0 .

Hence, by a symmetric version of Corollary 3.2.2 we infer that

(T ∗)p0," = (T (Γ∗{p0} ∪ {"},Γ∗{p0} ∪ {"})∗)p0," =
(T (Γ∗{p0},Γ∗{p0})∗T (Γ∗{p0}, {"}))p0," =
(T (Γ∗{p0},Γ∗{p0})∗)p0,p0

c =
((T rpd)∗)","c .

This implies the equality
∣∣AT ∣∣ = ∣∣AT rpd

Γ
∣∣c .

Hence, we obtain
ℜatT (A′) = ℜatT rpd

Γ
(A′) .

Consider now the type (Γ∪{p0},ΔT ′ , T
′, p0) where ΔT ′ = {dp,� ∣ p ∈ Γ, � ∈

Γ∗} ∪ {dp0,�p0
∣ � ∈ Γ∗} ∪ {dp0,"} and the non-null entries of T ′ are

T ′p�,�� = dp,�, T ′p0�,�p0� = dp0,�p0
, T ′p0�,� = dp0,"

for all p ∈ Γ, � ∈ Γ∗, � ∈ (Γ ∪ {p0})∗ .

Observe that T ′ is obtained from T by relabeling. Hence, we infer

ℜatT ′(A
′) = ℜatT (A′) .

Moreover, for all �1, �2 ∈ (Γ ∪ {p0})∗,

T ′�1,�2
= (T pd

Γ∪{p0})�1,�2
⊙ char(Δ∗T ′) .

98 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

Hence, we infer

(T ′∗)p0," = ((T pd
Γ∪{p0})

∗)p0," ⊙ char(Δ∗T ′)

and
∣∣AT ′ ∣∣ = ∣∣ATpd

Γ∪{p0}
∣∣ ⊙ char(Δ∗T ′) .

The last equality implies

ℜatT ′(A
′) ⊆ ℜatTpd

Γ∪{p0}
(A′) .

Lemma 4.3.7 For all Γ ⊂ Γ∞, Γ finite and p0 ∈ Γ,

ℜatTpd
Γ

(A′) ⊆ ℜatT rpd
Γ

(A′) .

Proof. Consider the type (Γ,ΔT , T, p0), where ΔT = {cp,� ∣ p ∈ Γ, � ∈ Γ∗} and
the non-null entries of T are

Tp�′,��′ = cp,� for all p ∈ Γ, � ∈ Γ∗ .

Observe that T is obtained from T pd
Γ by relabeling. Hence, we obtain

ℜatT (A′) = ℜatTpd
Γ

(A′) .

Moreover, we have

T (Γ+, {"}) = T rpd
Γ (Γ+, {"}) and T (Γ+,Γ+) = T rpd

Γ (Γ+,Γ+) .

By Theorem 3.2.1, we obtain

((T rpd
Γ)∗)"," = (c"," + T rpd

Γ ({"},Γ+)T (Γ+,Γ+)∗T (Γ+, {"}))∗ =

(c"," + T rpd
Γ ({"},Γ+)T ∗(Γ+, {"}))∗ .

Hence, by Theorem 4.2.3, we infer that

ℜatT (A′) ⊆ ℜatT rpd
Γ

(A′) ,

i. e.,
ℜatT (A′) = ℜatTpd

Γ
(A′) ⊆ ℜatT rpd

Γ
(A′) .

We now introduce two more types T pd and T rpd, called pushdown type and
reset pushdown type, respectively. The pushdown type (Γ∞,Δ

pd, T pd, p0) is
specified as follows: Δpd = {dp,� ∣ p ∈ Γ∞, � ∈ Γ∗∞} ⊆ Z, and the non-null
entries of T pd are

(T pd)p�′,��′ = dp,� for all p ∈ Γ∞, �, �
′ ∈ Γ∗∞ .

4.3. ABSTRACT FAMILIES OF ELEMENTS 99

The reset pushdown type (Γ∞,Δ
rpd, T rpd, ") is specified as follows: Δrpd =

{cp,� ∣ p ∈ Γ∞ ∪ {"}, � ∈ Γ∗∞} ⊆ Z, and the non-null entries of T rpd are

(T rpd)",� = c",�, (T rpd)p�′,��′ = cp,� for all p ∈ Γ∞, �, �
′ ∈ Γ∗∞ .

The Lemmas 3.6 and 3.7 imply the following theorem (see also Kuich, Salo-
maa [88], Theorem 13.15).

Theorem 4.3.8

ℜatT rpd(A′) = ℜatTpd(A′) = Alg(A′) .

Corollary 4.3.9 If ℌ is a non-empty family of complete A′-rational semiring
morphisms that is closed under matricial composition then Alg(A′) is a ℌ-A′-
AFE.

Proof. The type T rpd is a restart type. Our corollary follows then by Theo-
rem 3.5.

In order to get a complete characterization of ℌ-A′-AFEs we need a result
“converse” to Theorem 3.5. Let L ⊆ [ℌ] be an ℌ-A′-AFE. Then we construct a
restart type T such that L = ℜatT (A′). The construction will be relative to a
fixed ℜ ⊆ L with F(ℜ) = L. For each b ∈ ℜ there exists an index set Ib such
that b =

∑
i∈Ib ai1 . . . aini

, aij ∈ A′, i. e.,

ℜ = {b ∣ b =
∑
i∈Ib

ai1 . . . aini
}.

Such a representation of L is possible since ℜ ⊆ L = F(L) ⊆ [ℌ]. The restart
type (ΓT ,ΔT , T, ") is defined by

(i) ΓT =
∪
b∈L Δb, where Δb = {ab ∣ a ∈ A′} is a copy of A′ for b ∈ ℜ,

(ii) ΔT = {a ∣ a ∈ A′} ∪ {z0} ∪ {zb ∣ b ∈ ℜ},

(iii) T ∈ (ℕ∞{ΔT })Γ∗T×Γ∗T , where the non-null entries of T are
T"," = z0,
T",ab

= zb for ab ∈ Δb, b ∈ ℜ,
T�ab,�aba′b

= a for � ∈ Δ∗b , ab,a
′
b ∈ Δb, b ∈ ℜ,

T�ab," = (
∑

1)a for � ∈ Δ∗b , ab ∈ Δb, b ∈ ℜ, where the summation ranges
over all i ∈ Ib such that (ai1)b . . . (aini

)b = �ab.

Theorem 4.3.10 Suppose that L is an ℌ-A′-AFE. Then, for the restart type
T constructed above, it holds that

ℜatT (A′) = L .

Proof. We first compute (T ∗)",". This computation is easy if we consider the

blocks of T according to the partition {{"}} ∪ {Δ+
b ∣ b ∈ ℜ} ∪ {Γ}, where

Γ = Γ+
T −

∪
b∈ℜ Δ+

b . The only non-null blocks according to this partition are

100 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

{"}× {"}, {"}×Δ+
b , Δ+

b ×{"}, Δ+
b ×Δ+

b , b ∈ ℜ. Hence, by Theorem 3.2.4, we
obtain

(T ∗)"," =
(
T ({"}, {"}) +

∑
b∈ℜ

T ({"},Δ+
b)T (Δ+

b ,Δ
+
b)∗T (Δ+

b , {"})
)∗

=
(
z0 +

∑
b∈ℜ

∑
i∈Ib

zbai1 . . .aini

)∗
.

We show now L ⊆ ℜatT (A′). Fix a b ∈ ℜ. Since ℜ ⊆ L ⊆ [ℌ] and ℌ is
closed under matricial composition, there is an ℎb ∈ ℌ with ℎb(b) = b. Let now
ℎ : Δ∗ → A2×2 be the monoid morphism defined by

ℎ(a) =

(
ℎb(a) 0

0 ℎb(a)

)
, a ∈ A, ℎ(zb) =

(
0 1
0 0

)
,

ℎ(zb′) = ℎ(z0) = 0 for b′ ∈ ℜ, b′ ∕= b.

Since ℌ is closed under matricial composition, ℎ is compatible with ℌ.
We obtain

ℎ((T ∗)",") =

(∑
i∈Ib

(
0 1
0 0

)(
ℎb(ai1 . . . aini

) 0
0 ℎb(ai1 . . . aini

)

))∗

=

(
0 ℎb(b)
0 0

)∗
=

(
1 b
0 1

)
and infer that b ∈ ℜatT (A′). Hence, ℜ ⊆ ℜatT (A′). Since ℜatT (A′) is an
ℌ-A′-AFE, we obtain L = F(ℜ) ⊆ ℜatT (A′).

Conversely, we show now ℜatT (A′) ⊆ L. Assume a ∈ ℜatT (A′). Then
there exists a monoid morphism ℎ : Δ∗ → AQ×Q compatible with ℌ, and
S ∈ ℜat(A′)

1×Q
, P ∈ ℜat(A′)

Q×1
such that a = Sℎ((T ∗)",")P . Consider

now the entries of this matrix product: The entries of ℎ(b), S, P , ℎ(z0), and
ℎ(zb) are in L. Since only finitely many ℎ(zb) are unequal to zero, the entries
of ℎ(z0) +

∑
b∈L ℎ(zb)ℎ(b) are in L. Since L is a starsemiring, the entries of

ℎ((T ∗)",") are in L. This implies a ∈ L.
We have now achieved our main result of this section, a complete character-

ization of ℌ-A′-closed semirings.

Corollary 4.3.11 A semiring L is an ℌ-A′-AFE iff there exists a restart type
T such that

L = ℜatT (A′).

We choose ℌ to be the family of all rational representations. By Theo-
rem 2.11, the family of all mappings � : A⟨⟨Σ∗∞⟩⟩ → (A{{Σ∗∞}})

Q×Q
, Q ⊂ Q∞,

Q finite, where � is a rational representation, is closed under matricial compo-
sition. Moreover, it is easy to see that [ℌ] = A{{Σ∗∞}}. Then the subsets of
A{{Σ∗∞}} are families of power series. A family of power series L is now called a
full abstract family of power series (abbreviated full AFP) if F(L) ⊆ L. Clearly,

4.3. ABSTRACT FAMILIES OF ELEMENTS 101

L is a full AFP iff F(L) = L. This means that now the ℌ-A′-AFEs are just the
full AFPs.

The next theorem is implied by the equalities ℜat(A{Σ∞∪"}) = Arat{{Σ∗∞}}
and Alg(A{Σ∞ ∪ "}) = Aalg{{Σ∗∞}}, and by Theorem 3.3 and Corollary 3.9.

Theorem 4.3.12 Arat{{Σ∗∞}} and Aalg{{Σ∗∞}} are full AFPs.

Theorem 4.3.13 A family of power series L is a full AFP iff there exists a
restart type T such that L = ℜatT (A{Σ∞ ∪ "}).

Choose ℌ to be the family of regulated rational representations. By The-
orems 6.12, 6.14 and 9.6 of Kuich, Salomaa [88], ℌ is closed under matricial
composition. Again we obtain [ℌ] = A{{Σ∗∞}} and the ℌ-A′-AFEs are just the
AFPs in the sense of Kuich, Salomaa [88].

Theorem 4.3.14 A family of power series L is an AFP iff there exists a restart
type (ΓT ,ΔT , T, "), where ΔT ⊆ {a ∣ a ∈ A{{Σ∗∞}}, (a, ") = 0} such that
L = ℜatT (A{Σ∞ ∪ "}).

Proof. The proofs of Theorem 3.4 and 3.5 do not depend on the form of ΔT .
Moreover, by Theorem 11.31 and Corollary 11.33 of Kuich, Salomaa [88], each
AFP is generated by a family of quasiregular power series. Hence, in the con-
struction of the type T of Theorem 3.10, symbols a, where (a, ") ∕= 0, are not
needed.

Observe that the T -automata of Theorem 3.14 are cycle-free by Theorem 6.10
of Kuich, Salomaa [88].

Example 4.3.1. We consider the AFP Aalg{{Σ∗∞}} (see Section 13 of Kuich,
Salomaa [88]). Let Z2 = {z1, z2}, Z̄2 = {z̄1, z̄2}, z1, z2, z̄1, z̄2 ∈ Σ∞, and consider
the type 2-Dyck defined by (Z2, Z2 ∪ Z̄2, D2, "), where the non-null entries of
D2 are

(D2)v,ziv = zi, (D2)ziv,v = z̄i, i = 1, 2, v ∈ Z∗2 .

By Theorem 13.15 of Kuich, Salomaa [88], (D∗2)"," is a cone generator ofAalg{{Σ∗∞}},
i. e., Aalg{{Σ∗∞}} = ℜatD2

(Z2 ∪ Z̄2). Since Z ∪ Z̄ ⊂ Σ∞, D2 is a restart type of
the form needed in Theorem 3.14.

For the purpose to give an example we now will construct the restart type
(ΓT ,ΔT , T, ") defined before Theorem 3.10 with ℜ = {(D∗2)","} and b = (D∗2)",".

For v ∈ (Z2 ∪ Z̄2)∗, v ∕= ", we define, for 1 ≤ j ≤ ∣v∣, av,j to be the j-th
symbol of v. Then we obtain, for Ib = b,

b =
∑
v∈Ib

av,1av,2 . . . av,∣v∣ .

Moreover, we have ΓT = Δb = {z1, z2, z̄1, z̄2}, ΔT = {z1, z2, z̄1, z̄2, z
0, zb}. We

now define T by those states of AT that are strongly connected with the initial

102 CHAPTER 4. TRANSDUCERS AND ABSTRACT FAMILIES

and final state " in the graph of AT :

T"," = z0 ,
T",z1

= T",z2
= zb ,

Tv,vz = r(v), z ∈ r(v), if v is a proper prefix of a word in supp((D∗2)",") ,
Tv,vz1 = Tv,vz2 = Tv," = r(v) if v is a word in supp((D∗2)","), v ∕= " .

Here, for a prefix of a word v in supp((D∗2)","), v ∕= ", r(v) is the rightmost
symbol of v, f(z1) = f(z̄1) = {z1, z̄1, z2}, f(z2) = f(z̄2) = {z1, z2, z̄2}, and
v = zi1 . . . zik if v = zi1 . . . zik , zij ∈ Z2 ∪ Z̄2. Hence, if v is a proper prefix of a
word in supp((D∗2)",") then vz, z ∈ r(v), is a prefix of a word in supp((D∗2)",").

Clearly, T is a restart type and by Theorem 3.10, we obtain

ℜatT (Z2 ∪ Z̄2) = ℜatD2(Z2 ∪ Z̄2) = Aalg{{Σ∗∞}} .

We now consider formal languages, i. e., our basic semiring is 2Σ∗∞ . Each
subset of L(Σ∞) is called family of languages. A family of languages L is called
a full abstract family of languages (abbreviated full AFL) if F(L) ⊆ L. Clearly,
L is a full AFL iff F(L) = L. Theorems 3.12, 3.13 and 3.14 admit at once three
corollaries.

Corollary 4.3.15 The family of regular languages and the family of context-
free languages are full AFLs.

Corollary 4.3.16 A family of languages L is a full AFL iff there exists a restart
type T such that L = ℜatT ({{x} ∣ x ∈ Σ∞ ∪ {"}}).

Corollary 4.3.17 A family of languages L is an AFL iff there exists a restart
type (ΓT ,ΔT , T, "), where ΔT ⊆ {a ∣ a ∈ L(Σ∗∞), a ∩ {"} = ∅} such that
L = ℜatT ({{x} ∣ x ∈ Σ∞ ∪ {"}}).

Readers interested in AFL-theory should consult Ginsburg [53]. An excellent
treatment of full AFLs is given in Berstel [4]. Advanced results can be found in
Berstel, Boasson [5].

Chapter 5

Semiring-Semimodule pairs,
and finite and infinite words

5.1 Introduction

In this chapter, we deal with semiring-semimodule pairs and finite automata
over quemirings. Here semiring-semimodule pairs constitute a generalization of
formal languages with finite and infinite words. The semiring models a formal
language with finite words while the semimodule models a formal language with
infinite words. The main result of this chapter is a generalization of the Kleene
Theorem of Büchi [18] in the setting of semiring-semimodule pairs.

This chapter consists of this and seven more sections. In Section 2 we intro-
duce the algebraic structures used in this chapter: semiring-semimodule pairs
and quemirings.

In Section 3 we consider Conway semiring-semimodule pairs and prove that
the matrix-omega equation is satisfied. Furthermore, given a Conway semiring-
semimodule pair, we consider n×n-matrices over the semiring and n×1-column
vectors over the semimodule. Then we prove that the pairs consisting of the
matrices and column vectors form again a Conway semiring-semimodule pair.

In Section 4 we define finite automata over quemirings. Given a starsemiring-
omegasemimodule pair (A, V), where A is a Conway semiring and 0! = 0, we
prove a Kleene Theorem for A′-finite automata, where A′ is a subset of A: the
collection of all behaviors of A′-finite automata coincides with the generalized
starquemiring generated by A′. A special case of this Kleene Theorem is the
result of Büchi [18].

In Secion 5 we consider linear systems over quemirings as a generalization of
regular grammars with finite and infinite derivations. We show a connection be-
tween certain solutions of these linear systems, the weights of finite and infinite
derivations with respect to this grammar and the behavior of finite automata
over quemirings.

In Section 6, !-algebraic systems and !-algebraic power series are consid-

103

104 CHAPTER 5. FINITE AND INFINITE WORDS

ered. The solutions of order k of these !-algebraic systems are characterized by
behaviors of algebraic finite automata. The !-algebraic systems and !-algebraic
power series are then connected in Section 7 to !-context-free grammars and
!-context-free languages, respectively.

In Section 8 we consider morphisms of starsemiring-omegasemimodule pairs
and their extension to matrices. We introduce rational and algebraic transducers
and transductions over starsemiring-omegasemimodule pairs. We prove that the
rational (resp. algebraic) transduction of a rational (resp. an algebraic) closure
is again a rational (resp. an algebraic) closure. Then we specialize our results
to rational and algebraic transducers in the classical sense and define abstract
!-families of languages.

The presentation of this chapter follows the lines of Ésik, Kuich [43, 42, 45].
We now give a typical example which will be helpful for readers with some

background on Büchi automata over infinite words. Readers without this back-
ground should consult it when these automata are defined in the following sec-
tions.
Example 5.1.1. A (finite) Büchi automaton

A = (Q,Σ, �, q, F)

is given by

(i) a finite set of states Q = {q1, . . . , qn}, n ≥ 1,

(ii) an input alphabet Σ,

(iii) a transition function � : Q× Σ→ 2Q,

(iv) an initial state q ∈ Q,

(v) a set of repeated states F = {q1, . . . , qk}, k ≥ 0.

A run of A on an infinite word w ∈ Σ!, w = a1a2a3 . . ., is an infinite sequence
of states q(0), q(1), q(2), q(3), . . . such that the following conditions are satisfied:

(i) q(0) = q,

(ii) q(i) ∈ �(q(i− 1), ai) for i ≥ 1.

A word w ∈ Σ! is Büchi accepted by A if there exists a run � of A on w and a
repeated state in F occuring infinitely often in �.

The behavior ∣∣A∣∣ ⊆ Σ! of A is defined to be the set of infinite words that
are Büchi accepted by A (see Büchi [18]).

Let now A = (Q,Σ, �, 2, {1}) be a Büchi automaton, where Q = {1, 2},
Σ = {a, b, c, d}, and �(1, a) = {1}, �(1, b) = {2}, �(2, c) = {1}, �(2, d) = {2} are
the only non-empty images of �. The graph of A is

5.2. PRELIMINARIES 105

and the adjacency matrix of this graph is

M =

(
{a} {b}
{c} {d}

)
.

(See Example 1.1.1.)
The language of inscriptions of paths from 1 to 1 not passing 1 is given

by {a} ∪ {b}{d}∗{c}. Hence, the !-language of inscriptions of infinite paths
starting in 1 and passing infinitely often through 1 is ({a} ∪ {b}{d}∗{c})! and
the !-language of inscriptions of infinite paths starting in 1, passing finitely
often through 1 and infinitely often through 2 is ({a} ∪ {b}{d}∗{c})∗{b}{d}!.
By symmetry, the !-language of inscriptions of infinite paths starting in 2 and
passing infinitely often through 2 (resp. finitely often through 2 and infinitely
often through 1) is ({d} ∪ {c}{a}∗{b})! (resp. ({d} ∪ {c}{a}∗{b})∗{c}{a}!).

We now define a column vector M! by

M! =

(
({a} ∪ {b}{d}∗{c})! ∪ ({a} ∪ {b}{d}∗{c})∗{b}{d}!
({d} ∪ {c}{a}∗{b})! ∪ ({d} ∪ {c}{a}∗{b})∗{c}{a}!

)
,

where (M!)1 (resp. (M!)2) is the !-language of inscriptions of all infinite paths
starting in 1 (resp. 2). Observe that ({a}∪{b}{d}∗{c})!∩({a}∪{b}{d}∗{c})∗{b}{d}! =
∅ and ({d} ∪ {c}{a}∗{b})! ∩ ({d} ∪ {c}{a}∗{b})∗{c}{a}! = ∅.

The !-language of inscriptions of infinite paths starting in 2 and passing
infinitely often through 1 is {d}∗{c}({a} ∪ {b}{d}∗{c})!. We define a column
vector M!1 by

M!1 =

(
({a} ∪ {b}{d}∗{c})!

{d}∗{c}({a} ∪ {b}{d}∗{c})!
)
,

where (M!1)1 (resp. (M!1)2) is the !-language of inscriptions of all infinite
paths starting in 1 (resp. 2) and passing infinitely often through 1.

The !-language ∣∣A∣∣ is the !-language of all inscriptions of infinite paths
starting in 2 and passing infinitely often through 1, i. e., ∣∣A∣∣ = (M!1)2.

5.2 Preliminaries

Suppose that A is a semiring and V is a commutative monoid written additively.
We call V a (left) A-semimodule if V is equipped with a (left) action

A× V → V

(s, v) 7→ sv

subject to the following rules:

s(s′v) = (ss′)v

(s+ s′)v = sv + s′v

s(v + v′) = sv + sv′

106 CHAPTER 5. FINITE AND INFINITE WORDS

1v = v

0v = 0

s0 = 0,

for all s, s′ ∈ A and v, v′ ∈ V . When V is an A-semimodule, we call (A, V) a
semiring-semimodule pair.

Suppose that (A, V) is a semiring-semimodule pair such that A is a starsemi-
ring and A and V are equipped with an omega operation ! : A→ V . Then we
call (A, V) a starsemiring-omegasemimodule pair. Following Bloom, Ésik [10],
we call a starsemiring-omegasemimodule pair (A, V) a Conway semiring-semi-
module pair if A is a Conway semiring and if the omega operation satisfies the
sum-omega equation and the product-omega equation:

(a+ b)! = (a∗b)! + (a∗b)∗a!

(ab)! = a(ba)!,

for all a, b ∈ A. It then follows that the omega fixed-point equation holds, i.e.,

aa! = a!,

for all a ∈ A.

Ésik, Kuich [44] define a complete semiring-semimodule pair to be a semiring-
semimodule pair (A, V) such that A is a complete semiring, V is a complete
monoid with

s(
∑
i∈I

vi) =
∑
i∈I

svi

(
∑
i∈I

si)v =
∑
i∈I

siv,

for all s ∈ A, v ∈ V , and for all families si, i ∈ I over A and vi, i ∈ I over V .
Moreover, it is required that an infinite product operation

(s1, s2, . . .) 7→
∏
j≥1

sj

is given mapping infinite sequences over A to V subject to the following three
conditions: ∏

i≥1

si =
∏
i≥1

(sni−1+1 ⋅ . . . ⋅ sni)

s1 ⋅
∏
i≥1

si+1 =
∏
i≥1

si∏
j≥1

∑
ij∈Ij

sij =
∑

(i1,i2,...)∈I1×I2×...

∏
j≥1

sij ,

5.2. PRELIMINARIES 107

where in the first equation 0 = n0 ≤ n1 ≤ n2 ≤ . . . and I1, I2, . . . are arbitrary
index sets. Suppose that (A, V) is complete. Then we define

s∗ =
∑
i≥0

si

s! =
∏
i≥1

s,

for all s ∈ A. This turns (A, V) into a starsemiring-omegasemimodule pair. By
Ésik, Kuich [44], each complete semiring-semimodule pair is a Conway semiring-
semimodule pair. Observe that, if (A, V) is a complete semiring-semimodule
pair, then 0! = 0.

A semiring-semimodule pair (A, V) is called continuous if (A, V) is a com-
plete semiring-semimodule pair and A is a continuous semiring. A quemiring is
called continuous if it is determined by a continuous semiring-semimodule pair.

A star-omega semiring is a semiring A equipped with unary operations ∗

and ! : A → A. A star-omega semiring A is called complete if (A,A) is a
complete semiring-semimodule pair, i. e., if A is complete and is equipped with
an infinite product operation that satisfies the three conditions stated above.
A complete star-omega semiring A is called commutative if the semiring A is
commutative and, for all bijections � : ℕ→ ℕ, and sj ∈ A, j ≥ 0,

∏
j≥0 s�(j) =∏

j≥0 sj . Eventually, a complete star-omega semiring A is called continuous if
the semiring A is continuous.

Example 5.2.1. Suppose that Σ is an alphabet. Let Σ∗ denote the set of all
finite words over Σ including the empty word ", and let Σ! denote the set
of all !-words over Σ. The set 2Σ∗ of all subsets of Σ∗, equipped with the
operations of set union as sum and concatenation as product is a semiring,
where 0 is the empty set ∅ and 1 is the set {"}. Moreover, equipped with the
usual star operation, 2Σ∗ is a Conway semiring. Also, 2Σ!

, equipped with union
as the sum operation and the empty set as 0 is a commutative idempotent
monoid. Define an action of 2Σ∗ on 2Σ!

by KL = {uv ∣ u ∈ K, v ∈ L}, for all
K ⊆ Σ∗ and L ⊆ Σ!. Moreover, for each sequence (K0,K1, . . .) over 2Σ∗ , let∏
j≥0Kj = {u0u1 . . . ∈ Σ! ∣ ui ∈ Ki, i ≥ 0}. Then (2Σ∗ , 2Σ!

) is a complete

and continuous semiring-semimodule pair with idempotent module 2Σ!

. Note
that in this example, 1! = 0, where 1 = {"} and 0 = ∅.
Example 5.2.2. Consider the semiring ℕ∞ = N ∪ {∞}, obtained by adjoining
a top element ∞ to the semiring of the natural numbers. Note that ℕ∞ is a
complete semiring where an infinite sum is ∞ iff either a summand is ∞ or the
number of nonzero summands is infinite, moreover,∞ multiplied with a nonzero
element on either side gives ∞. Define an infinite product

(n1, n2, . . .) 7→
∏
j≥1

nj

on ℕ∞ as follows. If some nj is 0, then so is the product. Otherwise, if all but a
finite number of the nj are 1s, then the infinite product is the product of those

108 CHAPTER 5. FINITE AND INFINITE WORDS

nj with nj > 1. In all remaining cases, the infinite product is ∞. Then ℕ∞ is
a complete star-omega semiring, where ∗ and ! are defined as above.

Let Σ denote an alphabet. The semiring A = ℕ∞⟨⟨Σ∗⟩⟩ of all power series
over Σ∗ with coefficients in ℕ∞ is a complete and continuous semiring. Now
let V = ℕ∞⟨⟨Σ!⟩⟩ be the collection of all formal power series over Σ! with
coefficients in ℕ∞. Thus, the elements of V are formal sums of the sort

s =
∑
w∈Σ!

(s, w)w,

where each coefficient (s, w) belongs to ℕ∞. Now V can be turned into an A-
semimodule by the pointwise sum operation and the action (r, s) 7→ rs defined
by

(rs, w) =
∑

u∈Σ∗,v∈Σ!, uv=w

(r, u)(s, v),

where the infinite sum on the right-hand side exists since ℕ∞ is complete. We
may also define an infinite product taking sequences over A to series in V . Given
s1, s2, . . . in A, we define

∏
j≥1 sj to be the series r in V with

(r, w) =
∑

w=w1w2...∈Σ!

∏
j≥1

(sj , wj).

Then (A, V) is a complete and continuous semiring-semimodule pair and thus
a Conway semiring-semimodule pair.

This can be generalized to a large extent. Suppose that A is a complete star-
omega semiring. If Σ is a set, consider the complete semiring A⟨⟨Σ∗⟩⟩ and the
complete monoid A⟨⟨Σ!⟩⟩ of all series over Σ! with coefficients in A equipped
with the pointwise sum operation. If we define the action sr of s ∈ A⟨⟨Σ∗⟩⟩ on
r ∈ A⟨⟨Σ!⟩⟩ by

(sr, w) =
∑
w=uv

(s, u)(r, v),

then (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) becomes a semiring-semimodule pair. Now A⟨⟨Σ∗⟩⟩ is a
starsemiring, and if we define the infinite product operation

(s1, s2, . . .) 7→
∏
j≥1

sj ∈ A⟨⟨Σ!⟩⟩

by

(
∏
j≥1

sj , w) =
∑

w=w1w2...∈Σ!

∏
j≥1

(sj , wj),

then (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) becomes a complete semiring-semimodule pair, hence
a Conway semiring-semimodule pair, satisfying (a")! = 0 for all a ∈ A. If

5.2. PRELIMINARIES 109

A is a continuous semiring then (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) is a continuous semiring-
semimodule pair. (See Theorem 5.5.)

Consider a starsemiring-omegasemimodule pair (A, V). Following Bloom,
Ésik [10], we define a matrix operation ! : An×n → V n×1 on a starsemiring-
omegasemimodule pair (A, V) as follows. When n = 0, M! is the unique element
of V 0, and when n = 1, so that M = (a), for some a ∈ A, M! = (a!). Assume
now that n > 1 and write M as in (1). Then

M =

(
a b
c d

)
(5.1)

M! =

(
(a+ bd∗c)! + (a+ bd∗c)∗bd!

(d+ ca∗b)! + (d+ ca∗b)∗ca!

)
. (5.2)

Following Ésik, Kuich [43], we define matrix operations !k : An×n → V n×1,
0 ≤ k ≤ n, as follows. Assume that M ∈ An×n is decomposed into blocks
a, b, c, d as in (1), but with a of dimension k × k and d of dimension (n − k) ×
(n− k). Then

M!k =

(
(a+ bd∗c)!

d∗c(a+ bd∗c)!

)
(5.3)

Observe that M!0 = 0 and M!n = M!.

Suppose that (A, V) is a semiring-semimodule pair and consider T = A×V .
Define on T the operations

(s, u) ⋅ (s′, v) = (ss′, u+ sv)

(s, u) + (s′, v) = (s+ s′, u+ v)

and constants 0 = (0, 0) and 1 = (1, 0). Equipped with these operations and
constants, T satisfies the equations

(x+ y) + z = x+ (y + z) (5.4)

x+ y = y + x (5.5)

x+ 0 = x (5.6)

(x ⋅ y) ⋅ z = x ⋅ (y ⋅ z) (5.7)

x ⋅ 1 = x (5.8)

1 ⋅ x = x (5.9)

(x+ y) ⋅ z = (x ⋅ z) + (y ⋅ z) (5.10)

0 ⋅ x = 0. (5.11)

Elgot[31] also defined the unary operation ¶ on T : (s, u)¶ = (s, 0). Thus, ¶
selects the “first component” of the pair (s, u), while multiplication with 0 on

110 CHAPTER 5. FINITE AND INFINITE WORDS

the right selects the “second component”, for (s, u) ⋅ 0 = (0, u), for all u ∈ V .
The new operation satisfies:

x¶ ⋅ (y + z) = (x¶ ⋅ y) + (x¶ ⋅ z) (5.12)

x = x¶+ (x ⋅ 0) (5.13)

x¶ ⋅ 0 = 0 (5.14)

(x+ y)¶ = x¶+ y¶ (5.15)

(x ⋅ y)¶ = x¶ ⋅ y¶. (5.16)

Note that when V is idempotent, also

x ⋅ (y + z) = x ⋅ y + x ⋅ z

holds.
Elgot[31] defined a quemiring to be an algebraic structure T equipped with

the above operations ⋅,+,¶ and constants 0, 1 satisfying the equations (5.4)–
(5.11) and (5.12)–(5.16). A morphism of quemirings is a function preserving the
operations and constants. It follows from the axioms that x¶¶ = x¶, for all x
in a quemiring T . Moreover, x¶ = x iff x ⋅ 0 = 0.

When T is a quemiring, A = T¶ = {x¶ ∣ x ∈ T} is easily seen to be a
semiring. Moreover, V = T0 = {x ⋅ 0 ∣ x ∈ T} contains 0 and is closed under
+, and, furthermore, sx ∈ V for all s ∈ A and x ∈ V . Each x ∈ T may be
written in a unique way as the sum of an element of T¶ and of an element of
T0 as x = x¶+ x ⋅ 0. Sometimes, we will identify A× {0} with A and {0} × V
with V . It is shown in Elgot [31] that T is isomorphic to the quemiring A× V
determined by the semiring-semimodule pair (A, V).

Suppose now that (A, V) is a starsemiring-omegasemimodule pair. Then we
define on T = A× V a generalized star operation:

(s, v)⊗ = (s∗, s! + s∗v) (5.17)

for all (s, v) ∈ T . Note that the star and omega operations can be recovered
from the generalized star operation, since s∗ is the first component of (s, 0)⊗

and s! is the second component. Thus:

(s∗, 0) = (s, 0)⊗¶
(0, s!) = (s, 0)⊗ ⋅ 0.

Observe that, for (s, 0) ∈ A× {0}, (s, 0)⊗ = (s∗, 0) + (0, s!).
Suppose now that T is an (abstract) quemiring equipped with a generalized

star operation ⊗. As explained above, T as a quemiring is isomorphic to the
quemiring A × V associated with the semiring-semimodule pair (A, V), where
A = T¶ and V = T0, an isomorphism being the map x 7→ (x¶, x ⋅ 0). It is clear
that a generalized star operation ⊗ : T → T is determined by a star operation
∗ : A→ A and an omega operation ! : A→ V by (5.17) iff

x⊗¶ = (x¶)⊗¶ (5.18)

x⊗ ⋅ 0 = (x¶)⊗ ⋅ 0 + x⊗¶ ⋅ x ⋅ 0 (5.19)

5.3. CONWAY SEMIRING-SEMIMODULE PAIRS 111

hold. Indeed, these conditions are clearly necessary. Conversely, if (5.18) and
(5.19) hold, then for any x¶ ∈ T¶ we may define

(x¶)∗ = (x¶)⊗¶ (5.20)

(x¶)! = (x¶)⊗ ⋅ 0 . (5.21)

It follows that (5.17) holds. The definition of star and omega was forced.
Let us call a quemiring equipped with a generalized star operation ⊗ a gen-

eralized starquemiring.

5.3 Conway semiring-semimodule pairs

Throughout this section we assume that (A, V) is a Conway semiring-semimodule
pair and that n ≥ 1. By induction on n, we will prove then that (An×n, V n) is
again a Conway semiring-semimodule pair. Furthermore, we will prove that the
matrix-omega-equation is valid for Conway semiring-semimodule pairs. These
results are due to Bloom, Ésik [10]. We will show the results directly by proofs
that are similar to those of Chapter 1.

Firstly, we prove that some particular cases of the sum-omega-equation are
satisfied.

Lemma 5.3.1 Let (A, V) be a Conway semiring-semimodule pair. Then, for
a, f ∈ A1×1, g ∈ A1×n, ℎ ∈ An×1, d, i ∈ An×n, the following equality is satisfied:((

a 0
0 d

)
+

(
f g
ℎ i

))!
=

((
a 0
0 d

)∗(
f g
ℎ i

))!
+((

a 0
0 d

)∗(
f g
ℎ i

))∗(
a 0
0 d

)!
Proof. The left side and the right side of the equality are equal to(

�! + �∗g(d+ i)!

�! + �∗ℎ(a+ f)!

)
and (

�′! + �′∗a∗g(d∗i)! + �′∗a! + �′∗a∗g(d∗i)∗d!

�′! + �′∗d∗ℎ(a∗f)! + �′∗d∗ℎ(a∗f)∗a! + �′∗d!

)
,

respectively, where � = a + f + g(d + i)∗ℎ, � = d + i + ℎ(a + f)∗g, �′ =
a∗f + a∗g(d∗i)∗d∗ℎ, �′ = d∗i + d∗ℎ(a∗f)∗a∗g. We now obtain �! = (a∗f +
a∗g(d∗i)∗d∗ℎ)! + (a∗f + a∗g(d∗i)∗d∗ℎ)∗a! = �′! + �′∗a! and �∗g(d + i)! =
(a∗f + a∗g(d∗i)∗d∗ℎ)∗a∗g((d∗i)! + (d∗i)∗d!) = �′∗a∗g(d∗i)! + �′∗a∗g(d∗i)∗d!.
The substitution d↔ a, i↔ f , ℎ↔ g shows the symmetry of the proof for the
second entries of the vectors.

Observe that the equalities in Lemma 3.2 are particular cases of the sum-

omega-equation since

(
0 b
0 0

)!
=

(
0 0
c 0

)!
=

(
0
0

)
. (In Conway semiring-

semimodule pairs, 0! = 0.)

112 CHAPTER 5. FINITE AND INFINITE WORDS

Lemma 5.3.2 Let (A, V) be a Conway semiring-semimodule pair. Then, for
f ∈ A1×1, b, g ∈ A1×n, c, ℎ ∈ An×1, i ∈ An×n, the following equalities are
satisfied:

((
0 b
0 0

)
+

(
f g
ℎ i

))!
=

((
0 b
0 0

)∗(
f g
ℎ i

))!
,((

0 0
c 0

)
+

(
f g
ℎ i

))!
=

((
0 0
c 0

)∗(
f g
ℎ i

))!

Proof. The left side and the right side of the first equality are equal to

(
�! + �∗(g + b)i!

�! + �∗ℎf!

)
and

(
�′! + �′∗(g + bi)i!

�′! + �′∗ℎ(f + bℎ)!

)
,

respectively, where � = f + (g + b)i∗ℎ, � = i + ℎf∗(g + b), �′ = f + bℎ +
(g + bi)i∗ℎ, �′ = i + ℎ(f + bℎ)∗(g + bi). We now obtain �′ = f + bℎ + gi∗ℎ +
bii∗ℎ = f + gi∗ℎ + bi∗ℎ = �, �′∗(g + bi)i! = �∗(gi! + bii!) = �∗(gi! +
bi!) = �∗(g + b)i!, �′! + �′∗ℎ(f + bℎ)! = (i+ ℎ(f∗bℎ)∗f∗g + ℎ(f∗bℎ)∗f∗bi)! +
(i + ℎ(f∗bℎ)∗f∗g + ℎ(f∗bℎ)∗f∗bi)∗ℎ((f∗bℎ)! + (f∗bℎ)∗f!) = ((ℎf∗b)∗ℎf∗g +
(ℎf∗b)∗i)!+((ℎf∗b)∗ℎf∗g+(ℎf∗b)∗i)∗(ℎf∗b)!+((ℎf∗b)∗ℎf∗g+(ℎf∗b)∗i)∗(ℎf∗b)∗ℎf! =
(ℎf∗b+ ℎf∗g + i)! + (ℎf∗b+ ℎf∗g + i)∗ℎf! = �! + �∗ℎf!.

The left side and the right side of the second equality are equal to

(
�! + �∗gi!

�! + �∗(c+ ℎ)f!

)
and

(
�′! + �′∗g(cg + i)!

�′! + �′∗(cf + ℎ)f!

)
,

respectively, where � = f + gi∗(c + ℎ), � = i + (c + ℎ)f∗g, �′ = f + g(cg +
i)∗(cf + ℎ), �′ = cg + i + (cf + ℎ)f∗g. The substitution f ↔ i, ℎ ↔ g, b ↔ c,
yielding �↔ �, �′ ↔ �′, shows the symmetry to the first equality of the lemma.

Lemma 5.3.3 Let (A, V) be a Conway semiring-semimodule pair. Then, for
b ∈ A1×n, c ∈ An×1 and M ∈ A(n+1)×(n+1), the following equality is satisfied:

((
0 b
c 0

)
+M

)!
=((

0 b
c 0

)∗
M

)!
+

((
0 b
c 0

)∗
M

)∗(
0 b
c 0

)!
.

5.3. CONWAY SEMIRING-SEMIMODULE PAIRS 113

Proof.

((
0 b
c 0

)
+M

)!
=

((
0 b
0 0

)
+

(
0 0
c 0

)
+M

)!
=((

0 b
0 0

)∗(
0 0
c 0

)
+

(
0 b
0 0

)∗
M

)!
=((

bc 0
c 0

)
+

(
1 b
0 E

)
M

)!
=((

bc 0
0 0

)
+

(
0 0
c 0

)
+

(
1 b
0 E

)
M

)!
=((

(bc)∗ 0
0 E

)(
0 0
c 0

)
+

(
(bc)∗ 0

0 E

)(
1 b
0 E

)
M

)!
+((

(bc)∗ 0
0 E

)(
0 0
c 0

)
+

(
(bc)∗ 0

0 E

)(
1 b
0 E

)
M

)∗
⋅(

bc 0
0 0

)!
=((

0 0
c 0

)
+

(
(bc)∗ (bc)∗b

0 E

)
M

)!
+((

0 0
c 0

)
+

(
(bc)∗ (bc)∗b

0 E

)
M

)∗(
(bc)!

0

)
=((

1 0
c E

)(
(bc)∗ (bc)∗b

0 E

)
M

)!
+((

1 0
c E

)(
(bc)∗ (bc)∗b

0 E

)
M

)∗(
1 0
c E

)(
(bc)!

0

)
=((

(bc)∗ (bc)∗b
c(bc)∗ (cb)∗

)
M

)!
+

((
(bc)∗ (bc)∗b
c(bc)∗ (cb)∗

)
M

)∗(
(bc)!

(cb)!

)
=((

0 b
c 0

)∗
M

)!
+

((
0 b
c 0

)∗
M

)∗(
0 b
c 0

)!
.

Theorem 5.3.4 Let (A, V) be a Conway semiring-semimodule pair. Then the
sum-omega-equation holds in the starsemiring-omegasemimodule pair (A(n+1)×(n+1), V n+1).

Proof. Let a ∈ A1×1, b ∈ A1×n, c ∈ An×1, d ∈ An×n, M ∈ A(n+1)×(n+1). Then

114 CHAPTER 5. FINITE AND INFINITE WORDS

we obtain((
a b
c d

)
+M

)!
=((

a 0
0 d

)∗(
0 b
c 0

)
+

(
a 0
0 d

)∗
M

)!
+((

a 0
0 d

)∗(
0 b
c 0

)
+

(
a 0
0 d

)∗
M

)∗(
a 0
0 d

)!
=((

0 a∗b
d∗c 0

)
+

(
a∗ 0
0 d∗

)
M

)!
+((

0 a∗b
d∗c 0

)
+

(
a∗ 0
0 d∗

)
M

)∗(
a!

d!

)
=((

0 a∗b
d∗c 0

)∗(
a∗ 0
0 d∗

)
M

)!
+((

0 a∗b
d∗c 0

)∗(
a∗ 0
0 d∗

)
M

)∗(
0 a∗b
d∗c 0

)!
+((

0 a∗b
d∗c 0

)∗(
a∗ 0
0 d∗

)
M

)∗(
0 a∗b
d∗c 0

)∗(
a!

d!

)
=((

(a∗bd∗c)∗a∗ a∗b(d∗ca∗b)∗d∗

d∗c(a∗bd∗c)∗a∗ (d∗ca∗b)∗d∗

)
M

)!
+((

(a∗bd∗c)∗a∗ a∗b(d∗ca∗b)∗d∗

d∗c(a∗bd∗c)∗a∗ (d∗ca∗b)∗d∗

)
M

)∗(
(a∗bd∗c)!

(d∗ca∗b)!

)
+((

(a∗bd∗c)∗a∗ a∗b(d∗ca∗b)∗d∗

d∗c(a∗bd∗c)∗a∗ (d∗ca∗b)∗d∗

)
M

)∗
⋅(

(a∗bd∗c)∗ a∗b(d∗ca∗b)∗

d∗c(a∗bd∗c)∗ (d∗ca∗b)∗

)(
a!

d!

)
=((

(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)
M

)!
+((

(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)
M

)∗
⋅(

(a∗bd∗c)! + (a∗bd∗c)∗a! + a∗b(d∗ca∗b)∗d!

(d∗ca∗b)! + d∗c(a∗bd∗c)∗a! + (d∗ca∗b)∗d!

)
=((

a b
c d

)∗
M

)!
+

((
a b
c d

)∗
M

)∗(
a b
c d

)!
.

Secondly, we prove that some particular cases of the product-omega-equation
are satisfied.

Lemma 5.3.5 Let (A, V) be a Conway semiring-semimodule pair. Then, for
a, f ∈ A1×1, b ∈ A1×n, c ∈ An×1, d ∈ An×n, the following equality is satisfied:((

a b
c d

)(
f 0
0 0

))!
=

(
a b
c d

)((
f 0
0 0

)(
a b
c d

))!
.

5.3. CONWAY SEMIRING-SEMIMODULE PAIRS 115

Proof. The left side and the right side of the equality are equal to(
af 0
cf 0

)!
=

(
(af)!

cf(af)!

)
=

(
(af)!

c(fa)!

)
and (

a b
c d

)(
fa fb
0 0

)!
=

(
a b
c d

)(
(fa)!

0

)
=(

a(fa)!

c(fa)!

)
=

(
(af)!

c(fa)!

)
,

respectively.

Lemma 5.3.6 Let (A, V) be a Conway semiring-semimodule pair. Then, for
a, s ∈ A1×1, b, t ∈ A1×n, c, u, ℎ ∈ An×1, d, v ∈ An×n, the following equality is
satisfied: ((

a b
c d

)(
s t
u v

)(
0 0
ℎ 0

))!
=(

a b
c d

)((
s t
u v

)(
0 0
ℎ 0

)(
a b
c d

))!
.

Proof. The left side of the equality equals((
a b
c d

)(
tℎ 0
vℎ 0

))!
=

(
atℎ+ bvℎ 0
ctℎ+ dvℎ 0

)!
=(

(atℎ+ bvℎ)!

(ctℎ+ dvℎ)(atℎ+ bvℎ)!

)
=

(
a b
c d

)(
t(ℎat+ ℎbv)!

v(ℎat+ ℎbv)!

)
.

The right side of the equality without the first factor matrix equals(
tℎa tℎb
vℎa vℎb

)!
=(

(tℎa+ tℎb(vℎb)∗vℎa)! + (tℎa+ tℎb(vℎb)∗vℎa)∗tℎb(vℎb)!

(vℎb+ vℎa(tℎa)∗tℎb)! + (vℎb+ vℎa(tℎa)∗tℎb)∗vℎa(tℎa)!

)
=(

(t(ℎbv)∗ℎa)! + (t(ℎbv)∗ℎa)∗tℎb(vℎb)!

(v(ℎat)∗ℎb)! + (v(ℎat)∗ℎb)∗vℎa(tℎa)!

)
=(

t(ℎbv + ℎat)!

v(ℎat+ ℎbv)!

)
.

Lemma 5.3.7 Let (A, V) be a Conway semiring-semimodule pair. Let (A, V)
be a Conway semiring-semimodule pair. Then, for a, s ∈ A1×1, b, t ∈ A1×n,
c, u ∈ An×1, d, v, i ∈ An×n, the following equality is satisfied:((

a b
c d

)(
s t
u v

)(
0 0
0 i

))!
=(

a b
c d

)((
s t
u v

)(
0 0
0 i

)(
a b
c d

))!
.

116 CHAPTER 5. FINITE AND INFINITE WORDS

Proof. The left side of the equality equals

((
a b
c d

)(
0 ti
0 vi

))!
=

(
0 ati+ bvi
0 cti+ dvi

)!
=(

(ati+ bvi)(cti+ dvi)!

(cti+ dvi)!

)
=

(
a b
c d

)(
t(ict+ idv)!

v(ict+ idv)!

)
.

The right side of the equality equals

(
a b
c d

)((
0 ti
0 vi

)(
a b
c d

))!
=

(
a b
c d

)(
tic tid
vic vid

)!
.

The substitution i ↔ ℎ, a ↔ c, b ↔ d shows for the second factor matrix the
symmetry to the equality of Lemma 3.6.

Lemma 5.3.8 Let (A, V) be a Conway semiring-semimodule pair. Then, for
a, s ∈ A1×1, b, g, t ∈ A1×n, c, u ∈ An×1, d, v ∈ An×n, the following equality is
satisfied:

((
a b
c d

)(
s t
u v

)(
0 g
0 0

))!
=(

a b
c d

)((
s t
u v

)(
0 g
0 0

)(
a b
c d

))!
.

Proof. The left and the right side of the equality are equal to

((
a b
c d

)(
0 sg
0 ug

))!
and (

a b
c d

)((
0 sg
0 ug

)(
a b
c d

))!
,

respectively. The substitution s↔ t, g ↔ i, u↔ v shows the symmetry to the
equality of Lemma 3.7.

Lemma 5.3.9 Let (A, V) be a Conway semiring-semimodule pair. Then, for
M,M ′ ∈ A(n+1)×(n+1), and g ∈ A1×n, ℎ ∈ An×1, the following equality is
satisfied: (

MM ′
(

0 g
ℎ 0

))!
= M

(
M ′
(

0 g
ℎ 0

)
M

)!
.

5.3. CONWAY SEMIRING-SEMIMODULE PAIRS 117

Proof.

(
MM ′

(
0 g
ℎ 0

))!
=

(
MM ′

(
0 g
0 0

)
+MM ′

(
0 0
ℎ 0

))!
=((

MM ′
(

0 g
0 0

))∗
MM ′

(
0 0
ℎ 0

))!
+((

MM ′
(

0 g
0 0

))∗
MM ′

(
0 0
ℎ 0

))∗(
MM ′

(
0 g
0 0

))!
=(

M

(
M ′
(

0 g
0 0

)
M

)∗
M ′
(

0 0
ℎ 0

))!
+(

M

(
M ′
(

0 g
0 0

)
M

)∗
M ′
(

0 0
ℎ 0

))∗
⋅

M

(
M ′
(

0 g
0 0

)
M

)!
=

M

((
M ′
(

0 g
0 0

)
M

)∗
M ′
(

0 0
ℎ 0

)
M

)!
+

M

((
M ′
(

0 g
0 0

)
M

)∗
M ′
(

0 0
ℎ 0

)
M

)∗
⋅(

M ′
(

0 g
0 0

)
M

)!
=

M

(
M ′
(

0 g
0 0

)
M +M ′

(
0 0
ℎ 0

)
M

)!
=

M

(
M ′
(

0 g
ℎ 0

)
M

)!
.

Lemma 5.3.10 Let (A, V) be a Conway semiring-semimodule pair. Then, for
M ∈ A(n+1)×(n+1), and f ∈ A1×1, i ∈ An×n, the following equality is satisfied:

(
M

(
f 0
0 i

))!
= M

((
f 0
0 i

)
M

)!
.

118 CHAPTER 5. FINITE AND INFINITE WORDS

Proof. (
M

(
f 0
0 i

))!
=

(
M

(
f 0
0 0

)
+M

(
0 0
0 i

))!
=((

M

(
f 0
0 0

))∗
M

(
0 0
0 i

))!
+((

M

(
f 0
0 0

))∗
M

(
0 0
0 i

))∗(
M

(
f 0
0 0

))!
=(

M

((
f 0
0 0

)
M

)∗(
0 0
0 i

))!
+(

M

((
f 0
0 0

)
M

)∗(
0 0
0 i

))∗
M

((
f 0
0 0

)
M

)!
=

M

(((
f 0
0 0

)
M

)∗(
0 0
0 i

)
M

)!
+

M

(((
f 0
0 0

)
M

)∗(
0 0
0 i

)
M

)∗((
f 0
0 0

)
M

)!
=

M

((
f 0
0 0

)
M +

(
0 0
0 i

)
M

)!
= M

((
f 0
0 i

)
M

)!
.

Theorem 5.3.11 Let (A, V) be a Conway semiring-semimodule pair. Then the
product-omega-equation is satisfied in the starsemiring-omegasemimodule pair
(A(n+1)×(n+1), V n+1).

Proof. Let M ∈ A(n+1)×(n+1) and f ∈ A1×1, g ∈ A1×n, ℎ ∈ An×1, i ∈ An×n.
Then we prove that the equality(

M

(
f g
ℎ i

))!
= M

((
f g
ℎ i

)
M

)!
is satisfied. We obtain(

M

(
f g
ℎ i

))!
=

(
M

(
f 0
0 i

)
+M

(
0 g
ℎ 0

))!
=((

M

(
f 0
0 i

))∗
M

(
0 g
ℎ 0

))!
+((

M

(
f 0
0 i

))∗
M

(
0 g
ℎ 0

))∗(
M

(
f 0
0 i

))!
=(

M

((
f 0
0 i

)
M

)∗(
0 g
ℎ 0

))!
+(

M

((
f 0
0 i

)
M

)∗(
0 g
ℎ 0

))∗
M

((
f 0
0 i

)
M

)!
=

M

(((
f 0
0 i

)
M

)∗(
0 g
ℎ 0

)
M

)!
+

M

(((
f 0
0 i

)
M

)∗(
0 g
ℎ 0

)
M

)∗((
f 0
0 i

)
M

)!
=

M

((
f 0
0 i

)
M +

(
0 g
ℎ 0

)
M

)!
= M

((
f g
ℎ i

)
M

)!
.

5.3. CONWAY SEMIRING-SEMIMODULE PAIRS 119

Corollary 5.3.12 (Bloom, Ésik [10]) If (A, V) is a Conway semiring-semimodule
pair then, for n ≥ 0, (A(n+1)×(n+1), V n+1) again is a Conway semiring-semimodule
pair.

We prove now the matrix-omega-equation.

Theorem 5.3.13 (Bloom, Ésik [10]) Let (A, V) be a Conway semiring-semimodule
pair. Then the matrix-omega-equation holds in the starsemiring-omegasemimodule
pair (A(n+1)×(n+1), V n+1).

Proof. The proof is similar to the proof of the matrix-star-equation in Theo-
rem 1.2.18. It is by induction on the dimension of the matrix. For 2×2-matrices
there is no problem. Let M ∈ An×n, n ≥ 3, and partition M into nine blocks

M =

⎛⎝ f g ℎ
i a b
j c d

⎞⎠
with dimensions f ∈ An1×n1 , g ∈ An1×n2 , ℎ ∈ An1×n3 , i ∈ An2×n1 , a ∈ An2×n2 ,
b ∈ An2×n3 , j ∈ An3×n1 , c ∈ An3×n2 , d ∈ An3×n3 . The proof reduces then to
showing that when we compute ! of

M =

⎛⎝ f g ℎ
i a b
j c d

⎞⎠ and M ′ =

⎛⎝ f g ℎ
i a b
j c d

⎞⎠
in the indicated ways we get the same result. Hence, we have to verify three
equalities in nine variables.

(i) First we compute M!. We denote the blocks of M! by (M!)i, 1 ≤ i ≤ 3.
We obtain

(M!)1 =

(
f + (g ℎ)

(
a b
c d

)∗(
i
j

))!
+(

f + (g ℎ)

(
a b
c d

)∗(
i
j

))∗
(g ℎ)

(
a b
c d

)!
=(

f + (g ℎ)

(
(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)(
i
j

))!
+(

f + (g ℎ)

(
(a+ bd∗c)∗ a∗b(d+ ca∗b)∗

d∗c(a+ bd∗c)∗ (d+ ca∗b)∗

)(
i
j

))∗
⋅

(g ℎ)

(
(a+ bd∗c)! + (a+ bd∗c)∗bd!

(d+ ca∗b)! + (d+ ca∗b)∗ca!

)
=

�! + �∗(g(a+ bd∗c)! + g(a+ bd∗c)∗bd! +
ℎ(d+ ca∗b)! + ℎ(d+ ca∗b)∗ca!) ,

120 CHAPTER 5. FINITE AND INFINITE WORDS

where � = f + g(a + bd∗c)∗i + ga∗b(d + ca∗b)∗j + ℎd∗c(a + bd∗c)∗i +
ℎ(d+ ca∗b)∗j,(

(M!)2

(M!)3

)
=

((
a b
c d

)
+

(
i
j

)
f∗(g ℎ)

)!
+((

a b
c d

)
+

(
i
j

)
f∗(g ℎ)

)∗(
i
j

)
f! =(

a+ if∗g b+ if∗ℎ
c+ jf∗g d+ jf∗ℎ

)!
+

(
a+ if∗g b+ if∗ℎ
c+ jf∗g d+ jf∗ℎ

)∗(
if!

jf!

)
=(

�! + �∗(b+ if∗ℎ)(d+ jf∗ℎ)!

! + ∗(c+ jf∗g)(a+ if∗g)!

)
+(

�∗if! + �∗(b+ if∗ℎ)(d+ jf∗ℎ)∗jf!

∗(c+ jf∗g)(a+ if∗g)∗if! + ∗jf!

)
,

where � = a+ if∗g + (b+ if∗ℎ)(d+ jf∗ℎ)∗(c+ jf∗g) and = d+ jf∗ℎ+ (c+
jf∗g)(a+ if∗g)∗(b+ if∗ℎ).

(ii) We now compute M ′!. We denote the blocks of M ′! by (M ′!)i, 1 ≤ i ≤
3. We obtain(

(M ′!)1

(M ′!)2

)
=

((
f g
i a

)
+

(
ℎ
b

)
d∗(j c)

)!
+((

f g
i a

)
+

(
ℎ
b

)
d∗(j c)

)∗(
ℎ
b

)
d! =(

f + ℎd∗j g + ℎd∗c
i+ bd∗j a+ bd∗c

)!
+

(
f + ℎd∗j g + ℎd∗c
i+ bd∗j a+ bd∗c

)∗(
ℎd!

bd!

)
=(

�! + �∗(g + ℎd∗c)(a+ bd∗c)!

�! + �∗(i+ bd∗j)(f + ℎd∗j)!

)
+(

�∗ℎd! + �∗(g + ℎd∗c)(a+ bd∗c)∗bd!

�∗(i+ bd∗j)(f + ℎd∗j)∗ℎd! + �∗bd!

)
,

where � = f + ℎd∗j + (g + ℎd∗c)(a + bd∗c)∗(i + bd∗j) and � = a + bd∗c + (i +
bd∗j)(f + ℎd∗j)∗(g + ℎd∗c).

(M ′!)3 =

(
d+ (j c)

(
f g
i a

)∗(
ℎ
b

))!
+(

d+ (j c)

(
f g
i a

)(
ℎ
b

))∗
(j c)

(
f g
i a

)!
=(

d+ (j c)

(
(f + ga∗i)∗ f∗g(a+ if∗g)∗

a∗i(f + ga∗i)∗ (a+ if∗g)∗

)(
ℎ
b

))!
+(

d+ (j c)

(
(f + ga∗i)∗ f∗g(a+ if∗g)∗

a∗i(f + ga∗i)∗ (a+ if∗g)∗

)(
ℎ
b

))∗
⋅

(j c)

(
(f + ga∗i)! + (f + ga∗i)∗ga!

(a+ if∗g)! + (a+ if∗g)∗if!

)
=

�! + �∗(j(f + ga∗i)! + j(f + ga∗i)∗ga! +
c(a+ if∗g)! + c(a+ if∗g)∗if!) ,

where � = d+j(f+ga∗i)∗ℎ+jf∗g(a+if∗g)∗b+ca∗i(f+ga∗i)∗ℎ+c(a+if∗g)∗b.

5.4. KLEENE’S THEOREM FOR CONWAY QUEMIRINGS 121

(iii) We now show the equalities (M!)i = (M ′!)i, 1 ≤ i ≤ 3. We obtain
� = � by Lemma 1.2.16. Hence, for the proof of (M!)1 = (M ′!)1, we have
to show the equality g(a + bd∗c)! + g(a + bd∗c)∗bd! + ℎ(d + ca∗b)! + ℎ(d +
ca∗b)∗ca! = (g + ℎd∗c)(a+ bd∗c)! + ℎd! + (g + ℎd∗c)(a+ bd∗c)∗bd!. On both
sides, the terms g(a+bd∗c)! and g(a+bd∗c)∗bd! appear. The left side, without
these terms, becomes ℎ(d∗ca∗b)! + ℎ(d∗ca∗b)∗d! + ℎ(d∗ca∗b)∗d∗ca!, while the
right side, without these terms, becomes ℎd∗c(a∗bd∗c)! + ℎd∗c(a∗bd∗c)∗a! +
ℎd∗c(a∗bd∗c)∗a∗bd!+ℎd!. It is easily checked that the first terms on both sides
coincide, that the third term on the left side and the second term on the right
side coincide, and that the second term on the left side and the sum of the third
and the fourth term on the right side coincide. Hence, (M!)1 = (M ′!)1.

We obtain � = � by Lemma 1.2.17. Hence, for the proof of (M!)2 =
(M ′!)2, we have to show the equality (b + if∗ℎ)(d + jf∗ℎ)! + if! + (b +
if∗ℎ)(d + jf∗ℎ)∗jf! = (i + bd∗j)(f + ℎd∗j)! + (i + bd∗j)(f + ℎd∗j)∗ℎd! +
bd!. The left side becomes b(d∗jf∗ℎ)! + if∗ℎ(d∗jf∗ℎ)! + b(d∗jf∗ℎ)∗d! +
if∗ℎ(d∗jf∗ℎ)∗d!+if!+b(d∗jf∗ℎ)∗d∗jf!+if∗ℎ(d∗jf∗ℎ)∗d∗jf!, while the right
side becomes i(f∗ℎd∗j)! + bd∗j(f∗ℎd∗j)! + i(f∗ℎd∗j)∗f! + bd∗j(f∗ℎd∗j)∗f! +
i(f∗ℎd∗j)∗f∗ℎd! + bd∗j(f∗ℎd∗j)∗f∗ℎd! + bd!. We denote the seven terms on
the left (resp. right) side read from left to right by L1, L2, L3, L4, L5, L6, L7

(resp. R1, R2, R3, R4, R5, R6, R7). The following equalities are easily checked:
L1 = R2, L2 = R1, L3 = R6 + R7, L4 = R5, L5 + L7 = R3, L6 = R4. If
we perform the substitution f ↔ d, ℎ ↔ j, g ↔ c, i ↔ b on the equation
(M!)1 = (M ′!)1, we get the equation (M ′!)3 = (M!)3. Hence, we have proved
our theorem.

5.4 Finite automata over quemirings and a Kleene
Theorem

In this section we consider finite automata over quemirings and prove a Kleene
Theorem. Throughout this section, (A, V) denotes a starsemiring-omegasemimodule
pair and T denotes the generalized starquemiring A× V . Moreover, A′ denotes
a subset of A.

A finite A′-automaton (over the quemiring T)

A = (n, I,M, P, k)

is given by

(i) a finite set of states {1, . . . , n}, n ≥ 1,

(ii) a transition matrix M ∈ (A′ ∪ {0, 1})n×n,

(iii) an initial state vector I ∈ (A′ ∪ {0, 1})1×n,

(iv) a final state vector P ∈ (A′ ∪ {0, 1})n×1,

(v) a set of repeated states {1, . . . , k}, k ≥ 0.

122 CHAPTER 5. FINITE AND INFINITE WORDS

The behavior of A is an element of T and is defined by

∣∣A∣∣ = IM∗P + IM!k .

If A = (n, (i1 i2),

(
a b
c d

)
,

(
p1

p2

)
, k), where i1 ∈ (A′ ∪ {0, 1})1×k, i2 ∈

(A′ ∪ {0, 1})1×(n−k), a ∈ (A′ ∪ {0, 1})k×k, b ∈ (A′ ∪ {0, 1})k×(n−k), c ∈ (A′ ∪
{0, 1})(n−k)×k, d ∈ (A′ ∪ {0, 1})(n−k)×(n−k), p1 ∈ (A′ ∪ {0, 1})k×1, p2 ∈ (A′ ∪
{0, 1})(n−k)×1, we write also

A = (n; i1, i2; a, b, c, d; p1, p2; k) .

Let (A, V) be now a complete semiring-semimodule pair and consider a finite

A′-automaton A = (n; i1, i2; a, b, c, d; p1, p2; k), the matrix M =

(
a b
c d

)
with

M!k =

(
(a∗bd∗c)! + (a∗bd∗c)∗a!

d∗c(a∗bd∗c)! + d∗c(a∗bd∗c)∗a!

)
,

and the directed graph of A (see Chapter 1, Section 3). In the first summand
of the entries of M!k , the blocks b and c occur infinitely often, i. e., the i-the
row of the first summand is the sum of the weights of all infinite paths starting
in state i and passing infinitely often through the repeated states in {1, . . . , k}
and the nonrepeated states in {k + 1, . . . , n}. In the second summand of the
entries of M!k , the block a occurs infinitely often and the blocks b and c occur
only finitely often, i. e., the i-th row of the second summand is the sum of
the weights of all infinite paths starting in state i and passing infinitely often
through the repeated states in {1, . . . , k} and only finitely often through the
nonrepeated states in {k + 1, . . . , n}. Hence, the i-th row of the first and the
second summand of the entries of M!k are sums of weights of disjoint sets of
infinite paths. Moreover, each weight of an infinite path is counted at least once.
Hence, we have the following result.

Theorem 5.4.1 If (A, V) is a complete semiring-semimodule pair and A is a
finite A′-automaton then ∣∣A∣∣ = F + I, where F is the sum of the weights of
all finite paths from an initial state to a final state multiplied by the initial and
final weights of these states and where I is the sum of the weights of all infinite
paths starting at an initial state, passing infinitely often through repeated states,
and multiplied by the initial weight of this initial state.

By definition, !-ℜat(A′) is the generalized starquemiring generated by A′.
For the remainder of this section we assume that (A, V) is a Conway semiring-

semimodule pair. We now will prove a Kleene Theorem: Let a ∈ A× V . Then
a ∈ !-ℜat(A′) iff a is the behavior of a finite A′-automaton. To achieve this
result we need a few theorems and corollaries.

Let A = (n, I,M, P, k) be a finite A′-automaton. It is called normalized if

(i) n ≥ 2 and k ≤ n− 2;

5.4. KLEENE’S THEOREM FOR CONWAY QUEMIRINGS 123

(ii) In−1 = 1 and Ij = 0 for j ∕= n− 1;

(iii) Pn = 1 and Pj = 0 for j ∕= n;

(iv) Mi,n−1 = 0 and Mn,i = 0 for all 1 ≤ i ≤ n.

Two finite A′-automata A and A′ are equivalent if ∣∣A∣∣ = ∣∣A′∣∣.

Theorem 5.4.2 Each finite A′-automaton A = (n, I,M, P, k) is equivalent to
a normalized finite A′-automaton A′ = (n+ 2, I ′,M ′, P ′, k).

Proof. We define I ′ = (0 1 0), M ′ =

⎛⎝ M 0 P
I 0 0
0 0 0

⎞⎠ and P ′ =

⎛⎝ 0
0
1

⎞⎠. Let

now A = (n; i1, i2; a, b, c, d; p1, p2; k). Then

M ′ =

⎛⎜⎜⎝
a b 0 p1

c d 0 p2

i1 i2 0 0
0 0 0 0

⎞⎟⎟⎠
and the first k entries of M ′!k are equal to⎛⎝a+ (b 0 p1)

⎛⎝ d 0 p2

i2 0 0
0 0 0

⎞⎠∗⎛⎝ c
i1
0

⎞⎠⎞⎠!

=⎛⎝a+ (b 0 p1)

⎛⎝ d∗ 0 d∗p2

i2d
∗ 1 i2d

∗p2

0 0 1

⎞⎠⎛⎝ c
i1
0

⎞⎠⎞⎠!

= (a+ bd∗c)! .

Hence, the last n− k + 2 entries of M ′!k are equal to⎛⎝ d 0 p2

i2 0 0
0 0 0

⎞⎠∗⎛⎝ c
i1
0

⎞⎠ (a+ bd∗c)! =

⎛⎝ d∗c
i2d
∗c+ i1
0

⎞⎠ (a+ bd∗c)!

and we obtain ∣∣A′∣∣ = I ′M ′∗P ′ + I ′M ′!k = (M ′∗)n+1,n+2 + (M ′!k)n+1 =
IM∗P + (i2d

∗c+ i1)(a+ bd∗c)! = IM∗P + IM!k = ∣∣A∣∣.

Lemma 5.4.3 If A = (n; i1, i2; a, b, c, d; p1, p2; k) is a finite A′-automaton then

∣∣A∣∣ = i1(a+ bd∗c)∗(p1 + bd∗p2) + i2d
∗c(a+ bd∗c)∗(p1 + bd∗p2) +

i2d
∗p2 + i1(a+ bd∗c)! + i2d

∗c(a+ bd∗c)! .

Proof. We obtain

∣∣A∣∣ = (i1 i2)

(
a b
c d

)∗(
p1

p2

)
+ (i1 i2)

(
a b
c d

)!k

=

(i1 i2)

(
(a+ bd∗c)∗ (a+ bd∗c)∗bd∗

d∗c(a+ bd∗c)∗ d∗c(a+ bd∗c)∗bd∗ + d∗

)(
p1

p2

)
+

124 CHAPTER 5. FINITE AND INFINITE WORDS

(i1 i2)

(
(a+ bd∗c)!

d∗c(a+ bd∗c)!

)
=

i1(a+ bd∗c)∗p1 + i1(a+ bd∗c)∗bd∗p2 + i2d
∗c(a+ bd∗c)∗p1 +

i2d
∗c(a+ bd∗c)∗bd∗p2 + i2d

∗p2 + i1(a+ bd∗c)! + i2d
∗c(a+ bd∗c)! .

Let A = (n; i1, i2; a, b, c, d; f, g;m) and A′ = (n′;ℎ, i; a′, b′, c′, d′; p1, p2; k) be
finite A′-automata. Then we define the finite A′-automata A+A′ and A ⋅A′ to
be

A + A′ = (n+ n′; (i1 ℎ), (i2 i);(
a 0
0 a′

)
,

(
b 0
0 b′

)
,

(
c 0
0 c′

)
,

(
d 0
0 d′

)
;(

f
p1

)
,

(
g
p2

)
,m+ k)

and

A ⋅ A′ = (n+ n′; (i1 0), (i2 0);(
a fℎ
0 a′

)
,

(
b fi
0 b′

)
,

(
c gℎ
0 c′

)
,

(
d gi
0 d′

)
;(

0
p1

)
,

(
0
p2

)
,m+ k) .

For the definition of A ⋅A′ we assume that either

(
f
g

)
(ℎ i) ∈ (A′∪{0, 1})n×n′

or A′ is normalized. Observe that the definitions of A+A′ and A ⋅A′ (and of A⊗

which is defined below) are the usual ones except that certain rows and columns
are permuted. These permutations are needed since the set of repeated states
of a finite A′-automaton is always a set {1, . . . , k}.
Theorem 5.4.4 Let A and A′ be finite A′-automata. Then ∣∣A+A′∣∣ = ∣∣A∣∣+
∣∣A′∣∣ and ∣∣A ⋅ A′∣∣ = ∣∣A∣∣ ⋅ ∣∣A′∣∣.
Proof. Let A and A′ be defined as above. We first show ∣∣A+A′∣∣ = ∣∣A∣∣+ ∣∣A′∣∣
and compute ∣∣A + A′∣∣ ⋅ 0. The transition matrix of A + A′ is given by

M =

⎛⎜⎜⎝
a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

⎞⎟⎟⎠ .

We now compute the first m + k entries of M!m+k . This column vector of
dimension m+ k is given by((

a 0
0 a′

)
+

(
b 0
0 b′

)(
d 0
0 d′

)∗(
c 0
0 c′

))!
=(

a+ bd∗c 0
0 a′ + b′d′∗c′

)!
=

(
(a+ bd∗c)!

(a′ + b′d′∗c′)!

)
.

5.4. KLEENE’S THEOREM FOR CONWAY QUEMIRINGS 125

The last n+ n′ − (m+ k) entries of M!m+k are given by the product of(
d 0
0 d′

)∗(
c 0
0 c′

)
=

(
d∗c 0
0 d′∗c′

)
with the column vector computed above. Hence, we obtain by Lemma 4.3

∣∣A + A′∣∣ ⋅ 0 = (i1 ℎ i2 i)M
!m+k = i1(a+ bd∗c)! + ℎ(a′ + b′d′∗c′)!+

i2d
∗c(a+ bd∗c)! + id′∗c′∗(a′ + b′d′∗c′)! = (∣∣A∣∣+ ∣∣A′∣∣) ⋅ 0 .

We now compute ∣∣A + A′∣∣¶. If, in the transition matrix M of A + A′ we
commute the m + 1, . . . ,m + k row and column with the m + k + 1, . . . , n + k
row and column, and do the same with the initial and final vector we obtain by
the star permutation equation (see Conway [25], Ésik, Kuich [39])

∣∣A + A′∣∣¶ = (i1 i2 ℎ i)

⎛⎜⎜⎝
a b 0 0
c d 0 0
0 0 a′ b′

0 0 c′ d′

⎞⎟⎟⎠
∗⎛⎜⎜⎝

f
g
p1

p2

⎞⎟⎟⎠ =

(i1 i2)

(
a b
c d

)∗(
f
g

)
+ (ℎ i)

(
a′ b′

c′ d′

)∗(
p1

p2

)
=

(∣∣A∣∣+ ∣∣A′∣∣)¶ .

Hence, ∣∣A + A′∣∣ = ∣∣A∣∣+ ∣∣A′∣∣.
We now show ∣∣A ⋅A′∣∣ = ∣∣A∣∣ ⋅ ∣∣A′∣∣ and compute ∣∣A ⋅A′∣∣ ⋅0. The transition

matrix of A ⋅ A′ is given by

M =

⎛⎜⎜⎝
a fℎ b fi
0 a′ 0 b′

c gℎ d gi
0 c′ 0 d′

⎞⎟⎟⎠ .

We now compute the first m + k entries of M!m+k . This column vector of
dimension m+ k is given by((

a fℎ
0 a′

)
+

(
b fi
0 b′

)(
d∗ d∗gid′∗

0 d′∗

)(
c gℎ
0 c′

))!
=(

a+ bd∗c (f + bd∗g)(ℎ+ id′∗c′)
0 a′ + b′d′∗c′

)!
=(

(a+ bd∗c)! + (a+ bd∗c)∗(f + bd∗g)(ℎ+ id′∗c′)(a′ + b′d′∗c′)!

(a′ + b′d′∗c′)!

)
.

The last n+ n′ − (m+ k) entries of M!m+k are given by the product of(
d gi
0 d′

)∗(
c gℎ
0 c′

)
=

(
d∗c d∗g(ℎ+ id′∗c′)
0 d′∗c′

)

126 CHAPTER 5. FINITE AND INFINITE WORDS

with the column vector computed above. Hence, we obtain

∣∣A ⋅ A′∣∣ ⋅ 0 = (i1 0 i2 0)M!m+k =
i1(a+ bd∗c)! + i1(a+ bd∗c)∗(f + bd∗g)(ℎ+ id′∗c)(a′ + b′d′∗c′)!+
i2d
∗c(a+ bd∗c)! + i2d

∗c(a+ bd∗c)∗(f + bd∗g)(ℎ+ id′∗c′)(a′ + b′d′∗c′)!+
i2d
∗g(ℎ+ id′∗c′)(a′ + b′d′∗c′)! .

On the other side, we obtain by Lemma 4.3

∣∣A∣∣ ⋅ ∣∣A′∣∣ ⋅ 0 = ∣∣A∣∣ ⋅ 0 + ∣∣A∣∣¶ ⋅ ∣∣A′∣∣ ⋅ 0 =
i1(a+ bd∗c)! + i2d

∗c(a+ bd∗c)! + (i1(a+ bd∗c)∗(f + bd∗g)+
i2d
∗c(a+ bd∗c)∗(f + bd∗g) + i2d

∗g)(ℎ+ id′∗c′)(a′ + b′d′∗c′)! .

Hence, ∣∣A ⋅ A′∣∣ ⋅ 0 = ∣∣A∣∣ ⋅ ∣∣A′∣∣ ⋅ 0.
We now compute ∣∣A ⋅ A′∣∣¶. If, in the transition matrix M of A ⋅ A′ we

commute the m + 1, . . . ,m + k row and column with the m + k + 1, . . . , n + k
row and column, and do the same with the initial and final vector we obtain by
the star permutation equation (see Conway [25], Ésik, Kuich [39])

∣∣A ⋅ A′∣∣¶ = (i1 i2 0 0)

⎛⎜⎜⎝
a b fℎ fi
c d gℎ gi
0 0 a′ b′

0 0 c′ d′

⎞⎟⎟⎠
∗⎛⎜⎜⎝

0
0
p1

p2

⎞⎟⎟⎠ =

(i1 i2)

(
a b
c d

)∗(
f
g

)
(ℎ i)

(
a′ b′

c′ d′

)∗(
p1

p2

)
=

∣∣A∣∣¶ ⋅ ∣∣A′∣∣¶ = ∣∣A∣∣ ⋅ ∣∣A′∣∣¶ .

Hence, ∣∣A ⋅ A′∣∣ = ∣∣A∣∣ ⋅ ∣∣A′∣∣.

Let A = (n;ℎ, i; a, b, c, d; f, g; k) be a finite A′-automaton and write I =

(ℎ i), M =

(
a b
c d

)
and P =

(
f
g

)
. Then we define the finite A′-automaton

A⊗ to be

A⊗ = (1 + n+ n; (1 0), (0 0);

(
0 ℎ
0 a

)
,

(
i I
b 0

)
,(

0 c
P 0

)
,

(
d 0
0 M

)
;

(
1
0

)
,

(
0
0

)
; 1 + k) .

Theorem 5.4.5 Let A be a finite A′-automaton. Then ∣∣A⊗∣∣ = ∣∣A∣∣⊗.

Proof. Let A be defined as above. Let

M ′ =

⎛⎜⎜⎝
0 ℎ i I
0 a b 0
0 c d 0
P 0 0 M

⎞⎟⎟⎠ .

5.4. KLEENE’S THEOREM FOR CONWAY QUEMIRINGS 127

We first compute ∣∣A⊗∣∣¶. Observe that M ′ can be written as

M ′ =

⎛⎝ 0 I I
0 M 0
P 0 M

⎞⎠
and that ∣∣A⊗∣∣¶ = (M ′∗)11. We obtain

(M ′∗)11 =

(
(I I)

(
M 0
0 M

)∗(
0
P

))∗
=

(IM∗P)∗ = (∣∣A∣∣¶)∗ = ∣∣A∣∣⊗¶ .

We now compute the first 1 + k entries of M ′!1+k . This column vector of
dimension 1 + k is given by((

0 ℎ
0 a

)
+

(
i I
b 0

)(
d 0
0 M

)∗(
0 c
P 0

))!
=(

IM∗P ℎ+ id∗c
0 a+ bd∗c

)!
.

Hence, ∣∣A⊗∣∣ ⋅ 0 = (M ′!1+k)1 = (IM∗P)! + (IM∗P)∗(ℎ+ id∗c)(a+ bd∗c)!. By
definition, ∣∣A∣∣⊗ ⋅ 0 = (∣∣A∣∣¶)! + (∣∣A∣∣¶)∗∣∣A∣∣ ⋅ 0. Thus ∣∣A∣∣⊗ ⋅ 0 = (IM∗P)! +
(IM∗P)∗(ℎ+ id∗c)(a+ bd∗c)! = ∣∣A⊗∣∣ ⋅ 0 and we obtain ∣∣A⊗∣∣ = ∣∣A∣∣⊗.

Theorem 5.4.6 Let A = (n, I,M, P, k) be a finite A′-automaton. Then there
exists a finite A′-automaton A¶ such that ∣∣A¶∣∣ = ∣∣A∣∣¶.

Proof. ∣∣A∣∣¶ = (n, I,M, P, 0).

Theorem 5.4.7 Let a ∈ A′ ∪ {0, 1}. Then there exists a finite A′-automaton
Aa such that ∣∣Aa∣∣ = a.

Proof. Let Aa = (2,

(
0 a
0 0

)
, (1 0),

(
0
1

)
, 0). Then

∣∣Aa∣∣ = (1 0)

(
1 a
0 1

)(
0
1

)
= a .

Corollary 5.4.8 The behaviors of finite A′-automata form a generalized star-
quemiring that contains A′.

Theorem 5.4.9 (Kleene Theorem) Let (A, V) be a Conway semiring-semimodule
pair. Then the following statements are equivalent for (s, v) ∈ A× V :

(i) (s, v) = ∣∣A∣∣, where A is a finite A′-automaton,

(ii) (s, v) ∈ !-ℜat(A′),

128 CHAPTER 5. FINITE AND INFINITE WORDS

(iii) s ∈ ℜat(A′) and v ∈
∑

1≤k≤m skt
m
k with sk, tk ∈ ℜat(A′).

Proof. (ii) ⇒ (iii): Each entry in M!k is of the form (s,
∑

1≤k≤m skt
m
k) with

s, sk, tk ∈ ℜat(A′).
(iii) ⇒ (ii): (s, v) = (s, 0) + (0, v). Since (s, 0) is in ℜat(A′) ⊆ !-ℜat(A′)

and (0, v) = (0,
∑

1≤k≤m skt
m
k) is in !-ℜat(A′), (s, v) is in !-ℜat(A′).

(ii) ⇒ (i): By Corollary 4.8.

5.5 Linear systems over quemirings

In this section we consider linear systems over quemirings as a generalization of
regular grammars with finite and infinite derivations. Before dealing with these
linear systems we prove two matrix theorems, Theorems 5.1 and 5.4 for Conway
semiring-semimodule pairs, and two theorems on complete semiring-semimodule
pairs, Theorems 5.5 and 5.6.

Theorem 5.5.1 Let (A, V) be a Conway semiring-semimodule pair. Then, for
0 ≤ k ≤ n,

MM!k = M!k .

Proof. Let M be partitioned as in (1), but with a of dimension k × k and d of
dimension (n− k)× (n− k). Then

MM!k =

(
a b
c d

)(
(a+ bd∗c)!

d∗c(a+ bd∗c)!

)
= M!k .

Two lemmas are needed before the proof of Theorem 5.4.

Lemma 5.5.2 Let (A, V) be a Conway semiring-semimodule pair and 0 ≤ k ≤
n. Let a ∈ Ak×k, b0, b1 ∈ Ak×(n−k), c ∈ A(n−k)×k, d0, d1 ∈ A(n−k)×(n−k).

Furthermore, let M0 =

(
0 b0
0 d0

)
and M1 =

(
a b1
c d1

)
. Then

(M0 +M1)!k = (M∗0M1)!k .

Proof.

(M∗0M1)!k =

((
E b0d

∗
0

0 d∗0

)(
a b1
c d1

))!k

=(
a+ b0d

∗
0c b1 + b0d

∗
0d1

d∗0c d∗0d1

)!k

=(
(a+ b0d

∗
0c+ (b1 + b0d

∗
0d1)(d∗0d1)∗d∗0c)

!

(d∗0d1)∗d∗0c(a+ b0d
∗
0c+ (b1 + b0d

∗
0d1)(d∗0d1)∗d∗0c)

!

)
.

The upper block equals (a+b0d
∗
0c+b1(d0 +d1)∗c+b0(d∗0d1)(d∗0d1)∗d∗0c)

! = (a+
(b0+b1)(d0+d1)∗c)!. The lower block equals (d0+d1)∗c(a+(b0+b1)(d0+d1)∗c)!.
Hence, our lemma is proven.

5.5. LINEAR SYSTEMS OVER QUEMIRINGS 129

Lemma 5.5.3 Let (A, V) be a Conway semiring-semimodule pair, and 0 ≤ k ≤
n. Let a0, a1 ∈ Ak×k, b ∈ Ak×(n−k), c0, c1 ∈ A(n−k)×k, d ∈ A(n−k)×(n−k), and

assume a!0 = 0. Furthermore, let M0 =

(
a0 0
c0 0

)
and M1 =

(
a1 b
c1 d

)
.

Then
(M0 +M1)!k = M∗0 (M1M

∗
0)!k .

Proof.

(M1M
∗
0)!k =

((
a1 b
c1 d

)(
a∗0 0
c0a
∗
0 E

))!k

=(
a1a
∗
0 + bc0a

∗
0 b

c1a
∗
0 + dc0a

∗
0 d

)!k

=(
(a1a

∗
0 + bc0a

∗
0 + bd∗(c1a

∗
0 + dc0a

∗
0))!

d∗(c1a
∗
0 + dc0a

∗
0)(a1a

∗
0 + bc0a

∗
0 + bd∗(c1a

∗
0 + dc0a

∗
0))!

)
=(

((a1 + bd∗(c0 + c1))a∗0)!

(d∗c1 + d∗dc0)(a∗0(a1 + bd∗(c0 + c1)))!

)
.

Hence,

M∗0 (M1M
∗
0)!k =

(
(a∗0(a1 + bd∗(c0 + c1)))!

d∗(c0 + c1)(a∗0(a1 + bd∗(c0 + c1)))!

)
=(

(a0 + a1 + bd∗(c0 + c1))!

d∗(c0 + c1)(a0 + a1 + bd∗(c0 + c1))!

)
.

In the last step we applied the sum-omega equation and used the assumption
a!0 = 0. Hence, our lemma is proven.

Theorem 5.5.4 Let (A, V) be a Conway semiring-semimodule pair, and 0 ≤
k ≤ n. Let a0, a1 ∈ Ak×k, b0, b1 ∈ Ak×(n−k), c0, c1 ∈ A(n−k)×k, d0, d1 ∈
A(n−k)×(n−k), and assume (a0 + b0d

∗
0c0)! = 0. Furthermore, let

M01 =

(
0 b0
0 d0

)
, M02 =

(
a0 0
c0 0

)
and M1 =

(
a1 b1
c1 d1

)
.

Then

(M∗01M02)∗(M∗01M1(M∗01M02)∗)∗M∗01 = (M01 +M02 +M1)∗

and
(M∗01M02)∗(M∗01M1(M∗01M02)∗)!k = (M01 +M02 +M1)!k .

Proof. The left side of the first equality equals (M∗01(M02 +M1))∗M∗01 = (M01 +
M02 +M1)∗.

The left upper block of M∗01M02 equals a0 + b0d
∗
0c0. Hence, by Lemma 5.3,

the left side of the second equality equals (M∗01(M02 + M1))!k , which is, by
Lemma 5.2, equal to (M01 +M02 +M1)!k .

For the remainder of this section we consider a complete star-omega semiring
A. In the next two theorems Σ∞ is a finite or infinite alphabet.

130 CHAPTER 5. FINITE AND INFINITE WORDS

Theorem 5.5.5 Let A be a complete star-omega semiring. Then (A⟨⟨Σ∗∞⟩⟩, A⟨⟨Σ!∞⟩⟩)
is a complete semiring-semimodule pair.

Proof. It is clear that A⟨⟨Σ!∞⟩⟩ is a left A⟨⟨Σ∗∞⟩⟩-semimodule, and moreover, the
action distributes over all sums in both arguments. Given series s1, s2, . . . in
A⟨⟨Σ∗∞⟩⟩, define s = s1s2 . . . by

(s, w) =
∑

w=w1w2...

(s1, w1)(s2, w2) . . .

for all w ∈ Σ∗∞. We verify that the infinite product satisfies the three condi-
tions on the infinite product operation in the definition of a complete semiring-
semimodule pair in Section 2.

Suppose that s0, s1, s2, . . . are in A⟨⟨Σ∗∞⟩⟩. If 1 ≤ k1 ≤ k2 . . ., then for all
w ∈ Σ!∞,

((s1 . . . sk1
)(sk1+1 . . . sk2

) . . . , w) =∑
w=w′1w

′
2...

(s1 . . . sk1
, w′1)(sk1+1 . . . sk2

, w′2) . . . =∑
w=w′1w

′
2...

∑
w′1=w1...wk1

(s1, w1) . . . (sk1
, wk1

)
∑
w′2=wk1+1...wk2

(sk1+1, wk1+1) . . . (sk2
, wk2

) . . . =∑
w=w′1w

′
2...

∑
w′1=w1...wk1

,w′2=wk1+1...wk2
,...(s1, w1) . . . (sk1

, wk1
)(sk1+1, wk1+1) . . . =∑

w=w1w2...
(s1, w1)(s2, w2) . . . = (s1s2 . . . , w),

proving the first condition. Also,

(s0 ⋅ (s1s2 . . .), w) =∑
w=w0w′

(s0, w0)(s1s2 . . . , w
′) =∑

w=w0w′
(s0, w0)

∑
w′=w1w2...

(s1, w1)(s2, w2) . . . =∑
w=w0w′

∑
w′=w1w2...

(s0, w0)(s1, w1)(s2, w2) . . . =∑
w=w0w1w2...

(s0, w0)(s1, w1)(s2, w2) . . . = (s0s1s2 . . . , w),

proving the second condition. Finally, suppose that sjij ∈ A⟨⟨Σ
∗
∞⟩⟩ for all ij ∈ Ij ,

j ≥ 1, where each Ij is an arbitrary index set. Then, for each w ∈ Σ∗∞,

(
∑
i1∈I1 s

1
i1

∑
i2∈I2 s

2
i2
. . . , w) =∑

w=w1w2...
(
∑
i1∈I1 s

1
i1
, w1)(

∑
i2∈I2 s

2
i2
, w2) . . . =∑

w=w1w2...

∑
(i1,i2,...)∈I1×I2×...(s

1
i1
, w1)(s2

i2
, w2) . . . =∑

(i1,i2,...)∈I1×I2×...
∑
w=w1w2...

(s1
i1
, w1)(s2

i2
, w2) =∑

(i1,i2,...)∈I1×I2×...(s
1
i1
s2
i2
. . . , w),

proving the third condition.

Theorem 5.5.6 Let A be a complete star-omega semiring. For M (j) ∈ (A⟨⟨Σ∗∞⟩⟩)n×n,
j ≥ 1, define

∏
j≥1M

(j) by

(
∏
j≥1

M (j))i =
∑

1≤i1,i2,...≤n

M
(1)
ii1
M

(2)
i1i2

M
(3)
i2i3

. . . , 1 ≤ i ≤ n .

Then ((A⟨⟨Σ∗∞⟩⟩)n×n, (A⟨⟨Σ!∞⟩⟩)n) is a complete semiring-semimodule pair.

5.5. LINEAR SYSTEMS OVER QUEMIRINGS 131

Proof. We only prove the third condition on the infinite product operation in
the definition of a complete semiring-semimodule pair in Section 2.

Let M (ij) ∈ (A⟨⟨Σ∗∞⟩⟩)n×n for j ≥ 1. Then we obtain, for 1 ≤ k ≤ n,

(
∏
j≥1(

∑
ij∈Ij M

(ij)))k =∑
1≤k1,k2,...≤n(

∑
i1∈I1 M

(i1))kk1
(
∑
i2∈I2 M

(i2))k1k2
. . . =∑

(i1,i2,...)∈I1×I2×...
∑

1≤k1,k2,...≤nM
(i1)
kk1

M
(i2)
k1k2

. . . =∑
(i1,i2,...)∈I1×I2×...(

∏
j≥1M

(ij))k ,

verifying the third condition.

An A′-linear system (with variables z1, . . . , zn, over the quemiring A×V) is
a system of equations

My + P = y (5.22)

where M ∈ (A′ ∪ {0, 1})n×n, P ∈ (A′ ∪ {0, 1})n×1, y =

⎛⎜⎝ z1

...
zn

⎞⎟⎠. A column

vector � ∈ (A× V)n×1 is called a solution to the system (22) if

M� + P = � .

Theorem 5.5.7 Let (A, V) be a Conway semiring-semimodule pair. Consider
an A′-linear system

My + P = y ,

where M ∈ (A′∪{0, 1})n×n, P ∈ (A′∪{0, 1})n×1, and y =

⎛⎜⎝ z1

...
zn

⎞⎟⎠ is a column

vector of variables. Then, for each 0 ≤ k ≤ n, M!k + M∗P is a solution of
My + P = y.

Proof. We obtain, by Theorem 5.1, for each 0 ≤ k ≤ n,

M(M!k +M∗P) + P = M!k +M∗P .

Let Ai = (n, ei,M, P, k), 1 ≤ i ≤ n, be finite A′-automata, where ei is
the i-th vector of unity. Then ∣∣Ai∣∣ is the i-th component of a solution given
in Theorem 5.1 of the A′-linear system My + P = y. Therefore, we call the

solution

⎛⎜⎝ ∣∣A1∣∣
...

∣∣An∣∣

⎞⎟⎠ = M!k +M∗P of My+P = y the k-th automata-theoretic

solution of My + P = y.

132 CHAPTER 5. FINITE AND INFINITE WORDS

Theorem 5.5.8 Let (A, V) be a Conway semiring-semimodule pair and A′ ⊆
A. Let A = (n, I,M, P, k) be a finite A′-automaton. Then ∣∣A∣∣ = I�, where �
is the k-th automata-theoretic solution of the A′-linear system My + P = y.

Let A be a complete star-omega semiring and consider an A′-linear system
My+P = y over the quemiring A⟨⟨Σ∗⟩⟩×A⟨⟨Σ!⟩⟩ as defined before Theorem 5.7
for A′ = A⟨Σ ∪ "⟩. Write this system in the form

zi =
∑

1≤j≤n

∑
x∈Σ∪"

(Mij , x)xzj +
∑

x∈Σ∪{"}

(Pi, x)x , 1 ≤ i ≤ n .

We associate to this system the rightlinear grammarsGi = ({z1, . . . , zn},Σ, R, zi),
1 ≤ i ≤ n, with weights in the semiring A, where R = {zi → (Mij , x)xzj ∣ 1 ≤
j ≤ n, x ∈ Σ ∪ {"}} ∪ {zi → (Pi, x)x ∣ x ∈ Σ ∪ {"}}. Here (Mij , x) and (Pi, x)
are the weights of the productions zi → xzj and zi → x, respectively. (Compare
with Chapter 2 before Theorem 2.3.8.) Furthermore, let Aki = (n, ei,M, P, k)
be finite A′-automata, 1 ≤ i ≤ n, for some fixed k ∈ {0, . . . , n}, where ei is the
i-th row vector of unity.

Consider now a finite derivation with respect to Gi:

zi ⇒ (Mi,i1 , x1)x1zi1 ⇒ . . .⇒ (Mi,i1 , x1) . . . (Mim−1,im , xm)x1 . . . xmzim ⇒
(Mi,i1 , x1) . . . (Mim−1,im , xm)(Pim , xm+1)x1 . . . xmxm+1

generating the word x1 . . . xmxm+1 with weight

(Mi,i1 , x1) . . . (Mim−1,im , xm)(Pim , xm+1) .

This finite derivation corresponds to the following finite path in the directed
graph of Aki :

(zi, x1, zi1), . . . , (zim−1
, xm, zim)

with weight

(Mi,i1 , x1) . . . (Mim−1,im , xm) ,

initial weight 1 and final weight (Pim , xm+1)xm+1.

Consider now an infinite derivation with respect to Gi:

zi ⇒ (Mi,i1 , x1)x1zi1 ⇒ . . .⇒ (Mi,i1 , x1) . . . (Mim−1,im , xm)x1 . . . xmzim ⇒ . . .

generating the infinite word x1x2 . . . xm . . . with weight (Mi,i1 , x1) . . . (Mim−1,im , xm)
This infinite derivation corresponds to the following infinite path in the directed
graph of Aki :

(zi, x1, zi1), . . . , (zim−1
, xm, zim), . . .

with weight (Mi,i1 , x1) . . . (Mim−1,im , xm) . . . and initial weight 1.

Hence, we obtain, by Theorems 4.1 and 5.5, the following result for Gi and
Aki as defined above.

5.5. LINEAR SYSTEMS OVER QUEMIRINGS 133

Theorem 5.5.9 If A is a complete star-omega semiring and 1 ≤ i ≤ n, 0 ≤
k ≤ n, then, for w ∈ Σ∗, (∣∣Aki ∣∣, w) = ((M∗P)i, w) is the sum of the weights
of all finite derivations of w with respect to Gi; and for w ∈ Σ!, (∣∣Aki ∣∣, w) =
((M!k)i, w) is the sum of the weights of all infinite derivations of w with respect
to Gi such that at least one of the variables of {z1, . . . , zk} appears infinitely
often in these infinite derivations.

In particular, if A = ℕ∞ and (Mij , x), (Pi, x) ∈ {0, 1}, x ∈ Σ ∪ {"}, 1 ≤
i, j ≤ n, then we get the following result.

Theorem 5.5.10 For w ∈ Σ∗, (∣∣Aki ∣∣, w) = ((M∗P)i, w) is the number of finite
derivations of w with respect to Gi; and for w ∈ Σ!, (∣∣Aki ∣∣, w) = ((M!k)i, w)
is the number of all infinite derivations of w with respect to Gi such that at
least one of the variables of {z1, . . . , zk} appears infinitely often in these infinite
derivations.

We now want to delete "-moves in finite A⟨Σ∪"⟩-automata without changing
their behavior.

Theorem 5.5.11 Let (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) be a Conway semiring-semimodule pair,
where (a")! = 0 for all a ∈ A, and consider a finite A⟨Σ ∪ "⟩-automaton
A = (n, I,M, P, k). Then there exists an finite A⟨Σ ∪ "⟩-automaton A′ =
(n, I ′,M ′, P ′, k) with ∣∣A′∣∣ = ∣∣A∣∣ satisfying the following conditions:

(i) M ′ ∈ (A⟨Σ⟩)n×n,

(ii) I ′ ∈ (A⟨"⟩)1×n,

(iii) P ′ ∈ (A⟨"⟩)n×1.

Proof. Without loss of generality we assume by Theorem 4.2 that I ∈ (A⟨"⟩)1×n

and P ∈ (A⟨"⟩)n×1. LetM =

(
a b
c d

)
, where a is k×k and d is (n−k)×(n−k).

Let a = a0 + a1, b = b0 + b1, c = c0 + c1, d = d0 + d1, such that the supports of
the entries of a0, b0, c0, d0 (resp. a1, b1, c1, d1) are subsets of {"} (resp. Σ). Since
"! = 0, we obtain (a0 + b0d

∗
0c0)! = 0.

Define the matrices M01,M02 and M1 to be M01 =

(
0 b0
0 d0

)
, M02 =(

a0 0
c0 0

)
and M1 =

(
a1 b1
c1 d1

)
. We now specify the finite A⟨Σ ∪ "⟩-

automaton A′: I ′ = I(M∗01M02)∗, M ′ = M∗01M1(M∗01M02)∗ and P ′ = M∗01P .
The behavior of A′ is then given by

∣∣A′∣∣ = I ′M ′∗P ′ + I ′M ′!k =
I(M∗01M02)∗(M∗01M1(M∗01M02)∗)∗M∗01P+
I(M∗01M02)∗(M∗01M1(M∗01M02)∗)!k =
I(M01 +M02 +M1)∗P + I(M01 +M02 +M1)!k =
IM∗P + IM!k = ∣∣A∣∣ .

Here we have applied Theorem 5.4 in the third equality.

134 CHAPTER 5. FINITE AND INFINITE WORDS

Theorem 5.5.12 Let (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) be a Conway semiring-semimodule pair,
where (a")! = 0 for all a ∈ A, and consider a finite A⟨Σ ∪ "⟩-automaton
A = (n, I,M, P, k). Then there exists an finite A⟨Σ ∪ "⟩-automaton A′ =
(n+ 1, I ′,M ′, P ′, k) with ∣∣A′∣∣ = ∣∣A∣∣ satisfying the following conditions:

(i) M ′ ∈ (A⟨Σ⟩)(n+1)×(n+1),

(ii) I ′j = 0, 1 ≤ j ≤ n, and I ′n+1 = ",

(iii) P ′ ∈ (A⟨"⟩)(n+1)×1.

Proof. We assume that A satisfies the conditions of Theorem 5.11. We specify

A′ by I ′ = (0 "), M ′ =

(
M 0
IM 0

)
and P ′ =

(
P
IP

)
. We compute M ′∗ =(

M∗ 0
IMM∗ 1

)
and, for M =

(
a b
c d

)
, I = (i1 i2),

IM ′!k =

⎛⎝ a b 0
c d 0

i1a+ i2c i1b+ i2d 0

⎞⎠!k

=

⎛⎝ (a+ bd∗c)!

d∗c(a+ bd∗c)!

(i1(a+ bd∗c) + i2d
∗c)(a+ bd∗c)!

⎞⎠ =

(
M!k

IM!k

)
.

Hence, ∣∣A′∣∣ = IMM∗P + IP + IM!k = ∣∣A∣∣.
In the case of the Boolean semiring, the finite B⟨Σ ∪ "⟩-automata of Theo-

rem 5.12 are nothing else than the finite automata introduced by Büchi [18].
In the case of the semiring ℕ∞ we get the following result.

Theorem 5.5.13 The constructions of Theorems 5.11 and 5.12 do not change,
for w ∈ Σ∗ (resp. for w ∈ Σ!), in the digraphs of the finite automata, the number
of finite paths with label w from an initial state to a final state (resp. the number
of infinite paths with label w starting in an initial state and passing infinitely
often through repeated states).

Given a rightlinear grammar Gi = ({z1, . . . , zn},Σ, R, zi), 1 ≤ i ≤ n, as
above, and k ∈ {0, . . . , n}, L(Gi)k is defined to be the weighted language

L(Gi)k = {((M∗P)i, w)w ∣ w ∈ Σ∗} ∪ {((M!k)i, w)w ∣ w ∈ Σ!} .

The next theorem, Theorem 5.14, shows that such weighted languages can be
generated by rightlinear grammars with weights in the semiring A which have
only two types of productions:

zi → axzj and zi → a" ,

where a ∈ A and x ∈ Σ. Hence, in such rightlinear grammars there are no pro-
ductions zi → azj . Corollary 5.15 shows then, that the two types of productions
can be chosen as

zi → axzj and zi → ax ,

5.5. LINEAR SYSTEMS OVER QUEMIRINGS 135

where a ∈ A and x ∈ Σ. (Of course, " is no longer derived.)

Theorem 5.5.14 Let (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) be a Conway semiring-semimodule pair,
where (a")! = 0 for all a ∈ A, consider an A⟨Σ∪ "⟩-linear system My+P = y,

where M ∈ (A⟨Σ ∪ "⟩)n×n, P ∈ (A⟨Σ ∪ "⟩)n×1, and y =

⎛⎜⎝ z1

...
zn

⎞⎟⎠ and let

i ∈ {1, . . . , n}. Then there exists an A⟨Σ ∪ "⟩-linear system M ′y′ + P ′ = y′,

where M ′ ∈ (A⟨Σ⟩)(n+1)×(n+1), P ′ ∈ (A⟨"⟩)(n+1)×1, and y′ =

(
y

zn+1

)
such

that

(M ′!k +M ′∗P ′)n+1 = (M!k +M∗P)i .

Proof. Consider the finite A⟨Σ ∪ "⟩-automaton Aki = (n, ei,M, P, k), whose be-
havior is ∣∣Aki ∣∣ = (M∗P)i + (M!k)i. Starting with Aki , perform the construc-
tions of Theorems 5.11 and 5.12. This yields a finite A⟨Σ ∪ "⟩-automaton A′ =
(n+1, en+1,M

′, P ′, k) with behavior ∣∣A′∣∣ = (M ′∗P ′)n+1 +(M ′!k)n+1 = ∣∣Aki ∣∣.

Corollary 5.5.15 Let (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) be a Conway semiring-semimodule pair,
where (a")! = 0 for all a ∈ A, consider an A⟨Σ∪ "⟩-linear system My+P = y,

where M ∈ (A⟨Σ ∪ "⟩)n×n, P ∈ (A⟨Σ ∪ "⟩)n×1, and y =

⎛⎜⎝ z1

...
zn

⎞⎟⎠ and let

i ∈ {1, . . . , n}. Then there exists an A⟨Σ ∪ "⟩-linear system M ′y′ + P ′ = y′,

where M ′ ∈ (A⟨Σ⟩)(n+1)×(n+1), P ′ ∈ (A⟨Σ⟩)(n+1)×1, and y′ =

(
y

zn+1

)
such

that

(M ′!k +M ′∗P ′)n+1 = (M!k +MM∗P)i .

Proof. Let M ′y′+P ′′ = y′ be the A⟨Σ∪ "⟩-linear system constructed according
to Theorem 5.14 from My + P = y. Consider the A⟨Σ ∪ "⟩-linear system
M ′y′ + P ′ = y′, where P ′ = M ′P ′′. Then (M ′!k + M ′∗P ′)n+1 = (M ′!k +
M ′∗M ′P ′′)n+1 = (M!k +MM∗P)i.

If we consider ℕ∞⟨Σ∪"⟩-linear systems we obtain the following result about
the derivations with respect to the rightlinear grammars Gi defined above.

Theorem 5.5.16 The constructions of Theorem 5.14 and Corollary 5.15 do
not change, for w ∈ Σ+ (resp. for w ∈ Σ!), the number of finite derivations of
w with respect to Gi (resp. the number of infinite derivations of w with respect
to Gi such that at least one of the variables of {z1, . . . , zn} appears infinitely
often in these infinite derivations).

Hence, the constructions transform unambiguous grammars into unambigu-
ous grammars.

136 CHAPTER 5. FINITE AND INFINITE WORDS

5.6 !-Algebraic systems and !-context-free
grammars

In the sequel, T is a quemiring, Y = {y1, . . . , yn} is a set of (quemiring) vari-
ables, T¶ = A and T0 = V . A product term t has the form t(y1, . . . , yn) =
s0yi1s1 . . . sk−1yiksk, k ≥ 0, where sj ∈ A − {0}, 0 ≤ j < k, sk ∈ A, and
yij ∈ Y . The elements sj are referred to as coefficients of the product term. If
k ≥ 1, we do not write down coefficients that are equal to 1.

A sum-product term p is a finite sum of product terms tj , i. e.,

p(y1, . . . , yn) =
∑

1≤j≤m

tj(y1, . . . , yn) .

The coefficients of all the product terms tj , 1 ≤ j ≤ m, are referred to as the
coefficients of the sum-product term p. Observe that each sum-product term
represents a polynomial of the polynomial quemiring over the quemiring T in the
set of variables Y in the sense of Lausch, Nöbauer [90], Chapter 1.4. For a subset
A′ ⊆ A, we denote the collection of all sum-product terms with coefficients in A′

by A′(Y). Observe that the sum-product terms in A(Y) represent exactly the
polynomials of the subquemiring of the polynomial quemiring that is generated
by A ∪ Y .

We are only interested in the mappings induced by sum-product terms.
These mappings are polynomial functions on T in the sense of Lausch, Nöbauer [90],
Chapter 1.6.

Each product term t (resp. sum-product term p) with variables y1, . . . , yn
induces a mapping t̄ (resp. p̄) from Tn into T . For a product term t represented
as above, the mapping t̄ is defined by

t̄(�1, . . . , �n) = s0�i1s1 . . . sk−1�iksk ,

and for a sum-product term p, represented by a finite sum of product terms tj
as above, the mapping p̄ is defined by

p̄(�1, . . . , �n) =
∑

1≤j≤m

t̄j(�1, . . . , �n)

for all (�1, . . . , �n) ∈ Tn.

Let (A, V) be a semiring-semimodule pair and let A×V be the quemiring de-
termined by it. Let A′ ⊆ A. An A′-algebraic system (with variables y1, . . . , yn)
over the quemiring A× V is a system of equations

yi = pi, 1 ≤ i ≤ n ,

where each pi is a sum-product term in A′(Y). A solution to this A′-algebraic
system is given by (�1, . . . , �n) ∈ Tn such that �i = p̄i(�1, . . . , �n), 1 ≤ i ≤ n.

5.6. !-CONTEXT-FREE GRAMMARS 137

Often it is convenient to write the A′-algebraic system yi = pi, 1 ≤ i ≤ n, in
matrix notation. Defining the two column vectors

y =

⎛⎜⎝ y1

...
yn

⎞⎟⎠ and p =

⎛⎜⎝ p1

...
pn

⎞⎟⎠
we can write yi = pi, 1 ≤ i ≤ n, in the matrix notation

y = p(y) or y = p .

A solution to y = p(y) is now given by � ∈ Tn such that � = p̄(�) with
p̄ = (p̄i)1≤i≤n.

Consider now a product term t(y1, . . . , yn) = s0yi1s1 . . . sk−1yiksk and let
�i = (�i, !i) ∈ A× V , 1 ≤ i ≤ n. Then

t̄(�1, . . . , �n) = s0(�i1 , !i1)s1 . . . sk−1(�ik , !ik)sk =
(s0�i1s1 . . . sk−1�iksk, s0!i1 + s0�i1s1!i2 + . . .+ s0�i1s1 . . . sk−2�ik−1

sk−1!ik) .

By definition, for � = (�1, . . . , �n) ∈ An,

t�(z1, . . . , zn) = s0zi1 + s0�i1s1zi2 + . . .+ s0�i1s1 . . . sk−2�ik−1
sk−1zik

and, if p(y1, . . . , yn) =
∑

1≤j≤m tj(y1, . . . , yn),

p�(z1, . . . , zn) =
∑

1≤j≤m

(tj)�(z1, . . . , zn) .

Here z1, . . . , zn are variables over the semimodule V . We now obtain

t̄(�1, . . . , �n) = t̄(�1, . . . , �n) + t̄�(!1, . . . , !n)

and
p̄(�1, . . . , �n) = p̄(�1, . . . , �n) + p̄�(!1, . . . , !n) .

Moreover,

p̄(�1, . . . , �n)¶ = p̄(�1, . . . , �n) and p̄(�1, . . . , �n).0 = p̄�(!1, . . . , !n) .

In the next theorem, y (resp. x and z) denotes a column vector

⎛⎜⎝ y1

...
yn

⎞⎟⎠
(resp.

⎛⎜⎝ x1

...
xn

⎞⎟⎠ and

⎛⎜⎝ z1

...
zn

⎞⎟⎠), where the yi (resp. xi and zi) are variables over

A× V (resp. A and V).
In the sequel, A′ will always denote a subset of A containing 0 and 1.

138 CHAPTER 5. FINITE AND INFINITE WORDS

Theorem 5.6.1 Let A× V be a quemiring and let y = p(y) be an A′-algebraic
system over A× V . Then (�, !) ∈ (A× V)n is a solution of y = p(y) iff � is a
solution of the A′-algebraic system x = p(x) over A and ! is a solution of the
Alg(A′)-linear system z = p�(z) over V .

Proof. � = (�, !) is a solution ⇔ � = p̄(�) = p̄(�) + p̄�(!) ⇔ � = p̄(�) and
! = p̄�(!).

Consider an A′-algebraic system y = p(y) over a continuous quemiring A×V .
Then the least solution of the A′-algebraic system x = p(x) over A, say �, exists.
Moreover, write the Alg(A′)-linear system z = p�(z) over V in the form z = Mz,
where M is an n × n-matrix. Then, by Theorem 5.5, M!k for 0 ≤ k ≤ n is
a solution of z = p�(z). Hence, by Theorem 6.1, (�,M!k), 0 ≤ k ≤ n, is a
solution of y = p(y). Given a k ∈ {0, 1, . . . , n}, we call this solution the solution
of order k of y = p(y). By !-Alg(A′) we denote the collection of all components
of solutions of all orders k of A′-algebraic systems over A× V .

We now consider a star-omega semiring A where the semiring A is addi-
tionally commutative and continuous, and an alphabet Σ. By Theorem 5.5,
(A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) is a continuous semiring-semimodule pair.

Let AΣ∗ = {sw ∣ s ∈ A, w ∈ Σ∗}. Then !-Alg(AΣ∗) is equal to the
collection of the components of the solutions of order k of AΣ∗-algebraic systems
overA⟨⟨Σ∗⟩⟩×A⟨⟨Σ!⟩⟩ yi = pi, 1 ≤ i ≤ n, where pi is a polynomial inA⟨(Σ∪Y)∗⟩.
This is due to the commutativity of A: any polynomial function that is induced
by a sum-product term of AΣ∗(Y) is also induced by a polynomial of A⟨(Σ∪Y)∗⟩
and vice versa. We denote !-Alg(AΣ∗) by A!-alg⟨⟨Σ∗,Σ!⟩⟩. The AΣ∗-algebraic
systems are called !-algebraic systems (over A and Σ) and the power series in

A!-alg⟨⟨Σ∗,Σ!⟩⟩ are called !-algebraic power series (over A and Σ).

Consider now a product term in A⟨(Σ ∪ Y)∗⟩

t(y1, . . . , yn) = sw0yi1w1 . . . wk−1yikwk ,

where s ∈ A and wi ∈ Σ∗, 1 ≤ i ≤ k. By definition, for x = (xi)1≤i≤n,
tx(x1, . . . , xn, z1, . . . , zn) = sw0zi1 + sw0xi1w1zi2 + . . . + sw0xi1w1 . . .
wk−2xik−1

wk−1zik , and, if p(y1, . . . , yn) =
∑

1≤j≤m tj(y1, . . . , yn), then

px(x1, . . . , xn, z1, . . . , zn) =
∑

1≤j≤m

(tj)x(x1, . . . , xn, z1, . . . , zn) .

Here x1, . . . , xn (resp. z1, . . . , zn) are variables over A (resp. V). Observe that,
for � ∈ (A⟨⟨Σ∗⟩⟩)n, we obtain px(�1, . . . , �n, z1, . . . , zn) = p�(z1, . . . , zn).

Given an !-algebraic system y = p(y) over A⟨⟨Σ∗⟩⟩ × A⟨⟨Σ!⟩⟩, we call x =
p(x), z = px(x, z) the mixed !-algebraic system over (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) induced
by y = p(y).

Write z = px(x, z) in the form z = M(x)z, where M(x) is an n× n-matrix.
Then (�,M(�)!k) for 0 ≤ k ≤ n is a solution of x = p(x), z = px(x, z).
Moreover, it is the solution of order k of y = p(y).

5.6. !-CONTEXT-FREE GRAMMARS 139

A mixed !-context-free grammar

G = (n,Σ, P, j, k)

is given by

(i) an alphabet X = {x1, . . . , xn} of variables for finite derivations and an
alphabet Z = {z1, . . . , zn} of variables for infinite derivations, n ≥ 1,
X ∩ Z = ∅;

(ii) an alphabet Σ of terminal symbols, Σ ∩ (X ∪ Z) = ∅;

(iii) a finite set of productions of the form x → �, x ∈ X, � ∈ (X ∪ Σ)∗, or
z → �z′, z, z′ ∈ Z, � ∈ (X ∪ Σ)∗;

(iv) the startvariable xj (resp. zj) for finite (resp. infinite) derivations, 1 ≤ i ≤
n;

(v) the set of repeated variables for infinite derivations {z1, . . . , zk}, 0 ≤ k ≤
n.

A finite leftmost derivation (with respect to G) �⇒∗L w, � ∈ (X ∪Σ)∗, w ∈ Σ∗,
is defined as usual. An infinite leftmost derivation (with respect to G) � : z ⇒!

L

w, z ∈ Z, w ∈ Σ!, is defined as follows:

� : z ⇒L �1zi1 ⇒∗L w1zi1 ⇒L w1�2zi2 ⇒∗L w1w2zi2 ⇒L . . .⇒∗L
w1w2 . . . wmzim ⇒L w1w2 . . . wm�m+1zim+1

⇒∗L . . . ,

where z → �1zi1 , zi1 → �2zi2 , . . . , zim → �m+1zim+1
, . . . ∈ P , w1, w2, . . . , wm, . . .

∈ Σ∗ and w = w1w2 . . . wm Let INV(�) = {z ∈ Z ∣ z is infinitely often
rewritten in �}. Then L(G) = {w ∈ Σ∗ ∣ xj ⇒∗L w} ∪ {w ∈ Σ! ∣ � : zj ⇒!

L

w, INV(�) ∩ {z1, . . . , zk} ∕= ∅}.
We now discuss the connection between mixed !-algebraic systems over

(A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩), where A is B or ℕ∞, and mixed !-context-free grammars
(see also Chapter 2, before Theorem 2.3.8). We associate to a given mixed
!-context-free grammar Gj,k = (n,Σ, P, j, k), 1 ≤ j ≤ n, 0 ≤ k ≤ n, the
mixed !-algebraic system xi = pi(x1, . . . , xn), zi = qi(x1, . . . , xn, z1, . . . , zn),
1 ≤ i ≤ n, over (A⟨⟨Σ∗⟩⟩, A⟨⟨Σ!⟩⟩) by

(pi, �) = 1 if xi → � ∈ P, (pi, �) = 0 otherwise ,
(qi, �) = 1 if zi → � ∈ P, (qi, �) = 0 otherwise .

Conversely, we associate to a mixed !-algebraic system xi = pi(x1, . . . , xn),
zi = qi(x1, . . . , xn, z1, . . . , zn), 1 ≤ i ≤ n, the mixed !-context-free grammars
Gj,k = (n,Σ, P, j, k), 1 ≤ j ≤ n, 0 ≤ k ≤ n, by xi → � ∈ P iff (pi, �) ∕= 0
and zi → � ∈ P iff (zi, �) ∕= 0. Whenever we speak of a mixed !-context-free
grammar associated to a mixed !-algebraic system or vice versa, then we mean
the correspondence in the sense of the above definition.

In the next theorem we use the isomorphism between B⟨⟨Σ∗⟩⟩ ×B⟨⟨Σ!⟩⟩ and
2Σ∗ × 2Σ!

.

140 CHAPTER 5. FINITE AND INFINITE WORDS

Theorem 5.6.2 Let Gj,k = (n,Σ, P, j, k), 1 ≤ j ≤ n, 0 ≤ k ≤ n, be a mixed
!-context-free grammar and xi = pi(x1, . . . , xn), zi = qi(x1, . . . , xn, z1, . . . , zn),
1 ≤ i ≤ n, be the mixed !-algebraic system over (B⟨⟨Σ∗⟩⟩,B⟨⟨Σ!⟩⟩) corresponding
to it. Let (�, �) be the solution of order k, 0 ≤ k ≤ n, of xi = pi, zi = qi,
1 ≤ i ≤ n. Then L(Gj,k) = �j + �j, 1 ≤ j ≤ n, 0 ≤ i ≤ k.

Proof. By Theorem 2.3.6, we obtain �j = {w ∈ Σ∗ ∣ xj ⇒∗L w}, 1 ≤ j ≤ n,
and by Theorem 5.9 applied to A = B we obtain �j = {w ∈ Σ! ∣ � : zj ⇒∗L
w, INV(�) ∩ {z1, . . . , zk} ∕= ∅}, 1 ≤ j ≤ n, 0 ≤ k ≤ n.

If our basic quemiring is ℕ∞⟨⟨Σ∗⟩⟩ × ℕ∞⟨⟨Σ!⟩⟩ we can draw some stronger
conclusions.

Theorem 5.6.3 Let Gj,k = (n,Σ, P, j, k), 1 ≤ j ≤ n, 0 ≤ k ≤ n, be a mixed
!-context-free grammar and xi = pi(x1, . . . , xn), zi = qi(x1, . . . , xn, z1, . . . , zn),
1 ≤ i ≤ n be the mixed !-algebraic system over (ℕ∞⟨⟨Σ∗⟩⟩,ℕ∞⟨⟨Σ!⟩⟩) corre-
sponding to it. Let (�, �) be the solution of order k, 0 ≤ k ≤ n, of xi = pi,
zi = qi, 1 ≤ i ≤ n. Denote by dj(w), w ∈ Σ∗ (resp. w ∈ Σ!) the number (possi-
bly ∞) of distinct finite leftmost derivations (resp. infinite leftmost derivations
� with INV(�) ∩ {z1, . . . , zk} ∕= ∅) from the variable xj (resp. zj), 1 ≤ j ≤ n.
Then

�j =
∑
w∈Σ∗

dj(w)w and �j =
∑
w∈Σ!

dj(w)w , 1 ≤ j ≤ n .

Proof. By Theorem 2.3.8 and by Theorem 5.9 applied to A = ℕ∞.

An !-context-free grammar (with repeated variables) G = (Φ,Σ, P,A, F) is a
usual context-free grammar (Φ,Σ, P,A) augmented by a set F ⊆ Φ of repeated
variables. (See also Cohen, Gold [23].)

An infinite leftmost derivation � with respect to G, starting from some string
� is given by

� : �⇒L �1 ⇒L �2 ⇒L . . . ,

where �, �i ∈ (Φ ∪ Σ)∗ and ⇒L is defined as usual. This infinite leftmost
derivation � can be uniquely written as

� = �0B00 ⇒∗L v0B00 ⇒L v0�1B110 ⇒∗L
v0v1B110 ⇒L v0v1�2B2210 ⇒∗L . . . ,

where vi ∈ Σ∗, �i, i ∈ (Φ ∪ Σ)∗, Bi → �i+1Bi+1i+1 ∈ P , �i ⇒∗L vi,
the specific occurence of the variable Bi is not rewritten in the subderivation
�iBii ⇒∗L viBii and the variables of i are never rewritten in the infinite left-
most derivation �. This occurence of the variable Bi is called the i-th significant
variable of �. (Observe that the infinite derivation tree of � has a unique infinite
path determining the Bi’s.) We write also, for this infinite leftmost derivation,
� : � ⇒!

L w for w = w0w1 . . . wn By definition, INV(�) = {Σ ∈ Φ ∣ Σ
is rewritten infinitely often in �}. The !-language L(G) generated by the !-
context-free grammar G is defined by

L(G) = {w ∈ Σ∗ ∣ A⇒∗L w} ∪ {w ∈ Σ! ∣ � : A⇒!
L w, INV(�) ∩ F ∕= ∅} .

5.6. !-CONTEXT-FREE GRAMMARS 141

An !-language L is called !-context-free if it is generated by an !-context-
free grammar. (Usually, an !-language is a subset of Σ!. Here it is a subset of
Σ∗ ∪ Σ!.)

The connection between an !-algebraic system over A⟨⟨Σ∗⟩⟩×A⟨⟨Σ!⟩⟩ and an
!-context-free grammar is as usual (see also Chapter 2, before Theorem 2.3.8).
We associate to a given !-context-free grammarGj = ({y1, . . . , yn},Σ, P, yj , {y1, . . . , yk})
the !-algebraic system yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, over A⟨⟨Σ∗⟩⟩×A⟨⟨Σ!⟩⟩ by
(pi, �) = 1 if yi → � ∈ P , (pi, �) = 0 otherwise. Conversely, we associate to an
!-algebraic system yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, the !-context-free grammars
Gj,k = ({y1, . . . , yn},Σ, P, yj , {y1, . . . , yk}), 1 ≤ j ≤ n, 0 ≤ k ≤ n, by yi → � iff
(pi, �) ∕= 0.

Each !-context-free grammar G induces a mixed !-context-free grammar
G′ as follows. Let G = (Φ,Σ, P,A, F), where without loss of generality, Φ =
{y1, . . . , yn}, A = yj , and F = {y1, . . . , yk}. Then G′ = (n,Σ, P ′, j, k), where
P ′ is defined as follows. Let yi → � = w0yi1w1 . . . wt−1yitwt ∈ P , where
yi, yi1 , . . . , yit ∈ Φ and w0, w1, . . . , wt ∈ Σ∗. Then we define the following set of
productions

Uyi→� = {xi → w0xi1w1 . . . wt−1xitwt} ∪
{zi → w0zi1 , zi → w0xi1w1zi2 , . . . , zi → w0xi1w1xi2 . . . wt−1zit} ,

and, moreover,

P ′ =
∪

yi→�∈P
Uyi→� .

It is clear that, for a finite leftmost derivation yi ⇒∗L w, w ∈ Σ∗ in G, there
exists a finite leftmost derivation xi ⇒∗L w in G′ using only the x-productions.
Moreover, for each infinite leftmost derivation in G

yi ⇒L �1yi11 ⇒∗L w1yi11 ⇒L w1�2yi221 ⇒∗L
w1w2yi221 ⇒L w1w2�3yi3321 ⇒∗L . . .

where yi is the 0-th, and yij is the j-th significant variable, there exists the
following infinite leftmost derivation in G′:

zi ⇒L �̄1zi1 ⇒∗L w1zi1 ⇒L w1�̄2zi2 ⇒∗L w1w2zi2 ⇒L w1w2�̄3zi3 ⇒∗L . . . ,

where, if in �i the y’s are replaced by x’s, we get �̄i. Here zi → �̄1zi1 ∈
Uyi→�1yi11 and zij → �̄j+1zij+1 ∈ Uyij→�j+1yij+1

j+1 . Both infinite leftmost

derivations generate w1w2w3 . . . ∈ Σ!.
Vice versa, to each infinite leftmost derivation zi ⇒!

L w in G′ there exists,
in the same manner, an infinite leftmost derivation in G yi ⇒!

L w, w ∈ Σ!.
Moreover, if P ′ is the disjoint union of the Uyi→� for all yi → � ∈ P , then the
correspondence between infinite leftmost derivations in G and in G′ is one-to-
one.

For an infinite leftmost derivation � in an !-context-free grammar G, define
INSV(�) = {yi ∈ Φ ∣ yi appears infinitely often as a significant variable in �}.

142 CHAPTER 5. FINITE AND INFINITE WORDS

Clearly, if for all infinite leftmost derivations � of the !-context-free grammar
G = (Φ,Σ, P,A, F), INV(�) ∩ F ∕= ∅ iff INSV(�) ∩ F ∕= ∅, then L(G′) = L(G),
where G′ is the mixed !-context-free grammar induced by G.

Theorem 5.6.4 Let Gj,k = ({y1, . . . , yn},Σ, P, yj , {y1, . . . , yk}), 1 ≤ j ≤ n,
0 ≤ k ≤ n, be an !-context-free grammar and yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, be
the !-algebraic system over B⟨⟨Σ∗⟩⟩×B⟨⟨Σ!⟩⟩ corresponding to it. Assume that,
for each infinite leftmost derivation �, INV(�)∩ {y1, . . . , yk} ∕= ∅ iff INSV(�)∩
{y1, . . . , yk} ∕= ∅. Let (�, �) be the solution of order k, 0 ≤ k ≤ n, of the !-
algebraic system over (B⟨⟨Σ∗⟩⟩,B⟨⟨Σ!⟩⟩) induced by yi = pi, 1 ≤ i ≤ n. Then
L(Gj,k) = �j + �j, 1 ≤ j ≤ n, 0 ≤ i ≤ k.

Theorem 5.6.5 Let Gj,k = ({y1, . . . , yn},Σ, P, yj , {y1, . . . , yk}), 1 ≤ j ≤ n,
0 ≤ k ≤ n, be an !-context-free grammar and yi = pi(y1, . . . , yn), 1 ≤ i ≤
n, be the !-algebraic system over ℕ∞⟨⟨Σ∗⟩⟩ × ℕ∞⟨⟨Σ!⟩⟩ corresponding to it.
Assume that, for each infinite leftmost derivation �, INV(�) ∩ {y1, . . . , yk} ∕= ∅
iff INSV(�) ∩ {y1, . . . , yk} ∕= ∅. Denote by dj(w), w ∈ Σ∗ (resp. w ∈ Σ!) the
number (possibly∞) of distinct finite leftmost derivations (resp. infinite leftmost
derivations � with INSV(�)∩{y1, . . . , yk} ∕= ∅) from the variable yj, 1 ≤ j ≤ n.
Then

�j =
∑
w∈Σ∗

dj(w)w and �j =
∑
w∈Σ!

dj(w)w , 1 ≤ j ≤ n .

Observe, that if k = n or n = 1, then the assumption INV(�)∩{y1, . . . , yk} ∕= ∅
iff INSV(�) ∩ {y1, . . . , yk} ∕= ∅ for all � is satisfied.

Example 5.6.1 (see also Cohen, Gold [23], Example 3.1.6). Consider the !-
algebraic system over B⟨⟨Σ∗⟩⟩ × B⟨⟨Σ!⟩⟩ where Σ = {a, b}: y1 = ay1b + ab,
y2 = y1y2. It induces the mixed !-algebraic system over (B⟨⟨Σ∗⟩⟩,B⟨⟨Σ!⟩⟩)
x1 = ax1b + ab, x2 = x1x2, z1 = az1, z2 = z1 + x1z2. The least solution of

x1 = ax1b + ab, x2 = x1x2 is given by � =
(∑

n≥1 a
nbn, 0

)T
. The z-equations

can be written in the form z = Mz, where M =

(
a 0
" x1

)
. We obtain

M!1 =

(
a!

x∗1a
!

)
and M!2 =

(
a!

x!1 + x∗1a
!

)
.

The !-context-free grammar G corresponding to the !-algebraic system has
productions y1 → ay1b, y1 → ab, y2 → y1y2. The infinite leftmost derivations
are

(i) y1 ⇒L ay1b ⇒L aay1bb ⇒L . . . ⇒L any1b
n ⇒L . . ., i. e., y1 ⇒!

L a!, with
repeated variable y1;

(ii) y2 ⇒L y1y2 ⇒∗L an1bn1y2 ⇒L an1bn1y1y2 ⇒∗L an1bn1 . . . antbnty2 ⇒L . . .,
i. e., y1 ⇒!

L a
n1bn1 . . . antbnt . . ., with repeated variables y1, y2;

(iii) y2 ⇒∗L an1bn1 . . . antbnty2 ⇒L a
n1bn1 . . . antbnty1y2 ⇒!

L a
n1bn1 . . . antbnta!,

i. e., y2 ⇒!
L a

n1bn1 . . . antbnta!, t ≥ 0, with repeated variable y1.

5.6. !-CONTEXT-FREE GRAMMARS 143

If y1 is the only repeated variable, and y1 or y2 is the start variable, then

L(G1,1) =
∑
n≥1 a

nbn + a! or L(G2,1) =
(∑

n≥1 a
nbn
)!
∪
(∑

n≥1 a
nbn
)∗
a!,

respectively. If the repeated variables are y1 and y2, and y1 or y2 is the
start variable then we obtain again L(G1,2) =

∑
n≥1 a

nbn + a! or L(G2,2) =(∑
n≥1 a

nbn
)!
∪
(∑

n≥1 a
nbn
)∗
a!, respectively. Compare this with the so-

lutions of order 1 or 2 of the !-algebraic system y1 = ay1b + ab, y2 = y1y2:(∑
n≥1 a

nbn, 0
)T

+
(
a!,
(∑

n≥1 a
nbn
)!

a!
)T

or
(∑

n≥1 a
nbn, 0

)T
+
(
a!,
(∑

n≥1 a
nbn
)!

+(∑
n≥1 a

nbn
)∗
a!
)T

, respectively. If y1 is the only repeated variable and y2 is

the start variable then
(∑

n≥1 a
nbn
)!

is missing. That is due to the fact that

in the derivations (ii) each y1 derives a finite word anj bnj by a finite leftmost
subderivation y1 ⇒∗L anj bnj and never is a significant variable.

If all variables are repeated variables that does not matter: each infinite
leftmost derivation contributes to the generated language. Hence, if the repeated
variables are y1, y2 and the start variable is y1 or y2, the infinite parts of the
solutions of order 1 or 2 correspond to the generated languages by Theorem 6.4.

In the next example there is only one variable. Hence, we can apply Theo-
rems 6.4 and 6.5.

Example 5.6.2. Consider the !-algebraic system y1 = ay1y1 +b over ℕ∞⟨⟨Σ∗⟩⟩×
ℕ∞⟨⟨Σ!⟩⟩, where Σ = {a, b}. The least solution of the algebraic system x1 =
ax1x1 +b over ℕ∞⟨⟨Σ∗⟩⟩ is given by � = D∗b, where D is the characteristic series
of the restricted Dyck language (see Berstel [4]). The mixed !-algebraic system
over (ℕ∞⟨⟨Σ∗⟩⟩,ℕ∞⟨⟨Σ!⟩⟩) x1 = ax1x1 + b, z1 = az1 + ax1z1 has the solution of
order 1 (D∗b, (a + ax1)!(D∗b)) = (D∗b, (a + aD∗b)!) = (D∗b, (a + D)!), since
aD∗b = D.

The !-context-free grammar corresponding to y1 = ay1y1+b has productions
y1 → ay1y1, y1 → b and generates the language D∗b+(a+D)! = D∗b+(a∗D)!+
(a∗D)∗a!.

Since each word in (a∗D)∗ and in (a∗D)! has a unique factorization into
words of a∗D, all coefficients of D∗b+(a+D)! are 0 or 1, i. e., the !-context-free
grammar with productions y1 → ay1y1, y1 → b is an “unambiguous” !-context-
free grammar.

Let (A, V) be a continuous starsemiring-omegasemimodule pair and inspect
the solutions of order k: If (�, !) is a solution of order k of an A′-algebraic
system over A × V then � ∈ Alg(A′) and ! is the k-th automata theoretic
solution of a finite Alg(A′)-linear system. Hence, by Theorem 4.9, ! is of the
form ! =

∑
1≤j≤m sjt

!
j with sj , tj ∈ ℜat(Alg(A′)) = Alg(A′). Hence, again by

Theorem 4.9 we obtain the following result.

Theorem 5.6.6 Let (A, V) be a continuous starsemiring-omegasemimodule pair.
Then the following statements are equivalent for (s, v) ∈ A× V :

(i) (s, v) = ∣∣A∣∣, where A is a finite Alg(A′)-automaton,

144 CHAPTER 5. FINITE AND INFINITE WORDS

(ii) (s, v) ∈ !-Alg(A′),

(iii) s ∈ Alg(A′) and v =
∑

1≤k≤m skt
!
k , where sk, tk ∈ Alg(A′).

Theorem 5.6.7 Let (A, V) be a continuous starsemiring-omegasemimodule pair.
Then !-Alg(A′) is a generalized starquemiring.

Proof. Since, by assumption, 0, 1 ∈ A′ we infer that 0, 1 ∈ !-Alg(A′). Assume
now that (�1, !1) and (�2, !2) are in !-Alg(A′). Then, by Theorem 6.6, �1, �2 ∈
Alg(A′) and !1 =

∑
1≤k≤m1

s1
kt

1
k
!

, !2 =
∑

1≤k≤m2
s2
kt

2
k
!

for some s1
k, s

2
k, t

1
k, t

2
k ∈

Alg(A′). We obtain

(�1, !1) + (�2, !2) = (�1 + �2,
∑

1≤k≤m1

s1
kt

1
k
!

+
∑

1≤k≤m2

s2
kt

2
k
!

)

and

(�1, !1) ⋅ (�2, !2) = (�1�2,
∑

1≤k≤m1

s1
kt

1
k
!

+ �1 ⋅
∑

1≤k≤m2

s2
kt

2
k
!

) .

Hence, (�1, !1) + (�2, !2) and (�1, !1) ⋅ (�2, !2) are again in !-Alg(A′).
Moreover, we obtain

(�1, !1)¶ = (�1, 0)

and

(�1, !1)⊗ = (�∗1 , �
!
1 + �∗1 ⋅

∑
1≤k≤m1

s1
kt

1
k
!

) .

Hence, (�1, !1)¶ and (�1, !1)⊗ are again in !-Alg(A′) and !-Alg(A′) is rationally
closed.

Notation 3.1.5, Definition 2.2.1 and Theorem 4.1.8(a) of Cohen, Gold [23]
and Theorem 6.6(iii) yield the next result.

Theorem 5.6.8 CFL! = {L0 ⊆ Σ! ∣ L0 ∈ B!-alg⟨⟨Σ∗,Σ!⟩⟩, Σ an alphabet}.

Let t ∈ Balg⟨⟨Σ∗⟩⟩. Then t is the x2-component of the least solution of an
algebraic system xi = pi(x2, . . . , xn), 2 ≤ i ≤ n, over Balg⟨⟨Σ∗⟩⟩. Consider the
!-algebraic system over B⟨⟨Σ∗⟩⟩ × B⟨⟨Σ!⟩⟩:

y1 = y2y1 , yi = pi(y2, . . . , yn), 2 ≤ i ≤ n ,

and consider the induced mixed !-algebraic system over (B⟨⟨Σ∗⟩⟩,B⟨⟨Σ!⟩⟩):

z1 = z2 + x2z1 , zi = (pi)x(x1, . . . , xn, z1, . . . , zn), 2 ≤ i ≤ n ,
x1 = x2x1 , xi = pi(x2, . . . , xn), 2 ≤ i ≤ n .

The first component of the least solution of x1 = x2x1, xi = pi(x2, . . . , xn),
2 ≤ i ≤ n, is 0. We now compute the solution of order 1 of z1 = z2 + x2z1,
zi = (pi)x(x1, . . . , xn, z1, . . . , zn), 2 ≤ i ≤ n. We write the system in the form

5.7. TRANSDUCTIONS AND ABSTRACT !-FAMILIES 145

z = Mz and obtain M =

⎛⎜⎜⎜⎝
x2 " 0 . . . 0
0
...
0

M ′

⎞⎟⎟⎟⎠. Hence, the first component of

M!1 is x!2 and the first component of the solution of order 1 is given by (0, t!).
Consider now the !-context-free grammar G corresponding to y1 = y2y1,

yi = pi, 2 ≤ i ≤ n, with the set of repeated variables {y1} and start variable y1.
The only infinite leftmost derivations �, where y1 appears infinitely often, are
of the form

� : y1 ⇒L y2y1 ⇒∗L w1y1 ⇒L w1y2y1 ⇒∗L w1w2y1 ⇒L

The only significant variable of such a derivation � is y1, i. e., INSV(�) = {y1},
and INSV(�) ∩ {y1} ∕= ∅ iff INV(�) ∩ {y1} ∕= ∅. Hence, L(G1,1) = t! by
Theorem 3.3.

The usual constructions yield then, for s + v, where v =
∑

1≤k≤n skt
!
k ,

s, sk, tk ∈ Balg⟨⟨Σ∗⟩⟩, an !-context-free grammar G′ such that L(G′) = s+ v.
Hence, we have given a construction proving again Theorem 6.8. But addi-

tionally, G′ has the nice property that for each infinite leftmost derivation �,
we obtain INSV(�) ∩ F ∕= ∅ iff INV(�) ∩ F ∕= ∅, where F is the set of repeated
variables of G′.

5.7 Transductions and abstract !-families of power
series

In the sequel, (A, V) and (Â, V̂) denote semiring-semimodule pairs, and Q and
J (resp. I), possibly provided with indices, denote finite (resp. arbitrary) in-
dex sets. A mapping (ℎA, ℎV) of semiring-semimodule pairs (from (Â, V̂) into
(A, V)) is given by mappings ℎA : Â → A and ℎV : V̂ → V . Let (Â, V̂) and
(A, V) be starsemiring-omegasemimodule pairs. Then such a mapping (ℎA, ℎV)
is called a morphism of starsemiring-omegasemimodule pairs (from (Â, V̂) into
(A, V)) if ℎA : Â → A is a semiring morphism, ℎV : V̂ → V is a monoid
morphism, and the following conditions are satisfied for all s ∈ Â, v ∈ V̂ :

(i) ℎA(s)ℎV (v) = ℎV (sv),

(ii) ℎA(s)∗ = ℎA(s∗),

(iii) ℎA(s)! = ℎV (s!).

Let now (Â, V̂) and (A, V) be complete semiring-semimodule pairs. Then
a mapping (ℎA, ℎV) of semiring-semimodule pairs (from (Â, V̂) into (A, V)) is
called a morphism of complete semiring-semimodule pairs (from (Â, V̂) into
(A, V)) if ℎA : Â → A is a semiring morphism, ℎV : V̂ → V is a monoid
morphism and the following conditions are satisfied for all s, si ∈ Â, v ∈ V̂ :

(i) ℎA(s)ℎV (v) = ℎV (sv),

146 CHAPTER 5. FINITE AND INFINITE WORDS

(ii)
∑
i∈I ℎA(si) = ℎA(

∑
i∈I si),

(iii)
∏
i≥1 ℎA(si) = ℎV (

∏
i≥1 si).

A mapping (ℎA, ℎV), where ℎA : Â → AQ
′
1×Q

′
2 and ℎV : V̂ → V Q

′
, can be

extended to a mapping (ℎ′A, ℎ
′
V), where ℎ′A : ÂQ1×Q2 → A(Q1×Q′1)×(Q2×Q′2) and

ℎ′V : V̂ Q → V Q×Q
′

by ℎ′A(M)(q1,q′1),(q2,q′2) = ℎA(Mq1,q2)q′1,q′2 and ℎ′V (P)(q,q′) =

ℎV (Pq)q′ for M ∈ Σ̂Q1×Q2 , P ∈ V̂ Q, q1 ∈ Q1, q2 ∈ Q2, q′1 ∈ Q′1, q′2 ∈ Q′2, q ∈ Q,
q′ ∈ Q′.

LetQ1 =
∪
j1∈J1

Q1
j1

, Q1
j1
∩Q1

j′1
= ∅ for j1 ∕= j′1, Q2 =

∪
j2∈J2

Q2
j2

, Q2
j2
∩Q2

j′2
=

∅ for j2 ∕= j′2, and partition the matrix M ∈ Σ̂Q1×Q2 according to the partitions
of Q1 and Q2 into blocks M(Q1

j1
, Q2

j2
), i. e., write M = (M(Q1

j1
, Q2

j2
))j1∈J1,j2∈J2

.

It is then easily shown that ℎ′A(M) = (ℎ′A(M(Q1
j1
, Q2

j2
)))j1∈J1,j2∈J2 . If P ∈

Σ̂Q is partitioned into blocks P (Q1
j1

), i. e., P = (P (Q1
j1

))j1∈J1
, then ℎ′V (P) =

(ℎ′V (P (Q1
j1

)))j1∈J1
.

In the sequel, we use the same notation for the mappings (ℎA, ℎV) and
(ℎ′A, ℎ

′
V).

Theorem 5.7.1 Let (A, V) and (Â, V̂) be starsemiring-omegasemimodule pairs
and let (ℎA, ℎV), where ℎA : Â → An

′×n′ and ℎV : V̂ → V n
′
, be a morphism

of starsemiring-omegasemimodule pairs. Then the extended mapping (ℎA, ℎV),
where ℎA : Ân×n → A(n×n′)×(n×n′) and ℎV : V̂ n → V (n×n′) is again a mor-
phism of starsemiring-omegasemimodule pairs.

Proof. It is easily proven that ℎA : Ân×n → A(n×n′)×(n×n′) is a semiring mor-
phism and ℎV : V̂ n → V n×n

′
is a monoid morphism. Item (i) of the conditions

of the definition of a morphism of starsemiring-omegasemimodule pairs is also
easily proven. We prove only items (ii) and (iii) by induction on n.

For n = 0, 1, the theorem is clear. If n > 1, partition M ∈ Ân×n according
to (1). We obtain

ℎA(M)∗ =

(
ℎA(a) ℎA(b)
ℎA(c) ℎA(d)

)∗
=

(
� �
 �

)
= ℎA(

(
�′ �′

′ �′

)
) = ℎA(M∗) ,

where

� = (ℎA(a) + ℎA(b)ℎA(d)∗ℎA(c))∗ = ℎA(�′), �′ = a+ bd∗c,
� = (ℎA(d) + ℎA(c)ℎA(a)∗ℎA(b))∗ = ℎA(�′), �′ = d+ ca∗b,
� = ℎA(a)∗ℎA(b)� = ℎA(�′), �′ = a∗b�′ and
 = ℎA(d)∗ℎA(c)� = ℎA(′), ′ = d∗c�′,

and

ℎA(M)! =

(
ℎA(a) ℎA(b)
ℎA(c) ℎA(d)

)!
=

(
�
�

)
= ℎV (

(
�′

�′

)
) = ℎV (M!) ,

5.7. TRANSDUCTIONS AND ABSTRACT !-FAMILIES 147

where

� = (ℎA(a) + ℎA(b)ℎA(d)∗ℎA(c))!+
(ℎA(a) + ℎA(b)ℎA(d)∗ℎA(c))∗ℎA(b)ℎA(d)! =
ℎA(�′)! + ℎA(�′′)ℎA(d)! = ℎV (�′!)+
ℎA(�′′)ℎV (d!) = ℎV (�′!) + ℎV (�′′d!) = ℎV (�′! + �′′d!),

�′ = a+ bd∗c, �′′ = (a+ bd∗c)∗b,
� = (ℎA(d) + ℎA(c)ℎA(a)∗ℎA(b))!+

(ℎA(d) + ℎA(c)ℎA(a)∗ℎA(b))∗ℎA(c)ℎA(a)! =
ℎA(�′)! + ℎA(�′′)ℎA(a)! = ℎV (�′!) + ℎA(�′′)ℎV (a!) =
ℎV (�′!) + ℎV (�′′a!) = ℎV (�′! + �′′a!),

�′ = (d+ ca∗b)!, �′′ = (d+ ca∗b)∗c.

Corollary 5.7.2 Let (A, V) and (Â, V̂) be starsemiring-omegasemimodule pairs
and let (ℎA, ℎV), where ℎA : Â → A and ℎV : V̂ → V , be a morphism of
starsemiring-omegasemimodule pairs. Then the extended mapping (ℎA, ℎV),
where ℎA : Ân×n → An×n and ℎV : V̂ n → V n, is again a morphism of
starsemiring-omegasemimodule pairs.

Proof. Take n′ = 1 in Theorem 7.1.

In the next theorem we consider a matrix M ′!(k,n′) for M ′ ∈ A(n×n′)×(n×n′),
0 ≤ k ≤ n. This matrix is defined as follows (in accordance with (1)): We

partition M ′ into blocks M ′ =

(
a b
c d

)
, where a is (k × n′) × (k × n′) and

contains the entries of M ′ with indices (1, 1), . . . , (1, n′), . . . , (k, 1), . . . , (k, n′);
and where d is (n − k, n′) × (n − k, n′), and contains the entries of M ′ with
indices (k + 1, 1), . . . , (k + 1, n′), . . . , (n, 1), . . . , (n, n′). Then

M ′!(k,n′) =

(
(a+ bd∗c)!

d∗c(a+ bd∗c)!

)
.

Theorem 5.7.3 Let (A, V) and (Â, V̂) be starsemiring-omegasemimodule pairs
and let (ℎA, ℎV), where ℎA : Â → An

′×n′ and ℎV : V̂ → V n
′
, be a morphism

of starsemiring-omegasemimodule pairs. Then ℎA(M)!(k,n′) = ℎV (M!k) for
M ∈ Ân×n.

Proof. Partition M ∈ Ân×n into M =

(
a b
c d

)
, where a is k × k and d is

(n− k)× (n− k). Then we obtain

ℎA(M) =

(
ℎA(a) ℎA(b)
ℎA(c) ℎA(d)

)
∈ A(n×n′)×(n×n′)

148 CHAPTER 5. FINITE AND INFINITE WORDS

and

ℎA(M)!(k,n′) =

(
(ℎA(a) + ℎA(b)ℎA(d)∗ℎA(c))!

ℎA(d)∗ℎA(c)(ℎA(a) + ℎA(b)ℎA(d)∗ℎA(c))!

)
=(

ℎA(a+ bd∗c)!

ℎA(d∗c)ℎA(a+ bd∗c)!

)
=

(
ℎV ((a+ bd∗c)!)

ℎA(d∗c)ℎV ((a+ bd∗c)!)

)
=(

ℎV ((a+ bd∗c)!)
ℎV (d∗c(a+ bd∗c)!)

)
= ℎV (

(
(a+ bd∗c)!

d∗c(a+ bd∗c)!

)
) = ℎV (M!k) .

In the sequel, (A, V) and (Â, V̂) denote starsemiring-omegasemimodule pairs,
and A′, Â′ denote subsets of A and Â.

A morphism (ℎA, ℎV) of starsemiring-omegasemimodule pairs is called (Â′, A′)-
rational or (Â′, A′)-algebraic if, for all s ∈ Â′, ℎA(s) ∈ ℜat(A′)Q×Q or ℎA(s) ∈
Alg(A′)Q×Q, respectively. If Â = A, V̂ = V and Â′ = A′, these morphisms are
called A′-rational or A′-algebraic, respectively.

We are now ready to introduce the notions of a rational and an algebraic
transducer over starsemiring-omegasemimodule pairs.

An (Â′, A′)-rational transducer (over starsemiring-omegasemimodule pairs
(Â, V̂) and (A, V))

T = (n′, I ′, (ℎA, ℎV), P ′)

is given by

(i) a finite set of states {1, . . . , n′}, n′ ≥ 1,

(ii) an (Â′, A′)-rational morphism (ℎA, ℎV) of starsemiring-omegasemimodule
pairs, where ℎA : Â→ An

′×n′ and ℎV : V̂ → V n
′
,

(iii) I ′ ∈ ℜat(A′)1×n′ , called the initial state vector,

(iv) P ′ ∈ ℜat(A′)n
′×1, called the final state vector.

The mapping ∣∣T∣∣ : Â×V̂ → A×V from the quemiring Â×V̂ into the quemiring
A × V realized by an (Â′, A′)-rational transducer T = (n′, I ′, (ℎA, ℎV), P ′) is
defined by

∣∣T∣∣((s, v)) = (I ′ℎA(s)P ′, I ′ℎV (v)) ,

s ∈ Â, v ∈ V̂ . We use also the notation

∣∣T∣∣(s+ v) = I ′ℎA(s)P ′ + I ′ℎV (v) .

Observe that ∣∣T∣∣(s, 0) = (I ′ℎA(s)P ′, 0) and ∣∣T∣∣(0, v) = (0, I ′ℎV (v)). Hence,
∣∣T∣∣(s+ v) = ∣∣T∣∣(s) + ∣∣T∣∣(v).

A mapping � : Â× V̂ → A× V is called an (Â′, A′)-rational transduction if
there exists an (Â′, A′)-rational transducer T such that �((s, v)) = ∣∣T∣∣((s, v))
for all s ∈ Â, v ∈ V̂ . In this case, we say that � is realized by T. An (A′, A′)-
rational transducer (in case Â = A and Â′ = A) is called an A′-rational trans-
ducer and an (A′, A′)-rational transduction is called an A′-rational transduction.

5.7. TRANSDUCTIONS AND ABSTRACT !-FAMILIES 149

An (Â′, A′)-algebraic transducer T = (n′, I ′, (ℎA, ℎV), P ′) is defined ex-
actly as an (Â′, A′)-rational transducer except that (ℎA, ℎV) is now an (Â′, A′)-
algebraic morphism of starsemiring-omegasemimodule pairs, and the entries of
I ′ and P ′ are in Alg(A′). The definitions of the notions of (Â′, A′)-algebraic
transduction, A′-algebraic transducer and A′-algebraic transduction should be
clear.

We now show that (Â′, A′)-rational transductions map !-ℜat(Â′) into !-
ℜat(A′).

Theorem 5.7.4 Let (Â, V̂) and (A, V) be Conway semiring-semimodule pairs.
Assume that T is an (Â′, A′)-rational transducer and that (s, v) ∈ !-ℜat(Â′).
Then ∣∣T∣∣((s, v)) ∈ !-ℜat(A′).

Proof. Let (s, v) be the behavior of the finite Â′-automaton A = (n, I,M, P, k).
Assume that T = (n′, I ′, (ℎA, ℎV), P ′). We consider now the finite A-automaton
A′ = (n × n′, I ′ℎA(I), ℎA(M), ℎA(P)P ′, k × n′). Since the entries of ℎA(s)
are in ℜat(A′) for s ∈ Â′, A′ is in fact a finite ℜat(A′)-automaton. Hence,
by (iii) of Theorem 4.9, there exist s, tk, sk ∈ ℜat(ℜat(A′)) = ℜat(A′) such
that ∣∣A∣∣ = s+

∑
1≤k≤m skt

!
k . This implies that ∣∣A′∣∣ ∈ !-ℜat(A′). We obtain

∣∣A′∣∣ = I ′ℎA(I)ℎA(M)∗ℎA(P)P ′ + I ′ℎA(I)ℎA(M)!(k×n′) =
I ′ℎA(I)ℎA(M∗)ℎA(P)P ′ + I ′ℎA(I)ℎV (M!k) =
I ′ℎA(IM∗P)P ′ + I ′ℎV (IM!k) = ∣∣T∣∣(∣∣A∣∣) .

Here the second equality follows by Theorem 7.1 and the third equality follows
by Theorems 7.1 and 7.3. Hence, ∣∣T∣∣(∣∣A∣∣) ∈ ℜat(A′).

We now consider the functional composition of A′-rational transductions.

Theorem 5.7.5 Let (A, V) be a starsemiring-omegasemimodule pair. Then the
family of A′-rational transductions is closed under functional composition.

Proof. Let T′ = (n′, I ′, (ℎ′A, ℎ
′
V), P ′) and T′′ = (n′′, I ′′, (ℎ′′A, ℎ

′′
V), P ′′) be two A′-

rational transducers. We want to show that the mapping � : A × V → A × V
defined by �((s, v)) = ∣∣T′′∣∣(∣∣T′∣∣((s, v))), s ∈ A, v ∈ V , is again an A′-rational
transduction.

Consider T = (n′ × n′′, I ′′ℎ′′A(I ′), (ℎ′′A ∘ ℎ′A, ℎ′′V ∘ ℎ′V), ℎ′′A(P ′)P ′′). By Theo-
rem 4.2.3 and by Theorem 7.3 the mapping (ℎ′′A ∘ℎ′A, ℎ′′V ∘ℎ′V) is an A′-rational
morphism of starsemiring-omegasemimodule pairs. Furthermore, the entries of
I ′′ℎ′′A(I ′) and ℎ′′A(P ′)P ′′ are in ℜat(A′). Hence, T is a rational A′-transducer
over starsemiring-omegasemimodule pairs. We obtain, for s ∈ A, v ∈ V ,

∣∣T∣∣(s+ v) = I ′′ℎ′′A(I ′)ℎ′′A(ℎ′A(s))ℎ′′A(P ′)P ′′ + I ′′ℎ′′A(I ′)ℎ′′V (ℎ′V (v)) =
I ′′ℎ′′A(I ′ℎ′A(s)P ′)P ′′ + I ′′ℎ′′V (I ′ℎ′V (v)) =
I ′′ℎ′′A(∣∣T′∣∣(s))P ′′ + I ′′ℎ′′V (∣∣T′∣∣(v)) = ∣∣T′′∣∣(∣∣T′∣∣(s+ v)) .

Hence, our theorem is proved.

Assume that (Ai, Vi) are starsemiring-omegasemimodule pairs and A′i ⊆ Ai,
i = 1, 2, 3. Then, by a proof similar to that of Theorem 7.5, we obtain the

150 CHAPTER 5. FINITE AND INFINITE WORDS

following result: If �1 is an (A′1, A
′
2)-rational transduction and �2 is an (A′2, A

′
3)-

rational transduction then the composite of �1 and �2 is an (A′1, A
′
3)-rational

transduction.
We now show that (Â′, A′)-algebraic transductions map !-Alg(Â′) into !-

Alg(Â′). The proof is similar to that of Theorem 7.4.

Theorem 5.7.6 Let (Â, V̂) and (A, V) be continuous semiring-semimodule pairs.
Assume that T is an (Â′, A′)-algebraic transducer and that (s, v) ∈ !-Alg(Â′).
Then ∣∣T∣∣((s, v)) ∈ !-Alg(A′).

Proof. Let (s, v) be the behavior of the finite Â′-automaton A = (n, I,M, P, k).
Assume that T = (n′, I ′, (ℎA, ℎV), P ′). We consider now the finite A-automaton
A′ = (n × n′, I ′ℎA(I), ℎA(M), ℎA(P)P ′, k × n′). Since the entries of ℎA(s)
are in Alg(A′) for s ∈ Â′, A′ is in fact a finite Alg(A′)-automaton. Hence,
by (iii) of Theorem 6.6, there exist s, tk, sk ∈ Alg(Alg(A′)) = Alg(A′) such that
∣∣A∣∣ = s +

∑
1≤k≤m skt

!
k . This implies that ∣∣A′∣∣ ∈ !-Alg(A′). We obtain

∣∣A′∣∣ = ∣∣T∣∣(∣∣A∣∣) as in the proof of Theorem 7.4. Hence, ∣∣T∣∣(∣∣A∣∣) ∈ Alg(A′).

We now consider the functional composition of A′-algebraic transductions.
The proof of the next theorem is similar to that of Theorem 7.5.

Theorem 5.7.7 Let (A, V) be a continuous semiring-semimodule pair. Then
the family of A′-algebraic transductions is closed under functional composition.

Proof. Let T′ = (n′, I ′, (ℎ′A, ℎ
′
V), P ′) and T′′ = (n′′, I ′′, (ℎ′′A, ℎ

′′
V), P ′′) be two A′-

algebraic transducers. We want to show that the mapping � : A× V → A× V
defined by �((s, v)) = ∣∣T′′∣∣(∣∣T′∣∣((s, v))), s ∈ A, v ∈ V , is again an A′-algebraic
transduction.

Consider T = (n′ × n′′, I ′′ℎ′′A(I ′), (ℎ′′A ∘ ℎ′A, ℎ′′V ∘ ℎ′V), ℎ′′A(P ′)P ′′). By Theo-
rem 4.2.6 and by Theorem 7.3 the mapping (ℎ′′A ∘ℎ′A, ℎ′′V ∘ℎ′V) is an A′-algebraic
morphism of starsemiring-omegasemimodule pairs. Furthermore, the entries of
I ′′ℎ′′A(I ′) and ℎ′′A(P ′)P ′′ are in Alg(A′). Hence, T is a algebraic A′-transducer
over starsemiring-omegasemimodule pairs. We obtain, for s ∈ A, v ∈ V ,
∣∣T∣∣(s+ v) = ∣∣T′′∣∣(∣∣T′∣∣(s+ v)) as in the proof of Theorem 7.5.

Assume that (Ai, Vi) are continuous semiring-semimodule pairs and A′i ⊆
Ai, i = 1, 2, 3. Then, by a proof similar to that of Theorem 7.7, we obtain
the following result: If �1 is an (A′1, A

′
2)-algebraic transduction and �2 is an

(A′2, A
′
3)-algebraic transduction then the composite of �1 and �2 is an (A′1, A

′
3)-

algebraic transduction.
For the rest of this section, A is a complete star-omega semiring, Σ∞ is

an infinite alphabet and Σ ⊆ Σ∞ is a finite subalphabet of Σ. All items may
be indexed. Hence, by Theorem 5.5, (A⟨⟨Σ∗∞⟩⟩, A⟨⟨Σ!∞⟩⟩) will be a complete
semiring-semimodule pair for the rest of this section.

We define

A{{Σ∗∞}} = {s ∈ A⟨⟨Σ∗∞⟩⟩ ∣ there exists a finite alphabet Σ ⊂ Σ∞

such that supp(s) ⊆ Σ∗} ,

5.7. TRANSDUCTIONS AND ABSTRACT !-FAMILIES 151

and

A{{Σ!∞}} = {v ∈ A⟨⟨Σ!∞⟩⟩ ∣ there exists a finite alphabet Σ ⊂ Σ∞

such that supp(v) ⊆ Σ!} ,

Then (A{{Σ∗∞}}, A{{Σ!∞}}) is a starsemiring-omegasemimodule pair. We as-
sume that A⟨⟨Σ∗⟩⟩ ⊂ A{{Σ∗∞}} and A⟨⟨Σ!⟩⟩ ⊂ A{{Σ!∞}}.

For the rest of this section, A denotes a commutative complete star-omega
semiring. Now, we define, additionally to similar definitions in Chapter 4,

Aalg{{Σ!∞}} = {v ∈ A{{Σ!∞}} ∣ there exists a finite alphabet Σ ⊂ Σ∞

and sk, tk ∈ Aalg⟨⟨Σ∗⟩⟩ such that v =
∑

1≤k≤m skt
!
k } ,

Arat{{Σ!∞}} = {v ∈ A{{Σ!∞}} ∣ there exists a finite alphabet Σ ⊂ Σ∞

and sk, tk ∈ Arat⟨⟨Σ∗⟩⟩ such that v =
∑

1≤k≤m skt
!
k } ,

A{Σ!∞} = {s ∈ A⟨Σ!⟩ ∣ Σ ⊂ Σ∞ finite} ,

A pair (ℎA, ℎV) of mappings ℎA : Σ∗∞ → (A⟨⟨Σ∗∞⟩⟩)n
′×n′ and ℎV : Σ!∞ →

(A⟨⟨Σ!∞⟩⟩)n
′

is called a representation if the following conditions are satisfied:

(i) the mapping ℎA is a multiplicative monoid morphism such that there
exists a finite Σ ⊂ Σ∞ with ℎA(x) = 0 for x ∈ Σ∞ − Σ,

(ii) ℎA(w)ℎV (u) = ℎV (wu) for all w ∈ Σ∗∞, u ∈ Σ!∞,

(iii)
∏
i≥0 ℎA(wi) = ℎV (

∏
i≥0 wi) for all wi ∈ Σ∗∞, i ≥ 0.

Observe that if (ℎA, ℎV) is a representation, there exist only finitely many entries
ℎA(x)i,j ∕= 0, x ∈ Σ∞. Hence, there is a finite Σ′ ⊂ Σ∞ such that ℎA(w)i,j ∈
A⟨⟨Σ′∗⟩⟩ for all w ∈ Σ∗∞. A representation (ℎA, ℎV) is called rational (resp. alge-
braic) if ℎA : Σ∗∞ → (Arat{{Σ∗∞}})n

′×n′ (resp. ℎA : Σ∗∞ → (Aalg{{Σ∗∞}})n
′×n′).

A representation (ℎA, ℎV) can be extended to a mapping (�A, �V), where
�A : A⟨⟨Σ∗∞⟩⟩ → (A{{Σ∗∞}})n

′×n′ and �V : A⟨⟨Σ!∞⟩⟩ → (A{{Σ!∞}})n
′

by the
definitions

�A(s) = �A(
∑
w∈Σ∗∞

(s, w)w) =
∑
w∈Σ∗∞

(s, w)⊗ ℎA(w), s ∈ A⟨⟨Σ∗∞⟩⟩

and

�V (v) = �V (
∑
u∈Σ!

∞

(v, u)u) =
∑
u∈Σ!

∞

(v, u)⊗ ℎV (u), v ∈ A⟨⟨Σ!∞⟩⟩ .

Here ⊗ denotes the Kronecker product (See Kuich, Salomaa [88]). If (ℎA, ℎV) is
a representation then its extension is always denoted by (�A, �V). This applies
also to indexed h’s and �’s.

Observe that in the next theorem, ((A{{Σ∗∞}})n
′×n′ , (A{{Σ!∞}})n

′
) is a com-

plete semiring-semimodule pair by Theorem 5.6.

152 CHAPTER 5. FINITE AND INFINITE WORDS

Theorem 5.7.8 Let A be a commutative complete star-omega semiring. If
(ℎA, ℎV) is a representation then (�A, �V) is a morphism of complete semiring-
semimodule pairs from (A{{Σ∗∞}}, A{{Σ!∞}}) into ((A{{Σ∗∞}})n

′×n′ , (A{{Σ!∞}})n
′
).

Proof. It is easily shown that �A is a semiring morphism and �V is a monoid
morphism. Moreover, we obtain for all s, si ∈ A{{Σ∗∞}} and v ∈ A{{Σ!∞}}:

(i) �A(s)�V (v) =
(
∑
w∈Σ∗∞

(s, w)⊗ ℎA(w))(
∑
u∈Σ!

∞
(v, u)⊗ ℎV (u)) =∑

w∈Σ∗∞

∑
u∈Σ!

∞
(s, w)(v, u)⊗ ℎA(w)ℎV (u) =∑

w∈Σ∗∞

∑
u∈Σ!

∞
(s, w)(v, u)⊗ ℎV (wu) ;

here we have applied Theorem 4.33 of Kuich, Salomaa [88] in the second equality;
and

�V (sv) = �V ((
∑
w∈Σ∗∞

(s, w)w)(
∑
u∈Σ!

∞
(v, u)u)) =

�V (
∑
w∈Σ∗∞

∑
u∈Σ!

∞
(s, w)(v, u)wu) =∑

w∈Σ∗∞

∑
u∈Σ!

∞
(s, w)(v, u)⊗ ℎV (wu) ,

i. e., �A(s)�V (v) = �V (sv).

(ii)
∑
i∈I �A(si) =∑
i∈I �A(

∑
w∈Σ∗∞

(si, w)w) =∑
i∈I
∑
w∈Σ∗∞

(si, w)⊗ ℎA(w) =∑
w∈Σ∗∞

(
∑
i∈I(si, w))⊗ ℎA(w) =

�A(
∑
i∈I si) .

(iii)
∏
i≥1 �A(si) =∏
i≥1

∑
wi∈Σ∗∞

((si, wi)⊗ ℎA(wi)) =∑
(w1,w2,...)∈Σ∗∞×Σ∗∞×...

∏
i≥1((si, wi)⊗ ℎA(wi)) =∑

(w1,w2,...)∈Σ∗∞×Σ∗∞×...
∏
i≥1(si, wi)⊗

∏
i≥1 ℎA(wi)

and
�V (

∏
i≥1 si) =

�V (
∏
i≥1

∑
wi∈Σ∗∞

(si, wi)wi) =

�V (
∑

(w1,w2,...)∈Σ∗∞×Σ∗∞×...
∏
i≥1((si, wi)wi)) =

�V (
∑

(w1,w2,...)∈Σ∗∞×Σ∗∞×...
∏
i≥1(si, wi)

∏
i≥1 wi) =∑

(w1,w2,...)∈Σ∗∞×Σ∗∞×...
∏
i≥1(si, wi)⊗ ℎV (

∏
i≥1 wi) ,

i. e., ∏
i≥1

�A(si) = �V (
∏
i≥1

si) .

We now specialize the notions of A′-rational and A′-algebraic transducers
for a fixed semiring A and a fixed alphabet Σ∞. A rational transducer

T = (n′, I ′, (ℎA, ℎV), P ′)

is given by

5.7. TRANSDUCTIONS AND ABSTRACT !-FAMILIES 153

(i) a finite set of states {1, . . . , n′}, n′ ≥ 1,

(ii) a rational representation (ℎA, ℎV),

(iii) I ′ ∈ (Arat{{Σ∗∞}})1×n′ , called the initial state vector,

(iv) P ′ ∈ (Arat{{Σ∗∞}})n
′×1, called the final state vector.

The mapping ∣∣T∣∣ : A⟨⟨Σ∗∞⟩⟩ × A⟨⟨Σ!∞⟩⟩ → A⟨⟨Σ∗∞⟩⟩ × A⟨⟨Σ!∞⟩⟩ realized by T is
then given by

∣∣T∣∣(s+ v) = I ′�A(s)P ′ + I ′�V (v) =
I ′
∑
w∈Σ∗∞

((s, w)⊗ ℎA(w))P ′ + I ′
∑
u∈Σ!

∞
(v, u)⊗ ℎV (u) =∑

w∈Σ∗∞
(s, w)I ′ℎA(w)P ′ +

∑
u∈Σ!

∞
(v, u)I ′ℎV (u) =∑

w∈Σ∗∞
(s, w)∣∣T∣∣(w) +

∑
u∈Σ!

∞
(v, u)∣∣T∣∣(u) .

Observe that there exists a finite Σ ⊂ Σ∞ such that ℎA(x) = 0 for x ∈
Σ∞ − Σ, ℎA(x) ∈ (Arat⟨⟨Σ∗⟩⟩)n′×n′ for x ∈ Σ, I ′ ∈ (Arat⟨⟨Σ∗⟩⟩)1×n′ and P ′ ∈
(Arat⟨⟨Σ∗⟩⟩)n′×1. Hence, in fact, ∣∣T∣∣ is a mapping A⟨⟨Σ∗⟩⟩×A⟨⟨Σ!⟩⟩ → A⟨⟨Σ∗⟩⟩×
A⟨⟨Σ!⟩⟩. Algebraic transducers with an algebraic representation (ℎA, ℎV) and
I ′ ∈ (Aalg{{Σ∗∞}})1×n′ , P ′ ∈ (Aalg{{Σ∗∞}})n

′×1, are defined in the same way.

A rational or an algebraic transducer T as specified above can be considered
to be a finite automaton equipped with an output device. In a state transition
from state i to state j, T reads a letter x ∈ Σ and outputs the rational or
algebraic power series ℎA(x)i,j . A finite or infinite sequence of state transitions
outputs the product of the power series of the single state transitions.

All finite sequences of n state transitions from state i to state j reading
a word w ∈ Σ∗, ∣w∣ = n, output the power series ℎA(w)i,j . This output is
multiplied with the correct components of the initial and final state vector, and
I ′iℎA(w)i,jP

′
j is said to be the translation of w by finite sequences of transitions

from i to j. Summing up, for all i, j ∈ {1, . . . , n′},
∑

1≤i,j≤n′ I
′
iℎA(w)i,jP

′
j =

I ′ℎA(w)P ′ = ∣∣T∣∣(w) is said to be the translation of w by T. A power series
s ∈ A⟨⟨Σ∗∞⟩⟩ is then translated by T to

∑
w∈Σ∗(s, w)I ′ℎA(w)P ′ = I ′�A(s)P ′ =

∣∣T∣∣(s).
All infinite sequences of state transitions starting in state i and reading a

word u ∈ Σ! output the power series ℎV (u)i. This output is multiplied with
the correct component of the initial state vector, and I ′ℎV (u)i is said to be
the translation of u by infinite sequences of transitions starting in i. Summing
up, for all i ∈ {1, . . . , n′},

∑
1≤i≤n′ I

′
iℎV (u)i = I ′ℎV (u) = ∣∣T∣∣(u) is said to be

the translation of u by T. Observe here that, if u =
∏
i≥0 xi, xi ∈ Σ∞, then

I ′ℎV (u) = I ′
∏
i≥0 ℎA(xi). A power series v ∈ A⟨⟨Σ!∞⟩⟩ is then translated by T

to
∑
u∈Σ(v, u)I ′ℎV (u) = I ′�V (v) = ∣∣T∣∣(v).

A power series pair s+v of the quemiring A⟨⟨Σ∗∞⟩⟩×A⟨⟨Σ!∞⟩⟩ is then translated
by T to the sum of the translations of s and v by T, i. e., to ∣∣T∣∣(s) + ∣∣T∣∣(v) =
∣∣T∣∣(s+ v).

Specializations of Theorems 7.4 and 7.6 yield the next result.

154 CHAPTER 5. FINITE AND INFINITE WORDS

Theorem 5.7.9 Let A be a commutative complete (resp. continuous) star-omega
semiring. Assume that T is a rational (resp. an algebraic) transducer and that
s ∈ Arat{{Σ∗∞}}, v ∈ Arat{{Σ!∞}} (resp. s ∈ Aalg{{Σ∗∞}}, v ∈ Aalg{{Σ!∞}}).
Then ∣∣T∣∣((s, v)) ∈ Arat{{Σ∗∞}}×Arat{{Σ!∞}} (resp. ∣∣T∣∣((s, v)) ∈ Aalg{{Σ∗∞}}×
Aalg{{Σ!∞}}).

Observe that if A = B then Theorem 7.9 is a statement on formal languages.

Theorem 5.7.10 Let A be a commutative complete star-omega semiring. Let
(ℎ′A, ℎ

′
V) and (ℎ′′A, ℎ

′′
V) be rational representations with extensions (�′A, �

′
V) and

(�′′A, �
′′
V), respectively. Then (ℎA, ℎV) = (�′′A ∘ ℎ′A, �′′V ∘ ℎ′V) is again a rational

representation and its extension (�A, �V) satisfies �A(s) = �′′A(�′A(s)), s ∈
A⟨⟨Σ∗∞⟩⟩, and �V (v) = �′′V (�′V (v)), v ∈ A⟨⟨Σ!∞⟩⟩.

Proof. We show that the three conditions in the definition of a rational repre-
sentation are satisfied for (ℎA, ℎV).

(i) We obtain ℎA(") = �′′A(ℎ′A(")) = �′′A(E) = E′, where E and E′ are the
matrices of unity of suitable dimensions, and, for w1, w2 ∈ Σ∗∞, ℎA(w1w2) =
�′′A(ℎ′A(w1w2)) = �′′A(ℎ′A(w1)ℎ′A(w2)) = �′′A(ℎ′A(w1))�′′A(ℎ′A(w2)) = ℎA(w1)ℎA(w2).
Moreover, there exists an Σ ⊂ Σ∞ with ℎA(x) = 0 for x ∈ Σ∞−Σ. Eventually,
since the entries of ℎ′A(x) are rational power series, we infer by Theorem 7.4
that the entries of ℎA(x) = �′′A(ℎ′A(x)), x ∈ Σ∞, are again rational power series.

(ii) For w ∈ Σ∗∞ and u ∈ Σ!∞ we obtain ℎA(w)ℎV (u) = �′′A(ℎ′A(w))�′′V (ℎ′V (u)) =
�′′V (ℎ′A(w)ℎ′V (u)) = �′′V (ℎ′V (wu)) = ℎV (wu).

(iii) For wi ∈ Σ∗∞, i ≥ 0, we obtain
∏
i≥0 ℎA(wi) =

∏
i≥0 �

′′
A(ℎ′A(wi)) =

�′′V (
∏
i≥0 ℎ

′
A(wi)) = �′′V (ℎ′V (

∏
i≥0 wi)) = ℎV (

∏
i≥0 wi).

We now prove the last part of our theorem: for s ∈ A⟨⟨Σ∗∞⟩⟩ and v ∈
A⟨⟨Σ!∞⟩⟩ we obtain �′′A(�′A(s)) = �′′A(

∑
w∈Σ∗∞

(s, w)⊗ ℎ′A(w)) =
∑
w∈Σ∗∞

(s, w)⊗
�′′A(ℎ′A(w)) = �A(s) and �′′V (�′V (v)) = �′′V (

∑
u∈Σ!

∞
(v, u)⊗ℎ′V (u)) =

∑
u∈Σ!

∞
(v, u)⊗

�′′V (ℎ′V (u)) = �V (u).

Corollary 5.7.11 Let A be a commutative complete star-omega semiring and
let T′ and T′′ be rational transducers. Then there exists a rational transducer T
such that, for each s+v ∈ A⟨⟨Σ∗∞⟩⟩×A⟨⟨Σ!∞⟩⟩, ∣∣T∣∣(s+v) = ∣∣T′′∣∣(∣∣T′∣∣(s+v)).

We now introduce the notion of an abstract !-family of power series. Be-
fore, some additional definitions are necessary. Any subset L of the quemiring
A{{Σ∗∞}} × A{{Σ!∞}} is called !-family of power series. Let now T be a ra-
tional transducer. Then, for each s + v ∈ A{{Σ∗∞}} × A{{Σ!∞}}, we obtain
∣∣T∣∣(s+ v) ∈ A{{Σ∗∞}} ×A{{Σ!∞}}. Hence, for an !-family L of power series,

M̂(L) = {∣∣T∣∣(s+ v) ∣ s+ v ∈ L, T a rational transducer}

is again an !-family of power series. By Theorem 7.10 we obtain M̂(M̂(L)) =

M̂(L). Hence, if L = M̂(L), the !-family L of power series is said to be closed
under rational transductions and is then called full cone. Theorem 7.9 admits
at once the following result.

5.7. TRANSDUCTIONS AND ABSTRACT !-FAMILIES 155

Theorem 5.7.12 Let A be a commutative complete (resp. continuous) star-
omega semiring. Then the quemiring Arat{{Σ∗∞}}×Arat{{Σ!∞}} (resp. Aalg{{Σ∗∞}}×
Aalg{{Σ!∞}}) is a full cone.

Let (A⟨⟨Σ∗∞⟩⟩, A⟨⟨Σ!∞⟩⟩) be a complete semiring-semimodule pair. Given an

!-family L of power series, the notation F̂(L) is used for the smallest !-rationally
closed quemiring that is closed also under rational transductions and contains
L. Clearly, F̂(L) is again an !-family of power series. An !-family L of power

series is called full abstract !-family of power series if L = F̂(L). This definition
yields the last result of this chapter. It is implied by Theorems 7.12, 4.9 and 6.7.

Theorem 5.7.13 Let A be a commutative complete (resp. continuous) star-
omega semiring. Then the quemiring Arat{{Σ∗∞}}×Arat{{Σ!∞}} (resp. Aalg{{Σ∗∞}}×
Aalg{{Σ!∞}}) is a full abstract !-family of power series.

156 CHAPTER 5. FINITE AND INFINITE WORDS

Chapter 6

Formal tree series

6.1 Introduction

We assume that the reader has some basic knowledge of tree languages and tree
automata (see Gécseg, Steinby [51, 52], Comon, Dauchet, Gilleron, Jaquemard,
Lugiez, Tison, Tommasi [24]). Formal tree series were introduced by Berstel,
Reutenauer [6], and then extensively studied by Bozapalidis [11, 12, 13, 14,
15], Bozapalidis, Rahonis [16], Kuich [80, 81, 82, 83, 85], Block, Griffing [8],
Engelfriet, Fülöp, Vogler [33] and Fülöp, Vogler [50].

This chapter consists of this and seven more sections. In Section 2, we define
distributive Σ-algebras, where Σ is any signature. We introduce tree series
and characterize the distributive Σ-algebras of tree series (with coefficients in a
continuous semiring) by a universal property. We use this characterization to
derive properties of tree series substitutions.

In Section 3 we define tree automata and systems of equations whose right
sides consist of tree series. These notions form a framework for considering
finite tree automata and pushdown tree automata, and polynomial systems.
The main result of this section is that (finite, polynomial) tree automata and
(finite, polynomial) systems are equivalent mechanisms.

In Section 4 we prove a Kleene Theorem for recognizable tree series that
allows also the definition of recognizable tree series by expressions which are
analogous to regular expressions.

In Section 5, pushdown tree automata and algebraic tree systems are in-
troduced and it is shown that these mechanisms are equivalent. Moreover, a
Kleene Theorem for algebraic tree series is proved.

Top-down tree series transducers are introduced in Section 6. We concen-
trate on (top-down) nondeterministic simple recognizable tree series transducers
and prove that they preserve recognizability of tree series. Full abstract families
of tree series (briefly, full AFTs) are families of tree series closed under non-
deterministic simple recognizable tree series transductions and certain specific
“rational” operations.

157

158 CHAPTER 6. FORMAL TREE SERIES

These full AFTs are introduced in Section 7. It is shown that the families
of recognizable tree series and of algebraic tree series are full AFTs.

The last section exhibits connections of formal tree series to formal power
series. We first show that the macro power series (a generalization of the indexed
languages) are exactly the yields of algebraic tree series. Moreover, we prove
a Kleene Theorem for macro power series (and indexed languages). Then we
show that algebraic power series are exactly the yields of recognizable tree series.
Finally, we prove the important result that the yield of a full AFT forms a full
abstract family of power series.

The presentation of this chapter follows the lines of Ésik, Kuich [38].

6.2 Preliminaries

In this section we first consider distributive algebras. The definitions and results
on distributive algebras are heavily influenced by Bozapalidis [14], especially by
his notion of a K-Γ-algebra. He noticed that the multilinear mappings of his
well !-additive K-Γ-algebras assure that certain important mappings induced
by formal power series are continuous. (See Theorem 2 of Bozapalidis [14].)
We have tried in the forthcoming definition of a distributive algebra to simplify
the type of algebra used while saving the important results. The results on
distributive algebras are generalizations of the results on semirings given in the
Preliminaries of Chapter 2.

In the second part of this section we introduce formal tree series. These
formal tree series form a distributive algebra.

In the final part of this section we consider some important mappings con-
nected with formal tree series and show that they are continuous.

A signature is a non-empty set Σ, whose elements are called operation sym-
bols, together with a mapping Σ → ℕ, called the arity function, assigning to
each operation symbol its arity (ℕ denotes the nonnegative integers). We write
Σ = Σ0 ∪ Σ1 ∪ . . . ∪ Σk ∪ . . ., where Σk, k ≥ 0, contains the operation symbols
of arity k.

Let Σ be a signature. Recall that a Σ-algebra ⟨A,Σ⟩ consists of a non-
empty set A and a family of operations {�A : Ak → A ∣ � ∈ Σk, k ≥ 0}.
As usual, we denote this family of operations again by Σ, and the family of
k-ary operations by Σk, k ≥ 0. (See Gécseg, Steinby [51], Grätzer [58], Lausch,
Nöbauer [90], Wechler [115].) The algebra ⟨A,+, 0,Σ⟩, where ⟨A,+, 0⟩ is a
commutative monoid and ⟨A,Σ⟩ is a Σ-algebra, is called a distributive Σ-algebra
iff the following two conditions are satisfied for all �A ∈ Σk and all a, a1, . . . , ak ∈
A, k ≥ 1:

(i) �A(a1, . . . , aj−1, 0, aj+1, . . . , ak) = 0 for all 1 ≤ j ≤ k,

(ii) �A(a1, . . . , aj−1, aj + a, aj+1, . . . , ak) =
�A(a1, . . . , aj−1, aj , aj+1, . . . , ak) + �A(a1, . . . , aj−1, a, aj+1, . . . , ak)
for all 1 ≤ j ≤ k.

6.2. PRELIMINARIES 159

A morphism of distributive Σ-algebras preserves both the monoid structure and
the operations in Σ. In the sequel, Σ = Σ0 ∪ Σ1 ∪ . . . ∪ Σk ∪ . . . will always
denote a signature. In connection with trees, a signature will be called a ranked
alphabet, where the rank of an operation symbol is its arity.

A distributive Σ-algebra ⟨A,+, 0,Σ⟩ is briefly denoted by A if +, 0 and
Σ are understood. The notion of a distributive Σ-algebra was introduced in
Kuich [80] by the name “distributive multioperator monoid”. Idempotent dis-
tributive Σ-algebras, i. e., Σ-algebras ⟨A,+, 0,Σ⟩ where a+ a = a for all a ∈ A,
were introduced in Courcelle [26] by the name “distributive F -magma”. More-
over, distributive Σ-algebras are a “reduced” version of the K-Γ-algebras of
Bozapalidis [14].

A distributive Σ-algebra ⟨A,+, 0,Σ⟩ is termed ordered iff ⟨A,+, 0⟩ is or-
dered and each operation �A ∈ Σ preserves the order in each argument. When
the order is the natural order, this latter condition holds by distributivity. A
morphism of ordered distributive Σ-algebras is an order preserving distributive
Σ-algebra morphism.

A distributive Σ-algebra ⟨A,+, 0,Σ⟩ is complete iff ⟨A,+, 0⟩ is complete
and the following additional condition is satisfied for all �A ∈ Σk, index sets
I1, . . . , Ik, and ai1 , . . . , aik ∈ A, i1 ∈ I1, . . . , ik ∈ Ik, k ≥ 1:

�A(
∑
i1∈I1

ai1 , . . . ,
∑
ik∈Ik

aik) =
∑
i1∈I1

. . .
∑
ik∈Ik

�A(ai1 , . . . , aik).

Finally, an ordered distributive Σ-algebra ⟨A,+, 0,Σ⟩ is called continuous iff
⟨A,+, 0⟩ is continuous and if the operations �A ∈ Σk are continuous: For all
a1, . . . , ai−1, ai+1, . . . , ak ∈ A, 1 ≤ i ≤ k, and for each directed set D ⊆ A,

�A(a1, . . . , supD, . . . , ak) = sup�A(a1, . . . , D, . . . , ak) .

A morphism of complete (resp. continuous) distributive Σ-algebras is both a
complete (resp. continuous) monoid morphism and a distributive Σ-algebra
morphism. From Proposition 2.2.1 we easily derive:

Proposition 6.2.1 Any continuous distributive Σ-algebra is complete. Any
morphism of continuous distributive Σ-algebras is a morphism of complete dis-
tributive Σ-algebras.

Example 6.2.1. Let Σ =
∪
k≥0 Σk, Σk = {!k}, k ≥ 0. Consider a semiring

⟨A,+, ⋅, 0, 1⟩ and define !k, k ≥ 0, to be the following k-ary operations: the
constant !0 is 1, the unary operation !1 is the identity mapping and the k-ary
operation !k is the k-fold product, i. e., !k(a1, . . . , ak) = a1 ⋅ ⋅ ⋅ ak, k ≥ 2. Then
⟨A,+, 0,Σ⟩ is a distributive Σ-algebra. If ⟨A,+, ⋅, 0, 1⟩ is a continuous semiring
then ⟨A,+, 0,Σ⟩ is a continuous distributive Σ-algebra.

Example 6.2.2. Consider a semiring ⟨A,+, ⋅, 0, 1⟩. Let Σ = Σ0 ∪ Σ1, Σ0 = {!},
Σ1 = {!a ∣ a ∈ A}. Then the semiring A can be “simulated” by the distributive
Σ-algebra ⟨A,+, 0,Σ⟩. Here ! is the constant 1 and, for all a, b ∈ A, !a(b) = a⋅b.

160 CHAPTER 6. FORMAL TREE SERIES

In addition to the laws of a distributive Σ-algebra, the following laws are
satisfied for all a, a1, a2, b ∈ A:

!a1
(!a2

(b)) = !a1⋅a2
(b), !a1+a2

(b) = !a1
(b) + !a2

(b),

!0(b) = 0, !1(b) = b, !a(1) = a.

In the sequel, X will denote an alphabet of leaf symbols, disjoint from Σ.
(Observe that an alphabet may be infinite.) By TΣ(X) we denote the set of
trees formed over Σ ∪X. This set TΣ(X) is the smallest set formed according
to the following conventions:

(i) if � ∈ Σ0 ∪X then � ∈ TΣ(X),

(ii) if � ∈ Σk, k ≥ 1, and t1, . . . , tk ∈ TΣ(X) then �(t1, . . . , tk) ∈ TΣ(X).

If Σ0 ∕= ∅ then X may be the empty set (∅ denotes the empty set).

If Σ is a finite ranked alphabet and X is a finite alphabet of leaf symbols,
then TΣ(X) is generated by the context-free grammar G = ({S},Σ ∪X,P, S),
where P = {S → !(S, . . . , S︸ ︷︷ ︸

k

) ∣ ! ∈ Σk, k ≥ 1} ∪ {S → ! ∣ ! ∈ Σ0 ∪X}.

Sometimes it is more suggestive to employ a pictorial representation: The
tree ! ∈ Σ0 ∪ X represents the rooted tree with just a single node labeled by
!; the tree !(t1, . . . , tk), ! ∈ Σk, t1, . . . , tk ∈ TΣ(X), k ≥ 1, represents the
rooted ordered tree where the root is labeled by ! and has sons t1, . . . , tk (in
this order).

The set TΣ(X) may be turned into a Σ-algebra by defining, for each � ∈ Σk
and all t1, . . . , tk ∈ TΣ(X), �TΣ(X)(t1, . . . , tk) to be the tree �(t1, . . . , tk). It is
well-known that equipped with these operations, TΣ(X) is freely generated by
X: Each function ℎ : X → D, where D is a Σ-algebra, extends to a unique
Σ-algebra morphism TΣ(X)→ D.

We now turn to formal tree series. They will form a distributive Σ-algebra.
Let A be a semiring. Then we denote by A⟨⟨TΣ(X)⟩⟩ the set of formal tree
series over TΣ(X), i. e., the set of mappings s : TΣ(X) → A written in the
form

∑
t∈TΣ(X)(s, t)t, where the coefficient (s, t) is the value of s for the tree

t ∈ TΣ(X). For a formal tree series s ∈ A⟨⟨TΣ(X)⟩⟩, we define the support of
s, supp(s) = {t ∈ TΣ(X) ∣ (s, t) ∕= 0}. By A⟨TΣ(X)⟩ we denote the set of tree
series in A⟨⟨TΣ(X)⟩⟩ that have finite support. A power series with finite support
is called polynomial.

We first define, for s1, s2 ∈ A⟨⟨TΣ(X)⟩⟩, the sum s1 + s2 ∈ A⟨⟨TΣ(X)⟩⟩ by

s1 + s2 =
∑

t∈TΣ(X)

((s1, t) + (s2, t))t .

The zero tree series 0 is defined to be the tree series having all coefficients equal
to 0. Clearly, ⟨A⟨⟨TΣ(X)⟩⟩,+, 0⟩ is a commutative monoid.

6.2. PRELIMINARIES 161

For ! ∈ Σk, k ≥ 0, we define the mapping !̄ : (A⟨⟨TΣ(X)⟩⟩)k → A⟨⟨TΣ(X)⟩⟩
by

!̄(s1, . . . , sk) =
∑

t1,...,tk∈TΣ(X)

(s1, t1) . . . (sk, tk)!(t1, . . . , tk) ,

s1, . . . , sk ∈ A⟨⟨TΣ(X)⟩⟩.
Clearly, ⟨A⟨⟨TΣ(X)⟩⟩,+, 0, Σ̄⟩, where Σ̄ = (!̄ ∣ ! ∈ Σ), is a distributive Σ-

algebra, as is ⟨A⟨TΣ(X)⟩,+, 0, Σ̄⟩ with the same operations. If A is (naturally)
ordered (resp. complete or continuous) then A⟨⟨TΣ(X)⟩⟩ is again a (naturally)
ordered (resp. complete or continuous) distributive Σ-algebra. The order on
A⟨⟨TΣ(X)⟩⟩ is the pointwise order. Also, when A is ordered, A⟨TΣ(X)⟩ is an
ordered distributive Σ-algebra.

Example 6.2.3. Formal tree series have the advantage that the coefficient of a
tree in a series can be used to give information about some quantity connected
with that tree.

(i) (See Example 2.1 of Berstel, Reutenauer [6].) Define the height ℎ(t) of a
tree t in TΣ(X) as follows:

ℎ(t) =

{
0 if t ∈ Σ0 ∪X,
1 + max{ℎ(ti) ∣ 1 ≤ i ≤ k} if t = !(t1, . . . , tk), k ≥ 1.

Now height is a formal tree series in ℕ⟨⟨TΣ(X)⟩⟩ defined as

height =
∑

t∈TΣ(X)

ℎ(t)t .

(ii) Consider formal tree series s in ℝ+⟨⟨TΣ(X)⟩⟩ such that 0 ≤ (s, t) ≤ 1 for
all t ∈ TΣ(X). Then (s, t) can be interpreted as a probability associated with
the tree t. Here ℝ+ is the semiring of nonnegative reals.

(iii) Consider formal tree series s in ℕ∞⟨⟨TΣ(X)⟩⟩, where ℕ∞ = ℕ ∪ {∞}.
Then the coefficient (s, t) of t ∈ TΣ(X) can be interpreted as the number (pos-
sibly ∞) of distinct computations of t by some mechanism. (See Theorem 3.1.)

More examples can be found in Berstel, Reutenauer [6].

We now exhibit a universal property of the above constructions. Note that
A⟨⟨TΣ(X)⟩⟩ may be equipped with a scalar multiplication A × A⟨⟨TΣ(X)⟩⟩ →
A⟨⟨TΣ(X)⟩⟩, (a, s) 7→ as, defined by (as, t) = a(s, t), for all t ∈ TΣ(X). When
s ∈ A⟨TΣ(X)⟩, then also as ∈ A⟨TΣ(X)⟩. This operation satisfies the following
equations:

a(bs) = (ab)s (6.1)

1s = s (6.2)

(a+ b)s = as+ bs (6.3)

a(s+ s′) = as+ as′ (6.4)

a0 = 0 , (6.5)

162 CHAPTER 6. FORMAL TREE SERIES

for all a, b ∈ A and s, s′ ∈ A⟨⟨TΣ(X)⟩⟩. It follows that

0s = 0 ,

for all s. Moreover, when A is commutative, we also have that

!̄(a1s1, . . . , aksk) = a1 . . . ak!̄(s1, . . . , sk) , (6.6)

for all ! ∈ Σk, k ≥ 0, and for all ai ∈ A, si ∈ A⟨⟨TΣ(X)⟩⟩, 1 ≤ i ≤ k.

Theorem 6.2.2 Suppose that A is a commutative semiring and D is a distribu-
tive Σ-algebra equipped with a scalar multiplication A × D → D, (a, d) 7→ ad,
which satisfies the equations (6.1)–(6.6). Then any function ' : X → D extends
to a unique distributive Σ-algebra morphism '♯ : A⟨TΣ(X)⟩ → D preserving
scalar multiplication.

Proof. It is well-known that ' extends to a unique Σ-algebra morphism '̄ :
TΣ(X)→ D. We further extend '̄ to '♯ by defining

'♯(s) =
∑

t∈TΣ(X)

(s, t)'̄(t) ,

for all s ∈ A⟨TΣ(X)⟩. It is a routine matter to show that '♯ extends ' and is a
distributive Σ-algebra morphism that preserves scalar multiplication. Since the
definition of '♯ was forced, the extension is unique.

A similar result holds when A is a complete semiring, so that A⟨⟨TΣ(X)⟩⟩ is
a complete distributive Σ-algebra.

Theorem 6.2.3 Suppose that A is a complete commutative semiring and D is a
complete distributive Σ-algebra equipped with a scalar multiplication A×D → D,
(a, d) 7→ ad, which satisfies the equations (6.1)–(6.6). Moreover, assume that

(
∑
i∈I

ai)d =
∑
i∈I

aid (6.7)

a
∑
i∈I

di =
∑
i∈I

adi , (6.8)

for all a, ai ∈ A and d, di ∈ D, i ∈ I, where I is any index set. Then any func-
tion ' : X → D extends to a unique complete distributive Σ-algebra morphism
'♯ : A⟨⟨TΣ(X)⟩⟩ → D preserving scalar multiplication.

Proof. The proof of this result parallels that of Theorem 2.2. First we extend '
to ' : TΣ(X)→ D, and then define

'♯(s) =
∑

t∈TΣ(X)

(s, t)'(t),

for all s ∈ A⟨⟨TΣ(X)⟩⟩. This sum makes sense since D is complete. The details of
the proof that '♯ is a complete distributive Σ-algebra homomorphism preserving
scalar multiplication are routine. The definition of '♯ was again forced.

6.2. PRELIMINARIES 163

When A is ordered by ≤, we may order A⟨⟨TΣ(X)⟩⟩, and thus A⟨TΣ(X)⟩, by
the pointwise order: We define s ≤ s′ for s, s′ ∈ A⟨⟨TΣ(X)⟩⟩ iff (s, t) ≤ (s′, t) for
all t ∈ TΣ(X). Equipped with this order, both A⟨⟨TΣ(X)⟩⟩ and A⟨TΣ(X)⟩ are
ordered distributive Σ-algebras. Moreover, scalar multiplication preserves the
order in both arguments. Finally, if A is a continuous semiring, then A⟨⟨TΣ(X)⟩⟩
is also continuous, and scalar multiplication preserves least upper bounds of
directed sets in both arguments.

Corollary 6.2.4 Suppose that A is an ordered commutative semiring and D
is an ordered distributive Σ-algebra equipped with an order preserving scalar
multiplication A × D → D, (a, d) 7→ ad, which satisfies the equations (6.1)–
(6.6). Then any function ' : X → D extends to a unique distributive Σ-algebra
morphism '♯ : A⟨TΣ(X)⟩ → D preserving scalar multiplication. Moreover, when
A is a continuous commutative semiring and D is a continuous distributive Σ-
algebra equipped with a continuous scalar multiplication A×D → D, (a, d) 7→ ad,
which satisfies the above equations, then any function ' : X → D extends to
a unique continuous distributive Σ-algebra morphism '♯ : A⟨⟨TΣ(X)⟩⟩ → D
preserving scalar multiplication.

In the sequel, A will denote a continuous (complete) commutative semiring
where sums are defined by Proposition 2.2.1. Let s be a formal tree series in
A⟨⟨TΣ(X)⟩⟩, and let D denote a continuous distributive Σ-algebra equipped with
a scalar multiplication A×D → D satisfying (6.1)–(6.6) which is also continuous.
The setDX of all functionsX → D is also a continuous distributive Σ-algebra by
the pointwise operations and ordering as is the set of all continuous functions
DX → D. Moreover, it is equipped with the pointwise scalar multiplication
which again satisfies (6.1)–(6.6) and is continuous. Now s induces a mapping
sD : DX → D, ℎ 7→ ℎ♯(s) for ℎ ∈ DX .

Proposition 6.2.5 The function sD is continuous. Moreover, the assignment
s→ sD defines a continuous function of s.

Proof. It is known that when t ∈ TΣ(X), then the function tD : DX → D
induced by t is continuous, since it can be constructed from continuous functions
(namely, the projections and the continuous operations of D corresponding to
the symbols in Σ) by function composition, see, e.g., Guessarian [61]. Since
scalar multiplication and + are continuous, so is any function induced by a
series in A⟨TΣ(X)⟩. But sD is the pointwise supremum of the functions induced
by the polynomials

∑
t∈F (s, t)t, where F is a finite subset of TΣ(X). Since the

pointwise supremum of continuous functions is continuous, see Guessarian [61],
the result follows.

To show that the assignment s 7→ sD defines a continuous function, let S
denote a directed set in A⟨⟨TΣ(X)⟩⟩. We need to prove that

(sup
s∈S

s)D = sup
s∈S

sD.

164 CHAPTER 6. FORMAL TREE SERIES

But for any ℎ : X → D,

(sup
s∈S

s)D(ℎ) = ℎ♯(sup
s∈S

s)

= sup
s∈S

ℎ♯(s)

= sup
s∈S

sD(ℎ)

= (sup
s∈S

sD)(ℎ).

From now on we will write just ℎ for ℎ♯ and denote sD by just s.
In particular, formal tree series induce continuous mappings called substitu-

tions as follows. Let Y denote a non-empty set of variables, where Y ∩(Σ∪X) =
∅, and consider a mapping ℎ : Y → A⟨⟨TΣ(X ∪ Y)⟩⟩. This mapping can be ex-
tended to a mapping ℎ : TΣ(X ∪Y)→ A⟨⟨TΣ(X ∪Y)⟩⟩ by setting first ℎ(x) = x,
x ∈ X. Now, by the above result, for any series s ∈ A⟨⟨TΣ(X ∪ Y)⟩⟩, the map-
ping ℎ 7→ ℎ(s) is a continuous function of ℎ. By the arguments outlined above,
ℎ(s) can be constructed as follows. First, extend ℎ to trees by defining

ℎ(!(t1, . . . , tk)) = !̄(ℎ(t1), . . . , ℎ(tk)) =∑
t′1,...,t

′
k∈TΣ(X∪Y)(ℎ(t1), t′1) . . . (ℎ(tk), t′k)!(t′1, . . . , t

′
k) ,

for ! ∈ Σk and t1, . . . , tk ∈ TΣ(X ∪ Y), k ≥ 0. One more extension of ℎ
yields a mapping ℎ : A⟨⟨TΣ(X ∪ Y)⟩⟩ → A⟨⟨TΣ(X ∪ Y)⟩⟩ by defining ℎ(s) =∑
t∈TΣ(X∪Y)(s, t)ℎ(t). Now s(ℎ) is just the value of this extended function

on s. If Y = {y1, . . . , yn} is finite, we use the following notation: ℎ : Y →
A⟨⟨TΣ(X ∪ Y)⟩⟩, where ℎ(yi) = si, 1 ≤ i ≤ n, is denoted by (si, 1 ≤ i ≤ n) or
(s1, . . . , sn) and the value of s with argument ℎ is denoted by s(si, 1 ≤ i ≤ n) or
s(s1, . . . , sn). Intuitively, this is simply the substitution of the formal tree series
si ∈ A⟨⟨TΣ(X ∪ Y)⟩⟩ into the variables yi, 1 ≤ i ≤ n, of s ∈ A⟨⟨TΣ(X ∪ Y)⟩⟩. By
Proposition 2.5, the mapping s : (A⟨⟨TΣ(X ∪ Y)⟩⟩)Y → A⟨⟨TΣ(X ∪ Y)⟩⟩, i. e.,
the substitution of formal tree series into the variables of Y , is a continuous
mapping. Moreover, s(s1, . . . , sn) is also continuous in s. (So it is continuous in
s and in each si.) Observe that s(s1, . . . , sn) =

∑
t∈TΣ(X∪Y)(s, t)t(s1, . . . , sn).

In certain situations, formulae are easier to read if we use the notation
s[si/yi, 1 ≤ i ≤ n] for the substitution of the formal tree series si into the
variables yi, 1 ≤ i ≤ n, of s instead of the notation s(si, 1 ≤ i ≤ n). So we will
use sometimes this notation s[si/yi, 1 ≤ i ≤ n].

In the same way, s ∈ A⟨⟨TΣ(X∪Y)⟩⟩ also induces a mapping s : (A⟨⟨TΣ(X)⟩⟩)Y
→ A⟨⟨TΣ(X)⟩⟩.

Our substitution on formal tree series is a generalization of the OI-substitutions
on formal tree languages. We do not consider generalizations of the IO-substitution.
Bozapalidis [15], Engelfriet, Fülöp, Vogler [33] and Fülöp, Vogler [50] consider
these generalizations to formal tree series. For precise definitions of the OI- and
IO-substitutions see Engelfriet, Schmidt [34], Definition 2.1.1.

6.2. PRELIMINARIES 165

The construction of tree series and the above freeness results can be general-
ized to a great extent. Suppose that D is any Σ-algebra and A is any complete
semiring. Then the set of functions D → A, denoted A⟨⟨D⟩⟩, is a complete
distributive Σ-algebra. We call the elements of A⟨⟨D⟩⟩ series and denote them
as
∑
d∈D(s, d)d, or

∑
d∈supp(s)(s, d)d. The sum of any family of series is their

pointwise sum. The zero series serves as zero. Moreover, for each ! ∈ Σk, k ≥ 1,
and for each s1, . . . , sk ∈ A⟨⟨D⟩⟩,

!(s1, . . . , sk) =
∑
d∈D

(
∑

d=!(d1,...,dk)

(s1, d1) . . . (sk, dk))d .

Note also that A⟨⟨D⟩⟩ is equipped with a scalar multiplication A × A⟨⟨D⟩⟩ →
A⟨⟨D⟩⟩. Note that equations (6.1)–(6.6) and (6.7), (6.8) hold. When A is a
continuous semiring then, equipped with the pointwise order, A⟨⟨D⟩⟩ is a con-
tinuous distributive Σ-algebra and scalar multiplication is continuous. We are
now ready to state the promised generalization of Theorem 2.3.

Theorem 6.2.6 Suppose that A is a complete commutative semiring and D′ is
a distributive Σ-algebra equipped with a scalar multiplication A×D′ → D′ which
satisfies the equations (6.1)–(6.6) as well as (6.7) and (6.8). Moreover, assume
that D is a Σ-algebra. Then any Σ-algebra morphism ' : D → D′ extends to a
unique complete distributive Σ-algebra morphism '♯ : A⟨⟨D⟩⟩ → D′ preserving
scalar multiplication. When A is a continuous commutative semiring and D′ is
a continuous distributive Σ-algebra and the scalar multiplication A ×D′ → D′

is continuous, then so is the function '♯.

Proof. Given ', we are forced to define

'♯(s) =
∑
d∈D

(s, d)'(d), (6.9)

for all s ∈ A⟨⟨D⟩⟩. On the other hand, it is a routine matter to verify that
(6.9) defines a complete distributive Σ-algebra morphism '♯ : A⟨⟨D⟩⟩ → D′ that
extends '.

Suppose now that A and D are continuous and that the scalar multiplication
A×D′ → D′ is also continuous. In order to prove that '♯ is continuous, suppose
that S is a directed set in A⟨⟨D⟩⟩. Then for each d ∈ D, the set {(s, d) : s ∈ S} is
also directed, moreover, (supS, d) = sups∈S(s, d). Using this, and the continuity
of scalar multilication and summation, we have that

'♯(supS) =
∑
d∈D

(supS, d)'(d)

=
∑
d∈D

(sup
s∈S

(s, d))'(d)

=
∑
d∈D

sup
s∈S

(s, d)'(d)

166 CHAPTER 6. FORMAL TREE SERIES

= sup
s∈S

∑
d∈D

(s, d)'(d)

= sup{'♯(s) : s ∈ S}
= sup'♯(S).

Theorem 2.2 can be generalized in the same way. For more on series over
Σ-algebras we refer the reader to Kuich [84, 86].

In the sequel, Y, Y ′, Z will denote sets of variables that are disjoint from Σ
and X, and Yk, k ≥ 1, will denote the set of variables {y1, . . . , yk}. Moreover,
Y0 = ∅. Furthermore, I and I ′ will denote arbitrary index sets.

Given a set S, SI1×I2 will denote the set of matrices indexed by I1× I2 with

entries in S. (E. g., (A⟨⟨TΣ(X)⟩⟩)I′×Ik denotes the set of matrices M , such that
the (i, (i1, . . . , ik))-entry of M is in A⟨⟨TΣ(X)⟩⟩, i ∈ I ′, i1, . . . , ik ∈ I.) A matrix
M ∈ (A⟨⟨TΣ(X)⟩⟩)I1×I2 is row finite iff, for all i1 ∈ I, Mi1,i2 ∕= 0 for only finitely
many i2 ∈ I.

Our tree automata will be defined by transition matrices. A matrix M ∈
(A⟨⟨TΣ(X ∪Yk)⟩⟩)I′×Ik , k ≥ 1, I ′ and I arbitrary index sets, induces a mapping

M : (A⟨⟨TΣ(X ∪Y ′)⟩⟩)I×1× . . .× (A⟨⟨TΣ(X ∪Y ′)⟩⟩)I×1 → (A⟨⟨TΣ(X ∪Y ′)⟩⟩)I
′×1

(there are k argument vectors), defined by the entries of the resulting vector as
follows: For P1, . . . , Pk ∈ (A⟨⟨TΣ(X ∪ Y ′)⟩⟩)I×1 we define, for all i ∈ I ′,

M(P1, . . . , Pk)i =
∑
i1,...,ik∈IMi,(i1,...,ik)((P1)i1 , . . . , (Pk)ik) =∑

i1,...,ik∈I
∑
t∈TΣ(X∪Yk)(Mi,(i1,...,ik), t)t((P1)i1 , . . . , (Pk)ik) .

Hence, M(P1, . . . , Pk)i is defined to be the result of substituting the components
(P1)i1 , . . . , (Pk)ik of P1, . . . , Pk for y1, . . . , yk, respectively, in Mi,(i1,...,ik), and

then summing over all possible (i1, . . . , ik) ∈ Ik.
In the next theorem the Kronecker symbol �i,j ∈ A over I is used: for i, j ∈ I,

�i,j = 1 if i = j and �i,j = 0 if i ∕= j.

Theorem 6.2.7 Let M ∈ (A⟨⟨TΣ(X∪Yk)⟩⟩)I′×Ik , k ≥ 1. Define M̄ ∈ (A⟨⟨TΣ(X∪
Yk)⟩⟩)I′×Im , m > k, by

M̄i,(i1,...,im) = �i,im�im,im−1 ⋅ ⋅ ⋅ �ik+2,ik+1
Mi,(i1,...,ik) ,

for i ∈ I ′, i1, . . . , im ∈ I.
Then, for P1, . . . , Pm ∈ (A⟨⟨TΣ(X ∪ Y ′)⟩⟩)I×1,

M̄(P1, . . . , Pm) = M(P1, . . . , Pk) .

Proof.

M̄(P1, . . . , Pm)i =∑
i1,...,im∈I M̄i,(i1,...,im)((P1)i1 , . . . , (Pm)im) =∑
i1,...,im∈I �i,im�im,im−1

⋅ ⋅ ⋅ �ik+2,ik+1
Mi,(i1,...,ik)((P1)i1 , . . . , (Pk)ik) =∑

i1,...,ik∈IMi,(i1,...,ik)((P1)i1 , . . . , (Pk)ik) =

M(P1, . . . , Pk)i, i ∈ I ′ .

6.3. TREE AUTOMATA AND SYSTEMS OF EQUATIONS 167

For the definition of the tree series transducers we will need a generalization

of the substitution defined by a matrix in (A⟨⟨TΣ(X ∪ Yk)⟩⟩)I′×Ik , k ≥ 1. A
matrix M ∈ (A⟨⟨TΣ(X ∪ Ym)⟩⟩)I′×(I×Zk)m , Zk = {z1, . . . , zk}, k ≥ 1, induces a
mapping

M : (A⟨⟨TΣ(X ∪Y ′)⟩⟩)I×1×⋅ ⋅ ⋅× (A⟨⟨TΣ(X ∪Y ′)⟩⟩)I×1 → (A⟨⟨TΣ(X ∪Y ′)⟩⟩)I
′×1

(there are k argument vectors) defined by the entries of the resulting vector as
follows: For P1, . . . , Pk ∈ (A⟨⟨TΣ(X ∪ Y ′)⟩⟩)I×1 we define, for all i ∈ I ′,

M [P1, . . . , Pk]i =∑
i1,...,im∈I, 1≤j1,...,jm≤k

Mi,((i1,zj1),...,(im,zjm))((Pj1)i1 , . . . , (Pjm)im) .

Theorem 6.2.8 Let C = {((i1, z1), . . . , (ik, zk)) ∣ i1, . . . , ik ∈ I} and M ∈
(A⟨⟨TΣ(X ∪ Yk)⟩⟩)I′×(I×Zk)k , k ≥ 1, such that Mi,� = 0 for i ∈ I ′ and � ∈ (I ×
Zk)k−C. Define M̄ ∈ (A⟨⟨TΣ(X∪Yk)⟩⟩)I′×Ik by M̄i,(i1,...,ik) = Mi,((i1,z1),...,(ik,zk))

for i ∈ I ′, i1, . . . , ik ∈ I. Then, for P1, . . . , Pk ∈ (A⟨⟨TΣ(X ∪ Y ′)⟩⟩)I×1,

M(P1, . . . , Pk) = M̄ [P1, . . . , Pk] .

Proof.
M [P1, . . . , Pk]i =∑
i1,...,ik∈IMi,((i1,z1),...,(ik,zk))((P1)i1 , . . . , (Pk)ik) =∑
i1,...,ik∈I M̄i,(i1,...,ik)((P1)i1 , . . . , (Pk)ik) =

M̄(P1, . . . , Pk)i, i ∈ I ′ .

6.3 Tree automata and systems of equations

In this section we define tree automata and systems of equations (over semi-
rings). These notions are a framework for considering finite tree automata
and pushdown tree automata, and polynomial systems. The definitions are
slightly modified from Kuich [80, 85]. The main result of this section is that (fi-
nite, polynomial) tree automata and (finite, polynomial) systems are equivalent
mechanisms.

Our tree automata are a generalization of the nondeterministic root-to-
frontier tree recognizers. (See Gécseg, Steinby [51, 52] and Kuich [80].) A
tree automaton (with input alphabet Σ and leaf alphabet X over the semiring
A)

A = (I,M, S, P)

is given by

(i) a non-empty set I of states,

168 CHAPTER 6. FORMAL TREE SERIES

(ii) a transition matrix
M ∈ (A⟨⟨TΣ(X ∪ Ym)⟩⟩)I×Im , for some m ≥ 1,

(iii) a row finite row vector S ∈ (A⟨⟨TΣ(X ∪ Y1)⟩⟩)1×I , called the initial state
vector,

(iv) a column vector P ∈ (A⟨⟨TΣ(X)⟩⟩)I×1, called the final state vector.

The approximation sequence (�j ∣ j ∈ ℕ), �j ∈ (A⟨⟨TΣ(X)⟩⟩)I×1, j ≥ 0,
associated with A is defined as follows:

�0 = 0, �j+1 = M(�j , . . . , �j) + P, j ≥ 0 .

(There are m argument vectors �j .) The behavior ∣∣A∣∣ ∈ A⟨⟨TΣ(X)⟩⟩ of the tree
automaton A is defined by

∣∣A∣∣ =
∑
i∈I

Si(�i) = S(�) ,

where � ∈ (A⟨⟨TΣ(X)⟩⟩)I×1 is the least upper bound of the approximation se-
quence associated with A. Since �j ≤ �j+1 for all j (by continuity of substi-
tution), and since (A⟨⟨TΣ(X ∪ Ym)⟩⟩)I×Im has all directed least upper bounds
with respect to the pointwise order, it follows that this least upper bound and,
hence, the behavior of A exist.

Observe that Σ may be infinite and there may be no bound on the rank
of symbols in Σ. But in any case, only finitely many variables y1, . . . , ym are
allowed in the entries of M .

Our tree automata are slightly modified from Kuich [85]. In Kuich [85] a
tree automaton (with a finite sequence of transition matrices) A′ = (I,M ′, S, P)
is defined as here, except that M ′ is a sequence of transition matrices M ′ =

(M ′k ∣ 1 ≤ k ≤ m), where Mk ∈ (A⟨⟨TΣ(X ∪ Yk)⟩⟩)I×Ik , 1 ≤ k ≤ m, and the
approximation sequence (�′j ∣ j ∈ ℕ), �′j ∈ (A⟨⟨TΣ(X)⟩⟩)I×1, j ≥ 0, is defined
by

�′0 = 0, �′j+1 =
∑

1≤k≤m

M ′k(�′j , . . . , �′j) + P .

(There are k argument vectors �′j in M ′k.) Given a tree automaton A′ =
(I,M ′, S, P) according to Kuich [85], we construct an equivalent tree automaton
A = (I,M, S, P) according to our definition: We define Mk ∈ (A⟨⟨TΣ(X ∪
Yk)⟩⟩)I×Im , 1 ≤ k ≤ m, by its entries

(Mk)i,(i1,...,im) = �i,im�im,im−1�ik+2,ik+1
(M ′k)i,(i1,...,ik) , i, i1, . . . , im ∈ I ,

and M ∈ (A⟨⟨TΣ(X ∪ Ym)⟩⟩)I×Im by

M =
∑

1≤k≤m

Mk .

6.3. TREE AUTOMATA AND SYSTEMS OF EQUATIONS 169

We claim that the approximation sequences of A and A′ coincide, i. e., �j = �′j

for all j ≥ 0, and prove it by induction on j. The case j = 0 being clear, we
proceed by j > 0. For all i ∈ I, we obtain by Theorem 2.7

�ji = (M(�j−1, . . . , �j−1) + P)i =
∑

1≤k≤mMk(�j−1, . . . , �j−1)i + Pi =∑
1≤k≤m

M ′k(�′j−1, . . . , �′j−1)i + Pi = �′ji .

Hence, we have proved ∣∣A∣∣ = ∣∣A′∣∣. We state this as a Remark.

Remark. The definitions of tree automata given here and in Kuich [85] (with
a finite sequence of transition matrices) are equivalent with respect to the be-
haviors of these tree automata.

A tree automaton A = (I,M, S, P) is called finite iff I is finite. A tree
automaton A = (I,M, S, P) is called simple iff the entries of the transition
matrix M , of the initial state vector S and of the final state vector P have the
following specific forms:

(i) the entries of M are of the form
∑

1≤k≤m
∑
!∈Σk

a!!(y1, . . . , yk)+∑
!∈Σ0∪X a!! + ay1, a!, a ∈ A;

(ii) the entries of P are of the form
∑
!∈Σ0∪X a!!, a! ∈ A;

(iii) the entries of S are of the form dy1, d ∈ A.

It is called proper iff there are no terms ay1 in (i). Observe that the term ay1

in (i) corresponds to "-moves in ordinary automata.
Intuitively, a simple tree automaton A recognizes a tree t ∈ TΣ(X) with

coefficient (∣∣A∣∣, t) as follows in a nondeterministic way.
At the root of t, A may be in any initial state i ∈ I, i. e., in a state

with (S, i) ∕= 0. We now describe a computation starting in the initial state
i0 ∈ I and its weight. If in the recognition procedure A analyzes the root
of a subtree of t of the form !(t1, . . . , tk), ! ∈ Σk, k ≥ 1, in state i and
(Mi,(i1,...,im), !(y1, . . . , yk)) = ai ∕= 0 then A proceeds in parallel in states
i1, . . . , ik at the roots of t1, . . . , tk, respectively. If, in the recognition procedure,
A analyzes a leaf of t labelled by ! ∈ Σ0 ∪X in state i and (Pi, !) = ai ∕= 0 or
(Mi,(i1,...,im), !) = ai ∕= 0 for some i1, . . . , im ∈ I, then A terminates this branch
of its computation. If, in the recognition procedure, A analyzes the root of a
subtree of t in state i and (Mi,(i1,...,im), y1) = ai ∕= 0 then A moves to state i1
and analyzes again the root of this subtree.

The weight of such a computation starting in the initial state i0 is (S, i0)
multiplied with all the semiring elements ai occuring in the procedure described
above. The coefficient (∣∣A∣∣, t) is then the sum of all weights of all possible
computations.

Consider the case that A is the semiring ℕ∞, i. e., we consider tree series in
ℕ∞⟨⟨TΣ(X)⟩⟩. A simple tree automaton is called 1-simple iff all the coefficients
a!, a in (i), a! in (ii) and d in (iii) belong to {0, 1}. By Seidl [109], Proposi-
tion 3.1, the coefficient (∣∣A∣∣, t) of the behavior of A is the number (possibly∞)
of distinct computations for t.

170 CHAPTER 6. FORMAL TREE SERIES

Theorem 6.3.1 Consider a 1-simple tree automaton A and let d(t), t ∈ TΣ(X),
be the number (possibly ∞) of distinct computations of A for t. Then

∣∣A∣∣ =
∑

t∈TΣ(X)

d(t)t ∈ ℕ∞⟨⟨TΣ(X)⟩⟩ .

We now turn to systems.

A system (with variables in Z = {zi ∣ i ∈ I}) is a system of formal equations
zi = pi, i ∈ I, I an arbitrary index set, where each pi is in A⟨⟨TΣ(X ∪ Zi)⟩⟩.
Here Zi is, for each i ∈ I, a finite subset of Z with ∣Zi∣ ≤ m for some m ≥ 0.
The system can be written in matrix notation as z = p(z). Here z and p denote
vectors, whose i-th component is zi and pi, i ∈ I, respectively. A solution to
the system z = p(z) is given by � ∈ (A⟨⟨TΣ(X)⟩⟩)I×1 such that �i = pi[�/z],
i ∈ I. A solution � of z = p(z) is called least solution iff � ≤ � for all solutions
� of z = p(z).

The approximation sequence (�j ∣ j ∈ ℕ), �j ∈ (A⟨⟨TΣ(X)⟩⟩)I×1, j ≥ 0,
associated with the system z = p(z) is defined as follows:

�0
i = 0, �j+1

i = pi[�/z], j ≥ 0 .

Since �j ≤ �j+1 for all j, and since (A⟨⟨TΣ(X)⟩⟩)I×1 has least upper bounds
of all directed sets, the least upper bound � = sup(�j ∣ j ∈ ℕ) of this ap-
proximation sequence exists. Moreover, it is the least solution of the system
z = p(z).

Our systems are a generalization of the systems of linear equations of Berstel,
Reutenauer [6]: we allow infinitely many equations and the right sides of the
equations are tree series instead of simple tree polynomials. A system zi = pi,
i ∈ I, is called proper iff (pi, zj) = 0 for all zj ∈ Zi, i ∈ I. It is called finite iff I
is finite.

Theorem 6.3.2 For each system there exists a proper one with the same least
solution. A proper system has a unique solution.

Proof. The construction is as follows. Consider a system z = p as defined
above. Write it in the form z = Mz + r, where M ∈ AI×I and (ri, zj) = 0 for
zj ∈ Zi, i ∈ I. Then, by the diagonal equation (Proposition 2.2.10), the systems
z = Mz + r and z = M∗r have the same least solution and, by construction,
z = M∗r is a proper system. A modification of the proof of Proposition 6.1 of
Berstel, Reutenauer [6] proves the second sentence of our theorem. Clearly, this
unique solution is at the same time the least solution.

We now show that tree automata and systems are mechanisms of equal
power. For a given tree automaton A = (I,M, S, P) as defined above we con-
struct the system with variables in Z = {zi ∣ i ∈ I}

zi =
∑

i1,...,im∈I
Mi,(i1,...,im)(zi1 , . . . , zim) + Pi , i ∈ I .

6.3. TREE AUTOMATA AND SYSTEMS OF EQUATIONS 171

Here we have substituted the variables zi1 , . . . , zim for the variables y1, . . . , ym
in Mi,(i1,...,im)(y1, . . . , ym). In matrix notation, this system can be written as

z = M(z, . . . , z) + P .

Here z is an I × 1-vector whose i-th component is the variable zi, i ∈ I.
As before, the approximation sequences associated with this system and to

the tree automaton A coincide. Consider now the system with variables in
{z0} ∪ Z

z0 =
∑
i∈I

Si(zi), z = M(z, . . . , z) + P .

Then the z0-component of its least solution is equal to ∣∣A∣∣.
Conversely, consider a system z = p(z) as defined above. Let Zi = {zi1 , . . . , zik},

i ∈ I, and pi = pi(zi1 , . . . , zik), k ≤ m. Construct now the tree automaton
A = (Z,M,S, 0), where, for all i, j1, . . . , jm ∈ I,

Mzi,(zj1 ,...,zjm)(y1, . . . , ym) = �i,jm�jm,jm−1 ⋅ ⋅ ⋅ �jk+2,jk+1
�jk,ik ⋅ ⋅ ⋅ �j1,i1pi(y1, . . . , yk) .

Moreover, choose a zi0 ∈ Z and let Szi0 (y1) = y1, Szi(y1) = 0 for zi ∕= zi0 .

Let (�j ∣ j ∈ ℕ) and (� j ∣ j ∈ ℕ) be the approximation sequences associated
to z = p(z) and A, respectively. We claim that �j = � j for j ≥ 0 and show it
by induction on j. The case j = 0 being clear, we proceed with j > 0. Then we
obtain, for all i ∈ I,

� jzi = M(� j−1, . . . , � j−1)zi =∑
j1,...,jm∈IMzi,(zj1 ,...,zjm)(�

j−1
zj1

, . . . , � j−1
zjm

) =∑
j1,...,jm∈I �i,jm�jm,jm−1

⋅ ⋅ ⋅ �jk+2,jk+1
�jk,ik ⋅ ⋅ ⋅ �j1,i1pi(� j−1

zj1
, . . . , � j−1

zjk
) =

pi(�
j−1
zi1

, . . . , � j−1
zik

) = pi(�
j−1
zi1

, . . . , �j−1
zik

) = �ji .

Hence, ∣∣A∣∣ is equal to the zi0 -component of the least solution of z = p(z).
Observe that we could place, for k = 0, pi into Pzi instead into Mzi,(zi,...,zi).
Theorem 3.3 summarizes the above considerations. (See also Kuich [85],

Theorem 2.3 and Kuich [80], Corollary 3.9.)

Theorem 6.3.3 A power series s ∈ A⟨⟨TΣ(X)⟩⟩ is a component of the least
solution of a system iff s is the behavior of a tree automaton.

We now consider polynomial tree automata and polynomial systems and
show that they are mechanisms of equal power.

A tree automaton A = (I,M, S, P) is called polynomial iff the following
conditions are satisfied:

(i) The entries of M are polynomials in A⟨TΣ(X ∪ Ym)⟩.

(ii) The entries of the initial state vector S are of the form Si = diy1, di ∈ A,
i ∈ I.

(iii) The entries of the final state vector P are polynomials in A⟨TΣ(X)⟩.

172 CHAPTER 6. FORMAL TREE SERIES

A system (with variables in Z) zi = pi, i ∈ I, is called polynomial iff each pi is
a polynomial in A⟨TΣ(X ∪ Zi)⟩, i ∈ I.

The same constructions that proved Theorem 3.3 prove also the next theo-
rem. (See also Kuich [85], Theorem 2.4 and Kuich [80], Corollary 4.4.)

Theorem 6.3.4 A power series s ∈ A⟨⟨TΣ(X)⟩⟩ is a component of the least
solution of a polynomial system iff s is the behavior of a polynomial tree auto-
maton.

A system zi = pi, i ∈ I, is called simple iff pi is a sum of terms of the
following form:

(i) a!(zi1 , . . . , zik), a ∈ A, ! ∈ Σk, i1, . . . , ik ∈ I, 1 ≤ k ≤ m, for some m ≥ 1,

(ii) a!, a ∈ A, ! ∈ Σ0 ∪X,

(iii) azi, a ∈ A, i ∈ I.

Compare the next theorem with Theorem 4.2 of Kuich [80].

Theorem 6.3.5 Let s ∈ A⟨⟨TΣ(X)⟩⟩ be a component of the least solution of a
finite polynomial system. Then there exists a finite polynomial system that is
simple and proper such that s is a component of its least solution.

Proof. By Theorem 3.2 and Lemma 6.3 of Berstel, Reutenauer [6].

Corollary 6.3.6 The following statements on a formal tree series in A⟨⟨TΣ(X)⟩⟩
are equivalent:

(i) s is a component of the least solution of a finite polynomial system;

(ii) s is a component of the unique solution of a finite polynomial system that
is also simple and proper;

(iii) s is the behavior of a finite polynomial tree automaton;

(iv) s is the behavior of a finite polynomial tree automaton with one initial
state of weight 1 that is also simple and proper.

Proof. By Theorems 3.5 and 3.4, the statements (i), (ii) and (iii) are equivalent.
By the construction in the proof of Theorem 3.3, statement (iv) is implied by
statement (iii).

If a formal tree series in A⟨⟨TΣ(X)⟩⟩ satisfies one and, hence, all statements
of Corollary 3.6 we call it recognizable. In case of fields, it is the same notion
of recognizability as introduced by Berstel, Reutenauer [6]. The collection of
all recognizable tree series in A⟨⟨TΣ(X)⟩⟩ is denoted by Arec⟨⟨TΣ(X)⟩⟩. In the
theory of tree languages, recognizable tree languages are defined only for finite
alphabets Σ and X. We allow also infinite alphabets Σ and X. This is justified

6.3. TREE AUTOMATA AND SYSTEMS OF EQUATIONS 173

by the observation that, for s ∈ Arec⟨⟨TΣ(X)⟩⟩, there exist finite alphabets Σ′

and X ′, Σ′ ⊆ Σ, X ′ ⊆ X, such that supp(s) ⊆ TΣ′(X
′). Moreover

Arec⟨⟨TΣ(X)⟩⟩ =
∪

Σ′⊆Σ finite, X′⊆X finite

Arec⟨⟨TΣ′(X
′)⟩⟩ .

Example 6.3.1.1 (See Berstel, Reutenauer [6], Examples 6.2 and 4.2.) Our
basic semiring is ℤ, the semiring of integers. Let Σ = Σ1 ∪ Σ2, Σ1 = {⊖},
Σ2 = {⊕,⊗}. We will evaluate arithmetic expressions with operators ⊖,⊕,⊗,
and operands in the leaf alphabet X.

Define an interpretation eval of the elements of X, i. e., eval : X → ℤ. Ex-
tend it to a mapping eval : TΣ(X)→ ℤ by eval(⊖(t)) = −eval(t), eval(⊕(t1, t2)) =
eval(t1) + eval(t2), eval(⊗(t1, t2)) = eval(t1) ⋅ eval(t2) for t, t1, t2 ∈ TΣ(X). Then
eval =

∑
t∈TΣ(X) eval(t)t is a formal tree series in ℤ⟨⟨TΣ(X)⟩⟩.

Consider the proper system

z1 = ⊕(z1, z2) +⊕(z2, z1) +⊗(z1, z1) + (−1)⊖ (z1) +
∑
x∈X eval(x)x ,

z2 = ⊕(z2, z2) +⊗(z2, z2) +⊖(z2) +
∑
x∈X x .

Let (�1, �2) be its unique solution. Then we claim that �1 = eval, �2 = char,
where char =

∑
t∈TΣ(X) t. The claim is proven by substituting (eval, char) into

the equations of the system:

⊕(eval, char) +⊕(char, eval) +⊗(eval, eval)−⊖(eval) +
∑
x∈X eval(x)x =∑

t1,t2∈TΣ(X) eval(t1)⊕ (t1, t2) +
∑
t1,t2∈TΣ(X) eval(t2)⊕ (t1, t2)+∑

t1,t2∈TΣ(X) eval(t1)eval(t2)⊗ (t1, t2) +
∑
t∈TΣ(X)−eval(t)⊖ t+∑

x∈X eval(x)x =∑
t1,t2∈TΣ(X) eval(⊕(t1, t2))⊕ (t1, t2) +

∑
t1,t2∈TΣ(X) eval(⊗(t1, t2))⊗ (t1, t2)+∑

t∈TΣ(X) eval(⊖(t))⊖ t+
∑
x∈X eval(x)x =∑

t∈TΣ(X) eval(t)t = eval ,

⊕(char, char) +⊗(char, char) +⊖(char) +
∑
x∈X x =∑

t1,t2∈TΣ(X)⊕(t1, t2)+∑
t1,t2∈TΣ(X)⊗(t1, t2) +

∑
t∈TΣ(X)⊖(t) +

∑
x∈X x = char .

Consider now the finite tree automaton A = (Q,M,S, P), where Q =
{z1, z2}, Sz1 = y1, Sz2 = 0, Pz1 =

∑
x∈Σ eval(x)x, Pz2 =

∑
x∈Σ x, and the

nonnull entries of M are given by

Mz1,(z1,z1) = (−1)⊖ (y1), Mz2,(z2,z2) = ⊖(y1),
Mz1,(z1,z1) = ⊗(y1, y2), Mz1,(z1,z2) = ⊕(y1, y2),
Mz1,(z2,z1) = ⊕(y1, y2), Mz2,(z2,z2) = ⊕(y1, y2) +⊗(y1, y2) .

Then we obtain ∣∣A∣∣ = �1 = eval.
Let X = {a, b, c} and t = ⊕(⊖a,⊗(b, c)). Then there are two computations

for t starting at z1 and none starting from z2. These two computations are given
in the following pictorial form:

1In the examples we often drop our convention that the basic semiring is continuous.

174 CHAPTER 6. FORMAL TREE SERIES

a

eval(a)

⊖

b

1

c

1

⊗

⊕

z2z1

z1 z2 z2

z1

1 1

−1 1 1

a

1

⊖

b

eval(b)

c

eval(c)

⊗

⊕

z1z2

z2 z1 z1

z1

1 1

1 1 1

Hence, (∣∣A∣∣, t) = −eval(a) + eval(b)eval(c).

Example 3.1 gives also an intuitive feeling how a finite nondeterministic
root-to-frontier tree recognizer is simulated by a finite tree automaton over the
semiring B.

Theorem 6.3.7 (Kuich [80], Theorem 3.6) For each finite nondeterministic
root-to-frontier tree recognizer A in the sense of Gécseg, Steinby [51] there exists
a simple proper finite polynomial tree automaton A over the Boolean semiring
B such that ∣∣A∣∣ = T (A), and vice versa.

6.4 Closure properties and a Kleene Theorem
for recognizable tree series

In this section we prove a Kleene Theorem for recognizable tree series. (See
Thatcher, Wright [113], Bozapalidis [14], Gruska [60], Gécseg, Steinby [51, 52],
Kuich [79].) By this Kleene Theorem expressions which are analogous to regular
expressions can be defined that characterize the recognizable tree series.

We first show that Arec⟨⟨TΣ(X)⟩⟩ is a distributive Σ-algebra. This result is
a specialization of Theorem 6.5 of Kuich [80].

Theorem 6.4.1 ⟨Arec⟨⟨TΣ(X)⟩⟩,+, 0, Σ̄⟩ is a distributive Σ-algebra that con-
tains A⟨TΣ(X)⟩ and is closed under scalar product.

Proof. Let sj ∈ Arec⟨⟨TΣ(X)⟩⟩ be the first components of the unique solution
of the simple proper finite polynomial systems (written in matrix notation)
zj = pj(zj), 1 ≤ j ≤ m, with pairwise disjoint variable alphabets. Let �j be
the unique solution of zj = pj(zj), 1 ≤ j ≤ m, with �j1 = sj .

(i) Consider the system

z0 = p1
1(z1) + p2

1(z2), z1 = p1(z1), z2 = p2(z2) .

It is again simple and proper. We claim that its unique solution is given by
(s1 + s2, �

1, �2) and show this by substituting s1 + s2 for z0, �1 for z1 and �2

6.4. KLEENE’S THEOREM FOR RECOGNIZABLE TREE SERIES 175

for z2:

p1
1[�1/z1] + p2

1[�2/z2] = �1
1 + �2

1 = s1 + s2, pj [�j/zj] = �j , j = 1, 2 .

(ii) Let ! ∈ Σk, k ≥ 0, and consider the system

z0 = !(z1
1 , . . . , z

k
1), zj = pj(zj), 1 ≤ j ≤ k .

It is again simple and proper. We claim that its unique solution is given by
(!̄(s1, . . . , sk), �1, . . . , �k) and show this again by substituting the components
of the claimed solution into the equations:

!̄(�1
1 , . . . , �

k
1) = !̄(s1, . . . , sk), pj [�j/zj] = �j , 1 ≤ j ≤ k .

(iii) Let a ∈ A and consider the system

z0 = ap1
1(z1), z1 = p1(z1) .

It is again simple and proper. We claim that its unique solution is given by
(as1, �

1) and show this by substitution:

ap1
1[�1/z1] = as1, p1[�1/z1] = �1 .

(iv) For s ∈ A⟨TΣ(X)⟩, s is the unique solution of the system z0 = s.
Since Arec⟨⟨TΣ(X)⟩⟩ contains A⟨TΣ(X)⟩ and is closed under addition and

top catenation, it is a Σ-subalgebra of A⟨⟨TΣ(X)⟩⟩. Hence, it is a distributive
Σ-algebra.

In the sequel, Z = {zj ∣ j ≥ 1}, Zn = {zj ∣ 1 ≤ j ≤ n}, Z0 = ∅. We introduce
the following notation: Let s ∈ A⟨⟨TΣ(X ∪Zn)⟩⟩. Then we denote the least � ∈
A⟨⟨TΣ(X∪{z1, . . . , zi−1, zi+1, . . . , zn})⟩⟩ such that s(z1, . . . , zi−1, �, zi+1, . . . , zn) =
� by �zi.s(z1, . . . , zn), 1 ≤ i ≤ n. This means that �zi.s is the least fixed point
solution of the system zi = s(z1, . . . , zi, . . . , zn); this system consists of one
equation only and its single variable is zi.

The operation �z.s, where z ∈ Z and s ∈ A⟨⟨TΣ(X ∪ Z)⟩⟩, is a slight mod-
ification and generalization (to semirings) of the Kleene star operation for tree
languages as defined by Gécseg, Steinby [52]. The connection of these two op-
erations in the case of the Boolean semiring is explained below Theorem 4.7.

A distributive Σ-algebra ⟨V,+, 0, Σ̄⟩, V ⊆ A⟨⟨TΣ(X∪Z)⟩⟩ is called rationally
closed iff V is closed under scalar product and for all s ∈ V and z ∈ Z the
formal tree series �z.s is again in V . By definition, Arat⟨⟨TΣ(X ∪ Z)⟩⟩ is the
least rationally closed distributive Σ-algebra containing A⟨TΣ(X∪Z)⟩. Observe
that for each s ∈ Arat⟨⟨TΣ(X ∪ Z)⟩⟩ there exists an m ≥ 0 such that supp(s) ⊆
TΣ(X ∪ Zm).

We will prove that Arat⟨⟨TΣ(X ∪ Z)⟩⟩ = Arec⟨⟨TΣ(X ∪ Z)⟩⟩. Before proving
the main result of this section we apply a few results of the fixed point theory
of continuous functions to systems (see the Preliminaries of Chapter 2).

(1) The parameter identity. Let r ∈ A⟨⟨TΣ(X ∪ Y)⟩⟩ and denote r′ = �y.r,
y ∈ Y . Let yi ∕= y and �i ∈ A⟨⟨TΣ(X ∪ (Y − {y}))⟩⟩, 1 ≤ i ≤ n. Then
r′[�1/y1, . . . , �n/yn] = �y.(r[�1/y1, . . . , �n/yn]).

176 CHAPTER 6. FORMAL TREE SERIES

(2) The Bekić-De Bakker-Scott rule. Consider the system yi = ri, 1 ≤ i ≤ n,
ri ∈ A⟨⟨TΣ(X ∪ Y)⟩⟩ with variables y1, . . . , yn and m ∈ {1, . . . , n − 1}. Let
(�m+1, . . . , �n) be the least solution of the system yi = ri, m + 1 ≤ i ≤
n. Furthermore, let (�1, . . . , �m) be the least solution of the system yi =
ri[�m+1/ym+1, . . . , �n/yn], 1 ≤ i ≤ m. Then

(�1, . . . , �m, �m+1[�1/y1, . . . , �m/ym], . . . , �n[�1/y1, . . . , �m/ym])

is the least solution of the original system yi = ri, 1 ≤ i ≤ n.
We first show that Arat⟨⟨TΣ(X ∪ Z)⟩⟩ is closed under substitution.

Theorem 6.4.2 Assume that s(z1, . . . , zn) and �j, 1 ≤ j ≤ n, are in Arat⟨⟨TΣ(X∪
Z)⟩⟩. Then s(�1, . . . , �n) is again in Arat⟨⟨TΣ(X ∪ Z)⟩⟩.

Proof. The proof is by induction on the number of applications of the operations
!̄ ∈ Σ̄, +, scalar product and � to generate s(z1, . . . , zn) from polynomials.

(i) Let s(z1, . . . , zn) ∈ A⟨TΣ(X ∪ Z)⟩. Since s(�1, . . . , �n) is generated from
�1, . . . , �n by application of sum, !̄ ∈ Σ̄ and scalar product, we infer that
s(�1, . . . , �n) ∈ Arat⟨⟨TΣ(X ∪ Z)⟩⟩.

(ii) The cases of addition, top catenation and scalar product are clear. Thus,
we only prove the case of the operator �. Assume that, for 1 ≤ j ≤ n,
supp(�j) ⊆ TΣ(X ∪ Zm) for some m ≥ 0. Choose a z = zk ∈ Z with k > m.
Without loss of generality assume that s(z1, . . . , zn) = �z.r(z1, . . . , zn, z) (the
variable z is “bound”), where r(z1, . . . , zn, z) ∈ Arat⟨⟨TΣ(X∪Z)⟩⟩. By induction
hypothesis, we have r(�1, . . . , �n, z) ∈ Arat⟨⟨TΣ(X∪Z)⟩⟩. Hence, s(�1, . . . , �n) =
�z.r(�1, . . . , �n, z) ∈ Arat⟨⟨TΣ(X ∪ Z)⟩⟩ by the parameter identity.

Theorem 6.4.3 (Bozapalidis [14], Section 5.) Arat⟨⟨TΣ(X∪Z)⟩⟩ = Arec⟨⟨TΣ(X∪
Z)⟩⟩.

Proof. (i) We show Arec⟨⟨TΣ(X ∪ Z)⟩⟩ ⊆ Arat⟨⟨TΣ(X ∪ Z)⟩⟩. The proof is by
induction on the number of variables of finite polynomial systems. We use the
following induction hypothesis: If � = (�1, . . . , �n), �i ∈ Arec⟨⟨TΣ(X ∪ Z)⟩⟩,
1 ≤ i ≤ n, is the least solution of a finite polynomial system zi = qi(z1, . . . , zn),
1 ≤ i ≤ n, with n variables z1, . . . , zn, where qi(z1, . . . , zn) ∈ A⟨TΣ(X ∪ Z)⟩
then �i ∈ Arat⟨⟨TΣ(X ∪ Z)⟩⟩.

(1) Let n = 1 and assume that s ∈ Arec⟨⟨TΣ(X ∪ Z)⟩⟩ is the least solution
of the finite polynomial system z1 = p(z1). Since p(z1) is a polynomial, s =
�z1.p(z1) ∈ Arat⟨⟨TΣ(X ∪ Z)⟩⟩.

(2) Consider the finite polynomial system zi = qi(z1, . . . , zn+1), 1 ≤ i ≤ n+1,
n ≥ 1. Let �(z1) = (�2(z1), . . . , �n+1(z1)), �i(z1) ∈ Arec⟨⟨TΣ(X ∪ Z)⟩⟩, 2 ≤ i ≤
n+1, be the least solution of the finite polynomial system zi = qi(z1, . . . , zn+1),
2 ≤ i ≤ n+ 1. By our induction hypothesis we infer that �i(z1) ∈ Arat⟨⟨TΣ(X ∪
Z)⟩⟩. Since q1(z1, . . . , zn+1) is a polynomial, it is in Arat⟨⟨TΣ(X ∪ Z)⟩⟩. Hence,
by Theorem 4.2, p(z1) = q1(z1, �2(z1), . . . , �n+1(z1)) is in Arat⟨⟨TΣ(X ∪ Z)⟩⟩.
This implies that �z1.p(z1) is in Arat⟨⟨TΣ(X ∪ Z)⟩⟩. Again by Theorem 4.2,
�i(�z1.p(z1)) ∈ Arat⟨⟨TΣ(X ∪ Z)⟩⟩, 2 ≤ i ≤ n + 1. By the Bekić-De Bakker-
Scott rule, (�z1.p(z1), �2(�z1.p(z1)), . . . , �n+1(�z1.p(z1))) is the least solution of

6.4. KLEENE’S THEOREM FOR RECOGNIZABLE TREE SERIES 177

the finite polynomial system zi = qi(z1, . . . , zn+1), 1 ≤ i ≤ n + 1. Hence, the
components of the least solution of zi = qi(z1, . . . , zn+1), 1 ≤ i ≤ n + 1, are in
Arat⟨⟨TΣ(X ∪ Z)⟩⟩.

(ii) We show that Arec⟨⟨TΣ(X ∪ Z)⟩⟩ is a rationally closed distributive Σ-
algebra that contains A⟨TΣ(X ∪ Z)⟩. This will imply Arat⟨⟨TΣ(X ∪ Z)⟩⟩ ⊆
Arec⟨⟨TΣ(X∪Z)⟩⟩. By Theorem 4.1 (with X∪Z instead of X), Arec⟨⟨TΣ(X∪Z)⟩⟩
is a distributive Σ-algebra closed under scalar product that contains A⟨TΣ(X ∪
Z)⟩. Hence, we have only to show that �z.s, s ∈ Arec⟨⟨TΣ(X ∪ Z)⟩⟩, is in
Arec⟨⟨TΣ(X ∪ Z)⟩⟩. Let (�2(z1), . . . , �n+1(z1)) be the least solution of the fi-
nite polynomial system zi = pi(z1, . . . , zn+1), 2 ≤ i ≤ n + 1, and take s =
�2(z1). Consider now the finite polynomial system z1 = p2(z1, . . . , zn+1), zi =
pi(z1, . . . , zn+1), 2 ≤ i ≤ n + 1. Then, by the Bekić-De Bakker-Scott rule,
�z1.�2(z1) is the first component of its least solution.

Analogously to the rational expressions (see Chapter 2, Section 3) and to
the ΣZ-expressions (see Gécseg, Steinby [52]) we define now rational tree series
expressions. Assume that A,Σ, X, Z and U = {+, ⋅, �, [,]} are pairwise disjoint.
A word E over A ∪ Σ ∪ X ∪ Z ∪ U is a rational tree series expression over
(A,Σ, X, Z) iff

(i) E is a symbol of X ∪ Z, or

(ii) E is of one of the forms [E1 + E2], !(E1, . . . , Ek), aE1, or �z.E1, where
E1, E2, . . . , Ek are rational tree series expressions over (A,Σ, X, Z), ! ∈
Σk, k ≥ 0, a ∈ A, and z ∈ Z.

Each rational tree series expression E over (A,Σ, X, Z) denotes a formal tree
series ∣E∣ in A⟨⟨TΣ(X ∪ Z)⟩⟩ according to the following conventions:

(i) If E is in X ∪ Z then E denotes the tree series E, i. e., ∣E∣ = E.

(ii) For rational tree series expressions E1, . . . , Ek over (A,Σ, X, Z), ! ∈ Σk,
k ≥ 0, a ∈ A, z ∈ Z, we define

∣[E1 + E2]∣ = ∣E1∣+ ∣E2∣ ,
∣!(E1, . . . , Ek)∣ = !̄(∣E1∣, . . . , ∣Ek∣) ,
∣aE1∣ = a∣E1∣ ,
∣�z.E1∣ = �z.∣E1∣ .

Let '1 and '2 be mappings from the set of rational tree series expressions over
(A,Σ, X, Z) into the set of finite subsets of X ∪ Z defined by

(i) '1(x) = ∅, '2(x) = {x}, x ∈ X,
'1(z) = {z}, '2(z) = ∅, z ∈ Z.

(ii) 'j([E1 + E2]) = 'j(E1) ∪ 'j(E2),
'j(!(E1, . . . , Ek)) = 'j(E1) ∪ . . . ∪ 'j(Ek),
'j(aE1) = 'j(E1), a ∕= 0, 'j(0E1) = ∅, a = 0,
'j(�z.E1) = 'j(E1)− {z}, j = 1, 2
for rational tree series expressions E1, E2, . . . , Ek over (A,Σ, X, Z), ! ∈
Σk, k ≥ 0, a ∈ A, and z ∈ Z.

178 CHAPTER 6. FORMAL TREE SERIES

Given a rational tree series expression E over (A,Σ, X, Z), '1(E) ⊆ Z
contains the “free variables” of E, while '2(E) ⊆ X contains the used sym-
bols of the leaf alphabet X. This means that ∣E∣ is a formal tree series in
A⟨⟨TΣ('2(E) ∪ '1(E))⟩⟩. Theorem 4.3 and the above definitions yield some
corollaries.

Corollary 6.4.4 A tree series s is in Arat⟨⟨TΣ(X ∪ Z)⟩⟩ ∩ A⟨⟨TΣ(X ′ ∪ Z ′)⟩⟩,
where X ′ ⊆ X, Z ′ ⊆ Z, iff there exists a rational tree series expression E over
(A,Σ, X, Z) such that s = ∣E∣, where '2(E) = X ′ and '1(E) = Z ′.

Corollary 6.4.5 A tree series s is in Arat⟨⟨TΣ(X∪Z)⟩⟩∩A⟨⟨TΣ(X ′)⟩⟩, X ′ ⊆ X,
iff there exists a rational tree series expression E over (A,Σ, X, Z) such that
s = ∣E∣, where '1(E) = ∅ and '2(E) = X ′.

Corollary 6.4.6 A tree series s is in Arec⟨⟨TΣ(X ′)⟩⟩, X ′ ⊆ X, iff there exists
a rational tree series expression E over (A,Σ, X, Z) such that s = ∣E∣, where
'1(E) = ∅ and '2(E) = X ′.

Observe that our Corollary 4.4 is stronger than “Kleene’s Theorem” of Boza-
palidis [14], Section 5, since we can use our Theorem 4.2 and do not need “closure
under substitution” in the definition of a rationally closed distributive Σ-algebra.

We summarize our results in a Kleene-like theorem (see Bozapalidis [14]).

Theorem 6.4.7 The following statements on a power series r ∈ A⟨⟨TΣ(X)⟩⟩
are equivalent:

(i) r is a component of the least solution of a finite polynomial system;

(ii) r is the behavior of a finite polynomial tree series automaton;

(iii) there exists a rational tree series expression E over (A,Σ, X, Z), where
'1(E) = ∅, such that r = ∣E∣.

Proof. By Corollary 3.6 and Theorem 4.3.

In the characterization of the recognizable tree languages, Gécseg, Steinby [52]
use the following closure operation for a tree language r(y1, . . . , yn, y) ∈
B⟨⟨TΣ(X ∪ {y1, . . . , yn, y})⟩⟩, y = yn+1:

r0,y(y1, ... , yn, y) = {y},
rj+1,y(y1, ... , yn, y) = r(y1, ... , yn, r

j,y(y1, ... , yn, y)) ∪ rj,y(y1, ... , yn, y), j ≥ 0,

r∗y(y1, ... , yn, y) =
∪
j≥0 r

j,y(y1, ... , yn, y).

(Here we use the isomorphism between 2TΣ(Y) and B⟨⟨TΣ(Y)⟩⟩.) Consider now
the finite polynomial system over B with just one equation and variable y0

y0 = r(y1, . . . , yn, y0) + y ,

6.4. KLEENE’S THEOREM FOR RECOGNIZABLE TREE SERIES 179

and denote by (� j(y1, . . . , yn, y) ∣ j ≥ 0) its approximation sequence

�0(y1, . . . , yn, y) = 0 ,
� j+1(y1, . . . , yn, y) = r(y1, . . . , yn, �

j(y1, . . . , yn, y)) + y, j ≥ 0 .

Using the equality

rj+1,y(y1, . . . , yn, y) = r(y1, . . . , yn, r
j,y(y1, . . . , yn, y)) + y, j ≥ 0,

easy proofs by induction on the elements of the approximation sequence show
that, for j ≥ 0,

(i) y ≤ rj,y(y1, . . . , yn, y), y ≤ � j+1(y1, . . . , yn, y),

(ii) � j(y1, . . . , yn, y) ≤ rj,y(y1, . . . , yn, y),

(iii) rj,y(y1, . . . , yn, y) ≤ � j+1(y1, . . . , yn, y).

Since rj,y(y1, . . . , yn, y) =
∑

0≤i≤j r
i,y(y1, . . . , yn, y), we obtain sup(� j(y1, . . . , yn, y) ∣

j ≥ 0) = r∗y(y1, . . . , yn, y). Hence, r∗y(y1, . . . , yn, y) is the least solution
of the equation y0 = r(y1, . . . , yn, y0) + y, i. e., �y0.(r(y1, ... , yn, y0) + y) =
r∗y(y1, . . . , yn, y). Observe that these considerations are valid not only for B
but for all idempotent semirings.

Bozapalidis [14] had the idea to replace �y0.(r(y1, . . . , yn, y0) + y) by
�y.r(y1, . . . , yn, y). (For context-free languages, Gruska [60] used implicitely this
closure operator; see Kuich [79].) We have used this closure operator of Boza-
palidis [14] in this chapter. The essential difference of the two closure operators
is that r∗y(y1, . . . , yn, y) ∈ B⟨⟨TΣ(X ∪ Yn ∪ {y})⟩⟩, while �y.r(y1, . . . , yn, y) ∈
B⟨⟨TΣ(X ∪ Yn)⟩⟩.

By the parameter identity we can even say more:

�y.r(y1, . . . , yn, y) = r∗y(y1, . . . , yn, 0).

Hence, our interpretation of a rational tree series expression over (B,Σ, X, Z)
that is given below is different from that by Gécseg, Steinby [52].

Each rational tree series expression E over (B,Σ, X, Z) denotes a tree lan-
guage ∣E∣ ⊆ TΣ(X ∪ Z) according to the following conventions:

(o) The tree language denoted by 0 is ∅.

(i) The tree language denoted by x ∈ X is {x}.

(ii) The tree language denoted by z ∈ Z is {z}.

(iii) For rational tree series expressions E1, E2, . . . , Ek over (B,Σ, X, Z), ! ∈
Σk, k ≥ 0, and z ∈ Z,

∣[E1 + E2]∣ = ∣E1∣ ∪ ∣E2∣,
∣!(E1, . . . , Ek)∣ = !̄(∣E1∣, . . . , ∣Ek∣),

∣�z.E1∣ = �z.∣E1∣.

180 CHAPTER 6. FORMAL TREE SERIES

In the next theorem we use the notation of Gécseg, Steinby [52].

Theorem 6.4.8 The following statements on a tree language L ⊆ TΣ(X) are
equivalent:

(i) L is generated by a regular ΣX-grammar;

(ii) L is recognized by a nondeterministic finite root-to-frontier ΣX-recognizer;

(iii) L = ∣E∣, where E is a rational tree series expression over (B,Σ, X, Z) and
'1(E) = ∅.

Observe that Theorem 4.8 is stronger than Proposition 9.3 (Kleene’s Theorem)
of Gécseg, Steinby [52], since we do not need “closure under substitution” for
our tree expressions over (B,Σ, X, Z).

Example 6.4.1. Let Σ = Σ0∪Σ1∪Σ2, Σ0 = {c, d}, Σ1 = {g}, Σ2 = {f}, z, z1 ∈ Z
and consider the rational tree series expression [g(c) + �z1.[f(c, z1) + z]] over
(B,Σ, X, Z). It denotes

∣[g(c)+�z1.[f(c, z1)+z]]∣ = g(c)+z+f(c, z)+f(c, f(c, z))+f(c, f(c, f(c, z)))+. . .

Moreover,

∣[g(c) + �z1.[f(c, z1) + d]]∣ = ∣[g(c) + �z1.[f(c, z1) + z]]∣[d/z] .

Compare this with the second paragraph on page 21 of Gécseg, Steinby [52].

6.5 Pushdown tree automata, algebraic tree sys-
tems, and a Kleene Theorem

In this section we consider pushdown tree automata and algebraic tree systems.
Moreover, we prove a Kleene Theorem due to Bozapalidis [15].

Guessarian [62] introduced the notion of a (top-down) pushdown tree auto-
maton and showed that these pushdown tree automata recognize exactly the
class of context-free tree languages. Here a tree language is called context-free
iff it is generated by a context-free tree grammar (using OI derivation mode).
Moreover, she showed that pushdown tree automata are equivalent to restricted
pushdown tree automata, i. e., to pushdown automata, whose pushdown store
is linear.

Kuich [85] generalized these results of Guessarian [62] to formal tree series.
He defined pushdown tree automata whose behaviors are formal tree series and
showed that the class of behaviors of these pushdown tree automata coincides
with the class of algebraic tree series. Here a tree series is called algebraic iff it
is the initial component of the least solution of an algebraic tree system with
initial function variable. These algebraic tree systems are a generalization of the
context-free tree grammars (see Rounds [102] and Gécseg, Steinby [52]). They

6.5. PUSHDOWN TREE AUTOMATA 181

are a particular instance of the second-order systems of Bozapalidis [15]. The
presentation follows Kuich [85].

A pushdown tree automaton (with input alphabet Σ and leaf alphabet X)
over the semiring A

P = (Q,Γ, Z, Y,M, S, p0, P)

is given by

(i) a finite non-empty set Q of states;

(ii) a finite ranked alphabet Γ = Γ0 ∪ Γ1 ∪ . . . ∪ Γm̄ of pushdown symbols;

(iii) a finite alphabet Z = {z1, . . . , zm̄} of pushdown variables;

(iv) a finite alphabet Y = {y1, . . . , yk} of variables;

(v) a pushdown tree transition matrix M of order k;

(vi) S ∈ (A⟨TΣ(X ∪ Y1)⟩)1×Q, where Sq = dqy1, dq ∈ A, q ∈ Q, called the
initial state vector ;

(vii) p0 ∈ Γ0, called the initial pushdown symbol ;

(viii) a finite family P = (Pg(z1,...,zm) ∣ g ∈ Γm, 0 ≤ m ≤ m̄) of final state

vectors Pg(z1,...,zm) ∈ (A⟨TΣ(X)⟩)Q×1, g ∈ Γm, 0 ≤ m ≤ m̄.

Here a pushdown tree transition matrix of order k is a matrix

M ∈ ((A⟨TΣ(X ∪ Yk)⟩)Q×Q
k

)TΓ(Z)×TΓ(Z)k

which satisfies the following two conditions:

(i) for all t, t1, . . . , tk ∈ TΓ(Z)

Mt,(t1,...,tk) =

⎧⎨⎩

∑
Mg(z1,...,zm),(v1(z1,...,zm),...,vk(z1,...,zm))

where the sum extends over all v1, . . . , vk ∈ TΓ(Zm),
such that tj = vj(u1, . . . , um), 1 ≤ j ≤ k,

if t = g(u1, . . . , um), g ∈ Γm, u1, . . . , um ∈ TΓ(Zm) ;
0 , otherwise .

(ii) M is row finite, i. e., for each g ∈ Γm, 0 ≤ m ≤ m̄, there exist only finitely
many blocks Mg(z1,...,zm),(v1,...,vk), where v1, . . . , vk ∈ TΓ(Zm), that are
unequal to zero;

Observe that if the root of t is labeled by g ∈ Γm, then Mt,(t1,...,tk) ∕= 0 implies
t, t1, . . . , tk ∈ TΓ(Zm).

Intuitively, the definition of the pushdown tree transition matrix means that
the action of the pushdown tree automaton with tree t = g(u1, . . . , um) on its
pushdown store depends only on the label g of the root of t. Observe that
a pushdown tree transition matrix of order k is defined by its finitely many
nonnull blocks of the form Mg(z1,...,zm),(v1,...,vk), g ∈ Γm.

182 CHAPTER 6. FORMAL TREE SERIES

Observe that our definition of pushdown tree automata differs slightly from
the definition given in Kuich [85]: there M is a sequence of pushdown tree tran-
sition matrices. But by the Remark given below the definition of tree automata
in Section 3, both types of pushdown tree automata are equivalent with respect
to their behaviors.

Let now ZQ = {(zi)q ∣ 1 ≤ i ≤ m̄, q ∈ Q} be an alphabet of variables
and denote ZmQ = {(zi)q ∣ 1 ≤ i ≤ m, q ∈ Q}, 1 ≤ m ≤ m̄, Z0

Q = ∅. Define

F ∈ ((A⟨TΣ(X ∪ ZQ)⟩)Q×1)TΓ(Z)×1 by its entries as follows:

(i) (Ft)q = (Pg(z1,...,zm))q if t = g(u1, . . . , um), g ∈ Γm, 0 ≤ m ≤ m̄,
u1, . . . , um ∈ TΓ(Zm), q ∈ Q;

(ii) (Fzi)q = (zi)q, 1 ≤ i ≤ m̄, q ∈ Q;

(iii) (Ft)q = 0, otherwise.

Hence, Fzi , 1 ≤ i ≤ m̄, is a column vector of dimension Q whose q-entry, q ∈ Q,
is the variable (zi)q.

The approximation sequence (� j ∣ j ∈ ℕ), � j ∈ ((A⟨TΣ(X∪ZQ)⟩)Q×1)TΓ(Z)×1,
j ≥ 0, associated with P is defined as follows:

�0 = 0, � j+1 = M(� j , . . . , � j) + F, j ≥ 0 .

This means that, for all t ∈ TΓ(Z), the block vectors � jt of � j are defined by

�0
t = 0, � j+1

t =
∑

t1,...,tk∈TΓ(Z)

Mt,(t1,...,tk)(�
j
t1 , . . . , �

j
tk

) + Ft, j ≥ 0 .

Moreover, for all t ∈ TΓ(Z), q ∈ Q,

(�0
t)q = 0 ,

(� j+1
t)q =

∑
t1,...,tk∈TΓ(Z)

∑
q1,...,qk∈Q

(Mt,(t1,...,tk))q,(q1,...,qk)((�
j
t1)q1 , . . . , (�

j
tk

)qk) + (Ft)q j ≥ 0 .

Hence, for all g ∈ Γm, 0 ≤ m ≤ m̄, and all u1, . . . , um ∈ TΓ(Zm), we obtain,
for all j ≥ 0,

� j+1
g(u1,...,um) =

∑
v1,...,vk∈TΓ(Zm)

Mg(z1,...,zm),(v1,...,vk)(�
j
v1(u1,...,um), . . . , �

j
vk(u1,...,um))

+Pg(z1,...,zm)

and
� j+1
zi = Fzi , zi ∈ Z .

Let � ∈ ((A⟨⟨TΣ(X ∪ ZQ)⟩⟩)Q×1)TΓ(Z)×1 be the least upper bound of the
approximation sequence associated with P. Then the behavior ∣∣P∣∣ of the
pushdown tree automaton P is defined by

∣∣P∣∣ = S(�p0) =
∑
q∈Q

Sq((�p0)q) =
∑
q∈Q

dq(�p0)q .

6.5. PUSHDOWN TREE AUTOMATA 183

Observe that ∣∣P∣∣ is a tree series in A⟨⟨TΣ(X)⟩⟩. Furthermore, observe that
(�t)q ∈ A⟨⟨TΣ(X∪ZQ)⟩⟩, t ∈ TΓ(Z), q ∈ Q, induces a mapping from (A⟨⟨TΣ(X∪
ZQ)⟩⟩)m̄∣Q∣ into A⟨⟨TΣ(X ∪ ZQ)⟩⟩.

We now construct a polynomial tree automaton A that has the same behavior

as the pushdown tree automaton P. Let M̂ ∈ (A⟨TΣ(X∪Yk)⟩)(TΓ(Z)×Q)×(TΓ(Z)×Q)k

and F̂ ∈ (A⟨TΣ(X ∪ ZQ)⟩)(TΓ(Z)×Q)×1 be the isomorphic copies of M and F ,

respectively. Observe that M̂ is row finite. Furthermore define Ŝ ∈ (A⟨TΣ(X ∪
Y1)⟩)1×(TΓ(Z)×Q) by Ŝ(p0,q) = Sq, Ŝ(t,q) = 0, t ∕= p0, q ∈ Q. Specify the poly-
nomial tree automaton A with input alphabet Σ and leaf alphabet X ∪ ZQ
by

A = (TΓ(Z)×Q, M̂, Ŝ, F̂) .

Then it is clear that ∣∣A∣∣ = ∣∣P∣∣, i. e., our pushdown tree automaton fits
into the general definition of a polynomial tree automaton, but for techni-
cal reasons, we prefer to work with the transition matrix M in ((A⟨TΣ(X ∪
Yk)⟩)Q×Qk

)TΓ(Z)×TΓ(Z)k and with the final state vector F in ((A⟨TΣ(X∪ZQ)⟩)Q×1)TΓ(Z)×1.
Clearly, this means that all notions concerning tree automata (e. g., simple

tree automata) are also notions for pushdown tree automata.
Observe that we have adapted the definition of a pushdown tree automaton

as given in Kuich [85] to fit into our general definition of a polynomial tree
automaton.

Consider now the polynomial system constructed from A as in the proof of
Theorem 3.3 and transfer it isomorphically to a system that “belongs” to P,
i. e.,

y = M(y, . . . , y) + F . (∗)

Here y ∈ ({(yt)q ∣ t ∈ TΓ(Z), q ∈ Q}Q×1)TΓ(Z)×1 is a vector of variables (yt)q,
t ∈ TΓ(Z), q ∈ Q, such that (yt)q is the t-q-entry of y.

The equations of the linear system (∗) are, in block notation, for t ∈ TΓ(Z),

yt =
∑

t1,...,tk∈TΓ(Z)

Mt,(t1,...,tk)(yt1 , . . . , ytk) + Ft ,

where yt is a Q × 1-vector, whose q-entry is the variable (yt)q, q ∈ Q; and for
t ∈ TΓ(Z), q ∈ Q,

(yt)q =
∑
t1,...,tk∈TΓ(Z)

∑
q1,...,qk∈Q

(Mt,(t1,...,tk))q,(q1,...,qk)((yt1)q1 , . . . , (ytk)qk) + (Ft)q .

Hence, for all g ∈ Γm, 0 ≤ m ≤ m̄, and all u1, . . . , um ∈ TΓ(Zm), the equations
in matrix notation are

yg(u1,...,um) =
∑
v1,...,vk∈TΓ(Zm)

Mg(z1,...,zm),(v1,...,vk)(yv1(u1,...,um), . . . , yvk(u1,...,um))
+Pg(z1,...,zm) .

and, for zi ∈ Z,
yzi = Fzi .

184 CHAPTER 6. FORMAL TREE SERIES

Here vi(u1, . . . , um), 1 ≤ i ≤ k, denotes vi[uj/zj , 1 ≤ j ≤ m]. The least
solution of this polynomial system is the least upper bound of the approximation
sequence associated with P.

An example will illustrate the notions connected with pushdown tree au-
tomata. This example is due to Guessarian [62], Example 3, and was already
given in Kuich [85].

Example 6.5.1. The pushdown tree automaton M of Example 3 of Guessar-
ian [62] is specified by our concepts as follows: The input alphabet is F =
{b, c1, c2}, ar(b) = 2, ar(ci) = 0, i = 1, 2; X is the empty set. P = (Q,Γ, {z}, {y1, y2},M, S, Z0, P),
where Q = {q0, q1, q2}, Γ = {G,C,Z0}, ar(G) = 1, ar(C) = ar(Z0) = 0,
P = (PC , PZ0

, PG(z)), and the pushdown transition matrix M of order 2 is
defined by

(0) (MZ0,(G(C),Z0))q0,(q0,q0) = y1,

(1) (MG(z),(G(G(z)),G(z)))q0,(q0,q0) = y1,

(2) (MG(z),(z,z))q0,(q1,q2) = b(y1, y2),

(3) (MG(z),(z,z))qi,(qi,qi) = b(y1, y2), i = 1, 2,

(4) (PC)qi = ci, i = 1, 2.

All other entries of the Z0, C and G(z) block row of M1 and M2 are zero.
Moreover, (PC)q0 = 0 and PZ0 = 0, PG(z) = 0. Furthermore, Sq0 = y1, Sq1 =
Sq2 = 0.

The important entries of the vectors of the approximation sequence associ-
ated with P are defined as follows for all u ∈ TΓ({z}) and j ≥ 0:

(� j+1
Z0

)q0 = (� jG(C))q0 , (� j+1
Z0

)qi = 0, i = 1, 2 ;

(� j+1
C)q0 = 0, (� j+1

C)qi = ci, i = 1, 2 ; (� j+1
z)qi = zqi , i = 0, 1, 2 ;

(� j+1
G(u))q0 = (� jG(G(u)))q0 + b((� ju)q1 , (�

j
u)q2) ,

(� j+1
G(u))qi = b((� ju)qi , (�

j
u)qi), i = 1, 2 .

Let Gk(C) ∈ TΓ(∅) be defined by G0(C) = C, Gk+1(C) = G(Gk(C)), k ≥ 0,
and consider the equations for Gk(C), k ≥ 0, j ≥ 0, i = 1, 2:

(� j+1
G0(C))q0 = 0, (� j+1

G0(C))qi = ci ;

(� j+1
Gk(C)

)q0 = (� j
Gk+1(C)

)q0 + b((� j
Gk−1(C)

)q1 , (�
j
Gk−1(C)

)q2) , k ≥ 1 ;

(� j+1
Gk(C)

)qi = b((� j
Gk−1(C)

)qi , (�
j
Gk−1(C)

)qi) , k ≥ 1 .

Let � = sup(� j ∣ j ∈ ℕ). Then, for k ≥ 1, i = 1, 2, k ≥ 1,

(�G0(C))q0 = 0, (�G0(C))qi = ci ;

(�Gk(C))q0 = (�Gk+1(C))q0 + b((�Gk−1(C))q1 , (�Gk−1(C))q2) ;

(�Gk(C))qi = b((�Gk−1(C))qi , (�Gk−1(C))qi) .

6.5. PUSHDOWN TREE AUTOMATA 185

Also, (�Z0)q0 = (�G(C))q0 .

Hence, (�Gk(C) ∣ k ≥ 0) is the least solution of the polynomial system

(z0)q0 = 0, (z0)qi = ci, i = 1, 2 ;

(zk)q0 = (zk+1)q0 + b((zk−1)q1 , (zk−1)q2) , k ≥ 1 ;

(zk)qi = b((zk−1)qi , (zk−1)qi) , i = 1, 2, k ≥ 1 .

By Theorem 3.2, (�Gk(C) ∣ k ≥ 0) is also the least solution of the system

(z0)q0 = 0, (z0)qi = ci, i = 1, 2 ;

(zk)q0 =
∑
j≥k−1 b((zj)q1 , (zj)q2) , k ≥ 1 ;

(zk)qi = b((zk−1)qi , (zk−1)qi) , i = 1, 2, k ≥ 1 .

This system is proper and has the unique solution (�Gk(C) ∣ k ≥ 0). Observe
that this system is not polynomial.

Define now the trees tji ∈ TF (∅), i = 1, 2, j ≥ 0, by

t0i = ci, tj+1
i = b(tji , t

j
i), i = 1, 2, j ≥ 0 .

Let

(s0)q0 = 0, (s0)qi = ci, i = 1, 2 , (sk)q0 =
∑
j≥k−1

b(tj1, t
j
2), (sk)qi = tki , k ≥ 1.

Then ((sk)qi ∣ k ≥ 0, i = 0, 1, 2) is a solution of this proper system and, hence,
(sk)qi = (�Gk(C))qi , k ≥ 0, i = 0, 1, 2. Since ∣∣P∣∣ = (�Z0

)q0 = (�G(C))q0 , we infer

that ∣∣P∣∣ = (s1)q0 =
∑
j≥0 b(t

j
1, t

j
2).

This example indicates also a method to prove in a mathematically rigorous
manner that the behavior of a pushdown tree automaton equals a certain formal
tree series.

We now will refer to a result for pushdown tree automata that is analogous
to Proposition 3.4.2 for pushdown automata. Intuitively, it states that the
computations of the pushdown tree automaton governed by a pushdown store
with contents t(u1, . . . , um) (i. e., �t(u1,...,um)), where t(z1, . . . , zm) ∈ TΓ(Zm)
and ui ∈ TΓ(Zm), 1 ≤ i ≤ m, are the same as the computations governed
by a pushdown store with contents t(z1, . . . , zm) (i. e., �t(z1,...,zm)) applied to
the computations governed by pushdown stores with contents u1, . . . , um (i. e.,
�t(z1,...,zm)[�ui

/Fzi , 1 ≤ i ≤ m]).

Theorem 6.5.1 (Kuich [85], Theorem 3.5) Let � be the least solution of the
polynomial linear system (∗). Then, for all t(z1, . . . , zm) ∈ TΓ(Zm), 1 ≤ m ≤ m̄,
and ui ∈ TΓ(Zm), 1 ≤ i ≤ m,

�t(u1,...,um) = �t(z1,...,zm)[�ui
/Fzi , 1 ≤ i ≤ m] .

186 CHAPTER 6. FORMAL TREE SERIES

We now introduce algebraic tree systems. The definitions follow Kuich [85].
Let Φ = {G1, . . . , Gn}, Φ ∩ Σ = ∅, be a finite ranked alphabet of function
variables, where Gi has rank ri, 1 ≤ i ≤ n, and m̄ = max{ri ∣ 1 ≤ i ≤ n}.

Let D = A⟨⟨TΣ(X ∪Zr1)⟩⟩ × . . .×A⟨⟨TΣ(X ∪Zrn)⟩⟩ and consider tree series
si ∈ A⟨⟨TΣ∪Φ(X ∪ Zri)⟩⟩, 1 ≤ i ≤ n. Then each si induces a function s̄i : D →
A⟨⟨TΣ(X ∪ Zri)⟩⟩. For (�1, . . . , �n) ∈ D, we define inductively s̄i(�1, . . . , �n) to
be

(i) zm if si = zm, 1 ≤ m ≤ ri; x if si = x, x ∈ X;

(ii) !̄(t̄1(�1, . . . , �n), . . . , t̄r(�1, . . . , �n)) if si = !(t1, . . . , tr), ! ∈ Σr,
t1, . . . , tr ∈ TΣ∪Φ(X ∪ Zri);

(iii) �j(t̄1(�1, . . . , �n), . . . , t̄rj (�1, . . . , �n)) if si = Gj(t1, . . . , trj), Gj ∈ Φ,
t1, . . . , trj ∈ TΣ∪Φ(X ∪ Zri);

(iv) at̄(�1, . . . , �n) if si = at, a ∈ A, t ∈ TΣ∪Φ(X ∪ Zri);

(v)
∑
j∈J r̄j(�1, . . . , �n) if si =

∑
j∈J rj , rj ∈ A⟨⟨TΣ∪Φ(X ∪ Zri)⟩⟩, j ∈ J , for

an arbitrary index set J .

The mappings s̄i, 1 ≤ i ≤ n, and the mapping s̄ : D → D, where s̄ =
⟨s̄1, . . . , s̄n⟩ are continuous. This can be shown for si ∈ TΣ∪Φ(X ∪ Zr) by
induction on the structure of si. If si is of the form Gj(t1, . . . , trj), the continuity
of s̄i follows from the continuity of substitution as shown by Proposition 2.5.
Since scalar multiplication is continuous, it follows now that each si = at,
where a ∈ A and t ∈ TΣ∪Φ(X ∪ Zr) also induces a continuous function. The
general case si ∈ A⟨⟨TΣ∪Φ(X ∪ Zr)⟩⟩ can now be handled using the fact that
summations preserve least upper bounds of directed sets. Hence, s̄ has a least
fixed point in D. (See also Lemmas 4.24 and 4.3 of Guessarian [61]; Lemmas 3.1
and 3.2 of Engelfriet, Schmidt [34]; Bloom, Ésik [10]; Ésik [35], Kuich [85],
Lemma 3.6.) In certain situations, formulae are easier to read if we use the
notation si[�1/G1, . . . , �n/Gn] instead of the notation s̄i(�1, . . . , �n).

An algebraic tree system S = (Φ, Z,Σ, E) (with function variables in Φ,
variables in Z and terminal symbols in Σ) has a set E of formal equations

Gi(z1, . . . , zri) = si(z1, . . . , zri), 1 ≤ i ≤ n ,

where each si is in A⟨TΣ∪Φ(X ∪ Zri)⟩. A solution to the algebraic tree system
S is given by (�1, . . . , �n) ∈ D such that �i = s̄i(�1, . . . , �n), 1 ≤ i ≤ n, i. e., by
any fixed point (�1, . . . , �n) of s̄ = ⟨s̄1, . . . , s̄n⟩. A solution (�1, . . . , �n) of the
algebraic tree system S is called least solution iff �i ⊑ �i, 1 ≤ i ≤ n, for all
solutions (�1, . . . , �n) of S. Since the least solution of S is nothing else than the
least fixed point of s̄ = ⟨s̄1, . . . , s̄n⟩, the least solution of the algebraic system S
exists in D. (See Wechler [115], Section 1.5.)

Theorem 6.5.2 Let S = (Φ, Z,Σ, {Gi = si ∣ 1 ≤ i ≤ n}) be an algebraic tree
system, where si ∈ A⟨TΣ∪Φ(X ∪ Zri)⟩. Then the least solution of this algebraic
tree system S exists in D and equals

fix(s̄) = sup(s̄j(0) ∣ j ∈ ℕ) ,

6.5. PUSHDOWN TREE AUTOMATA 187

where s̄j is the j-th iterate of the mapping s̄ = ⟨s̄1, . . . , s̄n⟩ : D → D and s̄0 is
the identity.

Theorem 5.2 indicates how we can compute an approximation to the least solu-
tion of an algebraic tree system. The approximation sequence (� j ∣ j ∈ ℕ), where
each � j ∈ D, associated with the algebraic tree system S = (Φ, Z,Σ, {Gi = si ∣
1 ≤ i ≤ n}) is defined as follows:

�0 = 0, � j+1 = s̄(� j), j ∈ ℕ .

Since � j = s̄j(0) for all j ∈ ℕ, the least solution fix(s̄) of S is equal to sup(� j ∣
j ∈ ℕ). An algebraic tree system S = (Φ0, Z,Σ, {Gi = si ∣ 0 ≤ i ≤ n}, G0)
(with function variables in Φ0 = {G0, G1, . . . , Gn}, variables in Z, terminal
symbols in Σ) with initial function variable G0 is an algebraic tree system
(Φ0, Z,Σ, {Gi = si ∣ 0 ≤ i ≤ n}) such that G0 has rank 0. Let (�0, �1, . . . , �n)
be the least solution of (Φ0, Z,Σ, {Gi = si ∣ 0 ≤ i ≤ n}). Then �0 is called the
initial component of the least solution. Observe that �0 ∈ A⟨⟨TΣ(X)⟩⟩ contains
no variables of Z.

Our algebraic tree systems are second-order systems in the sense of Boza-
palidis [15] and are a generalization of the context-free tree grammars. (See
Rounds [102], and Engelfriet, Schmidt [34], especially Theorem 3.4, Wech-
ler [115], Section 1.5, Courcelle [26], Section 9.5.)

A tree series in A⟨⟨TΣ(X)⟩⟩ is called algebraic iff it is the initial component of
the least solution of an algebraic tree system with initial function variable. The
collection of all these initial components is denoted by Aalg⟨⟨TΣ(X)⟩⟩. There
is no restriction of the alphabets Σ and X in the definiton of an algebraic
tree series, i. e., they may be infinite. This is due to the fact that, for any
s ∈ Aalg⟨⟨TΣ(X)⟩⟩, there exist finite alphabets Σ′ and X ′, Σ′ ⊆ Σ, X ′ ⊆ X, such
that supp(s) ⊆ TΣ′(X

′). Hence,

Aalg⟨⟨TΣ(X)⟩⟩ =
∪

Σ′⊆Σ finite, X′⊆X finite

Aalg⟨⟨TΣ′(X
′)⟩⟩ .

We shall now show how an equivalent algebraic tree system S = (Φ0, ZQ,Σ, E, y0)
with initial function variable y0 can be constructed from any given a push-
down tree automaton P = (Q,Γ, Z, Y,M, S, p0, P). (The construction follows
Kuich [85].) Here Φ0 = {y0} ∪ {(yg(z1,...,zm))q ∣ g ∈ Γm, 0 ≤ m ≤ m̄, q ∈ Q}.
The function variable (yg(z1,...,zm))q, g ∈ Γm, 0 ≤ m ≤ m̄, q ∈ Q, has the rank
m∣Q∣. By definition, the Q × 1-vector yg(z1,...,zm), g ∈ Γm, 0 ≤ m ≤ m̄, is the
column vector with q-component (yg(z1,...,zm))q, q ∈ Q.

For the specification of the formal equations in E we have to introduce, for
t ∈ TΓ(Zm), 1 ≤ m ≤ m̄, vectors ŷt in (TΦ(ZmQ))Q×1 as follows:

ŷg(u1,...,um) = yg(z1,...,zm)(ŷu1
, . . . , ŷum

) ,

g ∈ Γm, u1, . . . , um ∈ TΓ(Zm), 1 ≤ m ≤ m̄ ;

ŷg = yg, g ∈ Γ0 ; (ŷzi)q = (zi)q, 1 ≤ i ≤ m̄, q ∈ Q .

188 CHAPTER 6. FORMAL TREE SERIES

Written componentwise, the first equation reads

(ŷg(u1,...,um))q = (yg(z1,...,zm))q((ŷui
)q′ , 1 ≤ i ≤ m, q′ ∈ Q)

for g ∈ Γm, u1, . . . , um ∈ TΓ(Zm), 1 ≤ m ≤ m̄, q ∈ Q. Observe that

(ŷg(z1,...,zm))q = (yg(z1,...,zm))q((zi)q′ , 1 ≤ i ≤ m, q′ ∈ Q)

for g ∈ Γm, 1 ≤ m ≤ m̄, q ∈ Q. Observe further that yg(z1,...,zm)(ŷu1 , . . . , ŷum)
means yg(z1,...,zm)[ŷui

/Fzi , 1 ≤ i ≤ m] and (yg(z1,...,zm))q((ŷi)q′ , 1 ≤ i ≤ m, q′ ∈
Q) means (yg(z1,...,zm))q[(ŷi)q′/(zi)q′ , 1 ≤ i ≤ m, q′ ∈ Q]. The formal equations
in E are now given in matrix notation:

y0 = S(yp0
) ,

yg(z1,...,zm)((zi)q′ , 1 ≤ i ≤ m, q′ ∈ Q) = (∗∗)
(M(ŷ, . . . , ŷ) + F)g(z1,...,zm) =∑
t1,...,tk∈TΓ(Zm)Mg(z1,...,zm),(t1,...,tk)(ŷt1 , . . . , ŷtk) + Pg(z1,...,zm),

g ∈ Γm, 0 ≤ m ≤ m̄ .

We now give explicitely the formal equations, except the first one, with index
q ∈ Q.

(yg(z1,...,zm))q((zi)q′ , 1 ≤ i ≤ m, q′ ∈ Q) =∑
t1,...,tk∈TΓ(Zm)

∑
q1,...,qk∈Q

(Mg(z1,...,zm),(t1,...,tk))q,(q1,...,qk)((ŷt1)q1 , . . . , (ŷtk)qk) + (Pg(z1,...,zm))q ,
g ∈ Γm, 0 ≤ m ≤ m̄, q ∈ Q .

Observe that indexing by q ∈ Q is needed only in examples. In theoretical
considerations, we save the indexing by states q, q1, . . . , qn, i. e., we use the form
given further above.

The next theorem is a key result for proving the equivalence of pushdown
tree automata and algebraic tree systems with initial function variable.

Theorem 6.5.3 (Kuich [85], Theorem 3.13) If � is the least solution of the
polynomial linear system (∗) then (�g(z1,...,zm) ∣ g ∈ Γm, 0 ≤ m ≤ m̄) is the
least solution of the algebraic tree system (∗∗).

Corollary 6.5.4 The initial component of the least solution of the algebraic
tree system S coincides with ∣∣P∣∣.

Corollary 6.5.5 The behavior of a pushdown tree automaton is an algebraic
tree series.

Example 6.5.1 (continued). We now construct step-by-step for the pushdown
tree automaton P the algebraic tree system S with initial function variable such

6.5. PUSHDOWN TREE AUTOMATA 189

that ∣∣P∣∣ is the initial component of its least solution. We first consider the
linear system (∗) written in the form

ŷ = M(ŷ, ŷ) + F

and write down explicitly the equations for ŷG(z), ŷZ0
and ŷC :

(ŷG(z))q0 = (ŷG(G(z)))q0 + b((ŷz)q1 , (ŷz)q2),
(ŷG(z))qi = b((ŷz)qi , (ŷz)qi), i = 1, 2,
(ŷZ0

)q0 = (ŷG(C))q0 , (ŷZ0
)qi = 0, i = 1, 2,

(ŷC)q0 = 0, (ŷC)qi = ci, i = 1, 2 .

Now we express the components of ŷ by yG(z), yZ0 and yC ; and obtain the
algebraic system (∗∗):

(yG(z))q0(zq0 , zq1 , zq2) = (yG(z))q0((yG(z))q0(zq0 , zq1 , zq2),
(yG(z))q1(zq0 , zq1 , zq2), (yG(z))q2(zq0 , zq1 , zq2)) + b(zq1 , zq2),

(yG(z))qi(zq0 , zq1 , zq2) = b(zqi , zqi), i = 1, 2,
(yZ0

)q0 = (yG(z))q0((yC)q0 , (yC)q1 , (yC)q2),
(yZ0)qi = 0, i = 1, 2,
(yC)q0 = 0,
(yC)qi = ci, i = 1, 2.

The algebraic tree system S = (Φ0, Z, F,E, y0) is now specified by
Φ0 = {(yG(z))qi , (yZ0)qi , (yC)qi ∣ i = 0, 1, 2}∪{y0}, where the ranks of (yG(z))qi ,
(yZ0)qi , (yC)qi are 3, 0, 0, respectively, for i = 0, 1, 2;
Z = {zq0 , zq1 , zq2};
E is the set of equations specified above augmented by the additional equation
y0 = (yZ0

)q0 .
Observe that the construction of P from S is essentially the same construc-

tion as given by Guessarian [62] in her proof of Theorem 1.

The converse of Corollary 5.5 can be proved and yields the main result of
Kuich [85]. It is also the main result of this section.

Theorem 6.5.6 (Kuich [85], Corollary 3.17) The following statements on a
formal tree series s in A⟨⟨TΣ(X)⟩⟩ are equivalent:

(i) s is an algebraic tree series;

(ii) s is the behavior of a pushdown tree automaton;

(iii) s is the behavior of a simple pushdown tree automaton with one initial
state of weight 1.

Observe that the proof of Corollary 3.17 in Kuich [85] is given for pushdown
tree automata defined by a finite sequence of transition matrices. But by the
Remark given below the definition of tree automata in Section 3, this proof can
easily be rewritten for pushdown tree automata according to our definition.

190 CHAPTER 6. FORMAL TREE SERIES

If our basic semiring is ℕ∞, i. e., if we consider tree series in ℕ∞⟨⟨TΣ(X)⟩⟩,
we can draw some stronger conclusions.

LetG = (Φ, Z,Σ, R) be a context-free tree grammar, where Φ = {G1, . . . , Gn}
and R is the set of rules

Gi(z1, . . . , zri)→ tji , 1 ≤ j ≤ ni, 1 ≤ i ≤ n .

Denote by di(t), 1 ≤ i ≤ n, the number (possibly ∞) of distinct leftmost
derivations of t ∈ TΣ(X ∪ Zri) with respect to G starting from Gi. Let S =
(Φ, Z,Σ, E) be an algebraic tree system, where E is the set of formal equations

Gi(z1, . . . , zri) =
∑

1≤j≤ni

tji , 1 ≤ i ≤ n .

Theorem 6.5.7 (Bozapalidis [15], Theorem 11 ii)) Let G = (Φ, Z,Σ, R) and
S = (Φ, Z,Σ, E) be the context-free tree grammar and the algebraic tree system,
respectively, considered above. Let di(t), 1 ≤ i ≤ n, be the number (possibly ∞)
of distinct leftmost derivations of t ∈ TΣ(X ∪ Zri) with respect to G starting
from Gi. Then the least solution of S is given by(∑

t∈TΣ(X∪Zri
)

di(t)t ∣ 1 ≤ i ≤ n
)
.

Theorems 5.7, 3.1 and Corollary 5.6 yield the following theorem.

Theorem 6.5.8 Let d : TΣ(X) → ℕ∞. Then the following statements are
equivalent:

(i) There exists a context-free tree grammar with an initial function variable,
and with terminal alphabet Σ and leaf alphabet X such that the number
(possibly ∞) of distinct leftmost derivations of t ∈ TΣ(X) from the initial
function variable is given by d(t).

(ii) There exists a 1-simple pushdown tree automaton with input alphabet Σ
and leaf alphabet X such that the number (possibly∞) of distinct accepting
computations for t ∈ TΣ(X) is given by d(t).

A context-free tree grammar with initial function variable, and with terminal
alphabet Σ and leaf alphabet X is called unambiguous iff for all t ∈ TΣ(X) the
number of distinct leftmost derivations of t with respect to G is either 1 or 0. A
1-simple pushdown tree automaton with terminal alphabet Σ and leaf alphabet
X is called unambiguous iff for all t ∈ TΣ(X) the number of distinct accepting
computations for t is either 1 or 0.

Corollary 6.5.9 Let L ⊆ TΣ(X) be a tree language. Then L is generated
by an unambiguous context-free tree grammar iff

∑
t∈L t is the behavior of an

unambiguous 1-simple pushdown tree automaton.

6.5. PUSHDOWN TREE AUTOMATA 191

A pushdown tree automaton P = (Q,Γ, Z, Y,M, S, p0, P) is called restricted
iff Γ = {p0} ∪ Γ1, i. e., except for the initial pushdown symbol p0 of rank 0, all
other pushdown symbols have rank 1.

The next theorem augments the list of equivalent statements of Corollary 5.6.

Theorem 6.5.10 (Kuich [85], Corollary 4.8) The following statements on a
formal tree series s in A⟨⟨TΣ(X)⟩⟩ are equivalent

(i) s is an algebraic tree series;

(ii) s is the behavior of a restricted pushdown tree automaton;

(iii) s is the behavior of a simple restricted pushdown tree automaton.

We now turn to formal tree series in ℕ∞⟨⟨TΣ(X)⟩⟩.

Theorem 6.5.11 Let d : TΣ(X)→ ℕ∞. Then the following statement is equiv-
alent to the statements of Theorem 5.8:

(iii) There exists a 1-simple restricted pushdown tree automaton with input al-
phabet Σ and leaf alphabet X such that the number (possibly∞) of distinct
accepting computations for t ∈ TΣ(X) is given by d(t).

Corollary 6.5.12 Let L ⊆ TΣ(X) be a tree language. Then L is generated
by an unambiguous context-free tree grammar iff

∑
t∈L t is the behavior of an

unambiguous 1-simple restricted pushdown tree automaton.

We now prove a Kleene Theorem due to Bozapalidis [15]. For the remainder
of this chapter, Φ∞ = {Gi ∣ i ≥ 0} denotes an infinite ranked alphabet of
function variables, where Gi has rank ri, i ≥ 0, and for each r ≥ 0 there are
infinitely many function variables with rank r. Let Σ̂ = Σ ∪ {Gk1

, . . . , Gkm}
and D̂ = A⟨⟨TΣ̂(X ∪Zri1)⟩⟩× ⋅ ⋅ ⋅×A⟨⟨TΣ̂(X ∪Zrin)⟩⟩ for some pairwise different
i1, . . . , in, k1, . . . , km ≥ 0. Consider a tree series s ∈ A⟨⟨TΣ̂∪{Gi1

,...,Gin}
(X ∪

Zr)⟩⟩. (The function variables Gk1 , . . . , Gkm are considered here to be ranked
symbols like in Σ.) Then s induces a function s̄ : D̂ → A⟨⟨TΣ̂(X ∪ Zr)⟩⟩ as
defined above.

We now consider an algebraic tree system S = ({Gi1 , . . . , Gin}, Z, Σ̂, E),
where E is Gij (z1, . . . , zrij) = sj(z1, . . . , zrij , Gi1 , . . . , Gin), 1 ≤ j ≤ n, and

sj ∈ A⟨TΣ̂∪{Gi1
,...,Gin}

(X ∪ Zrij)⟩.
The least solution of S is in D̂. The collection of components of least

solutions of all such algebraic systems (with free choice of pairwise different
i1, . . . , in, k1, . . . , km ≥ 0) is denoted by Aalg⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩. Observe that
each power series inAalg⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩ is in fact a power series inAalg⟨⟨TΣ∪Φ(X∪
Zr)⟩⟩ for some finite Φ ⊂ Φ∞ and some r ≥ 0.

Before proving our results we apply a few results of the fixed point theory of
continuous functions to algebraic tree systems (see the Preliminaries of Chap-
ter 2). An extended algebraic tree system S = (Φ, Z,Σ, E) and its least solution
are defined as an algebraic tree system and its least solution with the exception

192 CHAPTER 6. FORMAL TREE SERIES

that the right sides of the equations Gi(z1, . . . , zri) = si(z1, . . . , zri), 1 ≤ i ≤ n,
are now in A⟨⟨TΣ∪Φ(X ∪ Zri)⟩⟩.

(1) The parameter identity. Let r ∈ A⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩, and denote r′ =
�G.r, G ∈ Φ∞. Let Gi ∕= G, �i ∈ A⟨⟨TΣ∪(Φ∞−{G})(X ∪ Z)⟩⟩, 1 ≤ i ≤ n, and
�j ∈ A⟨⟨TΣ(X ∪Z)⟩⟩, 1 ≤ j ≤ k. Then r′[�1/z1, . . . , �k/zk, �1/G1, . . . , �n/Gn] =
�G.(r[�1/z1, . . . , �k/zk, �1/G1, . . . , �n/Gn]).

(2) The Bekić-De Bakker-Scott rule. Consider the equationsGi(z1, . . . , zri) =
si(z1, . . . , zri), 1 ≤ i ≤ n, si ∈ A⟨⟨TΣ∪Φ(X ∪Zri)⟩⟩ of an extended algebraic tree
system S = (Φ, Z,Σ, E), where Φ = {G1, . . . , Gn}, and let m ∈ {1, . . . , n− 1}.
Let (�m+1, . . . , �n) be the least solution of the extended algebraic tree system
S′ = (Φ′, Z,Σ, E′), where Φ′ = {Gm+1, . . . , Gn} and E′ = {Gi(z1, . . . , zri) =
si(z1, . . . , zri) ∣ m + 1 ≤ i ≤ n}. Hence, �j ∈ A⟨⟨TΣ∪{G1,...,Gm}(X ∪ Zrj)⟩⟩,
m + 1 ≤ i ≤ n. Furthermore, let (�1, . . . , �m) be the least solution of the ex-
tended algebraic system S′′ = (Φ′′, Z,Σ, E′′), where Φ′′ = {G1, . . . , Gm} and
E′′ = {Gi(z1, . . . , zri) = si(z1, . . . , zri)[�m+1/Gm+1, . . . , �n/Gn] ∣ 1 ≤ i ≤ m}.
Then

(�1, . . . , �m, �m+1[�1/G1, . . . , �m/Gm], . . . , �n[�1/G1, . . . , �m/Gm])

is the least solution of the original extended algebraic tree system.
We now proceed analogously to Section 4.

Theorem 6.5.13 ⟨Aalg⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩,+, 0, Σ̄∪Φ̄∞⟩ is a distributive Σ∪Φ∞-
algebra that contains A⟨TΣ∪Φ∞(X ∪ Z)⟩ and is closed under scalar product.

Hence, for any G ∈ Φ∞ of rank r and any �1, . . . , �r ∈ Aalg⟨⟨TΣ∪Φ∞(X ∪
Z)⟩⟩, Ḡ(�1, . . . , �r) is again in Aalg⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩.

Proof. We only prove the second sentence. The proof of the first sentence is
analogous to the proof of Theorem 4.1.

Let �1, . . . , �r ∈ A⟨⟨TΣ∪{Gk1
,...,Gkm}(X ∪ {z1, . . . , zk})⟩⟩. Then there exist r

algebraic tree systems Gtj(z1, . . . , zitj) = stj , 1 ≤ t ≤ r, 1 ≤ j ≤ nr, where the
rank of Gt1 is k, such that the first components of their least solutions are �t.

Consider now the algebraic tree system

H(z1, . . . , zk) = G(G11(z1, . . . , zk), . . . , Gr1(z1, . . . , zk)) ,
Gtj(z1, . . . , zitj) = stj , 1 ≤ t ≤ r, 1 ≤ j ≤ nr .

By the Bekić-De Bakker-Scott rule, the H-component of its least solution is then
given by Ḡ(�1, . . . , �r).

A distributive Σ ∪ Φ∞-algebra ⟨V,+, 0, Σ̄ ∪ Φ̄∞⟩, V ⊆ A⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩
is called equationally closed iff V is closed under scalar product, and for all
s ∈ V and G ∈ Φ∞ the formal tree series �G.s is again in V . Here �G.s
denotes the least solution of G(z1, . . . , zr) = s, where r is the rank of G. By
definition, Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ is the least equationally closed distributive
Σ ∪ Φ∞-algebra containing A⟨TΣ∪Φ∞(X ∪ Z)⟩. Observe that each power series
in Aequ⟨⟨TΣ∪Φ∞(X ∪Z)⟩⟩ is in fact a power series in A⟨⟨TΣ∪Φ(X ∪Zr)⟩⟩ for some
finite Φ ⊂ Φ∞ and r ≥ 0.

6.5. PUSHDOWN TREE AUTOMATA 193

We will prove that Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ = Aalg⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩. We
first show that Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ is closed under substitution for function
variables.

Theorem 6.5.14 Consider tree series s and �j, 1 ≤ j ≤ n, in Aequ⟨⟨TΣ∪Φ∞(X∪
Z)⟩⟩ and assume that s(z1, . . . , zr, Gi1 , . . . , Gin) ∈ A⟨⟨TΣ̂∪{Gi1

,...,Gin}
(X ∪ Zr)⟩⟩

and �j ∈ A⟨⟨TΣ̂(X∪Zrij)⟩⟩, where Σ̂ = Σ∪{Gk1
, . . . , Gkm} and i1, . . . , in, k1, . . . , km ≥

0 are pairwise disjoint.
Then s̄(z1, . . . , zr, �1, . . . , �n) is again in Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩.

Proof. The proof is by induction on the number of applications of the operations
!̄ ∈ Σ̄, Ḡ ∈ Φ̄∞, sum, scalar product and � to generate s(z1, . . . , zr, Gi1 , . . . , Gin)
from polynomials.

(i) Let s(z1, . . . , zr, Gi1 , . . . , Gin) ∈ A⟨TΣ̂∪{Gi1 ,...,Gin}
(X∪Zr)⟩. Since s̄(z1, . . . , zr, �1, . . . , �n)

is generated from �1, . . . , �n and z1, . . . , zr by application of sum, !̄ ∈ Σ̄,
Ḡk1 , . . . , Ḡkm , substitution into �1, . . . , �n (which is handled by a theorem simi-
lar to Theorem 4.2), and scalar product, we infer that s̄(z1, . . . , zr, �1, . . . , �n) ∈
Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩.

(ii) We only prove the case of the operator �. Choose a G ∈ Φ∞ with rank r
that is distinct from Gi1 , . . . , Gin , Gk1

, . . . , Gkm . Without loss of generality we
assume that s(z1, . . . , zr, Gi1 , . . . , Gin) = �G.s′(z1, . . . , zr, Gi1 , . . . , Gin , G). By
induction hypothesis, we have that s′(z1, . . . , zr, Gi1 , . . . , Gin , G) is inAequ⟨⟨TΣ∪Φ∞(X∪
Z)⟩⟩. Hence s̄(z1, . . . , zr, �1, . . . , �n) = �G.s̄′(z1, . . . , zr, �1, . . . , �n, G) is inAequ⟨⟨TΣ∪Φ∞(X∪
Z)⟩⟩ by the parameter identity.

Theorem 6.5.15 (Bozapalidis [15], Section 6.) Aequ⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩ = Aalg⟨⟨TΣ∪Φ∞(X∪
Z)⟩⟩

Proof. (i) We show that Aalg⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ ⊆ Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩. The
proof is by induction on the number of variables of algebraic systems. We use
the following induction hypothesis:

If (�1, . . . , �n), where �j ∈ Aalg⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩, 1 ≤ j ≤ n, is the least
solution of an algebraic system Gj(z1, . . . , zrj) = sj(z1, . . . , zrj , G1, . . . , Gn), 1 ≤
j ≤ n, with n function variables G1, . . . , Gn, where sj(z1, . . . , zrj , G1, . . . , Gn) ∈
A⟨TΣ∪Φ∞(X ∪ Z)⟩, then �j ∈ Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩.

(1) Let n = 1 and assume that s ∈ Aalg⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ is the least
solution of the algebraic system G1(z1, . . . , zr1) = p(z1, . . . , zr1 , G1). Since
p(z1, . . . , zr1 , G1) is a polynomial, s = �G1.p(z1, . . . , zr1 , G1) ∈ Aequ⟨⟨TΣ∪Φ∞(X∪
Z)⟩⟩.

(2) Consider the algebraic systemGj(z1, . . . , zrj) = sj(z1, . . . , zrj , G1, . . . , Gn+1),
1 ≤ j ≤ n + 1, n ≥ 1. Let (�2(G1), . . . , �n+1(G1)), �j(G1) ∈ Aalg⟨⟨TΣ∪Φ∞(X ∪
Z)⟩⟩, 2 ≤ j ≤ n+1, be the least solution of the algebraic systemGj(z1, . . . , zrj) =
sj(z1, . . . , zrj , G1, . . . , Gn+1), 2 ≤ j ≤ n + 1. By our induction hypothesis we
infer that �j(G1) ∈ Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩. Hence, by Theorem 5.14, p(G1) =
s̄1(z1, . . . , zr1 , G1, �2(G1), . . . , �n+1(G1)) is in Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩. This im-
plies that �G1.p(G1) is in Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩. Again by Theorem 5.14

194 CHAPTER 6. FORMAL TREE SERIES

�̄j(�G1.p(G1)) ∈ Aequ⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩, 2 ≤ j ≤ n+1. By the Bekić-De Bakker-
Scott rule,

(�G1.p(G1), �̄2(�G1.p(G1)), . . . , �̄n+1(�G1.p(G1)))

is the least solution of the algebraic systemGj(z1, . . . , zrj) = sj(z1, . . . , zrj , G1, . . . , Gn+1),
1 ≤ j ≤ n + 1. Hence, the components of the least solution of this algebraic
system are in Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩.

(ii) We show that Aalg⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩ is an equationally closed distributive
Σ∪Φ∞-algebra that contains A⟨TΣ(X ∪Z⟩. This will imply Aequ⟨⟨TΣ∪Φ∞(X ∪
Z)⟩⟩ ⊆ Aalg⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩. By Theorem 5.13, we have only to show that �G.s,
s ∈ Aalg⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩ is inAalg⟨⟨TΣ∪Φ∞(X∪Z)⟩⟩. Let (�2(G1), . . . , �n+1(G1))
be the least solution of the algebraic systemGj(z1, . . . , zrj) = sj(z1, . . . , zrj , G1, . . . , Gn+1),
2 ≤ j ≤ n + 1, let G1 be of rank r2 and take s = �2. Consider now the alge-
braic system G1(z1, . . . , zr2) = s2(z1, . . . , zr2 , G1, . . . , Gn+1), Gj(z1, . . . , zrj) =
sj(z1, . . . , zrj , G1, . . . , Gn+1), 2 ≤ j ≤ n + 1. Then, by the Bekić-De Bakker-
Scott rule, �G1.s̄2(z1, . . . , zr2 , G1, �2(G1), . . . , �n+1(G1)) = �G1.�2(G1) is the
first component of its least solution.

We now introduce algebraic tree series expressions. Assume thatA,Σ, X, Z,Φ∞
and U = {+, ⋅, �, [,]} are pairwise disjoint. A word E over A∪Σ∪X∪Z∪Φ∞∪U
is an algebraic tree series expression over (A,Σ, X, Z,Φ∞) iff

(i) E is in X ∪ Z, or

(ii) E is of one of the forms [E1 + E2], !(E1, . . . , Ek), G(E1, . . . , Ek), aE1,
or �G.E1, where E1, . . . , Ek are algebraic tree series expressions over
(A,Σ, X, Z,Φ∞), for ! ∈ Σ of rank k, G ∈ Φ∞ of rank k, k ≥ 0, and
a ∈ A.

Each algebraic tree series expression E over (A,Σ, X, Z,Φ∞) denotes a formal
tree series ∣E∣ in A⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ according to the following conventions:

(i) If E is in X ∪ Z then E denotes the tree series E, i. e., ∣E∣ = E.

(ii) For algebraic tree series expressions E1, . . . , Ek over (A,Σ, X, Z,Φ∞), ! ∈
Σ of rank k, G ∈ Φ∞ of rank k, k ≥ 0, a ∈ A, we define

∣[E1 + E2]∣ = ∣E1∣+ ∣E2∣ ,
∣!(E1, . . . , Ek)∣ = !̄(∣E1∣, . . . , ∣Ek∣) ,
∣G(E1, . . . , Ek)∣ = Ḡ(∣E1∣, . . . , ∣Ek∣) ,
∣aE1∣ = a∣E1∣ ,
∣�G.E1∣ = �G.∣E1∣ .

Let '1, '2, '3 be the mappings from the set of algebraic tree series expres-
sions over (A,Σ, X, Z,Φ∞) into the set of finite subsets of X ∪ Z ∪Φ∞ defined
by

(i) '1(x) = ∅, '2(x) = {x}, '3(x) = ∅, x ∈ X,
'1(z) = {z}, '2(z) = ∅, '3(z) = ∅, z ∈ Z.

6.5. PUSHDOWN TREE AUTOMATA 195

(ii) 'j([E1 + E2]) = 'j(E1) + 'j(E2), j = 1, 2, 3,
'j(!(E1, . . . , Ek)) = 'j(E1) ∪ . . . ∪ 'j(Ek), j = 1, 2, 3,
'j(G(E1, . . . , Ek)) = 'j(E1) ∪ . . . ∪ 'j(Ek), j = 1, 2,
'3(G(E1, . . . , Ek)) = '3(E1) ∪ . . . ∪ '3(Ek) ∪ {G},
'j(aE1) = 'j(E1), a ∕= 0, 'j(0E1) = ∅, a = 0, j = 1, 2, 3,
'j(�G.E1) = 'j(E1)− {G} j = 1, 2, 3,
for algebraic tree series expressions E1, . . . , Ek over (A,Σ, X, Z,Φ∞), ! ∈
Σ of rank k, G ∈ Φ∞ of rank k, k ≥ 0, a ∈ A.

Given an algebraic tree series expression E over (A,Σ, X, Z,Φ∞), '1(E) ⊆ Z
contains the variables of E, '2(E) ⊆ X contains the used symbols of the leaf
alphabet X and '3(E) ⊆ G contains the “free function variables” of E. This
means that ∣E∣ is a formal tree series in A⟨⟨TΣ∪'3(E)('2(E) ∪ '1(E))⟩⟩.

Theorem 5.15 and the above definitions yield some corollaries.

Corollary 6.5.16 A tree series s is in Aequ⟨⟨TΣ∪Φ∞(X ∪Z)⟩⟩ ∩A⟨⟨TΣ∪Φ′(X
′ ∪

Z ′)⟩⟩, with X ′ ⊆ X, Z ′ ⊆ Z and Φ′ ⊆ Φ∞, iff there is an algebraic tree series
expression E over (A,Σ, X, Z,Φ∞) such that s = ∣E∣, where '2(E) = X ′,
'1(E) = Z ′ and '3(E) = Φ′.

Corollary 6.5.17 A tree series s is in Aequ⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ ∩ A⟨⟨TΣ(X ′)⟩⟩,
with X ′ ⊆ X, iff there is an algebraic tree series expression E over (A,Σ, X, Z,Φ∞)
such that s = ∣E∣, where '1(E) = '3(E) = ∅ and '2(E) = X ′.

Corollary 6.5.18 A tree series is in Aalg⟨⟨TΣ(X ′)⟩⟩, with X ′ ⊆ X, iff there
exists an algebraic tree series expression E over (A,Σ, X, Z,Φ∞) such that s =
∣E∣, where '1(E) = '3(E) = ∅ and '2(E) = X ′.

We summarize our results in a Kleene-like theorem.

Theorem 6.5.19 The following statements on a power series r ∈ A⟨⟨TΣ(X)⟩⟩
are equivalent.

(i) r is an algebraic tree series,

(ii) r is the behavior of a simple pushdown tree automaton,

(iii) r is the behavior of a simple restricted pushdown tree automaton,

(iv) there exists an algebraic tree series expression E over (A,Σ, X, Z,Φ∞),
where '1(E) = '3(E) = ∅, such that r = ∣E∣.

If we interpret algebraic tree series expressions in B⟨⟨TΣ∪Φ∞(X ∪ Z)⟩⟩ then we
get analogous results on formal tree languages.

Example 6.5.2. Consider the algebraic tree system S = (Φ, Z,Σ, E,G0) with
initial function variable G0, specified by Φ = Φ0 ∪ Φ2, Φ0 = {G0}, Φ2 =
{G}, Σ = Σ2 = {b}, X = {c1, c2}, and E = {G0 = G(c1, c2), G(z1, z2) =

196 CHAPTER 6. FORMAL TREE SERIES

G(b(z1, z1), b(z2, z2)) + b(z1, z2)}. (This algebraic system is a simplified version
of that in Example 5.1.) The initial component of its least solution is given by

∣�G.[G(b(c1, c1), b(c2, c2)) + b(c1, c2)]∣ =
∑
j≥0

b(tj1, t
j
2) ,

where t0i = ci, t
j+1
i = b(tji , t

j
i), i = 1, 2, j ≥ 0.

6.6 Tree series transducers

Tree transducers have been introduced in Rounds [101, 103] and Thatcher [111,
112]. (See also Fülöp, Vogler [49].) Kuich [81] generalized a restricted form of
top-down tree transducers to tree series transducers which map formal tree se-
ries into formal tree series. Engelfriet, Fülöp, Vogler [33] and Fülöp, Vogler [50]
generalized this approach and defined bottom-up and top-down tree series trans-
ducers as generalization of frontier-to-root and root-to-frontier tree transducers
in the sense of Gécseg, Steinby [51, 52].

In this section we only consider the case of top-down tree series transducers.
(The bottom-up tree series transducers use a generalization of IO-substitutions
and are difficult to handle.) Our definition of top-down tree series transducers
is different but equivalent to the definition of Engelfriet, Fülöp, Vogler [33].

We then define nondeterministic simple recognizable tree series transducers
and show that they preserve recognizability of tree series.

A tree t ∈ TΣ(X ∪ Ym), m ≥ 1, is called linear iff the variable yj appears
at most once in t, 1 ≤ j ≤ m. A tree t ∈ TΣ(X ∪ Ym), m ≥ 1, is called
nondeleting iff the variable yj appears at least once in t, 1 ≤ j ≤ m. A tree series
s ∈ A⟨⟨TΣ(X ∪ Ym)⟩⟩, m ≥ 1, is called linear or nondeleting iff all t ∈ supp(s)
are linear or nondeleting, respectively.

We define

(A⟨⟨TΣ(X)⟩⟩)I1×I
∗
2 =

∪
m≥0

(A⟨⟨TΣ(X)⟩⟩)I1×I
m
2 .

A tree representation � (with state set Q, ranked input alphabet Σ, input leaf
alphabet X, ranked output alphabet Σ′, output leaf alphabet X ′, over the semiring
A) is a family � = (�k ∣ k ≥ 0) of mappings

�k : Σk → (A⟨⟨TΣ′(X
′ ∪ Y)⟩⟩)Q×(Q×Zk)∗ , k ≥ 1 ,

�0 : Σ0 ∪X → (A⟨⟨TΣ′(X
′)⟩⟩)Q×1 ,

such that, if �k(!) ∈ (A⟨⟨TΣ′(X
′∪Y)⟩⟩)Q×(Q×Zk)m for some m ≥ 0 and ! ∈ Σk,

k ≥ 1, then �k(!) ∈ (A⟨⟨TΣ′(X
′ ∪ Ym)⟩⟩)Q×(Q×Zk)m and every entry of �k(!)

is linear and nondeleting. Observe that �k(!) with ! ∈ Σk, k ≥ 1, induces a
mapping

�k(!) : (A⟨⟨TΣ′(X
′)⟩⟩)Q×1 × ⋅ ⋅ ⋅ × (A⟨⟨TΣ′(X

′)⟩⟩)Q×1 → (A⟨⟨TΣ′(X
′)⟩⟩)Q×1

6.6. TREE SERIES TRANSDUCERS 197

(there are k argument vectors; see the definition before Theorem 2.8).
Since ⟨(A⟨⟨TΣ′(X

′)⟩⟩)Q×1, (�k(!) ∣ ! ∈ Σk, k ≥ 0)⟩ is a Σ-algebra, the
mapping

�0 : X → (A⟨⟨TΣ′(X
′)⟩⟩)Q×1

can be uniquely extended to a morphism

� : TΣ(X)→ (A⟨⟨TΣ′(X
′)⟩⟩)Q×1

by
�(!(t1, . . . , tk)) = �k(!)[�(t1), . . . , �(tk)] ,

for ! ∈ Σk, t1, . . . , tk ∈ TΣ(X), k ≥ 0.
One more extension yields

� : A⟨⟨TΣ(X)⟩⟩ → (A⟨⟨TΣ′(X
′)⟩⟩)Q×1

by

�(s) =
∑

t∈TΣ(X)

(s, t)⊗ �(t), s ∈ A⟨⟨TΣ(X)⟩⟩ ,

where ⊗ denotes the Kronecker product. (See Kuich, Salomaa [88], Section 4.)
In our case this means that each entry of �(t) is multiplied by (s, t). Hence, for
q ∈ Q,

�(s)q =
∑

t∈TΣ(X)

(s, t)�(t)q, s ∈ A⟨⟨TΣ(X)⟩⟩ .

We have denoted a tree representation � and the mapping � : A⟨⟨TΣ(X)⟩⟩ →
(A⟨⟨TΣ′(X

′)⟩⟩)Q×1 induced by it by the same letter �. This should not lead to
any confusion.

A (top-down) tree series transducer (with state set Q, ranked input alphabet
Σ, input leaf alphabet X, ranked output alphabet Σ′, output leaf alphabet X ′,
over the semiring A)

T = (Q,�, S)

is given by

(i) a non-empty finite set Q of states,

(ii) a tree representation � with Q,Σ, X,Σ′, X ′ over A,

(iii) an initial state vector S ∈ (A⟨TΣ′(Y1)⟩)1×Q, where Sq = aqy1, aq ∈ A,
q ∈ Q.

The mapping
∣∣T∣∣ : A⟨⟨TΣ(X)⟩⟩ → A⟨⟨TΣ′(X

′)⟩⟩

realized by a tree series transducer T = (Q,�, S) is defined by

∣∣T∣∣(s) = S(�(s)) =
∑
q∈Q(Sq, y1)�(s)q =∑

q∈Q
∑
t∈TΣ(X) aq(s, t)�(t)q, s ∈ A⟨⟨TΣ(X)⟩⟩ .

198 CHAPTER 6. FORMAL TREE SERIES

A tree representation � is called polynomial iff the entries of the images of
�k, k ≥ 0, are polynomials. A tree series transducer T = (Q,�, S) is called
polynomial iff � is a polynomial tree representation.

Example 6.6.1. (See Example IV.1.6 of Gécseg, Steinby [51].) LetQ = {a0, a1, a2},
Σ = Σ1 = {�}, X = {x}, Σ′ = Σ′1 ∪ Σ′2, Σ′1 = {!1}, Σ′2 = {!2}, X ′ = {x′1, x′2}.

The nonnull entries of �0 and �1 are given by

�0(x)a1
= x′1, �0(x)a2

= x′2 ,
�1(�)a0,((a1,z1),(a2,z1)) = !2(y1, y2) ,
�1(�)a1,(a1,z1) = !1(y1), �1(�)a2,(a2,z1) = !1(y1) .

Let S = (y1, 0, 0) and consider the polynomial tree series transducer T =
(Q, (�0, �1), S). We claim that, for n ≥ 0,

�(�n(x))ai = !n1 (x′i), i = 1, 2 ,

and prove it by induction on n.
We have

�(x)ai = �0(x)ai = x′i ,

and, for n > 0,

�(�n(x))ai = �1(�)[�(�n−1(x))]ai =
�1(�)ai,(ai,z1)[!

n−1
1 (x′i)] =

!1(y1)(!n−1
1 (x′i)) = !n1 (x′i), i = 1, 2 .

Hence, we obtain for n ≥ 1,

∣∣T∣∣(�n(x)) = �(�n(x))a0
=

�1(�)[�(�n−1(x))]a0
=

�1(�)a0,((a1,z1),(a2,z1))(�(�n−1(x))a1 , �(�n−1(x))a2) =
!2(!n−1

1 (x′1), !n−1
1 (x′2)) .

Given a formal tree series

s = (s, x)x+
∑
n≥1

(s, �n(x))�n(x) ,

we obtain
∣∣T∣∣(s) =

∑
n≥1

(s, �n(x))!2(!n−1
1 (x′1), !n−1

1 (x′2)) .

In connection with Example IV.1.6 of Gécseg, Steinby [51], Example 6.1
gives also an intuitive feeling, how a root-to-frontier tree transducer in the sense
of Gécseg, Steinby [51] is simulated by a top-down tree series transducer over
the semiring B.

Consider the trees in the supports of the entries of �k(!), with ! ∈ Σk,
k ≥ 1, as given in the definition of the tree representation. Then observe that

6.6. TREE SERIES TRANSDUCERS 199

the restriction of Engelfriet, Fülöp, Vogler [33], page 27, that in a top-down tree
representation the variables in these trees occur in order y1, . . . , ym from left to
right is irrelevant to the computational power. Hence, we have the following
theorem.

Theorem 6.6.1 (Engelfriet, Fülöp, Vogler [33], Lemmas 4.10 and 4.12). A
mapping is realized by a root-to-frontier tree transducer iff it is realized by a
polynomial top-down tree series transducer over the semiring B.

Let Q′i = {(q, zi) ∣ q ∈ Q}, 1 ≤ i ≤ k. Then there is a one-to-one correspon-
dence between Q′1 × ⋅ ⋅ ⋅ ×Q′k and Qk given by

((q1, z1), . . . , (qk, zk))⇔ (q1, . . . , qk) ,

q1, . . . , qk ∈ Q. A tree representation (�k ∣ k ≥ 0) is called nondeterministic
simple iff

�k : Σk → (A⟨⟨TΣ′(X
′ ∪ Yk)⟩⟩)Q×(Q′1×⋅⋅⋅×Q

′
k), k ≥ 1 .

If (�k ∣ k ≥ 0) is a nondeterministic simple tree representation, we work with

the isomorphic copies �k(!)′ of �k(!) in (A⟨⟨TΣ′(X
′ ∪ Yk)⟩⟩)Q×Qk

, k ≥ 0. By
Theorem 2.8,

�k(!)′(P1, . . . , Pk) = �k(!)[P1, . . . , Pk]

for Pj ∈ (A⟨⟨TΣ(X ∪ Y ′)⟩⟩)Q×1, 1 ≤ j ≤ k, and ! ∈ Σk, k ≥ 0. Hence, we can
define a nondeterministic simple tree representation to be a family of mappings
(�k ∣ k ≥ 0), where

�k : Σk → (A⟨⟨TΣ′(X
′ ∪ Yk)⟩⟩)Q×Qk

, k ≥ 1 ,
�0 : Σ0 ∪X → (A⟨⟨TΣ′(X

′)⟩⟩)Q×1 .

The morphic extension of �0 is again defined by �(!(t1, . . . , tk)) = �k(!)(�(t1), . . . , �(tk)),
! ∈ Σk, t1, . . . , tk ∈ TΣ(X), k ≥ 1, and, for s ∈ A⟨⟨TΣ(X)⟩⟩, we define again
�(s) =

∑
t∈TΣ(X)(s, t)⊗ �(t).

A nondeterministic simple tree series transducer is now a tree series trans-
ducer T = (Q,�, S), where � is a nondeterministic simple tree representation
and ∣∣T∣∣(s) = S(�(s)) =

∑
q∈Q(Sq, y1)�(s)q for s ∈ A⟨⟨TΣ(X)⟩⟩.

In Kuich [81], page 139, it is explained how a nondeterministic simple tree
series transducer over the semiring B is connected with a nondeterministic sim-
ple root-to-frontier tree transducer in the sense of Gécseg, Steinby [51], Exer-
cise IV.4.

Theorem 6.6.2 (Kuich [81], Theorem 6) Let, for some k ≥ 1, s ∈ A⟨⟨TΣ(X ∪
Yk)⟩⟩ be linear and nondeleting, and sij ∈ A⟨⟨TΣ(X)⟩⟩, aij ∈ A for ij ∈ Ij,
1 ≤ j ≤ k. Then

s(
∑
i1∈I1

ai1si1 , . . . ,
∑
ik∈Ik

aiksik) =
∑
i1∈I1

. . .
∑
ik∈Ik

ai1 . . . aiks(si1 , . . . , sik) .

200 CHAPTER 6. FORMAL TREE SERIES

Theorem 6.6.3 Let ! ∈ Σk, k ≥ 1, s1, . . . , sk ∈ A⟨⟨TΣ(X)⟩⟩, and � be a
nondeterministic simple tree representation with state set Q. Then

�k(!)(�(s1), . . . , �(sk)) = �(!̄(s1, . . . , sk)) .

Proof. We first compute the left side of the equality for index q ∈ Q:

�k(!)(�(s1), . . . , �(sk))q =∑
q1,...,qk∈Q

�k(!)q,(q1,...,qk)(�(s1)q1 , . . . , �(sk)qk) =∑
q1,...,qk∈Q

�k(!)q,(q1,...,qk)(
∑

t1∈TΣ(X)

(s1, t1)�(t1)q1 , . . . ,
∑

tk∈TΣ(X)

(sk, tk)�(tk)qk) =∑
q1,...,qk∈Q

∑
t1,...,tk∈TΣ(X)

(s1, t1) ⋅ ⋅ ⋅ (sk, tk)�k(!)q,(q1,...,qk)(�(t1)q1 , . . . , �(tk)qk) =∑
t1,...,tk∈TΣ(X)

(s1, t1) ⋅ ⋅ ⋅ (sk, tk)�(!(t1, . . . , tk))q .

Here the third equality follows by the assumption that � is a nondeterministic
simple tree representation and by Theorem 6.2. We now compute the right side
of the equality for index q ∈ Q:

�(!̄(s1, . . . , sk))q =

�(
∑

t∈TΣ(X)

(
∑

!(t1,...,tk)=t

(s1, t1) ⋅ ⋅ ⋅ (sk, tk))t)q =∑
t∈TΣ(X)

(
∑

!(t1,...,tk)=t

(s1, t1) ⋅ ⋅ ⋅ (sk, tk))�(t)q∑
t1,...,tk∈TΣ(X)

(s1, t1) ⋅ ⋅ ⋅ (sk, tk)�(!(t1, . . . , tk))q .

Since the two sides of the equation coincide, the theorem is proven.

If the Boolean semiring B is the basic semiring, it is easy to see by Exam-
ple 6.1 that our polynomial tree series transducers do not preserve the recog-
nizability of tree series. (See also the example in the last paragraph of page 18
of Gécseg, Steinby [52].) On the other hand, linear root-to-frontier tree trans-
ducers do preserve recognizability of tree languages. (See Thatcher [111]; and
Gécseg, Steinby [51], Theorem IV.2.7, Lemma IV.6.5 and Corollary IV.6.6.)
In the rest of this section we show that nondeterministic simple recognizable
tree transducers do preserve recognizability of tree series. We show this by a
construction based on finite recognizable systems.

A system zi = pi, 1 ≤ i ≤ n is called recognizable iff each pi is in Arec⟨⟨TΣ(X∪
Zn)⟩⟩.

We show that the least solution of a finite recognizable system has recogniz-
able components.

Theorem 6.6.4 Let zi = pi, 1 ≤ i ≤ n, be a finite recognizable system with
least solution �. Then �i ∈ Arec⟨⟨TΣ(X)⟩⟩ for all 1 ≤ i ≤ n.

6.6. TREE SERIES TRANSDUCERS 201

Proof. Without loss of generality let zi = pi, 1 ≤ i ≤ n, be a proper finite
recognizable system. Since pi ∈ Arec⟨⟨TΣ(X ∪ Zn)⟩⟩, 1 ≤ i ≤ n, there exist
proper finite polynomial systems yij = qij , 1 ≤ j ≤ mi, mi ≥ 1, where the
yij are new variables and qij ∈ A⟨TΣ(X ∪ Zn ∪ {yi1, . . . , yimi

})⟩, such that
the yi1-components of their least solutions �i are equal to pi. Consider now
the proper finite polynomial system zi = qi1(z1, . . . , zn, yi1, . . . , yimi), yij =
qij(z1, . . . , zn, yi1, . . . , yimi), 1 ≤ j ≤ mi, 1 ≤ i ≤ n, and observe that it
has a unique solution. We claim that this unique solution is given by � ∪
((�i)j(�1, . . . , �n) ∣ 1 ≤ j ≤ mi, 1 ≤ i ≤ n). Substitution of this vector yields,
for 1 ≤ j ≤ mi, 1 ≤ i ≤ n,

qi1(�1, . . . , �n, (�i)1(�1, . . . , �n), . . . , (�i)mi
(�1, . . . , �n)) =

(�i)1(�1, . . . , �n) = pi(�1, . . . , �n) = �i ,
qij(�1, . . . , �n, (�i)1(�1, . . . , �n), . . . , (�i)mi

(�1, . . . , �n)) = (�i)j(�1, . . . , �n) .

Hence � ∪ ((�i)j(�1, . . . , �n) ∣ 1 ≤ j ≤ mi, 1 ≤ i ≤ n) is the unique solution of
the proper finite polynomial system and � ∈ (Arec⟨⟨TΣ(X)⟩⟩)n×1.

Consider a finite system yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, where pi ∈ A⟨⟨TΣ(X∪
Yn)⟩⟩, and a nondeterministic simple tree representation � = (�k ∣ k ≥ 0)

with state set Q, where �k : Σk → (A⟨⟨TΣ′(X
′ ∪ Zk)⟩⟩)Q×Qk

, k ≥ 1, and
�0 : Σ0 ∪X → (A⟨⟨TΣ′(X

′)⟩⟩)Q×1. Let (yi)q, 1 ≤ i ≤ n, q ∈ Q, be new variables
and denote Y kQ = {(yi)q ∣ 1 ≤ i ≤ k, q ∈ Q}. Extend the definition of � to the
domain Σ ∪X ∪ Yn, by

�0 : Yn → (A⟨⟨TΣ′(Y
n
Q)⟩⟩)Q×1 ,

where �(yj)q = (yj)q, 1 ≤ j ≤ n, q ∈ Q. By this extension, we obtain the
mapping

� : TΣ(X ∪ Yn)→ (A⟨⟨TΣ′(X
′ ∪ Y nQ)⟩⟩)Q×1 .

Lemma 6.6.5 Consider s(y1, . . . , yn) ∈ A⟨⟨TΣ(X ∪ Yn)⟩⟩ and a nondetermin-
istic simple tree representation � with domain Σ ∪ X ∪ Yn. Let s1, . . . , sn ∈
A⟨⟨TΣ(X)⟩⟩. Then

�(s)[�(sj)q/(yj)q, 1 ≤ j ≤ n, q ∈ Q] = �(s(s1, . . . , sn)) .

Proof. We first consider a tree t ∈ TΣ(X ∪ Yn) and show by induction on the
form of t that �(t)[�(sj)q/(yj)q, 1 ≤ j ≤ n, q ∈ Q] = �(t(s1, . . . , sn)).
(i) For t = yi, 1 ≤ i ≤ n, we get �(yi)[�(sj)/�(yj), 1 ≤ j ≤ n] = �(si) =
�(yi(s1, . . . , sn)).
(ii) For t = x, x ∈ Σ0 ∪X, we obtain �(x)[�(sj)/�(yj), 1 ≤ j ≤ n] = �(x) =
�(x(s1, . . . , sn)).
(iii) For t = !(t1, . . . , tk), ! ∈ Σk, t1, . . . , tk ∈ TΣ(X ∪ Yn), k ≥ 1, we obtain

�(!(t1, . . . , tk))[�(sj)/�(yj), 1 ≤ j ≤ n] =
�k(!)(�(t1)[�(sj)/�(yj), 1 ≤ j ≤ n], . . . , �(tk)[�(sj)/�(yj), 1 ≤ j ≤ n]) =
�k(!)(�(t1(s1, . . . , sn)), . . . , �(tk(s1, . . . , sn))) =
�(!̄(t1(s1, . . . , sn), . . . , tk(s1, . . . , sn))) =
�((!̄(t1, . . . , tk))(s1, . . . , sn)) .

202 CHAPTER 6. FORMAL TREE SERIES

Here we have applied the induction hypothesis in the second equality and The-
orem 6.3 in the third equality.

Finally, we obtain

�(s)[�(sj)/�(yj), 1 ≤ j ≤ n] =∑
t∈TΣ(X∪Yn)(s, t)⊗ �(t)[�(sj)/�(yj), 1 ≤ j ≤ n] =∑
t∈TΣ(X∪Yn)(s, t)⊗ �(t(s1, . . . , sn)) =

�(
∑
t∈TΣ(X∪Yn)(s, t)t(s1, . . . , sn)) = �(s(s1, . . . , sn)) .

Theorem 6.6.6 Consider a nondeterministic simple tree representation � with
domain Σ ∪X ∪ Yn. Let yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, where pi ∈ A⟨⟨TΣ(X ∪
Yn)⟩⟩, be a finite system with least solution �. Then �(�) is the least solution of
the finite system �(yi) = �(pi(y1, . . . , yn)), 1 ≤ i ≤ n.

Proof. Let (�j ∣ j ∈ ℕ) and (� j ∣ j ∈ ℕ) be the approximation sequences of
yi = pi(y1, . . . , yn), 1 ≤ i ≤ n, and �(yi) = �(pi(y1, . . . , yn)), 1 ≤ i ≤ n,
respectively. We claim that � ji = �(�ji), 1 ≤ i ≤ n, j ≥ 0, and show this by
induction on j. The case j = 0 is clear. Let j ≥ 0. Then, for 1 ≤ i ≤ n,

� j+1
i = �(pi(y1, . . . , yn))[� jk/�(yk), 1 ≤ k ≤ n] =

�(pi(y1, . . . , yn))[�(�jk)/�(yk), 1 ≤ k ≤ n] =

�(pi(�
j
1, . . . , �

j
n)) = �(�j+1

i) .

Here we have applied the induction hypothesis in the second equality and
Lemma 6.5 in the third equality. The claim now implies our theorem.

A nondeterministic simple tree representation � = (�k ∣ k ≥ 0) is called

recognizable iff �k(!) ∈ (Arec⟨⟨TΣ′(X
′∪Zk)⟩⟩)Q×Qk

for every ! ∈ Σk, k ≥ 1, and
�0(!) ∈ (Arec⟨⟨TΣ′(X

′)⟩⟩)Q×1 for every ! ∈ Σ0 ∪X. A nondeterministic simple
tree series transducer T = (Q,�, S) is recognizable iff � is a nondeterministic
simple recognizable tree representation.

Theorem 6.6.7 Consider a nondeterministic simple recognizable tree represen-
tation �. Let s be in Arec⟨⟨TΣ(X)⟩⟩. Then �(s) is in (Arec⟨⟨TΣ′(X

′)⟩⟩)Q×1.

Proof. By Corollary 3.6, s is a component of a finite simple polynomial system
yi = pi, 1 ≤ i ≤ n. By Theorem 6.6, �(s) is a component of the finite recogniz-
able system �(yi) = �(pi), 1 ≤ i ≤ n. Hence, Theorem 6.4 proves our theorem.

Corollary 6.6.8 (Kuich [81], Corollary 14) Consider a nondeterministic simple
recognizable tree series transducer T and a recognizable tree series s. Then
∣∣T∣∣(s) is again recognizable.

Corollary 6.6.9 (Thatcher [111], and Gécseg, Steinby [51], Chapter IV, Corol-
lary 6.6.) Linear root-to-frontier tree transducers preserve recognizability.

6.7. FULL ABSTRACT FAMILIES OF TREE SERIES 203

6.7 Full abstract families of tree series

Full abstract families of tree series (briefly, full AFTs) are families of tree series
closed under nondeterministic simple recognizable tree series transductions and
certain other specific operations. We will show that the families of recognizable
tree series and of algebraic tree series are full AFTs. Our first construction will
show that the mappings realized by nondeterministic simple recognizable tree
series transducers are closed under functional composition. The construction is
analogous to the construction of Engelfriet [32] in Lemma 4.2 (see also Gécseg,
Steinby [51], Theorem IV.3.15).

Recall that ZQ = {(zi)q ∣ i ≥ 1, q ∈ Q} and ZkQ = {(zi)q ∣ 1 ≤ i ≤ k, q ∈ Q}
for k ≥ 1. We now define, for r1, . . . , rk ∈ Q, the operator

'r1,...,rk : A⟨⟨TΣ(X ∪ ZkQ)⟩⟩ → A⟨⟨TΣ(X ∪ {(z1)r1 , . . . , (zk)rk})⟩⟩

as follows: For s ∈ A⟨⟨TΣ(X ∪ ZkQ)⟩⟩ and t ∈ TΣ(X ∪ {(z1)r1 , . . . , (zk)rk}),

('r1,...,rk(s), t) =

⎧⎨⎩ (s, t) iff each of the variables (z1)r1 , . . . , (zk)rk
appears exactly once in t,

0 otherwise.

Let �′ be a nondeterministic simple recognizable tree representation with state
set Q1 mapping Σ ∪X into matrices with entries in Arec⟨⟨TΣ′(X

′ ∪ Z)⟩⟩. Fur-
thermore, let �′′ be an extended nondeterministic simple recognizable tree rep-
resentation with state set Q2 mapping Σ′ ∪X ′ ∪Z into matrices with entries in
Arec⟨⟨TΣ′′(X

′′ ∪ Z ∪ ZQ2)⟩⟩. Define the recognizable tree representation � with
state setQ1×Q2 mapping Σ∪X into matrices with entries in Arec⟨⟨TΣ′′(X

′′∪Z)⟩⟩
by

�0(x)(q1,q2) = �′′(�′0(x)q1)q2 , for x ∈ Σ0 ∪X, q1 ∈ Q1, q2 ∈ Q2 ,

�k(!)(q1,q2),((r1,s1),...,(rk,sk)) =
's1,...,sk(�′′(�′k(!)q1,(r1,...,rk))q2)[z1/(z1)s1 , . . . , zk/(zk)sk] ,
for ! ∈ Σk, k ≥ 1, q1, r1, . . . , rk ∈ Q1, q2, s1, . . . , sk ∈ Q2 .

Then, by Kuich [82], Lemma 2.3, (�k ∣ k ≥ 0) is a nondeterministic simple
recognizable tree representation and, for t ∈ TΣ(X) and q1 ∈ Q1, q2 ∈ Q2,

�(t)(q1,q2) = �′′(�′(t)q1)q2 .

This construction yields the first theorem of this section.

Theorem 6.7.1 (Kuich [78], Theorem 2.4) Let �′ (resp. �′′) be a nondeter-
ministic simple recognizable tree representation with state set Q1 (resp. Q2)
mapping Σ∪X (resp. Σ′ ∪X ′) into matrices with entries in Arec⟨⟨TΣ′(X

′ ∪Z)⟩⟩
(resp. Arec⟨⟨TΣ′′(X

′′ ∪ Z)⟩⟩). Let T1 = (Q1, �
′, S1) and T2 = (Q2, �

′′, S2) be
nondeterministic simple recognizable tree series transducers. Then there ex-
ists a nondeterministic simple recognizable tree series transducer T such that
∣∣T∣∣(s) = ∣∣T2∣∣(∣∣T1∣∣(s)) for all s ∈ A⟨⟨TΣ(X)⟩⟩.

204 CHAPTER 6. FORMAL TREE SERIES

Proof. The nondeterministic simple recognizable tree series transducer T =
(Q1 × Q2, �, S1 ⊙ S2) is defined by the nondeterministic simple recognizable
tree representation � constructed above.

Let (S1)q1 = aq1z1, aq1 ∈ A, q1 ∈ Q1, and (S2)q2 = bq2z1, bq2 ∈ A, q2 ∈ Q2.
Then (S1 ⊙ S2)(q1,q2) = aq1bq2z1 for q1 ∈ Q1, q2 ∈ Q2. We now obtain, for
s ∈ A⟨⟨TΣ(X)⟩⟩,

∣∣T2∣∣(∣∣T1∣∣(s)) =
∑
q2∈Q2

bq2
∑
t2∈TΣ′ (X

′)(∣∣T1∣∣(s), t2)�′′(t2)q2 =∑
q2∈Q2

bq2
∑
t2∈TΣ′ (X

′)(
∑
q1∈Q1

aq1
∑
t1∈TΣ(X)(s, t1)�′(t1)q1 , t2)�′′(t2)q2 =∑

q1∈Q1

∑
q2∈Q2

aq1bq2
∑
t1∈TΣ(X)(s, t1)

∑
t2∈TΣ′ (X

′)(�
′(t1)q1 , t2)�′′(t2)q2 =∑

(q1,q2)∈Q1×Q2
aq1bq2

∑
t1∈TΣ(X)(s, t1)�(t1)(q1,q2) =

∣∣T∣∣(s) .

We make the following convention for the rest of Section 7: The set Σ∞
(resp. X∞) is a fixed infinite ranked alphabet (resp. infinite alphabet) and
Σ,Σ′ (resp. X,X ′), possibly provided with indices, are finite subalphabets of
Σ∞ (resp. X∞). Our basic semiring will be A⟨⟨TΣ∞(X∞)⟩⟩.

Any non-empty subset of
∪

Σ⊂Σ∞

∪
X⊂X∞ A⟨⟨TΣ(X)⟩⟩ is called family of tree

series. A mapping

� :
∪

Σ⊂Σ∞

∪
X⊂X∞

A⟨⟨TΣ(X)⟩⟩ →
∪

Σ⊂Σ∞

∪
X⊂X∞

A⟨⟨TΣ(X)⟩⟩

is called a nondeterministic simple recognizable tree series transduction iff there
exist Σ, X,Σ′, X ′ such that �(s) ∈ A⟨⟨TΣ′(X

′)⟩⟩ for s ∈ A⟨⟨TΣ(X)⟩⟩ and �(s) = 0
for s /∈ A⟨⟨TΣ(X)⟩⟩, and there exists a nondeterministic simple recognizable tree
series transducer T such that �(s) = ∣∣T∣∣(s) for s ∈ A⟨⟨TΣ(X)⟩⟩.

For a family L of tree series, we define

M(L) = {�(s) ∣ s ∈ L and � is a nondeterministic simple
recognizable tree series transduction} .

Observe that, by Theorem 7.1, M(M(L)) = M(L). A family L of tree se-
ries is said to be closed under nondeterministic simple recognizable tree series
transductions, and is called a recognizable tree series cone iff L = M(L).

We first consider recognizable tree series. Theorem 6.7 yields at once the
next theorem.

Theorem 6.7.2 Arec⟨⟨TΣ∞(X∞)⟩⟩ is a recognizable tree series cone.

Theorem 6.7.3 Let L be a recognizable tree series cone and assume that L
contains some tree series s such that (s, x) = 1 for some x ∈ X∞. Then
Arec⟨⟨TΣ∞(X∞)⟩⟩ ⊆ L.

Proof. Consider a recognizable tree series r and the nondeterministic simple
recognizable tree series transducer T = ({q}, (�k ∣ k ≥ 0), z1), where �0(x) = r,

6.7. FULL ABSTRACT FAMILIES OF TREE SERIES 205

�0(x′) = 0 for x′ ∕= x, x′ ∈ X∞, and �k(!) = 0, ! ∈ Σ∞, of rank k ≥ 0. Then
∣∣T∣∣(s) = r.

We introduce analogous to the REC-closed families of tree series of Boza-
palidis, Rahonis [16] equationally closed families of tree series. A family L of
tree series is called equationally closed whenever the following conditions are
satisfied:

(i) 0 ∈ L.

(ii) If s1, s2 ∈ L then s1 + s2 ∈ L.

(iii) If ! ∈ Σ∞ is of rank k ≥ 0 and s1, . . . , sk ∈ L then !̄(s1, . . . , sk) ∈ L; if
x ∈ X∞ then x ∈ L.

(iv) If s ∈ L and x ∈ X∞ then the least solution �x.s of the equation x = s is
in L.

Hence, a family L of tree series is equationally closed iff ⟨L,+, 0, (!̄ ∣ ! ∈
Σ∞)∪X∞⟩ is a distributive Σ∞ ∪X∞-algebra that satisfies condition (iv), i. e.,
our “rational” operations are 0, addition, top-catenation and least solutions of
equations. (Observe that we do not ask for the closure under substitution as
Bozapalidis, Rahonis [16] do for their REC-closed families of tree languages.)

Theorem 6.7.4 Arec⟨⟨TΣ∞(X∞)⟩⟩ is an equationally closed family of tree se-
ries.

Proof. By Theorem 4.3.

We are now ready to introduce full AFTs. We use the notation F̂(L), where L
is a family of tree series, for the smallest equationally closed family of tree series
that is closed under nondeterministic simple recognizable tree series transduc-
tions and contains L. A family L of tree series is called a full AFT iff L = F̂(L).

Theorem 6.7.5 (Kuich [82], Theorem 3.5) Arec⟨⟨TΣ∞(X∞)⟩⟩ is a full AFT.

Proof. By Theorems 7.2 and 7.4.

We now consider algebraic tree series.

Theorem 6.7.6 Aalg⟨⟨TΣ∞(X∞)⟩⟩ is an equationally closed family of tree se-
ries.

Proof. By Theorem 5.15.

We will show that Aalg⟨⟨TΣ∞(X∞)⟩⟩ is a full AFT closed under nondeter-
ministic simple algebraic tree series transductions. Some definitions and results
are needed before that result.

A nondeterministic simple tree representation � = (�k ∣ k ≥ 0) is called

algebraic iff �k(!) ∈ (Aalg⟨⟨TΣ′(X
′ ∪ Zk)⟩⟩)Q×Qk

for ! ∈ Σk, k ≥ 1, and
�0(!) ∈ (Aalg⟨⟨TΣ′(X

′)⟩⟩)Q×1 for ! ∈ Σ0 ∪ X. A nondeterministic simple tree
series transducer T = (Q,�, S) is called algebraic iff � is an algebraic tree

206 CHAPTER 6. FORMAL TREE SERIES

representation. Nondeterministic simple algebraic tree series transductions are
defined analogously to nondeterministic simple recognizable tree series trans-
ductions.

Theorem 6.7.7 (Kuich [83], Corollary 3.6.) Let T be a nondeterministic simple
algebraic tree series transducer and s be an algebraic tree series. Then ∣∣T∣∣(s)
is again algebraic.

Theorem 6.7.8 Let T1 and T2 be nondeterministic simple algebraic tree series
transducers. Then there exists a nondeterministic simple algebraic tree series
transducer T such that ∣∣T∣∣(s) = ∣∣T2∣∣(∣∣T1∣∣(s)) for all s ∈ A⟨⟨TΣ(X)⟩⟩.

Proof. The construction of T from T1 and T2 is analogous to the construction
in the proof of Theorem 7.1. Theorem 7.7 proves that � is algebraic.

For a family L of tree series, we define

Malg(L) = {�(s) ∣ s ∈ L and � is a nondeterministic simple
algebraic tree series transduction }.

Observe that by Theorem 7.8, Malg(Malg(L)) = Malg(L). A family L of tree
series is said to be closed under nondeterministic simple algebraic tree series
transductions, and is called an algebraic tree series cone iff L = Malg(L).

Theorem 6.7.9 If L is an algebraic tree series cone and L contains some tree
series s such that (s, x) = 1 for some x ∈ X∞ then Aalg⟨⟨TΣ∞(X∞)⟩⟩ ⊆ L.

Proof. Similar to the proof of Theorem 7.3.

Theorem 6.7.10 Aalg⟨⟨TΣ∞(X∞)⟩⟩ is an algebraic tree series cone.

Proof. By Theorems 7.6 and 7.7.

Corollary 6.7.11 (Kuich [83], Theorem 4.4) Aalg⟨⟨TΣ∞(X∞)⟩⟩ is a full AFT
that is closed under nondeterministic simple algebraic tree series transductions.

6.8 Connections to formal power series

The application of the yield-mapping to formal tree series yields formal power
series. We will first show that the macro power series are exactly the yield of
algebraic tree series. Here, macro power series are introduced as a generaliza-
tion of the OI languages of Fischer [47] and the indexed languages of Aho [2].
Moreover, we show a Kleene Theorem for macro power series and indexed lan-
guages. Then we show that the algebraic power series are exactly the yield of
recognizable tree series. Finally, we prove that the yield of a full abstract family
of tree series is a full abstract family of power series.

We now introduce macro power series. Let Φ = {G1, . . . , Gn}, Φ ∩X = ∅,
where Gi has rank ri, 1 ≤ i ≤ n, be a finite ranked alphabet of function
variables. We define T (Φ, X) to be the set of words over Φ∪X ∪{(}∪{)}∪{, }
satisfying the following conditions:

6.8. CONNECTIONS TO FORMAL POWER SERIES 207

(i) X ∪ {"} ⊂ T (Φ, X);

(ii) if t1, t2 ∈ T (Φ, X) then t1t2 ∈ T (Φ, X);

(iii) if G ∈ Φ, where G is of rank r ≥ 0, and t1, . . . , tr ∈ T (Φ, X) then
G(t1, . . . , tr) ∈ T (Φ, X).

The words of T (Φ, X) are called terms over Φ and X. By A⟨⟨T (Φ, X)⟩⟩ (resp.
A⟨T (Φ, X)⟩) we denote the set of power series whose supports are subsets (resp.
finite subsets) of T (Φ, X).

Let D′ = A⟨⟨(X ∪ Zr1)∗⟩⟩ × . . .× A⟨⟨(X ∪ Zrn)∗⟩⟩ and consider power series
si ∈ A⟨⟨T (Φ, X ∪ Zri)⟩⟩, 1 ≤ i ≤ n. Then each si induces a function s̄i : D′ →
A⟨⟨(X ∪Zri)∗⟩⟩. For (�1, . . . , �n) ∈ D′, we define inductively s̄i(�1, . . . , �n) to be

(i) zm if si = zm, 1 ≤ m ≤ ri; x if si = x, x ∈ X;

(ii) t̄1(�1, . . . , �n)t̄2(�1, . . . , �n) if si = t1t2, t1, t2 ∈ T (Φ, X ∪ Zri);

(iii) �j(t̄1(�1, . . . , �n), . . . , t̄rj (�1, . . . , �n)) if si = Gj(t1, . . . , trj), Gj ∈ Φ,
t1, . . . , trj ∈ T (Φ, X ∪ Zri);

(iv) a ⋅ t̄(�1, . . . , �n) if si = at, a ∈ A, t ∈ T (Φ, X ∪ Zri);

(v)
∑
j∈J r̄j(�1, . . . , �n) if si =

∑
j∈J rj , rj ∈ A⟨⟨T (Φ, X ∪Zri)⟩⟩, j ∈ J , where

J is an arbitrary index set.

The mappings s̄i, 1 ≤ i ≤ n, are continuous and the mapping s̄ : D′ → D′,
where s̄ = ⟨s̄1, . . . , s̄n⟩, is again continuous. This is proved similarly as the
continuity of the mappings defined in connection with algebraic tree systems
(below Theorem 5.1).

A macro system S = (Φ, Z,X,E) (with function variables in Φ, variables
in Z and terminal symbols in X) has a set E of formal equations

Gi(z1, . . . , zri) = si(z1, . . . , zri), 1 ≤ i ≤ n ,

where each si is in A⟨T (Φ, X ∪ Zri)⟩.
A solution to the macro system S is given by (�1, . . . , �n) ∈ D′ such that �i =

s̄i(�1, . . . , �n), 1 ≤ i ≤ n, i. e., by any fixed point (�1, . . . , �n) of s̄ = ⟨s̄1, . . . , s̄n⟩.
A solution (�1, . . . , �n) of the macro system S is called least solution iff �i ≤ �i,
1 ≤ i ≤ n, for all solutions (�1, . . . , �n) of S. Since the least solution of S is
nothing else than the least fixpoint of s̄ = ⟨s̄1, . . . , s̄n⟩, the least solution of the
macro system S exists in D′.

Theorem 6.8.1 (Kuich [85], Theorem 5.1.) Let S = (Φ, Z,X, {Gi = si ∣ 1 ≤
i ≤ n}) be a macro system, where si ∈ A⟨T (Φ, X∪Zri)⟩. Then the least solution
of this macro system S exists in D′ and equals

fix(s̄) = sup(s̄i(0) ∣ i ∈ ℕ) ,

where s̄i, is the i-th iterate of the mapping s̄ = ⟨s̄1, . . . , s̄n⟩ : D′ → D′.

208 CHAPTER 6. FORMAL TREE SERIES

Theorem 8.1 indicates how we can compute an approximation to the least
solution of a macro system. The approximation sequence (� j ∣ j ∈ ℕ), where
each � j ∈ D′, associated with the macro system S = (Φ, Z,X, {Gi = si ∣ 1 ≤
i ≤ n}) is defined as follows:

�0 = 0, � j+1 = s̄(� j), j ∈ ℕ .

Clearly, the least solution fix(s̄) of S is equal to sup(� j ∣ j ∈ ℕ). A macro system
with an initial function variable S = (Φ∪{G0}, Z,X, {Gi = si ∣ 0 ≤ i ≤ n}, G0)
(with function variables in Φ ∪ {G0}, variables in Z, terminal symbols in X)
is a macro system (Φ ∪ {G0}, Z,X, {Gi = si ∣ 0 ≤ i ≤ n}) and G0 is the
initial function variable of rank 0. Let (�0, �1, . . . , �n) be the least solution of
(Φ ∪ {G0}, Z,X, {Gi = si ∣ 0 ≤ i ≤ n}). Then �0 is called the initial component
of the least solution. Observe that �0 ∈ A⟨⟨X∗⟩⟩ contains no variables of Z.

A power series r in A⟨⟨X∗⟩⟩ is called macro power series iff r is the initial
component of the least solution of a macro system with an initial function
variable.

Analogously to the proof of Theorem 3.4 of Engelfriet, Schmidt [34] it can
be shown that, in the case of the Boolean semiring, r ∈ B⟨⟨X∗⟩⟩ is a macro
power series iff supp(r) ∈ X∗ is an OI language in the sense of Definition 3.10 of
Fischer [47]. Moreover, by Theorem 5.3 of Fischer [47], r ∈ B⟨⟨X∗⟩⟩ is a macro
power series iff supp(r) ∈ X∗ is an indexed language (see Aho [2]).

We now define a mapping yd : A⟨⟨TΣ∪Φ(X ∪ Z)⟩⟩ → A⟨⟨T (Φ, X ∪ Z)⟩⟩. For
s ∈ A⟨⟨TΣ∪Φ(X ∪Z)⟩⟩, yd(s) is called the yield of s; yd(s) is defined inductively
to be

(i) zm if s = zm ∈ Z; x if s = x, x ∈ X;

(ii) yd(t1) . . . yd(tr) if s = !(t1, . . . , tr), ! ∈ Σr, t1, . . . , tr ∈ TΣ∪Φ(X ∪ Z),
r ≥ 0; (observe that yd(!) = " if ! ∈ Σ0);

(iii) Gi(yd(t1), . . . , yd(tri)) if s = Gi(t1, . . . , tri), t1, . . . , tri ∈ TΣ∪Φ(X ∪ Z),
1 ≤ i ≤ n;

(iv)
∑
t∈TΣ∪Φ(X∪Z)(s, t)yd(t) if s =

∑
t∈TΣ∪Φ(X∪Z)(s, t)t.

Observe that yd(s) ∈ A⟨⟨(X ∪ Z)∗⟩⟩ if s ∈ A⟨⟨TΣ(X ∪ Z)⟩⟩. Hence, our map-
ping yd is an extension of the usual yield-mapping (see Gécseg, Steinby [52],
Section 14).

We will connect algebraic tree series and macro power series by the yield-
mapping in our next theorem.

Given an algebraic tree system S = (Φ, Z,Σ, {Gi(z1, . . . , zri) = si ∣ 1 ≤ i ≤
n}), we define the macro system yd(S) to be yd(S) = (Φ, Z,X, {Gi(z1, . . . , zri) =
yd(si) ∣ 1 ≤ i ≤ n}).

Theorem 6.8.2 (Kuich [85], Theorem 5.5.) If (�1, . . . , �n) is the least solution
of the algebraic tree system S then (yd(�1), . . . , yd(�n)) is the least solution of
the macro system yd(S).

6.8. CONNECTIONS TO FORMAL POWER SERIES 209

Corollary 6.8.3 If s is an algebraic tree series then yd(s) is a macro power
series.

Theorem 6.8.4 Let {∙, e} ⊆ Σ, where ∙ and e have rank 2 and 0, respectively.
Then a power series r ∈ A⟨⟨X∗⟩⟩ is a macro power series iff there exists an
algebraic tree series s ∈ A⟨⟨TΣ(X)⟩⟩ such that yd(s) = r.

Proof. Assume that r is the initial component of the least solution of the macro
system with initial function variable S = (Φ ∪ {G0}, Z,X, {Gi = si ∣ 0 ≤ i ≤
n}, G0). We construct an algebraic tree system S′ = (Φ∪{G0}, Z, {∙, e}, {Gi =
s′i ∣ 0 ≤ i ≤ n}, G0) such that yd(S′) = S by constructing for each word w in
T (Φ ∪ {G0}, X ∪ Z) a tree t(w) in T{∙,e}∪Φ∪{G0}(X ∪ Z):

(i) t(") = e, t(x) = x, x ∈ X and t(z) = z, z ∈ Z;

(ii) if w1, w2 ∈ T (Φ ∪ {G0}, X ∪ Z) then t(w1w2) = ∙(t(w1), t(w2));

(iii) if G ∈ Φ ∪ {G0}, where G is of rank r ≥ 0 and w1, . . . , wr ∈ T (Φ ∪
{G0}, X ∪ Z) then t(G(w1, . . . , wn)) = G(t(w1), . . . , t(wn)).

Clearly, we obtain yd(t(w)) = w for all w ∈ T (Φ ∪ {G0}, X ∪ Z).
Define now s′i =

∑
w∈A⟨⟨T (Φ∪{G0},X∪Z)⟩⟩(si, w)t(w). Then yd(S′) = S. As-

sume now that s is the initial component of the least solution of S′. Then
r = yd(s).

Example 6.8.1. Let S = (Φ, Z,Σ, E, Z0) be the algebraic tree system with initial
function variable Z0 specified by

(i) Φ = {G0, G1, G2, Z0}, where the ranks of G0, G1, G2 are 3 and the rank
of Z0 is 0;

(ii) Z = {z0, z1, z2};

(iii) Σ = Σ2 = {b}, X = {c1, c2};

(iv) the formal equations of E are

G0(z0, z1, z2) = G0(G0(z0, z1, z2), G1(z0, z1, z2), G2(z0, z1, z2)) + b(z1, z2),
Gi(z0, z1, z2) = b(zi, zi), i = 1, 2,
Z0 = G0(0, c1, c2).

Then the initial component of the least solution of S is
∑
j≥0 b(t

j
1, t

j
2), where

tj1 and tj2, j ≥ 0, are defined in Example 5.1. The macro system yd(S) =
(Φ, Z,X,E′, Z0) with initial function variable Z0 is specified by the following
formal equations of E′:

G0(z0, z1, z2) = G0(G0(z0, z1, z2), G1(z0, z1, z2), G2(z0, z1, z2)) + z1z2,
Gi(z0, z1, z2) = zizi, i = 1, 2,
Z0 = G0(0, c1, c2).

210 CHAPTER 6. FORMAL TREE SERIES

The initial component of the least solution of yd(S) is
∑
j≥0 c

2j

1 c
2j

2 .

We now introduce macro power series expressions. Assume that A,X,Z,Φ∞
and U = {+, ⋅, �, [,]} are pairwise disjoint. A word E over A∪X ∪Z ∪Φ∞ ∪U
is a macro power series expression over (A,X,Z,Φ∞) iff

(i) E is in X ∪ Z ∪ {"}, or

(ii) E is of one of the forms [E1 +E2], [E1E2], G(E1, . . . , Ek), aE1 or �G.E1,
where E1, . . . , Ek are macro power series expressions over (A,X,Z,Φ∞),
G ∈ Φ∞ is of rank k, k ≥ 0, and a ∈ A.

Each macro power series expression E over (A,X,Z,Φ∞) denotes a formal
power series ∣E∣ in A⟨⟨T (Φ, X ∪ Z)⟩⟩, where Φ is some suitable finite subset of
Φ∞, according to the following conventions:

(i) If E is in X ∪ Z ∪ {"} then E denotes the formal power series E, i. e.,
∣E∣ = E.

(ii) For macro power series expressions E1, . . . , Ek over (A,X,Z,Φ∞), G ∈
Φ∞ of rank k, k ≥ 0, a ∈ A, we define
∣[E1 + E2]∣ = ∣E1∣+ ∣E2∣,
∣[E1E2]∣ = ∣E1∣∣E2∣,
∣G(E1, . . . , Ek)∣ =

∑
t1,...,tk∈T (Φ,X∪Z)(∣E1∣, t1) . . . (∣Ek∣, tk)G(t1, . . . , tk),

∣aE1∣ = a∣E1∣,
∣�G.E1∣ = �G.∣E1∣.

We now define a “yield-mapping” Y, that maps algebraic tree series expres-
sions over (A,Σ, X, Z,Φ∞) to macro power series expressions over (A,X,Z,Φ∞),
in the following manner:

(i) if E is in X ∪ Z then Y(E) = E,

(ii) for algebraic tree series expressions E1, . . . , Ek over (A,Σ, X, Z,Φ∞), ! ∈
Σ of rank k, G ∈ Φ∞ of rank k, k ≥ 0, a ∈ A we define
Y([E1 + E2]) = [Y(E1) + Y(E2)],
Y(!(E1, . . . , Ek)) = [. . . [Y(E1)Y(E2)] ⋅ ⋅ ⋅Y(Ek)]
(including Y(!) = " for k = 0, Y(!(E1)) = Y(E1) for k = 1),
Y(G(E1, . . . , Ek)) = G(Y(E1), . . . ,Y(Ek)),
Y(aE1) = aY(E1),
Y(�G.E1) = �G.Y(E1).

We claim that yd(∣E∣) = ∣Y(E)∣ for an algebraic tree series expression over
(A,Σ, X, Z,Φ∞). The proof is by induction of the form of E. We only show the
case E = �G.E1. We obtain

yd(∣E∣) = yd(�G.∣E1∣) = �G.yd(∣E1∣) = �G.∣Y(E1)∣ = ∣Y(�G.E1)∣ = ∣Y(E)∣ .

Here the second equality follows by the continuity of the mapping yd and the
third equality follows by the induction hypothesis.

6.8. CONNECTIONS TO FORMAL POWER SERIES 211

We now define the mappings '1, '2, '3 analogous to these mappings in Sec-
tion 5.

These considerations, together with Corollaries 5.18 and 8.4 imply the fol-
lowing result. It can be considered as a Kleene Theorem for macro power series.

Theorem 6.8.5 A power series r ∈ A⟨⟨X∗⟩⟩ is a macro power series iff there
exists a macro power series expression E over (A,X,Z,Φ∞) such that r = ∣E∣,
where '1(E) = '3(E) = ∅.

If the basic semiring is B, then Theorem 8.5 can be considered as a Kleene
Theorem for indexed languages.

Example 6.8.2. Consider the macro system M = (Φ, Z,X,E,G0) with initial
function variable G0, specified by Φ = Φ0 ∪ Φ2, Φ0 = {G0}, Φ2 = {G}, X =
{c1, c2} and E = {G0 = G(c1, c2), G(z1, z2) = G(z2

1 , z
2
2) + z1z2}. Since M =

yd(S), where S is defined in Example 5.2, we obtain that the initial component

of the least solution of M is given by
∑
j≥0 c

2j

1 c
2j

2 = ∣�G.[G([c1c1], [c2c2]) +
[c1c2]]∣. Observe that this macro power series expression is Y(E) where E is the
algebraic tree series expression given in Example 5.2.

We now show that algebraic power series are the yield of recognizable tree
series.

Let zi = pi, pi ∈ A⟨⟨TΣ(X ∪ Zn)⟩⟩, 1 ≤ i ≤ n, be a simple proper finite
polynomial system with least solution (�1, . . . , �n). Consider the proper alge-
braic system zi = yd(pi), yd(pi) ∈ A⟨⟨(X ∪ Zn)∗⟩⟩, 1 ≤ i ≤ n. Then it is easily
proved that its least solution is given by (yd(�1), . . . , yd(�n)). This proves the
next theorem.

Theorem 6.8.6 If s is a recognizable tree series then yd(s) is an algebraic
power series.

Corollary 6.8.7 Let {∙, e} ⊆ Σ, where ∙ and e have rank 2 and 0, respectively.
Then a power series r ∈ A⟨⟨X∗⟩⟩ is algebraic iff there exists a tree series in
Arec⟨⟨TΣ(X)⟩⟩ such that yd(s) = r.

For A = ℕ∞, Theorem 8.6 and Theorem 3.9 of Kuich [78] imply the following
wellknown result of formal language theory. (See also Bucher, Maurer [17],
Section 3.3, Gécseg, Steinby [52], Section 14, and Seidl [109].)

Theorem 6.8.8 Let G be a context-free grammar. Then for w ∈ L(G) there are
d(w) different leftmost derivations for w in G iff there are d(w) nonisomorphic
derivation trees of G with result w.

The Kleene Theorems of Section 4 imply by Corollary 8.7 the Kleene Theo-
rem 3.5.6 for algebraic power series and context-free languages. (See Kuich [79],
Gruska [60].)

We now turn to the theory of full abstract families of tree series and make
the following convention for the rest of Section 8: The set Σ∞ (resp. X∞) is a
fixed infinite ranked alphabet (resp. infinite alphabet) and Σ (resp. X), possibly

212 CHAPTER 6. FORMAL TREE SERIES

provided with indices, is a finite subalphabet of Σ∞ (resp. X∞). Moreover, Σ∞
contains a symbol ∙ of rank 2 and a symbol e of rank 0.

We will show that, for a full AFT L, yield(L) is a full abstract family of
power series (briefly, AFP). Here yield(L) = {yd(s) ∣ s ∈ L}.

Theorem 6.8.9 Let L be an equationally closed family of tree series. Then
yield(L) is closed under addition, multiplication and star and contains 0 and 1.

Proof. (i) Let r1, r2 ∈ yield(L). Then there exist s1, s2 ∈ L such that yd(si) = ri,
i = 1, 2. Since L is closed under addition, s = s1 + s2 ∈ L and yd(s) =
r1 + r2 ∈ yield(L). Since L is closed under top-catenation, s′ = ∙(s1, s2) ∈ L
and yd(s′) = r1r2 ∈ yield(L).

(ii) Let s ∈ L and assume that x ∈ X∞ does not appear in s. Consider the
equation x = ∙(s, x)+e. Its least solution �x.(∙(s, x)+e) is in L. Hence, the least
solution �x.yd(∙(s, x) + e) = �x.(yd(s)x+ ") = yd(s)∗ of x = yd(∙(s, x) + e) =
yd(s)x+ " is in yield(L). Moreover, yd(0) = 0 and 0∗ = 1 are in yield(L).

A multiplicative morphism

� : X∗ → (A⟨⟨X ′∗⟩⟩)Q×Q

is called a power series representation. A power series representation � is called
rational (resp. algebraic, macro) iff the entries of �(x), x ∈ X, are rational (resp.
algebraic, macro) power series. A power series transducer ℨ = (Q, �, S, P) is
called rational (resp. algebraic, macro) iff � is a rational (resp. an algebraic, a
macro) power series representation and the entries of S and P are rational (resp.
algebraic, macro) power series. A power series transduction is called rational
(resp. algebraic, macro) iff it is realized by a rational (resp. an algebraic, a
macro) power series transducer.

Lemma 6.8.10 Let � be an algebraic power series representation defined by
� : X → (Aalg⟨⟨X ′∗⟩⟩)Q×Q. Then there exists a nondeterministic simple recog-
nizable tree representation � with state set Q×Q mapping Σ∪X into matrices
with entries in Arec⟨⟨TΣ′(X

′∪Z)⟩⟩, Σ′ = {∙, e}, such that, for all s ∈ A⟨⟨TΣ(X)⟩⟩
and q1, q2 ∈ Q,

yd(�(s)(q1,q2)) = �(yd(s))q1,q2 .

Proof. We construct � = (�k ∣ k ≥ 0):
(i) For x ∈ X and q1, q2 ∈ Q we construct �0(x)(q1,q2) according to Corol-

lary 8.7 with the property that yd(�0(x)(q1,q2)) = �(x)q1,q2 .
(ii) For ! ∈ Σ0 and q1, q2 ∈ Q we define �0(!)(q1,q2) = �q1,q2e, where � is the

Kronecker symbol; hence, yd(�(!)(q1,q2)) = �q1,q2" = �(")q1,q2 .
(iii) For ! ∈ Σk, k ≥ 1, and q1, q2, r1, . . . , rk, s1, . . . , sk ∈ Q, we define

�k(!)(q1,q2),((r1,s1),...,(rk,sk)) = �q1,r1�s1,r2 . . . �sk−1,rk�sk,q2
∙ (z1, ∙(z2, ∙(. . . ∙ (zk−1, zk) . . .))) .

We first consider a tree t ∈ TΣ(X) and show that yd(�(t)(q1,q2)) = �(yd(t))q1,q2 ,
q1, q2 ∈ Q. The proof is by induction on the structure of trees in TΣ(X). The

6.8. CONNECTIONS TO FORMAL POWER SERIES 213

induction basis is true by (i) and (ii). Let now t = !(t1, . . . , tk), ! ∈ Σk, k ≥ 1,
t1, . . . , tk ∈ TΣ(X). Then we obtain, for q1, q2 ∈ Q,

yd(�(t)(q1,q2)) = yd(�(!(t1, . . . , tk))(q1,q2)) =
yd(
∑
r1,...,rk∈Q

∑
s1,...,sk∈Q �(!)(q1,q2),((r1,s1),...,(rk,sk))

[�(t1)(r1,s1)/z1, . . . , �(tk)(rk,sk)/zk]) =
yd(
∑
r1,...,rk∈Q

∑
s1,...,sk∈Q �q1,r1�s1,r2 . . . �sk−1,rk�sk,q2

∙(�(t1)(r1,s1), ∙(�(t2)(r2,s2), ∙(. . . , ∙(�(tk−1)(rk−1,sk−1), �(tk)(rk,sk)) . . .)))) =∑
s1,...,sk−1∈Q yd(�(t1)(q1,s1))yd(�(t2)(s1,s2)) . . .

. . . yd(�(tk−1)(sk−2,sk−1))yd(�(tk)(sk−1,q2)) =∑
s1,...,sk−1∈Q �(yd(t1))q1,s1�(yd(t2))s1,s2 . . .

. . . �(yd(tk−1))sk−2,sk−1
�(yd(tk))sk−1,q2 =

�(yd(t1) . . . yd(tk))q1,q2 = �(yd(t))q1,q2 .

Hence, for s ∈ A⟨⟨TΣ(X)⟩⟩ and q1, q2 ∈ Q,

yd(�(s)(q1,q2)) =
∑
t∈TΣ(X)(s, t)yd(�(t)(q1,q2)) =∑

t∈TΣ(X)(s, t)�(yd(t))q1,q2 = �(yd(s))q1,q2 .

A non-empty family of power series is called an algebraic cone iff it is closed
under algebraic power series transductions. Observe that each algebraic cone
is a (rational) cone, i. e., a family of power series closed under rational power
series transductions.

Theorem 6.8.11 Let L be a full AFT. Then yield(L) is an algebraic cone.

Proof. Let s ∈ L, s ∈ A⟨⟨TΣ(X)⟩⟩, r = yd(s), and ℨ = (Q, �, S, P) be an
algebraic transducer. We will show that ∣∣ℨ∣∣(r) ∈ A⟨⟨X ′∗⟩⟩ is again in yield(L).
Observe that ∣∣ℨ∣∣(r) = S�(r)P =

∑
q1,q2∈Q Sq1�(r)q1,q2Pq2 , where Sq, Pq ∈

Aalg⟨⟨X ′∗⟩⟩, q ∈ Q. By Corollary 8.7 there exist sq, pq ∈ Arec⟨⟨TΣ′(X
′)⟩⟩, ∙, e ∈

Σ′, such that yd(sq) = Sq, yd(pq) = Pq, q ∈ Q. By Lemma 8.10 there exists a
nondeterministic simple recognizable tree representation � with state set Q×Q
such that yd(�(s)(q1,q2)) = �(r)q1,q2 for all q1, q2. Since L is equationally closed,∑
q1,q2∈Q ∙(sq1 , ∙(�(s)(q1,q2), pq2)) is in L. Hence,

yd(
∑
q1,q2∈Q ∙(sq1 , ∙(�(s)(q1,q2), pq2))) =∑

q1,q2∈Q yd(sq1)yd(�(s)(q1,q2))yd(pq2) =∑
q1,q2∈Q Sq1�(r)q1,q2Pq2 = ∣∣ℨ∣∣(r)

is in yield(L).

Corollary 6.8.12 Let L be a full AFT. Then yield(L) is a full AFP that is
closed under algebraic transductions.

Corollary 6.8.13 The family of algebraic power series is a full AFP closed
under algebraic transductions.

214 CHAPTER 6. FORMAL TREE SERIES

Corollary 6.8.14 The family of algebraic power series is a full AFP closed
under substitutions.

Theorem 6.8.15 Let L be a full AFT closed under algebraic tree series trans-
ductions. Then yield(L) is a full AFP closed under macro power series trans-
ductions.

Proof. Similar to the proof of Theorem 8.11.

Corollary 6.8.16 The family of macro power series is a full AFP closed under
macro power series transductions.

Corollary 6.8.17 The family of macro power series is a full AFP closed under
substitution.

We now turn to the language case, i. e., our basic semiring is now 2TΣ∞ (X∞).
We use without mentioning the isomorphism between 2TΣ∞ (X∞) and B⟨⟨TΣ∞(X∞)⟩⟩.

A family L of tree languages is called equationally closed iff ⟨L,∪, ∅, (!̄ ∣
! ∈ Σ∞) ∪X∞⟩ is a distributive Σ∞ ∪X∞-algebra that satisfies the following
condition:

If L ∈ L and x ∈ X∞ then the least solution �x.L of the tree
language equation x = L is in L.

Define F̂(L) to be the smallest equationally closed family of tree languages that
is closed under nondeterministic simple recognizable tree series transductions
and contains L. A family L of tree languages is called a full abstract family of
tree languages iff L = F̂(L).

We now connect our full abstract families of tree languages with full AFLs
(see Salomaa [106], Ginsburg [53] and Berstel [4]).

Theorem 6.8.18 Let L be a full abstract family of tree languages. Then yield(L)
is a full AFL that is closed under algebraic transductions.

A substitution � is called context-free iff �(x) is a context-free language for
each x ∈ X.

Corollary 6.8.19 Let L be a full abstract family of tree languages. Then
yield(L) is a full AFL that is closed under context-free substitutions.

Corollary 6.8.20 The family of context-free languages is an AFL closed under
substitution.

Corollary 6.8.21 (Aho [2], Theorem 3.4.) The family of indexed languages is
an AFL closed under substitution.

Bibliography

[1] Adamek J., Nelson, E., Reiterman J.: Tree constructions of free continuous
algebras. J. Comput. System Sci. 24(1982) 114–146.

[2] Aho, A. V.: Indexed grammars—an extension of context-free grammars.
JACM 15(1968) 647–671.

[3] Bekić, H.: Definable operations in general algebras, and the theory of au-
tomata and flowcharts. Tech. Report, IBM Labor, Wien, 1967.

[4] Berstel, J.: Transductions and Context-Free Languages. Teubner, 1979.

[5] Berstel, J., Boasson, L.: Context-free languages. In: J. van Leeuwen, ed.,
Handbook of Theoretical Computer Science, Vol. B. North-Holland, 1990,
59–102.

[6] Berstel, J., Reutenauer, C.: Recognizable formal power series on trees.
Theor. Comput. Sci. 18(1982) 115–148.

[7] Berstel, J., Reutenauer, C.: Les séries rationelles et leurs langages. Masson,
1984.
English translation: Rational Series and Their Languages. EATCS Mono-
graphs on Theoretical Computer Science, Vol. 12. Springer, 1988.

[8] Block, R. E., Griffing, G.: Recognizable formal series on trees and cofree
coalgebraic systems. J. of Algebra 215(1999) 543–573.

[9] Bloom, S. L., Ésik, Z.: Matrix and matricial iteration theories. Part I.
Journal of Computer and System Sciences 46(1993) 381–408.

[10] Bloom, S. L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theo-
retical Computer Science. Springer, 1993.

[11] Bozapalidis, S.: Effective construction of the syntactic algebra of a recog-
nizable series on trees. Acta Inf. 28(1991) 351–363.

[12] Bozapalidis, S.: Alphabetic tree relations. Theoret. Comput. Sci. 99(1992)
177–211.

215

216 BIBLIOGRAPHY

[13] Bozapalidis, S.: Convex algebras, convex modules and formal power series
on trees. J. Automata, Languages and Combinatorics 1(1996) 165–180.

[14] Bozapalidis, S.: Equational elements in additive algebras. Theory Comput.
Systems 32(1999) 1–33.

[15] Bozapalidis, S.: Context-free series on trees. Information and Computation
169(2001) 186–229.

[16] Bozapalidis, S., Rahonis, G.: On two families of forests. Acta Inf. 31(1994)
235–260.

[17] Bucher, W., Maurer, H.: Theoretische Grundlagen der Programmier-
sprachen. B. I. Wissenschaftsverlag, 1984.

[18] Büchi, J. R.: On a decision method in restricted second order arithmetic.
In: Proc. Int. Congr. Logic, Methodology and Philosophy of Science, 1960.
Stanford University Press, 1962, pp. 1–11.

[19] Carré, B.: Graphs and Networks. Clarendon Press, 1979.

[20] Chomsky, N.: On certain formal properties of grammars. Inf. Control
2(1959) 137–167.

[21] Chomsky, N.: Context-free grammars and pushdown storage. MIT Res.
Lab. of Elect., Quarterly Prog. Rep. 65(1962) 187–194.

[22] Chomsky, N., Schützenberger, M. P.: The algebraic theory of context-free
languages. In: P. Braffort and D. Hirschberg, eds., Computer Programming
and Formal Systems. North-Holland, 1963, 118–161.

[23] Cohen, R. S., Gold, A. Y.: Theory of !-languages I: Characterizations of
!-context-free languages. JCSS 15(1977) 169–184.

[24] Comon, H., Dauchet, M., Gilleron, R., Jaquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata-Techniques and Applications, Manuscript,
193 pages.

[25] Conway, J. H.: Regular Algebra and Finite Machines. Chapman & Hall,
1971.

[26] Courcelle, B.: Equivalences and transformations of regular systems—
Applications to recursive program schemes and grammars. Theor. Comp.
Sci. 42(1986) 1–122.

[27] De Bakker, J. W., Scott, D.: A theory of programs, IBM Seminar, Wien,
1969.

[28] Droste, M., Kuske, D.: Skew and infinitary formal power series. ICALP
2003, LNCS 2719(2003) 426–438.

BIBLIOGRAPHY 217

[29] Eilenberg, S.: Automata, Languages and Machines. Vol. A. Academic
Press, 1974.

[30] Eilenberg, S.: Automata, Languages and Machines. Vol. C. Draft of Sec-
tions I–III, 1978.

[31] Elgot, C.: Matricial theories. J. Algebra 42(1976) 391–422.

[32] Engelfriet, J.: Bottom-up and top-down tree transformations— a compar-
ison. Math. Systems Theory 9(1975) 198–231.

[33] Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and Top-down Tree Series
Transducers. J. Automata, Languages and Combinatorics 7(2002) 11–70.

[34] Engelfriet, J., Schmidt, E. M.: IO and OI. I. J. Comput. Systems Sci.
15(1977) 328–353.

[35] Ésik, Z.: Completeness of Park induction. Theor. Comput. Sci. 177(1997)
217–283.

[36] Ésik, Z.: Group axioms for iteration. Inform. and Comput. 148(1999) 131–
180.

[37] Ésik, Z., Kuich, W.: Locally closed semirings. Monatsh. Math. 137(2002)
21–29.

[38] Ésik, Z., Kuich, W.: Formal tree series. J. Automata, Languages and Com-
binatorics 8(2003) 219–285.

[39] Ésik, Z., Kuich, W.: Inductive ∗-semirings. Theoretical Computer Science
324(2004) 3–33.

[40] Ésik, Z., Kuich, W.: Conway-Halbringe als Grundlage für eine math-
ematische Automatentheorie. In: Doklady meschdunarodnogo matem-
atitscheskogo seminara k 140-letiju so dnja roschdenija Davida Gilberta iz
Kenigsberga i 25-letiju matematitscheskogo fakulteta (Vorträge des interna-
tionalen mathematischen Seminars zum 140. Geburtstag David Hilberts aus
Königsberg und zum 25-jährigen Jubiläum der mathematischen Fakultät),
(S. I. Aleshnikov, S. Ju. Piljugin, Ju. I. Schevtschenko, Herausgeber), Ver-
lag der Staatsuniversität Königsberg, 2002, 240–246.

[41] Ésik, Z., Kuich, W.: Equational axioms for a theory of automata. In:
Formal Languages and Applications, Studies in Fuzziness and Soft Com-
puting 148 (C. Martin-Vide, V. Mitrana, G. Paun, eds.), Springer, 2004,
pp. 183–196.

[42] Ésik, Z., Kuich, W.: A semiring-semimodule generalization of !-context-
free languages. LNCS 3113(2004) 68–80.

218 BIBLIOGRAPHY

[43] Ésik, Z., Kuich, W.: A semiring-semimodule generalization of !-regular
languages II. Journal of Automata, Languages and Combinatorics 10(2005)
243–264.

[44] Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. To appear.

[45] Ésik, Z., Kuich, W.: A semiring-semimodule generalization of transducers
and abstract !-families of power series. Journal of Automata, Languages
and Combinatorics, to appear.

[46] Ésik, Z., Leiß, H.: Greibach normal form in algebraically complete semi-
rings. CSL2002, Lect. Notes Comput. Sci. 2471(2002) 135–150.

[47] Fischer M. J.: Grammars with macro-like productions. 9th Annual Sym-
posium on Switching and Automata Theory, 1968, 131–142.

[48] Floyd, R. W.: Syntactic analysis and operator precedence. J. Assoc. Com-
put. Mach. 10(1963) 313–333.

[49] Fülöp, Z., Vogler, H.: Syntax-Directed Semantics. Springer, 1998.

[50] Fülöp, Z., Vogler, H.: Tree series transformations that respect copying.
Theory of Computing Systems 36(2003) 247–293.

[51] Gécseg, F., Steinby, M.: Tree Automata. Akademiai Kiado, 1984.

[52] Gécseg, F., Steinby, M.: Tree Languages. In: Handbook of Formal Lan-
guages (Eds.: G. Rozenberg and A. Salomaa), Springer, 1997, Vol. 3, Chap-
ter 1, 1–68.

[53] Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Lan-
guages. North-Holland, 1975.

[54] Ginsburg, S., Rice, H. G.: Two families of languages related to ALGOL.
J. Assoc. Comput. Mach. 9(1962) 350–371.

[55] Gluschkow, W. M., Zeitlin, G. J., Justschenko, J. L.: Algebra, Sprachen,
Programmierung. Akademie-Verlag Berlin, 1980.

[56] Goguen, J. A., Thatcher, J. W., Wagner, E. G., Wright, J. B.: Initial alge-
bra semantics and continuous algebras. J. Assoc. Comput. Mach. 24(1977)
68–95.

[57] Goldstern, M.: Vervollständigung von Halbringen. Diplomarbeit, Techni-
sche Universität Wien, 1985.

[58] Grätzer, G.: Universal Algebra, 2nd ed., Springer, 1979.

[59] Greibach, S.: A new normal-form theorem for context-free phrase structure
grammars. J. Assoc. Comput. Mach. 12(1965) 42–52.

BIBLIOGRAPHY 219

[60] Gruska, J.: A characterization of context-free languages. Journal of Com-
puter and System Sciences 5(1971) 353–364.

[61] Guessarian, I.: Algebraic Semantics. Lect. Notes Comput. Sci. 99, Springer,
1981.

[62] Guessarian, I.: Pushdown tree automata. Math. Systems Theory 16(1983)
237–263.

[63] Harrison, M. A.: Introduction to Formal Language Theory. Addison-
Wesley, 1978.

[64] Hebisch, U.: The Kleene theorem in countably complete semirings.
Bayreuther Mathematische Schriften, 31(1990) 55–66.

[65] Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[66] Jacob, G.: Représentations et substitutions matricielles dans la théorie
algébrique des transductions. Thèse de doctorat d’état, Université Paris,
VII, 1975.

[67] Karner, G.: On limits in complete semirings. Semigroup Forum 45(1992)
148–165.

[68] Karner, G.: Continuous monoids and semirings. Theor. Comput. Sci.
318(2004) 355–372.

[69] Karner, G., Kuich, W.: On abstract families of languages, power series,
and elements. Lect. Notes Comput. Sci. 1337(1997) 117–124.

[70] Kleene, St. C.: Representation of events in nerve nets and finite automata.
In: C. E. Shannon, J. McCarthy, eds., Automata Studies. Princeton Uni-
versity Press, 1956, 3–41.

[71] Kozen, D.: A completeness theorem for Kleene algebras and the algebra of
regular events. Inf. Computation 110(1994) 366–390.

[72] Krob, D.: Monoides et semi-anneaux complets. Semigroup Forum 36(1987)
323–339.

[73] Krob, D.: Monoides et semi-anneaux continus. Semigroup Forum 37(1988)
59–78.

[74] Kuich, W.: Über die Entropie kontext-freier Sprachen. Habilitationsschrift,
Technische Hochschule Wien, 1970.
English translation: On the entropy of context-free languages. Inf. Control
16(1970) 173–200.

[75] Kuich, W.: Hauptkegel algebraischer Potenzreihen. EIK 23(1987) 147–170.

220 BIBLIOGRAPHY

[76] Kuich, W.: The Kleene and the Parikh theorem in complete semirings.
ICALP87, Lect. Notes Comput. Sci. 267(1987) 212–225.

[77] Kuich, W.: The algebraic equivalent of AFL theory. ICALP95, Lect. Notes
Comput. Sci. 944(1995) 39–50.

[78] Kuich, W.: Semirings and formal power series: Their relevance to formal
languages and automata theory. In: Handbook of Formal Languages (Eds.:
G. Rozenberg and A. Salomaa), Springer, 1997, Vol. 1, Chapter 9, 609–677.

[79] Kuich, W.: Gaußian elimination and a characterization of algebraic power
series. MFCS 98, Lect. Notes Comput. Sci. 1450(1998) 512–521.

[80] Kuich, W.: Formal power series over trees. In: Proceedings of the 3rd In-
ternational Conference Developments in Language Theory (S. Bozapalidis,
ed.), Aristotle University of Thessaloniki, 1998, pp. 61–101.

[81] Kuich, W.: Tree transducers and formal tree series. Acta Cybernetica
14(1999) 135–149.

[82] Kuich, W.: Full abstract families of tree series I. In: Jewels are Forever.
(J. Karhumäki, H. Maurer, G. Paun, G. Rozenberg, eds.). Springer, 1999,
145–156.

[83] Kuich, W.: Abstract families of tree series II. In: Proceedings of the Inter-
national Workshop on Grammar Systems 2000 (R. Freund, A. Kelemenova,
eds.), Schlesische Universität Troppau, 2000, pp. 347–358.

[84] Kuich, W.: Formal series over algebras. In: Proceedings of MFCS 2000,
Lect. Notes Comput. Sci. 1893, Springer, 2000, pp. 488-496.

[85] Kuich, W.: Pushdown tree automata, algebraic tree systems, and algebraic
tree series. Information and Computation 165(2001) 69–99.

[86] Kuich, W.: Formal power series over sorted algebras. Discrete Math.
254(2002) 231–258.

[87] Kuich, W.: Kleene Theorems for skew formal power series. Acta Cybernet-
ica 17(2006) 719–749.

[88] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science, Vol. 5. Springer, 1986.

[89] Kuich, W., Urbanek, F.: Infinite linear systems and one counter languages.
Theor. Comput. Sci. 22(1983) 95–126.

[90] Lausch, H., Nöbauer, W.: Algebra of Polynomials. North-Holland, 1973.

[91] Lehmann, D. J.: Algebraic structures for transitive closure. Theor. Com-
put. Sci. 4(1977) 59–76.

BIBLIOGRAPHY 221

[92] Manes, E. G., Arbib, M. A.: Algebraic Approaches to Program Semantics.
Springer, 1986.

[93] Markowsky, G.: Chain-complete posets and directed sets with applications.
Algebra Universalis 6(1976) 53–68.

[94] Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and
NP-Completeness. EATCS Monographs on Theoretical Computer Science,
Springer, 1984.

[95] Mohri, M.: Semiring frameworks and algorithms for shortest-distance prob-
lems. J. Automata, Languages and Combinatorics 7(2002) 321–350.

[96] Moll, R. N., Arbib, M. A., Kfoury, A. J.: An Introduction to Formal Lan-
guage Theory. Springer, 1988.

[97] Nivat, M.: Transductions des langages de Chomsky. Ann. Inst. Fourier
18(1968) 339–455.

[98] Niwiński, D.: On fixed-point clones (extended abstract). ICALP 86, Lect.
Notes Comput. Sci. 226(1986) 464-473.

[99] Paz, A.: Introduction to Probabilistic Automata. Academic Press, 1971.

[100] Rosenkrantz, D. J.: Matrix equations and normal forms for context-free
grammars. J. Assoc. Comput. Mach. 14(1967) 501–507.

[101] Rounds, W. C.: Trees, transducers and transformations. PhD thesis, Stan-
ford University, 1968.

[102] Rounds, W. C.: Context-free grammars on trees. ACM Symposium on
Theory of Computing, 1969, pp. 143–148.

[103] Rounds, W. C.: Mappings and grammars on trees. Math. Systems Theory
4(1970) 257–287.

[104] Sakarovitch, J.: Kleene’s theorem revisited. Lect. Notes Comput. Sci.
281(1987) 39–50.

[105] Sakarovitch, J.: Éléments de théorie des automates. Vuibert, 2003.

[106] Salomaa, A.: Formal Languages. Academic Press, 1973.

[107] Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power
Series. Springer, 1978.

[108] Schützenberger, M. P.: On the definition of a family of automata. Inf.
Control 4(1961) 245–270.

[109] Seidl, H.: Deciding equivalence of finite tree automata. STACS88, Lect.
Notes Comput. Sci. 349(1989) 480–492.

222 BIBLIOGRAPHY

[110] Seneta, E.: Non-Negative Matrices and Markov Chains, Second Edition.
Springer, 1981.

[111] Thatcher, J. W.: Generalized2 sequential machine maps. IBM Research
Report RC 2466, 1969.

[112] Thatcher, J. W.: Generalized sequential machine maps. J. Comp. Syst.
Sci. 4(1970) 339–367.

[113] Thatcher, J. W., Wright, J. B.: Generalized finite automata theory with
an application to a decision problem of second-order logic. Math. Systems
Theory 2(1968) 57–81.

[114] Urbanek, F.: On Greibach normal form construction. Theor. Comput. Sci.
40(1985) 315–317.

[115] Wechler, W.: Universal Algebra for Computer Scientists. EATCS Mono-
graphs on Computer Science, Vol. 25. Springer, 1992.

