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Quantified conflict-driven clause learning (QCDCL) is one of the main approaches for solving 
quantified Boolean formulas (QBF). We formalise and investigate several versions of QCDCL 
that include cube learning and/or pure-literal elimination, and formally compare the resulting 
solving variants via proof complexity techniques. Our results show that almost all of the QCDCL 
variants are exponentially incomparable with respect to proof size (and hence solver running 
time), pointing towards different orthogonal ways how to practically implement QCDCL.

1. Introduction

SAT solving has revolutionised the way we perceive computationally hard problems. Determining the satisfiability of propositional 
formulas (SAT) has traditionally been viewed as intractable due to its NP completeness. In contrast, modern SAT solvers today 
routinely solve huge industrial instances of SAT from a wide variety of application domains [10]. This success of solving has not 
stopped at SAT, but in the last two decades was lifted to increasingly more challenging computational settings, with solving quantified 
Boolean formulas (QBF)—a PSPACE-complete problem—receiving key attention [8].

Conflict driven clause learning (CDCL) is the main paradigm of modern SAT solving [24]. Based on the classic DPLL algorithm from 
the 1960s, it combines a number of advanced features, including clause learning, efficient Boolean constraint propagation, decision 
heuristics, restart strategies, and many more. In QBF there exist several competing approaches to solving, with lifting CDCL to the 
quantified level in the form of QCDCL as one of the main paradigms [30], implemented e.g. in the state-of-the-art solvers DepQBF 
[22] and Qute [25].

For SAT/QBF solving, two questions of prime theoretical and practical importance are: (1) why are SAT/QBF solvers so effective 
and on which formulas do they fail? (2) Which solving ingredients are most important for their performance?

For (1), proof complexity offers the main theoretical approach to analyse the strength of solving [16,8,9]. In a breakthrough result, 
[26] and [1] established that CDCL on unsatisfiable formulas is equivalent to the resolution proof system, in the sense that from a 
CDCL run a resolution proof can be efficiently extracted [3], and conversely, each resolution proof can be efficiently simulated by 
CDCL [26]. Hence the well-developed proof-complexity machinery for proof size lower bounds in resolution [21] is directly applicable 
to show lower bounds for running time in CDCL.

✩ An extended abstract of this paper was published at IJCAI’22 [14].
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Fig. 1. Hasse diagram of the simulation order of QCDCL proof systems. Solid lines represent p-simulations and exponential separations (where the system depicted 
above is the stronger one). Dashed lines represent separations in both directions (i.e., incomparability). Details of the simulations and separations are depicted in 
Tables 1 and 2.

The latter simulation of resolution by CDCL assumes a strong ‘non-deterministic’ version of CDCL, whereas practical CDCL (using 
decision heuristics such as VSIDS) has been recently proved to be exponentially weaker than resolution [29]. In contrast, an analogous 
proof-theoretic characterisation is not known for QCDCL, and in particular QCDCL has recently been shown to be incomparable to 
Q-Resolution [4], the QBF analogue of propositional resolution [19].

Regarding question (2) above, there are some experimental studies [27,17,20], but no rigorous theoretical results are known on 
which (Q)CDCL ingredients are most crucial for performance. Of course, gaining such a theoretical understanding would also be very 
valuable in guiding future solving developments.

In this paper, we contribute towards question (2) in QBF.

Our contributions. Following the approach of [4], we model QCDCL as rigorously defined proof systems that are amenable to a 
proof-complexity analysis. This involves formalising individual QCDCL ingredients, such as clause and cube learning and different 
variants of Boolean constraint propagation. These components can then be ‘switched’ on or off, resulting in a number of different 
QCDCL solving approaches that we can formally investigate. Throughout we adopt the most common variable selection strategy 
of practical QCDCL that decides variables in the order of the prefix from left to right. More flexible decision strategies are used in 
dependency learning [25] or in [15,13].

Though we present the different QCDCL solving paradigms as formal proof systems in order to theoretically investigate them, 
they still retain a certain algorithmic flavour. We also note that in contrast to most conventional proof systems, the QCDCL systems 
are not rule-based, but are defined using QCDCL trails.

Our results can be summarised as follows.

(a) QCDCL with or without cube learning. In contrast to SAT solving, where there is somewhat of an asymmetry between satisfiable 
and unsatisfiable formulas, QCDCL implements a dual approach for false and true QBFs. In addition to learning clauses (as in CDCL) 
when running into a conflict under the current assignment, QCDCL also learns terms (or cubes) in the case a satisfying assignment 
is found (or a previously learned cube is satisfied). While cube learning is necessary to make QCDCL solving complete on true QBFs, 
it is less clear what the effect of cube learning is on false QBFs (and we only consider those throughout the paper as we cast all our 
variants in terms of refutational proof systems, in accordance with the proof complexity analysis of SAT [16]).

Here we establish the perhaps surprising result that even for false QBFs, cube learning can be advantageous, in the sense that 
QCDCL without cube learning (as a proof system for false QBFs) is exponentially weaker than QCDCL with cube learning (Theorems 5.3

and 6.11).

(b) QCDCL with or without pure-literal elimination. In its simplest form, Boolean constraint propagation, used to construct trails 
in (Q)CDCL, implements unit propagation. However, further methods can be additionally employed (and are considered in pre- and 
in-processing [11]). One of the classic mechanisms is pure-literal elimination, setting a pure literal (which occurs in only one polarity) 
to the obvious value. This is e.g. implemented in DepQBF and an efficient implementation is described by [23].

We show that QCDCL with or without pure-literal elimination results in incomparable proof systems (Theorem 5.13), i.e., there 
are QBFs that are easy in QCDCL with pure literal elimination, but hard in plain QCDCL, and vice versa (the latter is perhaps more 
surprising).

(c) Comparing QCDCL extensions. Given the preceding results, it is natural (and possibly most interesting for practice) to ask how 
the different QCDCL extensions compare with each other. We consider QCDCL with cube learning, QCDCL with pure-literal elimination 
but without cube learning, and QCDCL with both cube learning and pure-literal elimination. Except for the simulation of the second 
by the third system, we again obtain incomparability results between the systems with exponential separations (Theorem 6.5). We 
further show that all these systems are incomparable to Q-Resolution, again via exponential separations (Theorem 7.1). An overview 
of the systems and their relations is given in Fig. 1.

Technically, our results rest on formalising QCDCL systems as proof calculi and exhibiting specific QBFs for their separations. The 
2

latter includes both the explicit construction of short QCDCL runs and proving exponential proof size lower bounds for the relevant 
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Table 1

P-simulations and separations of proof systems from Fig. 1 (i.e. the solid lines).

No Simulation 
Theorem

Separation

Formula easy for hard for Theorem

1 Proposition 5.1 𝙴𝚚𝑛 𝖰𝖢𝖣𝖢𝖫CUBE 𝖰𝖢𝖣𝖢𝖫 Theorem 5.3

5 Proposition 5.1 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛 𝖰𝖢𝖣𝖢𝖫CUBE+PL 𝖰𝖢𝖣𝖢𝖫PL Theorem 6.11

11 by Def. 𝙲𝚁𝑛 LD Q-Res 𝖰𝖢𝖣𝖢𝖫 [12,18]

12 by Def. 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 LD Q-Res 𝖰𝖢𝖣𝖢𝖫CUBE Proposition 7.1

13 by Def. 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 LD Q-Res 𝖰𝖢𝖣𝖢𝖫PL Proposition 7.1

14 by Def. 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 LD Q-Res 𝖰𝖢𝖣𝖢𝖫CUBE+PL Proposition 7.1

15 by Def. 𝙴𝚚𝑛 LD Q-Res Q-Res [6]

Table 2

Separations between incomparable proof systems from Fig. 1 (i.e. the dashed lines).

No Formula easy for hard for Theorem

2 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 𝖰𝖢𝖣𝖢𝖫 𝖰𝖢𝖣𝖢𝖫PL Proposition 5.11, Proposition 5.12

𝙴𝚚𝑛 𝖰𝖢𝖣𝖢𝖫PL 𝖰𝖢𝖣𝖢𝖫 Proposition 5.4, [4]

3 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 𝖰𝖢𝖣𝖢𝖫CUBE 𝖰𝖢𝖣𝖢𝖫PL Proposition 5.11, Proposition 5.12

𝚃𝚠𝚒𝚗𝙴𝚚𝑛 𝖰𝖢𝖣𝖢𝖫PL 𝖰𝖢𝖣𝖢𝖫CUBE Proposition 6.3, Proposition 6.4

4 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 𝖰𝖢𝖣𝖢𝖫CUBE 𝖰𝖢𝖣𝖢𝖫CUBE+PL Proposition 6.7

𝚃𝚠𝚒𝚗𝙴𝚚𝑛 𝖰𝖢𝖣𝖢𝖫CUBE+PL 𝖰𝖢𝖣𝖢𝖫CUBE Proposition 6.3, Proposition 6.4

6 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 𝖰𝖢𝖣𝖢𝖫 𝖰𝖢𝖣𝖢𝖫CUBE+PL Proposition 5.12, Proposition 6.7

𝙴𝚚𝑛 𝖰𝖢𝖣𝖢𝖫CUBE+PL 𝖰𝖢𝖣𝖢𝖫 Proposition 5.4, [4]

7 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 𝖰𝖢𝖣𝖢𝖫 Q-Res [4,7]

𝙲𝚁𝑛 Q-Res 𝖰𝖢𝖣𝖢𝖫 [12,18]

8 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 𝖰𝖢𝖣𝖢𝖫CUBE Q-Res Theorem 7.1, [7]

𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 Q-Res 𝖰𝖢𝖣𝖢𝖫CUBE Proposition 7.1

9 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 𝖰𝖢𝖣𝖢𝖫CUBE Q-Res Theorem 7.1, [7]

𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 Q-Res 𝖰𝖢𝖣𝖢𝖫CUBE Proposition 7.1

10 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 𝖰𝖢𝖣𝖢𝖫CUBE Q-Res Theorem 7.1, [7]

𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 Q-Res 𝖰𝖢𝖣𝖢𝖫CUBE Proposition 7.1

calculi. For the lower bounds, we identify a property of proofs (called primitivity here) that allows to use proof-theoretic machinery 
of [12] in the context of our QCDCL systems.

Our theoretical results on the strength of different QCDCL variants are empirically confirmed by experiments with state-of-the-art 
QCDCL solvers (cf. Section 8).

Organisation. We start in Section 2 by reviewing QBFs and Q-Resolution. In Section 3 we model variants of QCDCL as formal proof 
systems and develop a lower bound technique for such systems in Section 4. Sections 5 to 8 then contain our results on the relative 
strength of QCDCL variants. We conclude in Section 9 with an outlook on future research.

2. Preliminaries

Propositional and quantified formulas. Variables 𝑥 and negated variables �̄� are called literals. We denote the corresponding variable 
as var(𝑥) ∶= var(�̄�) ∶= 𝑥. We will sometimes also use ⊥ (verum) and ⊤ (falsum) as meta-literals.

A clause is a disjunction of literals, interpreted as a set of literals. A unit clause (𝓁) contains only one literal. The empty clause

consists of zero literals, denoted (⊥). A clause 𝐶 is called tautological if {𝓁, 𝓁} ⊆ 𝐶 for some literal 𝓁.

A cube is a conjunction of literals, viewed as a set of literals. We define a unit cube of a literal 𝓁, denoted by [𝓁], and the empty 
cube [⊤] with ‘empty literal’ ⊤. A cube 𝐷 is contradictory if {𝓁, 𝓁} ⊆ 𝐷 for some literal 𝓁. If 𝐶 is a clause or a cube, we define 
var(𝐶) ∶= {var(𝓁) ∶ 𝓁 ∈ 𝐶}. The negation of a clause 𝐶 = 𝓁1 ∨… ∨ 𝓁𝑚 is the cube ¬𝐶 ∶= 𝓁1 ∧… ∧ 𝓁𝑚.

A (total) assignment 𝜎 of a set of variables 𝑉 is a non-tautological set of literals such that for all 𝑥 ∈ 𝑉 there is some 𝓁 ∈ 𝜎 with 
var(𝓁) = 𝑥. A partial assignment 𝜎 of 𝑉 is an assignment of a subset 𝑊 ⊆ 𝑉 . A clause 𝐶 is satisfied by an assignment 𝜎 if 𝐶 ∩ 𝜎 ≠ ∅. 
A cube 𝐷 is falsified by 𝜎 if ¬𝐷 ∩ 𝜎 ≠ ∅. A clause 𝐶 not satisfied by 𝜎 can be restricted by 𝜎, defined as 𝐶|𝜎 ∶=⋁

𝓁∈𝐶,𝓁∉𝜎 𝓁. Similarly 
we can restrict a non-falsified cube 𝐷 as 𝐷|𝜎 ∶=⋀

𝓁∈𝐷∖𝜎 𝓁.

A CNF (conjunctive normal form) is a conjunction of clauses and a DNF (disjunctive normal form) is a disjunction of cubes. We 
restrict a CNF (DNF) 𝜙 by an assignment 𝜎 as 𝜙|𝜎 ∶=

⋀
𝐶∈𝜙 non-satisfied 𝐶|𝜎 (resp. 𝜙|𝜎 ∶=

⋁
𝐷∈𝜙 non-falsified 𝐷|𝜎 ). For a CNF (DNF) 𝜙

and an assignment 𝜎, if 𝜙|𝜎 = ∅, then 𝜙 is satisfied (falsified) by 𝜎.

A literal 𝓁 that appears in a clause of a CNF 𝜙 is called pure in 𝜙 if 𝓁 does not occur in 𝜙.

A QBF (quantified Boolean formula) Φ =  ⋅ 𝜙 consists of a propositional formula 𝜙, called the matrix, and a prefix . A prefix
3

 = ′
1𝑉1… ′

𝑠
𝑉𝑠 consists of non-empty and pairwise disjoint sets of variables 𝑉1, … , 𝑉𝑠 and quantifiers ′

1, … , ′
𝑠
∈ {∃, ∀} with 



Artificial Intelligence 336 (2024) 104194B. Böhm, T. Peitl and O. Beyersdorff

′
𝑖
≠ ′

𝑖+1 for 𝑖 ∈ [𝑠 − 1]. For a variable 𝑥 in , the quantifier level is lv(𝑥) ∶= lvΦ(𝑥) ∶= 𝑖, if 𝑥 ∈ 𝑉𝑖. For lvΦ(𝓁1) < lvΦ(𝓁2) we write 
𝓁1 <Φ 𝓁2.

For a QBF Φ =  ⋅ 𝜙 with 𝜙 a CNF (DNF), we call Φ a QCNF (QDNF). We write C(Φ) ∶= 𝜙 (resp. D(Φ) ∶= 𝜙). Φ is an AQBF

(augmented QBF), if 𝜙 = 𝜓 ∨ 𝜒 with CNF 𝜓 and DNF 𝜒 . Again we write C(Φ) ∶= 𝜓 and D(Φ) ∶= 𝜒 .

We restrict a QCNF (QDNF) Φ =  ⋅ 𝜙 by an assignment 𝜎 as Φ|𝜎 ∶= |𝜎 ⋅ 𝜙|𝜎 , where |𝜎 is obtained by deleting all variables 
from  that appear in 𝜎. Analogously, we restrict an AQBF Φ = ⋅ (𝜓 ∨ 𝜒) as Φ|𝜎 ∶=|𝜎 ⋅ (𝜓|𝜎 ∨ 𝜒|𝜎).
(Long-distance) Q-resolution and Q-consensus. Let 𝐶1 and 𝐶2 be two clauses (cubes). Let 𝓁 be a literal with var(𝓁) ∉ var(𝐶1) ∪
var(𝐶2). The resolvent of 𝐶1 ∨ 𝓁 and 𝐶2 ∨ 𝓁 over 𝓁 is defined as

(𝐶1 ∨ 𝓁)
𝓁
⋈ (𝐶2 ∨ 𝓁) ∶= 𝐶1 ∨𝐶2

(resp. (𝐶1 ∧ 𝓁) 
𝓁
⋈ (𝐶2 ∧ 𝓁) ∶= 𝐶1 ∧𝐶2).

Let 𝐶 ∶= 𝓁1 ∨… ∨ 𝓁𝑚 be a clause from a QCNF or AQBF Φ such that 𝓁𝑖 ⩽Φ 𝓁𝑗 for all 𝑖 < 𝑗, 𝑖, 𝑗 ∈ [𝑚]. Let 𝑘 be minimal such that 
𝓁𝑘, … , 𝓁𝑚 are universal. Then we can perform a universal reduction step and obtain

red∀(𝐶) ∶= 𝓁1 ∨…∨ 𝓁𝑘−1.

Analogously, we perform existential reduction on cubes. Let 𝐷 ∶= 𝓁1 ∧… ∧ 𝓁𝑚 be a cube of a QDNF or AQBF Φ with 𝓁𝑖 ⩽Φ 𝓁𝑗 for 
all 𝑖 < 𝑗, 𝑖, 𝑗 ∈ [𝑚]. Let 𝑘 be minimal such that 𝓁𝑘, … , 𝓁𝑚 are existential. Then red∃(𝐷) ∶= 𝓁1 ∧… ∧ 𝓁𝑘−1.

As defined by Kleine Büning et al. [19], a Q-resolution (Q-consensus) proof 𝜋 from a QCNF (QDNF) or AQBF Φ of a clause (cube) 
𝐶 is a sequence of clauses (cubes) 𝜋 = (𝐶𝑖)𝑚𝑖=1, such that 𝐶𝑚 = 𝐶 and for each 𝐶𝑖 one of the following holds:

• Axiom: 𝐶𝑖 ∈ C(Φ) (resp. 𝐶𝑖 ∈D(Φ));
• Resolution: 𝐶𝑖 = 𝐶𝑗

𝑥

⋈ 𝐶𝑘 with 𝑥 existential (univ.), 𝑗, 𝑘 < 𝑖, and 𝐶𝑖 non-tautological (non-contradictory);

• Reduction: 𝐶𝑖 = red∀(𝐶𝑗 ) (resp. 𝐶𝑖 = red∃(𝐶𝑗 )) for some 𝑗 < 𝑖.

We call 𝐶 the root of 𝜋. [2] introduced an extension of Q-resolution (Q-consensus) proofs to long-distance Q-resolution (long-
distance Q-consensus) proofs by replacing the resolution rule by

• Resolution (long-distance): 𝐶𝑖 = 𝐶𝑗

𝑥

⋈ 𝐶𝑘 with 𝑥 existential (universal) and 𝑗, 𝑘 < 𝑖. The resolvent 𝐶𝑖 is allowed to contain tau-

tologies such as 𝑢 ∨ �̄� (resp. contradictions such as 𝑢 ∧ �̄�), if 𝑢 is universal (existential). If there is a universal (existential) 
𝑢 ∈ var(𝐶𝑗 ) ∩ var(𝐶𝑘), then we require 𝑥 <Φ 𝑢.

Note that in Q-resolution (resp. Q-consensus) proofs there are no tautologies or contradictions allowed at all.

A Q-resolution (Q-consensus) or long-distance Q-resolution (Q-consensus) proof from Φ of the empty clause (⊥) (the empty cube 
[⊤]) is called a refutation (verification) of Φ. In that case, Φ is called false (true).

A proof system 𝑆 p-simulates a system 𝑆′, if every 𝑆′ proof can be transformed in polynomial time into an 𝑆 proof of the same 
formula.

3. Formal calculi for QCDCL versions

In this section we model different versions of QCDCL as formal proof systems (we sketch this only here; for background on QCDCL 
cf. [8]). For this we need to formalise QCDCL ingredients. We start with trails. A trail  for a QCNF Φ is a finite sequence of literals 
from Φ, including the empty literals ⊥ and ⊤. In general, a trail has the form

 = (𝑝(0,1),… , 𝑝(0,𝑔0);𝐝𝟏, 𝑝(1,1),… , 𝑝(1,𝑔1);… ;𝐝𝐫 , 𝑝(𝑟,1),… , 𝑝(𝑟,𝑔𝑟)), (3.1)

where the 𝑑𝑖 are decision literals and 𝑝(𝑖,𝑗) are propagated literals. Decision literals are written in boldface. We use a semicolon before 
each decision to mark the end of a decision level. We write 𝑥 < 𝑦 if 𝑥, 𝑦 ∈  and 𝑥 is left of 𝑦 in  .

Trails can be interpreted as (partial) assignments. If  is a trail, then  [𝑖, 𝑗], for 𝑖 ∈ {0, … , 𝑟} and 𝑗 ∈ {0, … , 𝑔𝑖}, is defined as the 
subtrail that contains all literals from  left of (and excluding) 𝑝(𝑖,𝑗) (resp. 𝑑𝑖, if 𝑗 = 0). We define  [0, 0] as the empty trail. A trail 
has run into conflict if ⊥ ∈  or ⊤ ∈  .

For each propagated literal 𝑝(𝑖,𝑗) in a trail  the formula must contain a clause or a cube that caused this propagation by becoming a 
unit clause or cube. We denote such a clause/cube by ante (𝑝(𝑖,𝑗)). We can only propagate existential literals via clauses and universal 
literals via cubes. Further restrictions will be dictated by the respective QCDCL version and their specific rules. Note that antecedent 
clauses occur in CDCL as well.

Example 3.1. Throughout the section, we shall demonstrate the various notions on a run of QCDCL on the formula
4

Φ ∶= ∃𝑥∀𝑢∃𝑡(𝑥 ∨ 𝑢 ∨ 𝑡) ∧ (�̄� ∨ �̄� ∨ 𝑡) ∧ (𝑥 ∨ 𝑢 ∨ 𝑡) ∧ (�̄� ∨ �̄� ∨ 𝑡).
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A trail is a record of the state of a QCDCL algorithm. For example, QCDCL running on the above formula could start with the branching 
decision �̄�, followed by the decision �̄�, and propagation 𝑡. The trail at that moment would be 0 = (�̄�; ̄𝐮, ̄𝑡).

Simply put, our QCDCL proof systems can be interpreted as sequences of trails. These trails cannot be created arbitrarily, but have 
to follow special rules, depending on the variant. We consider the following four QCDCL variants:

• 𝖰𝖢𝖣𝖢𝖫, which can be seen as the plain variant where we can only make decisions following the level order of the quantifier prefix, 
make propagations using clauses and use classic clause learning. We will never learn or use cubes and pure-literal elimination is 
turned off.

• 𝖰𝖢𝖣𝖢𝖫CUBE is an extension of 𝖰𝖢𝖣𝖢𝖫 in which we can learn cubes and use them for propagations. Decisions are still level-

ordered and pure-literal elimination is turned off.

• 𝖰𝖢𝖣𝖢𝖫PL is an extension of 𝖰𝖢𝖣𝖢𝖫, where we decide literals out of order if they are pure in the current configuration (pure-

literal elimination). All other decisions (which we call regular decisions) are still level ordered. Cube learning is turned off.

• 𝖰𝖢𝖣𝖢𝖫CUBE+PL is an extension of 𝖰𝖢𝖣𝖢𝖫PL, in which cube learning is now allowed (as in 𝖰𝖢𝖣𝖢𝖫CUBE).

For a formal definition of these four variants, the following table show which subsequently described rules hold for each variant. 
They are classified into propagation, decision and conflict rules.

𝖰𝖢𝖣𝖢𝖫 𝖰𝖢𝖣𝖢𝖫CUBE 𝖰𝖢𝖣𝖢𝖫PL 𝖰𝖢𝖣𝖢𝖫CUBE+PL

EP AP EP AP

LOD LOD PLD PLD

CC AC CC AC

(Existential propagation rule) EP: Each 𝑝(𝑖,𝑗) is either an existential literal from Φ or the empty literal ⊥. For each 𝑝(𝑖,𝑗) there exists 
a clause ante (𝑝(𝑖,𝑗)) ∈ C(Φ) such that red∀

(
ante (𝑝(𝑖,𝑗))| [𝑖,𝑗]

)
= (𝑝(𝑖,𝑗)).

(Arbitrary propagation rule) AP: Each 𝑝(𝑖,𝑗) is some literal from Φ or one of the empty literals ⊥ or ⊤. If 𝑝(𝑖,𝑗) is existen-

tial or ⊥, then the condition from EP applies. If 𝑝(𝑖,𝑗) is universal or ⊤, then there exists a cube ante (𝑝(𝑖,𝑗)) ∈ D(Φ) such that 
red∃

(
ante (𝑝(𝑖,𝑗))| [𝑖,𝑗]

)
=
[
�̄�(𝑖,𝑗)

]
.

We call such a clause (cube) ante (𝑝(𝑖,𝑗)) an antecedent clause (antecedent cube). The next rules specify how decisions are made.

(Level-ordered decision rule) LOD: For each 𝑑𝑖 we have that Φ| [𝑖,0] does not contain unit or empty clauses or cubes. Also, 
lvΦ| [𝑖,0]

(𝑑𝑖) = 1, i.e., decisions are level-ordered.

(Pure literal decision rule) PLD: For each 𝑑𝑖 we have that Φ| [𝑖,0] does not contain any unit or empty clauses or cubes. Also, if 
there are pure literals in C(Φ| [𝑖,0]), then the following holds: If 𝑑𝑖 is existential, then 𝑑𝑖 has to be pure in C(Φ| [𝑖,0]). Otherwise, if 𝑑𝑖
is universal, then 𝑑𝑖 has to be pure in C(Φ| [𝑖,0]). In that case we will underline 𝐝𝐢 in  . However, if C(Φ| [𝑖,0]) does not contain any 
pure literals, then lvΦ| [𝑖,0]

(𝑑𝑖) = 1, i.e., decision literals which are not pure have to be level-ordered.

From now on, we will distinguish regular decisions (not underlined) and decisions via pure literal elimination (underlined).

Example 3.2. Recall the trail 0 from Example 3.1. Upon closer inspection we may notice that after the decision �̄�, the literal 𝑢 is 
pure, and thus the decision �̄� can be performed by pure literal elimination. We obtain the trail 1 = (�̄�; ̄𝐮, ̄𝑡).

The last pair of rules will determine how we handle conflicts in trails.

(Clause conflict rule) CC: If ⊥ ∈  , then ⊥ = 𝑝(𝑟,𝑔𝑟) and there is no point [𝑖, 𝑗] except [𝑟, 𝑔𝑟] such that there exists some 𝐶 ∈ C(Φ| [𝑖,𝑗])
with red∀(𝐶) = (⊥), i.e., we cannot delay conflicts, but are forced to handle them as soon as possible.

(Arbitrary conflict rule) AC: If ⊥ ∈  , then ⊤ ∉  and vice versa. If there is an 𝓁 ∈ {⊥, ⊤} with 𝓁 ∈  , then 𝓁 = 𝑝(𝑟,𝑔𝑟) and there is 
no point [𝑖, 𝑗] except [𝑟, 𝑔𝑟] such that there exists some 𝐶 ∈ C(Φ| [𝑖,𝑗]) or 𝐷 ∈D(Φ| [𝑖,𝑗]) with red∀(𝐶) = (⊥) or red∃(𝐷) = [⊤].

Note that decisions can only be made if there are no more propagations possible and pure literal decisions always have a 
higher priority than regular decisions. Also, conflicts have a higher priority than propagations of proper (existential or universal) 
literals. Hence, we will never skip conflicts, propagations or pure literal decisions. Trails that follow these principles are called 
natural.

Example 3.3. Continuing Example 3.2, we may notice that the clause (𝑥 ∨ 𝑢 ∨ 𝑡) is falsified under the trail 1, and thus the trail may 
be extended by propagating ⊥ to 2 = (�̄�; ̄𝐮, ̄𝑡, ⊥). The antecedent for the propagation of 𝑡 is ante2 (𝑡) = (𝑥 ∨ 𝑢 ∨ 𝑡), and the antecedent 
for ⊥ is ante2 (⊥) = (𝑥 ∨ 𝑢 ∨ 𝑡). Now, the trail 2 has run into a conflict. Notice that we have indeed performed all conflict detection, 
unit propagation, and pure-literal elimination as soon as possible, in line with the various rules.
5

After a trail has run into a conflict, or if all variables are assigned, we can start the learning process.
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Definition 3.4 (learnable constraints). Let  be a trail for Φ of the form (3.1) with 𝑝(𝑟,𝑔𝑟) ∈ {⊥, ⊤}. Starting with ante (⊥) (resp. 
ante (⊤)) we reversely resolve over the antecedent clauses (cubes) that propagated the existential (universal) variables, until we stop 
at some arbitrarily chosen point. The clause (cube) we so derive is a learnable constraint. We denote the set of learnable constraints 
by L( ).

We can also learn cubes from trails that did not run into conflict. If  is a total assignment of the variables from Φ, then we define 
the set of learnable constraints as the set of cubes L( ) ∶= {red∃(𝐷)| 𝐷 ⊆  and 𝐷 satisfies C(Φ)}.

Example 3.5. As we attempt to recover from the conflict 2 has run into in Example 3.3, we backtrack and apply long-distance 
Q-resolution. We first resolve the two antecedent clauses (𝑥 ∨ 𝑢 ∨ 𝑡) and (𝑥 ∨ 𝑢 ∨ 𝑡), obtaining (𝑥 ∨ 𝑢), and after universal reduction 
(𝑥). There are no more antecedent clauses to resolve with, so the full set of learnable clauses is L(2) = {(𝑥)}. We will next learn the 
only possible clause (𝑥), backtrack, and continue down a different trail. The sequence of trails thus constructed constitutes a QCDCL 
proof system.

Definition 3.6 (QCDCL proof systems). Let 𝑆 be one of the previously described variants 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫PL, 
𝖰𝖢𝖣𝖢𝖫CUBE+PL. An 𝑆 proof 𝜄 from a QCNF Φ = ⋅ 𝜙 of a clause or cube 𝐶 is a sequence of triples

𝜄 ∶= [(𝑖, 𝐶𝑖, 𝜋𝑖)]𝑚𝑖=1,

where 𝐶𝑚 = 𝐶 , each 𝑖 is a trail of Φ𝑖, each 𝐶𝑖 ∈ L(𝑖) is one of the constraints we can learn from each trail and 𝜋𝑖 is the long-distance 
Q-resolution or long-distance Q-consensus proofs from Φ𝑖 of 𝐶𝑖 we obtain by performing the steps in Definition 3.4. If necessary, 
we set 𝜋𝑖 ∶= ∅. We will denote the set of trails in 𝜄 as T(𝜄).

The QCNF or AQBF Φ𝑖 is defined as follows: If 𝑆 is one of 𝖰𝖢𝖣𝖢𝖫 or 𝖰𝖢𝖣𝖢𝖫PL, then we set Φ1 ∶= Φ and

Φ𝑗+1 ∶= ⋅
(
C(Φ𝑗 ) ∧𝐶𝑗

)
.

However, if 𝑆 ∈ {𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫CUBE+PL}, then the Φ𝑖 are AQBFs defined as Φ1 ∶= ⋅
(
C(Φ) ∨ ∅

)
and

Φ𝑗+1 ∶=
{
 ⋅

(
(C(Φ𝑗 ) ∧𝐶𝑗 ) ∨D(Φ𝑗 )

)
if 𝐶𝑗 is a clause,

 ⋅
(
C(Φ𝑗 ) ∨ (D(Φ𝑗 ) ∨𝐶𝑗 )

)
if 𝐶𝑗 is a cube,

for 𝑗 = 1, … , 𝑚 − 1.

Furthermore, we require that 1 is a natural 𝑆 trail and for each 2 ⩽ 𝑖 ⩽𝑚 there is a point [𝑎𝑖, 𝑏𝑖] such that 𝑖[𝑎𝑖, 𝑏𝑖] = 𝑖−1[𝑎𝑖, 𝑏𝑖]
and 𝑖∖𝑖[𝑎𝑖, 𝑏𝑖] has to be a natural 𝑆 trail for Φ𝑖|𝑖[𝑎𝑖,𝑏𝑖]. This process is called backtracking. We will also say that after 𝑖−1 we 
backtrack back to the point [𝑎𝑖, 𝑏𝑖]. If 𝑖−1[𝑎𝑖, 𝑏𝑖] = ∅, then this is also called a restart.

Note that we only require 𝑖∖𝑖[𝑎𝑖, 𝑏𝑖] to be natural. However, since the first part always belongs to a previous trail, and the first 
trail in the proof is always natural, we can nevertheless use the notion of antecedent clauses for the whole trail 𝑖 . In particular, for 
all 𝑖 either EP or AP holds, which we need for the learning process.

Unfortunately we cannot claim the same for LOD and PLD, because for a decision 𝑑𝑖 in a trail 𝑘 ∈ T(𝜄) it might happen that 
Φ𝑘|𝑘[𝑖,0] contains unit or empty clauses or literals after clause learning and backtracking. However, we can still assume that the 
decisions are level-ordered, since the condition lvΦ𝑘|𝑘[𝑖,0] (𝑑𝑖) = 1 is not affected by new clauses. Also, it could happen that a literal 
𝑑𝑖 that was originally decided by pure literal elimination in some trail 𝑘 might not pure in C(Φ𝑘+1|𝑘+1[𝑖,0]) anymore because of a 
new clause 𝐶𝑘. Nevertheless, this will not cause too many difficulties since we can always find the original trail (here: 𝑘) in which 
𝑑𝑖 was in fact decided as a pure literal. Thus, when we say that a literal was decided by pure literal elimination in a trail  , we will 
always refer to this original trail.

If 𝐶 = 𝐶𝑚 = (⊥), then 𝜄 is called an 𝑆 refutation of Φ. If 𝐶 = 𝐶𝑚 = [⊤], then 𝜄 is called an 𝑆 verification of Φ. The proof ends once 
we have learned (⊥) or [⊤].

If 𝐶 is a clause, we can stick together the long-distance Q-resolution derivations from {𝜋1, … , 𝜋𝑚} and obtain a long-distance 
Q-resolution proof from Φ of 𝐶 , which we call R(𝜄). Similarly, if 𝐶 is a cube, we can stick together the long-distance Q-consensus
derivations and obtain a long-distance Q-consensus proof R(𝜄) from Φ of 𝐶 .

The size of 𝜄 is defined as |𝜄| ∶=∑𝑚

𝑖=1 |𝑖|. Obviously, we have |R(𝜄)| ∈(|𝜄|).
We say that 𝑆 p-simulates another system 𝑆′, if every 𝑆′ proof 𝜄′ can be transformed in polynomial time into an 𝑆 proof 𝜄 of the 

same formula.

Example 3.7. Finally, let us see the whole QCDCL run in one place. We begin with the decision �̄�, pure-literal elimination �̄�, propa-

gation 𝑡 and then ⊥ to obtain the trail 2. We learn (𝑥) and backtrack just before the last non-pure-literal decision to the empty trail 
3 = (; ). The newly learned unit clause propagates 𝑥, 𝑢 is then decided by pure-literal elimination, 𝑡 propagated by the antecedent 
(�̄� ∨ �̄� ∨ 𝑡), and ⊥ by the antecedent (�̄� ∨ �̄� ∨ 𝑡), arriving at the conflict trail 4 = (𝑥; 𝑢, 𝑡, ⊥). As we resolve backwards, we identify 
as learnable first the reduced unit clause (�̄�), and after resolving with ante4 (𝑥) = (𝑥) also the empty clause. By learning the empty 
clause, we complete the proof. In this particular case, because we used pure-literal elimination but no cube learning, we obtain a 
𝖰𝖢𝖣𝖢𝖫PL proof.
6

Theorem 3.8. 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫PL, and 𝖰𝖢𝖣𝖢𝖫CUBE+PL are sound and complete proof systems.
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Proof. We start with the soundness. All Φ𝑖 have the same truth value. In fact, either the newly added clauses (cubes) are derived 
from already known clauses (cubes) by long-distance Q-resolution (long-distance Q-consensus), which is a sound proof system, or 
we have added a cube 𝐷 ∈ L(𝑗 ) that can be extended to an assignment 𝜎 which satisfies C(Φ𝑗 ) and red∃(𝜎) =𝐷. If adding such a 
𝐷 to D(Φ𝑗 ) would have changed the truth value from false for Φ𝑗 to true for Φ𝑗+1, then there would be a strategy for the universal 
player that falsifies C(Φ𝑗 ) ∨D(Φ𝑗 ) and the existential player would have a strategy that satisfies C(Φ𝑗 ) ∨D(Φ𝑗 ) ∨𝐷. If both players 
play their strategy on Φ𝑗+1, then this would not satisfy C(Φ𝑗 ), but would satisfy 𝐷 (and w.l.o.g. also 𝜎). But then C(Φ𝑗 ) would be 
satisfied, contradiction.

For the completeness, we refer to [4] for a detailed argumentation, in which the completeness of 𝖰𝖢𝖣𝖢𝖫 is proven, but provide a 
brief sketch here. We first show that we are always able to learn so-called asserting clauses, which are learnable clauses that become 
unit after backtracking. Because of this property, we can argue that these asserting clauses must be new (otherwise they would not 
trigger a new unit propagation). Since a QBF has finitely many variables, we can only learn finitely many new clauses until we 
reach the empty clause or cube at some point. Because each 𝖰𝖢𝖣𝖢𝖫 refutation can be interpreted as 𝖰𝖢𝖣𝖢𝖫CUBE refutation, we 
immediately obtain completeness for 𝖰𝖢𝖣𝖢𝖫CUBE.

For the two systems with pure literal elimination, we will argue similarly as in [4] and claim that we are also always able to learn 
asserting clauses. First, it is always possible to let a trail run into a conflict by deciding the universal literals according to a winning 
strategy for the universal player. We can assume that in this winning strategy universal pure literals are immediately set to false, 
since this will never be disadvantageous for the universal player. At some point, we will falsify the matrix and obtain a conflict, from 
which we can start clause learning.

In [4] we described how one can find asserting clauses in a conflicting trail for a particular QCDCL variant (which we have not 
defined here) in which we are allowed to decide universal literals earlier than it would be allowed with the LOD rule. This construction 
can be transferred to 𝖰𝖢𝖣𝖢𝖫PL because universal pure literals are decided earlier, as well. We can ignore pure literal elimination for 
existential literals because they will always occur at a dead end (we cannot use them for further propagations). That means even if a 
trail contains existential literals that are decided out-of-order as pure literals, they will not interfere with finding asserting clauses as 
they will simply be ignored by clause learning.

We conclude that from each trail we will be able to learn asserting clauses that are always new. Since we only have a finite number 
of literals, there are also only a finite number of clauses to learn. At some point, we will learn the empty clause (⊥) and our 𝖰𝖢𝖣𝖢𝖫PL

proof ends. Due to the fact that 𝖰𝖢𝖣𝖢𝖫PL proofs can be interpreted as 𝖰𝖢𝖣𝖢𝖫CUBE+PL proofs, we conclude that both systems are 
complete. □

We highlight that these systems formally model QCDCL solving as used in practice (cf. [8]).

4. Proving lower bounds for QCDCL systems

Throughout the paper we will concentrate on Σ𝑏
3 QCNFs which we always assume to have the form Φ = ∃𝑋∀𝑈∃𝑇 ⋅𝜙 for non-empty 

blocks of variables 𝑋, 𝑈 , and 𝑇 .

A literal 𝓁 is an 𝑋-literal, if var(𝓁) ∈𝑋. Analogously, we get 𝑈 - and 𝑇 -literals and variables. A clause 𝐶 ∈ C(Φ) is an X-clause, 
if all its literals are 𝑋-literals. The empty clause (⊥) is also an X-clause. Analogously, we define T-clauses. A clause 𝐶 ∈ C(Φ) is an 
XT-clause, if it contains at least one 𝑋-literal, at least one 𝑇 -literal, but no 𝑈 -literals; analogously we define UT-clauses. A clause 
𝐶 ∈ C(Φ) is an XUT-clause if it contains at least one 𝑋-, 𝑈 - and 𝑇 - literal.

Definition 4.1. We say that Φ fulfils the XT-property, if C(Φ) contains no XT-clauses, no T-clauses that are unit (or empty) and no 
two T-clauses from C(Φ) are resolvable.

As shown by [12], clause learning does not affect the XT-property, i.e., a formula Φ with the XT-property will still fulfil it during 
the whole QCDCL run even after having added new clauses to C(Φ).

Next we recall the definition of formula gauge from [12], which represents a measure that can be used for lower bounds (for a 
brief depiction of the gauge lower bound method, see Fig. 2).

Definition 4.2 ([12]). For a QCNF Φ as above we define 𝑊Φ to be the set of all Q-resolution derivations 𝜋 from Φ of some X-clause 
such that 𝜋 only contains resolutions over 𝑇 -variables and reduction steps. We set

gauge(Φ) ∶= min{|𝐶| ∶ 𝐶 is the root of some 𝜋 ∈𝑊Φ}.

We now define fully reduced and primitive proofs. Our lower bound technique will then work for fully reduced primitive refutations 
of formulas that fulfil the XT-property.

Definition 4.3. A long-distance Q-resolution refutation 𝜋 of a QCNF Φ is called fully reduced, if the following holds: For each clause 
𝐶 ∈ 𝜋 that contains universal literals that are reducible, the reduction step has to be performed immediately and 𝐶 cannot be used 
7

otherwise in the proof.
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Φ

the gauge cut

𝑇 -resolutions

𝐶
𝑋-resolutions

Fig. 2. The gauge lower bound method in brief. Theorem 4.5 postulates that primitive refutations of XT-formulas can be decomposed into a collection of subderivations 
like that shown, of some 𝑋-clause 𝐶 , and in which all 𝑇 -variables are resolved away before any 𝑋-variables. We can thus find a cut in each subderivation, and by 
Definition 4.2, the clauses in the cut have width at least gauge(Φ). By a combination of the width bound and a simple model counting argument, we obtain an 
exponential bound on the size of the original refutation.

For example, consider the clause 𝑥 ∨ 𝑢 ∨ �̄� under the prefix ∃𝑥∀𝑢, 𝑤. This clause is not fully reduced and can therefore not be 
used for resolution steps in a fully reduced proof. In order to use this clause in a resolution step, we need to reduce it to the clause 
red∀(𝑥 ∨ 𝑢 ∨ �̄�) = (𝑥).

Each proof R(𝜄) that was extracted from a QCDCL proof 𝜄 is automatically fully reduced, as we perform reduction steps as soon 
as possible during clause learning. On the other hand, primitivity does not hold for proofs R(𝜄) in general. In fact, the main work in 
proving our hardness results will be to show that specific extracted proofs are primitive.

Definition 4.4. A long-distance Q-resolution proof 𝜋 from a Σ𝑏
3 formula with the XT-property is primitive, if there are no two XUT-

clauses in 𝜋 that are resolved over an 𝑋-variable.

For example, consider the clauses 𝑥 ∨ 𝑢 ∨ 𝑡 and �̄� ∨ 𝑢 ∨ 𝑡 under the prefix ∃𝑥∀𝑢∃𝑡. Although these two clauses are resolvable in
long-distance Q-resolution (even in Q-resolution), such a resolution step is not allowed in primitive long-distance Q-resolution.

Since it is not possible to derive tautological clauses in fully reduced primitive proofs, we may also refer to them as (fully reduced) 
primitive Q-resolution proofs.

It follows from [12], that these two conditions suffice to show lower bounds via gauge.

Theorem 4.5 ([12]). Each fully reduced primitive Q-resolution refutation of a Σ𝑏
3 QCNF Φ that fulfils the XT-property has size 2Ω(gauge(Φ)).

Proof Sketch. We refer to the lower bound technique for so-called quasi level-ordered Q-resolution refutations (it is not necessary 
to define this notion here) devised in [12]. Its main result [12, Theorem 12] is an analogous statement of Theorem 4.5 for QCDCL

refutations. However, for this result to hold, it is actually sufficient to start with a fully reduced primitive Q-resolution refutation, which 
is a weaker requirement. Hence, the gauge lower bound for fully reduced primitive Q-resolution refutations (Theorem 4.5) directly 
follows from [12, Theorem 12] with the identical proof, although the notion ‘fully reduced primitive’ was not used there. □

The next two results represent the main methodology for most of our hardness results throughout the paper.

Lemma 4.6. Let  be a trail in a 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫PL or 𝖰𝖢𝖣𝖢𝖫CUBE+PL proof from a QCNF Φ with the XT-property. Then 
for each 𝑇 -literal 𝑡1 ∈  , which was not decided by pure literal elimination, there is a 𝑈 -literal 𝑢 ∈  with 𝑢 < 𝑡1.

Proof. If 𝑡1 was decided regularly, then the situation is clear because we can only decide 𝑇 -literals if and only if all 𝑈 -variables were 
assigned before. Therefore we can assume that there is no 𝑇 -literal 𝑡′ ∈  with 𝑡′ ⩽ 𝑡1 such that 𝑡′ was a regular decision. □

Proposition 4.7. Let 𝜄 be a 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫PL or 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutation of a QCNF Φ that fulfils the XT-property. If 
R(𝜄) is not primitive, then there exists a trail  ∈ T(𝜄) such that there is a 𝑈 -literal 𝑢 ∈  and an 𝑋-literal 𝑥 ∈  with 𝑢 < 𝑥. Additionally, 
𝑢 cannot be a regular decision literal.

Proof. If R(𝜄) is not primitive, then there are two XUT-clauses 𝐶, 𝐷 ∈ R(𝜄) that are resolved over an 𝑋-variable 𝑥, say 𝑥 ∈ 𝐶 and 
�̄� ∈𝐷. One of these clauses has to be an antecedent clause of some trail  ∈ T(𝜄), w.l.o.g. let 𝐶 be the antecedent clause ante (𝑥). 
Let 𝑡 ∈ 𝐶 be one of the 𝑇 -literals from 𝐶 . In particular, we have 𝑡 ∈  and 𝑡 < 𝑥. Because 𝑡 was not a pure literal decision (we have 
𝑡 ∈ 𝐶) and because of Lemma 4.6, there is a 𝑈 -literal 𝑢 ∈  with 𝑢 < 𝑡. We conclude that also 𝑢 < 𝑥 holds.

Since we can only decide 𝑈 -literals regularly if all 𝑋-variables are assigned in some polarity in  , it is impossible for 𝑢 to be a 
8

regular decision literal. □
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Basically, this result tells us that for a non-primitive proof R(𝜄) of some 𝑆 proof 𝜄, where 𝑆 is one of our four QCDCL variants, 𝜄
needs to consist of a trail that assigns a 𝑈 -literal out-of-order (i.e., before we have assigned all 𝑋-literals).

Since neither cube learning nor pure literal elimination is allowed in 𝖰𝖢𝖣𝖢𝖫, we can immediately conclude:

Corollary 4.8. Let 𝜄 be a 𝖰𝖢𝖣𝖢𝖫 refutation of a QCNF Φ that fulfils the XT-property. Then R(𝜄) is primitive.

We remark that some of the QBFs we introduce in the paper are not minimally false, i.e., we have added extra clauses to formulas 
that were false already. Although this is unusual in proof complexity, practical (false) instances are not guaranteed to be minimally 
false. Therefore it is natural to also consider these QBFs when investigating QCDCL systems. These algorithmic proof systems have 
to utilise all clauses, even if they are redundant for Q-resolution refutations.

5. Plain QCDCL vs. extensions with cubes/PL

We start by examining the influence of cube learning on our QCDCL variant. For false formulas we can always prevent learning 
cubes by just deciding the universal variables according to a winning strategy for the universal player, which will cause a conflict on 
the current trail. Thus cube learning will never be disadvantageous in principle.

Proposition 5.1. 𝖰𝖢𝖣𝖢𝖫CUBE p-simulates 𝖰𝖢𝖣𝖢𝖫 and 𝖰𝖢𝖣𝖢𝖫CUBE+PL p-simulates 𝖰𝖢𝖣𝖢𝖫PL.

Proof. A 𝖰𝖢𝖣𝖢𝖫 (𝖰𝖢𝖣𝖢𝖫PL) proof translates into a 𝖰𝖢𝖣𝖢𝖫CUBE (𝖰𝖢𝖣𝖢𝖫CUBE+PL) proof where all trails run into conflict and no 
cubes are learnt. □

We recall the equality formulas 𝙴𝚚𝑛 of [5]. These are QCNFs with prefix

∃𝑥1…𝑥𝑛∀𝑢1…𝑢𝑛∃𝑡1… 𝑡𝑛

and matrix

(𝑡1 ∨…∨ 𝑡𝑛) ∧
𝑛⋀

𝑖=1
((�̄�𝑖 ∨ �̄�𝑖 ∨ 𝑡𝑖) ∧ (𝑥𝑖 ∨ 𝑢𝑖 ∨ 𝑡𝑖)).

The formulas are known to be hard for Q-resolution [5] and also for 𝖰𝖢𝖣𝖢𝖫 [4]. In contrast, we show that they are easy in QCDCL 
with cube learning.

Proposition 5.2. There exist polynomial-size 𝖰𝖢𝖣𝖢𝖫CUBE refutations of 𝙴𝚚𝑛.

Proof. First we learn the cubes 𝑥𝑖 ∧ �̄�𝑖 and �̄�𝑖 ∧ 𝑢𝑖 for 𝑖 = 1, … , 𝑛 − 1. In order to learn 𝑥1 ∧ �̄�1, we can use the trail

1 ∶= (𝐱𝟏;… ;𝐱𝐧; �̄�𝟏;… ; �̄�𝐧; �̄�𝟏; 𝐭𝟐;… ; 𝐭𝐧).

Then the partial assignment 𝑥1 ∧ �̄�1 ∧ 𝑡1 ∧ 𝑡2 ∧… ∧ 𝑡𝑛 satisfies the matrix of 𝙴𝚚𝑛. Reducing this cube existentially results in 𝑥1 ∧ �̄�1, 
hence 𝑥1 ∧ �̄�1 ∈ L(1).

Learning �̄�1 ∧ 𝑢1 works analogously. Note that the previously learned cube does not interfere with the learning of this cube.

Having already learned the 2𝑖 cubes from 1 to 𝑖, let us now explain how to learn the two cubes for 𝑖 + 1. We create the following 
trail:

𝑖+1 ∶= (𝐱𝟏, 𝑢1, 𝑡1;…;𝐱𝐢, 𝑢𝑖, 𝑡𝑖;𝐱𝐢+𝟏;… ;𝐱𝐧; �̄�𝐢+𝟏;… ; �̄�𝐧; �̄�𝐢+𝟏; 𝐭𝐢+𝟐;… ; 𝐭𝐧)

with

ante𝑖+1 (𝑢𝑗 ) = 𝑥𝑗 ∧ �̄�𝑗 ,

ante𝑖+1 (𝑡𝑗 ) = �̄�𝑗 ∨ �̄�𝑗 ∨ 𝑡𝑗

for 𝑗 = 1, … , 𝑖.
Again, the partial assignment 𝑥𝑖+1 ∧ �̄�𝑖+1 ∧ 𝑡1 ∧… ∧ 𝑡𝑖 ∧ 𝑡𝑖+1 ∧ 𝑡𝑖+2 ∧… ∧ 𝑡𝑛 satisfies the matrix of 𝙴𝚚𝑛. This can be reduced to the 

cube 𝑥𝑖+1 ∧ �̄�𝑖+1, which we will learn. As before, learning �̄�𝑖+1 ∧ 𝑢𝑖+1 works analogously.

After we have learned all of these 2𝑛 − 2 cubes, we will go on with clause learning in which we will successively learn the clauses

𝐿𝑖 ∶= �̄�𝑖 ∨ �̄�𝑖 ∨
𝑛⋁

𝑗=𝑖+1
(𝑢𝑗 ∨ �̄�𝑗 ) ∨

𝑖−1⋁
𝑘=1

𝑡𝑘

𝑅𝑖 ∶= 𝑥𝑖 ∨ 𝑢𝑖 ∨
𝑛⋁

(𝑢𝑗 ∨ �̄�𝑗 ) ∨
𝑖−1⋁

𝑡𝑘
9

𝑗=𝑖+1 𝑘=1
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for 𝑖 = 2, … , 𝑛 − 1.

We start with the following trails:

𝑛−1 ∶= (𝐱𝟏, 𝑢1, 𝑡1;…;𝐱𝐧−𝟏, 𝑢𝑛−1, 𝑡𝑛−1, 𝑡𝑛, 𝑥𝑛,⊥)

with

ante𝑛−1
(𝑢𝑗 ) = 𝑥𝑗 ∧ �̄�𝑗

ante𝑛−1
(𝑡𝑗 ) = �̄�𝑗 ∨ �̄�𝑗 ∨ 𝑡𝑗

ante𝑛−1
(𝑡𝑛) = 𝑡1 ∨…∨ 𝑡𝑛

ante𝑛−1
(𝑥𝑛) = 𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑡𝑛

ante𝑛−1
(⊥) = �̄�𝑛 ∨ �̄�𝑛 ∨ 𝑡𝑛

for 𝑗 = 1, … , 𝑛 − 1. We resolve over 𝑥𝑛, ̄𝑡𝑛 and 𝑡𝑛−1 and get 𝐿𝑛−1. Analogously, we can learn 𝑅𝑛−1.

Suppose we have already learned 𝐿𝑛−1, 𝑅𝑛−1, … , 𝐿𝑖, 𝑅𝑖 for some 𝑖 ∈ {3, … , 𝑛 − 1}. Let us now construct trails from which we can 
learn 𝐿𝑖−1 and 𝑅𝑖−1:

𝑖−1 ∶= (𝐱𝟏, 𝑢1, 𝑡1;…;𝐱𝐢−𝟏, 𝑢𝑖−1, 𝑡𝑖−1, 𝑥𝑖,⊥)

with

ante𝑖−1
(𝑢𝑗 ) = 𝑥𝑗 ∧ �̄�𝑗 ,

ante𝑖−1
(𝑡𝑗 ) = �̄�𝑗 ∨ �̄�𝑗 ∨ 𝑡𝑗

ante𝑖−1
(𝑥𝑖) =𝑅𝑖

ante𝑖−1
(⊥) =𝐿𝑖

for 𝑗 = 1, … , 𝑖 − 1. We resolve over 𝑥𝑖 and 𝑡𝑖−1 and get 𝐿𝑖−1. Again, analogously we can derive 𝑅𝑖−1.

After we have finished learning 𝐿2 and 𝑅2, we can create the last two trails as follows:

1 ∶= (𝐱𝟏, 𝑢1, 𝑡1, 𝑥2,⊥)

with

ante1
(𝑢1) = 𝑥1 ∧ �̄�1

ante1
(𝑡1) = �̄�1 ∨ �̄�1 ∨ 𝑡1

ante1
(𝑥2) =𝑅2

ante1
(⊥) =𝐿2.

We resolve over 𝑥2 and 𝑡1 and obtain the unit clause (�̄�1). Then the last trail will not contain any decision:

 ′
1 ∶= (�̄�1, �̄�1, 𝑡1, 𝑥2,⊥)

with

ante ′
1
(�̄�1) = (�̄�1)

ante ′
1
(𝑢1) = 𝑥1 ∧ �̄�1

ante ′
1
(𝑡1) = �̄�1 ∨ �̄�1 ∨ 𝑡1

ante ′
1
(𝑥2) =𝑅2

ante ′
1
(⊥) =𝐿2.

Resolving over all existential variables leads to the empty clause. □

As the formulas 𝙴𝚚𝑛 require exponential-sized 𝖰𝖢𝖣𝖢𝖫 refutations [4] we obtain:

Theorem 5.3. 𝖰𝖢𝖣𝖢𝖫CUBE is exponentially stronger than 𝖰𝖢𝖣𝖢𝖫.

Next we will look at the influence of pure literal elimination. Now, the effect of pure literal elimination is similar to cube learning: 
10

they enable out-of-order decisions that can shorten the refutations. This again manifests in 𝙴𝚚𝑛.
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Proposition 5.4. 𝙴𝚚𝑛 has poly-size 𝖰𝖢𝖣𝖢𝖫PL (and 𝖰𝖢𝖣𝖢𝖫CUBE+PL) refutations.

Proof. The refutation is similar to the one in Proposition 5.2, except that instead of learning cubes, we will use pure literal elimination 
to decide the universal literals out of order. We will again learn the clauses 𝐿𝑖 and 𝑅𝑖 for 𝑖 = 2, … , 𝑛 − 1.

We start with the following trails:

𝑛−1 ∶= (𝐱𝟏;𝐮𝟏, 𝑡1;…;𝐱𝐧−𝟏;𝐮𝐧−𝟏, 𝑡𝑛−1, 𝑡𝑛, 𝑥𝑛,⊥)

with

ante𝑛−1
(𝑡𝑗 ) = �̄�𝑗 ∨ �̄�𝑗 ∨ 𝑡𝑗

ante𝑛−1
(𝑡𝑛) = 𝑡1 ∨…∨ 𝑡𝑛

ante𝑛−1
(𝑥𝑛) = 𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑡𝑛

ante𝑛−1
(⊥) = �̄�𝑛 ∨ �̄�𝑛 ∨ 𝑡𝑛

for 𝑗 = 1, … , 𝑛 − 1. We resolve over 𝑥𝑛, ̄𝑡𝑛 and 𝑡𝑛−1 and get 𝐿𝑛−1. In an analogous way we can learn 𝑅𝑛−1.

Suppose we have already learned 𝐿𝑛−1, 𝑅𝑛−1, … , 𝐿𝑖, 𝑅𝑖 for some 𝑖 ∈ {3, … , 𝑛 − 1}. Let us now construct trails from which we can 
learn 𝐿𝑖−1 and 𝑅𝑖−1:

𝑖−1 ∶= (𝐱𝟏;𝐮𝟏, 𝑡1;…;𝐱𝐢−𝟏;𝐮𝐢−𝟏, 𝑡𝑖−1, 𝑥𝑖,⊥)

with

ante𝑖−1
(𝑡𝑗 ) = �̄�𝑗 ∨ �̄�𝑗 ∨ 𝑡𝑗

ante𝑖−1
(𝑥𝑖) =𝑅𝑖

ante𝑖−1
(⊥) =𝐿𝑖

for 𝑗 = 1, … , 𝑖 −1. We resolve over 𝑥𝑖 and 𝑡𝑖−1 and get 𝐿𝑖−1. Again, analogously we can derive 𝑅𝑖−1. Note that, in our case, the learned 
clauses will not interfere with pure literal elimination. Once we have learned 𝐿𝑖 and 𝑅𝑖, we will not need to make the literals from 
𝑢𝑖, … , 𝑢𝑛 pure any more. Also, say we learn 𝐿𝑖 before 𝑅𝑖, once we decide �̄�𝑖 in order to learn 𝑅𝑖, we will also make 𝐿𝑖 true. Therefore 
pure literal elimination behaves (almost) symmetrically.

After we have finished learning 𝐿2 and 𝑅2, we can create the last two trails as follows:

1 ∶= (𝐱𝟏;𝐮𝟏, 𝑡1, 𝑥2,⊥)

with

ante1
(𝑡1) = �̄�1 ∨ �̄�1 ∨ 𝑡1

ante1
(𝑥2) =𝑅2 = 𝑥2 ∨ 𝑢2 ∨

𝑛⋁
𝑗=3

(𝑢𝑗 ∨ �̄�𝑗 ) ∨ 𝑡1

ante1
(⊥) =𝐿2 = �̄�2 ∨ 𝑢2 ∨

𝑛⋁
𝑗=3

(𝑢𝑗 ∨ �̄�𝑗 ) ∨ 𝑡1.

We resolve over 𝑥2 and 𝑡1 and obtain the unit clause (�̄�1). Then the last trail will not contain any decision:

 ′
1 ∶= (�̄�1, �̄�𝟏, 𝑡1, 𝑥2,⊥)

with

ante ′
1
(�̄�1) = (�̄�1)

ante ′
1
(𝑡1) = �̄�1 ∨ �̄�1 ∨ 𝑡1

ante ′
1
(𝑥2) =𝑅2

ante ′
1
(⊥) =𝐿2.

Resolving over all existential variables leads to the empty clause. □

Although pure literal elimination helps to refute 𝙴𝚚𝑛, it turns out that pure literal elimination can also be disadvantageous. It 
might be a fallacy to think that pure existential literals should be satisfied in the same way as unit clauses in unit propagation. We 
11

will construct formulas in which pure literal elimination thwarts finding a convenient conflict and therefore short refutations.
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We construct these formulas in stages, starting with 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛. In turn, these QBFs are based on the Completion Principle 𝙲𝚁𝑛
of [18], known to be hard for QCDCL [18,12]. The “Mirror”-modification adds new symmetries to the formula, causing pure literals 
to appear too late to make a difference.

Definition 5.5. The QCNF 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 consists of the prefix

∃𝑥(1,1),… , 𝑥(𝑛,𝑛)∀𝑢∃𝑎1,… , 𝑎𝑛, 𝑏1,… , 𝑏𝑛

and the matrix

𝑥(𝑖,𝑗) ∨ 𝑢 ∨ 𝑎𝑖 �̄�1 ∨…∨ �̄�𝑛

�̄�(𝑖,𝑗) ∨ �̄� ∨ 𝑏𝑗 �̄�1 ∨…∨ �̄�𝑛

𝑥(𝑖,𝑗) ∨ �̄� ∨ �̄�𝑖 𝑎1 ∨…∨ 𝑎𝑛

�̄�(𝑖,𝑗) ∨ 𝑢 ∨ �̄�𝑗 𝑏1 ∨…∨ 𝑏𝑛 for 𝑖, 𝑗 ∈ [𝑛].

It is easy to see that 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 fulfil the XT-property. Additionally, we can show:

Proposition 5.6. The CNF C(𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛) is unsatisfiable and gauge(𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛) ⩾ 𝑛 − 1.

Proof. We first show the unsatisfiability of the matrix. Assume otherwise. Let 𝜎 be a satisfying assignment for C(𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛). We 
can assume that 𝜎 is a total assignment. W.l.o.g. let 𝑢 ∈ 𝜎. We distinguish two cases:

Case 1: For all 𝑖 ∈ {1, … , 𝑛} there exists a 𝑗 ∈ {1, … , 𝑛} such that �̄�(𝑖,𝑗) ∈ 𝜎. Then we need �̄�𝑖 ∈ 𝜎 for all 𝑖 = 1, … , 𝑛, which falsifies 
the clause 𝑎1 ∨… ∨ 𝑎𝑛.

Case 2: There is an 𝑖 ∈ {1, … , 𝑛} such that for all 𝑗 ∈ {1, … , 𝑛} we have 𝑥(𝑖,𝑗) ∈ 𝜎. Then we need 𝑏𝑗 ∈ 𝜎 for all 𝑗 = 1, … , 𝑛, which 
falsifies the clause �̄�1 ∨… ∨ �̄�𝑛.

In each case we can conclude that it is not possible to construct a satisfying assignment for C(𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛).
We now prove gauge(𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛) ⩾ 𝑛 − 1.

Since 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 contains no X-clauses as axioms, we have to resolve over some 𝑎𝑖 or 𝑏𝑗 somehow. Obviously, it is not possible to 
resolve 𝑥(𝑖,𝑗) ∨ 𝑢 ∨ 𝑎𝑖 and 𝑥(𝑖,𝑗) ∨ �̄� ∨ �̄�𝑖 or �̄�(𝑖,𝑗) ∨ �̄� ∨ 𝑏𝑗 and �̄�(𝑖,𝑗) ∨ 𝑢 ∨ �̄�𝑗 . That means we have to use the other axioms. Because of the 
symmetry, we can assume that we use the clause �̄�1 ∨… ∨ �̄�𝑛 somehow. Then we have to get rid of all �̄�𝑖. This can be done via the 
clauses 𝑥(𝑖,𝑗) ∨ 𝑢 ∨ 𝑎𝑖, or we use the clause 𝑎1 ∨… ∨ 𝑎𝑛. However, to use the latter clause we have to get rid of at least 𝑛 − 1 different 
𝑎𝑖 in another way first, which is only possible with the aid of the clauses 𝑥(𝑖,𝑗) ∨ �̄�∨ �̄�𝑖. We conclude that we will pile up at least 𝑛 − 1
different 𝑋-literals. □

Applying Theorem 4.5 we infer:

Corollary 5.7. 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 needs exponential-size fully reduced primitive Q-resolution refutations.

All we have to do now is to show that all 𝖰𝖢𝖣𝖢𝖫PL refutations of 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 are primitive. Then the gauge lower bound applies. 
We will show that for a non-primitive refutation of 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 we would need to decide literals by pure literal elimination, and before 
each pure literal elimination we have to perform another one, which is a contradiction.

Proposition 5.8. From each 𝖰𝖢𝖣𝖢𝖫PL refutation of 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 we can extract a fully reduced primitive Q-resolution refutation of the 
same size.

Proof. Let 𝜄 be a 𝖰𝖢𝖣𝖢𝖫PL refutation of 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛. We will show that R(𝜄) is primitive.

Assume not. Then by Proposition 4.7 there exists a trail  ∈ T(𝜄) such that there is an 𝑋-literal 𝑥 ∈  and a 𝑈 -literal 𝑣 ∈  with 
𝑣 < 𝑥 and 𝑣 is not a regular decision literal. Let us say that var(𝑥) = 𝑥(𝑘,𝑚) for some 𝑘, 𝑚 ∈ {1, … , 𝑛}.

That means we have decided 𝑣 (which is either 𝑢 or �̄�) out of order via pure literal elimination. We show that this is not possible 
before we have assigned all 𝑋-literals.

Claim 1: There is a 𝑇 -literal 𝑡1 such that 𝑡1 < 𝑣 < 𝑥.

W.l.o.g. let 𝑣 = �̄�. We need to satisfy the clauses �̄�(𝑖,𝑗) ∨ �̄�∨ 𝑏𝑗 and 𝑥(𝑖,𝑗) ∨ �̄�∨ �̄�𝑖 for each 𝑖, 𝑗 ∈ {1, … , 𝑛} without assigning 𝑢. Since 
we want to propagate 𝑥 later, we cannot assign the 𝑋-variable 𝑥(𝑘,𝑚) in order to satisfy these clauses. That means we need to set 𝑏𝑚
to true and 𝑎𝑘 to false. If we set 𝑡1 ∶= 𝑏𝑚, then we get 𝑡1 < 𝑣 < 𝑥.

Claim 2: For each 𝑇 -literal 𝑡𝑗 with 𝑡𝑗 < 𝑣 < 𝑥 there is another 𝑇 -literal 𝑡𝑗+1 such that 𝑡𝑗+1 < 𝑡𝑗 < 𝑣 < 𝑥.

Because of 𝑡𝑗 < 𝑣, the 𝑇 -literal 𝑡𝑗 cannot be a regular decision. Either 𝑡𝑗 was decided as a pure literal, or it was propagated. If it 
was a pure literal, then we needed to satisfy one of the clauses �̄�1 ∨… ∨ �̄�𝑛, �̄�1 ∨… ∨ �̄�𝑛, 𝑎1 ∨… ∨𝑎𝑛 or 𝑏1 ∨… ∨𝑏𝑛. This is only possible 
if we assigned another 𝑇 -literal 𝑡𝑗+1 before, hence 𝑡𝑗+1 < 𝑡𝑗 < 𝑣 < 𝑥. However, if 𝑡𝑗 was propagated, then there is the antecedent 
12

clause 𝐹 ∶= ante (𝑡𝑗 ). Due to the XT-property, 𝐹 cannot be unit. Then there is another literal 𝑡𝑗 ≠ 𝓁 ∈ 𝐹 . Because the formula only 
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contains one 𝑈 -variable, 𝓁 can only be an 𝑋- or a 𝑇 -literal. Again, by the XT-property, 𝐹 cannot be an XT-clause and therefore 𝓁
has to be a 𝑇 -literal, which needs to be falsified by the current trail. Therefore, if we set 𝑡𝑗+1 ∶= 𝓁, we get 𝑡𝑗+1 < 𝑡𝑗 < 𝑣 < 𝑥.

We proved that R(𝜄) has to be primitive, otherwise the trail  would contain infinitely many 𝑇 -literals 𝑡𝑗 . □

Corollary 5.9. The QBFs 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 require exponential-size 𝖰𝖢𝖣𝖢𝖫PL refutations.

Next we embed this formula into a new QCNF 𝙿𝙻𝚃𝚛𝚊𝚙𝑛.

Definition 5.10. The QCNF 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 has the prefix

∃𝑦,𝑥(1,1),… , 𝑥(𝑛,𝑛)∀𝑢∃𝑎1,… , 𝑎𝑛, 𝑏1,… , 𝑏𝑛, 𝑎, 𝑏.

Its matrix contains all clauses from 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝚗 and additionally (𝑦 ∨ 𝑎), (�̄� ∨ 𝑏), (�̄� ∨ �̄�), (𝑎 ∨ 𝑏), and (𝑎 ∨ �̄�).

Proposition 5.11. 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 needs exponential-size 𝖰𝖢𝖣𝖢𝖫PL and 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutations.

Proof. Because C(𝙿𝙻𝚃𝚛𝚊𝚙𝑛) contains C(𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛), which is unsatisfiable, the matrix of 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 is unsatisfiable, as well. Therefore 
cube learning will never be applied and it suffices to consider 𝖰𝖢𝖣𝖢𝖫PL refutations.

Let 𝜄 be a 𝖰𝖢𝖣𝖢𝖫PL refutation of 𝙿𝙻𝚃𝚛𝚊𝚙𝑛. We will show that each trail of T(𝜄) can only contain literals from 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 or 𝑦. 
Then 𝜄 can be interpreted as a 𝖰𝖢𝖣𝖢𝖫PL refutation of 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 where the only difference is the assignment of 𝑦, which does not 
affect clause learning in any form. Then the result follows by Corollary 5.9.

In each 𝖰𝖢𝖣𝖢𝖫PL trail, we will set 𝑦 to true due to pure literal elimination. That means the clause 𝑦 ∨ 𝑎 will never become the 
unit clause (𝑎).

After this, we have to assign the variables from 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛. We will show that for each trail  ∈ T(𝜄) we have {𝑎, �̄�, 𝑏, ̄𝑏} ∩  = ∅.

First of all, it is obvious that pure literal elimination of 𝑎 or 𝑏 is impossible at any time due to the four clauses �̄� ∨ 𝑏, 𝑎 ∨ 𝑏, �̄� ∨ �̄�

and 𝑎 ∨ �̄�. In fact, if, for example, we would like to make 𝑏 pure, then we have to satisfy the clauses �̄� ∨ �̄� and 𝑎 ∨ �̄�, which cannot be 
done without setting 𝑏 to false.

Next, let us assume that there is some literal 𝓁 ∈ {𝑎, �̄�, 𝑏, ̄𝑏} that was propagated in some trail  ∈ T(𝜄). In particular, let  be 
the first trail in which we propagated a literal 𝓁 ∈ {𝑎, �̄�, 𝑏, ̄𝑏}. Since 𝑦 ∨ 𝑎 can never be used as an antecedent clause for 𝑎, we have 
ante (𝓁) ∈ {�̄� ∨ 𝑏, 𝑎 ∨ 𝑏, �̄� ∨ �̄�, 𝑎 ∨ �̄�}. But then we would need another 𝓁 ≠ 𝓁′ ∈ {𝑎, �̄�, 𝑏, ̄𝑏} with 𝓁′ ∈  and 𝓁′ < 𝓁. If we suppose 
that 𝓁 was the first propagation of a literal from {𝑎, �̄�, 𝑏, ̄𝑏}, then we conclude that 𝓁′ has to be a regular decision.

We will now argue that we get a contradiction if there is a trail  ∈ T(𝜄) in which we have decided a literal 𝓁′ ∈ {𝑎, �̄�, 𝑏, ̄𝑏}. Because 
of the level-ordered decision rule LOD, there exists 𝑣 ∈ {𝑢, ̄𝑢} with 𝑣 ∈  and 𝑣 < 𝓁′. We can only decide 𝑣 if we have assigned all 
existential literals left of 𝑣. In particular, for each 𝑖, 𝑗 = 1, … , 𝑛 there is a literal 𝓁(𝑖,𝑗) ∈ {𝑥(𝑖,𝑗), �̄�(𝑖,𝑗)} with 𝓁(𝑖,𝑗) ∈  and 𝓁(𝑖,𝑗) < 𝑣. We 
now distinguish two cases.

Case 1: For all 𝑖 ∈ {1, … , 𝑛} there exists a 𝑗 ∈ {1, … , 𝑛} with 𝓁(𝑖,𝑗) = �̄�(𝑖,𝑗).
Then if 𝑣 = 𝑢, we will gain unit clauses (�̄�𝑖) for 𝑖 = 1, … , 𝑛 from the clauses 𝑥(𝑖,𝑗) ∨ �̄�∨ �̄�𝑖, which can be used for unit propagations 

that lead to a conflict in the clause 𝑎1 ∨… ∨ 𝑎𝑛. Otherwise, if 𝑣 = �̄�, then we will get unit clauses (𝑎𝑖) from the clauses 𝑥(𝑖,𝑗) ∨ 𝑢 ∨ 𝑎𝑖
and a conflict in �̄�1 ∨… ∨ �̄�𝑛.

Case 2: There exists an 𝑖 ∈ {1, … , 𝑛} such that for all 𝑗 ∈ {1, … , 𝑛} it holds 𝓁(𝑖,𝑗) = 𝑥(𝑖,𝑗).
This case is analogous to Case 1 with unit clauses (𝑏𝑗 ) (resp. (�̄�𝑗 )) and a conflict in �̄�1 ∨… ∨ �̄�𝑛 (resp. 𝑏1 ∨… ∨ 𝑏𝑛).

In each case we will get a conflict in some clause. That means the trail  would run into a conflict before we would have the 
chance to decide 𝓁′. That shows that 𝓁′ cannot be decided at any point. We conclude that no trail from 𝜄 can contain a literal from 
{𝑎, �̄�, 𝑏, ̄𝑏}. □

Not having to follow the PLD rule, we can construct short proofs of 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 by focusing on the new clauses over 𝑎, 𝑏.

Proposition 5.12. 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 has polynomial-size 𝖰𝖢𝖣𝖢𝖫 refutations.

Proof. The shortest refutation only consists of two trails. We start with

 ∶= (�̄�, 𝑎, 𝑏,⊥)

with

ante (𝑎) = 𝑦 ∨ 𝑎

ante (𝑏) = �̄� ∨ 𝑏

ante (⊥) = �̄� ∨ �̄�.
13

We resolve over 𝑏 and learn the unit clause (�̄�).
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The final trail looks as follows:

 ∶= (�̄�, 𝑏,⊥)

with

ante (�̄�) = (�̄�)

ante (𝑏) = 𝑎 ∨ 𝑏

ante (⊥) = 𝑎 ∨ �̄�,

from which we can learn the empty clause by resolving over everything. □

We conclude that pure literal elimination is advantageous for 𝙴𝚚𝑛, but not for 𝙿𝙻𝚃𝚛𝚊𝚙𝑛. Therefore we obtain:

Theorem 5.13. 𝖰𝖢𝖣𝖢𝖫PL and 𝖰𝖢𝖣𝖢𝖫 are incomparable as well as 𝖰𝖢𝖣𝖢𝖫CUBE+PL and 𝖰𝖢𝖣𝖢𝖫.

6. Cube learning vs. pure literal elimination

As shown in Section 5, cube learning improves QCDCL, while adding pure literal elimination leads to incomparable systems. Thus 
it is natural to directly compare cube learning and pure literal elimination. Because of the results above, we cannot use 𝙴𝚚𝑛 for a 
potential separation. However, we can modify the QBFs such that they remain easy for 𝖰𝖢𝖣𝖢𝖫PL, while eliminating the benefits 
from cube learning.

Definition 6.1. The QCNF 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 has the prefix

∃𝑥1,… , 𝑥𝑛∀𝑢1,… , 𝑢𝑛,𝑤1,… ,𝑤𝑛∃𝑡1,… , 𝑡𝑛.

Its matrix contains the clauses from 𝙴𝚚𝑛 together with 𝑥𝑖 ∨𝑤𝑖 ∨ 𝑡𝑖 and �̄�𝑖 ∨ �̄�𝑖 ∨ 𝑡𝑖 for 𝑖 ∈ [𝑛].

The main idea of this twin construction is to ensure that all potential cubes consist of at least two universal variables. We can do 
the same construction for other QCNFs.

Obviously, 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 fulfils the XT-property. We compute gauge(𝚃𝚠𝚒𝚗𝙴𝚚𝑛) = 𝑛 and hence infer by Theorem 4.5:

Proposition 6.2. Fully reduced primitive Q-resolution refutations of 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 have exponential size.

Proof. We need to show gauge(𝚃𝚠𝚒𝚗𝙴𝚚𝑛) = 𝑛, then the result follows by Theorem 4.5.

Since we have to resolve over 𝑇 somehow, we have to use the clause 𝑡1 ∨… ∨ 𝑡𝑛. Hence, we have to resolve over each 𝑡𝑖 at least 
once, and therefore we will pile up 𝑥𝑖 or �̄�𝑖 in each resolution step due to the XUT-axioms. □

We show that 𝖰𝖢𝖣𝖢𝖫CUBE refutations of 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 are primitive by proving that it is impossible to propagate 𝑈 -literals before 
having assigned all 𝑋-literals.

Proposition 6.3. Each 𝖰𝖢𝖣𝖢𝖫CUBE refutation of 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 has at least exponential size.

Proof. We will prove that from each 𝖰𝖢𝖣𝖢𝖫CUBE refutation of 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 we can extract a fully reduced primitive Q-resolution
refutation of the same size. Let 𝜄 be a 𝖰𝖢𝖣𝖢𝖫CUBE refutation of 𝚃𝚠𝚒𝚗𝙴𝚚𝑛. We will show that R(𝜄) is primitive.

Assume not. Then by Proposition 4.7 there exists a trail  ∈ T(𝜄) such that there is an 𝑋-literal 𝑥 ∈  and a 𝑈 -literal 𝑢 ∈  with 
𝑢 < 𝑥. Also, 𝑢 cannot be a regular decision in  .

Hence, we have propagated 𝑢 before 𝑥. Universal propagation can only be performed via cubes. Let us now consider how the 
initial cubes from 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 look like.

Assume that the cube 𝐴 is a (not necessarily total) assignment that satisfies the matrix of 𝚃𝚠𝚒𝚗𝙴𝚚𝑛. We have to satisfy the clause 
𝑡1 ∨… ∨ 𝑡𝑛, hence there is a 𝑗 ∈ {1, … , 𝑛} with 𝑡𝑗 ∈𝐴. Then we also have to satisfy the four clauses

𝑥𝑗 ∨ 𝑢𝑗 ∨ 𝑡𝑗

�̄�𝑗 ∨ �̄�𝑗 ∨ 𝑡𝑗

𝑥𝑗 ∨𝑤𝑗 ∨ 𝑡𝑗

�̄�𝑗 ∨ �̄�𝑗 ∨ 𝑡𝑗 .
14

That means 𝑥𝑗 has to appear in some polarity in 𝐴, say 𝑥𝑗 ∈𝐴. But then we need to set both 𝑢𝑗 and 𝑤𝑗 to false, thus �̄�𝑗 , �̄�𝑗 ∈𝐴.
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We conclude that each (reduced) cube has to contain one of the subcubes

𝑥𝑗 ∧ �̄�𝑗 ∧ �̄�𝑗

�̄�𝑗 ∧ 𝑢𝑗 ∧𝑤𝑗

for some 𝑗 ∈ {1, … , 𝑛}. This also causes that none of these cubes are resolvable.

We observe that all cubes that can be used for universal unit propagation contain at least two universal literals. Since we needed 
one of these cubes as antecedent cube of some universal literal in our trail  , we would have needed to decide or propagate another 
universal literal before. Having only finitely many universal literals, we would have needed to decide one universal literal before 
propagating 𝑥, which is a contradiction to our decision rule LOD.

This shows that R(𝜄) is indeed primitive. □

Having shown that 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 is hard for 𝖰𝖢𝖣𝖢𝖫CUBE, it remains to prove that it is easy for 𝖰𝖢𝖣𝖢𝖫PL.

Proposition 6.4. 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 has polynomial-size 𝖰𝖢𝖣𝖢𝖫PL refutations.

Proof. The proof is similar to the one in Proposition 5.4, except one change: Each time some universal literal is getting pure, say 𝑢𝑖 , 
then also 𝑤𝑖 becomes pure as well. That means each time we decide some 𝑢𝑖 (resp. �̄�𝑖) in the trail by pure literal elimination, we also 
have to do the same to 𝑤𝑖 (resp. �̄�𝑖) in the next decision level. However, this does not affect anything concerning unit propagation 
or clause learning.

To give an example: The trail 𝑛−1 from Proposition 5.4 will now look like

𝑛−1 ∶= (𝐱𝟏;𝐮𝟏, 𝑡1;𝐰𝟏;… ;𝐱𝐧−𝟐;𝐮𝐧−𝟐, 𝑡𝑛−2;𝐰𝐧−𝟐;

𝐱𝐧−𝟏;𝐮𝐧−𝟏, 𝑡𝑛−1, 𝑡𝑛, 𝑥𝑛,⊥). □

For the other separation we use 𝙿𝙻𝚃𝚛𝚊𝚙𝑛, which is hard for 𝖰𝖢𝖣𝖢𝖫PL by Proposition 5.11, but still easy for 𝖰𝖢𝖣𝖢𝖫CUBE by 
Proposition 5.1 and 5.12. Therefore we conclude:

Theorem 6.5. 𝖰𝖢𝖣𝖢𝖫CUBE is incomparable to 𝖰𝖢𝖣𝖢𝖫PL.

We have seen earlier that the QCDCL system including pure literal elimination is incomparable to the system without. Now we 
will prove that this incomparability still holds with cube learning turned on. By Proposition 5.1, we obtain that 𝖰𝖢𝖣𝖢𝖫CUBE+PL

p-simulates 𝖰𝖢𝖣𝖢𝖫PL. Therefore we get from Proposition 6.4:

Corollary 6.6. 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 has poly-size 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutations.

Since 𝚃𝚠𝚒𝚗𝙴𝚚𝑛 is hard for 𝖰𝖢𝖣𝖢𝖫CUBE, this gives us the first separation between 𝖰𝖢𝖣𝖢𝖫CUBE+PL and 𝖰𝖢𝖣𝖢𝖫CUBE. The other 
direction can be shown with 𝙿𝙻𝚃𝚛𝚊𝚙𝑛.

Proposition 6.7. 𝙿𝙻𝚃𝚛𝚊𝚙𝑛 has poly-size 𝖰𝖢𝖣𝖢𝖫CUBE refutations.

Proof. The short proofs in 𝖰𝖢𝖣𝖢𝖫CUBE follow from Propositions 5.1 and 5.12. □

Hence we get:

Theorem 6.8. 𝖰𝖢𝖣𝖢𝖫CUBE+PL and 𝖰𝖢𝖣𝖢𝖫CUBE are incomparable.

We now consider the relation between 𝖰𝖢𝖣𝖢𝖫CUBE+PL and 𝖰𝖢𝖣𝖢𝖫PL. We introduce another modification of 𝙴𝚚𝑛, which we call 
𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛, where we add two clauses.

Definition 6.9. The QCNF 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛 is obtained from 𝙴𝚚𝑛 by adding the clauses 𝑢1 ∨… ∨𝑢𝑛 ∨ 𝑡1 ∨… ∨ 𝑡𝑛 and �̄�1 ∨… ∨ �̄�𝑛 ∨ 𝑡1 ∨… ∨ 𝑡𝑛
to the matrix.

As 𝙴𝚚𝑛, this formula fulfils the XT-property and has a high gauge value (⩾ 𝑛 − 1). By Theorem 4.5 we infer that 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛

needs exponential-size fully reduced primitive Q-resolution refutations. Similarly to 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛, we can then show that pure literal 
elimination does not shorten proofs because of the two additional ‘bulky’ clauses that prevent pure literals to occur early in trails. 
Therefore 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛 is hard for 𝖰𝖢𝖣𝖢𝖫PL. On the other hand, we can explicitly construct short proofs in 𝖰𝖢𝖣𝖢𝖫CUBE+PL. Therefore 
15

we get:
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Proposition 6.10. The formula 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛 has poly-size 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutations, but needs exponential-size 𝖰𝖢𝖣𝖢𝖫PL refutations.

Proof. Part 1: 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛 needs exponential-size 𝖰𝖢𝖣𝖢𝖫PL refutations.

We first prove gauge(𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛) ⩾ 𝑛 − 1. To derive an X-clause, we have to use 𝑡1 ∨ … ∨ 𝑡𝑛 somehow. That means we have to 
resolve over each 𝑡𝑖. We can resolve with 𝑢1 ∨… ∨𝑢𝑛 ∨ 𝑡1 ∨… ∨ 𝑡𝑛 or �̄�1 ∨… ∨ �̄�𝑛 ∨ 𝑡1 ∨… ∨ 𝑡𝑛 only after we have resolved away at least 
𝑛 −1 different 𝑇 -variables otherwise. That means we have pile up at least 𝑛 − 1 different 𝑋-literals by using the clauses 𝑥𝑖 ∨ 𝑢𝑖 ∨ 𝑡𝑖 or 
�̄�𝑖 ∨ �̄�𝑖 ∨ 𝑡𝑖. Hence gauge(𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛) ⩾ 𝑛 − 1.

We will now prove that from each 𝖰𝖢𝖣𝖢𝖫PL refutation of 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛 we can extract a fully reduced primitive Q-resolution refu-

tation of the same size. Let 𝜄 be a 𝖰𝖢𝖣𝖢𝖫PL refutation of 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛. We will show that R(𝜄) is primitive.

Assume not. Then by Proposition 4.7 there exists a trail  ∈ T(𝜄) such that there is an 𝑋-literal 𝑥 ∈  and a 𝑈 -literal 𝑢 ∈  with 
𝑢 < 𝑥 and 𝑢 is not a regular decision literal.

Since cube learning is disabled, this universal literal 𝑢 had to be decided by pure literal elimination. We will show that pure literal 
elimination of the universal literal 𝑢 before deciding or propagating all 𝑋-variables is not possible. Define 𝑀 ∶= {𝑢𝑖, ̄𝑢𝑖, 𝑡𝑖, ̄𝑡𝑖 ∶ 𝑖 =
1, … , 𝑛}.

Claim 1: There exists some 𝓁1 ∈𝑀 such that 𝓁1 < 𝑢 < 𝑥.

In order to make 𝑢 pure, we have to satisfy one of the clauses 𝑢1 ∨… ∨ 𝑢𝑛 ∨ 𝑡1 ∨… ∨ 𝑡𝑛 or �̄�1 ∨… ∨ �̄�𝑛 ∨ 𝑡1 ∨… ∨ 𝑡𝑛. In particular, 
we need some 𝓁1 ∈𝑀 with 𝓁1 < 𝑢 < 𝑥.

Claim 2: For each 𝓁𝑗 ∈𝑀 with 𝓁𝑗 < 𝑢 < 𝑥 there exists some 𝓁𝑗+1 ∈𝑀 such that 𝓁𝑗+1 < 𝓁𝑗 < 𝑢 < 𝑥

If 𝓁𝑗 was decided via pure literal elimination, we can use a similar argument as in Claim 1 (now we have satisfied one of the 
three clauses 𝑢1 ∨ … ∨ 𝑢𝑛 ∨ 𝑡1 ∨ … ∨ 𝑡𝑛, �̄�1 ∨… ∨ �̄�𝑛 ∨ 𝑡1 ∨ … ∨ 𝑡𝑛 or 𝑡1 ∨ … ∨ 𝑡𝑛) and conclude that we need some 𝓁𝑗+1 ∈𝑀 with 
𝓁𝑗+1 < 𝓁𝑗 < 𝑢 < 𝑥. However, if 𝓁𝑗 was not decided as a pure literal, then it has to be a 𝑇 -literal that was propagated. Note that 
we cannot have decided 𝓁𝑗 regularly because of 𝓁𝑗 < 𝑥 and 𝓁𝑗 < 𝑢. That means there is an antecedent clause 𝐹 ∶= ante (𝓁𝑗 ). Due 
to the XT-property, 𝐹 cannot be a unit clause. That means there is another literal 𝓁𝑗 ≠ 𝓁 ∈ 𝐹 . If 𝓁 is a 𝑈 - or a 𝑇 -literal, then we 
can set 𝓁𝑗+1 ∶= 𝓁. If 𝓁 is an 𝑋-literal, then there is at least one 𝑈 -literal 𝑣 ∈ 𝐹 , again because of the XT-property. Then we can set 
𝓁𝑗+1 ∶= �̄�.

We have proven that if R(𝜄) is not primitive, then  has to contain an endless number of literals 𝓁𝑗 , which is obviously not possible 
since the formula only consists of finitely many variables. That means R(𝜄) has to be primitive.

Part 2: 𝙱𝚞𝚕𝚔𝚢𝙴𝚚𝑛 has polynomial-size 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutations.

We start with the learning of exactly two cubes: 𝑥1 ∧ �̄�1 and �̄�1 ∧ 𝑢1. We do this via the following two trails:

 ∶= (𝐱𝟏;… ;𝐱𝐧; �̄�𝟏;… ; �̄�𝐧; �̄�𝟏; 𝐭𝟐;… ; 𝐭𝐧)

 ′ ∶= (�̄�𝟏;… ; �̄�𝐧;𝐮𝟏;… ;𝐮𝐧; �̄�𝟏; 𝐭𝟐;… ; 𝐭𝐧)

Unfortunately we cannot continue learning the other cubes as in Proposition 5.2 since this will be blocked by pure literal elimination. 
However, we can use this effect to our advantage by simulating the missing cubes in this way.

Let us now start the learning of the clauses 𝐿𝑖 and 𝑅𝑖 for 𝑖 = 2, … , 𝑛 − 1 from the proof of Proposition 5.2.

We begin by constructing the following trail:

𝑛−1 ∶= (𝐱𝟏, 𝑢1, 𝑡1;𝐱𝟐;𝐮𝟐, 𝑡2,… ,𝐱𝐧−𝟐;𝐮𝐧−𝟐, 𝑡𝑛−2;

𝐱𝐧−𝟏,𝐮𝐧−𝟏, 𝑡𝑛−1, 𝑡𝑛, 𝑥𝑛,⊥)

with the same antecedent constraint as in Proposition 5.2 (except of the pure literals 𝑢2, … , 𝑢𝑛−2) and the same learned clause 𝐿𝑛−1. 
Analogously we can learn 𝑅𝑛−1.

We go on with the trails 𝑛−2, … , 2 in the same way as in Proposition 5.2 where we learn 𝐿𝑛−2, … , 𝐿2, except that the literals 
𝑢2, … , 𝑢𝑖−1 in 𝑖−1 are now pure literals and not propagated via cubes. However, this does not affect the clause learning process in 
any aspect. The same is obviously true for the analogous trails in which we learn 𝑅𝑛−2, … , 𝑅2.

We finish the proof with the last two trails 1 and  ′
1 exactly as in Proposition 5.2. □

As for the systems without pure literal elimination, we get:

Theorem 6.11. 𝖰𝖢𝖣𝖢𝖫CUBE+PL is exponentially stronger than 𝖰𝖢𝖣𝖢𝖫PL.

7. The QCDCL systems vs. Q-resolution

[4] showed incomparability of Q-resolution and 𝖰𝖢𝖣𝖢𝖫. We now lift this to the other QCDCL variants introduced here. For 
one separation, we can use the QCNF 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 from [7], which have short 𝖰𝖢𝖣𝖢𝖫 refutations. These formulas have prefix 
∃𝑥1… 𝑥𝑛∀𝑢∃𝑡1… 𝑡𝑛 and clauses

𝑥1 ∨ 𝑡1, �̄�1 ∨ 𝑡1, 𝑢 ∨ 𝑡𝑛, �̄� ∨ 𝑡𝑛,
16

𝑥𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖, 𝑥𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖,
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�̄�𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖, �̄�𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖 for 𝑖 ∈ {2,… , 𝑛}.

Theorem 7.1. 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫PL and 𝖰𝖢𝖣𝖢𝖫CUBE+PL are all incomparable to Q-resolution. In detail, the QBFs 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛
have polynomial-size refutations in 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫PL, and 𝖰𝖢𝖣𝖢𝖫CUBE+PL, but need exponential-size Q-resolution refu-

tations. On the other hand, 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 have polynomial-size Q-resolution refutations, but need exponential-size 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 
𝖰𝖢𝖣𝖢𝖫PL, and 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutations.

Proof. Claim 1: 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 has polynomial-size 𝖰𝖢𝖣𝖢𝖫 and 𝖰𝖢𝖣𝖢𝖫CUBE refutations.

It was proven in [4] that 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 has short 𝖰𝖢𝖣𝖢𝖫 refutations. And because of Proposition 5.1, the formula is easy for 
𝖰𝖢𝖣𝖢𝖫CUBE, as well.

Claim 2: 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 has polynomial-size 𝖰𝖢𝖣𝖢𝖫PL and 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutations.

We will show that we will never find pure literals while creating 𝖰𝖢𝖣𝖢𝖫PL trails. In fact, the only way in making a literal 𝓁 pure 
is to create a unit clause (𝓁), which would immediately lead to the propagation of 𝓁 or a conflict.

For example, suppose the literal 𝑡𝑖 is pure at some point in the trail. Then the clauses 𝑥𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖 and �̄�𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖 must have been 
satisfied by the current assignment of the trail. Since we have not assigned 𝑡𝑖 yet, we have to set either 𝑥𝑖 to true and 𝑡𝑖−1 to false, 
or 𝑥𝑖 to false and 𝑡𝑖−1 to true. In both cases we would obtain the unit clause (𝑡𝑖) by apply this assignment to either 𝑥𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖 or 
�̄�𝑖 ∨ 𝑡𝑖−1 ∨ 𝑡𝑖.

The same holds for the universal variable 𝑢. For 𝑢 or �̄� to be pure, we need to set 𝑡𝑛 to false or true. But then we would obtain the unit 
clause (𝑢) or (�̄�), which would immediately lead to a conflict. We conclude that the polynomial-size 𝖰𝖢𝖣𝖢𝖫 refutation of 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛
is a 𝖰𝖢𝖣𝖢𝖫PL refutation as well. And because 𝖰𝖢𝖣𝖢𝖫CUBE+PL p-simulates 𝖰𝖢𝖣𝖢𝖫PL, 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 is also easy for 𝖰𝖢𝖣𝖢𝖫CUBE+PL.

Claim 3: 𝚀𝙿𝚊𝚛𝚒𝚝𝚢𝑛 needs exponential-size Q-resolution refutations.

This was already proven in [7, Proposition 4.2].

Claim 4: 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 needs exponential-size 𝖰𝖢𝖣𝖢𝖫, 𝖰𝖢𝖣𝖢𝖫CUBE, 𝖰𝖢𝖣𝖢𝖫PL and 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutations.

Because of Proposition 5.6, each trail  in a 𝖰𝖢𝖣𝖢𝖫CUBE or 𝖰𝖢𝖣𝖢𝖫CUBE+PL refutation runs into a conflict. Therefore we 
will always learn clauses and no cubes. Then each 𝖰𝖢𝖣𝖢𝖫CUBE refutation can be interpreted as a 𝖰𝖢𝖣𝖢𝖫 refutation and each 
𝖰𝖢𝖣𝖢𝖫CUBE+PL refutation can be interpreted as a 𝖰𝖢𝖣𝖢𝖫PL refutation. The rest follows by Corollary 4.8, 5.7 and 5.9.

Claim 5: 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 has polynomial-size Q-resolution refutations.

This follows directly from the fact that 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁𝑛 extends the original QCNF 𝙲𝚁𝑛, which has polynomial-size Q-resolution refu-

tations [18]. We will just ignore the clauses that are not contained in 𝙲𝚁𝑛. □

8. Experiments

We study proof systems in the hope that proof-complexity results will translate to running-time complexity for solvers. In this 
section we do our reality check to see whether this hypothesis holds up experimentally.

We picked the solver DepQBF [22], as it is the only one that supports pure-literal elimination (PLE) and also has the ability to 
turn cube learning (SDCL) off.3 We additionally ran Qute [25] when we wanted to confirm DepQBF’s surprising behaviour. Though, 
out of the systems discussed above and defined in Section 3 Qute supports only 𝖰𝖢𝖣𝖢𝖫CUBE, and so is not well suited for most of 
our experiments.

We ran DepQBF on each of the formulas used for separations in this paper, as well as on the PCNF track of the QBF Evaluation 
2020.4 We set the time limit on each formula to 10 minutes (no memory limit). The computation was performed on a machine 
with two 16-core Intel® Xeon® E5-2683 v4@2.10GHz CPUs and 512 GB RAM running Ubuntu 20.04.3 LTS on Linux 5.4.0-48, and 
organised with GNU Parallel [28].

We discovered that heuristics have a significant impact on performance on theoretically easy formulas (theoretically hard formulas 
must be hard for solvers as well, and we confirm this in every case). We thus decided to run DepQBF with each available heuristic, in 
order to paint a full picture. In total, we evaluated 24 configurations of DepQBF—with and without PLE and with and without SDCL, 
and for each of these four, with each of all 6 available heuristics.5

3 In order to obtain vanilla QCDCL in DepQBF, we set - -traditional-qcdcl - -long-dist-res - -dep-man=simple - -no-dynamic-nenofex - -no-trivial-
truth - -no-trivial-falsity.

4 http://www .qbflib .org /qbfeval20 .php.
5 We used the parameter - -dec-heur= to set the decision heuristic in DepQBF and - -phase-heuristic for the closest corresponding setting for Qute. For each of 

the solvers, this sets the heuristic that selects the polarity (aka phase) of a decision variable, once the decision variable itself has been selected.

The DepQBF heuristics are

• simple: always assign to false

• random: always flip a coin

• falsify: assign to the polarity that satisfies fewer not-yet satisfied original clauses (or take a previously cached assignment if one exists)

• satisfy: assign to the polarity that satisfies more not-yet satisfied original clauses (or take a previously cached assignment if one exists)

• qtype: assign to the polarity that satisfies more if existential and fewer if universal not-yet satisfied original clauses (or take a previously cached assignment 
if one exists)
17

• sdcl: assign to the polarity that occurs in more already satisfied original clauses (or take a previously cached assignment if one exists)

http://www.qbflib.org/qbfeval20.php
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Fig. 3. Labels indicate whether PLE (“P*”) and SDCL (“*C”) are on, configurations of one kind have the same line style. Lines for Qute start with “Q”, the remaining 
lines are for DepQBF. The rest of the label is the heuristic; configurations with the same heuristic share colour. Gaps in lines indicate time-outs at 10 minutes. The 
legend is sorted in descending order of performance. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3 shows the results on Equality. While the formulas are easy regardless of the heuristic when using PLE, without PLE DepQBF’s 
performance fluctuates depending on the heuristic, even though the formulas are ‘easy’ as long as SDCL is on. Qute’s performance is 
more stable, but still much worse than DepQBF with PLE. The formulas get hard without both PLE and SDCL, in line with [4].

Fig. 4 shows DepQBF’s behaviour on 𝙿𝙻𝚃𝚛𝚊𝚙 and 𝚃𝚠𝚒𝚗𝙴𝚚. We see that here solver performance matches proof complexity almost 
perfectly. The only slight discrepancy is that 𝙿𝙻𝚃𝚛𝚊𝚙 remains hard without PLE with the heuristics satisfy and qtype; but the reason 
for this is simply that these two heuristics fall into the same trap by suggesting to assign 𝑦 to true at the beginning; indeed, if an 
existential literal is pure, and its variable chosen for decision, it is readily seen that by definition satisfy and qtype are equivalent 
to pure literal elimination.

𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁 is hard for every configuration (Fig. 5), as it should be. On the other hand, 𝙱𝚞𝚕𝚔𝚢𝙴𝚚 exhibits a similarly erratic behaviour 
as Equality (Fig. 6). We know that 𝙱𝚞𝚕𝚔𝚢𝙴𝚚 is easy for 𝖰𝖢𝖣𝖢𝖫CUBE+PL, but hard for 𝖰𝖢𝖣𝖢𝖫PL (Proposition 6.10), yet somehow it 
seems the only configurations able to solve 𝙱𝚞𝚕𝚔𝚢𝙴𝚚 fast are ones without PLE (and with SDCL). It remains to be seen how PLE hurts 
solver performance here; we see no apparent ‘poisoned pure literal’ like in 𝙿𝙻𝚃𝚛𝚊𝚙.

Finally, Fig. 7 shows the performance of DepQBF in the default vanilla QCDCL configuration with and without pure-literal elimina-

tion on the PCNF track of QBF Evaluation 2020. With PLE, DepQBF solved 84 formulas, without only 80. 95 formulas were solved by 
at least one configuration. This serves as an illustration that benefits from pure-literal elimination can be observed outside of crafted 
proof-complexity formulas. A state-of-the-art solver configuration on industrial formulas would typically include a preprocessor and 
other techniques that go beyond vanilla QCDCL; here we aim to test just QCDCL with and without PLE.

While both PLE and SDCL make 𝙴𝚚 easy, PLE seems easier to exploit. It seems this is because PLE can hardly be applied wrongly, 
while to benefit from cube learning, one must learn the right cubes. This suggests that in spite of its conceptual simplicity PLE can 
be quite useful, and perhaps should appear on Qute’s feature roadmap.

9. Conclusion

While this paper only studies false formulas (in accordance with proof complexity conventions), we expect similar phenomena of 
incomparability on true formulas, which we leave for future work to explore. Interestingly, while cube learning is primarily needed 
for true QBFs, we have shown that it can also improve the running time on false instances.

Qute’s heuristics are similar: true and false assign always true and always false respectively, random flips a coin once and caches the value (so only the first selection 
is random; propagation overwrites the cached value in both solvers). qtype is like in DepQBF, but without checking whether clauses are currently satisfied, and invjw
18

is like qtype, but instead of counting clauses, it takes ∑𝑙∈𝐶 2|𝐶| over original clauses 𝐶 where the literal 𝑙 occurs.
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Fig. 4. 𝚃𝚠𝚒𝚗𝙴𝚚 (above) and 𝙿𝙻𝚃𝚛𝚊𝚙 (below) formulas documenting Theorem 6.8. Labels indicate whether PLE (“P*”) and SDCL (“*C”) are on, configurations of one 
kind have the same line style. The rest of the label is the heuristic; configurations with the same heuristic share colour. Gaps in lines indicate time-outs at 10 minutes. 
The legend is sorted in descending order of performance.

Technically, we believe that our new notion of primitive proofs has further potential for showing QCDCL lower bounds, also for 
QBFs of higher quantifier complexity. While previous results tried to lift lower bounds from Q-Resolution [4], primitivity also applies 
19

to QBFs easy for Q-Resolution, thus supplying new reasons for QCDCL hardness.
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Fig. 5. 𝙼𝚒𝚛𝚛𝚘𝚛𝙲𝚁, the same kind of plot as before. We tested the solver on up to 𝑛 = 10, but all configurations timed out on 𝑛 ⩾ 8.
20

Fig. 6. 𝙱𝚞𝚕𝚔𝚢𝙴𝚚. Lines for Qute start with “Q”, the remaining lines are for DepQBF, otherwise the same kind of plot as before.
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Fig. 7. DepQBF on the QBF Evaluation 2020 PCNF Track. Cactus plot: (𝑥, 𝑦) means the configuration solved 𝑥 instances in 𝑦 seconds. Right and low is better. Labels 
like before.
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