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Abstract—Handling heterogeneity and unpredictability are two
core problems in pervasive computing. The challenge is to seam-
lessly integrate devices with varying computational resources in
a dynamic environment to form a cohesive system that can fulfill
the needs of all participants. Existing work on systems that
adapt to changing requirements typically focuses on optimizing
individual variables or low-level Service Level Objectives (SLOs),
such as constraining the usage of specific resources. While low-
level control mechanisms permit fine-grained control over a
system, they introduce considerable complexity, particularly in
dynamic environments. To this end, we propose drawing from
Active Inference (AIF), a neuroscientific framework for designing
adaptive agents. Specifically, we introduce a conceptual agent for
heterogeneous pervasive systems that permits setting global sys-
tems constraints as high-level SLOs. Instead of manually setting
low-level SLOs, the system finds an equilibrium that can adapt
to environmental changes. We demonstrate the viability of AIF
agents with an extensive experiment design, using heterogeneous
and lifelong federated learning as an application scenario. We
conduct our experiments on a physical testbed of devices with
different resource types and vendor specifications. The results
provide convincing evidence that an AIF agent can adapt a
system to environmental changes. In particular, the AIF agent can
balance competing SL.Os in resource heterogeneous environments
to ensure up to 98% fulfillment rate.

Index Terms—Adaptive Computing, Service Level Objectives,
Active Inference, Federated Learning, Edge Computing.

I. INTRODUCTION

The Distributed Computing Continuum is an emerging
paradigm for systems that can seamlessly integrate multiple
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layers of computing infrastructure [1]. Computing continuum
systems promise to enable infrastructure-critical pervasive
applications with stringent requirements, such as Mobile Aug-
mented Reality (MAR) for cognitive applications [2] and
Remote Sensing for Disaster Management [3]. There are
three recurrent characteristics among pervasive applications
deployed on a continuum. First is their reliance on Al-based
methods for tasks that classical control structures cannot solve
efficiently or with sufficient precision [4]. For example, MAR
applications must process streams of high-dimensional data
that a service could ideally process at the source to fulfill
a sub-10 millisecond latency Service Level Objective (SLO).
The caveat is that resources in proximity are constrained.
Typical solutions involve task partitioning and lightweight data
reduction methods that minimize the penalty for offloading
to remote resources [5]. The second is heterogeneity, i.e.,
resource-asymmetry, vendor specifications, and usage patterns.
Although pervasive applications follow an overall common
objective, a system must consider the individual properties and
objectives of participants. The third is the continuously drifting
problem domain intrinsic to the dynamic environments of per-
vasive applications, such that the source distribution drifts over
time and data volume is non-static. Conclusively, a necessary
precondition is a system that can adapt to non-identically
and independently distributed (non-IID) data. Moreover, the
system must facilitate collaboration between heterogeneous
devices to fulfill their SLOs by distributing workload fairly
and considering the individual properties of participants.

The focus is on lifelong heterogeneous federated learning



(FL) as we find it best encapsulates the primary challenges
of pervasive applications that share the described character-
istics. In general, FL participants collaborate for a common
objective, i.e., to maximize the prediction performance. Yet,
each participant has a private local validation set to determine
whether their criteria are locally met. Time constraints that
ensure smooth operations and resource asymmetry further
instigate friction when attempting to satisfy local objectives.
Hence, despite a common objective, to fulfill the SLOs of each
participant individually, a delicate balance is necessary. Lastly,
the dynamic environment gradually drifts the distribution and
varies the data volume.

This work aims to demonstrate the viability of Active In-
ference (AIF) in designing adaptive agents that can gracefully
handle the challenging requirements of pervasive applications.
While Active Inference is a neuroscientific framework, recent
work has shown promising results by conceiving methods from
the underlying ideas for workload scheduling in distributed
systems. In particular, we find that the objectives of Active
Inference and pervasive computing intrinsically intertwine.
Context awareness is crucial for pervasive applications as
these systems operate in dynamic environments and must
adapt to changes in their surroundings. Precisely context
awareness is a defining characteristic of AIF agents. However,
the current application of AIF for systems is more conceptual
and only partially implements the core components of the
AIF framework [6], [7]. Other work on systems that adapt
to changing requirements typically focuses on optimizing
individual variables, such as learning rate or setting low-level
SLOs as constraints on specific resources [8], [9]. Despite
providing more fine-grained control, it is unreasonable to
expect application developers to understand the implications
of each low-level constraint to the overall system, particularly
in dynamic environments where resources are scarce and avail-
ability is less predictable. In contrast, our AIF agent permits
setting high-level SLO targets to find an equilibrium without
attempting to enforce constraints from possibly conflicting
low-level SLOs.

We design experiments that accurately reflect the relevant
real-world conditions by implementing a physical testbed con-
sisting of heterogeneous devices with varying resource types
and computational capabilities. Additionally, we leverage a
controlled process for data generation to evaluate the adapt-
ability to a dynamic environment precisely. We extensively
evaluate our agents with a strong emphasis on reproducibil-
ity. The results underpin the claim that an AIF agent can
successfully balance competing SLOs among clients despite
considerable resource asymmetry and adapt to the dynamic
environment. Still, we transparently discuss current limitations
by accentuating the parts of our result that best show our
agent’s weaknesses. The intention is to foster research interest
in AIF from a systems perspective, as we sincerely believe
that it poses an exceptionally promising research direction for
pervasive applications and the compute continuum. Naturally,
we open-source our repository as an addition to the community

to reproduce, scrutinize, and extend our approach '.
We summarize our contributions as:

¢ An adaptive mechanism for heterogeneous lifelong FL
based on AIF which allows handling non-IID data distri-
butions and heterogeneous device characteristics inherent
in pervasive computing environments.

o A conceptual AIF agent that balances multiple SLOs
during model training. When SLOs compete, agents
can autonomously infer optimal training configurations
without manual intervention.

o The empirical evaluation of AIF agents for pervasive FL
tasks; experiments were designed to reflect real-world
conditions, such as data and resource heterogeneity

II. BACKGROUND
A. Lifelong Heterogeneous Federated Learning

In Federated Learning, participants train a global model to
maximize prediction performance without disclosing private
data. Participants optimize and validate the model parameters
with their local dataset in a training round before aggregating
their weights globally.

1) Heterogeneous Federated Learning: We refer to Fed-
erated Learning as heterogeneous when data is non-IID and
hardware specifications vary among participants. Moreover,
hardware heterogeneity typically implies that resources are
constrained, i.e., to not discriminate against computationally
less powerful devices closer to the source.

2) Lifelong Federated Learning: FL is lifelong when train-
ing continuously adapts to concept drifts [10]. Introducing
concept drifts is an intrinsic property of the dynamic de-
ployment environment of pervasive applications. Yet, there is
limited research interest in lifelong learning for FL [11].

3) Service Level Objectives for Federated Learning: SLOs
are definable constraints on a system that operators may use
as contracts with application developers [12], [13]. Low-level
SLOs quantify directly observable measures, such as CPU or
memory usage. High-level SLOs abstract low-level SLOs to
reduce the difficulty of diagnosing and configuring complex
and wide-spanning systems, i.e., compute continuums with
measures such as throughput or monetary costs.

For our purposes, high-level SLOs provide an intuitive
interface to set targets for an AIF agent and quantitative
measures to determine its adaptability to a dynamic envi-
ronment. In particular, maintaining prediction performance
and minimizing round duration are two primary objectives
for lifelong heterogeneous federated learning. An SLO on
prediction performance ensures consistent solution quality. In
contrast, an SLO on timeliness is crucial as resources are
constrained, and a considerably slower client can delay global
weight updates.

B. Active Inference

Active inference is a neuroscientific framework based on
the free energy principle (FEP) [14]. AIF agents adjust their
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model according to new observations and enact environmental
changes to suit their preferences. The objective is to minimize
the difference between the agent’s internal representation
and real-world models, i.e., to adapt to its environment. In
principle, the underlying framework of AIF generally applies
to adaptive systems [15]. Therefore, it is reasonable to assume
that AIF is a promising direction for computing continuums
that must adapt to a dynamic environment [6].

AIF agents continuously evaluate the expected free energy
(EFE) for different policies and assess their impact on under-
lying models. In a system’s context, an agent who understands
the world model will minimize EFE by selecting policies likely
to fulfill SLOs.

We can describe the EFE with two distinct components [16]:

Pragmatic Value

EFE = _EQ(o\ﬂ) [IHP(O|C)} —EQ(O,S|71—)DKL [Q(S‘O) ” Q(S)]

Information Gain

(D

The information gain (IG) estimates how much the model

can improve by choosing a particular policy. Conversely, the

pragmatic value estimates how close a possible outcome will
be to the agent’s preferred state.

III. PROBLEM STATEMENT

We consider a lifelong heterogeneous FL system consisting
of an orchestrator with N participants. Figure 1 illustrates an
example.

Fig. 1. Heterogeneous FL with data streams and AIF agents

Client hardware is heterogeneous in vendor specification,
available resource types, and overall computational capacity.
For example, some devices may have onboard accelerators,
such as GPUs, and others may only work with energy-efficient
CPUs. The data source is non-IID with temporal correlations,
i.e., the training must adapt to non-stationary data. SLOs are
globally configurable, and clients check after each training
round whether the SLOs are fulfilled locally. The SLOs aim to
ensure smooth operations, i.e., timely training and consistently
adequate model performance. We introduce a mechanism to
control and manage SLO fulfillment by defining FL training
configurations, which specify training parameters that directly

affect the system’s ability to fulfill SLOs. Configurations
function as levers that an agent can change to fulfill the user-set
high-level SLOs. The objective is for the FL system to max-
imize the overall SLO fulfillment across all timestamps. The
challenge is to ensure the highest possible SLO fulfillment,
given heterogeneous participants and data within a dynamic
environment.

The following describes how we can draw from AIF to
design agents that can result in a self-adapting SLO-aware
system behavior. In short, the agent learns the world model
and becomes sensitive to changes, such that it can maintain
service quality by reacting to environmental changes.

IV. PROPOSED METHOD

This section presents the design of the AIF agents that
optimize a heterogeneous and lifelong federated system to
fulfill SLOs. Figure 2 illustrates how system entities interact.
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Fig. 2. Sequence diagram for one FL round of the proposed method

Algorithm 1 summarizes the overall procedure for client-side
training. The following elaborates on notable details about the
process for an agent to find and choose optimal FL training
configurations in a dynamic environment.

A. Learning a Simple Causal World Model

The generative model is at the core of an AIF agent,
i.e., as an agent interacts with its environment, it updates its
internal world representation in a perception-action cycle. We
choose Bayesian Networks (BNs) as they provide interpretable
graphical representations of learned causal structures. This
work considers discrete BNs with uniform priors. Each agent’s
initial Bayesian network structure is unknown, as there are
no assumptions on prior knowledge of the environmental
dynamic. The agents require only starting knowledge of the
BN variables and their respective cardinalities. We define the
BN B of an agent as:

B=(G,P)



Algorithm 1: On Client Training Procedure

Procedure TRAIN(global_model, is_lifelong)
train_set < FETCH_NEXT_TRAIN_SET()

config, expected_ig < INFER_BEST_CONFIG()
With con fig:
updated_model, metrics <
TRAIN_MODEL(global_model, train_set,
config)
slos_ful filled + CHECK_SLO_FULFILLMENT()
If is_lifelong:
new_obs < slos_fulfilled U config U
metrics
UPDATE_BN(new_obs, expected_ig)
| return updated_model, metrics

Procedure INFER_BEST_CONFIG()
configs + {}

foreach c in possible_configs do

L FEFE,., ig. < CALCULATE_EFE(c)

configs + configs U (EFE.,ig.)

| return possible_con figSarg min(configs.EFE)

Procedure UPDATE_BN(new_obs, expected_ig)
obs_surprise < CALCULATE_SURPRISE(BN,

new_obs)
if obs_surprise > expected_ig then
BN < DO_STRUCTURE_LEARNING()
‘ BN < DO_PARAMETER_ESTIMATION(BN)
else
BN < DO_PARAMETER_UPDATE(BN,
new_obs)

where G = (V, E) is a directed acyclic graph (DAG), and P
is the set of conditional probability distributions:

P = {P(X;|Pa(X;))}i,

Pa(X;) represents the parents of X; in G, for which the joint
distribution of the variables is factorized as:

P(Xl,XQ, . ,Xn) = ﬁP(X,|Pa(X1))

The BN vertices are divided into three categories:

1) Configuration  vertices: Represent the (hy-
per)parameters of the system that are available for
the agent to set.

2) SLO vertices: Binary vertices that encode SLO being
fulfilled or not and allow for finding dependencies
between SLOs (and their fulfillment) and other vertices
of the BN.

3) System vertices: Additional vertices provide a more
comprehensive overview of the system dynamic, such
as resource usage, and their connection to SLOs.

We use Hill Climb Search [17] and Bayesian estimation
to perform structural learning and parameter estimation. We

use variable estimation to perform exact inference, such that
an AIF agent utilizes precise computation to leverage the
uncertainty of BNs. As the FL rounds progress, the BN
causal structures are progressively discovered. Moreover, the
agent experiences further refine the conditional probability
distributions.

B. EFE and SLO-aware Configuration Selection

Due to SLO and configuration vertices present in the BN,
the task is to correctly discover the connections between the
vertices to choose the configuration with the highest chance
of fulfilling SLOs. The agent calculates the EFE for each con-
figuration available to the system to determine configuration
optimality using the formula in Equation (1). Specifically, it
calculates the pragmatic value as:

Pragmatic Value = Z P(SLOs | configuration)  (2)
SLOs
x preference vector 3)

and the Information Gain as:
Information Gain = I(A, q) 4)

The preference vector encodes the agent’s goal, i.e., the
desired outcome, and is expressed as a logarithm of the
normalized preferences. The list of outcomes consists of all
combinations of possible SLOs values. Since the agent is to
fulfill all set SLOs, the state where all SLOs are fulfilled will
have a higher preference. For example, for one binary outcome
SLO, one can set the preference vector to [0.001, 0.999],
specifying that the second outcome is preferred. Information
gain quantifies the expected Bayesian surprise that measures
how much observing new data would update the agent’s belief
about hidden states. Following the implementation in [18], the
calculation uses the likelihood of SLOs fulfillment under con-
figurations (matrix A) and the predictive density over hidden
states ¢ derived from the Bayesian Network. An observation
is a configuration and an associated outcome. The agent uses
a particular configuration as evidence to predict the possible
observation with a maximum a posteriori (MAP) query to
simulate possible future and predict its IG. In summary, the
information gain and pragmatic value balance a trade-off
between exploring and taking the actions that most likely result
in SLOs fulfillment. Once the agent has selected a config-
uration, the local training round starts. On completion, the
agent collects lower-level metrics and checks SLO fulfillment.
Lastly, it associates the outcomes with the configuration and
adds it to the history dataset as a new observation for further
updates. A BN update step can result in a parameter update or
structure learning followed by a parameter estimation. Figure 3
illustrates the process of learning the structure of the BN as the
FL rounds progress. We distinguish between two update types
to allow the agent to adapt to significant discrepancies between
expected and observed outcomes. If the observed IG is higher
than expected, the agent discards structure information from
the previous iterations and initializes structure re-learning of
the BN. Structure re-learning prioritizes the edges that include
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Fig. 3. BN structure update throughout FL training rounds (blue vertices
represent SLOs, green — configuration variables)

SLOs as the dependent node, to ensure that the relations that
have an immediate impact on agent decisions are considered
first. Conversely, if the observed IG is within expectations, the
agent only initializes a parameter update on the BN.

To ensure the BN does not learn from early-stage ML model
performance data, that do not accurately describe the relation-
ship between performance SLO and configuration, these ob-
servations are omitted until the model performance stabilizes.
When the global FL. model performance gets sufficiently close
to the target performance SLO, a lifelong learning flag signals
the AIF agent to start learning.

V. EVALUATION
A. Experiment Design

The experiment design examines the AIF agent’s behavior
and adaptability to heterogeneity and lifelong FL.

1) Test Bed: We implement a physical testbed with con-
strained devices to replicate a heterogeneous resource environ-
ment. Additionally, we use a virtual machine with server-grade
hardware for experiments in more controlled environments.
Table I summarizes the hardware specifications.

TABLE 1
TESTBED HARDWARE SPECIFICATIONS

Device CPU Accelerator
Virtual Machine 8x Xeon @ 3.7 GHz Tes. 2560 CC

Orin NX 8x Cortex @ 2 GHz Amp. 1024 CC 32 TC

Xavier NX 4x Cortex @ 2 GHz Vol. 384 CC 48 TC

Raspberry Pi4  4x Cortex @ 1.8 GHz N/A
Raspberry Pi 5 6x Cortex @ 2.0 GHz N/A

2) Implementation Details: We implement the prediction
model as a simple Artificial Neural Network (ANN) with
PyTorch consisting of two fully connected layers using ReLU
activation for non-linearity.

We extend the Flower [19] framework to support FL. We
implement the agent BNs with pgmpy [20] and information
gain with pymdp [18]. We implement a controllable data
generation process using River [21]. A more detailed technical
description is out of scope and we refer interested readers to
the accompanying repository.

3) Application Scenario: We emulate a dynamic environ-
ment by controlling the data generation process to introduce
concept and volume drifts. Each client device represents a
different participant. The challenge is, for the system to adapt
to the drifts or to the varying computational resources of

participants. The experiments consider the fulfillment of two
high-level SLOs:

1) Time: fulfilled if a local training round does not exceed
a set limit (e.g., 2 seconds).

2) Prediction Performance: fulfilled if the primary vali-
dation metric (accuracy) exceeds a set value.

We choose time and performance as SLOs as balancing them
is non-trivial. For example, focusing exclusively on fulfilling
prediction performance may require spending an excessive
amount of time and vice versa. The configurable hyperparam-
eters are Batch Size BS € {8,32,64,256,512} and Learning
Rate LR € {0.0005,0.001,0.005,0.01}, as there is a clear
connection to them and the system’s training objective and
considered drift types, e.g. learning rate tuning was proposed
to battle concept drift [11]. Each client initialized a separate
datastream locally, using their identifier as a random seed for
the stream to promote variability in the data across clients.
However, the rest of the data stream parameters were set to
the same values across clients inside one run. This way, the
number of features and classes are kept the same, showcasing
that all clients are part of the same ML task. Other parameters,
such as the number of clusters (groups of data points repre-
sented by centroids), the random seed for cluster initialization,
and the cluster drift, are kept constant to ensure a proper
comparison of the agents’/clients’ behavior and to maintain
the reproducibility of the generated data inside one repetition.
The data generator G is also parametrized by a drift parameter,
drift, which controls the presence and speed of data drifts,
where drift = 0 indicates no data drift.

In each federated round, clients train and validate their
prediction model using the data samples available in an online
learning fashion. At round ¢, each client n possesses two
datasets: Validation; = {(xp, yb)}bB:’*1 ~ @G, and Train; =
Validation;_1, where x is a feature vector, y label assigned to
the data sample and B; the size of the data set drawn from
the data generator at round ¢.

This way, clients acquire a new batch of data for validation
while the previous batch is re-used for training. Previous round
training samples are discarded.

4) Baselines: The baselines focus on the best- and worst-
case scenarios rather than existing methods to avoid mislead-
ing comparisons with the tangentially related problem defini-
tions and methods and concentrate on depicting the dynamics
and capabilities of AIF agents. We define two baselines for
experiments with data distribution drifts:

1) Random: Represents a complete lack of adaptability
and intelligent choice of hyperparameters. This baseline
randomly chooses a new configuration for each federated
training round.

2) Fixed optimal: Represents the case where parameter
tuning was performed and the optimal configuration
is set once at the beginning of the training and is
never changed. To select this configuration, each of the
possible configurations was tested and the one with the
highest mean SLOs fulfillment at the end of the observed
period (around round 50) was taken as the optimal.



Cumulative SLO fulfillment at round ¢ is calculated as:

S'_, SLO fulfilled;
t

Each experiment was repeated ten times with different
random seeds that controlled the random processes, such as
the data generator and ANN weights initialization. For the
evaluation, the first considered timestep included in SLO
fulfillment tracking for a particular client run was the one
where the “lifelong” flag becomes true. The reported results
are averaged across all participating clients and experiments,
if not stated otherwise. The number of local epochs was set to
3 for all experiments with no client subsampling, i.e., all FL
clients participated in every round. The SGD optimizer was
used by default. It is also worth reminding that agents learn
their BNs from scratch in every experiment.

SLO Fulfillment; = (@)

B. Results

Each experiment describes the results regarding SLO ful-
fillment, as the evaluation metric expected by the users, and
EFE dynamics that explain the learning and adaptation of AIF
agents.

1) Data Heterogeneity: Consider a real-life situation where
clients experience changes in the amount of collected data,
e.g., seasonal demands in shops specializing in certain types
of products or bursts of the number of service requests. For
this experiment, such quantity drift is modeled by increasing
the number of samples drawn from the data generator every 50
epochs, starting with 5,000 samples, then increasing to 10,000
and 15,000. The SLOs were set to 2 seconds for time and 97%
for model performance SLO. The number of federated clients
was set to 10.

The dynamic of both SLO fulfillments is shown in Figure 4.
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Fig. 4. Mean cumulative SLOs fulfillment with two quantity drifts (red lines
mark the drift start). Semitransparent lines show mean SLO fulfillment at a
single federated round.

For the fixed “optimal” baseline, the cumulative fulfillment
was high for both SLOs until the first quantity drift occurred
at the 50th round. After this round, time SLO stopped being
consistently fulfilled, which led to a steady decline in time
SLO fulfillment. However, looking at the AIF approach, it is
evident that despite the time SLO becoming more challenging
to fulfill, it still manages to recover after the quantity drift, with
the mean time SLO fulfillment per round being consistently

larger than 50%. Still, after the second quantity drift happened,
the time SLO became even more challenging, which led
to a more prominent decline in time SLO fulfillment. To
understand the choices made by the AIF agents, we examine
mean EFE over all configurations at each epoch (Figure 5).
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Configuration (Batch Size, Learning Rate)

Fig. 5. Mean EFE with two quantity drifts with each line representing one
possible training configuration. Lower values represent configurations that the
AIF agents favor.

It is visible how the configurations preferred by the AIF
agents change after the observed environmental changes. In
the beginning, it is shown how agents slowly come to prefer
configurations (256, 0.005) and (256, 0.001) (compared to
the fixed baseline being (256, 0.01)). However, after the first
quantity drift, this preference shifted to a larger batch size
of 512. This is an expected behavior as the amount of data
doubled, but the time constraint remained the same. Still, after
the amount of data increased again, there was no more space to
increase the batch size. Therefore, the increase of EFE across
all configurations can be observed, signaling that.

As shown in Equation (1), the information gain term ac-
counts for explorative behavior and is compared to the actual
observed information gain during each federated round to
estimate how “surprised” the agent is. Figure 6 a shows the
mean information gain across clients.
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Fig. 6. a) Mean observed IG over all clients and repetitions, b) Observed and
expected information gain for one client at one run

Here, the process of agents adapting to the environment can
be seen, with the observed IG decreasing as the BN becomes
more confident. However, two prominent spikes occur right



after the quantity drifts, illustrating the
detecting the environmental change.

To better illustrate the dynamics of looking for the best
configuration after the second quantity drift, the entire history
of expected and observed IG of one client can be observed
(Figure 6 b). This client initially settled down for a config-
uration of (512, 0,01), which worked for the agent for 68
epochs due to the observed IG being less or equal to the
agent’s expectations. However, at round 68, the agent was
surprised because the time SLO was not fulfilled despite using
the “time-proven” configuration. Despite being surprised, the
agent only retrained the structure of the BN (indicated by the
abrupt change in the expected IG). It happened several times
more, but the agent preferred exploiting its knowledge. After
round 100, the agent again started to be surprised, leading
to a change in strategy. The agent went exploring, as visible
by the increased expected information gain. These spikes are
also associated with the agent choosing previously unexplored
(or poorly explored) configurations. For instance, round 104
corresponds to the agent choosing configuration (64, 0.005).
This example illustrates how AIF agents treat changes in the
observed environment and can independently balance between
exploration and exploitation.

As the setup for the experiment consisted of ten clients and
ten separate experiments, it is possible to represent configura-
tions preferred by the agents at three critical points (before the
first quantity drift, before the second quantity drift, and at the
end of the experiment) into distributions over configurations.
These distributions are given in Figure 7.
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Fig. 7. Chosen configurations distributions before and after quantity drifts

Despite the expected behavior, a minority of agents still
settle for clearly non-optimal configurations. Another obser-
vation is the shift in the preferred configurations after the
first quantity drift towards a bigger batch size. To quantify the
observed changes in the distributions, Fisher’s exact test was
performed on the distributions with batch sizes 256 and 512
(too low values were filtered out to focus the test on the sen-
sible configurations as the rest represent wrong configurations
and are irrelevant for the test). The p-value of this test was
reported to be 0.0293, showing the statistical significance in
the observed changes between the distribution of the preferred
configurations before and after the first quantity drift.

Observed EFE after the second quantity drift shows that the
agents’ behavior is dictated by the combination of available
configurations and set SLOs. To better estimate the effect

SLOs have on the preferred configurations, a set of experi-
ments was conducted that modified the SLOs considered in
the experiments. Table II shows the SLOs chosen for each
experiment compared to the SLOs considered in the previous
experiment.

TABLE II
COMPARISON OF TIME AND PERFORMANCE SLOS FOR DIFFERENT
EXPERIMENTS
Experiment Time SLO (s)  Performance SLO (%)

Fullfiable SLOs 2 97
Unfulfillable SLOs 0.1 99.5
Easily Fullfillable SLOs 3600 50
Time Relaxed 3600 97
Performance Relaxed 2 50

Figure 8 shows the mean EFE over five clients used for
experiments and ten repetitions.
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Fig. 8. Mean EFE under different SLOs setups and two quantity drifts

The EFE shows that having not challenging or unrealistic
SLOs (Figure 8 a and b, respectively) leads to EFE being
consistent across all available configurations, with EFE being
high when the target SLOs are unfulfillable and EFE being
equally low when the targets are too easy to fulfill. The
situation is different when one of the two SLOs is relaxed
while the other is somehow challenging to fulfill. Thus, when
performance is relaxed, the agents are incentivized to optimize
the behavior towards time SLO, leading to agents settling for
the largest available batch size (512) regardless of the learning
rate. The situation is different regarding time-relaxed SLO —
when the performance is targeted, agents tend to explore more
configurations as the task is still not that challenging for them,
leading to diverse behaviors. Still, the resulting EFE heatmap
expresses some preference bias compared to the experiment
with two SLOs relaxed. This “uncertain” behavior could be
attributed to quantity drifts not impacting the performance
goals. A situation where time is relaxed in the presence of
concept drift is presented later in this section, illustrating the
preferences developed by the agents when model performance
(and performance SLO) has a clearer connection with the
configurations available.

The following experiment added concept drift to the prob-
lem. Concept drift was added to the generator from the start



to make the task more complicated, and, as a result, the
performance SLO was adjusted to still be challenging yet
reachable (85%). One quantity drift was also present (from
10,000 to 15,000 samples), therefore, introducing two sources
of data heterogeneity in one experiment. The resulting SLOs
fulfillment for 5 FL clients is shown in Figure 9.
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Fig. 9. Mean SLOs fulfillment under concept drift and 1 quantity drift. Time
SLO: 3 seconds, performance SLO: 85%

With concept drift, reaching the target performance SLO
becomes more challenging. Moreover, when the quantity drift
happens — concept drift becomes more prominent in response,
as more samples are drawn from the data generator and
clusters drift faster. It impacts the model’s performance, as can
be seen from the prominent decline of the random baseline,
illustrating that fewer configurations can now sustain the
performance goals. Despite that, the AIF agent maintains
its performance SLO fulfillment and keeps time SLO not
impacted by the quantity drift. Here, the agents preferred
configurations with larger batch sizes of 256 and 512, with
(512 0,0005) having the lowest mean EFE (compared to the
fixed baseline being (256, 0.005)).

As was previously noted and could be seen from the
previous example, concept drift mostly impacts the perfor-
mance SLO, which is a more nuanced target compared to
the time SLO, which is more straightforward to optimize.
The experiment containing only more severe concept drift was
conducted to better inspect the behavior of AIF agents when
facing performance-oriented SLO. Here, the performance SLO
was set to 78.5% (due to a more prominent concept drift) and
the time SLO was relaxed (3600 s). The performance SLO
fulfillment is shown in Figure 10 and the resulting mean EFE
is shown in Figure 11.

The optimal configuration for the baseline was set to (64,
0.001), and it is shown from the mean EFE that agents also
preferred a lower batch size of 32 and lower learning rates of
0.0005 and 0.001.

2) Device Heterogeneity: The next experiment focused on
inspecting the ability of AIF agents to adapt to the resources
available to the agents located at the edge devices and aligning
them with the SLOs set. For the experiments, three edge
devices (Raspberry Pi 5, Nvidia Orin NX, and Nvidia Xavier
NX) were used as separate federated clients and were tasked
to participate in the FL for 75 epochs, while a Raspberry
Pi 4 device served as the FL orchestrator. No data drifts
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Fig. 10. Mean SLOs fulfillment under concept drift and relaxed time SLO.
Time SLO: 2 seconds, performance SLO: 78.5%
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Fig. 11. Mean EFE under a concept drift with relaxed time SLO

were introduced in this experiment. Due to the differences in
resources, it was expected that agents would prefer different
configurations under the same target SLOs. The comparison of
SLO fulfillment across various devices is shown in Figure 12,
and mean EFE is shown in Figure 13.
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Fig. 12. Mean SLOs fulfillment for different devices. Time SLO: 2 seconds,
performance SLO: 97%

It is shown that all devices manage to fulfill the set SLOs.
It is also worth noting that Raspberry Pi 5 managed to fulfill
performance SLO slightly faster than devices that used GPU
but occasionally struggled to maintain flawless time SLO
fulfillment. When looking at mean EFE, it is clear that in order
to better utilize its cores (as there is no GPU), Raspberry Pi
can successfully employ a vast range of configurations due to
the small size of the model (64 and 32 units in 2 layers), while
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Fig. 13. Mean EFE for different devices

devices with GPU choose bigger batch sizes to better utilize
their parallelization capabilities.

To further inspect the adaptability of agents to different
combinations of tasks, available resources, and set SLOs, the
experiment was conducted with the same set of devices but
with a wider neural network (5120 and 512 units compared
to 64 and 32 used in the previous experiment). The time SLO
was adjusted to 15 seconds. This change was introduced to
give GPU-empowered devices an advantage over Raspberry
Pi 5. The resulting SLOs fulfillment is shown in Figure 14
and mean EFE is shown in Figure 15. The performance SLO
fulfillment at the final FL round was 96.9% for Orin NX and
98.7% for RPI 5 and Xavier NX, while the time SLO was
99% for Nvidia devices and 87.8% for RPI 5.
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Device:

Cumulative Fulfillment
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Fig. 14. Mean SLOs fulfillment for different devices with a wider network.
Time SLO: 15 seconds, performance SLO: 97%

Here the change in the model architecture impacted the
optimal configuration choice for Raspberry Pi 5. As seen from
the mean EFE, the batch size had to be increased to 256 to
fit into the time and performance SLOs, while Nvidia devices
utilized a more comprehensive range of configurations.

The evaluation shows the potential of AIF agents in de-
tecting the changes in the environment and the ability to
initiate system re-configuration with no human supervision.
However, the SLO fulfillment is not perfect. Two main ex-
planations were identified up until now: (1) “unsupervised”
BN structure learning using Hill Climb Search may struggle
to discover meaningful causal relationships when limited data
is available [22], (2) in the absence of observations with both

(a) Orin NX (b) Xavier NX (c)RPI 5
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Fig. 15. Mean EFE for different devices and wider network

SLOs fulfilled, an agent may either stuck in forever exploring
state or stick to the strategy that guarantees at least one SLO
fulfillment and focus on exploiting sub-optimal behavior.

VI. RELATED WORK

We identified three topics within related work: SLO fulfill-
ment through dynamic adaptations in distributed computing
systems, applications of the AIF framework, and optimization
techniques in FL.

A. Optimization in Federated Learning

Optimizing FL workflows is important for minimizing the
time-to-accuracy of model training [23]. In that context, Kun-
droo et al. [9] proposed FedHPO, a federated optimization
algorithm that accelerates each client’s training by modifying
its hyperparameters, such as learning rate or epochs.

Furthermore, several studies have focused on multi-
objective optimization in FL. One possible approach is opti-
mizing neural network models instead of client-specific hyper-
parameter optimization [24], [25]. Additionally, a significant
number of existing research focuses on optimizing client
selection or clustering instead of adjusting the parameters of
individual clients to reach multi-dimensional goals [26]-[28].

Therefore, existing work on optimization in FL does not
consider changing environments and lifelong FL scenarios
or lacks individual clients’ hyperparameter tuning in general,
which is crucial for pervasive applications.

B. Dynamic Adaptation for SLO Fulfillment

There exist multiple approaches that aim to combine SLOs
with dynamic processing requirements: Zhang et al. [29]
presented Octopus — the framework that finds optimal ser-
vices configurations in multi-tenant edge computing scenarios.
Octopus predicts SLO fulfillment of two variables based on a
deep neural network. Shubha et al. [8] presented Adalnf, which
detects SLO violations of a GPU scheduling task whenever
variable drifts occur. Through Adalnf, it is possible to find
SLO-fulfilling resource allocations between model training
and inference.



C. AIF Applications

The cases in which AIF was used to dynamically support
computing systems are mainly focused on robotics; Oliver et
al. [30] give a comprehensive overview of how AIF allows
(robotic) systems to act under uncertainty. Nevertheless, the
application of AIF extends to continuous stream processing
systems, such as provided by Sedlak et al. [6], [7], which
uses a wide set of processing metrics as sensory observations.
Actions taken by the processing system were elastic adapta-
tions, e.g., scaling resources or quality, allowing to empirically
find system configurations that fulfill SLOs.

Proved useful for ensuring the adaptability of robotic and
stream processing systems, AIF could address the existing
research gap in optimizing dynamic pervasive FL systems.

VII. CONCLUSION

This work presented AIF agents that are able to adaptively
change their behavior in response to dynamic environments.
We evaluated the proposed AIF agents in lifelong hetero-
geneous FL, utilizing a set of both dynamic data and di-
verse devices. We showed that AIF agents are able to fulfill
competing SLOs and unfolded the behaviors of agents and
intricate connections between the defined SLOs and strategies
for fulfilling them.

Future work can further expand the usage of the active in-
ference framework to orchestrate distributed learning systems,
for instance, by fulfilling system-level SLOs, such as fairness
of participation or global model performance. Enhancements
of the current method can improve the ability of the agents to
find causal dependencies in limited data, making them more
robust, targeting the limitations of the discrete BN, introducing
temporal dependencies to capture the environmental dynamics
more precisely, and providing more nuanced SLOs specifica-
tions to enable tracking SLOs in a range.
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