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Abstract 

Tropospheric delays play a crucial role for Global Navigation Satellite Systems (GNSS). They are a major error source 
in GNSS positioning and, at the same time, also a variable of interest in GNSS meteorology. Regardless of whether the 
delay shall be eliminated or inverted to atmospheric parameters, and no matter how this is done, it is of utmost 
importance to accurately determine tropospheric delays. In this study, we present a global zenith wet delay (ZWD) 
model, called ZWDX, that offers accurate spatial and temporal ZWD predictions at any desired location on Earth. 
ZWDX is based on the XGBoost algorithm and uses ZWDs measured at over 19,000 GNSS stations as reference. The 
inputs of ZWDX are the geographical location, observation time, and specific humidity at nine atmospheric pres‑
sure levels. For our study, we train the model on the years 2010 to 2021 and then test it for the year 2022. While 
ZWDX is trained to predict ZWD values based on specific humidity values from the ERA5 reanalysis, we show that it 
also delivers good predictions when applied to HRES specific humidity forecasts, making it suitable for (short‑
term) ZWD forecasting. The ZWDX model predictions are evaluated at 2500 globally distributed, spatio‑temporally 
independent GNSS stations, with forecasting horizons ranging from 0 h to 48 h, and achieve root mean squared 
errors (RMSE) between 10.1 mm and 16.2 mm. To independently evaluate ZWDX’s performance and to demonstrate 
its potential for a real‑world downstream task, we use its predictions as a‑priori values for a precise point position‑
ing (PPP) analysis and compare the results with those obtained using ZWD values from VMF1 or VMF3. We find 
that the highest accuracy and fastest convergence are indeed achieved with ZWDX.
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Graphical Abstract

The wet delay is particularly important for GNSS mete-
orology, as it is proportional to the atmospheric water 
vapour content along the signal path. ZWD can be trans-
formed into the mass of integrated water vapour (IWV) 
in a vertical atmospheric column over a unit area and 
into precipitable water vapour (PWV), the height of an 
equivalent column of liquid water. RO, in contrast, pro-
vides vertical profiles of atmospheric refractivity, which 
in turn enable the estimation of water vapour concen-
tration. All of these GNSS-derived tropospheric data 
products contribute to a better understanding of various 
meteorological phenomena.

The paper by Bonafoni et al. (2019) reviews the use of 
RO and ground-based GNSS products in the context of 
extreme weather events. They found that ground-based 
GNSS products are most frequently used to analyse con-
vective storms and heavy rainfall events, while RO prod-
ucts are mostly used to investigate tropical cyclones. A 
study by Aichinger-Rosenberger et al. (2022) used GNSS 
troposphere products to detect and predict foehn winds 
at the meteorological observation site in Altdorf, Swit-
zerland. Li et al. (2021a) used GNSS troposphere meas-
urements to detect heavy precipitation events in Hong 
Kong. GNSS-derived PWV and meteorological param-
eters were used by Liu et al. (2022) to develop a rainfall 
forecasting model for Singapore, and by Benevides et al. 
(2019) to make short-term forecasts of intense rainfall 
in the Lisbon area in Portugal. Another study by Ziv and 
Reuveni (2022) has demonstrated the potential of pre-
dicting flash floods over the eastern Mediterranean from 
PWV estimates derived from GNSS tropospheric delays. 
Łoś et  al. (2020) have developed a GNSS-based storm 
nowcasting method that combines IWV with vertical 

1 Introduction
Global Navigation Satellite Systems (GNSS) are primar-
ily known for positioning and navigation applications, but 
they also play an important role in gathering meteorologi-
cal information. Their emitted signals traverse the atmos-
phere, where they are delayed. The delay depends on the 
properties of the atmosphere and the signal path, e.g. its 
constituents and their densities. By precisely measuring 
these delays, one can derive insights into the current state 
of the troposphere (the lowest part of the atmosphere), an 
indirect observation technique referred to as “GNSS mete-
orology” (Bevis et al. 1992). GNSS meteorology makes use 
of ground-based GNSS receivers, and optionally also of 
GNSS measurements received at low-Earth orbiting sat-
ellites, via the radio occultation (RO) technique (Ware 
et  al. 1996). Of particular interest in this context is the 
amount, distribution, and change of tropospheric water 
vapour, a core variable for weather forecasting and climate 
modeling.

During the analysis of GNSS signals, the tropospheric 
delay is divided into a hydrostatic component and a wet 
component. Both components are parameterized by spec-
ifying the delays along the zenith direction, which can 
be mapped to other ray directions with the help of the 
associated elevation angle (Böhm 2013). Consequently, 
the quantities needed to characterize the influence of the 
troposphere on the signal runtime are the zenith hydro-
static delay (ZHD) and zenith wet delay (ZWD), which 
together make up the zenith total delay (ZTD). While the 
hydrostatic part can be modeled with sufficient accuracy, 
the wet part is less predictable and has to be estimated 
during GNSS analysis.
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profiles of wet refractivity from GNSS tomography, while 
Guerova et al. (2022) have demonstrated storm nowcast-
ing based on troposphere data products.

These studies show the potential of GNSS-based 
troposphere monitoring for diverse meteorological phe-
nomena. Still, dense spatio-temporal modeling and 
forecasting of ZWD, the basis for all products, remains 
challenging and is not done consistently. Instead, sev-
eral ZWD models exist. Among the most popular are the 
discrete Vienna mapping function 1 (VMF1; Böhm et al. 
2006, 2009), its successor VMF3, and the empirical global 
pressure and temperature 3 model (GPT3; Böhm et  al. 
2015; Landskron and Böhm 2018a, b).

Improving troposphere models and addressing the 
deficits of existing models is an active area of research. 
For instance, GPT3 is known to have lower accuracy than 
the VMFs and is only available on coarse 5 ×  5  degree 
and 1 × 1 degree grids. On the other hand, it was found 
that the VMF1 has location-dependent systematic errors 
because it has been tuned for specific elevation angles, 
station heights, and orbital altitudes (Zus et al. 2015).

In recent years, a number of studies have explored 
the possibility of enhancing troposphere models with 
the help of various machine learning (ML) techniques 
(Siemuri et  al. 2022). Lu et  al. (2023) have developed a 
tropospheric delay forecasting model for the contiguous 
USA based on a convolutional long short-term memory 
(LSTM) network. Their model, called TropNet, is trained 
on ZWDs derived at 165 GNSS stations between April 1 
and July 31, 2019, and then tested at 20 different GNSS 
stations for the same period. As input features it uses 
water vapour channel radiances, tropospheric delays, 
and topography data. TropNet forecasts ZWDs with a 
lead time up to 6  h and at a spatial resolution of 2  km, 
and achieves a root mean squared error (RMSE) around 
1.15 cm compared to GNSS-derived reference ZWDs. He 
et al. (2024) also use an LSTM to create a global tropo-
spheric forecasting model, trained on ZTD residuals on 
a global 5 ×  5 degree grid (after removing the periodic 
signal component). The years from 2008 to 2019 serve 
as training period, and the year 2020 was used for test-
ing. The combined model, including both the periodic 
component and the predicted deviations from it, delivers 
ZTDs with an average RMSE of 1.44 cm. Another recent 
study by Li et al. (2024) combines a neural network and a 
Random Forest to model ZWD. The model is trained on 
reference ZWDs derived from radiosonde observations 
at 569 sites from 2015 to 2019 and GPS RO profiles from 
2016 to 2019. In their experiments the model, which, 
besides the location and day of year, also includes mete-
orological predictors like surface water vapour pressure 
and surface temperature, improved the ZWD forecasting 
accuracy by up to 23.8  %. In a comparison at 609 sites, 

the model predictions deviate 3.1  cm from radiosonde 
observations, respectively 2.4 cm from RO data.

All these models demonstrate improvements over clas-
sical models with the help of data-driven ML, on the 
other hand they still have deficits. First, many have been 
derived based on only a small number of stations and/or 
limited time periods. Thus, they are likely to generalize 
poorly beyond the limited atmospheric conditions rep-
resented in their training data. Some models are explic-
itly designed to be applicable only in a specific region 
(Li et  al. 2021b, 2023; Yang et  al. 2021). Others do not 
specify the application domain, but have been tested 
only within the same year or in a different year but at the 
same stations, not with spatio-temporally independent 
samples (Chen and Gao 2024; Lu et al. 2023; Selbesoglu 
2020).  Furthermore, most models are not designed for 
forecasting, since they require inputs for which no opera-
tional forecasts are available (Li et al. 2024; Bi et al. 2024; 
Xia et  al. 2020). Finally, none of the described models 
is—to the best of our knowledge—openly accessible and 
deployable.

Our study aims to address these limitations by intro-
ducing ZWDX, a broadly applicable, global ZWD model. 
ZWDX represents a major improvement over our previ-
ous study, in which we already introduced a ZWD model 
able to derive global, spatially explicit ZWD fields with an 
accuracy below 1 cm (Crocetti et al. 2024b). That model 
was also based on the XGBoost algorithm, a versatile 
ensemble estimator popular across a wide range of scien-
tific prediction tasks. It employed observations from over 
13,000 globally distributed GNSS stations, together with 
meteorological predictors, to obtain high-accuracy ZWD 
estimates anywhere on Earth. However, the focus of the 
model was on the spatial ZWD distribution, whereas it 
did not aim for temporal generalisation outside the ref-
erence period of 1 year, thus ignoring inter-annual vari-
ability. In fact, that model was by design not suitable for 
forecasting (or nowcasting), given that its inputs were 
extracted from the ERA5 reanalysis (Hersbach et  al. 
2020), which has a latency of five days.

In the present study, we address these limitations and 
extend our model to additionally predict future ZWD 
values at arbitrary locations, based only on inputs that 
are available in real-time. The new model, called ZWDX, 
is again based on the XGBoost algorithm. It has been 
trained with ERA5 data covering a period of 12 complete 
years (2010–2021) and 16,664  GNSS stations, so as to 
cover to the largest possible extent the spatio-temporal 
variability of the atmospheric conditions that determine 
the ZWD.

To summarize, the goal of the present study is to 
develop and validate a data-driven ZWD model that 
offers high-quality predictions at any desired location on 
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Earth, and for any point in time (within the period for 
which state-of-the-art atmospheric reanalysis data are 
available). ZWDX is designed to be versatile and cater 
to various applications that require ZWD estimates. For 
GNSS meteorology, the model delivers ZWD estimates 
not only at GNSS station locations but also densely across 
geographic regions of arbitrary extent, enabling compre-
hensive spatial analysis in regions that lack a high-density 
GNSS station network. Furthermore, the possibility to 
drive the model with HRES forecasts (as opposed to post-
processed ERA5 data) opens up the possibility to forecast 
future ZWD values without temporal lags. ZWDX has 
already demonstrated potential for climate studies (Croc-
etti et  al. 2024a). Finally, ZWDX can be used to obtain 
a-priori values needed for space-geodetic parameter esti-
mation, including high-end GNSS processing and Very 
Long Baseline Interferometry (VLBI). Here, we validate 
the potential of ZWDX for such downstream by using its 
predictions to initialise precise point positioning (PPP). 
In that experiment (Sect.  4.2), ZWD values estimated 
with ZWDX match or even slightly surpass those from 
state-of-the-art models like VMF3, furnishing independ-
ent evidence for our model’s reliability.

Section 2 introduces the data used in the present study 
including the ZWD reference (Sect. 2.1), specific humid-
ity (Sect. 2.2) and VMFs (Sect. 2.3). Section 3 describes 
the setup of the ZWDX model, its parameters, and the 

performance metrics used to evaluate it. Furthermore, 
we also describe how PPP is employed to investigate 
the impact of ZWDX on a real-world GNSS application. 
Experimental results are shown and discussed in Sect. 4 
before Sect. 5 offers our conclusions from the study and 
a brief outlook.

2  Data
2.1  Zenith wet delay (ZWD)
Our study utilizes ZWD values at 19,260 globally distrib-
uted GNSS stations from 2010 to 2022. They are provided 
by the Nevada Geodetic Laboratory (NGL; Blewitt et al. 
2018) using the GipsyX version 1.0 software1 (Bertiger 
et al. 2020). A substantial advantage of this data set lies in 
its global coverage and considerable volume, required to 
derive a robust, globally applicable ZWD model; and in 
the fact that it has been processed uniformly by a single 
analysis center, which ensures consistency.

The temporal resolution of the original NGL ZWD 
data is five minutes. As a first step, the data is down-sam-
pled to match the hourly resolution of the meteorological 
variables discussed in Sect. 2.2, by calculating a weighted 
mean of the ZWDs in a 60-minute window centered on 
each full hour. The weight is highest for the value at the 
full hour and decreases linearly towards the limits of the 
60-minute interval.

Of the 19,260 GNSS stations, 16,760 were selected as 
training stations, while the remaining 2500 serve as test 
stations. The test stations were chosen randomly among 
those stations that cover the entire period from 2010 

Fig. 1 Distribution of the 19,260 GNSS stations, divided into training (blue) and test (orange) stations

1 A comprehensive description of the underlying methodology can be 
found at http:// geode sy. unr. edu/ gps/ ngl. acn. txt; last access: 10.11.2024.

http://geodesy.unr.edu/gps/ngl.acn.txt
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to 2022. In total this amounts to ≈ 841 million (poten-
tial) training samples and ≈ 247 million test samples for 
model evaluation, corresponding to a 77/23 % split.

The geographic distribution of the training and test 
stations is depicted in Fig. 1. While most GNSS stations 
are located in the Northern Hemisphere, mainly in the 
United States, Europe, and Japan, the density of GNSS 
stations is noticeably lower in the Southern Hemisphere, 
particularly in Africa.

The quality of the NGL tropospheric products has been 
analyzed in several studies, by comparing it to tropo-
spheric delays derived with the GPT3 model or with ray-
tracing (Ding and Chen 2020; Ding et al. 2023), as well as 
by transforming NGL ZWD values to IWV or PWV and 
comparing them to radiosonde observations (Yuan et al. 
2023; Ding et  al. 2022). Despite the generally satisfac-
tory quality, a rigorous outlier screening was carried out 
for the training data to ensure that only plausible ZWD 
data are used for model fitting: (i) based on the standard 
deviations reported as part of the product, the 1 % ZWDs 
with the highest uncertainties were removed. The thresh-
old of 1  % was selected empirically based on the distri-
bution of the reported standard deviations, with the aim 
of eliminating obvious outliers. (ii) negative ZWD values 
that lack physical meaning were eliminated. These values 
likely stem from automatic procedures trying to com-
pensate erroneous ZHD estimates. (iii) ZWDs deviating 
from the 5-hour floating median by more than 3 × their 
standard deviation were filtered out to further remove 
large outliers. (iv) locations with two or more co-located 
stations within a distance of 1 km were inter-compared. 
1424 such co-located station groups with, in total, 
3234 stations were identified. For each group the median 
ZWD was calculated per epoch, and stations with a bias 
above 5 mm w.r.t. that median value (59 out of the 3234 
candidate stations) were removed.

Taken together, the four filtering steps discarded 2.5 % 
of the ZWD training data (21,146,511 samples), resulting 
in a final training data set of 820,548,217 samples distrib-
uted over 16,664 GNSS stations. The independent test set 
was not filtered at all, so as to ensure a realistic and fair 
evaluation.

2.2  Specific humidity
Our ZWDX model utilizes specific humidities provided 
by the European Centre for Medium-Range Weather 
Forecasts (ECMWF). The centre offers different types of 
data: 

 (i) Its Reanalysis v5 (ERA5) data set (Hersbach et  al. 
2020) is available on a regular latitude-longitude 
grid with a spatial resolution of 0.25 degrees. It has 
a 1-hour temporal resolution and includes 37 pres-
sure levels ranging from 1000 hPa to 1 hPa. ERA5 is 

a reanalysis that is made available with a latency of 
5 days. Consequently, it cannot directly be used for 
ZWD forecasting. ERA5 is considered to be one of 
the best data sets of atmospheric variables, as con-
firmed by several studies. Recently, it has been used 
as reference data to train AI-based global weather 
models that, for the first time, outperformed tra-
ditional forecasting models, including GraphCast 
(Lam et  al. 2023) and Pangu-Weather (Bi et  al. 
2023). It is thus a natural basis for our data-driven 
ZWDX model.

 (ii) Forecasts from ECMWF’s highest-resolution 
forecasting model (HRES). HRES provides four 
runs per day (at 00/06/12/18  UTC) and is there-
fore suitable for real-time applications. Each run 
offers hourly forecasts of the meteorological vari-
ables, including specific humidity, up to a horizon 
of 90  h on a 0.25-degree latitude-longitude grid. 
These forecasts are available for 25 pressure levels 
that overlap the 37 levels of the reanalysis. HRES is 
considered to be among the best global medium-
range weather forecasts and is used for instance in 
WeatherBench 2 (Rasp et al. 2024) as a benchmark 
for data-driven global weather prediction mod-
els. Again, it constitutes a natural data source for 
ZWDX.

Out of the available pressure levels, we select nine as 
input for ZWDX (1000, 950, 925, 900, 850, 800, 700, 600, 
500  [hPa]), based on experience from our earlier study 
(Crocetti et  al. 2024b). All these levels are available in 
both ERA5 and HRES. While specific humidity values 
from the ERA5 are used to train ZWDX, specific humid-
ity forecasts from HRES are used as input at test time to 
predict future ZWD values. Despite their high quality, 
both data sets contain uncertainties and errors. These 
uncertainties are not considered in the training process 
of ZWDX. Users should be aware that these propagate 
and may degrade the predictions of ZWDX (or of any 
other model that uses them). Explicit modeling of input 
uncertainties may be an interesting direction for future 
work.

2.3  Vienna mapping functions (VMFs)
As an independent evaluation of the proposed ZWDX 
model, we compare ZWDX to the ZWD products 
from VMF1 and VMF3, for the application of PPP, see 
Sect.  3.2. All VMF products are provided via the VMF 
data server.2 There are operational versions, published at 
ca. 18:00 UT for the previous day; and forecast versions, 
published ahead of time at ca. 09:00 UT for the following 

2 https:// vmf. geo. tuwien. ac. at/; last access: 10.11.2024.

https://vmf.geo.tuwien.ac.at/
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day. VMF3 forecasts have 1 × 1 degree resolution, while 
VMF1 forecasts have 2 × 2.5 degree resolution. Moreo-
ver, VMF parameters are provided on a regular, global 
grid and as site-wise products for designated stations. For 
a meaningful comparison to ZWDX, we use the gridded 
forecast versions of VMF.

3  Methodology
3.1  ZWDX model setup
Our ZWDX model is trained on 12 years of data and 
based on Extreme Gradient Boosting (XGBoost; Chen 
and Guestrin 2016). XGBoost is an efficient, scalable 
ML algorithm based on an ensemble of regression trees, 
which are iteratively fitted with gradient boosting. The 
choice of algorithm is based on extensive empirical inves-
tigations carried out in Crocetti et al. (2024b). In that pre-
vious study, the model already proved to be very robust, 
thanks to the large sample size and to the regularization 
techniques applied during XGBoost training. ZWDX can 
be expected to have even greater robustness, given that 
its training set is an order of magnitude larger.

The target variables are station-wise ZWD values. 
The period comprising 2010 to 2021 is used to train 
the XGBoost model, while the year 2022 serves as test 
set for evaluation. The input features are: GNSS sta-
tion coordinates (latitude φ , longitude � , height h), rela-
tive time information (day of year doy, hour of day hod), 
and specific humidity q at nine pressure levels. Specific 
humidity values at the precise GNSS station location 
are derived through bilinear interpolation in the 0.25◦ 
grid. To account for the cyclic nature of doy, hod, and � , 
they are transformed to pairs of sin(·) and cos(·) values, 
resulting in two features per variable. Overall, the feature 
vector for a given location and time has 17 dimensions, 
which are all standardized prior to feeding them into the 
XGBoost model.

The hyper-parameters of the XGBoost algorithm were 
tuned for optimal performance through a grid search 
with 6-fold cross-validation. As that procedure is compu-
tationally expensive, it was run using only data samples 
from 1 year (2019). Going beyond our earlier work, we 
made sure it was ensured that individual folds are inde-
pendent in space and time. To that end, we held out a 
fixed set comprising 20 % of the training stations as vali-
dation set. Then, the data was temporally partitioned 
into six folds, each consisting of two consecutive months. 
During hyper-parameter tuning, the model was trained 
on five temporal folds of the training stations and evalu-
ated on the sixth temporal fold at the validation stations. 
That is, the test data was from locations and epochs that 
were never seen by the model during training, so as to 
maximize its capability to generalize across space and 
time. The procedure was repeated six times, such that 

each temporal fold was once used for validation. The 
average performance over the six runs was then com-
pared to select the most appropriate XGBoost settings, 
which turned out to be 200 trees, each with a maximum 
tree depth of 10, and a learning rate per boosting itera-
tion of 0.05. With those hyper-parameters the ZWDX 
model was retrained using the full set of training stations 
(including the validation stations) and the entire time 
period from 2010 to 2021.

The resulting model was then evaluated on the inde-
pendent test stations for the year 2022, which again have 
no spatial or temporal overlap with the training set. The 
predicted ZWDs for the test stations ŷi are compared to 
the reference ZWDs of NGL, yi . We compute the station-
wise RMSE values (Eq. 1) for all test stations and combine 
them into a final, global performance metric by taking the 
weighted mean (WRMSE; Eq.  2) with weights propor-
tional to the number of samples at a station ( #samplesi):

The ZWDX model was trained on the specific humidity 
of the ERA5 reanalysis data set. However, since ERA5 
cannot be directly used for forecasting into the future 
due to its delayed availability, we also tested the perfor-
mance of our ZWDX model (still trained on ERA5) when 
feeding it with HRES forecast data instead. Thus, the 
evaluation of ZWDX is run twice, once with the ERA5 
observations at the test stations to isolate the predic-
tive skill of the model from the quality of its inputs, and 
once with the HRES forecast data at the test stations to 
evaluate the true forecasting performance one can expect 
in an operational real-time setting, including errors due 
to inaccuracies of the HRES forecast values of specific 
humidity. Different forecasting (respectively, nowcasting) 
horizons from 0 to 48  h were examined, abbreviated as 
Fxx (e.g., F24 corresponds to the 24-hour forecasts).

3.2  Evaluation of ZWDX with PPP
Besides comparing the ZWDX predictions directly to the 
reference values from NGL, we further indirectly evalu-
ate their impact on a standard downstream task, namely 
precise point positioning (PPP). PPP requires a-priori 
ZWD values to initialise the computation. The aim of 
the experiment is to verify that ZWDX predictions are 
reliable and suitable as input for the downstream task. 
That is, we check whether PPP based on ZWDX reaches 
accuracies and convergence times comparable to those 

(1)RMSEi =

√

√

√

√

∑#samplesi
j (yi,j − ŷi,j)2

#samplesi

(2)WRMSE =

∑#stations
i

(

#samplesi · RMSEi
)

∑#stations
i

(

#samplesi
)
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with other state-of-the-art ZWD models. If they do, this 
would provide further, independent evidence for the 
reliability of our model. We do not expect large gains in 
accuracy, given that PPP refines the ZWD values as part 
of its processing and therefore may converge to the same 
optimum from different a-priori values. While faster con-
vergence may indicate a-priori values closer to the final 
optimum, but the speed-up (if any) also depend on the 
detailed behaviour of the underlying numerical optimisa-
tion scheme. Perhaps most importantly, the experiment 
highlights that ZWDX performs at least on par with 
some of the best current ZWD models and represents a 
viable alternative.

PPP is a standard GNSS processing technique used 
in various applications (Kouba et  al. 2017; Geng 2022), 
where the absolute position of a GNSS receiver is deter-
mined with the help of precise satellite products and 
observation models (Glaner 2022). PPP offers several 
advantages over relative positioning methods and nowa-
days can achieve centimeter-level positioning accuracy, 
similar to that of the widely used relative Real-Time-Kin-
ematic (RTK) mode. The primary concern with PPP is the 
rather long convergence time needed until the estimated 
parameters have reached the desired accuracy.

We carry out PPP analysis with the open-source soft-
ware raPPPid (Glaner and Weber 2023), based on dual-
frequency GPS and Galileo observations at 25  globally 
distributed stations in the International GNSS Service 
(IGS; Johnston et  al. 2017) Multi-GNSS Experiment 

(MGEX) for the year 2022 (Fig.  10 in the appendix). 
Table  1 summarizes the settings of the PPP processing. 
For a detailed explanation of the settings please refer to 
the raPPPid wiki3 and Glaner (2022).

The GNSS observations are processed using the ion-
osphere-free linear combination. Float and fixed coor-
dinate solutions are computed, estimating the phase 
ambiguities as real values or integer values, respectively. 
The float solution is calculated with an Extended Kalman 
Filter, while Least Squares Adjustment is used for the 
fixed solution (Glaner 2022). The fixing process is started 
after two minutes, since several epochs with valid float 
solutions are required to correctly fix the integer ambi-
guities. To model the tropospheric delays, ZWDX esti-
mates are introduced in the PPP observation model 
together with the corresponding ZHD values taken from 
the VMF3. As a benchmark, we perform two more PPP 
runs, where we use VMF1 or VMF3, respectively, for the 
tropospheric delays instead of ZWDX.

The PPP processing was restarted every 45 min. After 
every restart, we measure the convergence time and 
positioning accuracy with all three troposphere models. 
Overall, this procedure yields ≈ "272, 000" convergence 
periods for 25 stations and one full year of data (slightly 
less than the theoretically achievable 292,000 45 min 
intervals, due to occasional periods of missing data). 
Convergence is defined as the time when the 2D coordi-
nate difference has fallen below 10 cm for the float solu-
tion or below 5  cm for the fixed solution and remains 
below that threshold for the remainder of the 45  min 
interval (Glaner 2022).

Table 1 Processing settings of raPPPid

Software raPPPid (VieVS PPP)

Stations 25 globally distributed IGS MGEX stations (Fig. 10 in the appendix)

Period Year 2022

Processing mode Static, post‑processing, ionosphere‑free linear combination

Observations GPS L1 and L2, Galileo E1 and E5a

Observation interval 30 s, reset of the solution every 45 min

Observation ranking GPS: WC, Galileo: CQX

Raw observation noise Code 30 cm, phase 2 mm

Observation weighting Elevation based weighting, sin(elev2) , cutoff angle: 5 ◦

Satellite products MGEX orbits, clocks, and biases from Center of Orbit Determination Europe (CODE)

Troposphere model ZWDX or VMF3 (forecast, 1 × 1 degree, gridwise) or VMF1 (forecast, 2 × 2.5 degree, gridwise)

Correction models Relativistic effects, Phase Wind‑Up, receiver antenna height, phase center offsets and varia‑
tions, solid Earth tides, ocean loading, pole tides, Shapiro effect

Adjustment Extended Kalman Filter (float solution) and Least‑Squares‑Adjustment (fixed solution)

Parameters Receiver coordinates, GPS receiver clock error, Galileo receiver clock offsets, float ambiguities

Cycle‑slip detection dLi − dLj (threshold = 0.05 m)

Outlier detection Check of observed minus computed (code threshold = 25 m, phase threshold = 2 m)

PPP‑AR Fixing cutoff: 10◦ , fixing starts after 120 s, the highest satellite is selected as reference satellite

3 https:// vievs wiki. geo. tuwien. ac. at/ en/ raPPP id; last access: 10.11.2024.

https://vievswiki.geo.tuwien.ac.at/en/raPPPid
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The ZWD is normally estimated as part of the PPP 
solution to account for small-scale and unpredictable 
variations, e.g., due to the local weather. Here, we instead 
plug in the ZWD values predicted by a troposphere 
model (ZWDX, VMF1, or VMF3), such that imperfec-
tions of that model manifest themselves as range errors 
and propagate to float coordinates (and associated ambi-
guities); which then, in turn, degrade integer ambiguity 
fixing. In this way, one can assess the impact of different 
troposphere models on the quality of GNSS positioning.

4  Results
4.1  Performance of ZWDX
To assess the performance of our model on unseen data, 
it is applied to data recorded in the year 2022 at 2500 
held-out GNSS stations. That is, the test data are from 
locations and from a time interval never seen during 
training. We run ZWDX twice for those stations, once 
with specific humidities from the ERA5 reanalysis (as 
used during training), and once with HRES forecast data 
at various horizons (as in a real-time, forecasting setting). 

The predictions are then compared to GNSS ZWD esti-
mates from NGL, which are viewed as the reference 
values.

The performance on the test stations for the year 2022, 
in terms of RMSE, is depicted in Fig. 2. With ERA5 spe-
cific humidity data, the deviations from the NGL refer-
ence lie between 6 and 15 mm (0.05 and 0.95 quantiles) 
with a WRMSE of 10.8 mm. With HRES specific humid-
ity forecasts the performance obviously depends on the 
forecasting horizon. As expected, the WRMSE is lowest 
at F00 with 10.1  mm, and then slowly increases up to 
16.2  mm at F48. We note that HRES forecasts are pro-
cessed every 6 h with a latency of about 6 h, so forecasts 
beyond ≈ 12 h will normally not be required in practice. 
For these practically relevant horizons the ZWD accu-
racy remains below 10.8 mm.

To conclude, we find that feeding the ZWDX model 
HRES forecasts (with a reasonable horizon) instead of 
ERA5 data does not harm the quality of its ZWD predic-
tions. Consequently, we conclude that the HRES fore-
casting accuracy is good enough for (short-term) ZWD 

Fig. 2 RMSE over 2500 test stations that are both spatially and temporally disjoint from the training set, using as input either ERA5 (left) or HRES 
(right) with forecasting horizons between 0 to 48 h (F00–F48). Colors denote the number of stations, the black line denotes the WRMSE

Fig. 3 Daily RMSE over the test stations for the training (blue) and testing (orange) periods, using ERA5 as input
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forecasting. Somewhat counter-intuitively, the WRMSE 
with HRES forecasts up to a horizon of 12  h is slightly 
lower than with post-processed ERA5 data. For our pur-
poses the tiny difference (below 0.7  mm) is irrelevant, 
still it may be interesting for future work to investigate 
what causes this effect.

To contrast the prediction performance for the train-
ing and test periods and to ensure no overfitting occurs, 
we calculated per-day RMSE values over the test stations 
for the entire time window 2010–2022, see Fig. 3. Over-
fitting happens when a model latches onto spurious pat-
terns in the training data, and thus fails to make accurate 
predictions on new, unseen data. In previous works, we 
observed temporal overfitting, meaning that the model 
predictions had significantly higher errors for epochs 
outside the training period (Crocetti et  al. 2024b). The 
similar performance of ZWDX for both the training and 
testing periods (see Fig. 3) confirms that the model does 
not overfit temporally and can reliably predict ZWD for 
new epochs, which is an important improvement. The 

daily RMSE during the test period is only slightly worse 
(9.5 mm) than during the training period (9.1 mm); indi-
cating that the ZWDX model generalizes well and can 
handle the atmospheric conditions encountered in 2022 
based on those observed in the preceding 12 years. Fur-
thermore, the error curves of different years are very sim-
ilar, meaning that the model is able to absorb inter-annual 
variability due to multi-year atmospheric oscillations.

The daily RMSE time series highlights a prominent sea-
sonal signal. This is consistent with the known seasonal 
variations of ZWD: Higher temperature and humidity 
during summer cause an increase in ZWD and the asso-
ciated uncertainty, especially in tropical climates. The 
much larger number of stations in Europe, North Amer-
ica, and Japan means that the seasonal behavior of the 
Northern Hemisphere dominates.

To examine the impact of the forecasting uncertainty in 
more detail, we also calculate daily RMSEs for ZWD time 
series derived from HRES forecasts for the year 2022, 
with three different forecasting horizons [F00, F24, F48], 

Fig. 4 Daily RMSE over the test stations for the test period, using either ERA5 (orange) or HRES (green) as input

Fig. 5 Global ZWD predictions for July 1, 2022, 00:00 UTC based on ERA5 (top left), and differences to predictions based on HRES forecasts 
with horizons F00 (top right), F24 (bottom left), and F48 (bottom right). Histograms inside the colorbars depict the distribution of the deviations
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see Fig. 4. The corresponding average per-day RMSEs are 
[10.2, 12.6, 16.3] mm, respectively, again confirming the 
gradual inflation of the prediction errors as one increases 
the horizon. As a baseline, we also show the time series 
of daily RMSEs based on ERA5 specific humidities (cf. 
Fig. 3).

The ZWDX model can predict a ZWD value at any 
desired location on Earth and for any point in time for 
which ERA5/HRES fields are available. As an example, 
we have estimated ZWD values on a dense latitude/lon-
gitude grid with 0.25◦ grid spacing, for July 1, 2022, at 
00:00 UTC, see Fig. 5. To study whether there are system-
atic patterns of deviation between predictions based on 
(presumably more accurate) ERA5 reanalysis data or in 
HRES forecasts with varying horizon, we compute four 
such maps using [ERA5, F00, F24, F48] and display pair-
wise differences between ZWDs based on ERA5 or on 
HRES forecasts. As suggested by the earlier quantitative 
comparisons, ERA5 and F00 are very similar: on aver-
age the ZWD values differ by 5.2 %. For longer horizons, 
they then slowly increase, to 6.4 % for F24 and 8.5 % for 
F48, respectively. Importantly, there are no discernible 
geographic patterns. The differences are centered around 
zero and distributed fairly uniformly across the Earth, 

suggesting that using ZWDX with HRES forecast data 
(rather than data from ERA5 reanalysis) does not intro-
duce regional biases.

Figure  6 compares the reference ZWD from NGL to 
ZWDX estimates, exemplary for the GNSS test station 
BRUX, located in Belgium. The top plot shows that the 
ZWDX estimates (orange) are in close agreement with 
the reference ZWDs from NGL (green), with a correla-
tion of 0.98. In the bottom plot, we display the deviations 
between the reference and ZWDX predictions based 
either on ERA5 (black line) or on HRES (color-coded 
according to the forecasting horizon). The plot again con-
firms that the progressively larger uncertainty of longer-
term forecasts does not lead to systematic biases. Rather, 
it causes zero-mean fluctuations with higher amplitude, 
particularly during the summer months, where ZWD 
values are generally larger due to the higher water vapour 
concentration.

Finally, an inter-comparison between NGL, ZWDX, 
and the VMFs is carried out. To that end, we compute 
ZWDs for the test stations with the different tropo-
sphere models and compare them in terms of WRMSE, 
see Table  2. ZWDX reproduces NGL ZWDs bet-
ter (10.8  mm) than both VMF1 (15.2  mm) and VMF3 
(12.2  mm). The comparison between ZWDX and the 
VMFs shows a better agreement for VMF3 (11.4  mm) 
than for VMF1 (14.5 mm). For the sake of completeness, 
we also compared VMF1 and VMF3, which agree well 
with a WRMSE of 7.9 mm.

4.2  Performance of PPP analysis
ZWDX is a generic, versatile ZWD model that can be 
employed in a range of applications. Here, we use PPP to 

Fig. 6 Time series for GNSS station BRUX. Top: ZWD from NGL (green) and from ZWDX driven by ERA5 (orange). Bottom: Deviations between NGL 
and ZWDX driven by ERA5 (black), as well as between NGL and ZWDX driven by HRES (forecasting horizon color‑coded from blue to red)

Table 2 WRMSEs [mm] of the test stations between different 
troposphere models

NGL ZWDX VMF1

ZWDX 10.8

VMF1 15.2 14.5

VMF3 12.2 11.4 7.9
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independently and indirectly evaluate how well ZWDX 
estimates support a practical downstream application. As 
a benchmark, we compare results achieved with ZWDX 
to those with two state-of-the-art models, VMF1 and 
VMF3. The float and fixed PPP coordinate estimates are 
compared with the daily IGS coordinate solutions, which 
serve as ground truth.

Figure  7 displays the position accuracy (95% quantile 
of the positioning errors over all convergence periods) 
as a function of time, for both the float and fixed solu-
tion. The left graph shows height errors and the right one 
shows the 2D position errors. In the float solution, the 
2D accuracy is not affected by the choice of ZWD model, 
whereas for the height, ZWDX performs best, followed 
by VMF3.

The impact of the ZWD model on the fixed solu-
tion is more pronounced. The reason is that integer 
ambiguity fixing is based on the float ambiguities, 
partly absorbing imperfections of the troposphere 
model. Consequently, the contaminated float ambigui-
ties compromise the fixing of integer ambiguities and, 
with it, the quality of the fixed coordinate solution. 
Again, VMF1 performs worst, while ZWDX reaches 
the best accuracy and the fastest convergence time. 
Furthermore, the height component is more sensitive 
to imperfections of the troposphere model than the 2D 
position due to stronger correlations.

The left graph in Fig. 8 shows the cumulative histo-
gram of 3D positioning errors for the final estimates 
after 45 min, for both the float and fixed solutions. It 
is evident that ZWDX reaches high accuracies more 

Fig. 7 95 % quantile of the height (left) and 2D position (right) accuracy as a function of time. Results based on ZWDX, VMF1, and VMF3 are 
depicted in blue, orange, and green respectively. The float solution is depicted as solid lines while the fixed solution is depicted as dashed lines. The 
convergence criteria thresholds based on the 2D accuracy are annotated in the right plot

Fig. 8 Empirical cumulative density function of 3D positioning errors after 45 min (left) and time to convergence (right). Colors denote different 
troposphere models and solid vs. dashed lines denote the float and fixed solutions, respectively
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often than VMF3, which in turn outperforms VMF1. 
The right graph shows the associated cumulative his-
togram of convergence times. Convergence times for 
the float solution are unaffected by the choice of ZWD 
model, whereas the fixed solution converges fastest 
with ZWDX and slowest with VMF1. More detailed 
statistics that further support these observations are 
listed in Tables 3 and 4 in the appendix.

Figure  9 depicts the distribution of station-wise 3D 
accuracies for the float (top) and fixed (bottom) solu-
tions. As explained above, the impact of different 
ZWD models is more pronounced for the fixed solu-
tion. While the differences are generally small, there 
is again a fairly consistent ranking, with ZWDX per-
forming best and VMF1 performing worst. Interesting 
cases with relevant differences include stations MAW1 
(Antarctica), UFPR (Brazil), and KOKV (Hawaii). At 
these stations, we can observe considerable differences 
in accuracy, highlighting once more the robustness 

of ZWDX across different geographic and climatic 
regimes.

5  Conclusions and outlook
We have introduced ZWDX, a novel model capable of 
predicting ZWD values anywhere on Earth. Its novelty 
lies in a fully data-driven design. Rather than rely on 
hand-crafted relations derived from physical intuition, 
ZWDX derives its predictive skill from training on vast 
amounts of paired ERA5 reanalysis and NGL ZWD data, 
prioritizing predictive skill over low-dimensional, inter-
pretable equations. The model has been evaluated on an 
independent test set of more than 200 million samples. 
ZWDX is generic and applicable across a range of tasks 
that require knowledge of ZWD, ranging from VLBI 
through PPP all the way to GNSS meteorology and cli-
mate analysis. Its stable performance when driven with 
HRES forecasts instead of ERA5 data also opens the door 
for real-time applications that necessitate (short-range) 

Fig. 9 3D position accuracy from the float solution (top) and fixed solution (bottom). Results based on ZWDX, VMF1, and VMF3 are depicted 
in blue, orange, and green respectively. The solid areas represent the accuracy distribution (aligned right for ZWDX and left for VMF1 and VMF3). The 
circles represent the 95 % quantiles
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ZWD forecasting. A practical advantage of ZWDX is that 
it is simple to use and does not require the user to down-
load any external data.

Specifically, ZWDX employs the XGBoost algorithm 
and has been trained on a large set of observations from 
16,664 globally distributed GNSS stations, collected 
hourly over the period 2010–2021. ZWDX takes as input 
the geographical location, time of year, time of day, and 
specific humidity values at nine pressure levels. During 
training, specific humidity values from the ERA5 reanaly-
sis are used as input. Due to its large and comprehensive 
training set of over 8.2 · 108 samples, distributed across 
the globe and spanning 12 years, the model is globally 
applicable and able to extrapolate outside of the train-
ing period. Consequently, ZWDX is also suitable for 
real-time ZWD forecasting by utilizing specific humidity 
values from the HRES forecasts predicted with meteoro-
logical models.

The model was evaluated at 2500 GNSS stations not 
included in the training set, and using observations from 
the year 2022, i.e., outside of the observation period 
used for training. With ERA5 reanalysis data as input, it 
achieves a WRMSE of 10.8 mm. Since ERA5 data is only 
available with a latency of 5 days, adjustments must be 
made for real-time or forecasting applications. While 
it would, in principle, be possible to train a model that 
predicts ZWD values solely based on past ERA5 data, 
the data gap of several days would lead to high uncer-
tainties. We therefore prefer to make predictions based 
on meteorological forecasts (in our case, HRES), even if 
these are inherently less reliable than reanalysis data. We 
have demonstrated that ZWDX performs well in such 
a real-time scenario, i.e., for short forecasting horizons 

HRES can serve as a substitute for ERA5. For nowcast-
ing (horizon 0 h), the results match those with reanaly-
sis data, with a WRMSE of 10.1  mm. For lead times of 
up to 12 h—the most important range, given that HRES 
forecasts are updated every 6  h—the WRMSE remains 
below 10.8 mm. Even with lead times of 24 and 48 h the 
WRMSE remains below 17  mm. Also important is that 
the differences between ZWDX predictions based on 
either ERA5 or HRES barely exhibit spatial patterns and 
are normally distributed around zero. In other words, 
real-time predictions based on atmosphere forecasts do 
not have significant regional biases and are not expected 
to be systematically less accurate in any specific part of 
the world. Still, it may be interesting to also train a dedi-
cated model for HRES data, and to compare it to our 
replacement scheme.

The robustness of the XGBoost algorithm, demon-
strated in Crocetti et  al. (2024b), makes the ZWDX 
model tolerant against moderate levels of input noise. 
Still, one limitation of the current model is that it lacks 
a mechanism to explicitly quantify the uncertainty of 
its output values. Moreover, also uncertainties in the 
meteorological input are not propagated through the 
model. Extending the model to handle variable and het-
eroscedastic uncertainties in its inputs (i.e., the specific 
humidity values) and to quantify the uncertainties of 
its outputs (i.e., the ZWD values) will be an important 
direction for future work.

To further investigate the impact of ZWDX on down-
stream GNSS processing, we employ it as a troposphere 
model for PPP and compare its performance to the 
state-of-the-art. The PPP analysis constitutes an indi-
rect evaluation, but is independent of the training data 

Fig. 10 Location of the 25 globally distributed IGS MGEX stations used in the PPP analyses
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(ERA5 specific humidities and NGL ZWDs). Data from 
25 independent GNSS stations operated by the IGS 
were processed with the open-source software raPPPid 
using either ZWDX, VMF1, or VMF3 to model tropo-
spheric delays. The GNSS data were processed in blocks 
of 45 min, resulting in over 2.7 · 105 individual conver-
gence periods for the positioning task. For float coordi-
nate solutions, the height component was determined 
most accurately when using ZWDX (whereas there 
were no noticeable differences in the 2D coordinates). 
As a consequence, the fixed solution reached higher 3D 
positioning accuracy with ZWDX than with the other 
tropospheric delay models and also converged faster.

Beyond GNSS positioning, ZWDX has potential for 
GNSS meteorology and global climate analysis. In a 
complementary study, we already calculated global 
ZWD trends and anomalies over time and could con-
firm a positive trend in the Northern Hemisphere and 
a negative trend in the Southern Hemisphere. The 
study also revealed that (time-lagged) ZWD anomalies 
are indeed strongly correlated with the El Niño South-
ern Oscillation (Crocetti et al. 2024a). We believe that 
ZWDX’s ability to efficiently generate global ZWD 

fields and time series may also be valuable for further 
research in atmosphere and Earth system science.

The ZWDX model, as well as its hourly ZWD predic-
tions on a 0.25◦ grid, are publicly available at the Geo-
detic Prediction Center of ETH Zurich.4 Additionally, 
we provide an API where users can query ZWDX to 
receive ZWD values for a given location and time.

Appendix A
See Fig. 10 and Tables 3, 4.
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Table 3 Statistics of the float solution for different tropospheric 
models

ZWDX VMF3 VMF1 Unit

Average convergence time 9.90 9.95 10.02 [min]

Percentage of no convergence 3.05 3.21 3.50 [%]

Median 3D position difference of all 
epochs

7.7 8.5 9.0 [cm]

Average 2D position difference 
after 45.0 min

2.8 2.9 3.0 [cm]

Average 3D position difference 
after 45.0 min

5.3 6.0 6.7 [cm]

Table 4 Statistics of the fixed solution for different tropospheric 
models

ZWDX VMF3 VMF1 Unit

Average time to correct fix 4.73 5.04 5.40 [min]

Percentage of no correct fix 1.18 1.31 1.56 [%]

Median 3D position difference of all 
epochs

3.1 3.4 3.7 [cm]

Average 2D position difference 
after 45.0 min

1.1 1.1 1.2 [cm]

Average 3D position difference 
after 45.0 min

3.9 4.3 4.9 [cm]

4 https:// gpc. ethz. ch/ Tropo sphere/; last access: 10.11.2024.

https://gpc.ethz.ch
https://github.com/TUW-VieVS/raPPPid
https://github.com/TUW-VieVS/raPPPid
https://gpc.ethz.ch/Troposphere/
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