Faculty of Informatics

FAKULTAT
FUR INFORMATIK

Straightjacket: Tightening
Process Execution Policies at
Runtime

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering/Internet Computing

eingereicht von

Adel Gadllah BSc
Matrikelnummer 0828330

an der Fakultat fur Informatik
der Technischen Universitat Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Georg Merzdovnik BSc

Wien, 13. April 2015

Adel Gadllah Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. 4+43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Straightjacket: Tightening
Process Execution Policies at
Runtime

Faculty of Informatics

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering/Internet Computing
by

Adel Gadllah BSc
Registration Number 0828330

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Georg Merzdovnik BSc

Vienna, 13" April, 2015

Adel Gadllah Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Adel Gadllah BSc
Am Schépfwerk 29/14/27 A-1120 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. April 2015

Adel Gadllah

Acknowledgements

I’d like to thank my advisor Edgar Weippl for allowing me to work on this thesis and
the team at the SBA Research Group for providing the infrastructure in form of a git
repository and access to the SPEC CPU2006 benchmark suite. I’d also like to thank
Matthias Neugschwandtner for suggesting this interesting topic. Special thanks go to my
co-advisor Georg Merzdovnik for his support, valuable feedback and advice during my
work on this thesis. Finally, I'd like to thank everyone else who I worked with during my
bachelor and master study at the Vienna University of Technology.

vii

Kurzfassung

Das Principle of the Least Privilege ist ein bekanntes und géngiges Prinzip fiir die
Entwicklung von sicheren Anwendungen. Es besagt, dass Anwendungen nicht mehr Privi-
legien haben sollen als fiir deren Aufgabe notwendig ist. Das minimiert den Schaden, den
ein erfolgreicher Angriff verursachen kann. Bestehende Sandboxing Techniken fokussieren
jedoch darauf die Privilegien ganzer Anwendungen zu beschrinken. Unterschiedliche
Teile einer Anwendung bendtigen jedoch unterschiedliche Privilegien. Diese Arbeit stellt
STRAIGHTJACKET vor, eine Sammlung von Werkzeugen fiir das Betriebssystem Linux,
die erlauben die Privilegien von Anwendungen auf der Ebene einzelner Funktionen zu
definieren. Entwickler kdnnen die Privilegien von Funktionen durch Anmerkungen im
Quelltext der Applikation definieren ohne die Funktionen selbst umschreiben zu miissen.
Dariiber hinaus enthélt STRAIGHTJACKET einen statischen Analyzer, der dabei hilft die
bendtigten Privilegien einer Funktion zu ermitteln. Verdnderungen am Betriebssystem
sind nicht notwendig. Die Evaluierung zeigt das STRAIGHTJACKET géingige Exploits
blockiert ohne signifikante Auswirkungen auf die Anwendungsperformance zu haben,
wenn die Anmerkungen nicht iiberméfig eingesetzt werden. Das wére der Fall wenn
beispielsweise jede einzelne Funktion einer Anwendung mit Anmerkungen versehen wird.
STRAIGHTJACKET wird auch mit Fokus auf die Benutzbarkeit entwickelt und kann
ohne groflien Aufwand in bestehende Entwicklungsumgebungen und Arbeitsablidufe von
Entwicklern integriert werden.

ix

Abstract

The principle of the least privilege is a well-known and established design practice for
developing secure applications. It states that applications should not have more privileges
than necessary to operate. That limits the damage that can be done by an attacker
in case of a successful exploit. Existing sandboxing technologies focus on confining
whole applications. However, different parts of an application require different privileges
than others. This thesis introduces STRAIGHTJACKET, a set of tools for the Linux
operating system that allow assigning different levels of privileges to individual functions
of an application. It allows the developer of the application to define the required
privileges by adding annotations to the application’s source code without having to
rewrite the affected functions. STRAIGHTJACKET includes a static analyzer that helps to
identify the required privileges of a specific function. It does not require any operating
system modifications. The evaluation shows that STRAIGHTJACKET blocks common
exploits successfully. The introduced performance impact is not significant as long as the
annotations aren’t overused. Overusing for instance would be annotating every single
function of an application. STRAIGHTJACKET is developed with usability in mind and
can be easily integrated into existing build processes and developer workflows.

X1

Kurzfassung|

Contents!

Contents

2.3

SECCOIMP| « « v v o e e e e e e e e

2.4 Text processing| e e e

[2.5 Static analyzer| Lo

3.3 Security of sandboxes|

3.4 Summary and Conclusion| 000

Annotation based sandboxing|

4.1 System overview| e
4.2 Run time Enforcementl o oo
4.3 _Annotation| e
4.4 Code generator|
4.5 System call identification|00,
4.6 Automated annotationlo
/ Usage] e

ix

xi

xiii

11
11
14
15
16

19
19
21
26
29
32
37
39

xiii

6_Evaluation|

6 Summary and Conclusion|

[Further work]

|[Bibliography|

41
41
20

57

59

61

CHAPTER

Introduction

This chapter gives an overview of this thesis. It describes the problem that this thesis is
solving as well as the used methodology followed by an overview of the thesis structure.

1.1 Problem statement

The principle of the least privilege [I] is a well-known and established design practice for
developing secure applications. It states that applications should not have more privileges
than necessary to operate. That limits the damage that can be done by an attacker in
case of a successful exploit. [2]

There are multiple ways how an operating system can limit an application’s privi-
leges. Operating systems implement discretionary access control (DAC), which controls
access rights based on ownership of objects like files, directories and processes and/or
mandatory access control (MAC), which restricts access unless explicitly granted by a
policy. One example of a MAC system on Linux is SELinux. Access control lists (ACLs)
are also implemented by modern operating systems to complement traditional file access
permissions. [3] [4] [5]

Access controls can be circumvented by attacking the entity that enforces them. For
instance to circumvent policies imposed by the Java VM, the attacker has to focus on
attacking the Java VM itself. For native applications that entity is the operating system
kernel. The entry points from user space to kernel space are system calls. A system call
lets the kernel do work on behalf of a user space process based on the input provided by
that process. A bug in the processing of the user supplied input may allow an attacker
to circumvent kernel enforced privileges. To reduce the likelihood of such an attack the
set of available system calls to an application should be restricted to the ones that are
actually needed to do the desired job. [6] [7] []]

In addition to the operating system provided access controls sandboxing systems have
been developed to confine and isolate applications from each other while limiting the set
of available privileges further. Sandbox solutions are generally used when executing code
from untrusted sources. One example is Google’s native client [9], which executes native
code inside a web browser. Other examples are application sandboxes used on mobile
operating systems like Android, Firefox OS or i0S. [10] [11] [12] [13]

Currently available and deployed systems focus on limiting the privileges of a single
process or a group of processes. But different parts of an application may require higher
privileges than others. For instance some part of the application might need to access file
system or network resources, while other parts can operate without any of those. The
consequence is that developers have to either accept that some parts of their programs
runs with higher privileges than necessary or resort to multiple process solutions that
increase the complexity of the software and thus increase the likelihood of adding new
vulnerabilities in the code.

Existing sandboxes and MAC systems are also mostly disconnected from the program.
For instance the SELinux policy on systems like the Linux distributions Fedora or Redhat
Enterprise Linux is in a centralized selinux-policy package which is not written by the
application authors.

Having a set of tools that allow developers to restrict privileges by annotating sec-
tions in the program code would solve those problems. Privileges are restricted by
reducing the set of available system calls and/or system call arguments. The limited set
of available system calls would limit the attack surface that could be used to escalate
privileges by attacking the kernel and at the same time different parts of the process can
run with different set of privileges. In addition to preventing attacks on the operating
system kernel the applications themselves are protected from generic shell codes that
open a command shell or make network connections to an attacker’s machine, by limiting
the system calls that an attacker could use. For instance if executing binaries is not
allowed, the attacker cannot spawn a command shell. If the system calls required for
network access are disallowed the attacker cannot run shell code that connects to the
network. By only having to annotate the code, the developers do not have to write code
that does the actual enforcement.

1.2 Methodology

The methodological approach consists of three steps.

The first step is a literature review that helps to get background knowledge of the
required technologies as well as determining the state of the art in the area of sandboxing
technologies.

The second one is the implementation of the tools starting with the run time enforcement
code, followed by defining a suitable annotation syntax and developing the code generator
that transforms the annotations into run time enforcement code. In addition to devel-
oping the code generator a static analyzer to help with system call identification and a
tool to automatically apply annotations based on the identified system calls are developed.

Finally, the results are evaluated in terms of exploit mitigation effectiveness and perfor-
mance overhead. Exploit mitigation effectiveness is evaluated by analyzing the restricted
set of system calls available in the context of exploits for a selection of publicly docu-
mented vulnerabilities. Performance is measured using the SPEC' CPU2006 benchmark
suite. After running the benchmarks unmodified to determine the baseline performance,
the benchmark runs are repeated with different levels of annotations to measure the
performance overhead.

1.3 Overview

The structure of this thesis follows the steps of the methodology.
It is organized as follows:

In fundamentals required for understanding the following chapters are presented.
It is followed by where the state of the art of sandboxing technologies with
focus on run time and partial process policies is discussed. Afterwards in the
implementation of the proposed solution is described in detail followed by a short usage
documentation of the developed tools. In the developed solution is evaluated
in terms of exploit mitigation effectiveness and performance impact. In the
thesis is summarized and a conclusion is drawn from the results. Finally, based on the
results limitations and possible further improvements are discussed in

CHAPTER

Fundamentals

This chapter explains some fundamentals that are required to understand the proposed
solution as well as the implementation of this thesis. The first section explains operating
system internals like kernel, processes, threads and system calls. While the concept of
kernel, processes or thread are present in almost all operating systems details here focus
on UNIX, or in particular Linux, because the implementation is written for the Linux
operating system. In addition to that methods and techniques that are required for
the implementation like seccomp, text parsing or static analyzing are covered in this
chapter. The implementation and how the concepts introduced in this chapter are used
are explained in detail in Finally, fundamentals required for understanding
the exploit mitigation evaluation are described.

2.1 Operating system internals

2.1.1 Kernel

The kernel is the central part of an operating system that is responsible for managing
resources and user programs. It is the first part of an operating system that gets executed
when booting the system. It usually runs with higher privileges then ordinary user
processes and is responsible for managing and enforcing privileges. The kernel abstracts
hardware, manages the system memory and offers services for user programs to interact
with it. Those services can be used by programs for tasks like accessing hardware,
communicating with each other, creating new processes or allocating resources. The
primary means for programs to interact with the kernel is by issuing system calls. [14]

2.1.2 System call

A system call is a routine provided by the operating system kernel that can be used by
user programs to do various tasks like reading from a file, executing a new program or

5

opening a network socket. That works by setting the values of the system call like its
unique number and arguments in processor registers and then trigger an interrupt which
signals the kernel that a system call is to be executed. The number of the system call
can differ between CPU architectures; the registers for the arguments are specified in
the architecture’s calling conventions. The kernel then suspends the process and reads
the values from the processor registers, performs the desired operation and writes back
the result into either processor registers and/or the memory of the calling process and
switches back to the process’s context. This means that a system call runs within the
kernel’s context and therefore a bug in the kernel’s handling of a particular system call
can potentially be exploited to escalate the privileges of the calling process. In addition
to that the actions that a process can do without issuing system calls are limited. It
cannot create nor interact with other processes and cannot access resources like the file
system or the network without using system calls. [15] [14]

2.1.3 Process

A process is a running instance of a program. Once a program is executed the operating
system starts a new process for it. The process contains both the program code and
its (current) state, also called context. The context is used by the operating system to
manage the process and by the processor to execute the program. This includes processor
register values like the program counter, which stores the current position in the program
that is being executed, meta-information like a unique process id, execution priority
or the information about the owner of the process. A multitasking operating system
manages multiple processes simultaneously which means that a running process can get
suspended to make room for another process to be executed. The context is used by
the operating system to save and restore the state of the processes during such a switch,
hence this action is called context switch. Part of the process is also the volatile memory
used by the process as well as resources like file descriptors.

Processes are isolated from each other which mean that two processes cannot access each
other’s memory. This is important for both system stability and security. Processes can
communicate with each other using inter process communication (IPC) facilities provides
by the operating system like shared memory, sockets or pipes. [14]

2.1.4 Thread

Threads are similar to processes with the distinction that they belong to a specific process
and share both memory and resources with it. Threads are used to do work while the
process is being blocked for instance waiting for user input or an I/O operation to finish.
Another use case is to split a task in multiple parallel sub tasks, so that each of them
can run simultaneously and improve performance by distributing the work on multiple
processors or processor cores. This is possible because threads can be scheduled by the
operating system like processes. In fact on Linux threads are implemented as processes
that share the memory and other resources like file descriptors with the parent process.

6

This implies that threads can directly manipulate the memory of the process and therefore
do not need to use inter process communication for interaction, which lowers the overhead
and thus improves performance. This can cause problems when multiple threads try to
access and/or manipulate the same memory regions simultaneously. To deal with that
problem the operating system and/or the processor provide locking mechanisms and
atomic operations. An atomic operation cannot be interrupted and therefore the memory
it accesses cannot be changed by a different thread while it is executing. [14]

2.2 Sandbox

A sandbox is a system that allows running code in an environment with a well-defined
policy that restricts the privileges of that code. A sandbox can be used for multiple
purposes such as running untrusted programs in a safe environment or to limit the
damage caused by compromised applications. A program running outside of a sandbox
in general has the same privileges as the user that executed it. [16] [17]

2.3 Seccomp

Linux 2.6.23 introduced the secure computing mode, in short seccomp, which allows
limiting the system calls available to the calling process. When a process enables this
mode, called SECCOMP_MODE_STRICT, using the prctl system call the process can
only use the system calls read, write, __exit and sigreturn from this point on. Trying to call
any other system call results into the kernel sending a SIGKILL signal to the process and
thus forcibly quit it. In Linux 3.5 a second mode, called SECCOMP_MODE_FILTER
or seccomp-bpf, has been introduced that allows loading a custom Berkeley Packet Filter
(BPF) into the kernel which can arbitrarily filter (deny or allow) system calls and system
call arguments.

At first the application loads the filter in form of a BPF program into the kernel. From
this point on the kernel invokes the BPF program each time the application issues a
system call and decides whether to allow or deny the system call based on the result of
the BPF program.

The filter mode provides the required flexibility for the implementation of the run
time enforcement of the annotated system call privileges. [18]

2.4 Text processing

STRAIGHTJACKET is implemented as an additional compilation step and therefore text
processing methods are required for the implementation. Those are described in this
section.

2.4.1 Lexer

A lexer or tokenizer is a tool that reads an input file or stream and split it into entities
called tokens based on predefined rules. Tokens have a higher level semantics then the
input that they got created from. For instance a lexer can be used to read a text file and
generate a token for every word. Those tokens can then be used for further processing of
the input. Such a program can be generated by a tool like flex, which has been used for
the implementation in this thesis. [19] [20]

2.4.2 Parser

A parser is a program that reads an input, often in form of tokens, validates its syntax,
determines its structure and applies a semantic meaning to it. For instance a parser
can be used by a compiler to analyze the source code and generate machine code that
matches the semantics of the source code. A parser can be generated using tools like
bison or yacc. For this thesis bison has been used, which is described in the next section.
119] [20]

2.4.3 Bison

Bison is a parser generator compatible with yacc. It uses an input file ending with the
extension .y which contains the grammar and actions that should be executed on specific
nodes. The input consists of tokens generated by a lexer. A bison rule is basically a
grammar rule that consists of a non-terminal on the left hand side and either terminal
symbols (tokens) or other non-terminals on the right hand side. Multiple rules on the
right hand side can be separated using a pipe (|) operator which basically acts as a logical
or. That means that the rule applies to either of the structures on the right hand side
connected by the pipe operator. Each of the rules on the right hand side can optionally
have C code between curly braces which gets executed once the rule matches a part of
the input stream. Bison also allows recursive rules. A rule is recursive if the non-terminal
does not only appear on the left hand side but also on the right hand side. This is
often used to parse lists, like for instance in this thesis for parsing the list of function
arguments. One pitfall here is that a rule can be expressed using either right or left
recursion. Right recursive means that the non-terminal appears on the right hand side of
the rule, while left recursive means that the non-terminal appears on the left hand side
of the rule. While both have the same expressive power, i.e. they can match the same
inputs, the bison documentation recommends to always using left recursion because of
how the bison parser algorithm works. It uses a stack internally to keep track of the
processed terminals and non-terminals. A left recursive rule uses a bounded stack space;
while a right recursive rule uses stack space proportional to the size of the parsed input.
The latter can cause the stack to fill up quickly for large input files resulting into out of
memory errors. [20] [19)]

8

2.5 Static analyzer

A static analyzer is a tool that analyzes a computer program by examining its source code
or executable without actually running the program. In contrast to a static analyzer a
dynamic analyzer examines the program by running and monitoring it. A static analyzer
can be used to gather information about the program’s structure like its control flow or
call graph. It can also be used to find flaws in the program like memory leaks and security
vulnerabilities. For instance Evans at al. have developed a static analyzer that tries to
find security issues in applications. [2I] It is also possible to use both dynamic and static
analyzing, where the results of the static analyzer are used to guide the dynamic analyzer
to combine the advantages of both approaches. [11] [22]

2.5.1 LLVM

LLVM is a collection of tools and libraries for building compilers and related tools like
static analyzers and debuggers. It provides both its own assembly like language, called
LLVM IR (Intermediate Representation) and binary representation. LLVM IR is in
static single assignment (SSA) form in which variables are defined exactly once and each
assignment introduces a new version of a variable. This simplifies compiler optimization
algorithms. LLVM is not only used by the clang compiler, which is part of the LLVM
project itself, but also by external projects like the mesa graphics library where it is used
to compile and optimize shader code for graphic processing units. The LLVM project also
provides a static analyzer that can be used on its own and is integrated into development
environments such as Apple’s XCode or the code assistance plugin for the gedit text
editor. [23] The static analyzer developed as part of this thesis is based on LLVM.

2.6 Buffer Overflow

A buffer overflow is a bug in a program that allows an attacker to overwrite data on the
program’s stack. This happens when user supplied input is copied into a variable that is
stored on the stack without verifying that the data actually fits into it. The stack also
contains the return address of the function from where the program’s execution continues
after the function returns. By overwriting the return address the attacker can hijack the
program’s execution and let it execute arbitrary code. [24]

2.7 Shell Code

When exploiting a memory corruption vulnerability, like for instance a buffer overflow,
an attacker can often run arbitrary injected code with the privileges of the program. The
most common payloads try to open a command shell which allows the attacker to run
arbitrary commands as if he was logged into the system with the program’s privileges.
That’s why such code is commonly referred to as shell code. For remote exploitable
vulnerabilities however a local shell wouldn’t help the attacker to gain access to the

9

system. By opening a remote shell that listens on a network port similar to ssh or telnet
the attacker can connect to the victim’s system and run arbitrary commands. In case
this is not possible, for instance due to a firewall, the attacker can attempt to open a
reverse shell, which is a shell that connects back to the attacker’s machine to receive
commands from there. However shell code is not restricted to opening shells. [24] [25]

10

CHAPTER

State-of-the Art

Research in the area of restricting application privileges goes into multiple directions.
Some approaches rely on dynamic instrumentation or system call interception. While
others focus on capabilities, a system that allows applications to get privileges that are
generally only available to super users (root) without giving them the full set of privileges
that a root process would have. [26] [27]

3.1 Sandbox techniques

One of those is Capsicum, implemented for the FreeBSD 9 operating system. It adds
additional UNIX APIs that allow restricting access to resources like global file system
namespaces. For instance it restricts access to the /dev file system which contains
device nodes, that allow accessing hardware devices or system memory using regular
file operations. In addition to that it restricts some system call parameters to limit the
view of the system for the sandboxed application. One such example is the sysctl system
call for which it only allows around 30 out of 3000 possible parameters. That way a
sandboxed application can only use it to query information about its own process but
not gather system global information. Other examples of such system calls that act on
global objects are shm__open and openat. Those are restricted in a similar way. The
sandbox works by using a library called libcapsicum that a process can use to monitor and
maintain a sandboxed child process. Both processes can communicate via a UNIX domain
socket. The supervisor process, i.e. the parent process, can change the capabilities of
the sandboxed child at run time. They have demonstrated its use by applying it to the
Chromium Sandbox and comparing it to existing methods. The system however focuses
on confining entire processes. [28]

Capabilities are also implemented on Linux but are far more limited. They can be
used allow unprivileged processes to do privileged operations but are not flexible enough

11

to be a basis for a sandbox implementation. However, they can be used to reduce
the attack surface by having applications that otherwise would have to run with root
privileges run as unprivileged user. [27]

A solution presented by Shioya et al. implements a sandboxing system which changes its
behavior based on the current execution context of a program. The restrictions that are
applied by that sandbox therefore are not static over the lifetime of a process. Based on
function call chains and a policy file it decides which system calls a particular function
may use. In addition to limiting the access to system calls, a more relaxed approach
which only allows a system call with specific parameters is also implemented. A function
call chain is defined as follows: Suppose the main function calls a function named f which
in turn calls a function named g. That means that inside the function g the call chain is
g-f-main. The policy file defines which system calls are allowed in the context of g-f~-main.
The enforcement is implemented using a Linux kernel module that intercepts the system
calls. The effectiveness of the approach has been demonstrated by applying it to the
Qpopper POP server. The performance impact has been measured to be as low as 4%. [29]

A solution introduced by Liang et al. focuses on file system operations of untrusted
programs. It intercepts file write operations and applies them to a cache, called modifica-
tion cache. The file system visible to the sandboxed application includes those changes.
Once the application terminates the user can view the modifications and either commit
or discard them. While the primary focus is on file system accesses, the goal of the
solution is to prevent any operation that changes the system state. This is achieved by
monitoring more system calls than strictly necessary for just file system operations. The
system call interception is implemented using the ptrace system call, which works like
a debugger. This also implies that the sandboxed processes cannot be debugged by a
regular debugger, because a process cannot be monitored using ptmceﬂ from more than
process at the same time. [30]

A similar system called MBOX introduced by Taesoo Kim and Nickolai Zeldovich uses
seccomp-bpf in addition to ptrace to improve the performance. The monitoring process
does not have to run for every system call but only for those where the BPF filter triggers
a SIGSYS signal. However, the solution still imposes a performance overhead between
0.1% and 45.2% and suffers from the same problems due to the usage of ptrace. [31]

Kiriansky et al. introduced a solution named Program Shepherding which is based
on the Dynamo RIO instrumentation framework. It monitors control transfers within
a program like jump and return instructions and validates them against a policy. For
instance it can restrict access to shared libraries outside of defined entry points. Another
check it applies is that it prevents return instructions that do not target an instruction
directly after a call instruction. That way overwritten return addresses, a common
technique used by exploits to gain control over the program, get detected and denied

Yman ptrace

12

execution. In order to avoid the performance impact it uses caching techniques for
frequently executed code parts. One major advantage of this approach is that it needs
no modifications to existing programs. On the other hand dynamic instrumentation is
inherently architecture specific. The presented solution is limited to the x86 architecture.
[32]

Bryan Ford and Russ Cox developed a sandboxing library called Vz32 that works
entirely in user space and therefore does not require any kernel modifications. It runs on
the operating systems Linux, FreeBSD, and Mac OS X. It works by using dynamic code
translation, a technique used primarily by virtual machines to allow a guest operating
system to run unmodified on a host processor that has no dedicated virtualization sup-
port, to disallow unsafe instructions. It isolates memory accesses using the segmentation
hardware supported by the x86 architecture. They also did performance evaluations
and concluded that the performance overhead lies between 10% and 50%. While Vz32
is portable to different operating system due to the lack of kernel modifications, it is
tied to the x86 architecture. However, the concepts can be applied to other processor
architectures that support the required features. [16]

Rajagopalan et al. introduce an approach called System call monitoring using au-
thenticated system calls that uses binary rewriting, cryptography message authentication
codes (MAC), and static analyzing to enforce a system call policy. It works by first
analyzing the program’s binary and finding system call invocations. This is done by
searching for the ”int 0x80” instruction, which on x86 triggers a system call. The number
of the system call is retrieved from writes to the EAX register. Similarly arguments are
retrieved from writes to other registers. The MAC is build out of the system call, its
position, its static arguments and return address. The binary is then rewritten to pass
that MAC as an extra parameter to the kernel. In contrast to solutions that employ
security by using signed binaries ([33], [34]) the cryptography is only applied to system
calls. The kernel then verifies the MAC at run time before executing the system call.
The advantage of this approach is that it works on binaries and does not require manual
policy writing and has a low performance overhead. However, it requires that binaries
are compiled with relocatable code, but in practice most binaries are not complied with
relocatable code and therefore have to be recompiled from source. As with other binary
based solutions the analysis as well as the binary rewriting step is inherently architecture
specific. [35]

Silver et al. introduce an approach in a thesis called Implementation and Analysis
of Software Based Fault Isolation which implements address space isolation inside a single
process. It works by injecting additional instructions that trigger traps when a code part
tries to access memory outside of its assigned region, called fault domain. The goal of
the work was to avoid the cost of inter process communication while still having separate
address spaces. It has been implemented on the DEC Alpha platform. The additional
instructions, traps and validations add a performance overhead of around 30% compared

13

to an unmodified program. [30]

Systrace is a system call interposition mechanism for the OpenBSD operating system.
It enforces system call policies on unmodified programs. When a system call not listed
in the policy is run it can interactively ask the user for permission. This however relies
on the user being able to make correct decisions which is not always the case especially
for inexperienced users. [37] Many sandbox technologies build on top of it because
it is provided by the operating system. Aleksey Kurchuk and Angelos D. Keromytis
introduced an approach to build recursive sandboxes where a sandboxed process uses
systrace to further confine its child processes. [38]

In addition to securing access to information, sandboxing solutions can also be used
to restrict physical system resources like processor time or the amount of memory an
untrusted program can use. A malicious program can otherwise attempt a denial of
service attack by overusing such resources. A sandboxing solution developed by Dan et
al. from the IBM Watson Research Center implements such restrictions in addition to
restrictions to logical resources like file or network access. [39]

Sandboxes are also used by malware researchers and anti-virus programs to confine
potentially malicious software while analyzing them. [40] System call interception is also
used by intrusion detection systems that detect malicious behavior by examining system
call usage. [15]

3.2 Performance overhead of sandboxes

Virtual machines may also be used for software isolation, but they come with an over-
head especially when dealing with I/O and networking operations compared to simpler
solutions that do not virtualize a whole operating system. [41] A survey conducted by
Wen et al. compared existing sandbox solutions with virtual machines and concluded
that existing sandboxing systems are too restrictive while virtual machines add a high
performance overhead. [42] Another survey done by Faisal Al Ameiri and Khaled Salah
compared the performance of application level sandboxes and concluded that they mostly
affect I/O performance. [43]

To avoid the overhead of virtual machines and thus allow more customer applications
to be hosted on the same physical machine, cloud computing providers started using
sandboxed containers instead of virtual machines to separate customer instances from
each other. [44] [45] A PaaS (Plattform as a Service) system introduced by Krude and
Meyer implements such a container framework using seccomp. They conclude that by
using seccomp their solution can run on unmodified Linux systems and that there is
no performance overhead for computation tasks. Setup costs were also low and the
performance impact on network throughput was considered acceptable. [46]

14

Yoshihiro Oyama et al. proposed a solution to the performance overhead problem
added by security checks done by system call interception sandboxes. Their system tries
to avoid the expensive checks by predicting the program’s behavior based on system call
profiles of the program. A separate thread runs security checks for the predicted system
calls ahead of time and stores the results. Once the program tries to execute the system
call the result is either already available and the access can either be granted or denied
or the prediction was wrong in which case the security check has to be run in real time.
The system provides speed ups compared to a system that blocks the program each time
a security check has to be executed when two conditions are met. At first the security
check overhead has to be over a certain threshold and the amount of work a program does
between two system calls has to take enough time so that the security checks can run in
parallel. [47] A different approach introduced by Bo et al. uses seccomp in combination
with PBE theory to distinguish legitimate from malicious system calls. [48)]

3.3 Security of sandboxes

Most sandboxes apply restrictions based on system calls, given that those are the primary
way of interacting with the operating system. However, when not done correctly such
restrictions can be easily circumvented by “creatively” using the available system calls.
For instance UNIX systems follow the ”everything is a file” principle which means many
types of resources are identified and accessed by file descriptors. For instance a security
framework or a sandbox could limit access to sockets by monitoring access to the socket,
bind, read, and write system calls and then decide based on the passed in file descriptor
whether the application is allowed to read or write data to the socket. But if it does not
monitor the dup and dup2 system calls as well, the file descriptors initially returned by
the socket system call can be exchanged with others. Which means that further read
and write system calls would entirely bypass the sandbox. Tal Garfinkel has summarized
such traps and pitfalls in the paper Traps and Pitfalls: Practical Problems in System
Call Interposition Based Security Tools. [49] Other limitations of system call based
sandboxes are that denying a system call can have negative impacts on the behavior of
the application and might even lead to other security vulnerabilities. [50] For instance
improper handling of concurrency can lead to exploitable vulnerabilities as demonstrated
by Robert N. M. Watson. [51] This is especially true for user space based solutions. A
malicious application can try to replace the arguments of a system call from another
thread shortly after the monitoring process has validated them but before the system
call actually gets executed and escape the sandbox that way. This is possible because
threads share the same address space. [52]

Tal Garfinkel introduces a system called OSTIA that attempts to solve those prob-
lems. Instead of the common design of using a monitoring process that intercepts system
calls and decides whether to allow or deny them based on a policy, applications delegate
operations to agent processes that do the work on behalf of them. It works by using a
kernel module that intercepts system calls and calls back into a user space emulation

15

library which finally delegates the actual work to agent processes. Those do the work on
behalf of the application in case it is allowed by the policy. [53]

With the increasing use of sandboxing technologies attackers try to circumvent their re-
strictions by attacking the kernel. This means that the reduction of the kernel’s exposure
to applications is a crucial part when developing secure sandboxing systems. Kurmus
et al. introduced a system called kRazor which applies restrictions based on individual
kernel functions and not just system calls. It issues a reachability analysis from system
call entry points required by the application and restricts the available kernel functions
to only those that are required. They demonstrated that the exposed kernel functions
can be reduced by 30% to 80% percent depending on the application. [7] [8]

3.4 Summary and Conclusion

Sandboxing technologies are used in a various areas ranging from mobile devices, web
browsers to cloud providers. They are also used for running or analyzing untrusted code
like malware. The majority of existing tools however focus on confining entire processes.

Capsicum and the solution presented by Shioya et al. are implemented by modify-
ing the operating system. The former introduces an API that allows a supervisor process
to sandbox child processes while the later works with an external policy definition that
gets enforced by the kernel based on function call chains. Other approaches such as
Program Shepherding or the V32 library work entirely in user space and therefore
aren’t tied to the operating system. In fact Va32 runs on multiple operating systems.
They do however rely on the underling CPU architecture due to the use of dynamic
instrumentation or dynamic translation. While Vz32 is a library that can be used by
modified applications, Program Shepherding does not require any program modifications
and acts just on the program binary. A different approach by Rajagopalan et al. uses
cryptography to authenticate system calls against a policy. It does however require kernel
level modifications and the installation step, which does static analyzing on the binary
and generates a new binary, is tied to a specific CPU architecture. Other solutions like
MBOX make use of user space tracing using the ptrace system call.

Sandboxing technologies in general add a performance overhead due to the additional
checks that have to be done. A possible solution to this is trying to do the computations
ahead of time using a speculative approach where further system calls are predicted from
the past behavior. This leads to good results when the application does enough work in
user space between two system calls to leave time for the parallel security checks. The
prediction also has to be correct. Seccomp based solutions tend to perform relatively good
because user space processing, like computation task, are not affected by the sandbox at
all.

Sandboxes primarily work by intercepting or monitoring system calls, because they

16

are the primary means of interacting with the operating system. However, there are
some system calls that can be used differently as they were intended and render the
sandbox ineffective when not considered as demonstrated by Tal Garfinkel. In addition
to that an application might not deal with a denied system call and enter undefined and
potentially vulnerable behavior once a system call is denied by a sandbox. User space
based solutions are also vulnerable to race conditions while validating system calls.

While there exist sandboxing solutions that can change the enforced privileged at run
time they suffer from limitations like being architecture specific, require operating system
modifications, introduce a large performance overhead, or requiring large source code
modifications.

The solution presented in this thesis, STRAIGHTJACKET, avoids the problem of un-
defined behavior after a denied system call by simply killing the process when a violation
occurs. It does not use any user space monitoring process which removes a potential
attack target and performance overhead source.

17

CHAPTER

Annotation based sandboxing

This chapter describes the annotation based sandboxing approach and issues encountered
during the implementation in detail. The code generator processes an annotated C
program file and generates a new file which includes the run time enforcement code out
of the annotations. The generated file can then be compiled using a C compiler like gcc
or clang. In addition to that the code generator can pass the generated code directly to
the compiler using a pipe, which simplifies inclusion into existing build systems. The
following sections describe how the run time enforcement mechanism works and how
the parsing of the input file is done. A static analyzer has been implemented to help
developers to identify which system calls a specific function needs. The implementation
of that static analyzer is described at the end of this chapter.

4.1 System overview

STRAIGHTJACKET is organized as follows:

/
| analyzer
L,alias.txt

| bin
sj—analyzer
sj—analyzer-wrapper.py
sj—annotator.py
sj—codegen

| codegen

| examples

| include

| parser_test.sh

19

The bin directory holds the tools such as the code generator, the static analyzer
and helper scripts. The analyzer directory holds the analyzer’s source code and the
default system call alias file. The codegen directory holds the code generator’s source
code. The example directory holds some annotated programs that are used as exam-
ples as well as unit tests. The include directory contains the header files. Finally,
the root directory contains the Makefile and a script (parser_tester.sh) that runs the
parser on all examples to verify that all input variants get parsed correctly. The bin
directory holds the tools such as the code generator, the static analyzer and helper scripts.

Source Code —)-: Static Analyzer '—)— System Call List

Annctated Source Code

-

| Code generator Enforcement Source Code
g |—>

I--L-'l

| compiler |

l__¢__l

Secured Program

Figure 4.1: System Overview

shows the interaction between the various components. The static analyzer
processes the program’s source code and produces a list of identified system calls. The
output and the source are then further processed by the automated annotator to produce
source code with annotations. Afterwards the code generator processes the annotations
and generates run time enforcement code for the annotated functions. Finally, a compiler
compiles the generated code into a secured program.

Build requirements

The tools required for building STRAIGHTJACKET are GNU make, bison, flex, gcc, binutils,
and python. The code can be built using the "make” command and cleaned up (remove
all generated files) using "make clean”.

20

4.2 Run time Enforcement

The enforcement of the policy defined by the annotations is done using the seccomp
framework, which allows a user space program to load a system call filter into the kernel
to restrict system calls and their arguments for the run time of the process that set up
the filter. The filter is a small program that gets executed by the kernel before running
system calls. It can either be a whitelist of allowed system calls and their arguments or a
blacklist of system calls and arguments that are not allowed (see . When the
process tries to call any system call not allowed by the filter the kernel will either kill the
process or send a SIGSYS signal and kill the process afterwards. The return value of the
filter decides whether the system call gets to run or whether the calling process should
be killed by a signal.

For the whitelisting case the default action of the filter is to kill the process unless
the number of the system call is in the list of allowed system calls. Blacklisting is
implemented by setting the default action to allow and returning kill for system calls in
the list of disallowed system calls. In order to be used to restrict access only for selected
functions the functions have to run in their own processes. But given that threads on
the Linux operating system are technically processes too (see , the seccomp
filter can be set for specific threads as well. [54]

The basic idea works as follows:

1. The annotated function gets renamed and replaced by a new one that has the
original name.

2. The new function spawns a thread.

3. Inside the thread the seccomp filter gets set up.

4. The original function gets called.

5. The function that has spawned the thread waits for the thread to exit.
6. The return value (if any) of the original function gets returned.

A function like the one shown in gets transformed into run time enforcement
code as illustrated in

Listing 4.1: Basic function

int my_func(int a) {

/x Do stuff =/

return somevalue;

21

Listing 4.2: Transformed code

static int _my func(int a);

int my func(int a) {
int ret = spawn_ thread(_myfunc);
wait_ for_thread ();
return ret;

}

static int _my func(int a) {

/% Do stuff x/

return somevalue;

The serialization in the generated function hides the thread from the callers of the
function. Otherwise, the introduced parallelism would require changing every caller and
thus rewriting large parts of the program. The Posix thread API allows passing a pointer
to a structure as argument to the thread function. [55] To deal with arbitrary function
arguments and return values a structure containing the arguments of the original function
gets created and passed to the thread. In addition to that a field called retval with the
return type of the return value is added to the structure. When the thread starts the
arguments from the structure are passed to the original function and its return value
is stored in the retval field. Once the thread exits the calling function can extract the
return value from the retval field and finally return it to the caller.

Listing 4.3: Parameter structure

typedef struct _my func_ params {
int a;
int _retval;

} _my_func_params;

To save memory the retval field gets omitted when the original function does not
have any return value i.e. has the return type void. If the function has no arguments
and has a no return value no structure gets generated. As an example the parameter

structure for the function shown in is illustrated in
shows how the modified function behaves at run time.

The generated filters are cached to reduce the setup cost for subsequent calls of the
function.

22

Process Sandbox Thread Kernel

I 1: myfunc I I
:)JI— 1.1: buildFilter :
| | |
| |<__| 1.2: loadFilter |
| |

| |

I | 1.3: loadFilter

| K- e

| |

I I 1.4: _myfunc I	
1.5: myfunc	
- = — —] | |
L i |
| |

Figure 4.2: Annotated program run time sequence

4.2.1 Nested Functions

Once a filter has been set up for a thread the restrictions can only be tightened but not
relaxed. That means that a function will inherit the filters set by its caller. To allow
the called function to tighten the filters the system calls required to set up a filter and
executing a new thread have to be always allowed, otherwise any attempt to set up a
filter or start a new thread for the called function would kill the program. The generation
of the filter can be done entirely in user space and therefore does not require additional
system calls.

System calls are needed for loading the filter into the kernel and for locking the thread’s
privileges to disallow relaxing of the filter. Both can be done using the prctl system call,
with different arguments. The latter is done by setting the PR_SET NO_NEW_PRIVS
flag to one. Loading the filter can be done by passing PR_SET SECCOMP as a first
argument and two (means user defined filter) as second argument. The third argu-
ment contains the BPF filter, in form of a pointer to the structure sock_fprog E A
detailed description can be found in the Linux kernel source file Documentation/prctl/sec-
comp__filter.tzt. Newer kernel versions have a dedicated system call, called seccomp, for
setting up the filters. This is also allowed by default to allow newer version of libseccomp,
which use the seccomp system call if available, to work.

The predefined rules that allow those operations are shown in [Listing 4.4

!man pretl

23

Listing 4.4: Default seccomp rules

seccomp_rule_add(ctx, SCMP_ACT ALLOW, SCMP_SYS(prctl), 5,
SCMP_A0(SCMP_CMP_EQ, PR_SET NO_NEW_PRIVS) ,
SCMP_A1(SCMP_CMP_EQ, 1),
SCMP_A2(SCMP_CMP_EQ, 0)
SCMP_A3(SCMP_CMP_EQ, 0)
SCMP_A4(SCMP_CMP_EQ, 0)

);

seccomp_rule_add (ctx, SCMP_ACT ALLOW, SCMP_SYS(prctl), 2,
SCMP_A0(SCMP_CMP_FEQ, PR_SET SECCOMP) ,
SCMP_A1(SCMP_CMP_EQ, 2));

seccomp_rule_add(ctx, SCMP_ACT ALLOW, SCMP_SYS(seccomp), 0);

The seccomp __rule__add function takes the current libseccomp context as the first
argument, followed by the action that should be taken when the system call gets executed
by the program. The third argument contains the system call that the rule applies to.
The fourth argument contains the number of arguments that should be restricted. It
can be set to zero in case the arguments should not be restricted at all. Finally, the
arguments can be specified using the SCMP __An macros, where n is the index of the
argument (starting at zero) that should be restricted. The first argument of the macro is
the comparison mode, here only equality is used, while the second argument contains the
value that the argument should be compared against EL

Before setting up the filter a new thread has to be started to not affect the whole
process. For this the Posix thread API is used which in turn relies on the clone system
call to create a new thread. After creating the new thread the set robust list system
call gets called to set up locks that are held until after the thread exits ﬂ The main
thread then uses the futeaﬂ system call, which blocks until the thread releases the locks
and exits. The rt_sigprocmask, rt_sigaction and rt_sigprocmask system calls are used
to set the handling of the SIGCHILD signal which gets emitted by the kernel when the
child process, in our case the thread, exits.

Because threads share the memory with their parent process the Posix thread library
changes some memory mappings for performance reasons, using the mprotect and mad-
vise system calls. For instance it uses the madvise system call to tell the kernel that a
particular mapped area is no longer required and thus can be paged out if the system is
under memory pressure E Those memory areas include the thread local storage, thread
data structures and the thread stack. The former two are stored just below the stack

’man seccomp__rule_ add
3man set_robust_list
4man futex

Sman madvise

24

(or above on architectures where the stack grows upwards) to save memory allocation
costs. This is explained in detail in the paper The Native POSiX Thread Library for
Linux written by Ulrich Drepper and Ingo Molnar, who also implemented the current
threading support in Linux. [56]

Listing 4.5: Transformed code

static int _my func(int a);

int my_func(int a) {

static int in_thread = 0;

int ret;

if (in_thread = 0) {
in_thread = 1;
ret = spawn_ thread(_myfunc);
wait_for_ thread ();
in thread = 0;

else {
ret = _myfunc(a);

return ret;

}

static int _my func(int a) {

/% Do stuff =/

return somevalue;

4.2.2 Recursion

When a sandboxed function, i.e. a function that has a filter set up, recursively calls itself
for instance for implementing a recursive algorithm or is otherwise re-entrant, i.e. gets
called again before it returns, the system would spawn a new thread and set up the filter
again for the newly called function. This is a waste of resources because it can lead to
having multiple threads active at the same time even though the additional threads do
not serve any purpose. This can also lead to memory exhaustion or reach the limit of
maximum active processes. Both would cause the program to get terminated by the
operating system. Also, generating the filter and loading it takes a small amount of time
which would add up and affect run time performance negatively. To avoid that the code
generator has to generate code that protects against that.

The implemented solution is to use a static variable inside the function that tracks

25

whether a thread is active or not. A new thread then only needs to be spawned when
the flag is not set. That way it is ensured that no more than one thread is active at the
same time for the same function. Based on the code from the improved code
with recursion handling is illustrated in

4.2.3 Arguments

In addition to restricting the system calls that can be used restricting the arguments that
can be passed to system calls can further restrict the privileges of a function. For this the
arguments have to be listed in the annotation, multiple occurrences of the same system
call with different arguments act as a logical or. That way it is for instance possible to
limit the available file descriptors that can be interacted with or limit the executables
that can be executed using the execve system call. One might also use that in blacklist
mode to block execution of specific binaries that are known to be used often by attackers
while the program itself does not need them. The most common examples are command
shells. The syntax of the annotations is specified in section

4.2.4 Required libraries

The run time enforcement code uses the libseccomp library for setting up the system call
filters. It abstracts the BPF code generation and architecture specific system call numbers,
resulting into easier to read and maintainable code. In addition to libseccomp the Posix
threading library is required for setting up threads for functions. Therefore, the generated
program has to be linked against both of those libraries. The code generator does not
require any external libraries at run time.

4.2.5 Debugging

When the constant _SJ DEBUG is defined the generated code does not enforce the
annotations by not loading the filters into the kernel. Instead, it prints the filter as pseudo
code to standard error once for each called function. This can be used by developers for
debugging their applications by viewing the generated filters. The constant can either be
defined in the code or on the compiler command line.

4.3 Annotation

4.3.1 Syntax

The annotation consists of at least two lines that have to be added in front of a function
definition. The first line has two purposes. It states that the function should be sandboxed
and defines the type of the sandbox. The type can either be whitelist or blacklist. When
no type is specified whitelist is assumed.

26

Listing 4.6: Whitelist sandbox annotation

#pragma sandboxed whitelist

Listing 4.7: Blacklist sandbox annotation

#pragma sandboxed blacklist

Listing 4.8: Default sandbox annotation

#pragma sandboxed

shows an example of an explicit whitelist annotation, while [Listing 4.7
shows a blacklist annotation. The annotation in [Listing 4.8 does not specify any type
and therefore is equivalent with the annotation from [Listing 4.6

The lines following the sandbox type definition specify the system calls that should
be white- or blacklisted. The list of system calls is a comma separated list of system call
names. To improve readability the system call specification can be expressed in multiple
lines. After the system call name arguments can be optionally specified in form of a
comma separated list inside braces. An argument can be skipped by adding a comma
without any value preceding it.

Listing 4.9: System call list annotation

#pragma syscalls = read,write,close

shows an example of a system call list specification without any arguments
specified.

Listing 4.10: System call list annotation

#pragma syscalls = close (1), write(1,,512),read
#pragma syscalls = fstat ,dup

shows a system call list specification with arguments. The write system
call in that example illustrates how arguments can be skipped. It only limits the first and
third argument, while skipping the second one. The example also shows that system calls
with arguments and system calls without arguments can be mixed in the same annotation.
The example also makes use of the possibility to use multiple system call specification lines.

An example of a complete annotation is shown in [Listing 4.11

27

Listing 4.11: System call list annotation

#pragma sandboxed

#pragma syscalls = close(1),write(1,,512), read
#pragma syscalls = nanosleep

void myfunc(int a, char *b) {

}

A formal specification of the syntax in form of a BNF (Backus Naur Form) grammar
is stated below:

The annotation syntax

(annotation) = (sandbozed) (newline)
(syscall _list)

(sandbozed) ::= #pragma ’ ’sandboxed ’ (type)
(type) ::= ’whitelist’ | "blacklist’ | (empty)
(syscall _entry) ::= ’#pragma ’ ’syscalls’ '=" (syscalls)

(syscall_list) ::= (syscall _entry) | (syscall_list) (syscall_entry)

(syscalls) = (syscall) | (syscalls) ’," (syscall)
(syscall) = (name) | (name) (" (arguments) ’)’
(arguments) = (argument) | (arguments) ', (argument)
(argument) = (value) | (empty)

The #pragma directive has been chosen for the annotation syntax because it is
generally used for extensions that are compiler specific and should be ignored by compilers
that do not support it. That way the annotations are still valid C syntax which allows
editors, static analyzers and IDEs to parse the syntax without having to be modified.
The annotated code can also be compiled by any compiler. Most compilers will generate a
warning when encountering a pragma directive that they do not support. Those warnings
can be safely ignored.

28

4.4 Code generator

The code generator is a parser that reads the input file and generates code based on the
found annotations. It has been implemented using flex and bison.

4.4.1 Lexer

The lexer or tokenizer is generated using flex. A lexer is a program that reads an
input stream and performs pattern matching on. For every detected pattern a token is
generated. For instance such tokens can be generated for numbers, words or anything
else that can be captured using a regular expression.

Flex is a tool that generates such a program from a rules file. The generated to-
kens can then be passed on to a parser that processes those using defined rules. Such
a parser can be generated using tools like bison or yacc. The rules are defined in the
flex rule file which includes the actions that should be performed in form of C program
statements. There are two different types of tokens. There are simple tokens which are
simply identifiers. For instance a rule like the one shown in generates the
token ANNOTATION whenever a string matching the regular expression on the left
hand side is found in the input.

Listing 4.12: Simple lexer rule

#pragma\ x7?sandboxed { return ANNOTATION; }

The actual matched text is thrown away i.e. the parser has no way to access it while
processing the tokens. However, this is not always desirable. Suppose a parser wants
to not only know that an identifier is found but needs the actual value of it. Such an
identifier can be for example the name of a function argument. The information that
a function argument name has been found is not sufficient for the code generator. It
requires access to the name of the function argument. For such cases flex allows accessing
the value of the matched string and provides a data structure, which is basically a C
union defined in the rule file, named yylval, where the value can be stored. A rule that
does that is shown in In addition to returning the token ID it stores the
value of the matched text in the union. The string is copied onto the heap using the
strdup function to make it available outside of the calling function’s scope.

Listing 4.13: Lexer rule with data storage

[a—zA-Z |[_a—2A-70-9]x { yylval.val = strdup(yytext);
return ID; }

Flex does not support any parsing; it only splits the input into tokens. That means
that there is no notation of non-greedy regular expressions as known from other regular
expression engines like for instance perl.

29

Suppose the input file has the following content:

write (," hello"), write(,"world"))

Trying to match a string between two quotes will not generate two different tokens
for the strings "hello” and "world” but one token for the string:

"hello",), write(,"world"

This can be solved by emitting a token for the quote symbol and leaving the parsing
to the parser. The parser can collect the tokens between two quote tokens and combine
them into a string.

4.4.2 Parser

The parser has been generated using bison. The parser maintains a global structure
which contains the data of the currently processed annotation. The structure consists
of the name of the annotated function, the type of the function’s return value, a list of
the function’s arguments, a list of the system calls listed in the annotation, whether the
function is static or not and finally whether the annotation is a blacklist or not.

During processing the input file the parser executes the code specified in the rule
file. The code fills the global data structure with the data from the current rule. When a
function name is found the name of the function gets stored in the data structure. When
the function is prefixed with the static keyword the is_static flag gets set. Likewise,
when the parser finds the return value of the function the return value gets stored in the
data structure. The annotation type is handled by simply comparing the type string with
the string "blacklist”. In case it matches the blacklist flag is set in the data structure
otherwise it remains unset.

Function arguments require some additional processing to ensure that the type in-
formation is split from the name of the argument. For instance a function that takes
a pointer as argument can have the asterisk symbol indicating that the argument is
a pointer as suffix to the data type or as a prefix to the argument’s name. Both are
valid C syntax and have to be dealt with. This is done by concatenating the type
and name strings and parsing them using a hand written function. It searches for the
last occurrence of the asterisk symbol and splits the string again. The first part of
the string is then stored as the data type while the second part gets stored as the
name. The same has to be done for the function’s return value and the function’s name.
But given that an annotation only applies to one function that post processing can
be done right before generating the code and has not to be done in the parser. Once
the type and name information is determined a structure that stores them is allocated
and appended to the argument list of the annotation structure. The same applies to
arrays. The information whether an argument is an array can either be appended
to the type or to the name of the argument. The parser handles arrays by simply
converting them to pointers and then handling them like any other pointers. This is

30

possible because in C an array is technically just a pointer to the first element of the array.

For system calls a separate global array and a counter gets used for tracking the argu-
ments. The array can hold up to six argument values. The array gets initialized with
NULL values. Once a system call argument is found by the parser its value is stored
in the array at the position pointed at by the counter. Afterwards the counter gets
incremented. When an argument has no value, which means that it should be skipped,
the counter is increased without storing any value in the array. This is the reason why
the counter is required. Otherwise, the number of arguments could be easily determined
by finding the first NULL entry in the array. After the processing of the arguments is
done the parser finds the name of the system call. At this point a new structure holding
the name of the system call, the arguments and the number of arguments gets allocated
and appended to the system call list in the annotation data structure. Afterwards the
system call argument array and counter are reset for processing the next system call.

Once the structure is filled with the data the parser hits the main rule, which matches
the whole annotation and the function declaration. At this point the generate code
function gets called which does the actual code generation.

The generate code function simply prints the new code to standard output. At first it
emits code that includes the required headers for the libseccomp library, prctl system
call and for Posix threads. The return value of the function is processed the same way
as the function’s arguments. That means that the type information gets split from the
function name. Afterwards a structure for storing the return value and the arguments of
the function, if any, gets generated. If the function takes no arguments and has no return
value (type void) the structure does not get generated. The structure is then followed
by a static definition of the, now renamed, annotated function. The function gets re
declared as static to hide its symbol from the dynamic linker, which results into less work
for the dynamic linker and avoids symbol name collisions. The purpose of the static flag
in the annotation data structure is to avoid adding two static keywords to the function,
which would result into a syntax error when attempting to compile the resulting code.
The code generator then generates the thread function, which sets up the filter and runs
the original function. The filter setup code gets generated by iterating over the system
call list and printing libseccomp calls that enforce the defined rules. Finally, the function
declaration gets printed using the new name. The detailed structure of the generated
code is described in

Once the code for one function is generated the annotation data structure gets re-
set to be reused for processing the next annotation.

A parser generated by bison does attempt to parse the entire input file. Any con-

tent in the file that has no matching rule in the grammar triggers a syntax error. The
annotations are only a small fragment of the input file ,so the remaining parts of the file

31

have to be dealt with. This has been solved by introducing a misc rule that captures any
text before and after the annotation, that is not an annotation, and simply prints it out
unmodified.

When the parser gets invoked without any arguments it reads from standard input
and outputs the generated code to standard output. Another way to invoke it is to
prepend it to the compiler command line. In that case it parses the compiler command
line to find the name of the input file. It then reads from that file and outputs the
generated code to standard output. The standard output stream gets redirected into a
pipe from which a newly spawned compiler process reads. This has the advantage of easy
build system integration and that no temporary files need to be created for the generated
code. This mode only works under the assumption that the compiler has gcc compatible
command line syntax like for instance the clang compiler. Another disadvantage of
this way of operation is that when debug symbols get generated the compiler has no
information about the name of the source file and therefore a debugger can no longer
map symbols to positions in the source file.

4.5 System call identification

Developers do not think in terms of system calls but in functions that they call. Calling
system calls is mostly completely transparent. To use a system call like write it is not
required knowing that it is a system call, from a developer’s point of view it is a function
like any other one. In addition to that even for developers who know about system calls
it is not always obvious that a particular function does involve one or more system calls
behind the scenes. For instance the function printf is used to print characters to the
standard output. To write to a file descriptor, like standard output, the system call write
is required. So one might assume that in order to allow printf to work only the system
call write has to be allowed. This is, at least for the printf implementation of the GNU C
library, not sufficient. For performance reasons it uses the system call mmap in addition
to write.

Another issue is dealing with complex functions that call other functions or have multiple
branches that get executed based on the current program state, which might depend on
external circumstances like user input. For such functions it is not easily possible for a
developer to know which system calls are required during the operation of the function.
Even a trial and error approach by guessing based on source code reading and testing
the program is not guaranteed to be sufficient, because full test coverage is required to
be sure that all possible system calls are found.

Using dynamic instrumentation with a tool like strace, which lists all system calls
called by the running program, suffers from the same issue. To exercise all paths full test
coverage is required. A static analyzer however can construct a full call graph out of the
source code and therefore does not suffer from the test coverage issue. One limitation

32

is that not all functions are necessarily present in the source code. The function might
call a function provided by a library, whose source code is not bundled with the application.

Another issue is that programs typically consist of multiple source files. A function
defined in one file can call a function that is defined in another file. Analyzing source files
one by one therefore would lead to limited results. Such programs however express the
dependency between individual files in the Makefile. That means that a static analyzer
has to follow dependencies specified in the Makefile to be able to process the code of a
program, more specifically a program binary, as a unit.

4.5.1 Static analyzer

To address the needs and issues mentioned in the previous section a static analyzer has
been developed.

It consists of two parts:

1. A python wrapper script that uses LLVM to generate a call graph in the dot file
format.

2. An analyzer that parses the generated call graph and identifies system calls.

The dot file format is a simple text file that defines nodes in a graph and their
connections to each other. It is mainly used for generating graphical representations of
the graph in various formats. The simplicity of the format allows easy parsing which
makes it suitable for other purposes as well.

Python wrapper script

The python wrapper script gets injected into the build process and uses the clang compiler
to generate LLVM IR (intermediate representation) code whenever a C file gets compiled.
LLVM IR is a similar concept as assembly language. It is intermediate code generated
by the compiler before finally translating it into assembler and finally machine code. In
addition to that it generates LLVM bit code whenever a linker command gets called.
Generating LLVM bitcode out of LLVM IR files is similar to linking multiple object files
together to generate a program binary. Finally, the opt tool is used to generate the dot
call graph for further processing by the analyzer. This process is illustrated in

Suppose a program that gets compiled using the commands shown in

Listing 4.14: Sample build process

CC=gcc
$(CC) —02 —c program.c
$(CC) program.o —o program

33

34

file-1.c

file-2.¢c

file-n.c

Fiﬁ
| clang |

L_+_.|

-
|clang|
L —Jd

v

Fiﬂ
| clang |

LW-J

file-1.1l

file-2.1l

file-n.ll

——r-

e

Ihvm-link |

]

program. bc

X
I
j oPt

-;1

program.dot

F'i'ﬂ

| sj-analyzer |

l._l.__]_.l
Y

¥

syscall graph

syscall list

Figure 4.3: Static analyzer build process injection

The first command compiles the input file program.c into an object file named
program.o, while the second command takes that object file as input and generates an
executeable called program. The python script hijacks this process and injects three
additional commands. Those commands are shown in

Listing 4.15: Injected LLVM commands

clang —S —emit—llvm —O2 —c program.c
llvm—link program.ll —o program.bc
opt —analyze —dot—callgraph < program.bc

The first command compiles the input file program.c into a LLVM IR file called
program.ll. The second command takes the generated program.ll as input and generates
a LLVM bit code file called program.bc. Finally, the third command passes the LLVM
bit code to the opt tool which generates a call graph file out of it named callgraph.dot.
Because a project can contain multiple binaries that get build from the same source code
tree, the python script renames the callgraph.dot file to program.dot. This ensures that
the file name is unique and easy to relate to a specific binary.

The wrapper script does not replace the actual build commands it only supplements
them. This is done because otherwise the build process might halt with an error due to
a missing dependency like for instance an object file that should have been generated but
got replaced with the command that creates the LLVM IR file.

Analyzer

The analyzer parses the dot file using a parser generated by bison and flex. It maps the
graph to a hash table, where the name of a function is used as the key and a linked
list of other nodes, the called functions, packed into a C structure, as value. A node in
the graph also has a flag that gets used for recursively collecting system calls for a sub
tree. This data structure allows efficient look up of the list of called functions for a given
function.

In addition to the nodes a list of edges gets stored into a separate hash table. An
edge is a data structure that holds a path, which is a string consisting of the id of the
starting and ending vertices, and a visited flag.

The wthash library is used as hash table implementation. The wuthash library has
the advantage that it has no run time requirements. It only provides a set of preprocessor
macros and data structures.

The analyzer uses the generated hash table to find the node of the function to be
analyzed. It then traverses the graph using depth first search and marks all edges it
visits as visited. This is required to avoid infinite loops when a recursive function call
is found. The edges are used for the visited tracking to make sure that every path gets

35

visited, marking only the nodes as visited is not sufficient because a function might get
called multiple times from different branches.

The analyzer supports two output modes which can be chosen by the user by pass-
ing a command line argument. The first mode displays the call graph as a graph in text
form. In that mode every function is printed out with an indentation level that matches
the depth of its occurrence. If a function is a system call it gets highlighted in the output.
The second mode displays a list of system calls for each function found in the program.
That list is generated by a separate function that gets called for each node. The function
takes the id of the node and marks all visited nodes with the given id. This is required
to avoid infinite loops. The system calls found in the sub graph are then added to a hash
table to ensure uniqueness. Once the whole graph is processed the keys from that hash
table get printed out for every node.

To know whether a function is a system call or not the analyzer needs a list of system
calls. Because system calls are defined and implemented in the kernel the system call
definitions have been taken from the kernel’s source code. The Linux kernel source files
arch/z86/syscalls/syscall_32.tbl and arch/x86/syscalls/syscall _64.tbl contain, among
other data, a list of all system call names present in the kernel version it has been copied
from. Those two files are merged into a syscall.tbl file which contains the data from both.
To avoid having to parse the syscall.tbl file each time at run time the file gets parsed
using a python script at compile time. That script generates a is_syscall function that
the analyzer can use at run time to detect whether a specific function is a system call.
The is_syscall function contains an array of all system call names that gets stored into a
static hash table at the first time the function gets called. This avoids having to iterate
over the whole system call list each time the function is called. The run time of the
function is therefore constant instead of linear in the number of system calls.

The static analyzer allows mapping functions to specific system calls to handle library
functions. For instance one can define that the (library) function foo is an alias for
the system calls open, read and close. Those aliases can be specified in a text file that
the analyzer reads. The information from the file is then used to identify more system calls.

The file format consists of multiple lines where each alias is defined in one line. An
alias is specified as function name followed by a colon and a comma separated list of
system call names. Lines starting with a hash are considered comments and therefore
ignored by the parser. Those can be used to structure the file. For instance by grouping
the functions by library and adding a comment to each block to note which library the
functions belongs too. Empty lines and whitespace gets ignored. This file is read and
parsed at run time to allow easy modification without having to recompile the analyzer.
Because of the simplicity of the file format bison and flex are not involved in the parsing.
Instead the parsing is done by a simple getline and strtok loop.

36

shows an example of such an alias file.

Listing 4.16: Example aliases

stdio

printf :mmap, fstat ,write ,map2, fstat64

puts :mmap, fstat , write ,map2, fstat64

fflush : write

perror :dup, fcntl , fstat ,mmap, write ,close ,map2, fstat64
fgets: fstat ,mmap, read ,map2, fstat64

misc
sleep :nanosleep

Limitations

As noted in calls to external libraries are not detected directly by the
analyzer and are handled by the alias mechanism. Another limitation is that by being a
static analyzer it cannot trace dynamically generated code. The same applies to code
that assigns function pointers at run time. The detection of system calls is limited in
those scenarios.

4.6 Automated annotation

When trying to annotate an existing program the static analyzer can be used to identify
system calls, but the actual annotation has still to be done by the developer based on
the results. Under the assumption that the static analyzer has been able to identify all
system calls used by an application, the code can be annotated automatically. While in
practice the goal should be to annotate only functions that process external input or are
likely to be vulnerable for other reasons, the automated annotator script developed for
this thesis attempts to annotate every function that uses system calls. While the script
has been developed for the evaluation of the solution, which is done in it can
still be useful in other situations. For instance for generating initial annotations and
then either extending or trimming them down manually.

The annotator is written in python and works by processing the list output of the
static analyzer. It can be either pointed at a specific C file or a directory that contains a
program, consisting of multiple C files. The script builds a list of C files it has to process,
in case of single file the list contains only one entry, otherwise it recursively searches for
C files in the target directory. Once the list of files has been generated the static analyzer
output needs to be parsed.

In the output of the static analyzer each function that uses system calls is listed followed

37

by a comma separated list of system call names inside square brackets.
shows such an output line.

Listing 4.17: Example analyzer list output

main [open , write , close |

The parsing is done using a regular expression. The result is then stored inside a
dictionary (hash table in python) using the function name as a key and the list of system
calls as value.

To avoid having to parse C files manually the gccxml tool has being used in the first
implementation. It is a gcec extension that uses gee’s C++ parser to parse the input
file and outputs the abstract syntax tree as an XML file. To avoid unnecessary disk
access the gcecrml output is read directly via a pipe. The generated XML file contains
among others function declarations and their positions in the files. A C file is assigned
a unique id. The python script uses the minidom library to find all File tags inside
the XML file and extracts the id of the currently processed file from the id attribute.
Once the id of the file has been determined it goes on to find all Function tags in-
side the XML that have the id of the current file assigned to them and are present
in the dictionary built from the static analyzer output. A new dictionary using the
function name as key and the line number where it is declared as value is then constructed.

After the parsing is done the original C file is read line by line and stored into a
buffer. When a function declaration that should be annotated is found the annotation
is prepended to it in the buffer. Finally, the buffer is written to a temporary file. The
temporary file is then renamed to overwrite the original file. The "use temporary file
and rename” pattern is used to make sure the operation is atomic. In case of an error
before the process is finished the original file will stay present.

The approach based on gccxml turned out not work in some circumstances because
gecxml uses gee’s C++ parser internally. While C and C++ are similar languages there
are some constructs that are valid in C but not in C++. To overcome this limitation
gccrml has been replaced with a custom gec plugin that outputs the position and file data
as a JSON string. The plugin is written in python using gecc’s python bindings and uses
gec’s C parser internally. It registers a callback for the PLUGIN PRE GENERICIZE
event to capture function declaration locations. Other than exchanging the call of gcczmi
with the custom gcc plugin and replacing the XML parsing with JSON deserialization
the automated annotator had not been modified.

To improve the speed of processing the annotator uses a thread pool to run multi-
ple processing routines simultaneously, when the input is a directory that contains
multiple C files. To not overload the system the number of concurrent threads is limited
to the number of processor available on the system.

38

The resulting program then has every function that uses system calls, which could
be identified by the static analyzer, annotated with the system calls that it uses. The
developer can then do further fine tuning manually.

4.7 Usage

This section describes how STRAIGHTJACKET can be used by a developer. The interaction
between the tools is explained in The tools have been developed in a way
such that their usage is at least invasive as possible i.e. can be integrated in existing
developer workflows with little effort.

Code generator

The code generator can operate in two modes. It either reads from standard input and
outputs the generated code to standard output as shown in or it acts as
a wrapper for a compiler command as shown in The latter passes the
generated code to the compiler via a pipe which continues the compilation process. When
used on a file without annotations the code generator simply outputs the input file
unmodified or passes it on to the compiler. It therefore can be simple used for all files
regardless of whether they contain annotations or not.

Listing 4.18: File transformation example

sj—codegen < inputfile.c > outputfile.c

Listing 4.19: Compiler wrapper invocation example

sj—codegen gcc inputfile.c —o program —lseccomp —Ipthread

The wrapper mode can be used for simple integration with existing Makefiles. The
compiler command just has to be prepended with the code generator command. In
addition to that the libraries libseccomp and pthreads have to be added to the linker flags.
The annotated code can also be compiled with any standard compiler so it’s easy to
switch between a sandboxed and non-sandboxed program, for debugging or comparison
purposes, without having to maintain two copies of the code.

Static analyzer

The static analyzer runs on call graphs in the dot file format generated by LLVM. Those
can be generated by a wrapper script that is supplied with the static analyzer. The
analyzing is therefore a two-step process. At first the script has to be prepended to the
compiler command line. It generates a dot call graph file for each binary. Those files can
then be supplied to the static analyzer to identify system calls used by the binaries. Since
the analyzer is not supposed to be part of the build system, modifying the Makefiles is
not strictly necessary. It can be using by simply setting the CC (environment) variable

39

to "sj-analyzer-wrapper.py gcc” where gee is the compiler that should be used as show in

Listing 4.20: Analyzer wrapper invocation example

make CC="sj—analyzer—wrapper.py_gcc"

The analyzer itself can then be used on the generated dot files that are placed next
to the compiled binaries in the build folder.

Listing 4.21: Analyzer invocation syntax

sj—analyzer [—a aliasfile.txt] [—-1] [—g] [functionname]

shows the invocation syntax of the analyzer. The option ”-a” can be used
to supply a custom system call alias file. The ”-1” option outputs the results as a list,
while the ”-g” option outputs the results as a graph. The last argument is the name of the
function that should be analyzed, if none is passed main is used. All arguments are op-
tional the default output mode is the graph display. The input is read from standard input.

The list output can be further passed to the automated annotator described in
ition 4.0

Listing 4.22: Automated annotator invocation

sj—annotator.py target analyzerlist.txt

The automated annotator takes the target filename or directory as first argument
and a file containing the list output from the analyzer as second argument.

40

CHAPTER

Evaluation

In this chapter the developed solution is evaluated in terms of effective exploit mitigation
and performance overhead. The former is done by analyzing a set of publicly documented
vulnerabilities. Limitations of the approach are also discussed in this chapter. The
performance evaluation is done using the SPEC' CPU2006 benchmark suite to simulate
some real world usage. The results are then compared with an unmodified copy of the
SPEC CPU2006 suite.

5.1 Exploit mitigation

In this section the effectiveness of the exploit mitigation is evaluated on different types
of exploits that allow arbitrary code execution by an attacker. The exploits have been
selected in a way to cover multiple scenarios like local and remote vulnerabilities. All of
the analyzed vulnerabilities have CVE entries assigned. Because the tools presented in
this thesis work on C code written for the Linux operating system, only exploits where
the vulnerable software is still available, open source, runs on the Linux operating system
and written in the C programming language were considered. Each section describes
a vulnerability followed by a system call identification of the system calls required by
the vulnerable function. Afterwards the system calls are analyzed whether they allow
running arbitrary executables, connecting back to an attacker, binding to a network port
or do any other kind of malicious actions like coping files to locations accessible by the
attacker.

5.1.1 mcrypt - CVE-2012-4409

The tool merypt is a command line encryption tool. A vulnerability in version 2.6.8
and earlier is documented as CVE-2012-4409. An attacker can execute arbitrary code
by sending the user a malicious file to decrypt. The function check_ file _head does not
validate the length of the salt before reading it from the input file into a static buffer. It

41

only verifies that the length of the salt is greater than zero but does not check whether it
fits into the target buffer. The consequence is that a long salt can overflow the buffer
that is used for the header parsing and therefore run a stack based buffer overflow exploit.
The function itself is relatively simple it only requires file I/O in form reading from a file
stream and writing error messages to standard error if it encounters any errors.

Listing 5.1: Annotated vulnerable function - check_file head

#pragma sandboxed

#pragma syscalls = fstat64 ,mmap2, fstat ,mmap,read, write(2,,)

int check_file _head (FILE xfstream , char xalgorithm , char sxmode,
char xkeymode, int xkeysize, void xsalt ,
int xsalt_size)

The annotation in [Listing 5.1| uses a white list approach to limit the function to just
the system calls required for operation. In addition to that the first argument of the
write system call is limited to the file descriptor two, which is standard error.

With the available set of system calls the shell code in the payload of the malicious file
cannot run arbitrary commands using the execve system call. Likewise, any network con-
nection using the connect system call or even binding a socket using the bind system call
is not possible. The attacker could for instance read files from the user’s home directory
(or any other user readable file) and send the contents to some place over the network, but
the lack of networking system calls prevents that. A DoS (denial of service) attack to fill
up the user’s hard drive is also not possible unless the user redirects standard error to a file.

Due to of the simplicity of the vulnerable function the system calls that can run in the
context of the function can be restricted in a way to severely limit the shell code that
can run in its context. A mcrypt version annotated with the annotations from
would have prevented most exploitation attempts.

5.1.2 gif2png - CVE-2009-5018

The image format conversation tool gif2png did not validate the length of command line
arguments prior to version 2.5.3, which leads to a vulnerability that can be exploited
by passing long file names. While being a local exploit it can be potentially exploited
remotely because some web services use it in CGI scripts to convert images. A malicious
file name can be used to run arbitrary code with the privileges of the application. The
vulnerability is due to using the unsafe strepy function inside the main function, instead of
strnepy which allows passing in the size of the target buffer. An annotation for the main
function that uses a white list to limit the system calls to those required for operation is
shown in |Listing 5.2

Because the vulnerability is inside the main function the available system calls are
effectively all that are required by the application. Opening network connections or
executing commands are blocked by the annotations. However, all system calls required

42

for file operations are available to the attacker. The attacker can therefore overwrite
or even delete files that the user running the gif2png tool has access to. File reading is
possible but without a way to open a network connection it is not possible to transfer
the result directly to the attacker, unless there is a place where the attacker and the
program have access to, like for instance a directory accessible by a web server or an
attacker owned directory on a multi user system.

This vulnerability shows a case (vulnerability inside the main function) where STRAIGHT-
JACKET does not provide any additional security compared to traditional sandboxes that
confine the whole application.

Listing 5.2: Annotated vulnerable function - main

#pragma sandboxed

#Hpragma syscalls = mmap, fstat ,write ,mmap2, fstat64 ,exit ,ioctl
#pragma syscalls = read ,open, close ,mremap,dup, fcntl ,unlink
int main(int argc, char xargv([])

{

5.1.3 dproxy - CVE-2007-1465

dproxy is a DNS caching server used by some routers and wireless access points. A
vulnerability in version 0.1 up to 0.5 is documented as CVE-2007-1465. Inside the main
function a UPD packet is copied using strepy into a local buffer called query string which
has a fixed size. That means that a large malicious UDP packet can be used to overflow
the buffer and execute arbitrary code.

Listing 5.3: Annotated vulnerable function - main

#pragma sandboxed

#pragma syscalls = open,dup, fcntl , fstat ,mmap, write , close
#Hpragma syscalls = mmap2, fstat64 ,read ,ioctl ,exit ,socket
#pragma syscalls = getpid,syslog ,bind, fork ,signal ,recvfrom
#pragma syscalls = flock ,rename,time,unlink ,lseek ,sendto

int main(int argc, char xxargv)

{

Because the vulnerability is inside the main function the available system calls are
effectively all that are required by the application. An annotated main function with
the required system calls is shown in The set of system calls available allow
the injected shell code to bind to network ports, and/or rename, delete or overwrite
accessible files.

43

In addition to that reading files and sending the results over the network to an at-
tacker is possible with those annotations due to the availability of the open, read, bind,
write, sendto and socket system calls.

This vulnerability is similar to the one described in [subsection 5.1.2] but given that the
set of system calls is larger it allows more attack scenarios.

Listing 5.4: Annotated vulnerable function - prepare_reply

#pragma sandboxed
#pragma syscalls = write ,open,close ,fcntl ,stat , fstat
int prepare_reply(struct request xr)

{

5.1.4 mathopd - CVE-2003-1228

mathopd is a small single process web server for UNIX operating systems that also
supports executing CGI scripts. A vulnerability in version 1.2 up to 1.5b13 has been
documented as CVE-2003-1228. The function prepare_reply copies data into a local
buffer called buf using sprintf, which does not perform bound checks. The buffer has
a fixed length therefore a malicious request can overflow the buffer and run arbitrary code.

An annotation for the vulnerable function that uses a white list to limit the system calls
to those required for operation is shown in [Listing 5.4} The set of available system calls
is limited. A shell code that tries to execute arbitrary commands doesn’t work with that
set of system calls. Also connect back shells, like the one used in the sample exploit from
exploit—dbﬂ do not work because the connect system call is not available. Likewise, a
shell code that binds to a port won’t work either due to the lack of the bind and socket
system calls. The system calls open, write and close are available which means that the
injected shell code can overwrite arbitrary files that the web server has access to. That
can be used for instance to overwrite a web page served by the web server. Another
possible attack vector would be to write out a CGI script which does malicious actions
and execute it afterwards. However, a CGI script needs to be executeable in order to be
executed by the web server. The shell code would need one of chmod, fchmod or fchmodat
system calls to do that, but neither is allowed.

The limited set of system calls available to the attacker would have prevented most
exploitation attempts. Despite the application being a web server that requires network
access limiting the access to specific functions blocks networking based exploits. A
traditional sandbox that confines the whole application would have to grant access to
the network system calls to allow the application to perform its tasks.

Lwww.exploit-db.com

44

5.1.5 MiniUPnPd - CVE-2013-0230

MiniUPnPd is an UPnP (Universal Plug and Play) daemon for UNIX operation systems,
which is being used on many devices. A vulnerability in version 1.0 in the handling
of SOAP messages is documented as CVE-2013-0230. The vulnerability is inside the
EzxecuteSoapAction function which copies a user supplied message into a local buffer using
the memcpy function. While the size of the buffer is fixed to 2048 bytes, the number
of bytes copied into the buffer can be controlled by an attacker because it is derived
from the message content. Therefore, a malicious SOAP request can be used to execute
arbitrary code by exploiting the buffer overflow vulnerability. The vulnerability has been
analyzed in detail by Dejan Lukan. [57]

An annotation for the vulnerable function that uses a white list to limit the system calls
to those required for operation is shown in As the annotation shows the
vulnerable function only requires two system calls for operation. Those two system calls,
syslog and send, can only be used to log data into the system log or to send data over
the network to an already opened socket. A possible attack scenario would be to try to
send arbitrary data from the server’s address space back to the attacker using the send
system call. This could be used to extract sensitive information out of the process if
there are any. Traditional shell codes that try to open a shell, bind to a port or connect
to an arbitrary host would fail. File system operations are also not possible with the set
of available system calls.

This is a similar case to the mathopd vulnerability described in [subsection 5.1.4] which
shows the advantage of STRAIGHTJACKET compared to traditional sandboxes, namely
that the set of available system calls in the attack context is significantly reduced, causing
most exploitation attempts to fail.

Listing 5.5: Annotated vulnerable function - ExecuteSoapAction

#pragma sandboxed

#pragma syscalls = syslog ,send

void

ExecuteSoapAction(struct upnphttp *h, const char xaction, int n)

{

5.1.6 tinc - CVE-2013-1428

tinc is a VPN (virtual private network) program that supports compression and en-
cryption. CVE-2013-1428 documents a vulnerability in the versions prior to 1.0.21 and
between and 1.1 prior to pre7. The vulnerability is inside the receive_tcppacket function
which copies input data into a local buffer, located inside the structure vpn_ packet_t,
using the memcpy function without checking whether the data fits into the local buffer.

45

The resulting buffer overflow can be used by an attacker to execute arbitrary code in
context of the application. While the vulnerable function only consists of a few lines the
call graph from the function on requires many system calls for operation. The system
function is used to execute shell commands to set up routing tables using the route
command. The system E] function does that by forking a new process and passing the
passed in command to a shell. That means that in addition to the system calls required
for operation of the function itself all system calls required by the shell and the commands
it runs would have to be included in the annotation. In addition to that the function
requires system calls like read, write, open and connect which means that file system
access and connecting back to an attacker is possible.

The consequence is that there is no practicable annotation to restrict the set of available
system calls and at the same time block common exploitation scenarios. That shows
a limitation of STRAIGHTJACKET namely that function level restrictions do not help if
individual functions require a broad set of privileges.

5.1.7 lcms - CVE-2013-4276

lems is an open source color management engine which consists of multiple tools for
handling color formats and working with icc profiles. CVE-2013-4276 documents two
vulnerabilities that can be exploited by a malicious icc file or tiff image. The first
vulnerability affects the icctrans tool. It is inside the functions PrintRange and GetLine.
The former uses the sprintf function without validating the length of the input causing a
buffer overflow. The latter uses the scanf function to read data into a buffer which does
not perform any bound checks on the input.

Listing 5.6: Annotated vulnerable function - PrintRange

#pragma sandboxed
#pragma syscalls = mmap, fstat , write (1,),mmap2, fstat64
void PrintRange(const charx C, double v, double Range)

{

Listing 5.7: Annotated vulnerable function - GetLine

#pragma sandboxed
#pragma syscalls = mmap, fstat ,read (0,) ,mmap2, fstat64
void GetLine(charx Buffer)

{

The annotations in [Listing 5.6] and [Listing 5.7] show the set of system calls required
for the operation of both functions. The only difference between the two sets is that the

Zman system

46

PrintRange function can write messages to standard output while the GetLine can read
messages from standard input. Neither can perform any network operations. Accessing
already open files is possible using the mmap system call by guessing an already open
file descriptor. The guessing can be done using a simple loop that tries all possible file
descriptors. This is possible because file descriptors are simply integers. However, there
aren’t any interesting file descriptors that can be accessed other than the input file itself
which is already provided by the attacker.

The second vulnerability affects the tiffdiff tool. It is inside the CreateCGATS function
which builds a string buffer out of the two arguments and stores the result into a local
variable. It does that using the sprintf function which does not perform any bound
checks, which results into a buffer overflow.

Listing 5.8: Annotated vulnerable function - CreateCGATS

#pragma sandboxed

#pragma syscalls = open,read,write ,close ,mmap
#pragma syscalls = fstat ,time ,mmap, fstat64
static

void CreateCGATS(const charx TiffNamel, const charx TiffName2)

The annotation in shows the required system calls required inside the
vulnerable function. The system calls can be used in the same way as the ones available
for the first vulnerability with the exception that the read and write system calls are not
restricted to specific file descriptors. That means the attacker can overwrite arbitrary
files accessible by the attacked user or copy files to locations accessible by him like for
instance a directory served by a web server or a shared directory accessible on a multi
user system.

Listing 5.9: Annotated vulnerable function - logurl

#pragma sandboxed
#pragma syscalls = syslog
void logurl (struct clientparam * param, char % req, int ftp)

{

5.1.8 3proxy - CVE-2007-2031

3proxy is a HTTP proxy server. CVE-2007-2051 documents a vulnerability in the versions
0.5 to 0.5.3g, and 0.6b-devel that allows a remote attacker to execute arbitrary code.
The bug is a buffer overflow in the logurl function which copies the request into a fixed
size buffer using strepy. Because strepy does not perform any bound checks, the request
can overflow the buffer.

47

As the annotation in shows, the only system call required by the function
is syslog. That means that shell code injected in the context of this function can only
write data to the system log. If the attacker has access to the system log he could try to
write arbitrary content from the process’s address space into the system log to extract
sensitive information. A remote attacker is unlikely to have such access though.

This is a vulnerability in a relatively simple function and therefore most exploitation
attempts would have been prevented by STRAIGHTJACKET.

5.1.9 Generic attacks

The previous sections discussed possibles to exploit the specific applications. This section
handles generic ways to attack the underlying sandbox technology.

Attacking the kernel

To circumvent the kernel’s enforcement of seccomp one has to attack the kernel itself.
The kernel exposes over 300 system calls each of them which could be used to exploit a
vulnerability. However, the set of system calls available to the vulnerable applications is
a only a small fraction of that. Therefore, the likelihood of a successful kernel attack is
significantly reduced. [§] [7]

Shared address space

Because threads share the address space with the parent process (and other threads) one
could try to take advantage of that to run a successfully attack. A global attack target is
the global offset table (GOT). It is a table that holds the addresses of library function
calls. A vulnerability that allows an attacker write to arbitrary memory addresses can be
used to overwrite such an entry and point it to an arbitrary function. [58] To successfully
exploit this, the attacker has to find a library function that runs in a context where the
system calls required for the attack are allowed. This can be made harder by enabling
full RELocation Read Only (RELRO) when compiling the binary. In general existing
exploit mitigation techniques like stack canaries or address space layout randomization
(ASLR) and STRAIGHTJACKET are not mutually exclusive. [59] They can and should be
used together to further reduce the likelihood of a successful attack.

5.1.10 Conclusion

[Table 5.1l summarizes the results. The first column shows the CVE number of the ana-
lyzed vulnerability. CVE-2013-4276 (lems) is listed twice because it actually covers two
vulnerabilities. The subsequent columns show whether a particular action like executing
commands, binding to a network port or connecting back to an attacker’s machine would
have been possible in the context of the vulnerable functions by the injected shell code.
The last column shows whether file system access is available in the context of the
vulnerable functions.

48

Execute Network | Network | File system

Vulnerability commands bind connect access
CVE-2012-4409 No No No Limited
CVE-2009-5018 No No No Yes
CVE-2007-1465 No Yes No Yes
CVE-2003-1228 No No No Yes
CVE-2013-0230 No No No No
CVE-2013-1428 Yes Yes Yes Yes
CVE-2013-4276 (1) No No No Limited
CVE-2013-4276 (2) No No No Yes
CVE-2007-2031 No No No No

Table 5.1: Vulnerability analyzes summary

The results show that STRAIGHTIJACKET would have prevented exploitation attempts in
most cases. It also highlights some limitations of the approach. Preventing an exploit
here means not allowing the attacker to gain control of the system. The exploits still
cause denial of service by causing the vulnerable programs to terminate.

By restricting access on function level STRAIGHTJACKET does not provide any ad-
ditional protection compared to a traditional sandbox for vulnerabilities inside the main
function. This has turned out during the analysis of the vulnerabilities CVE-2009-5018
(gif2png) and CVE-2007-1465 (dproxy). Nevertheless, exploits would have been pre-
vented for both cases. The worst case was the vulnerability CVE-2013-1428 (tinc),
where the vulnerable function required a large set of system calls to the extent where
a practical annotation was not possible. As a consequence STRAIGHTJACKET wouldn’t
have prevented exploitation attempt for that vulnerability. This also was the only case
where executing shell commands were permitted.

On the other hand other vulnerabilities like CVE-2003-1228 (mathopd) and CVE-
2013-0230 (MiniUPnPd) demonstrated the strength of the approach. Network based
system calls are not permitted in the vulnerable function’s context despite the applications
requiring network access for general operation.

File system access was the most common attack vector that was still available to attackers.
This is the case because the read and write system calls are commonly used and therefore
required by most functions. In two cases that access could be limited by restricting the
file descriptor arguments of the read and write system calls. This however only works for
static file descriptors like standard output, standard error and standard input.

The likelihood of kernel level attacks is reduced by the limited set of available sys-

49

tem calls. Other exploit mitigation techniques such as stack canaries, full RELRO and
ASLR should be enabled in conjunction with STRAIGHTJACKET to further enhance the
application’s security.

5.2 Performance

5.2.1 Benchmark selection

The performance has been evaluated using the SPEC CPU2006 benchmark suite. Be-
cause STRAIGHTJACKET acts on C source files; the benchmarks not written in C have
been excluded. In addition to that the benchmark 400.perlbench has been excluded as
well because limiting the system calls for an interpreter that runs arbitrary code is in
most cases not feasible, due to limitations of the static analyzer and how those kind of
programs work. An interpreter that uses a just in time compiler (JIT) generates code
at run time and executes it afterwards. The static analyzer cannot know beforehand
which system calls that code is going to use. The perl interpreter does not use a JIT.
However, it compiles programs into a tree of operation (OP) structures that contain
function pointers that get called at run time. This is explained in detail in a comment at
the top of the op.c file from perl’s source code. The assignment of those pointers happens
at run time while parsing the user supplied program and therefore cannot be determined
statically by the static analyzer. In addition to that it makes use of the setjmjﬂ and
longjm]ﬂ functions to implement exception handling. Those allow arbitrary jumps from
a function to a parent function in the call graph. The LLVM based static analyzer does
not add an edge in the call graph for this kind of control flow transfer. Without being
able to determine the control flow the static analyzer cannot accurately determine the
system calls required by individual functions.

The used benchmarks therefore are:
e 401.bzip2
e 403.gcc
e 429.mcf
e 445.gobmk*
e 456.hmmer
e 458.sjeng
e 462.libquantum

o 464.h264ref

3man setjmp
4man longjmp

20

e 433.milc
e 470.lbm
e 482.sphinx3

Each benchmark, expect 445.gobmk, has been run three times in four different
configurations. Because the 445.gobmk decides which functions it calls dynamically using
function pointers, it’s not possible to detect all system calls for every function using the
static analyzer . As a consequence the 445.gobmk benchmark has only been
run in with the first two configurations. The reported results are based on the median
values of those three runs. The computation has been done by the SPEC CPU2006
benchmark suite. It reports median values in addition to the raw data when multiple
iterations are run. The results show the overhead in percent compared to the base run.
To improve readability of the diagrams the number prefix of the benchmark names have
been omitted from the labels. The benchmark configurations are listed below.

Unmodified
The benchmark has run without any modifications and acts as baseline.

Only main
Annotations were only applied the main function. This works like a traditional
sandbox but without any need for external programs at run time and therefore is
an interesting use case. In addition to that it measures the overhead of the BPF
filter.

User input annotation
Annotations were applied to all functions that process user input in addition to
the main function. Functions that process user input are the primary attack target
and therefore are the ones that are expected to be annotated in real world usage.
"Function that processes user input” has been approximated by a heuristic. The
heuristic simply picks functions that use the read system call because this is the
only source of user input that the SPEC CPU2006 benchmark suite uses.

Full annotation
Annotations were applied to all functions that use system calls. This is not a
realistic case but it shows the performance overhead of overusing the annotations.

Test system

The tests have been run on a FUJITSU LIFEBOOK U904 laptop equipped with 10GB
of RAM and a INTEL Core i7-4600U processor running the Linux distribution Fedora 21
x86_ 64 with the kernel 3.18.9. The benchmarks have been compiled using gecc 4.9.2 with
the default flags for the x86_ 64 processor architecture.

51

5.2.2 Setup and configuration

The configuration file has been based on the Example-linux64-amd64-gccd3+.cfg file
provided by the SPEC CPU2006 benchmark suite. By default, SPEC CPU2006 refuses
to run benchmarks whose source files have been modified. However, STRAIGHTJACKET
operates on source code so this check had to be disabled in the configuration file by
setting strict__rundir_verify to zero. To use the STRAIGHTJACKET code generator when
compiling the benchmarks the variable C'C' has been pointed to a script that wraps the
code generator. The script is shown in The script just prefixes the command
line arguments with ”gcc ” before passing them to the code generator.

Listing 5.10: SPEC compiler wrapper script

#!1/bin/sh
sj—codegen gcc $Q

Because the run time code requires both the libseccomp and pthread libraries the
variable EXTRA_LDFLAGS in the file benchspec/Makefile.defaults has been set to
”-Ipthread -lseccomp”.

5.2.3 Results

Only main

bzip2 |
gee |
mcf |
gobmk
hmmer
sjeng -
libquantum -|
h264ref
milc |
Ibm |
sphinx3

2 3 4)

o__D_DD

—_

Figure 5.1: Performance overhead in % - Only main

shows results of the benchmark runs with only the main function annotated.
The overhead ranges from non-measurable to slightly below 5%. An overhead of 5% as
seen in the 433.milc benchmark seems rather high for just annotating the main function,
but as further results show this overhead seems to not grow further when annotating more
functions. The 433.milc benchmark does a lot of memory allocations using the malloc
and calloc functions. Both functions require system calls and therefore suffer from slight

02

performance degradation from the BPF filter execution. The overhead sums up during
the lifetime of the benchmark. Most other program’s performance is only influenced by
the the thread creation and filter generation during start up. For long running programs
this influence is negligible. The median value is as low as 0.21% which means in general
one can expect no noticeable overhead when annotating the main function.

Full annotation

bzip2 |
mcf | [B
hmmer | [
sjeng®* - |
libquantum | [
h264ref | W
milc | [
Ibm | B

Figure 5.2: Performance overhead in % - Full annotation

The result of the benchmark runs with all functions that use system calls annotated
functions is shown in Problems where encountered with three benchmarks.

The first problem occurred when trying to run the 403.gcc benchmark with all functions
that use system calls annotated. Almost every function in gec’s source tree can optionally
print out debug information. This requires system calls and therefore the static analyzer
marked all of them for annotation. The end result was that almost every function ended
up spawning a thread to do its work. As a consequence the benchmark seemed to run
forever and the run had to be canceled. A test run with the smaller test data set instead
of the bigger reference data set took over 300 seconds to run compared to just above one
second when not annotated. The 482.sphinz3 benchmark had similar issues.

The third problem occurred when running the 458.sjeng benchmark. The problem
there however was not the number of annotated functions but the fact that a function
that gets called more than two million times (measured using callgrind) inside a loop
has been selected for annotation. The end result was similar to the one of the 403.gcc
benchmark; the run took too long and had to be canceled. Moving the annotation one
level up in the callgraph reduced the overhead significantly and ended up being under
1%.

While the approach of annotating as much as possible leads to the best security it
comes with a high overhead for some applications. Doing performance measurements and

93

moving annotations from frequently called functions into the caller can greatly reduce
the performance overhead as demonstrated with the /58.sjeng benchmark.

User input annotation

bzip2
gee |

mecf |

hmmer |
sjeng -
libquantum -|
h264ref
milc |

Ibm |

DDED=DD_

10 20 30 40 50 60 70

o

Figure 5.3: Performance overhead in % - User input annotation

shows the performance overhead of the user input annotation runs. The
results vary between the benchmarks while some like 401.bzip2 and 458.sjeng hardly
show any overhead, the 403.gcc benchmark shows a rather high overhead of 72.41%.
The latter can be explained by the fact that gcc consists of a lot of small functions,
which results into the function call overhead adding up. This also prevents the functions
from being inlined by the compiler. All of the overhead measured in the full annotation
scenario of the 401.bzip2 benchmark got eliminated in that configuration.

Reducing the set of functions to just the ones that process user input did not solve the
performance problems observed with the 482.sphinz3 benchmarks in the full annotation
scenario. There were still a few functions that got called frequently inside loops. As a
consequence the benchmark is not included in the results, because the run had to be
canceled.

5.2.4 Conclusion

summarizes the benchmark results. As noted in the results the /58.sjeng full
annotation run has been done after moving one annotation into the caller. The overall
results are mixed. Simply annotating the main function can be done automatically
without expecting any performance overhead. The measured median overhead is as low
as 0.21%. Annotating all functions that use system calls without considering the context
in which the functions get called can lead to very high performance degradation when
frequently called functions end up being annotated. There are cases however where this
leads to good results. For instance the 464.h264ref benchmark only suffered 3.5 percent
degradation despite being a computationally expensive benchmark. This would protect

54

Benchmark | Only Main | User Input Full
401.bzip2 0.00 % 0.00 % 83.18 %
403.gcc 0.00 % 72.41 % -
429.mcf 0.67 % 8.03 % 16.05 %
445.gobmk 0.00 % - -
456.hmmer 0.00 % 11.22 % 75.85 %
458 sjeng 0.44 % 044 % | 0.67* %
462.libquantum 4.35 % 4.35 % 9.51 %
464.h264ref 0.21 % 1.24 % 3.51 %
433.milc 4.86 % 4.68 % 6.49 %
470.1bm 2.17 % 2.48 % 217 %
482.sphinx3 0.00 % - -

Table 5.2: Benchmark results summary

the user against malicious video files that try to exploit bugs in the video encoder with a
limited effect on encoding times. Limiting the annotations to functions that only process
user inputs reduced the overall overhead significantly. For instance the overhead for
401.bzip2 got reduced from over 80% to non-measurable. This leads to the next point.
For some benchmarks there is only a negligible difference between annotating only the
main function and annotating all functions that process user input. Overall most of the
performance overhead is attributed to the thread creation when calling a sandboxed
function. Annotating functions that consists of a few lines of code that would have been
inlined by the compiler end up not being inlined after getting annotated. This means
that it is preferable to annotate only functions that do not get called frequently like
for instance inside a long running loop. For those functions the annotations should be
moved one level up in the call graph to the caller. As demonstrated with the 458.sjeng
benchmark the overhead can be reduced significantly by doing that. Functions that do
not get called frequently like for instance a function that parses a configuration file can
be safely annotated without expecting any performance degradation.

95

CHAPTER

Summary and Conclusion

The solution presented in this thesis, STRAIGHTJACKET, is based on the seccomp frame-
work, which allows a user space program to load a system call filter into the kernel. The
filter can then either allow or deny a specific system call. In addition to just checking the
system call the filter can access the system call’s arguments and validate them as well.
The policy which defines which system calls are allowed is supplied by the application
developer via annotations in the source code. The annotations apply to a specific C
function. The STRAIGHTJACKET code generator parses those annotations and generates
code that applies the policy at run time.

Because seccomp filters act on processes every annotated function is modified to spawn
a new thread, which is technically implemented as a process that has access to the parent’s
virtual memory. Once a filter is loaded for a process and the PR_SET _NO_NEW_PRIVS
flag is set neither the process nor any child process it spawns can relax the restrictions
applied by the filter. It can however tighten them further. By using that technique
different functions can have more restricted privileges than the whole program. By
applying annotations to the main function restricting the privileges of the whole program
can be achieved as well.

There are two ways on how annotations can be used to restrict system calls. One
way is to simply blacklist system calls that are known to be used by attackers but are not
required for running the specific task. For instance system calls like ezecve, connect or
bind which are often used by exploits to open local or remote command shells. The other
more restricted mode allows supplying a whitelist of system calls. That way any system
call not required for doing the function’s task is denied. This follows principle of the least
privilege but has some practical problems. In order for it to work the developer has to
know which system calls a particular function requires. To aid the developer in finding the
list of the required system calls, STRAIGHTJACKET includes a static analyzer that can be
used to identify system calls that a function needs. The blacklist mode is better suited for

o7

functions that attempt to run arbitrary external code like interpreters. Also, because the
filters apply to all child processes developers have to be careful when restricting system
calls for a function that forks and executes other programs, because the filter would apply
for them as well. On the other hand this can be used to restrict what those spawned
programs can do, for instance limit their actions to the file descriptors of a pipe and dis-
allow access to any other files. That’s the reason why the two modes got implemented; it
helps the developer to choose the appropriate level of security without limiting practicality.

By delegating the generation of the filters to the libseccomp library the solution isn’t
restricted to a particular processor architecture. System calls are identified by unique
numbers. Those numbers can differ even between similar architectures like x86 and
x86_64. The libseccomp library offers an abstraction to hide those architecture specific
details.

To improve usability the STRAIGHTJACKET tools are designed in a way that allows
easy integration into existing build systems. That means that both the code generator
and the static analyzer can be integrated into an existing build system with minimal
effort. In most cases it is sufficient to change one or two variables in the Makefile. In
addition to that it does not require any operating system modifications. It runs on any
Linux system whose kernel is compiled with seccomp support.

The evaluation has shown that STRAIGHTJACKET blocks common exploitation attempts
successfully in most cases. The effectiveness is determined by the system calls available to
the vulnerable function. It does protect against vulnerabilities inside the main function,
which requires the whole set of system calls the application needs, but does not offer any
additional protection compared to a traditional sandbox in that case. However, it has
other advantages in that scenario. The sandboxing is completely inside the application
and is transparent to the user. No supervisor daemon has to run neither is any external
policy required. The performance overhead for just applying restrictions to the main
function has been measured to be as low as 0.21% on average. Overusing the annotations,
like annotating every function, can however result into a high performance overhead.
This can be avoided by moving annotations out of frequently called functions one level
up to the caller to reach an acceptable compromise between security and performance.
It has been demonstrated that this approach can greatly reduce the performance overhead.

STRAIGHTJACKET was not designed to replace existing security measures like DAC,
MAC and various protections like stack canaries and address space layout randomization,
but to supplement them and thus provide an additional layer of protection. For instance
even if the application runs inside another sandbox, like a docker container, it can be
further confined by restricting the exposed system calls to parts of the program that
deal with untrusted input, which lowers the likelihood that an attacker, that managed to
exploit the application, can find a way to escape out of the sandbox by attacking the
host kernel.

o8

CHAPTER

Further work

This thesis has demonstrated that the approach of an annotation based seccomp sandbox
effectively blocks common exploitation attempts while being transparent to the user
without requiring rewriting the application’s source code by the developer.

The supplied tools can be further improved though. The code generator works as
an additional compiler. This has the advantage of being compiler agnostic at the cost
of an extra compilation step. The annotation syntax is designed in a way to fit into
a compiler extension in form of a plugin. A similar approach is done for instance by
OpenMP which also uses the pragma directive to allow the user to annotate code sections
that should run in parallel to enhance performance. [60]

The run time enforcement code uses the libseccomp library for generating the seccomp-bpf
filters. The filters could be generated at compile time and integrated into the resulting
program in form of a binary string to eliminate the need of the library and reduce the
initial setup cost. Similarly, the need of the P0osix threading library could be eliminated
by generating code that does the thread creation and waiting using system calls directly.
However, because the library is available on all systems the duplication effort is probably
not justifiable. Nevertheless, the possibility of not depending on any run time library
exists and could be explored.

The static analyzer works on the source code of the application and therefore can-
not identify system calls in some scenarios like the usage of external libraries and dynamic
code generation. Extracting system calls from library functions is possible by analyzing
the library files. To identify system calls used by dynamic code generation a dynamic
analyzer can be used in addition to the static analyzer. Combing the data from both
should lead to better results and enhance the usability of the tools by minimizing the
manual effort required by the developers. Another limitation of the static analyzer is that
it only identifies system calls. However, it could be extended to detect static arguments

29

of the system calls like for instance write to standard output to further improve the
security of the automatically annotated functions.

The evaluation has shown that the security gained depends on the set of system calls a
function requires for operation. A function that requires a large set of system calls simply
provides a bigger attack surface. The static analyzer could be improved to detect such
functions and propose re-factoring solutions to split the work into smaller functions that
could be annotated to reduce the set of available system calls accessible by an attacker.
Another possibility would be to allow annotating code blocks like for instance loops or
specific branches of conditional blocks.

Another area that could be improved is the performance overhead. The combination
of the static analyzer and the automated annotator developed as part of this thesis do
not take performance into account. By doing automated run time profiling one can
use the data from that profiling to tweak the annotations in a way to provide the best
trade-off between performance and security. This approach would be similar to profile
guided optimization (PGO) which is implemented in compilers like gcc. The basic idea
is to first compile the application with additional instrumentation code and then run
typical scenarios to generate performance statistics. The collected data is then used by
the compiler generate code that optimizes for those cases. [61] This approach could be
combined with re-implementing the code generator as a compiler plugin to reuse the PGO
infrastructure available in contemporary compilers. Detecting potential performance
bottlenecks due to overuse of annotations at compile time and warning the developer
could be implemented to help adding the right amount of annotations.

While STRAIGHTJACKET has been implemented for the C programming language the
concepts can be reused for other languages. Adding support for a language like C++,
which is similar to C should be possible by adapting the existing implementation. It
has to be extended to handle C++4 specific features like classes, virtual symbol tables
and callbacks. The static analyzer would have to be adapted to support those features
as well. Adding support for interpreted languages would require a re-implementation.
Those are mostly high level languages that do not suffer from memory corruption issues
at the same extent like lower level languages such as C or C++. Nevertheless a reduced
set of system calls would still contribute to enhancing the security of programs written
in those languages. Such an implementation could be done as part of an interpreter that
generates the seccomp-bpf filters at run time. It could restrict system call arguments
further than a compiler based approach by exercising knowledge of the current execution
context.

60

Bibliography

Jerome H Saltzer and Michael D Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278-1308, 1975.

Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure envi-
ronment for untrusted helper applications confining the wily hacker. In Proceedings
of the 6th Conference on USENIX Security Symposium, Focusing on Applications of
Cryptography - Volume 6, SSYM’96, pages 1-1, Berkeley, CA, USA, 1996. USENIX
Association.

Michael Wikberg. Secure computing: Selinux. http://www.tml.tkk.fi/
Publications/C/25/papers/Wikberqg_final.pdf], 2007.

Michael Fox, John Giordano, Lori Stotler, and Arun Thomas. Selinux and grsecu-
rity: a side-by-side comparison of mandatory access control and access control list
implementations, 2008.

Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing selinux as a linux
security module. NAI Labs Report, 1(43):139, 2001.

Andreas Gal, Christian W Probst, and Michael Franz. A denial of service attack on
the Java bytecode verifier. Citeseer, 2003.

Anil Kurmus, Alessandro Sorniotti, and Riidiger Kapitza. Attack surface reduc-
tion for commodity os kernels: trimmed garden plants may attract less bugs. In
Proceedings of the Fourth European Workshop on System Security, page 6. ACM,
2011.

Anil Kurmus, Sergej Dechand, and Riidiger Kapitza. Quantifiable run-time kernel
attack surface reduction. In Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 212—-234. Springer, 2014.

Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A

sandbox for portable, untrusted x86 native code. In Security and Privacy, 2009 30th
IEEE Symposium on, pages 79-93. IEEE, 2009.

61

http://www.tml.tkk.fi/Publications/C/25/papers/Wikberg_final.pdf
http://www.tml.tkk.fi/Publications/C/25/papers/Wikberg_final.pdf

[10]

[11]

[12]
[13]

[14]

[19]

[20]
[21]

[22]

62

Lukas Aron and Petr Handcek. Introduction to android 5 securit. In Proceedings of
Student Research Forum Papers and Posters at, pages 103-112. CEUR-WS.org.

Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Jo-
hannes Hoffmann. Mobile-sandbox: Having a deeper look into android applications.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages
1808-1815. ACM, 2013.

Anthony Vérez and Guillaume Hugues. Security model of firefox os. 2013.

Andrew Hoog and Katie Strzempka. iPhone and i0OS forensics: Investigation,
analysis and mobile security for Apple iPhone, iPad and 10S devices. Elsevier, 2011.

W. Stallings. Operating Systems: Internals and Design Principles. Prentice Hall,
2012.

Hrushikesha Mohanty, MV Swamy, Pillalamarri Thilak, and Srinivasan Ramaswamy.
Secured networking by sandboxing linux 2.6. In Systems, Man and Cybernetics,
2009. SMC 2009. IEEE International Conference on, pages 3669-3674. IEEE, 2009.

Bryan Ford and Russ Cox. Vx32: Lightweight user-level sandboxing on the x86. In
USENIX Annual Technical Conference, pages 293-306. Boston, MA, 2008.

Clement Chong DeZhi, Lui YuYao, Teo ZhengLe, and Tan WeiJie. Comparing os
security. CS58235-Semester I, 2014-2015, page 53.

Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tatlock.
Jitk: a trustworthy in-kernel interpreter infrastructure. In Proceedings of the 11th

USENIX conference on Operating Systems Design and Implementation, pages 33-47.
USENIX Association, 2014.

Anthony A Aaby. Compiler construction using flex and bison. Walla Walla College,
2003.

John Levine. Flex & Bison: Text Processing Tools. " O’Reilly Media, Inc.", 2009.

David Evans and David Larochelle. Improving security using extensible lightweight
static analysis. software, IEEFE, 19(1):42-51, 2002.

William R Bush, Jonathan D Pincus, and David J Sielaff. A static analyzer for finding
dynamic programming errors. Software-Practice and Experience, 30(7):775-802,
2000.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization, 2004.
CGO 2004. International Symposium on, pages 75-86. IEEE, 2004.

Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14-16,
1996.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel Mehta, and
Riley Hassell. The shellcoder’s handbook. Wiley Indianapolis, 2004.

Serge E Hallyn and Andrew G Morgan. Linux capabilities: Making them work. In
Linux Symposium, page 163, 2008.

Tse Huong Choo et al. Trusted linux: A secure platform for hosting compartmented
applications. Enterprise Solutions, pages 1-14, 2001.

Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum:
Practical capabilities for unix. In USENIX Security Symposium, pages 29-46, 2010.

Tomohiro Shioya, Yoshihiro Oyama, and Hideya Iwasaki. A sandbox with a dynamic
policy based on execution contexts of applications. In Advances in Computer
Science—ASIAN 2007. Computer and Network Security, pages 297-311. Springer,
2007.

Zhenkai Liang, VN Venkatakrishnan, and R Sekar. Isolated program execution: An
application transparent approach for executing untrusted programs. In Computer
Security Applications Conference, 2003. Proceedings. 19th Annual, pages 182—191.
IEEE, 2003.

Taesoo Kim and Nickolai Zeldovich. Practical and effective sandboxing for non-root
users. In USENIX Annual Technical Conference, pages 139-144, 2013.

Vladimir Kiriansky, Derek Bruening, and Saman P Amarasinghe. Secure execution
via program shepherding. In USENIX Security Symposium, volume 92, 2002.

Yusuf Motara and Barry Irwin. In-kernel cryptographic executable verification. In
Advances in Digital Forensics, pages 303-313. Springer, 2005.

Marco Slaviero, Jaco Kroon, and Martin S Olivier. Attacking signed binaries. In
ISSA, pages 1-10, 2005.

Mohan Rajagopalan, Matti A Hiltunen, Trevor Jim, and Richard D Schlichting.
System call monitoring using authenticated system calls. Dependable and Secure
Computing, IEEE Transactions on, 3(3):216-229, 2006.

Luke Dalessandro and Michael L Scott. Sandboxing transactional memory. In Pro-
ceedings of the 21st international conference on Parallel architectures and compilation
techniques, pages 171-180. ACM, 2012.

Niels Provos. Improving host security with system call policies. In USENIX Security,
volume 3, 2003.

Aleksey Kurchuk and Angelos D Keromytis. Recursive sandboxes: Extending systrace
to empower applications. In Security and Protection in Information Processing
Systems, pages 473-487. Springer, 2004.

63

[39]

[47]

[48]

[51]

64

Asit Dan, Ajay Mohindra, Rajiv Ramaswami, and Dinkar Sitaram. Chakra vyuha
(cv): a sandbox operating system environment for controlled execution of alien code.
IBM Thomas J. Watson Research Division, 1997.

Kurt Natvig. Sandbox technology inside av scanners. VIRUS, 475, 2001.

Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated
performance comparison of virtual machines and linux containers. technology, 28:32,
2014.

Yan Wen, Jinjing Zhao, Gang Zhao, Hua Chen, and Dongxia Wang. A survey of
virtualization technologies focusing on untrusted code execution. In Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth International
Conference on, pages 378-383. IEEE, 2012.

Faisal Al Ameiri and Khaled Salah. Evaluation of popular application sandboxing.
In Internet Technology and Secured Transactions (ICITST), 2011 International
Conference for, pages 358-362. IEEE, 2011.

Stephen Soltesz, Herbert Po6tzl, Marc E Fiuczynski, Andy Bavier, and Larry Peter-
son. Container-based operating system virtualization: a scalable, high-performance
alternative to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41,
pages 275-287. ACM, 2007.

John Fink. Docker: a software as a service, operating system-level virtualization
framework. Code4Lib Journal, 25, 2014.

Johannes Krude and Ulrike Meyer. A versatile code execution isolation framework
with security first. In Proceedings of the 2013 ACM workshop on Cloud computing
security workshop, pages 1-10. ACM, 2013.

Yoshihiro Oyama, Koichi Onoue, and Akinori Yonezawa. Speculative security checks
in sandboxing systems. In Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, pages 8—pp. IEEE, 2005.

Ma Bo, Mu Dejun, Fan Wei, and Hu Wei. Improvements the seccomp sandbox based
on pbe theory. In Advanced Information Networking and Applications Workshops
(WAINA), 2013 27th International Conference on, pages 323-328. IEEE, 2013.

Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposition
based security tools. In NDSS, volume 3, pages 163-176, 2003.

Zhen Li, Jun-Feng Tian, and Feng-Xian Wang. Sandbox system based on role
and virtualization. In Information Engineering and Electronic Commerce, 2009.
IEEC’09. International Symposium on, pages 342-346. IEEE, 2009.

Robert NM Watson. Exploiting concurrency vulnerabilities in system call wrappers.
WOOT, 7:1-8, 2007.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Brian Greskamp, Pablo Montesinos, and Paul Sack. ipoj: User-space sandboxing for
linux 2.4. Urbana, 51:61801.

Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. Ostia: A delegating architecture
for secure system call interposition. In NDSS, 2004.

Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski. Exploiting
and protecting dynamic code generation. In Proceedings of the 2015 Network and
Distributed System Security (NDSS) Symposium, 2015.

David R Butenhof. Programming with POSIX threads. Addison-Wesley Professional,
1997.

Ulrich Drepper and Ingo Molnar. The native posix thread library for linux. White
Paper, Red Hat Inc, 2003.

Dejan Lukan. Miniupnpd analysis and exploitation. https://www.viris.si/
2013/12/miniupnpd-analysis—and-exploitation/?lang=en, 2013. (Ac-
cessed: 2015-03-20).

Frederic Perriot and Peter Szor. An analysis of the slapper worm ex-
ploit. Symantec White Paper |http://securityresponse.symantec.com/|
avcenter/reference/analysis.slapper.worm.pdf, 2003.

Hector Marco-Gisbert and Ismael Ripoll. On the effectiveness of full-aslr on 64-bit
linux. 2014.

Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-
memory programming. Computational Science & Engineering, IEEE, 5(1):46-55,
1998.

Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. Profile guided compiler optimiza-
tions. 2002.

65

https://www.viris.si/2013/12/miniupnpd-analysis-and-exploitation/?lang=en
https://www.viris.si/2013/12/miniupnpd-analysis-and-exploitation/?lang=en
http://securityresponse.symantec.com/avcenter/reference/analysis.slapper.worm.pdf
http://securityresponse.symantec.com/avcenter/reference/analysis.slapper.worm.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem statement
	Methodology
	Overview

	Fundamentals
	Operating system internals
	Sandbox
	Seccomp
	Text processing
	Static analyzer
	Buffer Overflow
	Shell Code

	State-of-the Art
	Sandbox techniques
	Performance overhead of sandboxes
	Security of sandboxes
	Summary and Conclusion

	Annotation based sandboxing
	System overview
	Run time Enforcement
	Annotation
	Code generator
	System call identification
	Automated annotation
	Usage

	Evaluation
	Exploit mitigation
	Performance

	Summary and Conclusion
	Further work
	Bibliography

