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Abstract
EEG monitoring during anesthesia or for diagnosing sleep disorders is a common standard. Different approaches for measur‑
ing the important information of this biosignal are used. The most often and efficient one for entropic parameters is permu‑
tation entropy as it can distinguish the vigilance states in the different settings. Due to high calculation times, it has mostly 
been used for low orders, although it shows good results even for higher orders. Entropy of difference has a similar way of 
extracting information from the EEG as permutation entropy. Both parameters and different algorithms for encoding the 
associated patterns in the signal are described. The runtimes of both entropic measures are compared, not only for the needed 
encoding but also for calculating the value itself. The mutual information that both parameters extract is measured with the 
AUC for a linear discriminant analysis classifier. Entropy of difference shows a smaller calculation time than permutation 
entropy. The reduction is much larger for higher orders, some of them can even only be computed with the entropy of dif‑
ference. The distinguishing of the vigilance states between both measures is similar as the AUC values for the classification 
do not differ significantly. As the runtimes for the entropy of difference are smaller than for the permutation entropy, even 
though the performance stays the same, we state the entropy of difference could be a useful method for analyzing EEG data. 
Higher orders of entropic features may also be investigated better and more easily.
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1 Introduction

Electroencephalographic recordings (EEG) during surgical 
anesthesia serve the purpose of monitoring the patient and 
aid the anesthesiologist in adjusting the anesthetic level. In 
the past years a number of analytical methods were used to 
extract EEG information that corresponds with the hypnotic 
component of anesthesia. Commercially available devices, 
so called "depth-of-anesthesia-monitors" process the EEG 
with spectral methods [1–4]. They utilize the changes of 
EEG frequencies induced by (mainly) GABAergic sub‑
stances from faster rhythms during wakefulness to slower 
oscillations during anesthetic levels [5]. Apart from the 
spectral approaches, entropic parameters that analyze the 
EEG in the time domain gained increasing popularity in 
assessing the hypnotic component of anesthesia. The first 
parameter introduced to the anesthesia field was the approxi‑
mate entropy [6–8]. Encouraged by the results of this param‑
eter to distinguish different levels of anesthesia, a number 
of different entropic parameters were applied to EEG traces 
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recorded during anesthesia. The most efficient parameter 
regularly used is the permutation entropy (PeEn) [9–12]. 
This symbolic parameter was designed by Bandt and Pompe 
[9] and introduced to anesthesia research by Jordan et al. 
and Olofsen et al. [8, 10]. Other research groups showed the 
high performance of this parameter as well [12]. PeEn cre‑
ates a series of ordinal patterns from the EEG and uses the 
probability distribution of these ordinal patterns to calculate 
its value that corresponds with the complexity of the time 
series, i.e., the EEG according to the Shannon entropy [13]. 
Although the parameter shows good performance in evalu‑
ating the anesthetic level, the claim made of PeEn being a 
measure of complexity has been questioned [14]. In terms 
of anesthesia monitoring, i.e., to separate different levels 
of anesthesia, subparameters of PeEn showed even better 
performance [15]. When using PeEn, an embedding dimen‑
sion m has to be defined that corresponds to the length of 
the EEG segment from which one ordinal pattern is derived. 
Berger et al. described an association of PeEn with m = 3 to 
the spectrum of the EEG [14]. This m = 3 setting also seems 
to function for anesthesia monitoring as well, as do higher m 
[8, 10]. Because the number of possible patterns is m!, PeEn 
calculation time strongly increases for higher m, but different 
approaches lead to different results [16]. Pasquale Nardone 
introduced another symbolic parameter, the entropy of dif-
ference (EoD), to evaluate the "complexity" of a time series 
[17]. He states that EoD is as efficient as PeEn, but it reduces 
the sample size to estimate the parameter value. He also 
states that for random signals, PeEn will lead to a constant 
probability of qm(�) =

1

m!
 for a pattern � . This impedes the 

assessment of the "distance" between the probability found 
in a signal, i.e. pm(�) , which is the EEG in our case, to 
a random signal, which would be white noise [17]. EoD 
has already proven useful to assess differences in sleeping 
behavior in an animal model for Alzheimer’s disease [18]. 
In this article, we compared the performance of EoD versus 
PeEn to assess sleep stages and anesthesia levels. With these 
analyses, we intended to investigate two features: 

 (i) Can we further reduce the information content from 
the EEG used to assess vigilance states without sac-
rificing performance?

 (ii) How does the change from ordinal (PeEn) to dif-
ference patterns (EoD) influence computing times, 
especially at higher embedding dimensions?

2  Methods

The data sets analyzed and the entropy‑based parameters are 
described at the beginning of this section. The algorithms 
used to compute them and their impact on the runtime 

are then presented. The statistical analysis concludes this 
section.

2.1  Included studies

2.1.1  CAP sleep database

For our sleep analysis, we used an openly available data set, 
the cyclic alternating patterns (CAP) sleep database [19], 
which is available on the physionet.org site [20]. This data 
bank contains 105 polysomnography recordings, 91 of them 
have different sleep disorders, and 14 are datasets of people 
who do not suffer from a neurological or other sleep‑related 
disorder. The last group also did not take any medication 
affecting the central nervous system. They were recorded 
at the Sleep Disorders Centre of the Ospedale Maggiore di 
Parma, Italy. The breakdown of the recordings regarding 
the different diseases of the subjects is given in [19]. As 
we were interested in comparing the performance features 
of PeEn to EoD, we did not separate the dataset by disease, 
but only investigated the differences in the parameters at 
the different sleep stages. The records from the database 
contain at least two EEG channels, two channels with elec‑
trooculographic (EOG) data, two channels with electromyo‑
graphic (EMG) data, electrocardiographic (ECG) data, and 
respiratory signals as well as the subjects’ age. They also 
contain the sleep‑scoring vectors that enable the assignment 
of a vigilance state to an EEG episode. Because of our ana‑
lytical intention, we only used the EEG information. The 
EEG was recorded from channels placed according to the 
10‑20 system. If available, we considered the recordings of 
channels Fp2‑F4 or F2‑F4, which was the case in 98 out 
of 105 recordings. In the other cases, a centrally located 
channel was chosen. For standard EEG pre‑processing, we 
set a low‑pass filter of 30 Hz at a sampling frequency of 
200 Hz [21]. The classification of the sleep stages was car‑
ried out according to the R&K rules [22]. For our purpose, 
we used the modern classification rules according to AASM 
[23]. Therefore, we merged sleep stages S4 and S3 into the 
combined non‑rapid‑eye‑movement sleep (NREMS) stage 
3. So we included the stages wake (W), REMS, NREMS1, 
NREMS2, and NREMS3.

2.1.2  Anesthesia data

To evaluate the performance of PeEn and EoD at differ‑
ent levels of anesthesia, we retrospectively analyzed data 
from a published study from 2009 [24] that was designed to 
evaluate a combined method of EEG and auditory evoked 
potentials examination to detect the consciousness state dur‑
ing anesthesia. The details of, e.g., the anesthesia protocol 
can be found in the original publication [24]. In short, EEG 
was recorded from positions M2 and AT1, the latter one is 
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at the left temporal region between the lateral edge of the 
eye and upper edge of the ear, with Fz as the common ref‑
erence and Fpz as the ground electrode with four ZipPrep 
electrodes (Aspect Medical Systems, Natick, MA) using 
a device made for intraoperative recordings of EEG and 
evoked potentials. Digitization happened with a sample rate 
of 1 kHz and a high‑pass filter of 0.5 Hz and a low‑pass filter 
of 400 Hz were applied using the software tool NeuMonD 
[25] which is based on LabView™. We used EEG data that 
was recorded during wakefulness before anesthesia, burst 
suppression phases, and a light (inter1) and deep anesthesia 
level (inter2). For our analyzes, the EEG was resampled at 
100 Hz and a low pass filter of 30 Hz was applied.

2.2  Entropy‑based EEG analysis

Entropic parameters can be used to differentiate the EEG 
recorded from different vigilance states during sleep [26, 
27] or anesthesia [8, 10, 12]. In particular, PeEn was identi‑
fied as a suitable candidate for separating unconscious from 
conscious states [8, 10, 28]. Hence, we used both PeEn and 
its modification, EoD, in our analyses. EoD is also based on 
the Shannon entropy [13] but uses patterns of the sign of the 
difference between two data points [17] instead of ordinal 
order patterns [9].

The parameters are calculated of the time series 
(xt)t∈I , I = {1,… ,N}, with a certain length N, which rep‑
resents the EEG signal. First, an embedding dimension or 
order m and time‑delay � are chosen, and the series is split 
into

tuples of length m. The time delay indicates the index shift 
between two values in the tuple, i.e., for � = 1 , the values 
in the tuple are also neighboring values in the time series. 
For the sake of simplicity, we set � = 1 , as the influence 
of the time delay is already discussed by Popov et al. in a 
manuscript [29].

2.2.1  Permutation entropy

The publications of Bandt and Pompe or Jordan et al. provide a 
detailed description of the PeEn algorithm [8, 9]. The k tuples 
of length m form the base for the order coding. The highest 
amplitude within this segment is denoted as rank m; the second 
highest amplitude is denoted as rank m − 1 , etc. The lowest 
amplitude has rank 1. This leads to m! possible rank patterns 
(ordinal patterns) �i or permutations with i ranging from 1 to 
m!. Fig. 1 shows the mapping between the tuples of the time 
series and the ordinal patterns for a small example with m = 3 . 
With the classical formula to calculate the entropy according 
to Shannon [13], where p(�i) is the probability of occurrence 
of permutation type i, PeEn is defined as

The base of the logarithm is usually 2. The range of the PeEn 
is [0, log(m!)] [13]. The minimal value 0 is reached, if there 
is one ordinal pattern, that is present for every tuple, i.e. for 
one pattern j it holds p(�j) = 1 . Hence, all the other patterns 
never appear, i.e. p(�i) = 0 for all i ≠ j , which results in 

(1)k ∶= N − (m − 1)�

(2)PeEn = −

m!
∑

i=1

p(�i) log p(�i).

Fig. 1  The PeEn and the EoD break the EEG time series down in 
specific patterns to analyze the signal further in the time domain. 
In the middle you can see an example time series encoded once for 
the PeEn on the left side and once for the EoD on the right side. The 
numbers in the left box present the rank order of amplitudes, with the 

highest number being the highest amplitude in the pattern, that are 
used for PeEn calculation. The signs in the right box represent the 
sign pattern reflecting the difference in amplitude (higher of lower) of 
the next amplitude value of the pattern. These sign patterns are used 
for EoD calculation
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PeEn = 0 . The maximal value log(m!) is obtained, if the per‑
mutation type occurrence is evenly distributed, i.e. the prob‑
ability of each ordinal pattern is p(�i) =

1

m!
 . This results in 

PeEn = −m!
1

m!
log

(

1

m!

)

= log(m!) . Therefore, a normalized 
modification of the PeEn can be obtained by dividing the 
measure by its maximal value,

This way, the PeEn has a range of [0, 1] independent of m, 
which allows a comparison of the values between different 
orders.

In order to reliably calculate PeEn the numbers of tuples 
should at least be the number of possible permutations, i.e. 
k ≥ m! . Otherwise the value of the PeEn cannot reach its 
maximum. Hence, the length of the time series should be 
N ≥ m! + (m − 1)� [30, 31]. As we set � = 1 , we sum up the 
inequality to N > m! + m . This means, for a time series with 
10 s at a sampling rate of 250 Hz the maximal order should 
be m = 6 . For comparable results and feasible occurrences 
of the different ordinal patterns, and because m − 1 is always 
much smaller than m!, we simplify the inequality such that 
N should always be much larger than m! to

2.2.2  Entropy of difference

Pasquale Nardone gives a detailed explanation of EoD in his 
paper [17]. The idea of EoD is that the differences between 
neighboring amplitude values in the time series define the 
entropy value, not ordinal patterns. Taking the segments 
of length m cut from the EEG representing time series 
(xt)t∈I , for calculating the EoD only the series of differences 
between consecutive values is of interest. Considering the 
m‑tuple [1, 2, 4, 1], then the differences between the values 
are [1, 2,−3] . For EoD only the sign of the difference is rele‑
vant, i.e., [+,+,−] . This leads to 2m−1 possible combinations 
�l of " + " and "−" with l ranging from 1 to 2m−1 . For a small 
example with m = 3 , Fig. 1 shows the mapping between the 
time series tuples and the difference patterns. The EoD is 
then given by

Analogously to before, the base of the logarithm is usually 
2 and the range is [0, log(2m−1)] [13], which can be reduced 
to [0,m − 1] . The minimal value 0 is again obtained if one 
pattern appears all the time and the maximal m − 1 if the pat‑
terns of differences have an equally distributed occurrence. 

(3)P̂eEn = −
1

log(m!)

m!
∑

i=1

p(�i) log p(�i).

(4)N ≫ m!.

(5)EoD = −

2m−1
∑

l=1

p(�l) log p(�l).

The normalized measure of the EoD with a range of [0, 1] 
is, for a logarithm with base 2, given by

The possible patterns for the EoD are much fewer than for 
the PeEn. For a reliable calculation, we demand a number 
of tuples of at least the number of possible patterns, i.e., 
k ≥ 2m−1 . With � = 1 , it follows that N > 2m−1 + m , from 
which arises that for a signal of 10 s with a sampling rate of 
250 Hz, the maximal order can be m = 12 . This means, that 
the EoD can be computed with much higher orders than the 
PeEn. However, as we again want that every pattern of dif‑
ference can occur equally frequently, such that all variations 
are feasible, we suggest that

When the number of possible patterns is compared, one can 
see that for increasing m, the number of possible permuta‑
tions �i rises stronger with m! possibilities than for �l with 
2m−1 possible combinations for the patterns of difference. 
Fig. 2 shows the course of the possible combinations for 
increasing orders up to m = 12.

2.3  Encoding patterns

The need to identify and count the different patterns in a 
time series asks for a method to encode given data into a 
vector of pattern representations. Enumerating patterns with 
integers from 1 to m! or 1 to 2m−1 respectively allows for 
compact storing and simple comparison and makes counting 

(6)ÊoD = −
1

m − 1

2m−1
∑

l=1

p(�l) log p(�l).

(7)N ≫ 2m−1.

Fig. 2  Number of possible patterns for the PeEn and the EoD for 
orders up to m = 12
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patterns easy [16]. Regarding ordinal patterns, different ways 
of encoding are discussed [14, 32, 33]. In a paper by Berger 
et al. from 2019 the so‑called Lehmer code is proposed 
for this purpose [16]. We will base this comparison on the 
results obtained there. In the case of difference patterns, 
interpreting the " +−"string as a binary representation of a 
natural number provides an intuitive encoding. We formally 
define these encoding methods and discuss different algo‑
rithms for implementing them.

2.3.1  Encoding ordinal patterns

The Lehmer code exploits the fact that the ordinal pattern 
of a tuple (x1,… , xm) is uniquely identified by the tuple of 
the right inversion counts (r1,… , rm) where ri is defined as

The [.] operation has either 1 as the output if the statement 
is true or 0 if it is false. As ri is an integer in {0,… ,m − i} , 
the sequence (r1)(r2)… (rm) can be interpreted as an m‑digit 
factoradic numeral. Consequently, the numerical representa‑
tion of the ordinal pattern of a tuple (x1,… , xm) is given by 
the equation

Given a data vector that should be encoded in a vector of 
ordinal patterns of order m, a straightforward algorithm 
takes each m‑tuple and calculates the representation in 
Lehmer code. Calculating (m − i)! for each i in the sum can 
be avoided. The computational complexity for calculating 
one pattern representation is O(m2) , which gives a total 
computation time of O(Nm2) . This is the Plain Algorithm 
described by Berger et al. [16]. The detailed calculation of 
the computational complexity and the pseudocode of the 
algorithm are in supplemental section S1.

This result can be improved by using the fact that knowing 
one pattern narrows down the possible patterns in the next 
step. Two adjacent tuples (x1,… , xm) and (x2,… , xm+1) over‑
lap in m − 1 values. The right inversion counts of the new tuple 
can be calculated from the right inversion counts of the old 
tuple and the comparison of each value in (x2,… , xm) to xm+1 . 
Therefore only m − 1 comparisons are necessary. The algo‑
rithms Overlap Algorithm and Lookup Algorithm by Berger 
et al. implement this idea [16]. Since the lookup table would 
occupy more than 3GB of memory for orders m ≥ 10 , we used 
the overlap algorithm for our purpose. However, the two algo‑
rithms had very similar runtimes for low m. In both cases the 

(8)ri ∶=

m
∑

j=i+1

[xi > xj].

(9)n =

m−1
∑

i=1

(

(m − i)!

m
∑

j=i+1

[xi > xj]

)

.

computational complexity of encoding one ordinal pattern is 
reduced to O(m) , and hence for the whole time series O(Nm) 
[16]. The pseudocode of the algorithm and the detailed calcu‑
lation of the computational costs can be found in supplemental 
section S1.

2.3.2  Encoding difference patterns

Each difference pattern of a tuple (x1,… , xm) can be inter‑
preted as the binary representation of a natural number. 
Following this idea, a numerical pattern representation in 
{1,… , 2m−1} is obtained by

In the case of m = 4 for example, this encoding stores the 
pattern [+,+,+] as "1" and the pattern [−,−,−] as "8" main‑
taining lexicographical order for the patterns in between. 
Analogous to the straight‑forward algorithm for encoding 
ordinal patterns we have the same approach for difference 
patterns.

Algorithm 1  Plain Algorithm for Difference Patterns

The computational effort for one tuple is O(m) , which 
gives for the whole time series O(Nm) . The detailed calcula‑
tion of the computational complexity can be found in sup‑
plemental section S1. Here again, a recursive approach leads 
to a decrease in computational complexity. To determine the 
pattern of a tuple given the pattern representation of the prec‑
edent tuple, only one comparison is needed. This allows for a 
computational complexity that does not increase with increas‑
ing m, but only depends on the length of the given time series, 
which results in a computation time of O(N).

(10)n = 1 +

m−1
∑

i=1

2m−(i+1)[xi > xi+1].
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Algorithm 2  Iterative Algorithm for Difference Patterns

2.4  Runtime analysis

First, artificial signals are used to analyze the runtime, i.e., 
white noise. The performances of the different encoding 
algorithms that were introduced in section 2.3 were evalu‑
ated by measuring the runtime of their MATLAB imple‑
mentations on simulated uniform white noise where each 
ordinal pattern is equally likely. Using the MATLAB func‑
tion rand, a vector with length 14.4 ⋅ 106 of uniformly dis‑
tributed random numbers between 0 and 1 was generated, 
and the mean of 20 runs was considered. The MATLAB 
default Mersenne Twister with seeds from 1 to 20 was used 
for the random number generator.

Second, runtime measurements were taken for calculating 
EoD and PeEn on real EEG data. For this purpose, the EEG 
recordings of the CAP Sleep Database [19] were used, which 
are described in section 2.1. The EEG recordings were cut 
to match with the labeling of the sleep phases provided in 
the database. The entropic parameters were computed on 
windows of 6000 data points which is equivalent to 30 s.

The actual runtime performance of an algorithm depends, 
in general, on the platform and programming language. All 
measurements were taken on a laptop with 16GB RAM, an 
Intel Core i7‑1360P processor, with operating system Win‑
dows 11 Home in MATLAB version R2023a. It should be 
noted that the considered algorithms were only tested for 
MATLAB implementations. The results could be different 
for other platforms, for example, pre‑compiled languages 
like C. Therefore an extension of the investigation would 
be useful.

Berger et al. already mentioned in 2019 the programming 
technique vectorization which is used for the implementa‑
tion of the Plain Algorithm (Alg. S1) for encoding ordinal 
patterns in MATLAB [16]. As a result, the implementation 

of this algorithm outperforms the ones of the other two algo‑
rithms, which were designed to avoid unnecessary compari‑
sons in terms of runtime for all tested orders m = 2,… , 9.

A characteristic of programming in MATLAB is that 
there are commands that can process all elements of an array 
of data without having to construct a loop over the entries of 
the array. By constructing appropriate arrays and perform‑
ing the comparisons, multiplications and additions on these 
arrays, the loops in the straightforward algorithm can be 
avoided in the implementation.

In the case of difference patterns, another potential way 
to optimize the runtime is avoiding comparisons by obtain‑
ing the vector of differences between neighbours before the 
actual encoding, for example, with the MATLAB function 
diff in the case of a one‑dimensional data array. When 
tested on simulated uniform white noise, this approach 
did not lead to a reduction in runtime and was not pursued 
further.

2.5  Statistical analysis

An area under the receiver operating characteristic curve 
(AUC) of the normalized PeEn and the normalized EoD was 
performed to compare the performance of the parameters 
when distinguishing between different states of conscious‑
ness. Sleep scoring data of the CAP Sleep Database [19] and 
anesthesia data of a previously published study [24] were 
used. The AUC is equivalent to the prediction probability 
for dichotomous data [34]. In the setting of anesthesia level 
classification, it has regularly been used to evaluate the per‑
formance of entropic measures and commercial, processed 
EEG indices. [7] The AUC value distinguishes two classes 
and ranges from 0 to 1, with 0 meaning only wrong and 
1 only correct predictions. No separability of any kind is 



Journal of Clinical Monitoring and Computing 

given by 0.5. We used the Statistics and Machine Learning 
toolbox for MATLAB (The Mathworks, Natick, MA, USA) 
for our analysis and calculated 95% confidence intervals for 
the AUC value using the cross‑validation method with 10 
folds. Therefore, if the value 0.5 is not in the 95% confidence 
interval, the result is considered statistically significant on a 
level p < 0.05 , as this AUC value would mean the parameter 
has no effect on the classification [35].

The parameter‑free machine learning algorithm linear 
discriminant analysis (LDA) was selected for the classifi‑
cation. It is a supervised classifier based on multivariate 
normal distribution [36] and showed good discrimination 
(high AUC) between the two classes for sleep and anesthe‑
sia scoring, respectively. We used the MATLAB function 
fitcdiscr for the training. We also tested another clas‑
sification algorithm [36] with logistic regression, but since 

Fig. 3  Runtimes for encod‑
ing the difference or ordinal 
patterns of a white noise signal 
of length 14.4 × 10

6 . The figure 
shows the mean of 20 runs. 
Ties were not masked, i.e. a tie 
xi = xj with i < j was treated as 
if xi < xj
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it resulted in the same AUC values and confidence intervals 
we focused on LDA.

3  Results

In this section, we present the results for the runtimes of 
the encoding and the computation of the entropy‑based 
parameters, as well as the performance for distinguishing 
vigilance states in sleep and in anesthesia.

3.1  Runtime durations for encoding patterns

The analysis of only encoding white noise in the different 
patterns was done first. Fig. 3a shows that the runtime of the 
vectorized implementation of the Plain Algorithm for Dif-
ference Patterns (Alg. 1), which is increasing with embed‑
ding dimension m in contrast to the Iterative Algorithm 
(Alg. 2), which remained stable. The increase in duration 
from order m = 3 to order m = 20 was ∼5.5‑fold for the vec‑
torized difference pattern encoding. However, up to order 7, 
vectorization achieves faster runtimes in MATLAB for the 
plain algorithm. For the encoding of ordinal patterns the 
runtime increase with embedding dimension was severe for 
high orders. A possible explanation for the jumps visible in 
Fig. 3b in runtime for higher orders m ≥ 19 is the changed 
numeric type as uint64 is used instead of double. This 
is done because of memory alignment such that an encoding 
of ordinal patterns is also possible for orders m = 19 and 
m = 20 . For higher orders it is not possible anymore [16]. 
Fig. 3c shows that when choosing the optimal algorithm for 
each order, the encoding times for lower orders were similar 
for the two pattern types. For higher orders difference pat‑
terns were encoded considerably faster. At order m = 18 , 
before the leap in runtime for ordinal patterns, the increase 
was ∼2.3‑fold with respect to order m = 3 for the difference 
and ∼ 9.2‑fold for the ordinal patterns.

3.2  Runtimes of calculating entropic parameters 
on EEG data

For each of the EEG recordings in the CAP Sleep Database, 
the runtime that was needed to encode patterns, count the 
number of occurring patterns, and calculate the respective 
entropy value on 30 s windows was measured. In Fig. 4a, b, 
c the sum of these runtimes over all 105 considered EEG 
recordings is shown for the two entropic parameters and dif‑
ferent pattern encoding options. The colored line is the time 
not spent encoding the respective patterns.

Analyzing the runtimes for EoD in Fig. 4a, one can see 
that for the Iterative Algorithm, the growth in runtime with 
increasing order m is driven by the time needed for counting 

patterns and computing the entropy value. This behavior is 
expected as the process’s runtime increases with the number 
of possible patterns 2m−1 while the encoding time remains 
constant. Compared to the measurements on the random 
signal in the section before, the iterative algorithm for pat‑
tern encoding outperforms the plain algorithm even sooner, 
namely starting from order m = 7.

For PeEn, measurements were made up to order m = 9 , 
because arrays of order 10 were too large for the RAM with 
more than 27GB. This and the steep increase in runtime in 
the value counting and value computation part that is seen 
in Fig. 4b reflect the fact that the number of possible ordinal 
patterns increases much faster than the number of difference 
patterns, which was described in section 2.3.

Comparing the runtimes of PeEn and EoD calculation 
up to order m = 9 , the latter is faster than the former for 
all embedding dimensions, as one can see in Fig. 4c. In 
particular, the incline of the runtime for the pattern count‑
ing and value calculation process is much slower for EoD. 
The increase in these times was ∼2.2‑fold for the EoD and 
∼ 31.9‑fold for the PeEn, as the blue and red lines show 
respectively.

3.3  Sleep stages

The boxplots in Fig. 5 show the separation of the sleep 
phases for PeEn and EoD for different m for all patients. 
In Fig. 6 PeEn and EoD values of order m = 7 for a single 
patient from the control group can be seen, a similarly high 
correlation is observed across all patients.

In general, EoD was considerably higher than PeEn 
and the level of PeEn decreased more with higher orders 
than for EoD, which is shown in Fig. 5. This finding was 
independent of any underlying disease as presented in sup‑
plemental Fig. S1. For both entropic parameters the rela‑
tions of the value ranges for different phases are similar, 
the values for the stages WAKE and NREMS1 are on a 
comparable level, the other stages show a decrease from 
REMS to NREMS2 to NREMS3. The analysis of the 30 s 
EEG segments of the 105 patients at different sleep stages 
revealed a very high discriminative power when differentiat‑
ing between wake and NREMS3 with an LDA classification 
performance of AUC ≥ 0.94 for PeEn and EoD for almost 
all orders with, see Table 1. When differentiating between 
two arbitrary stages similar results were obtained regarding 
the comparison of PeEn and EoD, however the AUC value 
for both of them is lower. The detailed results are listed in 
supplemental section S3.2. Note that the number of windows 
slightly decreases with higher orders as windows contain‑
ing ties were discarded and longer tuples are more likely to 
contain ties. Hence, the number of windows for the wake 
state is between 19005 and 19024 and for the NREMS3 
state between 25176 and 25178. The detailed numbers of 
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windows for each state and order are listed in supplemental 
Table S1. The choice of the order m did not considerably 
influence the AUC values, although higher orders showed 
a slight decrease in the AUC values. Randomly discarding 
NREMS3 windows from the dataset to balance the num‑
ber of NREMS3 and wake windows led to similarly good 
results.

3.4  Anesthesia levels

For the anesthesia analysis, we included 14 wake EEGs, 15 
during burst suppression phases, 15 from the state inter1, 
and 16 files from inter2 of about 120 s each and calculated 
PeEn and EoD over 10 s segments. As for the sleep data, 
windows containing ties between any data points in it were 
excluded from the data set. For all orders 3 to 7 there are 154 
windows for the wake state. For the inter2 state there are 175 
windows for order 3 and 174 for orders 4 to 7. The detailed 

Fig. 4  Sum of the runtimes for 
pattern encoding, counting the 
number of occurring patterns, 
and calculating the entropy 
values of 30 s windows over all 
105 considered EEG recordings 
from the CAP Sleep Database. 
As before ties in the data were 
treated as ascending data points. 
The points connected by the 
blue and red lines indicate the 
total time not spent for encoding
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numbers of windows for each state and order are listed in 
supplemental Table S2.

An analysis of an LDA classifier of wake and inter2 
showed AUC values between 0.83 and 0.87 using PeEn as 
a predictor. Across all orders predicting with EoD led to 
slightly higher AUC values. In contrast to the sleep data, the 
AUC of PeEn decreased with higher m whereas for the EoD 
this behavior was not as distinct. Table 2 shows the detailed 
AUCs. When differentiating between two arbitrary stages 
similar results are obtained regarding the comparison of 
PeEn and EoD, for wake versus inter1 the values are higher, 
for inter1 versus inter2 they are lower. For both cases we see 
as well that especially the EoD has higher AUC values for 
higher orders. Similar results are obtained for the discrimi‑
nation of each level of anesthesia for the burst suppression 
phase, where again the EoD exceeds the PeEn with higher 
AUC values for higher orders. The detailed results are listed 
in supplemental section S3.3.

Furthermore, the correlation of PeEn and EoD in each 
recording was measured. With higher orders the correla‑
tion between PeEn and EoD was considerably lower. The 
median of correlation valued measured was over 0.99 for 
order m = 3 but only around 0.85 for order m = 7 . This was 
observed for all phases, however it was conspicuous that 
particularly in the wake phase considerably low correlation 
values were observed. The divergence of the two entropic 
parameters is visible in Fig. 7, which shows the boxplots for 
the entropic measures for the three different anesthesia levels 

Fig. 5  EoD and PeEn values 
on 30 s windows of single 
channel EEG for orders m = 3 
and m = 7 respectively for all 
patients. The value ranges are 
similar for EoD and PeEn when 
comparing sleep phases, for 
higher orders the gap between 
the two entropic parameters gets 
bigger

Fig. 6  EoD and PeEn values 
of order m = 7 for the patient 
labeled "n2" (control group, 
no pathology). The correlation 
between EoD and PeEn values 
of this patient is 99.53%. A 
similar high correlation was 
found across patients across 
orders with a light decrease for 
higher orders

Table 1  AUC values with 95% confidence intervals (CoI) for an LDA 
classifier with 10‑fold cross validation for the sleep stages Wake ver‑
sus NREMS3 and orders 3 to 7. For each order the higher AUC value 
is highlighted with bold font

Wake vs. NREMS3 AUC (CoI)

PeEn EoD

ord 3 0.948 (0.946 0.949) 0.948 (0.945 0.950)
4 0.946 (0.945 0.948) 0.947 (0.944 0.949)
5 0.945 (0.943 0.947) 0.943 (0.941 0.946)
6 0.944 (0.942 0.946) 0.939 (0.937 0.942)
7 0.944 (0.942 0.947) 0.936 (0.933 0.939)

Table 2  AUC values with 95% confidence intervals (CoI) for an LDA 
classifier with 10‑fold cross validation for the stages Wake versus 
Inter2 and orders 3 to 7. For each order the higher AUC value is high‑
lighted with bold font

Wake vs. Inter2 AUC (CoI)

PeEn EoD

ord 3 0.861 (0.814 0.907) 0.861 (0.819 0.903)
4 0.869 (0.822 0.916) 0.875 (0.836 0.914)
5 0.868 (0.829 0.906) 0.881 (0.853 0.909)
6 0.858 (0.809 0.907) 0.880 (0.835 0.924)
7 0.839 (0.797 0.881) 0.876 (0.847 0.904)
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and orders m = 3 and m = 7 . The level of PeEn decreases 
much more with higher m compared to EoD. Furthermore 
EoD seems to better separate wake from inter1 and inter2 
for higher orders. A possible explanation is that the share of 
ordinal patterns that actually appeared in one window in all 
possible ordinal patterns was much smaller with increasing 
order due to the shortness of the segments which led to a 
decrease in PeEn. In fact, starting from m = 7 the number 
of possible ordinal patterns exceeds with 5040 the used win‑
dow length, which is less than a fifth of the possible pat‑
terns. The different behavior of the entropic measures can 
be attributed to the differing number of possible patterns.

4  Discussion

With our investigation, we could show that the performance 
of PeEn and EoD in assessing sleep and anesthesia levels are 
quite similar, and the AUC values for the classification are 
almost the same for low orders. For higher orders the EoD 
can separate the levels of anesthesia better than the PeEn, as 
the AUC values increased. We did not observe this increase 
in AUC in the wake vs. NREM3 comparison, but there, the 
AUC values were higher from the beginning. By using the 
sleep and the anesthesia data, we could show that both PeEn 
and EoD perform well in separating different vigilance states 
and that there was no decrease in performance when using 
the computational, less demanding EoD. The analysis of the 
sleep stages showed an equally good performance for PeEn 
and EoD as for the anesthesia results. The high AUC for 
discriminating between NREMS3 and wake shows that the 
entropy measures are qualified parameters for classification. 
These results also justify the use of these entropic param‑
eters in the anesthesia context as the sleep stage NREMS3 
and the anesthesia level inter2 from our study show similar 
EEG patterns [5].

Reducing the raw EEG time series from order patterns 
(PeEn) to difference patterns (EoD) does not influence the 

discriminatory performance. While PeEn has been exten‑
sively used for analyzing brain electrical activity, especially 
the EEG, this has yet to be the case for EoD. A PubMed 
search of "permutation entropy" AND EEG returned 187 
hits, and the search "entropy of difference" AND EEG 
returned 0 hits on August 16th 2024.

4.1  A further reduction in information content does 
not affect performance

PeEn has been used in sleep and anesthesia research. Several 
papers highlight the possible usefulness of PeEn for sleep 
scoring [37–39]. In the anesthesia context, PeEn has been 
described to be among the best approaches to discriminate 
between consciousness and unconsciousness when evaluat‑
ing single‑channel EEG [8, 10, 12, 28]. An extension to the 
assessment of more than one channel by using the symbolic 
transfer entropy did not improve performance when com‑
pared to PeEn [40]. So, only a few pieces of information 
seem necessary to assess wake or sleep or conscious and 
unconscious levels. With EoD performing similarly to PeEn, 
this becomes even more obvious. The discussion about how 
much information entropic measures in terms of informa‑
tion processing really contain has been questioned in the 
past, especially for PeEn [14] where the authors described 
the relationship to the number of peaks of the raw EEG. 
This publication shows that PeEn calculated with m = 3 and 
� = 1 can be interchangeably used with "the power spectral 
centroid of the signal’s first derivative and Kedem’s higher 
order crossings" [14]. Kedem’s algorithm of higher order 
crossings [41] was described in 1986 and is based on assess‑
ing, e.g., the number of peaks. This already shows that even 
little information may suffice to evaluate vigilance states 
or anesthetic levels. PeEn seems to function for separating 
conscious and unconscious states in patients as shown by 
several groups [8, 10, 12, 40] and in this article. EoD showed 
a similar performance but is computationally less demand‑
ing because of a lower number of possible patterns and a 

Fig. 7  EoD and PeEn values on 
10 s windows of single chan‑
nel EEG for orders m = 3 and 
m = 7 respectively for all EEG 
recordings. The value ranges are 
similar for EoD and PeEn when 
comparing anesthesia levels, for 
higher orders the gap between 
the two entropic parameters gets 
bigger. Burst Supp. indicates the 
burst suppression level
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simpler way of encoding, as the sign vector generation for 
EoD is straightforward. As shown, the computation duration 
depends on encoding the "difference patterns". However, 
the process is more straightforward than encoding ordinal 
patterns for PeEn, for which each new data point’s ampli‑
tude at a window shift of one point has to be put in relation 
to the previous m − 1 points. There are different analytical 
approaches to creating these patterns [16], but the simplic‑
ity of getting the "difference" patterns seems to put EoD 
at an advantage. When using EoD, the need for a temporal 
component, i.e., the time point of a certain amplitude value 
being essential to define the order, becomes obsolete as the 
reduction to " + " or "−" does not require this information. 
With our analyses, we could show that a further reduction 
of the recorded EEG from ordinal patterns to merely " + " 
and "−", i.e., a binary vector, does not reduce performance 
in assessing vigilance states.

In a more scientific context, the reduction in analyzed 
information content highlights that assessing vigilance states 
with the EEG does not seem to require a focus on complex 
features but can be done on simple binary vectors. Other 
binary methods like the zero‑crossing rate [42, 43] or the 
Lempel‑Ziv complexity [44, 45] perform as well for sleep 
and anesthesia. Because the published studies on PeEn and 
anesthesia use rather low embedding dimensions [8, 10], 
one could argue that our investigation of the run times for 
high embedding dimensions is unimportant. But there may 
be something to it.

High embedding dimensions have the advantage of bet‑
ter separation of consciousness and unconsciousness in the 
anesthesia setting for m = 7 up until m = 9 [8]. Baseline 
situations with eyes open and eyes closed scenarios are also 
separated very well by the PeEn using these orders [46, 47]. 
It is suggested that even higher orders m should be used 
when tied values are involved in the signal if the computa‑
tional costs and memory requirements suffice [31]. The EoD 
can help here, as it has been shown that higher orders are 
possible with the same signal length, and the computational 
complexity is lower. New methods, such as the analysis of 
non‑occurring patterns, are possible for higher embedding 
dimensions. They can help separate the consciousness states, 
e.g., in anesthesia, as the non‑occurring patterns seem an 
even better indicator for the different levels [15]. Our analy‑
ses are based on EEG signals filtered to rather low frequen‑
cies below 30 Hz to reduce the impact of muscle activity 
in the form of EMG contamination, [21]. Still, we know 
that EMG covers the entire EEG range, and even resting 
state EMG can influence the EEG [48]. The PeEn appears 
to be most sensitive to the higher frequencies in a filtered 
signal when using low orders m. At higher orders, the cutoff 
frequency for the lowpass filter can be set higher as the clas‑
sification improves [8]. Commercial EEG‑based monitoring 
systems also seem to focus on the faster frequencies when 

calculating the index. A recent paper elegantly describes 
the focus of the bispectral index (BIS) on low gamma‑band 
activity [49].

At higher embedding dimensions, the PeEn decreases 
in a seemingly paradoxical fashion. This behavior can be 
attributed to the number of non‑occurring ordinal patterns. 
For PeEn the number of possible patterns is m!. Because 
typically the EEG episodes used for anesthesia monitoring 
are around 10 s and the sample rate probably not higher than 
1 kHz, m! quickly exceeds the number of data points in an 
episode. For EoD the number of possible patterns grows 
more slowly. So for higher m we do not see the paradoxical 
behavior for EoD that strongly.

4.2  Clinical implications

The so‑called depth of anesthesia monitoring, as it has 
been applied over the last decades, focuses on the hypnotic 
component of anesthesia. This means that the monitoring is 
based on an index that is matched onto a one dimensional 
scale. But as anesthesia navigation may not be one dimen‑
sional, i.e. not behave like a submarine [50], the monitoring 
approaches need to be extended to at least a two‑dimensional 
plane that also considers the analgesic component of anes‑
thesia [51]. The design of one parameter that can cover both 
entities may be tricky and maybe composite indices would 
provide an easier solution. PeEn and EoD may be suitable 
components for the hypnotic component. In contrast to spec‑
tral approaches, both can directly be applied to the raw sig‑
nal without the need to transform it to the frequency‑domain. 
PeEn’s strength to separate consciousness from unconscious‑
ness has been reported [8, 10, 12] and mentioned earlier. 
More recent research also suggests that PeEn, in contrast to 
spectral measures, does not follow the paradoxical excita‑
tion, which is an EEG activation pattern, predominately in 
the beta‑band of the EEG [5] that causes typical, spectral 
indices to indicate an "increased level of wakefulness". PeEn 
in contrast monotonously decreased during this "excitation 
phase" [52]. This indicates that the onset of the strong beta 
oscillatory activity is an initial phase of the transition into 
anesthetic‑induced unconsciousness which is reflected by 
lower PeEn caused by synchronization processes which may 
indicate less information processing.

Reducing the computational time of an algorithm can 
be relevant in the clinical setting because a patient monitor 
during general anesthesia must process multiple physiologi‑
cal parameters and tasks simultaneously, resulting in longer 
computational times for each. Therefore, faster algorithms 
with comparable performance may be a suitable option for 
integration.
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4.3  Limitations

Of course, this investigation has several limitations. All 
analyses were retrospective and the entire topic was of 
rather technical nature. So far no entropic, time‑domain 
measure is used for patient monitoring. But these entropic 
approaches can help to better understand the EEG dynam‑
ics and have proven useful as research tool. We also only 
focused on the hypnotic component as mentioned above. 
Future EEG‑patient monitoring approaches should follow a 
more holistic approach that includes other information like, 
e.g., nociception. In these approaches the entropic meas‑
ures may be useful for assessment of hypnosis. Especially 
at higher m and for the awake state, PeEn and EoD seem to 
diverge and show low correlation coefficients, as depicted in 
supplemental Fig. S2. The reason, therefore, most probably 
lies in the algorithm. First, the higher the m, the more rank 
order patterns can be coded into the same sign pattern. Sec‑
ond, with higher m, the percentage of non‑occurring patterns 
increases, especially for PeEn. This leads to a divergence 
between PeEn and EoD. In our analyses, we focused on EEG 
recorded during steady states to show the comparable perfor‑
mance of EoD when compared to PeEn. The next step of the 
performance assessment needs to be the evaluation of EoD 
and PeEn behavior during transitions between the vigilance 
states or between the anesthesia levels.

5  Conclusion

A further reduction of analyzed EEG information, i.e. from 
amplitude order patterns to amplitude sign patterns does not 
compromise the performance of entropic parameters to relia‑
bly distinguish between wakefulness and anesthetic‑induced 
unconsciousness. On the contrary, for higher orders the EoD 
can do so better than the PeEn, especially when short win‑
dow lengths are considered.

Supplementary Information The online version contains supplemen‑
tary material available at https:// doi. org/ 10. 1007/ s10877‑ 024‑ 01258‑8.
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