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Over the past decade, extensive research into ““single-atom’ catalysts (SACs) has revealed that the catalytic
behavior of metal adatoms is highly dependent on how they interact with their support. A strong dependence on
the local coordination environment has led to comparisons with metal-organic complexes, and there is growing
excitement about the potential to fine-tune SACs by controlling the adsorption geometry. The rise of computa-
tional screening to identify the optimal support/metal combinations underscores the need for rigorous bench-
marking of theoretical methods, to validate realistic geometries, mechanisms, and the impact of adsorption on
stability and catalytic activity. The surface science approach is particularly well-suited for this task because it
allows to precisely determine the geometry of the metal atom and interpret its catalytic behavior. Moreover, the
effects of temperature and molecular adsorption on the model catalysts stability can be studied in isolation, and
conclusions drawn from UHV studies tested in increasingly common near-ambient pressure and electrochemical
setups. This perspective highlights recent breakthroughs and specific systems—including metal oxides, metal-
organic frameworks, and carbon nitrides—where insights from surface science experiments can significantly

advance understanding in this rapidly evolving field.

The field of surface science grew out of a desire to understand what
occurs during catalytic reactions. As far back as 1922 [1], Langmuir had
concluded that the complexity of industrial catalysts would likely pre-
clude unraveling the multitude of effects at play. The solution, common
to many branches of science, was to develop model systems that are
simple enough to be tractable, but still mimic the real system in a
meaningful way. Because metal particles were the active catalytic
component, and they were known to expose preferred facets, oriented
single-crystal samples became the model of choice. The advent of vac-
uum technology enabled the preparation and maintenance of clean
surfaces, sparking technological developments that allowed rapid ad-
vancements in determining surface structure [2] and spectroscopic
methods to understand reactant adsorption and catalytic mechanisms.
This approach led to significant insights into reactions like CO oxidation
(important for automobile emissions) [3] and the Haber-Bosch process
(for ammonia production) [4], earning Gerhard Ertl the 2007 Nobel
Prize in Chemistry for pivotal contributions to surface science. A
detailed summary of his and other early contributions in this field is
provided in Reference [5].

As with any model, there are always possibilities for improvement.
The terms ““pressure gap’’ and ““materials gap’’ refer to two key limi-
tations: the significant difference between the ultra-high vacuum pres-
sures used in laboratory experiments versus real catalytic conditions [6],
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and the complexity of real catalysts, which often have active sites absent
on a metal single-crystal surface. Bridging the pressure gap has been a
longstanding goal in surface science, and today “‘near-ambient pres-
sure’’ (NAP) adaptations of many critical techniques—such as surface
X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS) and
scanning tunneling microscopy (STM)—are well established and
increasingly applied [7-11]. Recent trends in electrochemical research
have similarly spurred efforts to develop protocols for electrochemical
surface science [12]. Efforts to bridge the materials gap are similarly
numerous. One important development was the study of metal-oxide
surfaces [13], which are common support materials (as well as active
catalysts for some reactions). Experiments on TiO2(110), probably the
most studied metal-oxide surface [14], utilized single crystal samples
rendered conducting by in situ reduction, while epitaxial thin film
growth allows to create samples with sufficient conductivity even for
insulating materials [15-17]. Once the structure and properties of the
metal-oxide support are well understood, the next step in complexity is
to add metal nanoparticles. A clear size effect was discovered, and a
non-scalable regime where the conclusions derived from prior studies on
metal single crystals do not hold [18,19]. One notable example was the
discovery that Au becomes catalytically active for CO oxidation once
nanoparticles become smaller than circa. 10 nm in diameter [14]. The
importance of the metal-metal oxide interface has been widely studied
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[20], leading to a focus on inverse catalysts’’—metal oxide islands on
metal single-crystal supports [21]. Many concepts derived from these
studies are directly relevant to SAC, where all metal atoms are in direct
contact with the support.

The development of the size-selected cluster source provided an
elegant method to study size effects in catalysis. This technology allows
for the deposition of metal particles with a narrow size distribution,
enabling single-atom precision in reactivity studies, provided the clus-
ters do not undergo significant sintering on the single-crystal support
[22-24]. Many instances were uncovered where “magic” cluster sizes
are particularly active due to some coincidence of physical and elec-
tronic structure. It was one such study [25] that provided some of the
first surface science evidence for SAC. As the subtitle of the paper (“one
atom is enough!”) suggests, Heiz and coworkers reported the somewhat
surprising result that a single Pd atom supported on MgO(001) could
catalyze the cyclotrimerization of acetylene at 300 K. Density functional
theory calculations showed that the Pd atoms were activated by charge
transfer from oxygen vacancies on the MgO substrate. It was quickly
realized that this relatively simple model system could be ideal for un-
derstanding basic processes in catalysis [26]. A series of experimental
and theoretical studies of MgO-supported single atoms followed [27-31]
including the interesting observation that charge transfer could occur
between adsorbed atoms (and clusters) and the underlying metal in
ultrathin oxide film systems [32].

Meanwhile, Sykes and coworkers demonstrated that isolated single
atoms could provide active sites for catalysis. Specifically, they
embedded Pt group metals in less reactive metal hosts, creating so-called
Single-Atom Alloys (SAA). The concept has proven successful, particu-
larly for hydrogenation [33] and dehydrogenation reactions [34]. A
comprehensive review was recently published [35]. Since Sykes has also
contributed a perspective for this special issue of Surface Science high-
lighting the special properties of SAA [36], I will restrict the discussion
here to SAC systems supported by non-metal substrates.

Aside from surface science studies, there was growing evidence from
high-surface-area catalysis that oxide-supported single atoms could play
a significant role in catalysis. For example, Flytzani-Stephanopoulos and
coworkers [37] observed that the catalytic activity of a Pt/CeO5 system
in the water-gas shift reaction remained unchanged after metallic
nanoparticles were removed, leading them to conclude that nonmetallic
Pt species were solely responsible for the reactivity. In 2011, Zhang and
coworkers [38] coined the term “‘single-atom catalysis’ (SAC) and
synthesized a catalyst composed exclusively of single Pt atoms sup-
ported on FeO,—a challenging feat due to the tendency of Pt to sinter at
high temperatures. They demonstrated that this catalyst outperformed
both Pt and Au nanoparticle standards. This study, along with others,
generated significant interest in the field (Ref. [38] has received ~6000
citations at the time of writing). The synthesis approach, coupled with a
suite of techniques—transmission electron microscopy (TEM),
CO-diffuse reflectance infrared Fourier transform spectroscopy
(CO-DRIFTS), and X-ray absorption spectroscopy (XAS)—used to verify
atomic dispersion, has since become standard practice in SAC research.

Despite the growing popularity of SAC, it remains controversial due
to difficulties in proving that single atoms are the true active sites; often,
small clusters may be present or may form during reactions [39].
Another related issue is uncertainty surrounding the reaction mecha-
nisms, partly due to limitations in current experimental techniques to
characterize the active site directly. Computational modeling of SAC
reactions typically relies on simplified systems, where the metal atom
occupies an assumed position on a low-index termination of the support.
However, assumptions in these models can have significant conse-
quences. For instance, in the widely cited Pt;/FeO, study, the compu-
tational model was based on Pt adsorbed at a 3-fold hollow site on an
O-terminated a-Fe;03(001-1 x 1) surface. This model is reasonable at
first glance, given the alignment of Pt atoms with Fe cations in TEM
images of the as-synthesized catalyst [38]. However, the ““x’’ in FeOy
acknowledges that the reducing conditions in the catalyst activation step
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likely render the a-FepO3 surface non-stoichiometric, an aspect that is
not clearly resolved by experimental characterization. Furthermore, the
nanoparticle support surface is heterogeneous, with various nanofacets,
making an idealized a-Fe203(0001) surface model an oversimplification.
Notably, surface science studies have found little evidence of a stable (1
x 1) surface structure on a-Fe;03(0001), especially in reducing condi-
tions: such a surface would be polar and would gain significant energy
by losing surface oxygen atoms [40]. Thus, it is unsurprising that a CO
oxidation mechanism involving the extraction of surface oxygen, known
as a Mars-van Krevelen (MvK) mechanism, appears favorable [38].
However, using a more realistic reduced termination is challenging.
Surface science studies indeed show that a-Fe;03(0001) forms regions
with varied terminations under mild reducing conditions [10], and then
adopts a long-range “bi-phase” structure [15,41]. All of these surfaces’
structures remain debated [42]. With further reduction, an
Fe304(111)-like termination appears [42], though it is itself controver-
sial [43] and prone to forming a long-range biphase-ordered structure in
reducing conditions [44]. In summary, while the modeling of the
Pt;/a-Fe;03(0001) system illustrates that an MvK mechanism could
explain catalytic activity observed in CO oxidation experiments, there is
no direct experimental link confirming the structure or mechanism. This
critique applies to many SAC studies, as theoretical models often lack a
strong connection to experimental data, muddying our understanding of
SAC capabilities and limitations.

In this author’s opinion, the lack of experimental structural data
remains a critical issue in the SAC field. As computational methods and
resources advance, their capabilities will continue to grow, leading to an
increasing trend of screening potential catalysts. However, such work
can be unreliable when based on flawed assumptions. The FeO,-sup-
ported SAC systems described above again provides a case in point:
Screening studies based a bulk-truncated a-Fe;O3(001-1 x 1) surface
model predict that Pd; and Ni; could outperform Pt; [45] if a MvK
mechanism is assumed, while other metals (including Ti) are preferred if
an associative mechanism is assumed [44]. Replacing Pt with Ti would
be an exciting breakthrough, yet without experimental validation, it
remains doubtful whether these findings are reliable. Machine learning
approaches will likely drive further increases in such studies; however, it
remains debatable whether such predictions can reliably guide experi-
mental efforts.

At this juncture, the surface science approach offers invaluable in-
sights. Surface science experiments closely mirror computational models
in structure and environment: the single-crystal support aligns with
periodic boundary conditions in theoretical calculations, and the ultra-
high vacuum (UHV) environment simplifies the problem considerably.
This approach allows to determine the structure of the support and the
adatom position with high accuracy, facilitating the parallel interpre-
tation of structural and reactivity trends with computational pre-
dictions. Scanning probe microscopy is ideal for tracking the evolution
of model catalysts upon reactant exposure, and methods for studying
catalytic mechanisms are well-established in the field. One critical ser-
vice would be to provide benchmark experimental spectra for the most
important methods utilized to characterize powder-based SACs. This
involves measuring XPS core-level binding energies, the vibrational
stretch frequencies of adsorbed CO molecules, and reference XAS spectra
for metal atoms on well-defined surfaces, aiding in the identification of
active sites in real systems. Additionally, it will be essential to assess
these systems after exposure to environmental gases like water, as
under-coordinated surface metal atoms are likely to coordinate with
these molecules—an aspect rarely considered in studies of powder-based
SAC systems [46,47].

Inspired by these studies, we recently examined how water exposure
impacts the stability of model SACs. We found that water stabilizes Rh
on a-Fex03(012) [48], but has a neutral or destabilizing effect on various
metals on rutile-TiO2(110) [49] and anatase-TiO3(101) [50]. The key
difference lies in the binding structure: OH groups from the water can
complete a square planar configuration for Rh atoms on a-Fe;03(012)
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Fig. 1. CO adsorption energy determination on Me;/Fe304(001) model cata-
lysts using temperature-programmed desorption (TPD). Panels (A-G) show TPD
curves for CO on different metal adatoms, where 1 monolayer (ML) represents
one metal atom per surface unit cell (1.42 x 10'* atoms per square centimeter).
Desorption peaks attributed to the metal adatoms are indicated by arrows.
Light-gray curves depict CO TPD data from the ultrahigh-vacuum-prepared
Fe304(001) surface prior to metal deposition. Panel (H) presents a compari-
son of experimental and theoretical CO adsorption energies (Eq), as well as
desorption energies, alongside literature values for metal (111) and (110)
surfaces. Figure reproduced from Ref. [51].

[48], enhancing stability. In contrast, no similar stabilizing structure is
possible on the titania surfaces. These studies again underscore the
crucial role of local environment in determining the behavior of
single-atom catalysts.

A key finding from SAC research is that single atoms exhibit distinct
catalytic properties compared to bulk or nanoparticle forms of the same
metal. This difference arises because single atoms form chemical bonds
with the support, often becoming ionic, which impacts reactant
adsorption energies and catalytic activity. Our group highlighted this
phenomenon through a systematic study of CO adsorption on Cu, Ag,
Au, Ni, Pd, Pt, Rh and Ir atoms [51] supported on Fe304(001). Using
temperature-programmed desorption (TPD), we showed that CO
adsorption energies at single-atom sites are significantly higher than on
low-index extended metal surfaces (see Fig. 1). Furthermore, the local
coordination environment of the metal atom substantially affects
adsorption energy. For example, CO binds only weakly at 5-fold Ni sites
on Fe304(001), where the physical and electronic structure strongly
resembles NiO(001). On the contrary, CO desorbs with approximately
1.2 eV at the 2-fold coordinated adatom considered in Fig. 1. This trend
extends to other adsorbates: ethylene binds significantly more strongly
at a 2-fold Rh adatom than at a 5-fold Rh adatom [52]. In these studies,
the geometry of the metal adatom was determined through a combi-
nation of scanning probe microscopy and photoelectron spectroscopy,
providing a robust basis for computational modeling.

The importance of the coordination was also highlighted by a series
of studies of the Pt;/CeO»(111) system by Matolin, Libuda and co-
workers [53-58]. CeO2(111) forms (100)-like step edges, creating a
4-fold coordination environment that stabilizes Pt as Pt>* ions, similar to
the coordination observed in bulk PtO. However, this configuration
limits reactivity, as the coordinatively saturated Pt*" cations do not
interact strongly with adsorbates. Balancing stability and reactivity is
crucial; ideally, one aims to achieve a configuration stable enough to
prevent thermal sintering but under-coordinated enough to adsorb re-
actants effectively. In this context, we recently found that partially
charged Pt®" cations at terrace sites on the o-Feo03(012) surface remain
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stable at room temperature due to a linear 2-fold coordination [59]. This
finding is notable for two reasons. First, creating this adsorption ge-
ometry requires significant structural rearrangement of the support
surface, involving the breaking of three Fe—O bonds. Second, this
adatom geometry was identified using an automated search algorithm
and was 0.85 eV more stable than a simple geometry based on an un-
modified support. Such searches are arguably essential for SAC studies,
as determining the minimum-energy adatom geometry is a pre-requisite
to accurate system modeling.

In addition to iron oxides and ceria, several other metal oxides are
commonly utilized as supports for SAC. These include materials where
the structures of the low index facets are already known (anatase and
rutile TiO3, SnO,, ZnO), so there is ample room for future study by
surface scientists. The breadth of reactions catalysed by such systems is
significant, and includes CO oxidation, the water gas shift reaction, and
hydrogenation reactions. A particularly interesting application is
hydroformylation, in which alkenes react with syngas to create alde-
hydes. Typically, hydroformylation is catalyzed by metal-organic Rh
complexes dissolved in the liquid phase, posing challenges for product
separation and catalyst reuse. This has sparked interest in a heteroge-
neous approach using solid catalysts. While Rh nanoparticles are active
in this reaction, they generally exhibit low selectivity. Remarkably,
several groups have reported that Rh SACs on various metal oxide
supports (e.g., CoO, ZnO, SnO;, Al;03, CeOy, ReOy) achieve similar
levels of selectivity as the homogeneous catalysts [60-64]. It is assumed
that the reaction proceeds analogously, meaning that alkene, CO, and Hj
must be simultaneously adsorbed at the single-atom site at some stage.
Such coadsorption at single-atom sites has yet to be directly observed
but could be explored through surface science experiments. Such find-
ings would reinforce the notion that SACs can function similarly to ho-
mogeneous catalysts. However, coadsorption of three reactants likely
requires a low coordination environment for the Rh atom, as it is chal-
lenging to accommodate more than six ligands (including metal-support
bonds). It is possible that Rh changes site from a stable resting position
to a new configuration as reactants begin to adsorb, which could be
tracked using surface science techniques.

Notably, many of the metal oxides listed above are semiconductors
used in photocatalysis. Often, the oxide serves as the photoabsorber,
while reaction kinetics are enhanced by a metal co-catalyst. It has been
shown that adsorbed single atoms can also perform this function—so-
called single-atom photocatalysis [65-67]. The mechanisms behind this
enhancement are not fully understood, but it is possible that single
atoms provide active sites not present on the oxide alone, increase the
density of existing active sites, alter the electronic structure of the
semiconductor surface, or passivate “trap sites.” Given our under-
standing of metal oxide surface structures, surface science experiments
could potentially rule some of these effects in or out, clarifying the role
of single atoms in photocatalysis. Once determined experimentally, the
relatively simple structure of the active site could provide an ideal model
system for theoretical studies that include excited states in photo-
catalytic modeling.

Moving away from metal oxides, carbon nitride (CN) is among the
most prominent SAC supports [69-72]. Numerous studies have shown
that metal atoms coordinated to nitrogen atoms on carbon nitride sur-
faces act as active catalysts, particularly for energy-related reactions
[72] such as the oxygen evolution reaction (OER) [73], oxygen reduc-
tion reaction (ORR) [73], hydrogen evolution reaction (HER) [74], and
nitrogen reduction reaction (NRR) [75]. CN is also widely used in
photocatalysis [70]. However, a major limitation of these studies is the
difficulty in experimentally determining the precise structure of carbon
nitride [71,75]. Computational models often assume a graphitic carbon
nitride (g-CN) structure [73,75], but this assumption is challenging to
reconcile with the 4-fold nitrogen coordination seen in XAS experiments
[76]. In recent years, several groups have studied the adsorption of
melamine and melem—precursors in the formation of CN—using sur-
face science techniques, finding that they form ordered molecular



G.S. Parkinson

Surface Science 754 (2025) 122687

Cobalt Carbon
Nitride on Au(111)

402 400 398 396
Binding Energy [eV]

Fig. 2. STM image of cobalt carbon nitride on Au(111), with a proposed model structure overlayed in which the cobalt has 4-fold coordination to nitrogen. XPS
spectra (right) of the monolayer exhibit 4 different N species consistent with the model. Figure reproduced from Ref. [68].

Fig. 3. Room-temperature scanning tunneling microscopy (STM) images and computational models of the graphene-supported Fe-TCNQ 2D metal-organic frame-
work (MOF) at varying sample biases. (A) At a sample bias of V. = —0.6 V, the Fe-TCNQ structure appears planar and uniform. (B) A distinctive zigzag pattern
emerges at a sample bias of V = —1.3 V. (C-E) High-resolution STM images of the same region at various biases, accompanied by STM simulations for comparison.
Figure reproduced with permission from Ref. [96]. Copyright American Chemical Society 2024.

adlayers [77-80]. Thermal polymerization of these layers into carbon
nitride structures can be achieved if the substrate (often a metal) is
sufficiently reactive, although the presence of the metal may affect the
reactivity of the resulting adlayer. For example, on Cu(111), Cu atoms
appear to be incorporated into the CN structure upon heating [81].
Lauritsen and coworkers [68] polymerized melamine on Au(111) but
found that co-depositing Co, Ni, or Mn was necessary, as melamine
desorbed before thermal polymerization could occur. This process
resulted in an ordered polymerized structure with single-atom sites for
the chosen metal, although the structure differs from g-CN, as shown in
Fig. 2. Reactivity tests on this surface for OER and ORR in a
custom-designed electrochemical cell revealed CoO, formation under

OER conditions, with ORR performance dominated by the underlying
Au(111). Nonetheless, this work highlights the potential of in situ
preparation to yield model systems for studying CN-based SACs. A
notable recent approach involved an adapted melem-like precursor with
reactive 2,5,8-Triazido-s-heptazine entities, which could be removed
thermally or through photo-illumination [82]. Although the structure of
the polymerized layers on Au(111) and the (0001) facet of highly or-
dered pyrolytic graphite (HOPG) remains uncertain, it is not represen-
tative of g-CN as assumed in most CN-based catalyst models. If these
structures could be determined experimentally, surface science tech-
niques could be used to investigate atomic coordination, reactivity, and
stability under ambient pressure and electrochemical conditions.



G.S. Parkinson

Additionally, TPD could help benchmark computational approaches. It
would be interesting if dihydride and di-oxide species could be observed,
as these are predicted to be intermediates during HER and OER on single
atom catalysts [83,84].

Metal-organic frameworks (MOFs) represent a promising material
class related to single-atom catalysis [85]. In MOFs, single atoms are
coordinated by organic linker ligands, creating well-defined active sites.
In this respect, MOFs closely resemble homogeneous catalysts, as their
metal site properties can be tuned by varying linkers, [86] while suffi-
ciently large linkers yield a porous 3D structure. MOFs can be mounted
on surfaces, yielding so-called SURMOFs [87,88]. Surface scientists have
been studying on surface self-assembly of MOFs for a number of years
[89,90], and 2D MOFs [84,91,92] and covalent organic networks COFs
[93-95] have been synthesized and tested for catalytic activity. A
particularly nice, very recent example is shown in Fig. 3, where a
beautifully ordered Fe-TCNQ MOF was synthesized on a graphene layer
onIr(111) [96]. As with other SACs, a key question is the extent to which
the reactivity of MOFs can be both homogeneous and tunable. Screening
studies are beginning to emerge in the literature [97,98]; however,
reliable predictions will depend on adequate benchmark experimental
data to provide a basis for comparison. Experimental benchmarking
remains essential to validate computational predictions and guide future
research in MOF-based SACs.

In summary, this article highlights the urgent need for reliable
benchmark data in the field of SAC. Surface science is ideally suited to
provide this data due to its capacity to precisely control and characterize
the structure of active sites. While close integration with theoretical
computations is vital, it is equally important to validate findings from
UHV-based studies in realistic conditions. Fortunately, the ongoing
development of operando techniques—such as NAP-STM, NAP-XPS, and
PM-IRAS, along with their electrochemical variants—positions surface
science to effectively bridge the pressure gap. These advancements
provide a robust platform for observing catalytic behavior under con-
ditions closer to actual operating environments, supporting the
continued development of this promising technology.
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