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Over the past decade, extensive research into ``single-atom’’ catalysts (SACs) has revealed that the catalytic 
behavior of metal adatoms is highly dependent on how they interact with their support. A strong dependence on 
the local coordination environment has led to comparisons with metal-organic complexes, and there is growing 
excitement about the potential to fine-tune SACs by controlling the adsorption geometry. The rise of computa
tional screening to identify the optimal support/metal combinations underscores the need for rigorous bench
marking of theoretical methods, to validate realistic geometries, mechanisms, and the impact of adsorption on 
stability and catalytic activity. The surface science approach is particularly well-suited for this task because it 
allows to precisely determine the geometry of the metal atom and interpret its catalytic behavior. Moreover, the 
effects of temperature and molecular adsorption on the model catalysts stability can be studied in isolation, and 
conclusions drawn from UHV studies tested in increasingly common near-ambient pressure and electrochemical 
setups. This perspective highlights recent breakthroughs and specific systems—including metal oxides, metal- 
organic frameworks, and carbon nitrides—where insights from surface science experiments can significantly 
advance understanding in this rapidly evolving field.

The field of surface science grew out of a desire to understand what 
occurs during catalytic reactions. As far back as 1922 [1], Langmuir had 
concluded that the complexity of industrial catalysts would likely pre
clude unraveling the multitude of effects at play. The solution, common 
to many branches of science, was to develop model systems that are 
simple enough to be tractable, but still mimic the real system in a 
meaningful way. Because metal particles were the active catalytic 
component, and they were known to expose preferred facets, oriented 
single-crystal samples became the model of choice. The advent of vac
uum technology enabled the preparation and maintenance of clean 
surfaces, sparking technological developments that allowed rapid ad
vancements in determining surface structure [2] and spectroscopic 
methods to understand reactant adsorption and catalytic mechanisms. 
This approach led to significant insights into reactions like CO oxidation 
(important for automobile emissions) [3] and the Haber-Bosch process 
(for ammonia production) [4], earning Gerhard Ertl the 2007 Nobel 
Prize in Chemistry for pivotal contributions to surface science. A 
detailed summary of his and other early contributions in this field is 
provided in Reference [5].

As with any model, there are always possibilities for improvement. 
The terms ``pressure gap’’ and ``materials gap’’ refer to two key limi
tations: the significant difference between the ultra-high vacuum pres
sures used in laboratory experiments versus real catalytic conditions [6], 

and the complexity of real catalysts, which often have active sites absent 
on a metal single-crystal surface. Bridging the pressure gap has been a 
longstanding goal in surface science, and today ``near-ambient pres
sure’’ (NAP) adaptations of many critical techniques—such as surface 
X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS) and 
scanning tunneling microscopy (STM)—are well established and 
increasingly applied [7–11]. Recent trends in electrochemical research 
have similarly spurred efforts to develop protocols for electrochemical 
surface science [12]. Efforts to bridge the materials gap are similarly 
numerous. One important development was the study of metal-oxide 
surfaces [13], which are common support materials (as well as active 
catalysts for some reactions). Experiments on TiO2(110), probably the 
most studied metal-oxide surface [14], utilized single crystal samples 
rendered conducting by in situ reduction, while epitaxial thin film 
growth allows to create samples with sufficient conductivity even for 
insulating materials [15–17]. Once the structure and properties of the 
metal-oxide support are well understood, the next step in complexity is 
to add metal nanoparticles. A clear size effect was discovered, and a 
non-scalable regime where the conclusions derived from prior studies on 
metal single crystals do not hold [18,19]. One notable example was the 
discovery that Au becomes catalytically active for CO oxidation once 
nanoparticles become smaller than circa. 10 nm in diameter [14]. The 
importance of the metal-metal oxide interface has been widely studied 
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[20], leading to a focus on ``inverse catalysts’’—metal oxide islands on 
metal single-crystal supports [21]. Many concepts derived from these 
studies are directly relevant to SAC, where all metal atoms are in direct 
contact with the support.

The development of the size-selected cluster source provided an 
elegant method to study size effects in catalysis. This technology allows 
for the deposition of metal particles with a narrow size distribution, 
enabling single-atom precision in reactivity studies, provided the clus
ters do not undergo significant sintering on the single-crystal support 
[22–24]. Many instances were uncovered where “magic” cluster sizes 
are particularly active due to some coincidence of physical and elec
tronic structure. It was one such study [25] that provided some of the 
first surface science evidence for SAC. As the subtitle of the paper (“one 
atom is enough!”) suggests, Heiz and coworkers reported the somewhat 
surprising result that a single Pd atom supported on MgO(001) could 
catalyze the cyclotrimerization of acetylene at 300 K. Density functional 
theory calculations showed that the Pd atoms were activated by charge 
transfer from oxygen vacancies on the MgO substrate. It was quickly 
realized that this relatively simple model system could be ideal for un
derstanding basic processes in catalysis [26]. A series of experimental 
and theoretical studies of MgO-supported single atoms followed [27–31] 
including the interesting observation that charge transfer could occur 
between adsorbed atoms (and clusters) and the underlying metal in 
ultrathin oxide film systems [32].

Meanwhile, Sykes and coworkers demonstrated that isolated single 
atoms could provide active sites for catalysis. Specifically, they 
embedded Pt group metals in less reactive metal hosts, creating so-called 
Single-Atom Alloys (SAA). The concept has proven successful, particu
larly for hydrogenation [33] and dehydrogenation reactions [34]. A 
comprehensive review was recently published [35]. Since Sykes has also 
contributed a perspective for this special issue of Surface Science high
lighting the special properties of SAA [36], I will restrict the discussion 
here to SAC systems supported by non-metal substrates.

Aside from surface science studies, there was growing evidence from 
high-surface-area catalysis that oxide-supported single atoms could play 
a significant role in catalysis. For example, Flytzani-Stephanopoulos and 
coworkers [37] observed that the catalytic activity of a Pt/CeO2 system 
in the water-gas shift reaction remained unchanged after metallic 
nanoparticles were removed, leading them to conclude that nonmetallic 
Pt species were solely responsible for the reactivity. In 2011, Zhang and 
coworkers [38] coined the term ``single-atom catalysis’’ (SAC) and 
synthesized a catalyst composed exclusively of single Pt atoms sup
ported on FeOx—a challenging feat due to the tendency of Pt to sinter at 
high temperatures. They demonstrated that this catalyst outperformed 
both Pt and Au nanoparticle standards. This study, along with others, 
generated significant interest in the field (Ref. [38] has received ~6000 
citations at the time of writing). The synthesis approach, coupled with a 
suite of techniques—transmission electron microscopy (TEM), 
CO-diffuse reflectance infrared Fourier transform spectroscopy 
(CO-DRIFTS), and X-ray absorption spectroscopy (XAS)—used to verify 
atomic dispersion, has since become standard practice in SAC research.

Despite the growing popularity of SAC, it remains controversial due 
to difficulties in proving that single atoms are the true active sites; often, 
small clusters may be present or may form during reactions [39]. 
Another related issue is uncertainty surrounding the reaction mecha
nisms, partly due to limitations in current experimental techniques to 
characterize the active site directly. Computational modeling of SAC 
reactions typically relies on simplified systems, where the metal atom 
occupies an assumed position on a low-index termination of the support. 
However, assumptions in these models can have significant conse
quences. For instance, in the widely cited Pt1/FeOx study, the compu
tational model was based on Pt adsorbed at a 3-fold hollow site on an 
O-terminated α-Fe2O3(001–1 × 1) surface. This model is reasonable at 
first glance, given the alignment of Pt atoms with Fe cations in TEM 
images of the as-synthesized catalyst [38]. However, the ``x’’ in FeOx 
acknowledges that the reducing conditions in the catalyst activation step 

likely render the α-Fe2O3 surface non-stoichiometric, an aspect that is 
not clearly resolved by experimental characterization. Furthermore, the 
nanoparticle support surface is heterogeneous, with various nanofacets, 
making an idealized α-Fe2O3(0001) surface model an oversimplification. 
Notably, surface science studies have found little evidence of a stable (1 
× 1) surface structure on α-Fe2O3(0001), especially in reducing condi
tions: such a surface would be polar and would gain significant energy 
by losing surface oxygen atoms [40]. Thus, it is unsurprising that a CO 
oxidation mechanism involving the extraction of surface oxygen, known 
as a Mars-van Krevelen (MvK) mechanism, appears favorable [38]. 
However, using a more realistic reduced termination is challenging. 
Surface science studies indeed show that α-Fe2O3(0001) forms regions 
with varied terminations under mild reducing conditions [10], and then 
adopts a long-range “bi-phase” structure [15,41]. All of these surfaces’ 
structures remain debated [42]. With further reduction, an 
Fe3O4(111)-like termination appears [42], though it is itself controver
sial [43] and prone to forming a long-range biphase-ordered structure in 
reducing conditions [44]. In summary, while the modeling of the 
Pt1/α-Fe2O3(0001) system illustrates that an MvK mechanism could 
explain catalytic activity observed in CO oxidation experiments, there is 
no direct experimental link confirming the structure or mechanism. This 
critique applies to many SAC studies, as theoretical models often lack a 
strong connection to experimental data, muddying our understanding of 
SAC capabilities and limitations.

In this author’s opinion, the lack of experimental structural data 
remains a critical issue in the SAC field. As computational methods and 
resources advance, their capabilities will continue to grow, leading to an 
increasing trend of screening potential catalysts. However, such work 
can be unreliable when based on flawed assumptions. The FeOx-sup
ported SAC systems described above again provides a case in point: 
Screening studies based a bulk-truncated α-Fe2O3(001–1 × 1) surface 
model predict that Pd1 and Ni1 could outperform Pt1 [45] if a MvK 
mechanism is assumed, while other metals (including Ti) are preferred if 
an associative mechanism is assumed [44]. Replacing Pt with Ti would 
be an exciting breakthrough, yet without experimental validation, it 
remains doubtful whether these findings are reliable. Machine learning 
approaches will likely drive further increases in such studies; however, it 
remains debatable whether such predictions can reliably guide experi
mental efforts.

At this juncture, the surface science approach offers invaluable in
sights. Surface science experiments closely mirror computational models 
in structure and environment: the single-crystal support aligns with 
periodic boundary conditions in theoretical calculations, and the ultra
high vacuum (UHV) environment simplifies the problem considerably. 
This approach allows to determine the structure of the support and the 
adatom position with high accuracy, facilitating the parallel interpre
tation of structural and reactivity trends with computational pre
dictions. Scanning probe microscopy is ideal for tracking the evolution 
of model catalysts upon reactant exposure, and methods for studying 
catalytic mechanisms are well-established in the field. One critical ser
vice would be to provide benchmark experimental spectra for the most 
important methods utilized to characterize powder-based SACs. This 
involves measuring XPS core-level binding energies, the vibrational 
stretch frequencies of adsorbed CO molecules, and reference XAS spectra 
for metal atoms on well-defined surfaces, aiding in the identification of 
active sites in real systems. Additionally, it will be essential to assess 
these systems after exposure to environmental gases like water, as 
under-coordinated surface metal atoms are likely to coordinate with 
these molecules—an aspect rarely considered in studies of powder-based 
SAC systems [46,47].

Inspired by these studies, we recently examined how water exposure 
impacts the stability of model SACs. We found that water stabilizes Rh 
on α-Fe2O3(012) [48], but has a neutral or destabilizing effect on various 
metals on rutile-TiO2(110) [49] and anatase-TiO2(101) [50]. The key 
difference lies in the binding structure: OH groups from the water can 
complete a square planar configuration for Rh atoms on α-Fe2O3(012) 
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[48], enhancing stability. In contrast, no similar stabilizing structure is 
possible on the titania surfaces. These studies again underscore the 
crucial role of local environment in determining the behavior of 
single-atom catalysts.

A key finding from SAC research is that single atoms exhibit distinct 
catalytic properties compared to bulk or nanoparticle forms of the same 
metal. This difference arises because single atoms form chemical bonds 
with the support, often becoming ionic, which impacts reactant 
adsorption energies and catalytic activity. Our group highlighted this 
phenomenon through a systematic study of CO adsorption on Cu, Ag, 
Au, Ni, Pd, Pt, Rh and Ir atoms [51] supported on Fe3O4(001). Using 
temperature-programmed desorption (TPD), we showed that CO 
adsorption energies at single-atom sites are significantly higher than on 
low-index extended metal surfaces (see Fig. 1). Furthermore, the local 
coordination environment of the metal atom substantially affects 
adsorption energy. For example, CO binds only weakly at 5-fold Ni sites 
on Fe3O4(001), where the physical and electronic structure strongly 
resembles NiO(001). On the contrary, CO desorbs with approximately 
1.2 eV at the 2-fold coordinated adatom considered in Fig. 1. This trend 
extends to other adsorbates: ethylene binds significantly more strongly 
at a 2-fold Rh adatom than at a 5-fold Rh adatom [52]. In these studies, 
the geometry of the metal adatom was determined through a combi
nation of scanning probe microscopy and photoelectron spectroscopy, 
providing a robust basis for computational modeling.

The importance of the coordination was also highlighted by a series 
of studies of the Pt1/CeO2(111) system by Matolin, Libuda and co
workers [53–58]. CeO2(111) forms (100)-like step edges, creating a 
4-fold coordination environment that stabilizes Pt as Pt2+ ions, similar to 
the coordination observed in bulk PtO. However, this configuration 
limits reactivity, as the coordinatively saturated Pt2+ cations do not 
interact strongly with adsorbates. Balancing stability and reactivity is 
crucial; ideally, one aims to achieve a configuration stable enough to 
prevent thermal sintering but under-coordinated enough to adsorb re
actants effectively. In this context, we recently found that partially 
charged Ptδ+ cations at terrace sites on the α-Fe2O3(012) surface remain 

stable at room temperature due to a linear 2-fold coordination [59]. This 
finding is notable for two reasons. First, creating this adsorption ge
ometry requires significant structural rearrangement of the support 
surface, involving the breaking of three Fe–O bonds. Second, this 
adatom geometry was identified using an automated search algorithm 
and was 0.85 eV more stable than a simple geometry based on an un
modified support. Such searches are arguably essential for SAC studies, 
as determining the minimum-energy adatom geometry is a pre-requisite 
to accurate system modeling.

In addition to iron oxides and ceria, several other metal oxides are 
commonly utilized as supports for SAC. These include materials where 
the structures of the low index facets are already known (anatase and 
rutile TiO2, SnO2, ZnO), so there is ample room for future study by 
surface scientists. The breadth of reactions catalysed by such systems is 
significant, and includes CO oxidation, the water gas shift reaction, and 
hydrogenation reactions. A particularly interesting application is 
hydroformylation, in which alkenes react with syngas to create alde
hydes. Typically, hydroformylation is catalyzed by metal-organic Rh 
complexes dissolved in the liquid phase, posing challenges for product 
separation and catalyst reuse. This has sparked interest in a heteroge
neous approach using solid catalysts. While Rh nanoparticles are active 
in this reaction, they generally exhibit low selectivity. Remarkably, 
several groups have reported that Rh SACs on various metal oxide 
supports (e.g., CoO, ZnO, SnO2, Al2O3, CeO2, ReOx) achieve similar 
levels of selectivity as the homogeneous catalysts [60–64]. It is assumed 
that the reaction proceeds analogously, meaning that alkene, CO, and H2 
must be simultaneously adsorbed at the single-atom site at some stage. 
Such coadsorption at single-atom sites has yet to be directly observed 
but could be explored through surface science experiments. Such find
ings would reinforce the notion that SACs can function similarly to ho
mogeneous catalysts. However, coadsorption of three reactants likely 
requires a low coordination environment for the Rh atom, as it is chal
lenging to accommodate more than six ligands (including metal-support 
bonds). It is possible that Rh changes site from a stable resting position 
to a new configuration as reactants begin to adsorb, which could be 
tracked using surface science techniques.

Notably, many of the metal oxides listed above are semiconductors 
used in photocatalysis. Often, the oxide serves as the photoabsorber, 
while reaction kinetics are enhanced by a metal co-catalyst. It has been 
shown that adsorbed single atoms can also perform this function—so- 
called single-atom photocatalysis [65–67]. The mechanisms behind this 
enhancement are not fully understood, but it is possible that single 
atoms provide active sites not present on the oxide alone, increase the 
density of existing active sites, alter the electronic structure of the 
semiconductor surface, or passivate “trap sites.” Given our under
standing of metal oxide surface structures, surface science experiments 
could potentially rule some of these effects in or out, clarifying the role 
of single atoms in photocatalysis. Once determined experimentally, the 
relatively simple structure of the active site could provide an ideal model 
system for theoretical studies that include excited states in photo
catalytic modeling.

Moving away from metal oxides, carbon nitride (CN) is among the 
most prominent SAC supports [69–72]. Numerous studies have shown 
that metal atoms coordinated to nitrogen atoms on carbon nitride sur
faces act as active catalysts, particularly for energy-related reactions 
[72] such as the oxygen evolution reaction (OER) [73], oxygen reduc
tion reaction (ORR) [73], hydrogen evolution reaction (HER) [74], and 
nitrogen reduction reaction (NRR) [75]. CN is also widely used in 
photocatalysis [70]. However, a major limitation of these studies is the 
difficulty in experimentally determining the precise structure of carbon 
nitride [71,75]. Computational models often assume a graphitic carbon 
nitride (g-CN) structure [73,75], but this assumption is challenging to 
reconcile with the 4-fold nitrogen coordination seen in XAS experiments 
[76]. In recent years, several groups have studied the adsorption of 
melamine and melem—precursors in the formation of CN—using sur
face science techniques, finding that they form ordered molecular 

Fig. 1. CO adsorption energy determination on Me1/Fe3O4(001) model cata
lysts using temperature-programmed desorption (TPD). Panels (A–G) show TPD 
curves for CO on different metal adatoms, where 1 monolayer (ML) represents 
one metal atom per surface unit cell (1.42 × 10¹⁴ atoms per square centimeter). 
Desorption peaks attributed to the metal adatoms are indicated by arrows. 
Light-gray curves depict CO TPD data from the ultrahigh-vacuum-prepared 
Fe3O4(001) surface prior to metal deposition. Panel (H) presents a compari
son of experimental and theoretical CO adsorption energies (Ed), as well as 
desorption energies, alongside literature values for metal (111) and (110) 
surfaces. Figure reproduced from Ref. [51].
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adlayers [77–80]. Thermal polymerization of these layers into carbon 
nitride structures can be achieved if the substrate (often a metal) is 
sufficiently reactive, although the presence of the metal may affect the 
reactivity of the resulting adlayer. For example, on Cu(111), Cu atoms 
appear to be incorporated into the CN structure upon heating [81]. 
Lauritsen and coworkers [68] polymerized melamine on Au(111) but 
found that co-depositing Co, Ni, or Mn was necessary, as melamine 
desorbed before thermal polymerization could occur. This process 
resulted in an ordered polymerized structure with single-atom sites for 
the chosen metal, although the structure differs from g-CN, as shown in 
Fig. 2. Reactivity tests on this surface for OER and ORR in a 
custom-designed electrochemical cell revealed CoOx formation under 

OER conditions, with ORR performance dominated by the underlying 
Au(111). Nonetheless, this work highlights the potential of in situ 
preparation to yield model systems for studying CN-based SACs. A 
notable recent approach involved an adapted melem-like precursor with 
reactive 2,5,8-Triazido-s-heptazine entities, which could be removed 
thermally or through photo-illumination [82]. Although the structure of 
the polymerized layers on Au(111) and the (0001) facet of highly or
dered pyrolytic graphite (HOPG) remains uncertain, it is not represen
tative of g-CN as assumed in most CN-based catalyst models. If these 
structures could be determined experimentally, surface science tech
niques could be used to investigate atomic coordination, reactivity, and 
stability under ambient pressure and electrochemical conditions. 

Fig. 2. STM image of cobalt carbon nitride on Au(111), with a proposed model structure overlayed in which the cobalt has 4-fold coordination to nitrogen. XPS 
spectra (right) of the monolayer exhibit 4 different N species consistent with the model. Figure reproduced from Ref. [68].

Fig. 3. Room-temperature scanning tunneling microscopy (STM) images and computational models of the graphene-supported Fe-TCNQ 2D metal-organic frame
work (MOF) at varying sample biases. (A) At a sample bias of V = − 0.6 V, the Fe-TCNQ structure appears planar and uniform. (B) A distinctive zigzag pattern 
emerges at a sample bias of V = − 1.3 V. (C–E) High-resolution STM images of the same region at various biases, accompanied by STM simulations for comparison. 
Figure reproduced with permission from Ref. [96]. Copyright American Chemical Society 2024.
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Additionally, TPD could help benchmark computational approaches. It 
would be interesting if dihydride and di-oxide species could be observed, 
as these are predicted to be intermediates during HER and OER on single 
atom catalysts [83,84].

Metal-organic frameworks (MOFs) represent a promising material 
class related to single-atom catalysis [85]. In MOFs, single atoms are 
coordinated by organic linker ligands, creating well-defined active sites. 
In this respect, MOFs closely resemble homogeneous catalysts, as their 
metal site properties can be tuned by varying linkers, [86] while suffi
ciently large linkers yield a porous 3D structure. MOFs can be mounted 
on surfaces, yielding so-called SURMOFs [87,88]. Surface scientists have 
been studying on surface self-assembly of MOFs for a number of years 
[89,90], and 2D MOFs [84,91,92] and covalent organic networks COFs 
[93–95] have been synthesized and tested for catalytic activity. A 
particularly nice, very recent example is shown in Fig. 3, where a 
beautifully ordered Fe-TCNQ MOF was synthesized on a graphene layer 
on Ir(111) [96]. As with other SACs, a key question is the extent to which 
the reactivity of MOFs can be both homogeneous and tunable. Screening 
studies are beginning to emerge in the literature [97,98]; however, 
reliable predictions will depend on adequate benchmark experimental 
data to provide a basis for comparison. Experimental benchmarking 
remains essential to validate computational predictions and guide future 
research in MOF-based SACs.

In summary, this article highlights the urgent need for reliable 
benchmark data in the field of SAC. Surface science is ideally suited to 
provide this data due to its capacity to precisely control and characterize 
the structure of active sites. While close integration with theoretical 
computations is vital, it is equally important to validate findings from 
UHV-based studies in realistic conditions. Fortunately, the ongoing 
development of operando techniques—such as NAP-STM, NAP-XPS, and 
PM-IRAS, along with their electrochemical variants—positions surface 
science to effectively bridge the pressure gap. These advancements 
provide a robust platform for observing catalytic behavior under con
ditions closer to actual operating environments, supporting the 
continued development of this promising technology.
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[80] J. Eichhorn, S. Schlögl, B.V. Lotsch, W. Schnick, W.M. Heckl, M. Lackinger, Self- 
assembly of melem on Ag(111)—Emergence of porous structures based on amino- 
heptazine hydrogen bonds, CrystEngComm 13 (18) (2011) 5559–5565.
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[86] D. Écija, J.I. Urgel, A.P. Seitsonen, W. Auwärter, J.V. Barth, Lanthanide-directed 
assembly of interfacial coordination architectures–from complex networks to 
functional nanosystems, Acc. Chem. Res. 51 (2) (2018) 365–375.

[87] A.L. Semrau, Z. Zhou, S. Mukherjee, M. Tu, W. Li, R.A. Fischer, Surface-mounted 
metal–organic frameworks: past, present, and future perspectives, Langmuir 37 
(23) (2021) 6847–6863.

[88] V. Shrivastav, Mansi, B. Gupta, P. Dubey, A. Deep, W. Nogala, V. Shrivastav, 
S Sundriyal, Recent advances on surface mounted metal-organic frameworks for 
energy storage and conversion applications: trends, challenges, and opportunities, 
Adv. Colloid Interface Sci. 318 (2023) 102967.
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