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Effective Material and Static Magnetic Field for the
2-D/1-D-Problem of Laminated Electrical Machines
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To facilitate simulations in the design of electrical machines with a laminated core, often only a slice model is considered instead
of the entire machine. We propose a method where the expensive 3-D eddy current problem (ECP) of the slice model is replaced
by a cheap static magnetic field problem (SMFP) with an effective material (EM) in a 2-D finite element (FE) model. The EM is
obtained by solving suitable cell problems (CPs). Losses and reactive powers are assumed to be the same in the CPs. The method
with the EM is very efficient and accurate compared with the ECP as shown by numerical simulations of an electrical machine.
Voltage excitation of the machine is considered, i.e., the FE model is coupled with an external circuit.

Index Terms— 2-D/1-D finite element (FE) method, circuit coupling, EC problem (ECP), eddy current (EC) losses, effective materials
(EMs), electrical machine design, scalar potential, slice model.

I. INTRODUCTION

THE design of electrical machines often requires the
solution of an expensive eddy current problem (ECP)

with a laminated iron core. Homogenization allows to treat
a laminated core as a bulk medium with much smaller finite
element (FE) models [1]. A post processing step is required
to reconstruct losses caused by eddy currents (ECs) due to the
main magnetic flux [2]. Most of the iron sheets are exposed
to the same electromagnetic field. Therefore, the effect of
magnetic stray fluxes at the axial ends of an electrical machine
can be neglected.

A 3-D FE model of one slice can be still expensive [3].
2-D/1-D multiscale FE methods (MSFEMs) reduce this effort
significantly using either trigonometric functions [4] or orthog-
onal polynomials [5] across the thickness of a sheet. They
are able to consider ECs, account for an insulation layer in
between the sheets, facilitate boundary conditions (BCs) to
exploit planes of symmetry, integrate Biot–Savart fields (BSFs)
to avoid modeling of conductors carrying known currents [6],
and model the edge effect (EE) [7]. However, the 2-D/1-D
MSFEMs still require many degrees of freedom (DoFs) since
several potentials are involved in the approach, see [5], [6].

Although an ECP would have to be solved, a method
with a corresponding static magnetic field problem (SMFP)
using a suitable effective material (EM) [8] is proposed for
the 2-D/1-D problem at hand. A similar approach to capture
EC losses and hysteresis losses by an effective nonlinear
complex permeability was investigated in [9]. Suitable cell
problems (CPs) have to be defined to obtain the EM which
includes both the material properties and the thickness of the
sheet and the insulation layer. The CPs can be calculated
with virtually no computational effort. This method allows
complicated geometries, to integrate a known BSF, is based
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Fig. 1. One dimensional CP consisting of an infinite iron sheet (dark gray)
and an insulation layer (light gray) excited by tangential components of the
MVP a0.

on a scalar function only, and requires just a 2-D FE mesh.
However, it ignores the EE. The 1-D in 2-D/1-D stands for
the CP and the 2-D for the SMFP with EM.

The proposed method essentially reduces the computational
cost of the 2-D/1-D-MSFEMs and provides surprisingly accu-
rate results for EC losses and reactive powers in a wide range
of saturation as shown by numerical simulations.

II. CELL PROBLEMS AND EFFECTIVE MATERIAL

The CPs, compare with Fig. 1, of an ECP in the time domain
with real material properties and an SMFP with an EM are to
be solved. To determine the EM, the apparent powers

S = P + j Q (1)

with the losses P and the fictitious reactive powers Q of
the ECP and the SMFP with EM have to match for different
excitations to cover the whole measured B H -curve shown in
Fig. 2. The CPs only need to be solved once with little effort.
The geometry and the excitation of the CPs are shown in Fig. 1
with d = dFe + d0, where the thickness of the iron sheet is
selected with dFe = 0.5 mm and the width of the insulation
layer d0 by means of a fill factor of 0.95.

A. Eddy Current Problem

The 1-D nonlinear ECPs are based on a single-
component magnetic vector potential (MVP) A = a(x, t)ez ,
compare with Fig. 1. This yields a magnetic flux
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Fig. 2. Original and complex valued BH-curve of the EM for f = 50 Hz.

density B(x, t) = B(x, t)ey = −ax (x, t)ey . The initial bound-
ary value problem reads

∂x (µ
−1(|ax |)ax ) + σat = 0 on (x, t) ∈ I × τ,

a = ±a0 sin(ωt) on (x, t) ∈ ∂ I × τ,

a = 0 at t = 0. (2)

where I = (−d/2, d/2), ∂ I = {−d/2, d/2} and τ = (0, T ].
Indices x and t in (2) denote derivatives according to space

x and time t , ω denotes the angular frequency, µ is the
permeability with µFe for iron and µ0 else, σ is the electric
conductivity with σFe for iron and zero else, and T = 1/ f is
the period of time. The parameters correspond to those of the
numerical example in Section IV.

By means of the solution of (2), the apparent power

S′
= P ′

+ j Q′ (3)

with the losses

P ′
=

1
2d

2
T

∫ T

t= T
2

∫ dFe/2

−dFe/2
σat at dx dt (4)

and the fictitious reactive power

Q′
=

ω

2d
2
T

∫ T

t= T
2

∫ d/2

−d/2
µ−1(|ax |)ax ax dx dt (5)

are calculated. The prime at S′, P ′, and Q′ means units per
volume. For time averaging, the time interval of the second
half of T was used, which is sufficiently accurate for the steady
state. The peak average of B, by means of Bhd = 2 ha0,
where h is any height, for different excitations a0 is

B =
2a0

d
. (6)

A penetration depth can be neglected.

B. Static Magnetic Field Problem

The SMFP with the effective nonlinear material
µeff(|ax (x)|) to be solved is written as follows:

−µ−1
eff (|ax (x)|)axx (x) = 0, on x ∈ (−d/2, d/2)

a = ±a0, at x ∈ {−d/2, d/2}. (7)

The solution of (7) yields a constant, independent on x , static
magnetic flux density of

B0 =
2a0

d
. (8)

Fig. 3. One-fourth of the slice model of an electrical machine (left) with
stator S and rotor R separated by an air gap and assumed to be in the xy plane.
FE mesh (right). Dimensions are in mm.

An apparent power

S′
=

jω
2d

∫ d/2

−d/2
H B dx =

jω
2

µ−1
eff (B0)B2

0 (9)

with a suitable permeability µeff(B0) is defined, such that
(3)–(5) is fulfilled. For this, µeff must be complex.

C. Effective Material

Assuming B0 = B = B, the nonlinear complex permeability

µeff(B) =
jωB2

2(P ′(B) + j Q′(B))
(10)

can be calculated analytically. Then, the magnetic field
strength H is determined by

H = µ−1
eff (B)B (11)

of which the real and imaginary parts are represented in Fig. 2.

III. SIMULATION PROBLEMS

The problems of the slice model are an ECP and an SMFP
with an EM of an electrical machine shown in Fig. 3. The
machine is connected via the resistors Rs to a three-phase
power supply denoted by U , V , and W . The voltages for the
excitation of the problem are prescribed by uU (t) = Û sin(ωt),
uV (t) = Û sin(ωt + 120◦), and uW (t) = Û sin(ωt + 240◦) for
the reference solution (RS) and by UU (t) = Ûe jωt , U V (t) =

Ûe j (ωt+120◦), and U W (t) = Ûe j (ωt+240◦) for SMFP with EM,
where Û is a peak value in volts. To keep the representation
short, X is used in part for the phases U , V , and W .

The BSFs hX
BS of unit currents i X in Section III-A and I X

in Section III-B are used to couple the field problems with the
power supply, i.e., an external circuit. To simulate a complete
machine, the number of turns NT in the windings and the
number of sheets NS in the iron core are considered in the
simulation problems.

The entire domain � = �m ∪ �0 consists of the laminated
domain �m = �c ∪ �i with iron sheets �c and insulation
layers �i in between and �0 represents air. One slice of �

is denoted by �3D. The stator (S) and the rotor (R) represent
�m . EC losses occur in S only. R runs synchronously with the
rotating magnetic field. Therefore, there are no losses in R.
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A. Reference Problem

A 3-D nonlinear ECP with real material parameters con-
nected to a three-phase power supply via resistors Rs is to be
solved with the MVP A and the currents of the three phases
iU , i V , and i W for the RS.

Find A(x, t) ∈ V , iU (t), i V (t) and i W (t) ∈ C(0, T ), so that

NS

∫
�3D

µ−1 curl(A) · curl(v) d� − NS

∫
�3D

σ
∂

∂t
A · v d�

− NT NS

∫
�3D

(
iU hU

BS + i V hV
BS + i W hW

BS

)
· curl(v) d�=0

i X Rs q X
+ NT NS

∂

∂t

∫
�3D

hX
BS · curl(A) d� q X

= u X q X (12)

for all v(x, t) ∈ V and q X (t) ∈ C(0, T ) with suitable initial
and BCs hold, where V = C(H(curl, �), (0, T )) and T is the
simulation time (ST).

B. Proposed Method

We propose a 2-D SMFP with the EM from Section II-C
and a single-component MVP u(x, y) with

B = curl(u(x, y)ez). (13)

The SMFP is connected to a three-phase power supply via
resistors Rs . The problem to be solved reads as given below.

Find u ∈ H 1(�2D,C) and I U , I V , and I W
∈ C, so that

NSd
∫

�2D

µ−1 grad(u) · grad(v) d� − NT NSd∫
�2D

(
I U hU

BS + I V hV
BS + I W hW

BS

)
· grad⊥(v) d� = 0

I X Rs q X
+ NT NS jωd

∫
�2D

hX
BS · grad⊥(u) d� q X

= U X q X

(14)

for all v ∈ H 1(�2D,C) and q X
∈ C with suitable BCs hold,

where �2D is the cross section of one slice �3D. Note, grad⊥

denotes the permuted gradient which is equal to the curl-
operator in 2-D. The apparent power

S =
jω
2

d
∫

�2D

µ−1 B · (B)∗ d� (15)

with the losses P = Re(S) and the fictitious reactive power
Q = Im(S) can be calculated for different excitations Û .

IV. SIMULATIONS AND RESULTS

To evaluate the proposed method of SMFP with the EM to
replace the expensive computation of an ECP, the electrical
machine shown with the FE mesh in Fig. 3 was studied. The
3-D FE mesh for the slice model with �3D is an extrusion in
the z-direction of the 2-D mesh of �2D.

The selected parameters for the RS are the conductivity
of iron σFe = 2.08 · 106 S/m in S, the permeability of iron
µFe(|B|) by means of the measured B H -curve in Fig. 2 and
of air µ0 = 4π · 10−7 Vs/Am, and the frequency f = 50 Hz.
The effective B H -curves in Fig. 2 are used for µc(|B|) in S
and the measured B H -curve in R and µ0 in air for the SMFP
with EM. The resistor Rs was set to 1 �.

TABLE I
RESULT DATA

Fig. 4. Magnetic flux distribution for Û = 50 V: |B(t = 5T )| of RS (left)
and |Im(B)| of SMFP with the EM (right).

Fig. 5. Magnetic flux distribution for Û = 130 V: |B(t = 7T )| of RS (left)
and |Im(B)| of SMFP with the EM (right).

The implicit Euler method as the time-stepping method and
the fixed point method in [10] for the nonlinear ECP and
nonlinear SMFP with the EM have been used. The time step
has been selected with 1t = 0.5 ms, which means 40 time
steps per period T .

Magnetic field distributions for different saturations are
presented in Figs. 4 and 5. The agreement is satisfactory, and
the deviation grows with higher saturations, see also Table I.
The time behavior of the three-phase currents i X (t) can be
seen in Fig. 6 and those of the losses p(t) and the fictitious
energy w(t) are shown in Fig. 7. A pronounced transition can
be observed till the steady state is practically achieved.

The number of unknowns is 264 671 with an FE order of
one for RS and 19 561 for SMFP with EM with an FE order
of two. Several result data are summarized in Table I. The
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Fig. 6. Currents of RS for Û = 50 V (above) and for Û = 130 V (below).

Fig. 7. Losses p and fictitious energy w for Û = 50 V (above) and Û =

130 V (below).

agreement of P and Q is very satisfactory as can be seen in
Table I by ϵP and ϵQ , respectively. Note that the losses due
to EE are not included in the losses that the SMFP with EM
shows.

The relatively high number of nonlinear iterations (NLIs)
for the RS can be explained by the selected number of
periods (NPs) and 40 time steps per period for the transient
simulations. For the SMFP with EM, a nonlinear problem only
needs to be solved once. This explains the very large ratio of
STs fST required by the ECP compared with the SMFP with
EM.

V. CONCLUSION

A method to conveniently solve eddy current problems
of slice models by a static magnetic field problem with an
effective material is proposed. The proper effective material
is determined by solving specific cell problems at negligible
computational costs. This effective material is valid indepen-
dent of the overall geometry of the slice model. The method
is obviously restricted to eddy current problems in the steady
state. The slice model requires just a finite element mesh in
2-D. The problem can be simply formulated with a single
component magnetic vector potential leading to a considerably
reduced memory requirement and very short calculation times.
To demonstrate the versatility of the method simulations of a
slice problem of an electrical machine has been presented.
Also, the method delivers very satisfactory accurate field
distributions and thus losses and reactive powers. Its simplicity
allows an easy integration into available software. Thanks due
to the high performance and accuracy of the method, it sup-
ports cheap solutions of the forward problem in optimization
and thus facilitates convenient design of electrical machines.
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