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Abstract
The HPT complex, consisting of the hypothalamus, pituitary and thyroid, functions
as a regulated system controlled by the respective hormones. This system maintains
an intrinsic equilibrium, called the set point, which is unique to each individual. In
order to optimize the treatment of thyroid patients and understand the dynamics of the
system, a validated theoretical representation of this set point is required. Therefore,
the research field of mathematical modeling of the HPT complex is significant as it
provides insights into the interactions between hormones and the determination of this
endogenous equilibrium. In literature, two mathematical approaches are presented for
the theoretical determination of the set point in addition to a time-dependent model.
The two approaches are based on the maximum curvature of the pituitary response
function and the optimal gain factor in the representation of the HPT complex as a
closed feedback system. This paper demonstrates that all hormone curves described by
themodel converge to the derived set point with increasing time. This result establishes
a clear correlation between the physiological equilibrium described by the set point
and the mathematical equilibrium with respect to autonomous systems of differential
equations. It thus substantiates the validity of the theoretical set point approaches.

Keywords HPT complex · Set point determination · Global stability analysis ·
Mathematical modeling

1 Introduction

The thyroid gland plays a pivotal role in regulating metabolism, impacting cardiovas-
cular activity, fat metabolism, and energy usage, among other functions. According
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Fig. 1 Block diagram of a general closed-loop HPT feedback system including HP complex and thyroid

to Madariaga et al. (2014), around 11% of Europeans experience thyroid dysfunction.
When this system malfunctions, it disrupts hormonal balance, leading to symptoms
like fatigue, depression, and weight fluctuations, varying based on the specific thyroid
disorder.

The majority of thyroid issues involve either an excess (hyperthyroidism) or a
deficiency (hypothyroidism) of hormone production. While synthetic hormones can
improve these conditions, determining the right dosage often necessitates multiple
doctoral appointments and hormone level assessments. Even when patients fall within
the healthy hormone rangewithmedication, their well-being isn’t consistently ensured
due to the personalized nature of thyroid regulation and the variability in drug therapy
outcomes.

The understanding of this complicated system is still incomplete, which emphasizes
the need for descriptive mathematical models in order to gain a better insight into the
complexity of the system. Simulating hormone dynamics over time allows us to better
understand how different components influence an individual’s physiological balance.
This knowledge could potentially lead to more personalized drug dosages, reducing
medical visits and enhancing patient well-being.

The thyroid operates together with the pituitary and hypothalamus as part of
the Hypothalamus-Pituitary-Thyroid (HPT) complex. The hypothalamus releases
thyrotropin-releasing hormone (TRH), stimulating the pituitary to release thyroid-
stimulating hormone (TSH), which triggers increased production of thyroid hormones,
specifically free triiodothyronine (FT3) and free thyroxine (FT4). This initiates a feed-
back loop, decreasing TSH and TRH levels. Both FT3 and FT4 show a negative
feedback on the HP complex and are converted into each other at intracellular and
peripheral level following biochemical processes, see Feldt-Rasmussen et al. (2021).
However, clinicians use FT4 and TSH for diagnosis of diseases as, at a macroscopic
level, FT4 controls the overall dynamics due to the conversion at different levels. The
HPT dynamics are illustrated in Fig. 1.
This work focuses on analyzing a mathematical model describing the dynamics of
the HPT complex and introducing a theoretical approach to determine the individual
hormonal equilibrium. Various models of different complexities are available in the
literature. For instance, theMichaelis-Menten-Hill kinetics, proposed byDietrich et al.
(2004), forms the basis for physiologically plausible pituitary models and is relevant
in the HPT context, as established by Frank (2013) and Spencer et al. (1990). Thus,
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approaches aiming to depict the time-dependent dynamics of the HPT complex often
rely on the Michaelis-Menten equation, e.g. Pandiyan et al. (2014); Goede (2021);
Yang et al. (2021).More intricatemodels, as presented in Liu et al. (1994);Martins and
Monteiro (2010); Eisenberg et al. (2008), incorporate up to 15 differential equations,
consider additional factors such as other hormones than FT4 and TSH and subsystems
like kidneys or the peripheral vascular system. However, these more complex models,
tailored to specific thyroid conditions, heavily rely on collecting andmeasuringpatient-
specific hormonal data. Unfortunately, this detailed data often is not readily available
in standard patient datasets, making it challenging to validate these models.

This work focuses on a mathematical model presented in Goede (2021) introducing
theoretical approaches to explicitly determine the individual hormonal equilibrium,
the so-called set point. It describes the HPT dynamics based on an autonomous
two-dimensional system of ordinary differential equations determining the hormonal
course of TSH and FT4. This reduction is based on combining hypothalamus and pitu-
itary to the so-called Hypothalamus-Pituitary (HP) complex as TRH secretion is only
affected to a small extend by thyroid hormones according to Paschke (2019). Addition-
ally, as described in Silbernagl and Despopoulos (1991), most of FT3 concentration
originates from alteration of FT4.

In previous publications (Goede et al. 2014; Leow and Goede 2014), two math-
ematical approaches for an explicit set point determination were introduced for the
response functions of the pituitary and thyroid. It is proposed, that both maximum
curvature theory and gain factor analysis result in a theoretical, patient-specific repre-
sentation of the individual physiological equilibrium. Additionally, a time-dependent
model, for which theHP- and thyroid (T)-function represent the equilibrium functions,
was presented based on these findings in Goede (2021). The model is a simplified rep-
resentation of the HPT dynamics and focuses on introducing a time dependency to the
HP- and T-function that have been validated extensively in Goede et al. (2014); Leow
and Goede (2014).

In this paper, the applicability of the two set point approaches is examined math-
ematically and subjected to a qualitative analysis. In previous publications on this
model, assumptions are made that have not yet been mathematically analyzed and
proven, which is precisely demonstrated in this paper. In the event of deviations from
the equilibrium, the endogenous control system regulates the thyroid hormones back to
the balance point. Therefore, this paper analyzes the long-term behavior of the model
trajectories to demonstrate that they converge to the set point based on a global stabil-
ity analysis. This further substantiates the validity of those mathematical approaches
to determine a physiological equilibrium. This analysis will focus in particular on the
hypothesis as to what extent these set point theories are related to a mathematical
equilibrium of the HPT model.

2 Mathematical derivation of the set point theory

The HPT complex strongly depends on the mutual influence of its components and
contains an individual hormonal equilibrium, the so-called set point, which is defined
as follows.
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Fig. 2 HPT complex represented as negative feedback closed-loop system

Definition 1 The set point of an intact HPT axis of a healthy euthyroid person repre-
sents the ideal personalized thyroid function target that results in an optimal healthy
state. Leow and Goede (2014).

According to Goede et al. (2014); Leow (2007); Leow and Goede (2014), this equi-
librium can be mathematically derived and further investigated by introducing the
maximum curvature theory, in which the Leow-Goede equations represent the funda-
mental law governing the homeostatic euthyroid set point equilibrium in the HPT axis.
Additionally, it can be defined by representing the HPT complex as a feedback system,
which also provides the possibility to gain further information about the physiological
behavior. The two approaches are presented in detail in Goede et al. (2014); Leow and
Goede (2014) and summarized in the following.

2.1 Maximum curvature theory (MCT)

Even the slightest deviation from the set point is registered by the HP complex. In
response, it tries to regulate the hormones towards the original state of equilibrium, the
so-called set point. Thus, the set point is defined as the point of maximum sensitivity
of the HP complex, which mathematically corresponds to the point of maximum
curvature of the pituitary response function, according to Leow and Goede (2014).

Definition 2 The set point of the HPT complex is specified as the unique point of the
response function of the pituitary, f (x) = y, that fulfills

dK f

dx
= 0 and

d2K f

dx2
< 0 with K f =

d2 f
dx2(

1 +
(
d f
dx

)2) 3
2

. (1)

2.2 Gain factor analysis (GF)

The second approach to determine the set point is also discussed in Leow and Goede
(2014) and Goede et al. (2014). The HPT complex can be defined as closed loop
system including a negative feedback loop and the set point S[FT4] as input reference
value. An illustration of this system is given in Fig. 2.
The set point definition is based on the loop transfer functionG(s) of the entire system,
obtained by breaking the feedback loop and the computation of the corresponding zero
frequency gain. The detailed approach can be found in Aström and Murray (2012)
and Goede et al. (2014). The loop gain of the HPT complex is therefore defined
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as G = |GHPGT |. According to Goede et al. (2014), when referring to the HPT
complex, the interpretation refers to the measure of variation of the output signal to a
corresponding relatively small variation of the input signal. Thus, the respective gain
factors of the compartments are defined as

GHP = d[TSH]

d[FT4]
, GT = d[FT4]

d[TSH]
. (2)

Following this framework, the set point can be defined as follows according to Goede
et al. (2014).

Definition 3 The set point of the HPT complex represented as negative feedback
closed-loop system, as depicted in Fig. 2, is defined as the point where the loop gain
operates at its optimum. It corresponds to themaximumofG depending only on [TSH]
and thus the point that fulfills

dG

d[TSH]
= 0 and

d2G

d[TSH]2
< 0 with G = |GTGHP |. (3)

The dependence of G solely on [TSH] originates from its explicit calculation pre-
sented in Goede et al. (2014) with respect to the mathematical model discussed in the
following work.

3 HPTmodeling and set point

The so-called minimal model of the HPT complex, presented in Goede (2021),
describes the mutual influence and time-dependent dynamics of both hormones [FT4]
and [TSH] as a two-dimensional autonomous systemof ordinary differential equations.
For reasons of readability, [FT4] and [TSH] are referred to hereinafter as x = [FT4]
and y = [TSH] respectively. The model is defined as

dy

dt
= S

exp(ϕx)
− y,

dx

dt
= A − A

exp(αy)
− x .

(4)

The system includes four parameters S, ϕ, A, α ∈ R+, where ϕ and α represent the
respective decay rate, S and A, however, are not associated with physiological values.
It should be noted that no additional parameters were included in the equations to take
into account the clearance rate of the two hormones. They have not been introduced
for the sake of simplicity and readability, as the theoretical results presented in the
following chapters can be conducted analogously if this detail is amended. The time-
dependent model is established based on findings on the equilibrium function of y,
the so-called HP-function, for which the maximum curvature theory was originally
introduced in Leow and Goede (2014). The HP-function represents the response of the
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Table 1 Application and results of maximum curvature theory and gain factor analysis

Approach Objective function Method xsp ysp

MCHP Ky = Sϕ2 exp(−ϕx)(
1−S2ϕ2 exp(−2Sϕx)

) 3
2

dKy
dx = 0 ln(

√
2Sϕ)
ϕ

1√
2ϕ

MCT Kx = −Aα2 exp(−αy)(
1+A2α2 exp(−2αy)

) 3
2

dKx
dy = 0 A − 1√

2α
ln(

√
2Aα)
α

GF G(x, y) = G(y) = Aαϕy exp(−αy) dG
dy = 0 A (1 − exp(−1)) 1

α

HP complex given a certain concentration of x . This negative exponential relationship
between y and x is presented and validated in Goede and Leow (2013) and Leow
(2007). The equilibrium function of x , the so-called T-function, on the other hand
defines the thyroid response function. The HP- and T-function are derived from the
equilibrium state of the system, (ẋ, ẏ) = (0, 0). It follows that

y = S

exp(ϕx)
, (5)

x = A − A

exp(αy)
. (6)

To compute the set point, Definition 2 and 3 can be applied. The results for the HP-
function, referred to as maximum curvature of hypothalamus-pituitary (MCHP), are
already presented in Leow and Goede (2014), and thus are concluded in Table 1.
However, the maximum curvature theory should hold true for the T-function since the
thyroid also reacts most sensitively to changes in y at the set point, as it is defined as
the individual hormonal equilibrium that should be ultimately adjusted by the body.
The following paragraph shows the agreement with the given definition by demon-
strating the theoretical applicability of the maximum curvature theory to the thyroid
response function. Importantly, the resulting set point coordinates should not contra-
dict previously published results. By applying Definition 2 to the T-function„ denoted
by maximum curvature of thyroid (MCT), the respective curvature function is derived
as

Kx = −Aα2 exp(−αy)(
1 + A2α2 exp(−2αy)

) 3
2

, (7)

whereas the respective set point is then given as

(
xmct
sp , ymct

sp

)
=

(
A − 1√

2α
,
ln(

√
2Aα)

α

)
. (8)

This approach therefore also leads to a unique, explicit representation of the set point
values of x and y. The theoretical applicability of the theory ofmaximumcurvature to a
function other than the one originally specified can be recognized whilst it nonetheless
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Fig. 3 T-function and set point computed based on the corresponding curvature function

remains in the context of its objective, the set point determination. The approach is
illustrated in Fig. 3.

The set points computed with different methods are summarized in Table 1. It is
apparent that the set point coordinates of both maximum curvature theory applied to
the T-function and gain factor analysis depend solely on A and α.

In line with the underlying theories, it is evident by inserting the respective terms
whereby the superscripts ’gf’ and ’mct’ and subscript ’sp’ represent gain function,
maximum curvature of thyroid and set point respectively, such that

xgfsp = xmct
sp ∧ ygfsp = ymct

sp ⇔ √
2Aα = exp(1). (9)

This suggests that the new application of maximum curvature theory presented in
this paper is not in conflict with previously published results, subject to a parameter
assumption.

4 Qualitative analysis

Since the set point is defined as a physiological equilibrium and the minimal model
consists of an autonomous system of differential equations, contextualization with the
mathematical equilibrium is possible with regard to stability analysis.

4.1 Local stability behavior

The stability of an autonomous system u̇ = f (u) around an equilibrium point can be
analyzed by linearization of the respective system using the Taylor series expansion
of first order around the equilibrium u∗ as development point. In line with Heuser
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Fig. 4 Direction field of model (4) including two sample trajectories. The exemplary parameter set was
chosen to be [S, ϕ, A, α] = [1000, 0.4, 22, 0.6]. The initial value for trajectory 1 is [7, 2] and for trajectory
2 it is [17, 8]

(1991), equilibrium points of a 2-dimensional system of differential equations can
then be classified according to the eigenvalues λ1,2 of the Jacobian evaluated at the
equilibrium, J(u∗) ∈ R2×2.

The general derivation of equilibrium points of the minimummodel by determining
x and y such that ẋ = 0 and ẏ = 0 leads to equations that cannot be solved analytically
due to nested functions as given in

y∗ = S exp(−ϕx∗),

x∗ = A

(
1 − 1

exp(αy∗))

)
= A

(
1 − 1

exp(αS exp(−ϕx∗))

)
. (10)

Both maximum curvature theory and gain factor analysis propose the explicit deter-
mination of the set point as an equilibrium point. In addition, the directional field of
the minimal model, shown in Fig. 4, shows the existence of an asymptotically stable
equilibrium point. Combined, this motivates an alternative approach, as carried out in
the following.

The combination of the set point coordinates resulting from two approaches
(’mchp’ in superscript representing maximum curvature of hypothalamus-pituitary),
(xmchp

sp , ymchp
sp ) and (xgfsp, y

gf
sp), is an equilibrium point of the minimal model according

to

dx

dt
= A − A

exp(αygfsp)
− xgfsp = A (1 − exp(−1)) − A (1 − exp(−1)) = 0,

dy

dt
= S

exp(ϕxmchp
sp )

− ymchp
sp = S

exp(ln(
√
2Sϕ))

− 1√
2ϕ

= 0. (11)
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Due to the parameter dependencies, not only one derivation of the set point can be
selected, but they must be linked. The corresponding Jacobian matrix evaluated at the
set point can be derived as

J(xmchp
sp , ygfsp) =

( −1 Aα exp(−αy)
Sϕ exp(−ϕx) −1

) ∣∣∣∣
(xmchp

sp ,ygfsp)
=

( −1 Aα exp(−1)
−√

2 −1

)
.

(12)

Provided that A, α > 0, the respective eigenvalues can be classified as

λ1,2 = −1±
√

−αA
√
2 exp(−1) = −1 ± i

√
αA

√
2 exp(−1) ∈ C. (13)

As Re(λ1,2) < 0, this set point is an asymptotically stable spiral sink in line with the
direction field shown in Fig. 4.

The set point derived by themaximum curvature theory, applied to the T-function, is
also dependent on A and α. Thus, the combination of (xmchp

sp , ymchp
sp ) and (xmct

sp , ymct
sp )

can be shown to be an equilibriumpoint of theminimalmodel and analyzed in the same
context. An analogous deduction and evaluation of the respective Jacobian matrix
results in two complex conjugate eigenvalues with negative real parts and thus an
asymptotically stable spiral sink. This further supports that the alternative application
of the maximum curvature theory to the T-function results in a representation of the
set point as equilibrium point.

Findings on the local stability behavior are expanded to R2+, the total appropriate
set for the trajectories as they represent hormone values.

4.2 Global stability behavior

The preceding qualitative analysis proves that the trajectories of the minimal model
converge towards the set point with increasing time. This finding is restricted to tra-
jectories found in the neighborhood of the set point as only a local stability analysis
was conducted. To extend the results to account forR2+, motivated by Fig. 4 and thus
for the entire range of existence of the trajectories, as the hormonal values can only
take positive real numbers, the global stability behavior is analyzed. To prove the
existence of a global, asymptotically stable equilibrium, it is demonstrated that the
Dulac-Bendixon-Criterion and the Poincaré-Bendixon-Theorem apply to the minimal
model. The initial procedure is based on the publication (Yang et al. 2021) proving
global stability of another mathematical model, which was adjusted accordingly.

Proposition 1 The system (4) has no periodic orbits or graphics in R2+.

Proof The set R2+ is open and simply connected and f1,2 represent the functions on
the right hand side of model (4). Both f1,2 are continuously differentiable onR2+. By
choosing D ≡ 1, it follows that

∂(Df1)

∂x
+ ∂(Df2)

∂ y
= −2 < 0. (14)
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As the term is strictly negative everywhere onR2+, according to the Dulac-Bendixon-
Criterion, stated among others in Martcheva (2015), the model has neither periodic
orbits nor graphics.

Combined with the next theorem, the main result of this work can be concluded. It is
proven by rewriting system (4) that limes inferior and superior of both x and y are
restricted for all time.

Theorem 2 All trajectories of the model (4) are constrained in a bounded region of
R2+.

Proof The model given in (4) can be rewritten as

d

dt
(x + α) = A − Ae−α(y+ϕ)eαϕ − (x + α) + α,

d

dt
(y + ϕ) = Se−ϕ(x+α)eαϕ − (y + ϕ) + ϕ. (15)

Substituting the variables u = y + ϕ and v = x + α results in

dv

dt
= A − Ae−αueαϕ − v + α, (16)

du

dt
= Se−ϕveαϕ − u + ϕ. (17)

It will now be shown that lim inf
t→∞ v(t) > 0 and lim inf

t→∞ u(t) > 0 and the limes superior

is restricted for both u(t), v(t) with respect to t → ∞.

1. It will be shown that lim sup
t→∞

v(t) ≤ A + α < ∞. Based on the product rule,

equation (16) can be rewritten as

d

dt
(etv(t)) = −Ae−αu+αϕ+t + et (A + α). (18)

By integrating the equation with respect to t , it follows that

etv(t) − v(0) = −
∫ t

0

Aeαϕ+s

eαu
ds +

∫ t

0
es(A + α) ds

= −
∫ t

0

Aeαϕ+s

eαu
ds + et (A + α)(1 − e−t )

< et (A + α)(1 − e−t ). (19)

Thus,

v(t) < (A + α)(1 − e−t ) + e−tv(0), (20)
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which implies

v∗ := lim sup
t→∞

v(t) ≤ A + α < ∞. (21)

2. Analogously, it can be proven that lim inf
t→∞ u(t) ≥ ϕ > 0 by reformulating equation

(17) such that

d

dt
(et u(t)) = Se−ϕv+αϕ+t + etϕ. (22)

By again integrating both sides of the equation with respect to t , it follows that

et u(t) − u(0) =
∫ t

0

Seαϕ+s

eϕv
ds +

∫ t

0
esϕ ds

> etϕ(1 − e−t ). (23)

Therefore,

u(t) > ϕ(1 − e−t ) + e−t u(0), (24)

which finally leads to

u∗ := lim inf
t→∞ u(t) ≥ ϕ > 0. (25)

3. To show that v∗ := lim inf
t→∞ v(t) > 0, let O := {(v(t), u(t)) : 0 ≤ t < ∞} be an

orbit lying in the first quadrant. Let Z := {0 ≤ t1 < t2 < ... < tn < ...} be the
sequence of points in [0,∞) such that v̇(t j ) = 0 for j = 1, 2, ....
It holds that inf t≥0 v(t) = min{v(0), v(t1), ..., v(tn), ...}. Since the equilibrium is
a spiral point, Z is an infinite set which implies that (tn) is an increasing sequence
tending to ∞.
Additionally, let there be an ε > 0 close to zero such that ϕ − ε < ϕ ≤ u∗. Such
an ε exists since ϕ > 0. Therefore, let ū be chosen such that ϕ − ε < ū < u∗
and let v̄ be the intersection of the vertical line u = ū and the hyperbola v =
−Ae−αueαϕ + A + α. Since ū > ϕ − ε, it follows that

v̄ = −Ae−αūeαϕ + A + α > −Ae−α(ϕ−ε)eαϕ + A + α = −Aeαε + A + α

(26)

The parameter α defines the decay rate with respect to equation (16). Therefore,
it holds that α < 1 and additionally

v̄ > −Aeαε + A + α −→
ε→0

α > 0. (27)

Since ū < u∗, there exists an t̄ such that u(t) > ū, ∀t j ≥ t̄ . This implies that the
orbit Ot̄ := {(v(t), u(t)) : t̄ ≤ t < ∞} lies on the right hand side of the vertical
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line u = ū. Therefore it follows that the intersections of Ot̄ and the hyperbola
v = −Ae−αueαϕ + A + α all have their v-coordinates greater than v̄. Thus,

v(t j ) ≥ v̄ ∀t j ≥ t̄ . (28)

Let j0 be an index chosen such that t j ≥ t̄ ∀ j ≥ j0. Then it can be concluded that

inf
t≥0

v(t) = min {v(0), v(t1), ..., v(t j0)} > v̄ > 0. (29)

4. Finally, it can be shown that lim sup
t→∞

u(t) < ∞ by using the already proven prop-

erties. Since v∗ > 0 and v∗ < ∞, v0 can be chosen such that 0 < v0 < v∗ is
fulfilled.
Thus, there exists some t∗ such that ∀t ≥ t∗ : v0 < v(t). Similar to previous
approaches, u(t) can be estimated following

d

dt
(et u(t)) = Se−ϕv+αϕ+t + etϕ

⇔ et u(t) = u(0) +
∫ t

0

Seαϕ+s

eϕv
ds +

∫ t

0
esϕ ds

⇔ et u(t) = u(0) +
∫ t∗

0

Seαϕ+s

eϕv
ds +

∫ t

t∗
Seαϕ+s

eϕv
ds +

∫ t

0
esϕ ds. (30)

According to the prior considerations, by using ev0 < ev(t) for t ≥ t∗ since
the exponential function is strictly monotonously increasing, u(t) can be further
estimated following

et u(t) < u(0) +
∫ t∗

0

Seαϕ+s

eϕv
ds +

∫ t

t∗
Seαϕ+s

eϕv0
ds +

∫ t

0
esϕ ds

= u(0) +
∫ t∗

0

Seαϕ+s

eϕv
ds + Seteϕ(α−v0)(1 − e−t+t∗) + etϕ(1 − e−t ).

(31)

Thus,

u(t) < e−t u(0) + e−t
∫ t∗

0

Seαϕ+s

eϕv
ds

︸ ︷︷ ︸
<∞

+Seϕ(α−v0)(1 − e−t+t∗) + ϕ(1 − e−t ),

(32)

and finally

lim sup
t→∞

u(t) < Seϕ(α−v0)(1 − et
∗︸︷︷︸

<∞
) + ϕ < Seϕ(α−v0) + ϕ < ∞. (33)
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�
The existence of a global asymptotically stable equilibrium can then be proven by
combining all of the previous findings resulting in the following Theorem.

Theorem 3 Model (4) contains an equilibrium point which is globally asymptotically
stable.

Proof It is proven that the set point is an equilibrium point independent of the indi-
vidually derived set point equations. More specifically, the set point is a locally
asymptotically stable spiral point. Theorem 2 proves that all trajectories of model
(4) are constrained in a bounded region of R2+ and therefore, according to the
Poincaré-Bendixon-Theorem, as stated in Martcheva (2015), the set point is glob-
ally asymptotically stable since Proposition 1 rules out periodic orbits and graphics
due to the Dulac-Bendixon-Criterion.

It is shown that all physiologically reasonable trajectories inR2+ of the minimal model
tend towards the set point with increasing time. Themodel was established based on its
equilibrium equations for which twomathematical approaches were introduced to the-
oretically derive the set point. Based on this work, it is shown that this set point, defined
to represent the individual physiological equilibrium, corresponds to the mathematical
equilibrium of the respective autonomous system. As it is global asymptotically stable,
all hormone trajectories stabilize at the set point value. This corresponds to physiolog-
ical behavior as the endogenous balance is restored even after small deviations. Based
on this proof, the mathematical validity of both maximum curvature theory and gain
factor analysis can be concluded as this concept of the set point provides a possible
association of the physiological and mathematical equilibrium.

Additionally, by combining the set point equations derived from different
approaches, the autonomous system can be described by only two out of four param-
eters since the remaining ones can be derived from the others. This approach is
presented in the next section alongside parameterized solution curves to contextualize
the theoretical findings with patient-specific hormonal courses.

5 Patient-specific numerical illustration

Having established a relation between a theoretical representation of the set point
derived by two approaches and themathematical equilibrium of systems of differential
equations, the results are illustrated in this section.

This approach also allows for the minimal model to be described with two param-
eters as the remaining ones can be derived based on the others as presented in the
following. If patient data is available, a parameter identification with respect to the
HP-function in the state space is sufficient to compute the patient-specific set point
according to the previous work. Based on the following procedure, also presented
in Leow and Goede (2014), all four parameters S, ϕ, A and α and both set point
coordinates can be determined. Having identified both S and ϕ in the course of a cal-
ibration of the HP-function to patient data in the state space, the respective set point
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Fig. 5 HP- and inverse T-function as response of HP-complex and thyroid in state space including mea-
sured patient data. The set point was determined as (xsp, ysp) = (14.21, 1.55) with the parameter set
[S, ϕ, A, α] = [1000.53, 0.45, 22.49, 0.64]

(
xmchp
sp , ymchp

sp

)
can be computed using the maximum curvature theory. The remain-

ing parameters A and α are determined by transforming
(
xgfsp, y

gf
sp

)
given in Table 1,

which results in

A = xsp
1 − exp(−1)

, α = 1

ysp
. (34)

An exemplary state space plot to illustrate this approach including measurements of
one patient is presented in Fig. 5. The patient data was collected at the Vienna General
Hospital in the course of a retrospective study conducted by the Medical University
of Vienna. To include the thyroid response function in the same plot, the inverse
T-function is computed as

y = − 1

α
ln

(
A − x

A

)
. (35)

The results are shown in Fig. 5. As presented in this plot, the value of the HP-function
is large if the input is small and vice versa. In the case of the T-function, the secretion
of FT4 increases if the TSH value rises as the thyroid gland is stimulated. Thus,
the two curves accurately represent the endogenous HPT dynamics. In line with the
described approach for parameter identification, the set point corresponds with the
point of intersection of both response functions. It can be seen that the set point is
close to the mean value of the patient data if the point with the greatest distance to the
HP-function is regarded as an outlier. As also stated in Leow and Goede (2014), the
HP-curve then accurately represents the data dynamics of this patient.

Since all parameters are already identified, the time-dependent curves of the same
patient can be plotted to illustrate previously proven results.

Fig. 6 shows that the time-dependent curves for both FT4 and TSH level off at the
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Fig. 6 Time-dependent FT4 and TSH curves including respective patient data. The set point
(xsp, ysp) = (14.21, 1.55) is represented by the dashed line. The parameter set is again [S, ϕ, A, α] =
[1000.53, 0.45, 22.49, 0.64]

equilibriumafter a fewweeks and thus illustrates the proven existenceof an equilibrium
point. Additionally, it has to be noticed that the set point of both hormones, included
as dashed lines in the plot, corresponds to this same equilibrium in line with the
theoretical findings presented in section 4. Thus, the established relationship between
the set point derived by maximum curvature theory and gain factor analysis and the
theoretical equilibrium of an autonomous system of differential equations can also be
observed with the time-dependent curves.

The time-dependent dynamics of the patient measurements are not accurately rep-
resented as the trajectories level off at the equilibrium after a short time span. It has
to be mentioned that the original objective of the model was to introduce mathe-
matical approaches to define the set point rather than the time-dependent hormonal
course. Nevertheless, the model shows physiologically valid dynamics as FT4 and
TSH decrease at first such that FT4 approaches the set point. As TSH rises again, FT4
increases after a time delay before both level off at the set point. Additionally, the last
point of the patient data is close to the equilibrium of both curves. For this patient, it is
noted in hermedical records that she is sufficiently thyroxine-treated. This could imply
that her physiological hormonal equilibrium is close to her last measurement, which
can be found in close distance to the set point in Fig. 6 as the theoretical equilibrium.

6 Discussion

TheHPT complex forms a controlled system holding an equilibrium, the set point, that
is adjusted even after small variations in hormone concentration. Thus, in this work,
a mathematical model introducing theoretical approaches to determine the set point
in explicit terms is analyzed and evidence of global stability behavior is published for
the first time.

Themaximum curvature theory and the gain factor analysis are introduced to derive
set point coordinates mathematically. The maximum curvature theory is defined in
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literature for the HP-function, based on the set point corresponding to the point of
maximum sensitivity to any changes of the pituitary. In line with the physiological
dynamics, the thyroid is also most sensitive to any variations from the endogenous
equilibrium. Therefore, themaximum curvature theory is applied to the response func-
tion of the thyroid, the T-function, in this work resulting in set point coordinates in
explicit terms. Thus, this finding suggests that the maximum curvature theory is appli-
cable to an alternative function while maintaining its original purpose, the set point
determination. The gain factor analysis results in a set point depending on the same
two parameters as the maximum curvature theory applied to the T-function. In line
with the underlying theories and the set point definition as the individual physiologi-
cal equilibrium, it is shown in this work that those two results are non-contradictory
subject to a parameter condition. This further substantiates the applicability of the
maximum curvature theory in the context of theoretically determining the set point.

Both HP- and T-function were originally defined to represent the respective state
space dynamics of TSH and FT4. In the most recent publication (Goede 2021), a two-
dimensional autonomous system of differential equations was established based on
the HP- and T-function, which represent the equilibrium functions of the system. Since
the set point is introduced to represent the physiological equilibrium based on these
functions, the main result of this work is the mathematical proof that it corresponds
to the theoretical equilibrium of the autonomous system of differential equations in
the context of stability analysis. The general approach to determine the equilibrium
point of the system leads to equations that are not analytically solvable due to nested
functions. But in spite of this, an asymptotically stable equilibrium point is discernible
in the corresponding direction field. This motivates the approach conducted in this
work, where the set point is proven to be an asymptotically stable equilibrium point
based on linearization of the system in its neighborhood. As the differential equation
for TSH and FT4 depend on different parameters, set point coordinates resulting from
two distinct approaches have to be combined for this proof. In accordance with the
set point definition, the maximum curvature theory applied to the HP-function in
conjunction with the gain factor analysis and the maximum curvature theory applied
to the T-function, respectively, lead to asymptotically stable equilibrium points of the
system. Since also the combination of both maximum curvature approaches results in
the correspondence of set point and equilibrium point, the further applicability of this
theory is supported in line with previously discussed results.

As of now, the correspondence of set point determined by different approaches
and equilibrium point and its local stability is proven. Motivated by the respective
direction field shown in Fig. 4, these results are extended in this work to account for
all trajectories found in R2+. These represent all physiologically reasonable solution
curves as they describe the hormonal progression. To prove the global stability of
the set point, it is shown in this work that the Dulac-Bendixon-Criterion and the
Poincaré-Bendixon-Criterion apply to the model. The main mathematical result is the
proof of Theorem 2 which shows that all trajectories of the model are bound in R2+
based on a reformulation of the model and the restriction of both limes inferior and
superior of the trajectories. By combining all of the results, this work proves that the
set point corresponds to a global asymptotically stable equilibrium point and thus all
physiologically trajectories tend to it with increasing time. This accurately describes
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the physiological behavior as the endogenous balance is restored after deviations in an
euthyroid individual. To summarize, it is ultimately proven that the set point, defined
to represent the individual physiological equilibrium, corresponds to the mathematical
equilibrium of the respective autonomous system.

The work is concluded with an illustration of the theoretical results using patient
data collected at the Vienna General Hospital in the course of a collaboration with
the Medical University of Vienna. Based on the set point equations, the model can be
described by two out of four parameters as the remaining ones can be derived using the
others. This provides a reduced calibration approach, whereas only the HP-function
is fitted to data in state space. In line with the calculations, the HP-function and the T-
function then intersect at the set point in state space. Since all of the model parameters
are identified, also the time-dependent curves can be illustrated.

The model was originally proposed for thyroid-healthy individuals. In this paper,
the data of a patient with hypothyroidism is used for illustration, as only one blood
sample is usually taken from healthy patients. Since the target value refers to long-term
behavior, this approach is sufficient to show that the time-dependent curves level off
at the theoretical set point equations. As the original purpose of the model is the set
point determination, the observations with respect to the last points of the solution
curves are of interest. As demonstrated, the curves of both TSH and FT4 level off at
an equilibrium which corresponds to the respective set point coordinates. Thus, the
theoretical results can also be observed with patient-specific, time-dependent curves.

In conclusion, the findings of this work support the proposition that maximum
curvature theory and gain factor analysis aremathematically valid approaches to derive
the set point as equilibrium point. Based on these findings, the set point is a well-
founded concept to gather further information about the patient-specific hormonal
equilibrium of the HPT complex. In order to better represent the hormone axis of
a patient, other characteristics such as weight and age, which have been shown to
influence the HPT complex, are to be included in the model. In addition, a parameter
that includes medication must be introduced for people with thyroid disease. Provided
this extension, the now well-founded concept of the set point offers a way to make an
initial medication suggestion that is better targeted at the individual hormonal balance.
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