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• Fluorescence fingerprinting identifies
unique DOM compositions in water
samples.

• Seven PARAFAC components charac-
terize WWTP effluents from various
industries.

• PCA clusters WWTP effluents and
source-traces them in the receiving
river.

• At low flow WWTP emissions dominate,
at high flow diffuse emissions mask
WWTPs.

• A technique suitable for implementing
complex fluorescence monitoring in
rivers.
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A B S T R A C T

Fluorescence fingerprinting is a technique to uniquely characterize water samples based on their distinct
composition of dissolved organic matter (DOM) measured via 3D fluorescence spectroscopy. It is an effective tool
for monitoring the chemical composition of various water systems. This study examines a river affected by
several municipal and industrial wastewater treatment plant (WWTP) effluents and aims to source-tracing them
via fluorescence fingerprints based on parallel factor analysis (PARAFAC) components. Additional principal
component analysis (PCA) clusters the WWTP effluents according to similarity. The results yield seven PARAFAC
components characterizing the WWTP effluents. Considering the ratios among the components, these distinct
fluorescence fingerprints are attributable to the studied industrial sectors: leather industry, meat processing,
electronics industry, and municipal wastewater treatment. Furthermore, the fluorescence signal of the receiving
river is examined by PCA and assessment of flow-weighted fluorescence intensities for source-tracing the fin-
gerprints of the WWTP effluents. An analysis of the contribution of each WWTP effluent shows that during low
flow, the fluorescence signal in the river is dominated by WWTP emissions. In contrast, during high flow events,
the impact of WWTP emissions is masked by diffuse emissions. The techniques presented in this study have the
potential to define generalizable fluorescence fingerprints for WWTP effluents of various industrial sectors and
source-trace them in the receiving river. This approach represents a step closer to implementing complex
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fluorescence monitoring tools in rivers, tracing the impact of municipal and industrial WWTP effluents on
riverine OM.

1. Introduction

3D fluorescence spectroscopy has become well known for its easy
and rapid water quality assessment by detecting dissolved organic
matter (DOM) (Coble, 1996; Coble et al., 2014). Its diverse range of
applications stretches from drinking water to natural waters and
wastewater (Hudson et al., 2007; Henderson et al., 2009; Carstea et al.,
2016). Precisely for this reason, fluorescence spectroscopy is gaining
increasing importance in environmental monitoring and protection
(Shen et al., 2021).

Fluorescence fingerprinting offers a unique perspective in this re-
gard. Depending on the distinct DOM composition of each water sample,
a specific fingerprint is obtained. This fingerprint is determined by the
intensity of the fluorescence signal in different DOM areas and is
designed to distinguish the corresponding water source (Rodríguez-
Vidal et al., 2020). This is highly beneficial, for instance, for monitoring
wastewater treatment processes (Carstea et al., 2016). Work has been
ongoing recently to identify generalized fluorescence fingerprints for
WWTP effluents, although few studies have been published as yet (Liu
et al., 2019). While municipal WWTP effluents have already been dis-
cussed in detail, industrial WWTP effluents have proven more chal-
lenging to obtain a fluorescence fingerprint due to their more complex
composition. Nevertheless, the potential has been clearly demonstrated
(Rodríguez-Vidal et al., 2020). In some sectors, identifying specific
fluorescence fingerprints may be more straightforward than in others.
For example, effluents from food processing plants show very consistent
fingerprints, similar to municipal WWTP effluents (Rodríguez-Vidal
et al., 2020). For metal plating plants, on the contrary, differences in
production processes lead to varying fluorescence fingerprints (Shen
et al., 2021). Generally, more research is needed to cover the wide range
of industrial sectors and provide a collection of specific fingerprints
(Rodríguez-Vidal et al., 2020, 2022).

Opinions diverge as to which method is best for creating a fluores-
cence fingerprint. Rodríguez-Vidal et al. (2020) attempt to define fin-
gerprints using peak picking and fluorescence indices, though with no
clear recommendation for either of these methods. Another promising
approach is extracting components using parallel factor analysis (PAR-
AFAC), a statistical method for dimensional reduction of high-
dimensional excitation-emission matrices (EEM) (Murphy et al.,
2013). From these, fluorescence fingerprints may be determined
through advanced analysis (Yang et al., 2015).

Beyond the definition of the fluorescence fingerprint of WWTP ef-
fluents, novel perspectives for environmental monitoring are emerging.
Numerous studies have shown that fluorescence spectroscopy is an
effective tool for monitoring changes in the chemical composition of
various water bodies, as is the case for merging source rivers or WWTP
effluent discharge (Yan et al., 2000; Goldman et al., 2012; Liu et al.,
2019; Rodríguez-Vidal et al., 2020, 2022; Shen et al., 2021; Matos et al.,
2022). Previous studies already demonstrated that the specific fluores-
cence fingerprint of WWTP effluents remains recognizable even after
intermixing in the receiving river (Baker, 2001). In addition, it is even
possible to monitor their effect and behavior along streams and rivers
(Sgroi et al., 2017).

In light of these findings, fluorescence fingerprinting proved partic-
ularly suitable for tracing changes in municipal WWTP emissions in
natural waters, especially regarding the protein-like fluorescence peak
(Cawley et al., 2012). Residual PARAFAC components have been iden-
tified by comparing them with PARAFAC components from global
models of unpolluted rivers, which represent the specific anthropogenic
source of DOM where present (Cawley et al., 2012; Liu et al., 2019). For
single point emissions, the WWTP effluent signature can be inferred

directly by matching upstream and downstream river samples (Baker,
2001). Complex fluorescence fingerprints may be monitored using
system-specific PARAFAC models and, in certain scenarios, may even be
associated with specific DOM sources (Cawley et al., 2012), provided
there is sufficient variation in fluorescence properties (Li et al., 2014).
However, attention must always be paid to the fluorescence signal of the
water body itself since it cannot be concluded with absolute certainty
that a specific pollution source has occurred due to interference of the
fluorescence signals (Liu et al., 2019).

Even though numerous efforts are aimed at fingerprinting WWTP
effluents in rivers, these studies focus either on single WWTPs or on
several WWTPs in the same industrial sector (Baker, 2001; Cawley et al.,
2012; Liu et al., 2019). However, the approach becomes more difficult,
but also more promising, when several WWTPs from different industrial
sectors coalesce along a river (Yang et al., 2015). Precisely, in this case,
unique and generalizable fluorescence fingerprints could offer major
benefits, such as monitoring standard conditions and detecting anoma-
lies or violations of regulatory criteria (Baker, 2001; Yang et al., 2015).
The ability to rapidly detect which WWTPs deviate from the standard
fingerprint typical for their sector, for example, in the event of a tech-
nical failure, is invaluable (Shen et al., 2021). As a result, adequate
measures can be implemented at the water body and within the tech-
nical area of the WWTPs to protect the environment as effectively as
possible (Cawley et al., 2012; Yang et al., 2015; Liu et al., 2019).

For this reason, the present study examines a river affected by
municipal and industrial WWTP effluents of various sectors. The aim is
to obtain a fluorescence fingerprint for eachWWTP effluent based on the
PARAFAC components. These fluorescence fingerprints are also evalu-
ated across the sampling period to reveal seasonal or production-related
cycles. Moreover, the fingerprints are examined in terms of similarity
and grouped into clusters showing similar fluorescence properties,
enabling the identification of similarities and differences between the
fluorescence fingerprints of the various kinds of WWTP effluents.
Ideally, this could generalize the fluorescence fingerprints beyond the
scope of this study. Furthermore, the longitudinal evolution of the
fluorescence signal along the river and tracing of the fluorescence signal
of the WWTP effluents in the river by two complementary methods,
namely by PCA as a well-established statistical method and assessment
of flow-weighted fluorescence intensities as a novel approach in this
context, is shown. Consequently, the potential and limitations of fluo-
rescence fingerprints in establishing associations with the fluorescence
signal of the river after intermixing are discussed. This approach con-
stitutes an important step towards finding a tool for monitoring rivers
and their discharges, which recognizes anomalies early and provides
indications regarding potential pollution sources.

2. Materials and methods

2.1. Sampling sites

Between November 2020 and February 2022, monthly river water
samples (a total of 14 samples) were taken at an online monitoring
station at a lowland river with a catchment area of 1,009 km2 with
mixed land use. Approximately 3 % of the river’s total mean flow of 9.9
m3 s− 1 is contributed by the effluents of municipal and industrial
WWTPs. An online monitoring station is situated further downstream of
all known emitters. It serves, among others, the purpose of long-term
river monitoring of water quality parameters and supervision of
municipal and industrial WWTP emissions. All samples were taken
under dry weather except for the sample in December 2020.

Additionally, a total of 80 corresponding effluent samples were
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collected from a selection of six different WWTPs that contribute their
effluent into the river (the letters representing the WWTPs indicate their
location order along the river course from upstream to downstream): (1)
a municipal WWTP with a design capacity of 32,000 population
equivalents (PE) based on 120 g chemical oxygen demand per PE and
day (COD120) (WWTP B), (2) an industrial WWTP of a meat processing
mill with 25,900 PE (WWTP C), (3) an industrial WWTP of an electronics
manufacturer (printed circuit boards and substrates for semiconductors)
with chemical treatment exclusively for process water (WWTP E) and
(4–6) three industrial WWTPs of leather mills with 50,000 PE (WWTP
A), 232,000 PE (WWTP D), and 60,000 PE (WWTP F), respectively.
Table 1 gives an overview of the hydraulic flow and standard water
quality parameters of all WWTPs during the sampling period.

When selecting these WWTPs, the aim was to cover the diversity of
all discharging WWTPs as comprehensively as possible. The selected
municipal WWTP is the largest in the catchment and accounts for 30 %
of the water discharge from municipal WWTPs and 25 % from all
WWTPs. Due to the similarity of municipal wastewater, this plant is
considered representative of this input type. Altogether, the six selected
WWTPs account for 40 % of the overall water discharge from WWTP
effluents. Considering all industrial WWTPs, the fiveWWTPs included in
this study contribute 84 % of the industrial water discharge. All three
WWTPs for the leather industry in the catchment have been included in
the study. They contribute to about 73 % of the wastewater discharges
from industrial WWTPs and only about 13 % to the discharges from all
WWTPs. On the other hand, these three plants from the leather industry
dominate the organic inputs into the river. Nearly all industrial sectors
present at the river are represented in the emitter samples. Any missing
share consists of two additional WWTPs, a meat processing mill with a
lower design capacity than the one included, and a fruit processing mill,
which could not be incorporated into this study for logistic reasons. In
this respect, the selection is highly representative of the overall waste-
water loading of the considered river.

In order to analyze in detail each effluent’s effect on the river’s DOM
as a result of mixing, additional longitudinal sampling was conducted at
ten sampling points along the river on June 17, 2021. For this purpose, a
sample was taken before the first discharge at WWTP A and again after
each successive WWTP sampled. Proper distances were chosen to ensure
the complete intermixing of the effluents with the river water. The two
concluding sampling sites are the above-described online monitoring
station and a site located approximately 10.2 km downstream of the
monitoring station to investigate the further alteration of the DOM
without any additional influences. Fig. 1 provides a schematic map of
the study area, including the sampled WWTPs’ location and all sampling
points along the river.

2.2. Analytical methods

Standard water quality analysis of the samples comprised of total
organic carbon (TOC) (DIN EN 1484), dissolved organic carbon (DOC)
(DIN EN 1484), chemical oxygen demand (COD) (DIN 38409-43 and
DIN ISO 15705), ammonia nitrogen (NH4-N) (DIN EN ISO 11732), ni-
trate nitrogen (NO3-N) (DIN EN ISO 13395), total nitrogen (TN) (DIN EN
ISO 11905-1), and total phosphorus (TP) (DIN EN ISO 6878).

Samples were immediately filtered with a 0.45 μm membrane filter

and stored no longer than two days under cool (4 ◦C) and dark condi-
tions, following the recommended standard protocol established by Peer
et al. (2023). Prior to the spectroscopic measurement, samples were
allowed to warm up to room temperature (~ 20 ◦C). Additionally, river
water samples were four-fold diluted, samples of WWTPs B, C, and E
were five-fold diluted, and samples of WWTPs A, D, and F were 40-fold
diluted with Milli-Q in order to record excitation-emission matrices
(EEM) using a HORIBA Scientific Aqualog® spectrofluorometer equip-
ped with a Xenon lamp. The inner filter effect was reduced by choosing
each dilution so that a maximum absorbance of 1.5 was not exceeded.
The measurement procedure and correction steps followed precisely the
methods outlined in Peer et al. (2022) with an integration time of 2 s for
all samples and a final transformation of the resulting EEM into Raman
units [R.U.] (Lawaetz and Stedmon, 2009).

2.3. Methods for determining, clustering and tracing fluorescence
fingerprints

The statistical software R (R Core Team, 2021) was used throughout
all analyses. A Parallel Factor Analysis (PARAFAC) with non-negativity
constraints using the procedure outlined in the package staRdom (Pucher
et al., 2019) was applied in order to extract four to eight latent com-
ponents from the trilinear multi-way data structure of the 80 analyzed
EEMs of the emitters. For determining the practical significance and the
number of components, the explained variance, the residual sum of
squares, and the core consistency score (CORCONDIA) (Bro and Kiers,
2003) were calculated for the PARAFACmodels comprising four to eight
components. Validation of the final seven-component model via multi-
ple random initializations (Harshman and Lundy, 1994), split-half and
residual analysis (Murphy et al., 2013), as well as the transformation of
the resulting components to Raman Units (Pucher et al., 2019) repre-
senting the relative DOM concentration, was performed as described in
Peer et al. (2022). Additionally, the PARAFAC sample loadings for
samples not involved in model building for the emitter PARAFAC model
were calculated using the corresponding function from the staRdom
package (Pucher et al., 2019). More specifically, 21 river samples were
examined separately to evaluate the distribution of the emitter PAR-
AFAC components in the river water. Furthermore, the emitter PAR-
AFACmodel was applied to ten longitudinal river samples. In both cases,
a residual analysis was also performed to ensure no residual signal
remained undetected by the emitter PARAFAC model.

To determine a fingerprint of the emitter samples relative to each
other, the percent distribution of PARAFAC components relative to the
total DOM per sample (%C1-%C7), called the chemical composition
indices according to Yang et al. (2014, 2015), was calculated. Although
PARAFAC components are independent of each other by definition, the
percentage distribution generates a statistical dependency between
these indices as they sum to 100 % for each sample. Such a dependence
creates considerable limitations in the further analysis and interpreta-
tion of the results, which can be avoided by an additional dimension
reduction on the emitter samples via principal component analysis
(Pearson, 1901) (PCA) using the function prcomp from the stats package
(R Core Team, 2021). Prior to PCA, the indices were zero-centered and
scaled to unit variance to ensure that the analysis was not affected by
differences in the scale. The resulting set of principal components

Table 1
Mean of hydraulic flow and standard water quality parameters on sampling days for eachWWTP. Values in parentheses, when present, indicate the standard deviation.
The letters representing the WWTPs are given according to the location from upstream to downstream.

WWTP Sector Q [m3 d− 1] TOC [mg L− 1] DOC [mg L− 1] COD [mg L− 1] NH4-N [mg L− 1] NO3-N [mg L− 1] TN [mg L− 1] TP [mg L− 1]

A Leather 1,278 (139) 48.5 (13.4) 40 (12.7) 117 (40.9) 1.1 (1.6) 25.6 (15.9) 39.4 (15.5) 0.4 (0.1)
B Municipal 6,879 (1,861) 6.75 (1) 5.26 (0.8) 17.8 (6.8) < 0.1 6.2 (3.7) 7.8 (4.4) 0.4 (0.1)
C Meat 398 (10.7) 8.84 (2.6) 5.76 (1.7) 20.7 (6.2) 3.8 (9.9) 4.6 (2.8) 10.8 (10.6) 0.2 (0.1)
D Leather 998 (476) 23.9 (10.7) 22 (10.6) 67 (33.2) < 0.1 52.6 (32) 52.1 (36) < 0.2
E Electronics 162 (18.1) 32.4 (5.8) 31 (6) 57.7 (14.5) 0.2 (0.2) 0.1 (0.1) 1.6 (0.4) 0.3 (0.2)
F Leather 1,268 (144) 47.6 (6.3) 43.3 (5.3) 137 (14.8) 0.2 (0.1) 53.8 (15.1) 54.1 (18.8) 0.7 (0.6)
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explains the most significant amount of variance in the chemical
composition indices. Beyond that, the principal components of the river
samples were projected onto the two-dimensional space created via PCA
to see how these river samples fit into the clusters obtained based on the
emitter samples. This projection allows to assess the resemblance of the
river and emitter samples, reveals similarities in the individual PAR-
AFAC components, and provides potential associations between the
fluorescence fingerprints of the emitters and the river.

Calculations of substance flows/loads from substance concentration
and hydraulic flow expressed as mass per time are the basis of any mass
balance calculations in water resource systems research to identify im-
pacts from diffuse or point emissions on receiving water bodies. The
Water Framework Directive (2000/60/EC) of the European Commission
(EC) suggests a tiered approach for relating mass balance calculations to
river pollution (EC, 2012). Fluorescence intensity does not directly
represent concentrations but correlates with DOM concentrations rep-
resented by PARAFAC components. In order to combine fluorescent
techniques with requirements from water quality management, the
riverine approach (tier two) is innovatively utilized, and the concept of
“flow-weighted fluorescence intensity” for quantitatively tracing fluo-
rescence fingerprints of emitters in rivers is implemented. To calculate
the flow-weighted fluorescence intensity, the intensities of the PAR-
AFAC components C1 to C7 (R.U.) of each emitter are multiplied by the
specific hydraulic flow of the sampling day (m3 d− 1). Consequently, the
sum of all emitters is divided by the river flow of the corresponding day
at the online monitoring station, leading to a theoretical fluorescence
intensity that can be addressed to emitters if persistent behavior of
fluorescent DOM is assumed. For each PARAFAC component, the
calculated instream intensity stemming from emitters is compared to the
corresponding monitored fluorescence intensities in the river at the
online monitoring station, indicating to which extent the fluorescence
intensity of a component can be explained by emitters and which share
is not explained and may be attributed to diffuse inputs according to the
riverine approach (tier two) (EC, 2012).

3. Results and discussion

3.1. PARAFAC components to define fluorescence fingerprints of the
WWTP effluents

As a first visualization, the fluorescence signals of the six WWTP
samples are presented through an exemplary contour plot for each
selected sample in Fig. 2, representing the typical fluorescence signal at
dry weather conditions. The contour plots map all combinations of the
recorded excitation and emission wavelengths in a grid structure on the
X- and Y-axes. The color scale of the plot indicates the fluorescence in-
tensity in Raman Units (R.U.), with darker shades indicating higher
intensities.

WWTP B has a typical fluorescence signal for a municipal WWTP
with two characteristic peaks, the first one at an excitation of about 300
nm and an emission of about 341 nm and the second one at an excitation
of about 225 nm and an emission of about 346 nm (Baker, 2001). While
the signal of industrial WWTP C (meat processing) appears very similar,
both peaks are located at a slightly higher emission wavelength of about
406 nm. These peaks also occur in WWTP B but are only minor peaks
with a notably lower intensity. WWTP E (electronics manufacturer) re-
veals the lowest signal of all the WWTPs analyzed, with the main peak at
an excitation of about 228 nm and an emission of about 305 nm.
Generally, WWTPs A, D, and F (industrial WWTPs of leather mills) show
significantly higher fluorescence signals than the WWTPs mentioned
earlier. While the shape of the fluorescence signal is roughly the same as
that of industrial WWTP E, the primary peak of WWTPs A, D, and F is
found at a higher emission wavelength of approximately 346 nm.

Relevant indicators were compared across models with four to eight
components to determine the number of components in the final PAR-
AFAC model (Table 2). As the explained variance is very high for all
models considered, this indicates a good fit of the models to the samples.
The residual sum of squares reveals a substantial decline once seven
components are included, followed by a more moderate decline when
further components are added. The CORCONDIA scores are generally
very low, especially for the models with six or more components.
However, this is to be expected for models with more than five com-
ponents, as this metric tends to prevent over-fitting (Murphy et al.,

Fig. 1. Map of the study area, including the location of the WWTPs and sampling points along the river.
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2013). In addition to the statistical indicators, assessing the practical
significance of the components is essential. For capturing low levels of
fluorophores, which can be decisive for the fingerprint, emphasis is
given to the residual analysis. Visual evaluation of the residual plots of
all models showed that, finally, the model with seven components could
ensure that no residual signal remained undetected. Accordingly, even
though the CORCONDIA score is suboptimal, a PARAFAC model with a
larger number of components is favored for the research question pre-
sented here, as they are superior in interpretability.

The final model of the PARAFAC analysis of all 80 WWTP effluent
samples yielded a seven-component model that discriminates different
DOM sources. All samples had a leverage below 0.25. A split-half anal-
ysis confirmed the validity and stability of the established model (Fig. S1
in the Supplementary material). The contour plots in Fig. 3 show the
position of each PARAFAC component, while Table 3 gives their exact
primary peak location and description.

Though only a few studies address the fluorescence fingerprint of
industrial WWTP effluent, at least some similarities between the pre-
sented WWTP effluent model and peaks identified by earlier studies,
which also analyzed slaughterhouse WWTP effluents, could be found. A
PARAFAC model, for instance, found humic-like (secondary peak of C2/

C3) and protein-like fluorescence (secondary peak of C1) as primary
DOM sources (Matos et al., 2022). In contrast, peak picking revealed a
tyrosine-like peak in this case (Rodríguez-Vidal et al., 2020).

Due to the WWTP effluents’ very different fluorescence signals and
intensity, it is necessary to establish a comparable fingerprint to
discriminate these effluents. A validated method is the chemical
composition index, where each PARAFAC component is expressed as a
fraction of the total DOM per sample (%C1-%C7) (Yang et al., 2014,
2015). For each WWTP, this is illustrated in Fig. 4.

When comparing the time-resolved measurements, it is immediately
apparent that WWTPs D and F are closely similar in chemical compo-
sition throughout the entire monitoring period. Only between November
2021 and January 2022 does the fraction of PARAFAC component C4
decrease in WWTP D while the fraction of PARAFAC component C7
increases slightly. The resemblance is no surprise, as both treat waste-
water from leather mills. While WWTP effluents within the same in-
dustrial sector tend to be similar, they can exhibit some degree of
variation (Yang et al., 2015). This applies explicitly to WWTP A, which
shows the highest variance of the WWTPs treating leather mill waste-
water across the annual cycle. Between PARAFAC components C4 and
C7, there is an interaction in WWTP A, meaning that their fraction al-
ways increases or decreases simultaneously. On the other hand, C5
contributes significantly to the fingerprint of WWTP A only in the winter
of 2021/22. Especially towards the end of the monitoring period, the
fluorescence fingerprints of WWTPs A, D, and F converge further.

Moreover, some similarities are also found between WWTPs B and C,
as these two contain considerably higher fractions of the PARAFAC
components C2, C3, and C6 than the other WWTPs. That said, the
fraction of components C1 and C7 is higher in WWTP B than inWWTP C,
while the opposite is true for C2. Combined, the tryptophan-like and
humic-like peaks of these two WWTPs maintain an equal ratio, which is

Fig. 2. Exemplary contour plots of the sampled effluents of the six sampled WWTPs emitting into the monitored river. The color scale indicates the fluorescence
intensity [R.U.].

Table 2
Explained variance, residual sum of squares, and CORCONDIA scores for PAR-
AFAC models with four to eight components (No.).

No. Explained variance [%] Residual sum of squares CORCONDIA [%]

4 96.9 371,244.0 28.3
5 98.0 336,613.7 13.7
6 98.5 328,005.2 0.6
7 98.9 115,135.8 0.4
8 99.1 78,050.9 1.0
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particularly expected for municipal WWTPs (Baker, 2001). When
directly compared, WWTP E has several unique characteristics. Most
evident is the high proportion of PARAFAC component C7. Nevertheless,
there are also outliers in this respect, such as in April 2021, where C7 is
almost entirely absent, and C1 dominates the fingerprint. In November
and December 2021, a slight shift in the fingerprint of WWTP E
occurred, resulting in the fractions of all components being more uni-
formly distributed.

3.2. Fluorescence fingerprints to discriminate WWTP effluents

In order to provide statistical evidence for the fingerprints obtained
in the previous section, the PARAFAC components were analyzed in
greater detail by PCA. As a result, PARAFAC components that comprise
the specific fingerprint of each WWTP effluent were identified, and
WWTPs with similar fingerprints could be clustered. Both are achieved
via a biplot displaying the principal component scores of each sample in

a two-dimensional space (Fig. 5). The distance between the samples on
the biplot indicates the degree of similarity or dissimilarity between
them, resulting in clusters. In addition, the influence of the respective
PARAFAC components on the two principal components can be inferred
from the vectors displayed. As such, PARAFAC components exhibiting
the strongest influence in the direction of the respective cluster result in
the distinctive fluorescence fingerprint of the WWTPs associated with
this cluster.

The fingerprint of WWTPs A, D, and F (leather mills) is mostly
determined by PARAFAC components C1 and C4. PARAFAC compo-
nents C2, C3, and C6 depict the unique characteristics of the municipal
WWTP B and WWTP C (meat processing mill). These two facilities have
a similar fluorescence signal and are thus difficult to distinguish by this
method. As a result, they form a common cluster. PARAFAC component
C5 is only of minor importance in the fingerprint of WWTP E (electronics
manufacturer) and WWTPs A, D, and F (leather mills). Despite its minor
significance, it clearly distinguishes these two clusters from municipal
WWTP B and WWTP C (meat processing). In general, it is quite difficult
to establish a fingerprint that discriminates reliably between effluents
from municipal wastewater and the food industry as they tend to share
tryptophan protein-like peaks (Rodríguez-Vidal et al., 2020). For WWTP
E (electronics manufacturer), PARAFAC component C7 determines the
fingerprint. Despite its low fluorescence intensity, C7 uniquely differ-
entiates WWTP E from the remaining WWTPs, even if this component
shows a fairly large variance in principal component two (PC2).
Production-related cycles could explain the variance within the cluster,
as has also been observed for WWTPs of metal plating plants, for
example (Shen et al., 2021).

As demonstrated, the proposed approach proved highly suitable for
characterizing fluorescent fingerprints for municipal and industrial
WWTP effluents. Even a limited number of 14 samples or less per WWTP

Fig. 3. Contour plots of the seven PARAFAC components C1 to C7 normalized to the maximum fluorescence intensity of each component.

Table 3
Overview of PARAFAC components found in the samples of the WWTP effluents.
Peak labels and descriptions according to Coble (2007) and Bridgeman et al.
(2011).

Component λex/λem [nm] Peak Description

C1 225/341 T2 Protein-like (tryptophan)
C2 222/410 A Humic-like (fulvic)
C3 243/461 A Humic-like (fulvic)
C4 228/305 B2 Protein-like (tyrosine)
C5 222/405 A Humic-like (fulvic)
C6 225/346 T2 Protein-like (tryptophan)
C7 225/296 B2 Protein-like (tyrosine)
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can capture variations within industrial sectors and production-related
cycles. The standard fluorescent fingerprint might be feasible with an
even smaller number of samples, as long as the analyzed sources differ
considerably in their DOM composition.

3.3. Identification of WWTP fluorescence fingerprints in river water by
PCA

Beyond the mere fingerprint of the WWTP effluents, comparing it to
the fluorescence signal of the river at the online monitoring station, i.e.,
downstream of all characterized emitters and after sufficient intermix-
ing, seems particularly interesting in this aspect. Therefore, the PCA
scores of the river at the monitoring station at low flow were projected
into the biplot in Fig. 5. Flow rates on the respective sampling days
ranged from 2 m3 s− 1 to 10 m3 s− 1. It is evident that PARAFAC com-
ponents C1 and C4 dominate the fluorescence signal at low flow. As
these constitute the fluorescent fingerprints of WWTPs A, D, and F
(leather mills), their effluents determine the fluorescence signal of the
river at low flow, as expected from their exceptionally high fluorescence
intensity and still relevant hydraulic flow. Overall, the fluorescence
signal of the river exhibits a much larger variance since it is also influ-
enced by additional factors such as other point and diffuse emissions.
With increasing flow, the fluorescence signal of the river becomes less
dominated by the PARAFAC components C1 and C4 due to higher
dilution of effluents from WWTPs A, D, and F. Instead, it shifts towards
the fingerprint of the municipal WWTP B and WWTP C (meat process-
ing) cluster, which C2, C3, and C6 characterize. Such an observation

may be attributed to diffuse emissions at higher flow rates because their
fluorescence signal resembles municipal WWTP effluents more than the
very specific signal of the other industrial WWTPs’ effluents (Rodríguez-
Vidal et al., 2020). Moreover, this can be explained by the hydraulic
flushing of sewage from the sewer network, which does not affect in-
dustrial WWTPs.

The additional projection of the PCA scores of four high flow events
into the biplot in Fig. 5 illustrates this effect vividly. An extensive
description of these high flow events, including flow patterns and
standard water quality parameters like DOC, Cl− , PO4-P, NH4-N, and
TSS concentrations, can be found in Peer et al. (2022). Event G exhibits
with 4.7 m3 s− 1 to 18.5 m3 s− 1 the lowest flow rate of the events
considered here, such that the fingerprint is characterized by the PAR-
AFAC components C1 and C4 assigned to WWTPs A, D, and F (leather
mills). On the contrary, the signal of event C, the event with the highest
flow (annual flood with 21.8 m3 s− 1 to 92.1 m3 s− 1), is very similar to
WWTP C (meat processing). Event B, ranging from 5.7 m3 s− 1 to 32.6 m3

s− 1, also belongs to this cluster, though it is slightly more similar to
municipal WWTP B. However, a strict separation is barely possible due
to the overlap. Event E has a flow rate that ranges from 6 m3 s− 1 to 19.6
m3 s− 1 and is particularly noteworthy. Most samples of this event match
the fingerprints of municipal WWTP B and WWTP C (meat processing).
Though the amount of this component generally varies, there is one
sample with a higher signal in PARAFAC component C7. In the context
of a high flow event, this is rather unusual. Nevertheless, considering
that this sample marks the end of the event, it is clear by comparing it
with the fluorescence signal of the river at low flow that this chemical

Fig. 4. Fluorescence fingerprint of the sampled WWTP effluents represented as the fraction of the extracted PARAFAC components.
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composition may still be expected at 6 m3 s− 1.
Precisely, PARAFAC component C7 defines the unique fingerprint of

WWTP E, which would, therefore, seem particularly suitable for asso-
ciating it with the fluorescence signal of the river. However, identifi-
cation is very limited due to its very low fluorescence intensity (max. 5
R.U.), for one, because the fluorescence intensity of the river itself is
already much higher (about 50 R.U.), and second, because the fluores-
cence signal of WWTP E is marginal compared to the WWTP effluents

with a much higher intensity (up to 2000 R.U.). More specifically, the
low DOM concentration is diluted and masked during intermixing. An
association with the fluorescence signal of the river might be established
with a significantly higher DOM concentration at C7 or a less complex
constellation.

Fig. 5. Biplot of principal component 1 (PC1) versus principal component 2 (PC2) from the PCA of the PARAFAC components C1 to C7 of the PARAFAC model based
on the WWTP effluent samples. Additionally, the corresponding PCA scores of PARAFAC components extracted from the river samples at low flow conditions and four
high flow events were projected into the biplot.

Fig. 6. Fraction of the extracted PARAFAC components (C1-C7) of the river samples at the monitoring station, i.e., after intermixing all point emissions. Black dots
indicate the hydraulic flow (Q).
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3.4. Fluorescence fingerprints in and along the river

As indicated in the previous section, the fluorescence signal in the
river depends on the hydraulic flow. To illustrate, Fig. 6 provides the
chemical composition index of the river at the monitoring station, i.e.,
after thorough intermixing of all point emissions, for the respective days
in the sampling period.

Apparently, the fluorescence signal seen during the high flow event
in December 2020 mirrors the fingerprint of municipal WWTP B in
Fig. 4, specifically to the fraction of PARAFAC components C2, C3, and
C6. These components correspond precisely to the fingerprint of the
cluster to which WWTP B is assigned and which overlaps with the signal
of diffuse emissions. Given a flow rate of more than 50 m3 s− 1, the
combined sewer overflow might even have been triggered, explaining
the close similarity to the chemical composition of municipal WWTP
effluent. In the case of low to medium flow (approximately 2 m3 s− 1 to
10 m3 s− 1), the chemical composition is relatively stable and does not
reveal any significant seasonal patterns.

Most importantly, it was found that the fingerprint of the river
matched the fingerprint of diffuse emissions only at high flow. Conse-
quently, as already established by Baker (2001), the additional indus-
trial emissions certainly contribute to the fluorescence fingerprint of the
river and, therefore, explain the deviations from the fingerprint of un-
affected rivers. A longitudinal sampling campaign in dry weather was
conducted to verify this by taking one sample upstream of the first
WWTP and after each subsequent WWTP downstream. As a result, the
gradual evolution of the river’s characteristic fingerprint could be traced
in detail (Fig. S2 in the Supplementary material).

The unaffected river sample reveals a well-balanced fluorescence
fingerprint, with no single PARAFAC component predominating and a
very low fluorescence intensity overall. As early as after the first WWTP,
the intensity of the PARAFAC components changed significantly
compared to the unaffected river upstream (Baker, 2001). Especially,
the intensity of components C1 and C7 rises and prevails distinctly,
whereby the expectation that the ratio of tryptophan-like and humic-like
components are roughly equal after initiation of a point emission is
contradicted (Baker, 2001). Yet not surprisingly, as this is common for
municipal WWTPs, WWTP A treats industrial wastewater of a leather
mill. While the fluorescence intensity of C1 remains roughly the same
farther downstream, the intensity of C7 decreases again after WWTP B.
At the same time, the intensity of component C4 also increases, ensuring

the overall fraction of tyrosine-like DOM remains unchanged. As earlier
studies suggested, the fraction of humic-like fluorescence increases
along the river until it exceeds that of protein-like fluorescence (Wang
et al., 2019). The fluorescence fingerprint of the river established at this
point is retained up to the last sampling site despite dilution (Baker,
2001). It only shows slight fluctuations in the overall intensity, mainly
caused by varying intensities in component C1. Based on the qualitative
and quantitative properties of the upstream fluorescence signal, there
might be a lack of further changes upon the emission of WWTP effluent.
For instance, no differences in the fluorescence fingerprint of the
receiving river’s upstream and downstream samples were detected for
treated slaughterhouse wastewater due to their resemblance to diffuse
emissions (Matos et al., 2022). If the two most downstream sampling
sites, between which no impact by WWTP effluents takes place, are
compared, the high stability of the fluorescent DOM is demonstrated as
signals stay highly stable for most of the components (except C1). Slight
decreases might be attributed to dilution by diffuse inputs of water.

3.5. Flow-weighted fluorescence intensity

Fig. 7 shows the median fraction over the sampling campaign of
flow-weighted fluorescence intensity per WWTP as a share of the river’s
measured fluorescence intensity. Error bars indicate the minimum and
maximum fraction per PARAFAC component based on specific days.

The highest contribution is found for WWTP A, especially for C4 and
C7, where it provides more than half of the flow-weighted fluorescence
intensity from emitters. However, the contribution for C1 and C5 is also
noteworthy in this context. Concerning the components C1, C4, C5, and
C6, the contribution of WWTPs D and F is also substantial compared to
other emitters. Quite the opposite applies toWWTP B, which contributes
to components C2, C3, and, to a lesser extent, C7. The share of WWTP C
and E is minimal and, therefore, neglectable for the interpretation.
Considering the clusters of fluorescence fingerprints as established
earlier, it becomes clear thatWWTPs A, D, and F (leather mills) cover the
most considerable fraction across most components. These components
may involve chemical compounds from leather production, which
degrade rather slowly.

Solely for components C2 and C3, municipal WWTP B covers a
comparably high percentage of flow-weighted fluorescence intensity
from emitters. These observations correspond closely to the character-
istic components of the fluorescence fingerprints determined earlier. It

Fig. 7. Fraction of flow-weighted fluorescence intensity (median) per WWTP compared to the fluorescence intensity of the river. Error bars indicate the minimum
and maximum fraction per PARAFAC component and sampling day. Maxima above 1.1 are truncated.
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consists of C1, C4, and partly C5 for the WWTPs of leather mills. For
these components, fluorescence intensity from leather mills exceeds, on
average, a share of 50 % in the flow-weighted fluorescence intensity in
the river. The median fraction for C4 is already 1.1, the maximum for C1
is 1.4, and the maximum for C5 is 1.7, showing limitations as, on several
occasions, not all of the flow-weighted fluorescence intensity of the
emitters is reflected in the river samples. C2, C3, and, to some extent, C6
and C7 characterize municipal WWTP B. Its impact on the river could
have become more visible if the contribution of all municipal WWTPs
had been taken into account. Nevertheless, the contribution of munic-
ipal WWTP B and WWTP C (meat processing) on average exceeds for
none of the PARAFAC components a share of 10 % of the fluorescence in
the river, as their fluorescence fingerprint closely matches those of
diffuse emissions. Consequently, their contributions cannot be reliably
distinguished from the diffuse fluorescent signal of the river, and fin-
gerprints of such WWTPs seem hard to trace in rivers. The missing
fraction of the 100 % suggests the presumed effect of the not sampled
emitters and the diffuse emissions. Indeed, for components C1, C5, and
C7, the monitored WWTPs comprise about half the total amount in the
fluorescence signal of the river. Beyond this, the maximum fraction for
C7 is undefined, as for several sampling days, this component existed in
the WWTP effluents but not in the fluorescence signal of the river.
Particularly in this context, the river bed effect must also be taken into
account. It states that organic matter is enriched in the sediment so that,
for example, a component introduced by an emitter accumulates in the
river bed, and only a significantly reduced fraction can be found at the
downstream monitoring station. Degradation processes caused by mi-
croorganisms in the river may have a similar effect. Part of the fraction
not attributable to the emitters might also be explainable by the river
bed effect since, depending on the environmental conditions, the pre-
viously bound organic matter could also be rereleased into the river
water.

These findings indicate that flow-weighted fluorescence intensities
have some limitations. Mixture experiments performed with as few as
two source waters demonstrated how differences in chemical potential
and pH result in non-additivity of the fluorescence signals of the mixture
and hence invalidate any simple linear model between fluorescence
intensity and concentration (Yan et al., 2000). So far, no generally
accepted simple linear model has been established, and given the
numerous approaches for establishing source-specific models, it is
reasonable to assume that this relationship is considerably more com-
plex (Yan et al., 2000). Without this being fully understood, it is not
possible to assess whether the use of flow-weighted fluorescence in-
tensity provides a conclusive interpretation.

4. Conclusions and limitations

This study demonstrates the efficacy of fluorescence fingerprinting
based on PARAFAC and PCA in characterizing and source-tracingWWTP
effluents in the receiving river. By identifying seven distinct PARAFAC
components, we have successfully defined distinct fluorescence finger-
prints for several industrial sectors, including the leather industry, meat
processing, electronics industry, and municipal wastewater treatment.
This differentiation is crucial for understanding each sector’s unique
contributions to the river’s overall DOM composition. Further results
highlight the significant influence of WWTP effluents on the river’s
fluorescence signal, particularly during low flow conditions where these
emissions dominate. Conversely, during high flow events, the impact of
WWTP emissions is masked by diffuse sources.

Limitations regarding this study include contamination of samples or
limited comparability of daily composite samples (WWTPs) and grab
samples (river). Hence, more validity is given to average results as
sudden irregularities have less impact on them. As applying the PAR-
AFAC model for WWTP effluents out-of-sample, i.e., to river water
samples, is still experimental (Pucher et al., 2019), it cannot be guar-
anteed that the PARAFAC components derived from the WWTP model

precisely match the components of a separate model for river samples.
Conversely, combining the effluent and river samples would not be
appropriate since this yields mixed PARAFAC components, and no
specific fluorescence fingerprint for the WWTP effluents could be
defined.

Therefore, the techniques presented offer a robust approach to
developing generalizable fluorescence fingerprints. The ability to
source-trace these fingerprints in the receiving river provides a powerful
environmental monitoring and management tool. By advancing the
application towards complex fluorescence monitoring, this research
contributes to a more precise and effective tracking of municipal and
industrial WWTP effluents in riverine systems. In conclusion, this en-
hances our understanding of the chemical composition of water systems
and offers practical solutions for environmental monitoring. Overall,
these findings mark an ambitious step towards the source-tracing of
fluorescent fingerprints, contributing to the sustainable management of
water resources and the protection of aquatic ecosystems.
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