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Abstract

This thesis provides an in-depth discussion of improving the widely used work-stealing algo-
rithm in situations where not all cores can be utilized. In the standard work-stealing algorithm,
the number of active workers is kept fixed during the execution of the tasks. However, the paral-
lelism of an application is seldom stable but often changes over the application’s lifetime. This
may decrease performance or waste resources, especially when multiple applications are run-
ning in parallel. When there are not enough tasks available to utilize all available processors, the
unneeded workers waste processor resources and could slow down the whole application.

An approach to solve this problem is adaptive work-stealing. Adaptive work-stealing sched-
ulers dynamically adjust the number of threads that are used to execute the tasks of an appli-
cation. Such schedulers try to estimate the number of workers that can be utilized. Most of
these schedulers split the execution of the application in so called quanta. Between two quanta
it is checked how much time the workers spent stealing and how much time was spent working.
Based on this classification workers are added or removed to process tasks in the next quantum.

A simple possibility to block workers that are currently under-utilized is the usage of a
backoff. Backoffs are often used in computer networks to throttle senders when there exists a
collision, because two or more computers try to send data at the same time. This work analyzes
the usage of backoffs in work-stealing schedulers. We implemented and tested several different
types of backoffs in the context of this work. We found out that it is crucial to select good param-
eter values for the backoffs, since some of them significantly influence the overall performance.
The results are quite promising and our optimized backoffs improved the performance in our
benchmarks notably. It was also interesting to see that in the end all different types of backoffs
provide similar performance.

As a second main part, a new adaptive work-stealing algorithm is designed and implemented.
It also uses the concept of quanta, but does not interrupt workers as long as they do not need to
steal tasks. Therefore the approach has only a small overhead as long as there is enough work to
process. We named our algorithm ”dynamic quanta algorithm” and tested the performance of the
adaptive scheduler. Our algorithm performed better than the existing work-stealing scheduler,
we compared our algorithms with. However, one surprising result is that in our benchmarks
using an optimized backoff is at least as good.
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Kurzfassung

Diese Arbeit beschäftigt sich mit Verbesserungen der oft genutzten Work-Stealing Technik in Si-
tuationen, wo nicht alle zur Verfügung stehenden Prozessorkerne ausgenutzt werden können. Im
klassischen Work-Stealing Algorithmus ist die Anzahl der Worker-Threads während der Aus-
führung der Tasks fixiert. Jedoch ist der Grad der Parallelität einer Anwendung selten während
der gesamten Laufzeit stabil, sondern ändert sich meist während der Lebenszeit der Anwen-
dung. Diese Tatsache kann die Ausführungsgeschwindigkeit verringern oder Systemressourcen
verschwenden, insbesondere wenn mehrere Anwendungen gleichzeitig auf einem System lau-
fen. In Situationen, wo nicht genug Tasks vorhanden sind um alle verfügbaren Prozessoren aus-
zunutzen, verschwenden nicht genutzte Worker-Threads Prozessorressourcen und können die
Ausführungszeit der ganzen Anwendung vergrößern.

Ein Ansatz dieses Problem zu lösen ist adaptives Work-Stealing. Scheduler, die adaptives
Work-Stealing nutzen, passen die Anzahl der Worker-Threads, die für die Ausführung der Tasks
genutzt werden, zur Laufzeit dynamisch an. Solche Scheduler versuchen die Anzahl der Worker-
Threads, die genutzt werden können, abzuschätzen. Die meisten dieser Scheduler teilen die Aus-
führung der Anwendung in so genannte Quanten auf. Zwischen zwei Quanten wird überprüft
wieviel Zeit die Worker-Threads für das Stehlen von Tasks verwendet haben und wieviel für die
tatsächliche Ausführung von Tasks. Anhand dieser Klassifikation werden Worker-Threads zur
Anwendung hinzugefügt oder entfernt.

Eine einfache Technik, um Worker-Threads, die gerade nicht genutzt werden, zu pausieren,
ist der Einsatz von sogenannten Backoffs. Häufig werden Backoffs im Netzwerkbereich ver-
wendet: Wenn zwei Computer in einem Netzwerk gleichzeitig Daten versenden wollen, kann es
zu einer Kollision der Daten kommen. In solchen Fällen werden oft Backoffs genutzt, um die
Senderate der beteiligten Sendestationen zu verlangsamen. In dieser Arbeit wird untersucht, in-
wiefern sich dieses Konzept auch auf Work-Stealing Scheduler übertragen lässt. Im Rahmen der
Arbeit wurden mehrere unterschiedliche Typen von Backoffs implementiert und getestet. Dabei
hat sich herausgestellt, dass es sehr wichtig ist sorgfältige ausgewählte Werte für die Konfigu-
ration der Backoffs zu verwenden. Die Testergebnisse unserer Backoffs sind vielversprechend:
Durch die neuen Backoffs wurde die Leistung des bestehenden Schedulers in den durchgeführ-
ten Benchmarks bedeutend erhöht. Ein weiteres interessantes Ergebnis ist, dass alle getesteten
Typen von Backoffs in etwa die gleiche Leistung liefern.

Im zweiten Hauptteil dieser Arbeit wird ein neuer adaptiver Work-Stealing Algorithmus ent-
wickelt. Dieser Algorithmus verwendet ebenso das Konzept der Quanten, unterbricht Worker-
Threads aber niemals, wenn sie selbst noch genug Tasks zum Ausführen haben. Deshalb ver-
ursacht dieser Ansatz nur einen sehr kleinen Mehraufwand, solange genug Arbeit vorhanden
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ist. Im Kontext der Diplomarbeit wurde auch die Performance des neuen ”Dynamic Quanta
Algorithm” mittels Benchmarks getestet. Unser Algorithmus verbessert die Leistung des beste-
henden Schedulers, mit welchem wir unsere neuen Ansätze verglichen haben. Dabei haben wir
ein weiteres interessantes Ergebnis unserer Arbeit festgestellt: In unseren Benchmarks ist die
Verwendung eines optimierten Backoffs mindestens genauso gut wie der adaptive Algorithmus.
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CHAPTER 1
Introduction

Instead of significantly increasing the clock speed and instruction throughput of a single proces-
sor, processor vendors had been investing in multicore architectures for some years. This means
that single-threaded applications hardly benefit from new processor generations [36].

Therefore programmers need to increase the concurrency level of an application in order to
improve the performance. A widely used model is dividing the work into small tasks that can be
executed concurrently. This model is also called task-based (parallel) programming model [33].
To efficiently process fine-grained tasks, a common practice is to start multiple worker threads
that execute these tasks. The distribution of the tasks between workers is not trivial, often a
work-stealing approach is used for this problem [12].

1.1 Motivation

Work-stealing is a decentralized scheduling mechanism that is used in many frameworks for
(task-based) parallel programming. Among this frameworks are the widely used Intel Threading
Building Blocks (TBB) [26] and Cilk [22]. In the original work-stealing algorithm, the number
of active workers is fixed during the execution of the tasks [8]. However, the parallelism of an
application is seldom stable but often changes over the application’s lifetime. This may decrease
performance or waste resources, especially when multiple applications are running in parallel.

In the last few years the idea of adaptive work-stealing has been presented by several au-
thors [4, 15, 16, 19, 39]. In this thesis we use the term adaptive to describe schedulers that
dynamically adjust the number of threads that are used to execute the tasks of an application. It
is possible to use adaptive algorithms on many kind of different schedulers, but the focus of this
thesis are adaptive work-stealing schedulers.

So far, the work in this area has been mainly focused on theoretical aspects of adaptive
scheduling and we are not aware of any publicly available adaptive work-stealing scheduler.
Additionally, we think in the area of adaptive work-stealing there is still enough room for new
promising approaches that were not analyzed before.
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In this work we analyze work-stealing schedulers with respect to properties that are relevant
for adaptive work-stealing. One focus of the work is the usage of backoffs in work-stealing
schedulers. Backoffs are a well-known technique that are often used in networks to reduce
collisions on a shared media [1]. However, there hardly exists any work that analyzes the usage
of backoffs in schedulers. Therefore we introduce and implement the most prominent backoff
variants that are used in the area of networking [5, 10, 27] and analyze them in the context of
work-stealing schedulers. Such backoffs can be configured with various parameters. We try to
determine reasonable parameter ranges in the context of work-staling schedulers and optimize
the parameters to get the best performance.

As a second main part, a new adaptive work-stealing algorithm is designed and implemented.
Contrary to existing work, this algorithm can be used today by interested programmers without
any modifications. As opposed to most approaches for adaptive work-stealing so far [4, 15, 39],
we try to design a completely decentralized algorithm. We think this is a more general usable
approach, since algorithms with a central entity likely have scalability problems on systems with
a large number of available processing cores. The algorithms are implemented and integrated
into the Pheet framework [40]. This allows us to evaluate performance and behavior of the
adaptive algorithms with existing non-adaptive ones. For this evaluations micro benchmarks
that are integrated in the Pheet framework are used.

1.2 Introduction of the Pheet Framework

We implement our algorithms in the Pheet Framework [40]. Pheet can be used like Intel Thread-
ing Building Blocks [26] or Microsoft’s Parallel Patterns Library for implementing task parallel
applications. However, due to its initial purpose as a library for research and teaching, it is highly
customizable and extensible. Pheet is a C++ template library that makes use of many modern
C++ design principles [6]. It comprises different centralized and decentralized schedulers, in-
cluding a work-stealing scheduler which will be the foundation of our adaptive work-stealing
scheduler. Nearly every component of the library can be exchanged or configured by the pro-
grammer using templates.

Additionally Pheet contains several micro benchmarks, which can be used to evaluate the
performance of different schedulers or parameters of schedulers. For our needs the benchmark
system is extended to be able to measure performance when more than one instance of the
benchmark is run in parallel.

A more detailed description of Pheet is given in Section 2.2.

1.3 Structure of the Thesis

This work is structured as follows: In Chapter 2 we present existing work in the field of adap-
tive work-stealing. Beforehand we give an overview of work-stealing in general, and the Pheet
framework in particular. Afterwards we focus on work about adaptive work-stealing. We ana-
lyze and compare the different approaches and determine which aspects we want to use in our
own implementations and what properties we want to avoid.
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Throughout the work we want to show the influence of our changes, improvements and new
algorithms on the performance. For this purpose a set of micro benchmarks is executed on
different machines. The benchmarks and systems used to test the performance are introduced
in Chapter 3. The presented benchmarks are all part of the Pheet framework. We only had to
implement a few extensions to the benchmark system to be able to benchmarks applications that
are running concurrently at the same machine.

In the main part of our work we try to optimize the work-stealing scheduler of Pheet using
adaptive techniques and we show novel algorithms for adaptive work-stealing. For each algo-
rithm and optimization of the scheduler we present a chosen few benchmark results which we
use to analyze the algorithm and for presentation of the pros and cons of the algorithms. This
main part is split into two chapters.

Chapter 4 discusses the usage of backoffs in work-stealing schedulers. A backoff is a simple
technique that can be used to put threads to sleep when there is not enough work available. So
far backoffs are most often used in the area of networking and a lot of work exists that analyzes
their usage in this area. We think that backoffs could also help to improve the performance of
work-stealing schedulers. Therefore we implemented various different backoffs and show how
they can be used and optimized for work-stealing. One surprising result of this work is that all
types of different backoffs provide more or less the same performance improvements for work-
stealing schedulers. However, it is important to choose reasonable values for the parameters that
are used to control the behavior of the backoffs.

Chapter 5 presents our approach to adaptive work-stealing. We describe the algorithm and its
important properties and show a couple of optimizations and extensions to the basic algorithm.
Our algorithm does not use any centralized data structure, so it can scale also on machines with
a lot of cores. Additionally it is designed in a way that the performance of applications that can
utilize all available processor cores is not degraded.

Subsequently in Chapter 6 we give a comparison of the best or most interesting schedulers
using the introduced micro benchmarks. The benchmarks show that both our backoffs and the
adaptive algorithms can improve the performance of the original Pheet work-stealing scheduler.
The tests also reveal that a work-stealing scheduler that uses a wisely tuned backoff often per-
forms better than the scheduler that uses our adaptive work-stealing algorithm. In the end we
state our conclusion and try to give an outlook of possible future work in the area of adaptive
work-stealing in Chapter 7.
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CHAPTER 2
State of the art

Adaptive work-stealing was first introduced by Agrawal et al. [4]. The term adaptive does not
have a universal meaning in the context of scheduling. In this work, algorithms that dynamically
adjust the number of threads that are used to execute the tasks of an application, are called
adaptive. Based on the idea of Agrawal et al. several different approaches for adaptive work-
stealing schedulers were developed.

Dynamically adjusting the number of workers executing the tasks of an application can be
achieved by actually changing the number of workers of an application [4, 39] or by putting
workers into a sleep state when they are not needed [15, 19]. In the case of feedback-driven
adaptive work-stealing, workers provide some form of parallelism feedback to a central sched-
uler, which then assigns cores to the applications, based on this feedback. But there are also
ways to achieve similar results in a decentralized manner.

This chapter first of all describes the basics of work-stealing in general. Afterwards several
approaches to extend the classic work-stealing scheduler to an adaptive work-stealing scheduler
are introduced. In the end of the chapter we give a summary and a comparison of the different
schedulers. We also give an overview which ideas of the existing adaptive work-stealing sched-
ulers we want to use in our own algorithm. More importantly we describe what properties of the
existing approaches we want to improve or avoid completely.

2.1 Work-Stealing

Work-stealing is an often used decentralized scheduling mechanism. The concept goes at least
back to Burton and Sleep’s work on concurrent functional programs [14] and Halstead’s im-
plementation of Lisp on multiprocessors (Multilisp) [24]. Blumofe and Leiserson showed that
work-stealing is provably time- and space-efficient [12]. The first non-blocking implementation
of work-stealing was presented by Arora, Blumofe and Plaxton [8]. Due to the names of the
authors, this algorithm is often referred to as ABP work-stealing. Arora et al. also provided
time-bounds for work-stealing in multiprogrammed environments. In a multiprogrammed en-
vironment a parallelized application runs on a collection of processors that can grow or shrink
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during the execution. This happens regularly, since operating systems decide which application
runs on which processors and dynamically adjust this assignment.

In work-stealing each thread (worker) manages a local deque (double-ended queue) of tasks
that are ready for execution. Each time a new task is spawned, it is added to the end of the local
queue. During execution workers dequeue tasks from the end of their local queue and execute
them. When a thread runs out of work, it selects another worker (victim) and tries to steal a task
from the victim’s queue. The worker that tries to steal a task, is called a thief. A thief always
tries to take tasks from the beginning of the queue. Therefore as long as the task queue contains
more than one item, the other end of the queue is only accessed by one thread at a time. Often
the end of the queue that can only be accessed by the owner of the queue is called bottom. The
end where thieves try to steal tasks from is called top. If a steal attempt is unsuccessful, because
the queue is empty or due to a spurious failure, the thief tries to steal from another victim. There
are several possibilities how a thief selects the victim to steal a task. The strategy how to select
victims is called victim selection policy. If the victim is chosen randomly, the scheduler is called
randomized work-stealing scheduler. This randomization plays a prominent role in the proofs
of the time-bounds of the work-stealing algorithm [8, 12]. However, in practice also victim
selection policies that do not work completely randomized are used [40].

The execution of a task-parallel application is mostly modelled as a directed acyclic graph
(dag). Each node represents an instruction and an edge represents a dependency between nodes.
A node becomes ready to execute, when all predecessors of the node have been executed. The
work T1 of an application is the total number of nodes in the graph. The span or critical path
length T∞ is the length of the longest chain of dependencies. The parallelism of the application
can be defined by T1

T∞
. It represents the average amount of work for each step in the critical path.

2.2 The Pheet Framework

Like described in the introduction we implement our algorithms in the Pheet Framework [40].
In this section some details about this framework that are important to understand our algorithms
are described. Especially the differences to classic ABP work-stealing schedulers are outlined.

In Pheet a worker thread and its supporting data structures is called a place. A place is bound
to a specific processing unit and is never migrated to another processing unit. Pheet makes use
of a semi-random victim selection policy called hierarchical victim selection. For this victim
selection policy the machine is modeled as a binary tree, where each place is a leaf in the tree.
For the construction of the binary tree the communication costs between the places are taken
into consideration: The communication costs are strictly non-decreasing with the distance in
the binary tree. When the worker thread runs out of local tasks, it will select a victim out of
all victims with same distance d by random. At first it is tried to find a victim with distance
d = 1, and d is incremented each time a steal attempt fails. If a steal attempt is successful
or the maximum distance in the hierarchy is reached, d is reset to 1. Such hierarchical victim
selection policy can improve the data locality for the tasks and reduces the communication costs
for stealing tasks.

In one steal operation it is usually better to steal half the work than just a single task [9]. But
stealing more than one task also has some disadvantages. In Pheet between several possibilities
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to determine the number of tasks to steal in one steal operation can be chosen. In this work
we use a scheduler of Pheet that utilizes an alternative approach for a good distribution of work
between the workers: The scheduler always steals only one task, but before a new victim is
searched using the victim selection policy, the thread attempts to steal a task from its last victim.
If this attempt fails, a new victim is selected guided by the victim selection policy. When a
steal attempt from a victim selected by this means fails, it is attempted to steal a task from this
victim’s last victim.

Pheet creates as many worker threads as processing units (processor cores) are used and
pins each thread to one core. If only a subset of the available cores are used, which can be
controlled by the user of the Pheet framework, only that many threads are created. However,
this subset of threads is always pinned to the same processor cores in every application that uses
Pheet. E.g., a programmer writes an applicationX that uses Pheet and configures Pheet in a way
that at most four cores are used. Now two instances of this application X are run on an 8-core
machine concurrently. Nevertheless only four cores of the machine are utilized, since Pheet pins
the threads to the same four cores in both applications.

2.3 A-Steal

The A-Steal algorithm [4] is the first adaptive work-stealing scheduler. It is inspired by a cen-
tralized task-scheduling algorithm, called A-Greedy [3]. A-Steal assumes that the scheduling
is done on two levels: On system-level a global processor controller exists that allocates dis-
joint sets of processors (or processor cores) to the applications. This means that the processor
controller works as a space-sharing scheduler. For each program an application-level scheduler
exists that executes the tasks on the allotted processors. A-Steal works as such an application-
level scheduler. The application-level scheduler provides parallelism feedback to the processor
controller. This feedback consists of the estimation of required processors of the application. So
when an application cannot use all processors, the unneeded processors can be allotted to other
applications.

The execution of an application is broken into equal-sized scheduling quanta. Each quantum
has a quantum length L that defines the time span of a quantum. Before starting to execute a
quantum q, the application-level scheduler estimates the application’s need for processors (de-
sire) dq. This desire is reported as parallelism feedback to the processor controller. The pro-
cessor controller determines the number of processors available for an application pq (processor
availability). The processor availability depends on the number of processors that is globally
available and on the other applications that are currently running on the machine. In each quan-
tum the number of processors an application gets allocated is the minimum of its desire and the
processor availability aq = min{dq, pq}. This value is called the application’s allotment aq.

The time between two quanta is used for processor reallocation and other non-job related
work. The execution of the tasks is interrupted in these periods of time. Choosing a suitable
quantum length L is therefore important, since too short quanta would lead to a lot of overhead.

Since the symbols defined in the previous paragraphs are used quite often in the next sec-
tions, Table 2.1 shows an overview of the most important ones.
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symbols meaning
P number of processors
q quantum
L length of a quantum
dq processor desire for quantum q

pq number of available processors in quantum q

aq number of allotted processors in quantum q

Table 2.1: Common abbreviation used in the following description of adaptive work-stealing

Compared to conventional work-stealing, an adaptive work-stealing scheduler has to deal
with two new situations:

• Allotment gain: If an application receives more processors than in the last quantum, new
worker threads can be used to process the tasks. Since the queues of these threads are
empty, they immediately start stealing from other workers, like in classical work-stealing

• Allotment loss: On the other hand, the number of assigned processors can decline between
two quanta. In such situations processors must be removed from the application, but they
may have tasks in their queues, which still have to be executed. Such queues that are not
attached to an active worker, are called muggable. When a worker thread runs out of work,
instead of stealing immediately, it checks if there exists such a muggable queue. If there
exists one, it mugs the queue, i.e. it takes the whole queue and continues work as if it was
its own queue.

The most important part of the algorithm is the estimation of the processor desire d for the
next quantum q + 1. For the estimation A-Steal tracks the non-steal usage nq in each quantum.
The non-steal usage is the number of cycles that were spent mugging or working in quantum
q. At the end of a quantum, the non-steal usage is then used to classify the quantum by the
following criteria:

• A quantum q can be either satisfied or deprived. It is called satisfied, if the application-
level scheduler received as many processors as it had requested (dq = aq), otherwise it is
classified as deprived.

• A quantum can also be efficient or inefficient. A utilization parameter δ is used, to distin-
guish efficient and inefficient quanta. A quantum q is efficient if nq ≥ δLaq and inefficient
otherwise. So a quantum is efficient if at least a δ fraction of all cycles in it were non-steal
cycles. The fraction nq

aqL
is also called utilization uq. For this definition of ”efficient” the

mug cycles are included. The reason for this is that mug cycles occur when the applica-
tion loses one or more processors. So mug cycles do not indicate that too many processors
were allotted to the application in general.
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A-Steal uses a responsiveness parameter ρ > 1 to control how fast the processor desire is
adjusted. The algorithm to estimate the desire for the next quantum, works the following way,
depending on the classification of the last quantum:

• If quantum q was inefficient, the quantum contained many steal cycles. This means that
the processors probably had an insufficient amount of work. Therefore the desire for the
next quantum is decreased: dq+1 =

dq
ρ

• If the quantum was efficient and satisfied, the quantum contained only a small amount of
steal cycles and got as many processors as requested. It is likely that the application can
use more processors, and hence the desire is increased: dq+1 = dqρ

• If quantum q is classified as efficient and deprived, the quantum used all allotted proces-
sors efficiently, but it had requested more processors. However, it cannot be known if
more processors could have been utilized, so the desire stays the same: dq+1 = dq

The completion time of a set of tasks that can be executed in parallel, depends on the pro-
cessor availability on the system. So the time bounds of A-Steal were analyzed relative to the
processor availability. To make the results applicable in any environment, it is assumed that the
system-level processor controller is an adversary to the application. However, even omniscient
parallelism feedback schedulers cannot achieve good speedup relative to the mean processor
availability Pmean against an adversary. An adversarial processor controller can make the pro-
cessor availability large when the application’s processor desire is small. Contrary when the
application’s desire is large, the controller can make the availability small. This means that
Pmean is high, but the application is nevertheless almost always running serially.

The time bounds of A-Steal under these adversarial conditions were analyzed using trim
analysis. Trim analysis is a technique used in the field of statistics, where a certain percentage
of ”outliers” (very high or low values) are discarded. To analyze the algorithm the R-high-
trimmed mean availability, or just R-trimmed availability for short, was used by Agrawal et al.
This R-trimmed availability is calculated in the following way:

• The processor availability of all execution steps is collected.

• The collected values are sorted by value.

• The largest R values are discarded. It is sufficient to trim the values just from the high
side, trimming from the low side is not necessary.

Using this technique Agrawal et al. have shown that A-Steal completes the work inO(T1/P̃+
T∞ + L lg P ) steps. Where P̃ is the O(T∞ + L lg P )-trimmed availability; i.e. the mean pro-
cessor availability except the O(T∞ + L lg P ) steps with the highest availability. So a linear
speedup - in respect to the trimmed availability - is achieved when T1/T∞ dominates P̃ .

Additionally Agrawal et al. tested the empirical performance of the algorithm using several
simulations. In these simulations A-Steal almost always provided a linear speedup with respect
to the mean processor availability
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2.4 Stable Adaptive Work-Stealing

Introduction

Cao et al. [15] propose another adaptive work-stealing scheduler, called A-Deque. A-Deque
classifies quanta based on the processor utilization and the length of all task dequeues. Natu-
rally, it is relevant if the processor is working or not (utilization) to determine the desire for the
next quantum. The length of all queues gives the number of tasks that can be worked on, if
enough processors are available. Therefore it is an indicator for the unexploited parallelism of
the program.

In the following description of the algorithm Xj(t) defines whether processor j at time t is
working, mugging or stealing. If Xj(t) = 0 the processor is stealing, if Xj(t) = 1 the processor
is working or mugging. The number of active queues at time t is denoted as et. This number
includes the queues that are not attached to any worker and are waiting to be mugged. Qj(t) is
the number of tasks that can be stolen from queue j at time t.

Additionally a so called exploration parameter β ≥ 0 is used. It controls how aggressively
the scheduler exploits the application’s parallelism. When the exploration parameter is set to 1,
for each task in a queue a new processor is requested. However, it can be assumed that often
these waiting tasks spawn other tasks themselves. So setting the parameter to a value greater
than 1 can be beneficial. If the extra processor is not needed, the desire will decrease quickly,
since in such situations many steal cycles will occur.

Like in the A-Steal algorithm the quantum length L and the number of allotted processors
aq is taken into consideration. The processor desire for the next quantum dq+1 is calculated in
the following way, where tq denotes the time at the beginning of quantum q:

dq+1 =
1

L

∫ tq+L

tq


aq∑
j=1

Xj(t) + β

et∑
j=1

Qj(t)︸ ︷︷ ︸
s

 dt (2.1)

For the explanation of Equation 2.1 first of all we concentrate on the subexpression s between
the braces: The first sum in s calculates the number of all processors working at time t. The
second sum in s computes the number of tasks waiting in all queues at the same time t. This
sum is then multiplied with the exploration parameter β. Since the whole subexpression s only
describes the situation at a single point of time, the integral is used to take the whole quantum
into consideration. Therefore the bounds of integration are tq, the start of quantum q, and tq+L,
the end of this quantum. This value is divided by the length of the quantum L to get an average
value over the whole quantum. This equation is of theoretical nature, a approximation that can
be used in practice is described later in this section.

Implementation

A-Deque was implemented in ACilk - Adaptive Cilk as extension to the Cilk runtime system [22].
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Figure 2.1: States of workers in the A-Deque algorithm

To support dynamic processor reallocation between applications during runtime, a global
processor controller was implemented. It can be configured with quantum length, number of
available processors and the parameters of the feedback algorithm. The controller works as
a Linux daemon process between the operating system and the Cilk runtime. The programs
report their processor desire to this daemon process, which uses the information to allocate the
processors to the applications.

For each new application in ACilk, as many workers as there are physical processors are
created. After the first allocation - usually 1 - the unneeded workers are put in a sleeping state.
Besides sleeping, workers can have the states working, stealing or mugging. When the processor
allotment of a program increases, the corresponding number of sleeping workers is woken up,
whenever the allotment decreases, workers are put into the sleeping state. Figure 2.1 shows a
state diagram of workers in the A-Deque algorithm.

The processor scheduling in the processor controller is done using the DEQ algorithm [29].
DEQ is a scheduling algorithm that divides the total number of processors equally between
all applications, with the limitation that an application never receives more processors than it
desired. Algorithm 2.1 shows the complete recursive procedure. At the beginning of every
quantum the algorithm is called with a set J(q) containing all active applications and the number
of available processors P . In the pseudocode of the algorithm di(q) is the processor desire and
ai(q) the allotment of application Ji in quantum q.

Sampling methods for processor utilization and queue length

An important part of the A-Steal and A-Deque algorithms is measuring the processor utilization.
A-Deque additionally requires the length of all active queues to calculate the processor desire.
In practice collecting this information can severely impact the performance of the application.
Thus efficient implementations of the algorithms that approximate the required statistics were
developed [15].
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Algorithm 2.1: DEQ(J(q), P) scheduling algorithm

1 if J(q) empty then
2 return
3 end
4 S←∅;
5 forall the j in J(q) do
6 if dj(q) ≤ P/|J(q)| then
7 S←{ S, j };
8 end
9 end

10 if S empty then
11 forall the j in J(q) do
12 aj(q)← P/|J(q)|;
13 end
14 else
15 a← 0;
16 forall the j in S do
17 aj(q)←dj(q);
18 a← a + dj(q) ;
19 end
20 DEQ(J(q)− S, P − a) ;
21 end

To approximate the processor utilization, for each processor j in quantum q the following
data is collected:

• Total number of purely unsuccessful steal attempts wjq. A steal attempt is called purely
unsuccessful if the victim itself is trying to steal from another worker, i.e. if the victim
has run out of work itself.

• Total number of all steal attempts zjq

The utilization uq is therefore approximated with the following formula:

uq = 1−
∑aq

j=1wjq∑aq
j=1 zjq

(2.2)

As a result uqaqL can be used as an approximation for the term
∫ tq+L
tq

(∑aq
j=1Xj(t)

)
dt of

equation 2.1.
A processor is either working, mugging or stealing at any time, so this ratio gives a reason-

able approximation for the inefficiency 1− uq of the processor in quantum q. Therefore it is an
approximation to distinguish between efficient and inefficient quanta like described in the sec-
tion about A-Steal. As long as a processor is only working, no additional overhead occurs during
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a quantum. However, between two quanta the number of (unsuccessful) steal attempts has to be
collected from all workers. Some runtime systems like Cilk already use built-in counters to
measure the number of steal attempts, so this approximation would incur just a little overhead.

To approximate the length of all queues in a quantum, at every steal attempt or successful
mugging the length of the victim’s queue is added up in a variable. This is done individually by
every processor j and the accumulated value at the end of quantum q is denoted by `jq. For the
approximation the number of active dequeues e at the end of quantum q is used. Since quantum
q ends at time tq + L this number is denoted by etq+L The approximated length of all active
queues is therefore given by:

Q(q) = etq+L

aq∑
j=1

`jq

aq∑
j=1

zjq

(2.3)

The idea behind the formula is that the ratio between the added queue lengths and the number
of steal attempts is the average length of a theoretic single queue in the quantum. Like in the
approximation of the processor utilization, more steal attempts should lead to a better accuracy.

In addition to the average length of the dequeues during the quantum, the length of the
queues at the end of the quantum is taken into consideration. For that, the length of the jth
queue at the end of the quantum q is needed, which is given by Qj(tq+L)

Q′(q) =

etq+L∑
j=1

Qj(tq+L) (2.4)

The two formulas are combined for the final approximation of the length of the active queues.
It is given by:

1

L

∫ tq+L

tq

et∑
j=1

Qj(t) dt = αQ(q) + (1− α)Q′(q) (2.5)

The left part of this equation shows the theoretical average queue length of quantum q, like
described for Equation 2.1. The right part is the approximation, which is a linear combination
of Q(q), the approximated length of all queues during the the quantum, and Q′(q), the approxi-
mated length of all queues at the end of the quantum.

The more steal attempts occur during a quantum, the more accurate is the first approxima-
tion. Therefore it should have a higher weight in such situations. For this, the parameter α is
used. It is suggested that this value is set to the ratio between the number of steal attempts and
the maximum possible number of steal attempts. So when there are no steal attempts at all, the
first approximation is not used altogether.

Combining formula 2.2 for the approximation of the processor utilization and equation 2.5
for the active queues length, leads to the final approximative calculation of A-Deque for the
processor desire of the next quantum:

dq+1 = uqaq + β
(
αQ(q) + (1− α)Q′(q)

)
(2.6)
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To summarize, the first part of the equation uqaq is an approximation of the utilization of all
allotted processors in quantum q. The more unsuccessful steal attempts occur, the lower is this
value. In the second part Q(q) denotes the approximated length of all queues during quantum q
and Q′(q) is the length of all queues at the end of the quantum. Q(q) and Q′(q) are combined
using a ≤ 1. The exploration parameter β controls how aggressively the scheduler increases the
parallelism, when there are tasks waiting in the dequeues.

Desire Stability

It is not so easy to estimate the processor desire in a stable way. Sun and Hsu [35] have analyzed
the desire stability of A-Greedy [3], which uses similar concepts like A-Steal. They have shown
that A-Greedy suffers from desire instability problems even when the parallelism is constant.
Desire instability can degrade the performance of the application because of unnecessary context
switches, loss of locality, etc. Therefore an algorithm with a stable desire is preferable.

Like A-Steal, A-Greedy uses a multiplicative-increase and -decrease strategy, to calculate the
desire for the next quantum. Therefore desire instability can also occur when using A-Steal [15].

A simple piece of code is used as an example to show the calculated desire values of A-Steal
and A-Deque. The sample application that is shown in Listing 2.1 spawns N tasks in a loop and
afterwards it waits until these tasks are finished. It is assumed that the execution of these tasks
take a long period of time and that no other tasks are created.

Listing 2.1: Sample code to show calculated processor desire values

for (i = 0,...,N-1)
spawnTask

Wait For Tasks

In Table 2.2 the desire instability of A-Steal is shown for the sample application where N
is set to 14. In an real world scenario hopefully more tasks are generated. However, for the
description of the desire instability the magnitude of the number of tasks is not important. The
responsiveness parameter ρ, which controls how fast the processor desire is adjusted, is set to 2.
The utilization parameter δ, which is used to distinguish between efficient and inefficient quanta,
is set to 0.9. It is assumed that the processor desire dq is always fulfilled, i.e., the processor
controller always allocates as many processors to the application as its desire is. Additionally
it is assumed that there are only very few steal cycles during the execution. Therefore as long
as there are fewer processors assigned to the application than spawned tasks exist, the quanta
are categorized as efficient. As shown in Table 2.2, the number of processors fluctuates and will
never converge to a stable state in this case

The given scenario is very simple, however it is quite clear that many parallel applications
would suffer from desire instability in a similar way. For a specific situation, the issue can be
improved with other ρ- and δ-values. Since parallelism can vary throughout an application,
however, it is often not possible to find parameters that fit in each stage of the application.

Table 2.3 shows the estimated processor desires of the A-Deque algorithm, where again 14
tasks are spawned in total. The exploration parameter β, which controls how fast the processor
desire is increased when tasks are waiting in the queues, is set to 2. In this example, one task
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desire dq utilization uq classification
1 1 eff. and sat.
2 1 eff. and sat.
4 1 eff. and sat.
8 1 eff. and sat.
16 0.875 inefficient
8 1 eff. and sat.
16 0.875 inefficient
8 1 eff. and sat.

Table 2.2: Example of desire instability of A-Steal algorithm in an artificial scenario with 14
spawned tasks

desire dq working cpus tasks in queues
1 1 1
3 3 1
5 5 1
7 7 1
9 9 1
11 11 1
13 13 1
15 14 0
14 14 0
14 14 0

Table 2.3: Example of growth of processor desire of A-Deque algorithm in an artificial scenario
with 14 spawned tasks

is waiting for execution in all queues averaged over the entire quantum. Like in the A-Steal
example, it is assumed that there are only a few steal cycles, as long as there are not more than
N processors allotted. This is clearly a simplification. However, the important point is that after
a finite number of steps A-Deque reaches a stable state. The desire does not change, since the
parallelism is not changing, i.e. no tasks are waiting in the queues and the processors are utilized
executing their respective task.

It can also be seen that A-Steal increases the parallelism, i.e., the processor desire, faster.
It reaches the maximum level of parallelism in about logρN steps. Whereas A-Deque is more
conservative when requesting new processors and converges to the target parallelism in about
N
β steps. However, when the parallelism of the application does not change for some time, it
uses the resources more efficiently and prevents unnecessary scheduling overhead like context
switches and cache reloading. Nevertheless for large systems, Nβ steps can be a quite long time
in which many processor cycles are wasted. Therefore this property influences the scalability of
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Figure 2.2: Performance comparison of different work-stealing algorithms with respect to
makespan [15]

the A-Deque algorithm.

A-Steal and A-Deque Experiments

Using the modified Cilk-runtime ACilk and the approximations for the processor utilization and
dequeue lengths, Cao et al. tested the performance of A-Steal and A-Deque. To compare the
performance of A-Steal and A-Deque with an algorithm that does not make use of parallelism
feedback, the EQUI algorithm [20] was used for the processor controller. The algorithm was
named WS-EQUI in this context. It is very simple and equally shares the available processors
among all running applications. When A-Steal and A-Deque are used as application-level sched-
ulers, the presented DEQ algorithm is used, which takes the processor desire of the applications
into consideration.

When running only one application, WS-EQUI performs better than A-Steal and A-Deque.
This is because WS-EQUI is oblivious to the changes of an application’s parallelism. No ad-
ditional scheduling overhead occurs when the processor desire of a program changes, because
it always allocates all available processors to the application. This result also corresponds with
the observation that the original Cilk is more effective when running only one application on the
system.

However, when multiple applications in parallel were run on the same machine, A-Deque
and A-Steal in general performed better than the simple WS-EQUI scheduler. In the executed
performance tests [15], A-Deque achieved better results in terms of makespan and response
time. The term makespan defines the completion time of the last completed application when
multiple applications are run in parallel. Response time is the duration a single application needs
to complete. For the evaluation of the results the mean response time of all applications is used.

Figure 2.2 shows a comparison of A-Steal, A-Deque and WS-EQUI in terms of makespan.
The figure shows the results as ratio of the makespan of WS-EQUI compared to A-Steal and
A-Deque. Six different benchmarks were executed on an 8-core system. In total 16 application
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were started, which consisted of the six different benchmarks. The applications were not started
at the same time, but according to a poisson process with an arrival rate between 1

16 and 1. The
system load is therefore proportional to the arrival rate of the applications. More details about
the setup for the experiments can be found in [15]. The results show that in multiprogrammed
environments both A-Steal and A-Deque outperform the simple WS-EQUI algorithm. However,
the heavier the system load gets the less benefits adaptive work-stealing provides.

A-Deque benefits from its stable and more accurate parallelism feedback, compared to A-
Steal. These results are quite promising and show that effective feedback mechanisms can im-
prove the performance of applications with dynamic changing parallelism in multiprogrammed
environments.

2.5 Palirria

Varisteas and Brorsson presented another scheduler for adaptive work-stealing, which they call
Palirria [39]. They give more details and additional proofs in [38].

Palirria is an adaptive work-stealing scheduler that uses parallelism feedback like A-Steal
and A-Deque. The estimation of the number of workers the application can actually utilize, is
based on the length of the task queues. However, due to the usage of a deterministic victim
selection policy DVS [39], only the task queues of a subset of the workers have to be checked.
This enables an accurate estimation of processor desire with low overhead.

DVS replaces the randomized victim selection that is traditionally used in work-stealing.
When using DVS two conditions must be met: Each worker thread has to be pinned to a different
core and a metric for the communication distance between workers must be defined. This metric
can either be mapped to the physical layout of the system or a virtual graph that contains all
cores.

DVS is based on a theoretical model, where the processor model can have up to three dimen-
sions. For clarity the description here is restricted to the case of two dimensions. To illustrate
the concept of this metric, a simple mesh grid topology is used. In this model all nodes are con-
nected to their neighbors horizontally and vertically and each node has at most four neighbors.
The distance between two nodes is defined by the Manhattan distance between them, where the
communication distance between adjacent nodes is 1.

A set of workers is assigned to each application and the execution is started on one of them.
This worker is called source s. The rest of the workers is disjunctively divided into three different
classes, which can also be seen in Figure 2.3:

• class Z includes all workers that have maximum communication distance from the source

• class X contains all workers that span horizontally and vertically from the source. Work-
ers in class Z are not included in class X

• class F encloses all other workers

The idea of DVS is that the flow of tasks between workers happens in a predictable way.
This flow automatically occurs, since during the lifetime of an application, tasks are stolen when
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Figure 2.3: Worker classification according to the DVS rule set [39]

a worker runs out of work. To control this flow, each worker has a prioritized set of victims,
from which it tries to steal tasks. Victims that contribute to a primary flow path are preferably
selected. However, the set also contains other victims, since it is possible that no worker of the
primary path is currently allotted to the application.

In summary, on the primary flow path stealing is only allowed between close neighbors
(distance ≤ 2). Workers of class X transport tasks away from the source, workers in F relocate
them back by primarily stealing from workers in class Z. Workers in Z mainly steal from other
workers in the same class, to balance the load between all quadrants.

Using the classification of DVS, Palirria decides how the workers of the application are
currently utilized:

• Under-utilized The size of all task queues of workers in class Z is 0; the allotment is
decreased.

• Over-utilized The size of all task queues of workers in class X is above a threshold L;
the allotment is increased.

• Balanced The size of all task queues of workers in class X is less than L or any task
queue of a worker in Z is greater than 0; the allotment stays unchanged. One can also say
that the utilization is balanced if it is neither under- nor over-utilized.

When the allotment of the application is changed, workers in one zone are added or removed.
A zone is a subset of workers that are located at the same distance from the source. The members
of a zone can be categorized into different classes. The maximum distance between the source
and any worker in the current allotment is called diaspora d. When the size of the allotment
is increased, workers of the outermost zone are removed. Upon increasing the size, workers at
distance d+ 1 are added to the allotment.

Due to the condition for decreasing the processor allotment, all workers that are removed
from the allotment, have an empty task queue. However, it is possible that a worker that should
be removed, is still working on a task. Furthermore new tasks can be spawned by this worker. A-
Steal and A-Deque deal with this situation, by introducing the concept of mugging (see Section
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2.3). In Palirria such situations are resolved in another way: Every worker that is removed
continues to execute its current task. It is also allowed to add new tasks to its own task queue
(task spawning) and it can be chosen as a victim. The worker exits automatically as soon as it
runs out of work and its own task queue is empty. So a removed worker cannot steal tasks from
other threads, but it still continues to work on its own tasks. The removal of a worker can also
be revoked, when the allotment increases again, before the worker has finished processing all its
tasks.

In the implementation of Palirria each application requires a helper thread. For all helper
threads on the system one core is reserved. These threads run the processor desire calculations
and add or remove workers when needed. So changes of the allotment run in the background
with minimal interruption of the actual execution. However, the data that is needed for the
decision algorithm is generated by the workers itself and thus affects their performance.

In Palirria the quantum length L corresponds with the interval in which the helper threads
check the utilization state. It is the interval in which allotment changes can occur. Like in A-
Steal and A-Deque this period is important for the performance: Running the procedure too
often leads to high overhead due to the desire estimation calculation itself and may lead to
unnecessary allotment changes. If the period is too long, workload changes may be missed and
the parallelism of the workload may not be fully exploited.

Varisteas and Brorsson also performed experiments, to compare the performance of A-Steal,
Palirria and a non-adaptive runtime in non-multiprogrammed scenarios. In both the implementa-
tions of A-Steal and Palirria, the scheduler adds and removes workers in sets (zones) as described
above. Both adaptive implementations start with a set of five workers, i.e., the source and four
workers in zone 1. The test runs were judged in terms of performance, wasted processor cy-
cles and accuracy. Accuracy is the analogy between performance and resource utilization. So an
estimation is accurate, when it is able to reduce the resource utilization without degrading perfor-
mance. In average Palirria performed better than A-Steal in all three criteria. In comparison with
the non-adaptive runtime, Palirria scored similar results in fine-grained highly parallel applica-
tions. However, the usage of Palirria was beneficial for irregular and coarser-grained programs.
Comparisons with the A-Deque algorithm would have been quite interesting, since A-Deque
uses similar criteria for resource utilization like Palirria. Unfortunately no such comparisons
were made.

Since in Palirria tasks can only be stolen from close neighbors, it is unclear whether this
algorithm is scalable to large systems. Additionally reserving one core exclusively for the helper
threads of Palirria seems impractical. Especially when different kinds of applications are run on
one system, where not all applications use Palirria for parallelization.

2.6 Balanced Work-Stealing

Ding et al. [19] introduced the balanced work-stealing (BWS) algorithm. The BWS scheduler
aims at improving the behavior of work-stealing in multiprogrammed environments.

They introduced the concept that one can distinguish two different kinds of thieves: A useful
thief is a thief that is stealing, when enough tasks are available. Contrary a wasteful thief is
stealing, when there are no or only very few tasks available. Certainly the resources used by
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a wasteful thief, would be better used by busy workers or useful thieves. Many work-stealing
schedulers try to mitigate this problem by calling the yield function, which common operating
systems provide, on wasteful thieves. However, this behavior is not controllable: Applications
that frequently yield cores tend to lose them to other applications, which can lead to significant
unfairness. Additionally the overall performance can suffer, because the yielded core may be
switched to another wasteful thief or back to the initiating thief too early.

BWS improves these issues by dynamically putting thieves to sleep or waking them up.
Workers are put to sleep, depending on how hard it is for thieves to find a task to steal: When
tasks that can be stolen can be easily found, it is decided that there are enough tasks to process.
So sleeping workers are woken up. Contrary when it is hard to find tasks, it is assumed that there
is insufficient work to execute and therefore workers are put to sleep.

Additionally, wasteful thieves do not yield their cores randomly, but they yield their cores
directly to busy workers. When a thief fails to steal, it checks whether the victim has been
preempted by the operating system and if it has an unfinished task to work on. If both is true,
the thief directly yields its core to the victim, otherwise it tries to steal from another worker.

In comparison to the so far presented adaptive schedulers, BWS does not need any central
data structure or worker. The data is collected in a decentralized manner and the scheduling
decisions are directly made within the workers.

However, the two additions to the work-stealing scheduler require new features in operating
systems that are currently not available in general:

• A possibility to check the running status of other workers is required.

• A possibility to yield a core directly to another worker.

A prototype of the BWS scheduler was implemented as a Cilk++ scheduler. The necessary
operating system features were integrated into a modified Linux kernel. To test the performance
in multiprogrammed environments, two applications where run in parallel in each benchmark
run. Each run was performed with the original Cilk++ work-stealing scheduler and with the
modified Cilk++ BWS scheduler. In average the BWS scheduler increased the overall system
throughput compared to the original Cilk scheduler by 12.5%.

Ding et al. [19] also commented on the A-Steal algorithm. They claim that it can hardly be
adopted on standard multicore-systems, where cores are time-shared between applications. In
theory A-Steal assumes there is a space-sharing operating system, since the processor controller
allocates disjoint sets of cores to different applications. It is furthermore noted that the quantum
lengths in A-Steal must be quite long, to amortize the additional scheduling overhead. Yet
parallel phases in applications can be rather short and so such phases cannot be exploited by the
A-Steal scheduler.

2.7 Demand-aware Work-Stealing in Multi-programmed
Multi-core Architectures

Chen et al. [16] presented another adaptive work-stealing scheduling technique called demand-
aware work-stealing (DWS). The algorithm focuses on improving the performance of work-
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stealing applications in multiprogrammed environments. In the DWS algorithm applications
use disjoint cores based on a space-sharing scheme. During runtime applications can release
cores if they do not need all initially assigned cores or try to take cores that were released by
other applications. The balancing of cores between co-running applications is achieved without
a centralized OS-level core allocator.

Suppose on a system with n cores m applications are launched. The DWS scheduler starts
one worker for each core in all the m applications. In every application n worker threads are
running, like in the standard work-stealing algorithm. However, since a space-sharing scheme
is used between all DWS applications, every application only gets n

m cores actually assigned.
All workers that are running on other cores are put so sleep. So on every core only one worker
is running and contention between different worker threads of different applications is avoided.
This scheme ensures fairness between the applications, but it is not adaptive and resources are
wasted when the co-running applications can utilize different numbers of cores. Therefore in
each application a so called coordinator thread is started that can communicate with the coor-
dinators of other DWS applications. Using this coordinator an application can release cores if
it does not need all assigned cores or can try to take released cores from other applications if it
can utilize more cores than it has currently assigned. Releasing a core means putting the worker
running on this core to sleep. When an application successfully takes a new core, accordingly
the worker running on this core is woken up and continues to execute tasks. To support the
dynamic reassignment of cores, the coordinators maintain a core allocation table in the shared
memory. In this table it is stored which core is currently assigned to which DWS application.

In the DWS algorithm the decision to release a core is done on a local level for each worker.
A core is released, if the number of consecutive failed steal attempts of the worker is above a
threshold T_SLEEP . The authors of the paper suggest setting this threshold to n or 2n on an
n-core machine. Whenever a core is released, the according entry in the core application table
is set to 0 to signal other applications that this core is available.

The coordinator thread is responsible to check whether more cores can be used to execute the
current set of tasks. In regular intervals the coordinator calculates how many tasks are waiting in
the task queues of the application’s workers Nb. The number of workers that should be woken
up Nw is then calculated by the ratio of the queued tasks Nb and the number of active workers
Na:

Nw =
Nb

Na
(2.7)

The process of taking these additional cores further depends on the total number of free cores
Nf on the machine. Additionally, it is relevant how many cores of the application’s initial n

m
cores are taken by other applications. This number is denoted by Nr. Three different situations
can occur:

Nw ≤ Nf When enough free cores are available, the application selects Nw random cores out
of the free ones and takes them. The core allocation table is updated and the workers that
are pinned to this cores are woken up.

Nf ≤ Nw ≤ Nf +Nr In this situation there are not enough free cores available. But together
with the Nr initial cores of the application that are currently used by other applications,
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Figure 2.4: Performance of ABP, EP and DWS in benchmark mixes [16]

the application can nevertheless get its Nw additional cores. The application first uses all
Nf free cores. Additionally it selects Nw − Nf cores of the Nr cores that are currently
taken by other applications and wakes the corresponding workers up.

Nw > Nf +Nr In this case the application cannot use additional Nw cores, because there are
not enough cores available. Therefore the application uses all available free cores Nf and
takes back all Nr cores from other applications. In total it wakes up Nf + Nr additional
workers.

The process of taking back cores in the second and third case is not described in more detail.
It remains unclear what happens with the applications where cores are taken away. It can be that
worker on such a core continues execution until the application itself decides to put the worker
to sleep. Like in Palirria the worker may continue execution but does not try to steal any tasks
when it runs out of work. A third possibility would be to use the concept of mugging like in the
A-Deque algorithm. However, the second and third possibility would mean that the coordinator
needs to check if there are such cores that were taken back by another application.

A similar situation occurs when a new DWS application is started and other DWS applica-
tions are already running. The new application somehow should get an own set of cores, which
must be taken from the running applications. However, such situations are not described in the
paper.

The DWS algorithm was implemented by a modification of MIT Cilk [22]. For the imple-
mentation of the core allocation table a file is created which is mapped into shared memory using
the Linux function mmap. After doing its work the coordinator thread goes to sleep for 10ms
every time, to reduce the overhead of the thread. This principle is similar to the one used in the
Palirria algorithm.

Chen et al. evaluated the performance of the DWS application on an 8-core machine with
enabled Intel Hyper-Threading Technology. They treated the platform as a system with 16 cores,
so each work-stealing program launches 16 workers on the platform by default. They evaluated
the performance of the algorithm running two different benchmarks in parallel. Chen et el.
compared their DWS algorithm with two other strategies for scheduling co-running programs:
On the one hand they executed the programs using a standard ABP yielding mechanism (ABP).
On the other hand they used an equi-partitioning policy, where the cores are evenly and statically
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allocated to the two co-running processes (EP). More details about the performance tests can be
found in their work [16].

Figure 2.4 shows exemplary results of these tests. The x-axis denotes 8 different benchmark
mixes. DWS-1 represents the execution time of the first benchmark, DWS-2 of the second
benchmark, in the corresponding benchmark mix. The other bars represent the times for the
corresponding task schedulers. The DWS algorithm performed up to 32% faster compared to
the classic ABP work-stealing. It is also faster than the static equi-partitioning policy.

The DWS algorithm does not use a central scheduler for all applications, nevertheless there
are two central components that can lead to contention: The core allocation table is accessed
by all running DWS applications, which could be a bottleneck when a lot of applications are
running at the same time. Especially since it is not described how concurrent accesses to this
table are managed. Additionally the expense of the coordinator thread of every application is
dependent on the number of available cores. The more cores are available on the system, the
more workers have to be accessed to determine the number of tasks waiting in queues.

2.8 Insights for further work

Adaptive work-stealing and parallelism feedback are promising ideas to improve the perfor-
mance of work-stealing in irregular parallel applications. Especially in multiprogrammed envi-
ronments it can be very beneficial, to estimate the required resource usage to prevent wasting
of resources. However, also scenarios where only one application runs on the system can profit
from adaptive work-stealing. It can prevent unnecessary contention, when too few tasks to utilize
all workers are available.

For fine-grained parallel programs parallelism feedback does not provide an advantage and
may reduce performance. However, the presented algorithms show that with a careful imple-
mentation of adaptive work-stealing this disadvantage can be minimized.

Almost all presented algorithms were only tested very selectively, therefore additional tests
are surely necessary to finally judge the algorithms. Since most of the ideas are quite new, there
exist only few approaches that combine ideas of other papers. It may be beneficial to ”cherry
pick” the best parts of more than one approach and combine them into one algorithm.

The presented algorithms contain many interesting ideas and insights into adaptive work-
stealing. However, we think that all of them have theoretical or practical drawbacks:

• Except BWS all algorithms rely on some kind of central entity that works as a dispatcher
of threads. The problem with this kind of design is that the scalability is questionable
when a large number of processor cores become available.

• The original A-Steal algorithm relies on counting of processor cycles. It is unclear how
this can be implemented in practice with low overhead.

• In the A-Deque algorithm it takes N
β quanta until the processor desire is increased to its

maximum. This seems reasonable when there are not too many processors available. In
really large systems a lot of resources can be wasted due to this property, especially when
the concurrency of the application is fluctuating.
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• Likewise the Palirria algorithm may need too long to distribute tasks to all processors on
large systems, since tasks are only stolen from close neighbors.

• A-Steal and A-Deque interrupt all workers at the end of each quantum. In situation when
enough tasks are available for all workers this may degrade performance.

• BWS uses operating system features that are not available on most systems today and
therefore at the moment BWS is not usable in practice.

Nevertheless many ideas of the presented algorithms sound reasonable to use them in new
algorithms:

• Adding or removing workers based on measurements of utilization for some timespan (a
quantum), seems to be a good idea. Since the level of concurrency can be very fluctuating,
measurements over the whole application lifetime do not make a lot of sense. Neither does
measuring utilization at a single point of time sound like a promising idea.

• The classification of thieves as wasteful and useful seems reasonable and can be used for
other adaptive work-stealing schedulers.

• We do not like the idea of removing a worker when it is still executing a tasks, which
also requires to introduce the concept of mugging. In our view a better concept is used in
Palirria, where ”removed” workers can finish executing their tasks, but are not allowed to
steal tasks from other workers.

Based on this observations we try to design a new approach for adaptive work-stealing, using
the ideas we like and trying to avoid the outlined disadvantages.
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CHAPTER 3
Test Environments and Benchmarks

Throughout our work we want to show the influence of our changes, improvements and new
algorithms on the performance. For this purpose a set of micro benchmarks, which are already
part of Pheet, are executed on different machines. We will show exemplary benchmark results
in the next two chapters when we think they are helpful, and give detailed benchmarks results
afterwards in Chapter 6. In this chapter the used test environments and most important aspects
of the benchmarks are described. A more detailed description of the benchmark suite can be
found in Martin Wimmer’s work [40].

3.1 Setup

For the benchmarks two shared-memory systems are used. One is a system consisting of 8
Intel Xeon E7-8850 processors. Each of the processors has 10 cores, so a total of 80 cores are
available. Additionally simultaneous multi-threading could be used. Due to the fact that most
applications are memory-bound by default Pheet does not take advantage of this. The system has
1TB of main memory, split into 8 NUMA nodes. Throughout this thesis, this system is called
Mars. Figure 3.1 shows the processor and memory topology of Mars.

The other system comprises four AMD Opteron 6168 processors with 12 cores each, leading
to a total of 48 cores. Each processor consists of two NUMA nodes with 16GB main memory
each, so altogether 128GB of main memory is available. The machine is called Saturn and the
detailed topology can be seen in Figure 3.2.

As compiler GCC 4.8.2 is used setting the flag -O3 to enable all standard compiler optimiza-
tions. The system on Mars runs with kernel version 3.14-1, whereas version 3.16-2 in use on
Saturn.

For the benchmarks the default settings of Pheet are used, if not noted otherwise. This means
that Pheet is configured not to use simultaneous multi-threading and the default behavior to pin
the threads to the processing units is used.
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Figure 3.1: Processor and memory hierarchy of the Mars system generated with the lstopo
utility of the hwloc library [13].
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Figure 3.2: Processor and memory hierarchy of the Saturn system generated with the lstopo
utility of the hwloc library [13].
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3.2 Methodology

By default the results shown are mean values for 20 test runs. In some cases more or less than
20 experiments are performed, which is then explicitly mentioned in the text. In all graphs 95%
confidence intervals are shown. The time needed to setup the test data is not included in the
results.

For experiments where more than one instance of the benchmark is run in parallel, the mean
execution time of all benchmarks executed in parallel is taken as a result for this iteration. Using
an inter-process barrier the instances wait until all of them have finished initializing the test data.
After the initialization phase the actual benchmark starts and the clock starts to run.

Comparison of benchmarks

When analyzing and comparing results of different benchmarks, one can ask which scheduler is
the best one. However, this question is not easy to answer. Simply adding up the results of all
different benchmarks favors the schedulers which perform well on the long running benchmarks,
which is not intended. To make the results of the diverse benchmarks comparable, we first
calculate the arithmetic mean of the benchmark results of all schedulers for each benchmark. The
results of each scheduler are then divided by this mean value for every benchmark. This allows
us to make a statement like ’Scheduler A performs twice as good in benchmark X compared to
scheduler B, whereas B runs three times faster than A in benchmark Y.’ Now the relative results
of each benchmark can be summed up for every scheduler implementation and the results can
be compared. To make this comparison easier, the summed up results are divided by the number
of tested schedulers. A value of e.g., 2 therefore means that this scheduler performs two times
slower than the average of all tested schedulers. We call the results we calculate using this
method aggregated results. The absolute values in the aggregated results graphics are thus not
meaningful and these graphics do not show the speedup that is gained when more cores are used.

We tried to choose a broad set of different problems, nevertheless, the results are still de-
pending on the chosen benchmarks. Therefore we often show the results of each benchmark on
its own, so that the reader can make his own conclusions.

3.3 Graph Bipartitioning

In the NP-hard [23] graph bipartitioning problem vertices of an undirected and weighted graph
are to be partitioned into two sets. These two sets must have a given size and it is striven for a
minimum total cut weight. The graph that is to be partitioned consists of n nodes and m edges.
The problem is solved using the branch-and-bound paradigm. In each step one single node is
assigned to one of the sets for each branch.

In general branch-and-bound algorithms are quite well suited for parallelization. The perfor-
mance of such algorithms greatly depends on how soon good solutions are found, since they can
be used to cut off branches that are not needed to be explored. Since in parallel implementations
the order in which nodes are explored cannot be the same like in sequential algorithms so-called
speedup anomalies can occur. These anomalies can be both negative and positive. When tasks
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that explore nodes that otherwise would not be needed to explore are created, the anomaly is
negative. Contrary a task that finds a very good solution may be created very early and therefore
branches can be cut off earlier than in a sequential implementation [17].

For our benchmarks we use dense random graphs of size n = 35 with an edge probability
p = 0.9. The graphs are generated using the Erdős–Rényi method [21]. For every iteration of
the experiment another random seed is used, but all benchmarks use the same random seeds.
Since the variance between the iterations is quite large in this benchmark, 100 iterations instead
of 20 were made for each scheduler.

3.4 LU decomposition

A LU decomposition (or factorization) algorithm factors a matrix as a product of two matrices:
a lower (L) and an upper (U) triangular matrix. One important application of LU decomposition
is solving systems of linear equations. It can also be used to calculate the inverse or determinant
of a matrix.

For a LU decomposition to succeed, in some cases it is needed to reorder rows of the matrix.
Algorithms that also take such cases into considerations are called LU factorization with Partial
Pivoting. Since only rows are reordered, the method is called partial pivoting. The LU decom-
position benchmark included in Pheet executes such a LU factorization with Partial Pivoting.
Additionally to the L and U triangular matrices, a vector (pivots) is returned that describes the
row permutations.

The parallelization of the algorithm is based on the following idea: The matrix can be split
into several blocks. Instead of operating on scalars, the algorithm works on blocks, where each
block itself is a matrix. This is beneficial since matrix-matrix calculations are more efficient than
matrix-vector calculations and multiple blocks can be processed in parallel. Such an algorithm
that works on blocks instead of single elements is called algorithm-by-blocks [34]. The LAPACK
(Linear Algebra Package) library [7] is used for basic matrix and vector operations.

The benchmark operates on matrices of size 1024x1024. The elements are generated ran-
domly in the range [−1, 1) and are of type double.

3.5 Prefix Sum

Prefix sum or scan is a primitive algorithm that is used for many more advanced algorithms like
sorting, merging or calculating a minimum spanning tree [11]. The prefix sum algorithm works
on an array and calculates for each item the sum of all items before this item.

The following two arrays show a sample input and output of the scan algorithm:

Input: 6 3 34 6 7 9 2 4
Output: 6 9 43 49 56 65 67 71

Calculating the prefix sums can be trivially achieved sequentially in a single pass. It consists
of a single iteration over all elements of the array where all values are updated. On the contrary
the parallel algorithm used in this benchmark works in two passes: In the first pass the array is
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split into blocks and the sum of all values in each block is calculated. Theses sums are then used
in the second pass to calculate the actual prefix sums. Therefore the parallel version generates
more work.

The benchmarks operate on arrays of size n = 100, 000, 000 where each element is initial-
ized to 1. Initialization of all elements to 1 seems trivial at first glance, however the characteris-
tics of the benchmark do not change when other values are used.

3.6 Quicksort

Quicksort is a well-known and often used sorting algorithm. Since quicksort uses the divide-
and-conquer paradigm a basic parallelization of the algorithm is quite simple: The recursive
calls of quicksort after each partitioning step are independent and can be executed in parallel.
Since it is not efficient to sort only a few elements in parallel, the recursive calls are only made
concurrently as long as the input array is longer than a selected cutoff value. Shorter arrays are
than sorted sequentially.

However, using this parallelization scheme the partitioning step is still executed sequentially.
In this step all elements of the input array have to be processed and therefore the critical path is
of length O(n).

Tsigas and Zhang [37] introduced a quicksort algorithm where also the partitioning phase
is parallelized. In their algorithm the array is split into blocks and each thread takes one block
from the left and one block from the right side of the array. Between these two blocks elements
are swapped like in a classic partitioning step. After the elements are exchanged the thread takes
a new block until all blocks are processed. Afterwards the remaining blocks and single elements
are partitioned in a sequential way.

However, this algorithm that uses parallel partitioning, cannot be easily implemented using
the standard task-parallel programming models. Pheet supports so-called mixed-mode schedul-
ing which allows to implement a variant of this algorithm [41, 42]. Since this mode is no concern
in this work we use the classic parallel version of the quicksort algorithm for our Quicksort ex-
periments. However, this mixed-mode could also be used with the presented schedulers.

For the experiments arrays of size n = 10, 000, 000 are used where the elements are initial-
ized using a gauss data distribution.

3.7 Single-source Shortest Path

Single-source shortest path (SSSP) is a problem where one has to find the shortest paths from
one source node s to all other nodes in a graph. The problem is already extensively studied in
sequential and parallel context [18, 31].

The benchmark included in Pheet is a quite simple parallelization of Dijkstra’s algorithm.
In Dijkstra’s algorithm a tentative distance value is assigned to each node in the graph. In each
iteration, beginning at the source, the node with the lowest distance value is relaxed. During
this relaxation it is checked whether a neighboring node can be reached through the node that is
currently relaxed with fewer costs. A priority queue is used to store the nodes that still need to
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be relaxed. This guarantees that each node is relaxed exactly once. After all nodes are relaxed,
the shortest paths between the source and all other nodes are available.

In Pheet’s parallel version of Dijkstra’s algorithm multiple nodes are relaxed in parallel.
Each node is relaxed in an own task. Therefore relaxing a node means executing a task in the
parallel version. Due to the parallel execution of the relaxation, some nodes might be relaxed
too early before their distance value is fixed. Therefore it happens that some nodes need to be
re-relaxed. So the original relaxation of such nodes is useless work.

The prioritization which nodes are relaxed next corresponds with the prioritization which
tasks are executed next by the scheduler. Pheet offers scheduling strategies that allow to assign
priorities to tasks and so the order in which tasks are executed can be controlled. This is used
by the parallel version of Dijkstra’s algorithm and therefore replaces the priority queue of the
sequential version. It can happen that a better path for a node is found, when there is still
another task for this node in the queue. In such cases nevertheless a new task is executed and
the scheduler at some point discards the old task.

The graphs for the benchmarks are again generated using the Erdős–Rényi method. The
graphs have n = 10, 000 nodes and an edge probability p = 0.5.

3.8 Unbalanced Tree Search

Unbalanced tree search (UTS) is a benchmark that was designed to measure performance of
parallel applications that require dynamic load balancing [32]. In the benchmark the number of
nodes of a given tree must be counted. The traversed tree is generated dynamically. Each node
has a descriptor, which is used to determine the number of children of the node. The child node
descriptors are generated using a cryptographic hash on the combination of parent descriptor
and the index of the generated child node. The node descriptors also work as a random variable
that determines the number of children of the node.

To determine the overall shape of the generated tree one of two different tree types can
be selected. The tree type determines the probability distribution that is used to generate the
children of the node. Either a geometric or binomial distribution can be used. Accordingly a
geometric or a binomial tree is produced.

In a binomial tree each node has m children with a probability q and no children with prob-
ability 1 − q. Therefore for the generation of binomial trees the parameters m and q have to be
chosen. A binomial tree is a perfect adversary for load balancing systems, since the expected
work is the same at all nodes. This implies that knowing where a node is located in the tree,
does not help to estimate the size of the subtree.

For geometric trees the parameter d limits the maximum depth of the generated tree. In
geometric trees the expected size of a subtree increases the closer the root node of the subtree is
located to the root. This kind of generation yields very unbalanced trees.

For each node in the tree a task is spawned and executed by the scheduler. Such tasks are
very lightweight and therefore this benchmark is well-suited to show and compare the overhead
of different schedulers.

We use three different Unbalanced Tree Search benchmarks. The numbers used in the names
of these three benchmarks coincide with the parameter used to select the corresponding variant
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in the Pheet benchmark suite:

UTS-0 In this benchmark a geometric tree with a maximum depth d = 10 is generated, which
results in a total of 4, 130, 071 nodes.

UTS-4 In the second unbalanced tree search benchmark a hybrid tree with a maximum depth of
d = 16 is used. Hybrid trees are generated with geometric distributions near the root and
binomial distributions towards the leaves. For the binomial parts of the tree the parameter
values q = 0.234375 and m = 4 are used. In the end 4, 132, 453 nodes are included in
this tree.

UTS-7 In the third UTS benchmark a binomial tree with r = 5 and m = 5 is traversed, which
consists of 111, 345, 631 nodes.

3.9 Variety of Benchmarks and Systems

We tried to choose a set of benchmarks that test different aspects of the task scheduler. Some
of the benchmarks are computation bound (e.g. graph bipartitioning and UTS) and others are
memory bound (e.g. LU decomposition and Quicksort). Not all benchmarks can utilize all avail-
able cores on this large machines, whereas others benefit from the usage of (almost) all cores.
However, this is also true in real-life applications, where it is not always possible to split the
work in enough parts to profit from to usage of lots of processors. Nevertheless six benchmarks
can only show some performance characteristics of the scheduler and it is not possible to show
results which can be generalized to all different types of applications. Therefore it is always a
good idea to run specialized benchmarks when the performance of an application is critical.

We tested our schedulers on two different systems. Although the benchmark results show
that these systems sometimes behave rather differently, we are well aware that tests on only two
machines cannot be used to judge a scheduler or algorithm conclusively. On one hand exhaustive
testing on a system takes a lot of time and on the other hand sometimes other problems stand in
the way of running benchmarks on other machines. We would have liked to show results on more
machines. Pheet uses standard C++ and only common libraries, which are good preconditions
to execute tests on a variety of different systems. However, we ran into practical problems like
incomplete C++11 support, which prevented tests on more systems.
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CHAPTER 4
Backoff Techniques

The original ABP work-stealing algorithm uses a yield system call between every pair of con-
secutive steal attempts [8]. Pheet’s work-stealing scheduler uses a slightly different approach: It
does not use yield, but a so called backoff. A backoff is an algorithm that is used to slow down
some process, until a suitable process rate is found. In case of Pheet this means that every time
a thread backs off it is blocked for some timespan. The backoff time is increased every time a
thread calls the backoff function. How much the time is increased depends on the specific
implementation.

4.1 Backoffs in other fields

Backoffs were first used in Aloha, which is a wireless, packet-switching network [1]. The back-
off was adapted for the Ethernet and is used in various synchronization techniques on shared
memory multiprocessor systems [2, 30]. A backoff can also be used in locks to prevent un-
necessary contention when two or more threads try to access the critical section at the same
time [25].

There exist several variants of backoff mechanisms that can be distinguished by their way to
determine the time to sleep:

Linear backoff Each time the process or thread backs off, the time to sleep is increased by a
constant value [2, 30].

Exponential backoff When an exponential backoff is used, the time to back off is increased by
multiplying it with a backoff factor r > 1. In the special case of r = 2, the backoff is
called binary exponential backoff (BEB) [2, 25, 28].

Proportional backoff A proportional backoff can be used, when some kind of information that
helps to estimate the time to wait, is available. The process is than delayed proportional
to this estimated time. E.g. such a backoff can be used for a ticket lock: Each thread
knows its own ticket number and the number of the ticket that is currently served. Since
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threads that have a higher ticket number need to wait longer to enter the critical section,
such threads can be put longer to sleep than threads with a lower number. Therefore a
proportional backoff can be used. In such cases other types of backoffs can be disadvan-
tageous, since a backed off thread with a small ticket number can stall other threads with
higher numbers [30].

Exponential-linear backoff The exponential-linear backoff algorithm (ELBA) is a technique
proposed for contention-based wireless networks. It is a combination of a linear and an
exponential backoff: As long as there are few transmission collisions the backoff time is
increased in an exponential way. However, when some threshold is exceeded, the backoff
increases the time in a linear way [28].

Beside this general classification of backoffs, in each backoff type the following properties
can be customized:

Randomness To prevent that two threads coincidentally wake up at the same moment, some
randomness can be added to the calculation of the backoff time. On the one hand this can
be achieved by adding some random value or by multiplication with a random factor. On
the other hand some implementations do not use the calculated backoff time directly to
put the thread to sleep, but use it as a maximum value for the sleep time. The actual sleep
time is a random value between zero and the current backoff time.

Decrease of backoff time It can be decided how the backoff time is decreased after a successful
attempt. The backoff time can simply be reset to its minimum value, the same strategy for
increasing the time can be used for decreasing it or a completely different method can be
applied.

Minimum and maximum backoff time The minimum backoff time ideally is the time the thread
has at least to wait before it can continue its work. The maximum is important to prevent
threads from waiting a very long time, which probably leads to an unnecessary delay of
work. Backoffs that make use of a maximum backoff time are also called truncated [27].

In the area of networking many studies about the performance and especially about the
stability of exponential backoff algorithms exist [5, 10, 27]. However, Kwak et al. state that
these studies often produced contradictory results on the stability of exponential backoffs, due
to various used definitions of stability and due to modified or simplified models of the backoff
algorithm. The following two groups of stability definitions exist [27]:

Throughput definition Using the throughput definition the backoff algorithm is stable when
the throughput does not collapse if the load goes to infinity.

Delay definition Under the delay definition the algorithm is stable when the waiting time is
bounded.

These contrary definitions make it hard to give a summary of the existing papers. Addition-
ally most of the existing analyses regarding performance and stability of backoffs are done in the
context of a specific network medium access protocol like Ethernet or WLAN. This means that
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there is one shared medium that is tried to accessed and where collisions need to be prevented.
This is quite different to the usage of backoffs in work-stealing schedulers, where there is neither
a shared medium that is tried to accessed nor do collisions exist. Since we could not think of a
good analogy between networks and scheduling, we did not research the existing work on the
usage of backoffs in networks any deeper.

4.2 Backoffs in work-stealing schedulers

The idea of using a backoff mechanism for a (work-stealing) scheduler is not new, but there
exists hardly any deeper analysis. We think that this mechanism can also be seen as a simple
form of an adaptive scheduling technique. Therefore we want to analyze to which extent such
backoffs can help to improve the performance of a work-stealing scheduler.

By default Pheet uses a truncated exponential backoff, where the time is doubled whenever
a thread backs off. Pheet does not back off after all unsuccessful steal attempts, but this depends
on the hierarchical victim selection described in Section 2.2. As long as the maximum distance
d to find a victim can be increased, the backoff is not used. Only when the maximum distance
in the hierarchy is reached, before the distance is reset to 1 again, the worker thread backs off.

In Pheet the minimum default time for the backoff is 100 nanoseconds and the maximum
time is 0.1 milliseconds. The thread is put to sleep for a random timespan between zero and
the calculated backoff time. When a task to steal is found, the backoff is reset to its minimum
time. All benchmarks that refer to the original backoff are made using these values, unless noted
otherwise.

In the following pages we try to give an answer to the following questions:

Is a backoff useful for a work-stealing scheduler? For this question the performance of sched-
ulers with different backoff variants are compared against a scheduler that uses the classic
approach with yield calls and against one that neither uses a backoff nor yield calls.

How do different backoff variants perform? In the previous section several different variants
of backoffs were introduced. We want to give an overview how these alternatives perform
and present our findings regarding sensible parameters of the backoffs.

Is there a difference between various applications regarding the usage of backoffs? It is con-
ceivable that the performance of the backoffs differs depending on the actual application.
Using the Pheet micro benchmarks we test if and what differences exist.

Are there differences between dedicated and multiprogrammed environments? Often per-
formance analyses are focused on dedicated environments where only one benchmark is
run at a time. We want to find out how different backoff variants perform in multipro-
grammed environments and if there are differences compared to dedicated environments.
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Figure 4.1: Graph Bipartitioning and LU factorization benchmarks on Mars that show two con-
trary performance characteristics regarding the usage of a backoff

4.3 Analysis of existing scheduler

Before working on improvements of the scheduler, we give an overview of the performance of
the existing scheduler. We especially focus on the aspect if and how the used backoff mechanism
improves the performance.

Figure 4.1 shows the results of two benchmarks that were run on Mars in a dedicated en-
vironment. One time the benchmark is run with the original scheduler with enabled backoff
(original), one time the backoff mechanism is completely disabled (nobackoff). In Figure 4.1a
the results of the Graph Bipartitioning benchmark are shown. When 20 and more cores are used,
the benchmark clearly benefits from the usage of a backoff compared to completely disabling
the backoff. In Figure 4.1b, which shows the results of the LU decomposition benchmark, an
opposite effect can be seen: The usage of the backoff more than triples the time to finish the
benchmark when all 80 cores are used.

Additionally one can see a so far not mentioned aspect of highly parallel machines: Not all
applications benefit from the usage of a vast number of cores. On the contrary, the performance
of applications that are not parallel enough, can even degrade when the work-stealing scheduler
tries to utilize too many cores. We use the term slowdown to describe this phenomenon. Since
schedulers often use all available cores by default, in practice this is an issue for many appli-
cations. The developer of an application could give the scheduler hints about how many cores
should be used. However, this is seldom possible since this depends on the actual machine and
can depend on the size of some kind of input data.

The scheduler using the backoff mechanism seems to run into the problem that it is some-
times too eager putting workers to sleep. If the degree of parallelism is varying, the backoff
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Figure 4.2: Number of steals in LU decomposition benchmark on Mars without using a backoff

mechanism may put workers to sleep for too long and may miss periods with a high degree of
parallelism. This seems to be the case in the shown LU factorization benchmark.

If the scheduler would always perform worse with enabled backoff, the natural corollary
would be to disable it in general. However, other application types like the graph bipartitioning
benchmark show a different behavior.

These results show that without any additional information, we cannot know if an arbitrary
set of tasks is processed faster by the scheduler with enabled backoff or by the one with disabled
backoff. Since Pheet is highly customizable, the backoff can be enabled or disabled by the
programmer, if he knows beforehand which scheduler is advantageous.

However, if this decision cannot be made at compile time, adaptive scheduling may ac-
commodate the behavior at runtime in a similar manner. Additionally we try to implement an
optimized backoff that does not have such bad worst-case scenarios like the backoff currently
used in Pheet. The benchmark results in Chapter 6 show that both approaches achieve similar
better results.

One important insight of these tests is that our adaptive scheduler at least needs to be com-
pared to the existing scheduler with backoff both enabled and disabled. If the new algorithm
in each benchmark performs roughly as good as the better of the two existing ones, this would
already be a very nice result. However, this may be very tricky, since it seems like that this is
highly dependent on the executed set of tasks.

Analysis of steal attempts

One possibility to analyze a work-stealing scheduler is to look at the number of steal attempts and
the number of successful steals. Figure 4.2 shows these two numbers for the LU decomposition
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Figure 4.3: Duration of series of unsuccessful steal attempts in LU decomposition benchmark
on Mars

benchmark. Since there are far more failed steal attempts than successful ones, the graph has a
log scale y-axis. The graph shows that the number of steal attempts is steadily increasing the
more cores are utilized. This is neither surprising nor worrisome, since in many applications the
majority of cores has to steal work from other cores now and then. Therefore the more cores are
used, the more steal attempts occur. However, in this figure one can also see that the number of
successful steals is significantly increasing only until 20 cores. The number of successful steals
is only slightly higher for 40 cores and does not increase when 80 cores are used. This is an
indicator that there is simply not enough work to utilize all processor cores. However, on all
cores workers are running that try to steal work from other workers.

To prevent such bad effects, it would be beneficial not to utilize all available cores. In an
ideal scenario, we would be able to recognize beforehand or after a short period of time, e.g.,
that it is better just to use 40 cores and not 80 cores. Quite apart from the fact that this would
be very hard on a global level, it is even more difficult to make such decision on a local level for
every worker. We need to identify characteristics on a per-worker level which indicate that it is
beneficial to put the worker to sleep.

The behavior of a work-stealing system can also be analyzed from the following point of
view: The best utilization is achieved, when each worker has enough local tasks and does not
need to steal tasks from other threads. When a worker runs out of tasks, preferably it does
not need many steal attempts to find a new task to work on. However, if there is not enough
work, many consecutive steal attempts can occur before the next successful one. Such series of
unsuccessful steal attempts could be a good starting point for putting a worker to sleep. Instead
of permanently trying to steal tasks wasting processor cycles, it could also be put to sleep.
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Figure 4.3 shows the duration of such series of unsuccessful steal attempts of one worker,
when the backoff is completely disabled. The data was gathered during a run of the LU de-
composition benchmark on Mars. Every time the first of a series of unsuccessful steal attempts
occurs, a timer is started. This timer is stopped after a successful steal. Therefore each point in
the diagram shows the time between the first unsuccessful steal attempt of a series and the next
successful one.

One can see that most of the time a task to steal is found in less than one millisecond.
Compared to the vast majority of cases where a task is found very quickly, there are just a few
cases where it takes around one millisecond to find a new task. In very few cases it even takes
around 10 milliseconds. Since microsecond accuracy is typical for modern systems, threads can
actually be put to sleep for time periods of around one millisecond. Additionally this graph does
not show if the worker just finds a single task to steal in regular intervals but nevertheless spends
most time with unsuccessful steal attempts. For such threads it could also be a good idea to
introduce longer periods of sleep.

The gathered data provides some insights into the characteristics of the work-stealing sched-
uler. However, the collected data is not really conclusive how and if an adaptive scheduler can
improve the situation. It seems like just counting the number of unsuccessful steal attempts or
measuring the time these series of unsuccessful attempts take, would not be enough. Addition-
ally it must be said that collecting the data itself changes the behavior and performance of the
system.

Executing multiple instances in parallel

When multiple applications that compete for processor resources run in parallel, adaptive schedul-
ing promises even more improvements. To analyze such situations the benchmarks were exe-
cuted in the following way: The benchmark instances are started and each instance immediately
starts with the single-threaded initialization of its test data. However, after the test data is ini-
tialized, each instance waits until all other instances are finished with their initialization using a
process barrier. So all instances start the multi-threaded benchmark at the same time.

Tests were executed running one, two and four instances of the benchmarks in parallel, as
seen in Figure 4.4. The results labeled 80-2 and 80-4 show the average execution time of the
benchmarks when 2 and 4 instances are run in parallel. Since both benchmarks cannot utilize
all cores, one might expect that it is better to run more than one instance in parallel. It would
be possible that each instance on average takes less time than running only one instance. Again
the tests show contrary results for the two benchmarks: In Figure 4.4a the graph bipartitioning
benchmark results are shown. The average execution time stays roughly the same, even when
two or four instances of the application are run in parallel. The LU decomposition benchmark,
which is shown in Figure 4.4b behaves differently and the performance gets notably worse when
more than one instance is run in parallel. The significant result is that the scheduler with enabled
backoff performs awfully badly for the LU factorization benchmark. This coincides with the
measurements in the dedicated environment.

The exact reasons are unclear, it may be that putting workers too often to sleep, leads to lots
of context switches between the processes which worsens the throughput of the whole system.
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Figure 4.4: Graph Bipartitioning and LU factorization benchmarks in multiprogrammed envi-
ronment on Mars that show two contrary performance characteristics regarding the usage of a
backoff

However, it is very interesting that the results are again highly dependent on the type of tasks
spawned by the application.

One reason for this behavior might be that the graph bipartitioning benchmark is computa-
tion bound, whereas the LU decomposition benchmark is memory bound. In the bipartitioning
benchmark a graph with only 35 nodes is used, which allows the processors to keep the data
in its caches most of the time. The LU decomposition benchmark operates on matrices of size
1024x1024 which is a lot more of data.

4.4 New Backoff variants

Since Pheet allows to exchange the backoff using template parameters, it is very easy to imple-
ment different backoff variants and configure their parameters. In Pheet a backoff must imple-
ment only two functions:

backoff() This function is called, whenever the worker decides that it is beneficial to block
the thread for some time, since it cannot find any useful work to process. E.g., this function
is called after an unsuccessful steal attempt.

reset() The reset function is in a way the counterpart to the backoff function. It is
called whenever the thread finds enough tasks to execute and the backoff time should
be decreased or completely reset. One situation where this happens is when a task is
successfully stolen from another worker.
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Beside the already mentioned versions without backoff and the default Pheet exponential
backoff, we decided to implement the following backoff variations:

Yield backoff This backoff mimics the behavior of the classic ABP work-stealing scheduler
and just calls the yield function when the thread backs off.

Exponential backoff Pheet uses an exponential backoff at the moment, for better comparison
we implemented another version of such backoff that allows a more fine-grained cus-
tomization of its parameters.

Linear backoff It is interesting to compare the more complex backoffs to a very simplistic
linear backoff.

Combined backoff The idea of the combined backoff is based on the exponential-linear back-
off. In the exponential-linear backoff the backoff time is increased in an exponential way
as long as there are only a few failed steal attempts and it is switched to increasing linearly
above a threshold. However, we also want to try it the other way round, where the backoff
time is increasing linearly first and exponentially later.

Linear combination backoff In this backoff implementation the backoff time is calculated by
linear combination of two different backoffs. A parameter controls the weighting between
the two backoffs. A more detailed description of the backoff is given further below.

Beside these basic backoff types we try to evaluate the influence of the different properties
of the backoff. We expect that the minimum and maximum backoff time are the most crucial
parameters. Additionally the way how the backoff time is decreased may affect the performance.
We also test whether using some kind of randomness changes the behavior. Since each worker
already uses randomness when selecting victims for stealing tasks, it is not expected that random
sleep times in the backoff are beneficial.

A further idea that arose during the implementation of the backoffs, is a combination of
yield with other backoff variants. The idea is that the first call of backoff executes a simple
yield system call, whereas all next calls until reset behave like the default backoff imple-
mentation. So when backoff is only called once the worker is not actually put to sleep, but
just the yield function is executed. All succeeding calls, until reset is called, behave like a
normal backoff and put the thread to sleep.

In the next few pages we describe properties and selected default parameter values for the
different kind of backoffs. The selection of default parameter values is mostly done by running
a set of benchmarks. Since testing all these parameters takes a lot of time, the benchmark
procedure is modified for this section: For the Unbalanced Tree Search benchmark only the
variant with a maximum depth of d = 10 is used. In all benchmarks only 7 iterations instead of
20 are executed on Saturn.

Linear backoff

Beside the yield backoff that does not contain any configurable properties, the linear backoff is
the simplest backoff. Nevertheless there are still many parameters that can be chosen:
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Figure 4.5: Exemplary sleep times of different randomness variants used in linear backoff

Step size The step size defines the constant value that is added to the backoff time at every
backoff call.

Minimum and maximum backoff time Sensible values for the minimum and the maximum
time must be chosen.

Slow reset We use the linear backoff to find out, if it makes sense to decrease the backoff time
slowly when reset is called. When the slow reset mechanism is used, every time reset
is called, the backoff time is decreased by the step size until the minimum backoff time is
reached.

Randomness We test three variants of randomness. First of all we do not use random values at
all. In this case every time the backoff is called, the time to sleep is simply increased by
the step size. In the second variant, the backoff time is increased by STEP_SIZE/2 +
Rand(0, STEP_SIZE). In the third variant the backoff time is constantly increased by
the step size. However, the thread is not actually suspended for this backoff time, but for
a random value between 0 and the current backoff time.

Figure 4.5 shows exemplary backoff times of the three randomness variants of the linear
backoff. One can see that first variant that does not use any random value and the second
variant which increases the backoff time in a random way, behave very similarly. Contrary
the third variant has very varying sleep times, since any random value between 0 and the
current backoff time is possible.
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Figure 4.6: Aggregated results showing impact of different step sizes for linear backoff on Saturn

Step size

To determine which values for the step size are reasonable, the minimum backoff time was set
to 100ns and the maximum backoff time to 1s. 1s as maximum backoff time is a quite large
value and is probably never reached in our benchmarks. We chose this large value, to make sure
that the different step sizes have a large influence on the results. No randomization was used
and the backoff time was set back to its minimum value at each reset call. This means slow
reset was not used. The tests were executed on Saturn with step sizes between 1µs and 0.1s. All
benchmarks show similar behavior according to the step sizes. Figure 4.6 shows the aggregated
results of all benchmarks. One can see that step sizes between 10µs and 0.1ms are reasonable
for the linear backoff in these situations, also when multiple instances are run in parallel.

It seems that especially the benchmarks in the multiprogrammed environment are more sen-
sible to the step size. A step size of 1µs is roughly as good as a step size of 50µs, as long as only
one instance is run at a time. When two and more particularly four instances are run in parallel,
1µs is clearly worse. Comparing all results we think 50µs is the best suited step size for our
linear backoff. We use this step size in all further benchmarks of the linear backoff.
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Figure 4.7: Aggregated results showing impact of different minimum backoff times for linear
backoff on Saturn

Minimum backoff time

To find out the optimal minimum backoff time the maximum backoff time was again set to 1s
and the step size was set to 50µs. Minimum backoff times between 0s and 0.1s were tested.
The results in Figure 4.7 show that the performance is quite similar as long as the minimum
time is below 10ms. It is interesting that there is hardly any difference between 0ms and 1ms.
Therefore 10µs was chosen as default minimum backoff time.

Maximum backoff time

In the benchmarks to determine the best maximum backoff time the same parameters like in the
tests of the minimum backoff time were used, but the minimum backoff time was set to 10µs.
Maximum backoff times between 10µs and 1s were tested. In the case were the maximum
backoff time was set to 10µs, the thread is stopped for exactly 10µs every time, since this is also
the minimum backoff time.

The tests showed the importance of setting a large enough maximum backoff time in mul-
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Figure 4.8: Aggregated results showing impact of different maximum backoff times for linear
backoff on Saturn

tiprogrammed environments. Depending on the test case, all values above 10µs or 100µs lead
to very similar performance results. It is no big surprise that it does not matter if the maximum
backoff time is set to 1ms, 10ms or even greater values. Since the step size is set to 50µs,
backoff would have to be called 20 times to reach a backoff time of 1ms. It is likely that
sometime before a successful steal occurs.

However, these results do not necessarily mean that the maximum backoff time can be any
large enough value or that the maximum time is not important at all. It can happen that a worker
does not find a task for a very long time and therefore steadily increases the backoff time. If
there is no maximum value, the worker could be blocked for a very long time and e.g. block the
other threads when all tasks are already finished. Therefore as default value we suggest a small
one that performs well, in our test cases this would be something around 0.5ms. 0.5ms will also
be the default value for our linear backoff.

Randomness and slow reset

In a final step the parameters for adding some randomness and resetting the backoff time slowly,
were tested. Figure 4.9 depicts the results. In the no-rand test case no randomness was used
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Figure 4.9: Aggregated results showing impact of different randomness variants and slowly
resetting the backoff time in linear backoff on Saturn

and the backoff time was not reset slowly. This is the same behavior like in the tests that were
presented so far. The rand-constant case shows the results, where the backoff time is increased
by STEP_SIZE/2 +Rand(0, STEP_SIZE) (variant 2). The described variant 3 is used in
the limit-max test cases. The backoff time is some random value between 0 and the calculated
backoff time. Since this leads to smaller backoff times in average, two scheduler variants were
created: One variant uses 10µs as minimum backoff time and the other 20µs. The last tested
variant is the slow-reset case, where the backoff time is reset slowly. No randomness is used in
this test case.

The results do not show any significant differences between all this described scheduler
variants. This is especially interesting for the slow-reset case, we expected that this influences
the performance notably.

Overview linear backoff results

In summary the results of the parameter tests for the linear backoff are insightful. We expected
that the backoff is much more sensitive to changing the parameter values. As a matter of fact,
this is not the case in our tests. It will be interesting to see if the other backoff variants show
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Parameter reasonable value range chosen default value
step size 10µs - 0.1ms 50µs

minimum backoff time 0ms - 1ms 10µs

maximum backoff time > 100µs 0.5ms

randomness no significant influence no randomness
slow reset no significant influence no slow reset

Table 4.1: Reasonable and chosen parameter values for linear backoff

similar behavior.
Table 4.1 shows an overview of reasonable value ranges and the values we chose as default

parameter values for our linear backoff implementation. Of course like in many other compo-
nents in Pheet, this default values can be overwritten by the developer if needed.

As a variation of the linear backoff, we tried to combine it with the yield operation: In this
variation the first invocation of backoff calls yield instead of putting the worker to sleep. All
other backoff invocations then follow the same semantics as the normal linear backoff. We could
not measure any significant performance differences when using this variation and therefore did
not follow the approach any further.

Exponential backoff

Most of the time exponential backoffs are implemented as binary exponential backoffs. We
want to find out whether other exponents than 2 are usable for backoffs in this area. We are also
interested if the usage of non-integer exponents is reasonable or even beneficial.

Backoff factor r

To determine the best backoff factor r we set the maximum backoff time to 1s. Backoff factors
between 1.1 and 3.5 are tested. We expected that the minimum backoff time also has a big
influence on the performance. Therefore we executed all tests with a minimum backoff time of
10ns and 10µs.

The benchmarks showed diverse results in these test runs. Some of them benefit from larger
backoff factors, others run faster with lower factors. Figure 4.10 shows an overview of the results
for the tests with a minimum backoff time of 10ns. The test runs with a minimum backoff time
of 10µs showed very similar characteristics.

In this case it is not easy to pick one backoff factor that performs the best. We decided to
use 1.3 as our default backoff factor. This factor offers acceptable performance in all different
benchmarks. However, it must be said that depending on the benchmark other benchmark factors
perform better.
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Figure 4.10: Aggregated results showing impact of different backoff factors in exponential back-
off on Saturn

Minimum backoff time

To find out the best minimum backoff time, the maximum backoff time was set to 1s and the
backoff factor to 1.3. Minimum backoff times in the range from 10ms to 0.1s were tested.

There were no big differences between all chosen minimum backoff times up to 10ms, as
can be seen in Figure 4.11. Like in the linear backoff, we chose 10µs as default value for the
minimum backoff time of the exponential backoff.

Maximum backoff time

For the tests regarding the maximum backoff time, the same parameters that were used to de-
termine the best minimum backoff time were used. The minimum backoff time itself was set to
10µs. Maximum backoff times in the range from 0.1ms to 1s were tested.

Like in the case of the linear backoff, the maximum backoff time does not have a big in-
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Figure 4.11: Aggregated results showing impact of different minimum backoff times in expo-
nential backoff on Saturn

fluence on the overall performance. Only in multiprogrammed environments maximum backoff
times of 0.1s or larger are worse than smaller ones. Between the other tested variants basi-
cally no differences exist, as can be seen in Figure 4.12. We therefore chose 0.5ms as default
maximum backoff time.

Randomness and slow reset

In our implementation of the exponential backoff two different kinds of randomness can be used:

Const In this variant, the new backoff time is calculated by adding some random value in
the range from −MinBackoff/2 and MinBackoff/2 to the calculated backoff time:
OldBackoffT ime ∗ r +Rand(−MinBackoff/2,MinBackoff/2)

LimitMax In the second variant the backoff time is calculated in the same way like in the
Const variant. However, the thread is not blocked for the calculated backoff time, but
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Figure 4.12: Aggregated results showing impact of different maximum backoff times in expo-
nential backoff on Saturn

for a random timespan between 0 and the calculated backoff time. Since in this case the
expected time to sleep is lower, tests with a minimum backoff time of 20µs instead of
10µs were made.

Figure 4.13 shows a comparison between the two variants where some randomization is
included in the backoff time, one variant were slow reset is used and a variant without random-
ization or slow reset. Like in the linear backoff, no significant differences between all these
variants can be seen. Neither randomization nor slowly resetting backoff time improves the
performance of the scheduler.

Overview exponential backoff results

Like in the case of the linear backoff, choosing good parameter values for the exponential back-
off is not as hard as we expected. As long as the parameter values are within a reasonable range
of values, the performance of the scheduler is not influenced a lot.

Table 4.2 shows an overview of reasonable value ranges and the values we chose as de-
fault parameters for our exponential backoff implementation. Again this default values can be
overwritten by the developer if needed.
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Figure 4.13: Aggregated results showing impact of different randomization variants and slow
reset test in exponential backoff on Saturn

Parameter reasonable value range chosen default value
backoff factor 1.1s - 2s 1.3s

minimum backoff time 10ns - 1ms 10µs

maximum backoff time 10ns - 10ms 0.5ms

randomness no significant influence no randomness
slow reset no significant influence no slow reset

Table 4.2: Reasonable and chosen parameter values for exponential backoff
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Combined backoff

The idea of the combined backoff is based on the exponential-linear backoff. In the exponential-
linear backoff the backoff time is increased in an exponential way until some threshold and
afterwards in a linear way [28]. We want to test this exponential-linear backoff and a second
variant where the backoff time is first increased linearly and then exponentially. This second
variant is called linear-exponential backoff.

Listing 4.1: CombinedBackoff Template

template <class BackoffOne, class BackoffTwo>
class CombinedBackoffImpl {
public:

void backoff();
void reset();
unsigned int current_sleep_time() const;

static_assert(BackoffOne::VALUE_MAX_BACKOFF <= BackoffTwo::
VALUE_MIN_BACKOFF,
"Max BackoffTime of BackoffOne must be smaller or equal to Min

BackoffTime of BackoffTwo");

constexpr static unsigned int VALUE_MIN_BACKOFF = BackoffOne::
VALUE_MIN_BACKOFF;

constexpr static unsigned int VALUE_MAX_BACKOFF = BackoffTwo::
VALUE_MAX_BACKOFF;

constexpr static bool VALUE_SLOW_RESET = BackoffOne::VALUE_SLOW_RESET ||
BackoffTwo::VALUE_SLOW_RESET;

private:
BackoffOne bo1;
BackoffTwo bo2;

};

template <class BackoffOne, class BackoffTwo>
void CombinedBackoffImpl<BackoffOne, BackoffTwo>::backoff() {

if (bo1.current_sleep_time() >= BackoffOne::VALUE_MAX_BACKOFF) {
bo2.backoff();

}
else {
bo1.backoff();

}
}

// other methods

// using directives that compose actual usable backoffs
template <class Pheet>
using LinearBackoffExpLin = LinearBackoffImpl<Pheet, 10, 3500, 500,

BackoffRandomness::Without, false>;
template <class Pheet>
using ExponentialBackoff2ExpLin = ExponentialBackoff2Impl<Pheet, 3500,

100000, 2, BackoffRandomness::Without, false>;
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template <class Pheet>
using ExponentialLinearBackoff = CombinedBackoffImpl<LinearBackoffExpLin<

Pheet>, ExponentialBackoff2ExpLin<Pheet>>;

template <class Pheet>
using YieldExponentialLinearBackoff = CombinedBackoffImpl<YieldBackoff<

Pheet>, ExponentialLinearBackoff<Pheet>>;

Listing 4.1 shows the implementation of this combined backoff. CombinedBackoff is
a template for backoffs that can be composed by combination of two backoffs. It is used for
the implementation of the exponential-linear backoff, the linear-exponential backoff and the
exponential-linear backoff with yield. The ExponentialLinearBackoff consists of a lin-
ear and an exponential backoff. The YieldExponentialLinearBackoff is composed
by combining the YieldBackoff and the ExponentialLinearBackoff. The com-
position of these backoffs is achieved by the using directives at the end of the listing. Since
CombinedBackoff is a template, this compositions already exist at compile time and other
combined backoffs can be created by the user of the Pheet library. This shows a bit of the
flexibility of Pheet and the C++ template mechanism.

Since two backoffs are involved, the number of parameters that can be chosen is even larger.
Due to time and resource constraints we cannot test all reasonable combinations of parameter
values. We test a set of value ranges for this parameters which we think are most promising.
However, based on the results of the linear and exponential backoff tests, we expect that the
parameter values do not matter that much in this case either.

To decide whether it is plausible that tuning the parameters improves performance, we test
three simple variations of both the linear-exponential and the exponential-linear backoff: We
check if significantly changing the threshold between the linear and the exponential backoff
influences the performance noteworthy. The parameter values used in these three variants are
shown in Table 4.3. Minimum backoff time 1 and maximum backoff time 1 denote the times for
the exponential backoff and maximum backoff time 2 for the linear backoff in the exponential-
linear backoff. For the linear-exponential backoff it is the other way round. In other words,
maximum backoff time 1 is the threshold where it is switched between the two backoffs. This
threshold is adjusted in the three variants: In variant 1 it is roughly in the middle of the two
backoffs, in variant 2 the second backoff is used only when backoff is called very often, in
third variant the threshold is very low so the second backoff is used frequently.

We only show the results of the exponential-linear backoff in Figure 4.14. The linear-
exponential backoff behaves very similarly. One can see that there are no significant differences
between all these variants. We therefore decided that it does not make any sense to test other
parameter values. It can be assumed that as long as the parameters are in a reasonable value
range, the performance does not change a lot. We tested and described these reasonable ranges
in-depth for the exponential and the linear backoff.

As default parameter values for our implementation of the exponential-linear and the linear-
exponential backoffs we chose the ones from variant 1, as given in Table 4.3.
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Parameter Variant Exponential-linear Linear-exponential
backoff factor all variants 2 1.3

backoff step all variants 50µs 25µs

minimum backoff time 1 all variants 10µs 10µs

maximum backoff time 1
minimum backoff time 2

variant 1 200µs 100µs
variant 2 400µs 400µs
variant 3 50µss 50µs

maximum backoff time 2 all variants 0.5ms 0.5ms

Table 4.3: Parameter values for three different exponential-linear and linear-exponential backoff
variants
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Figure 4.14: Aggregated results showing impact of different variants of exponential-linear back-
off on Saturn
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Linear combination backoff

As a variation of the combined backoff we implemented a linear combination backoff, where the
backoff time is calculated as a linear combination of a linear and an exponential backoff. The
backoff time is therefore calculated in the following way:

btc = t ∗ tb1 + (1− t) ∗ tb2 (4.1)

In Equation 4.1 tbc denotes the combined backoff time, tb1 and tb2 denotes the backoff times of
the two used backoffs and t is a parameter used to control the linear combination of the values,
were 0 ≤ t ≤ 1.

Our implementation of the linear combination backoff can use any kind of backoff, it is not
limited to an exponential and a linear backoff. However, we did not perform any tests using
other backoffs.

Like in the case of the combined backoff, it is very time consuming to test a range of pa-
rameter values in a systematic way. So again we try to decide whether an in-depth analysis
makes sense first. We test a few variants which should show significant performance differences
if the backoff is sensible to changing the parameters. Based on the experiences with the other
backoffs, we assume that again it is only important to choose reasonable parameter values. We
expect that the value of t does not influence the results significantly, as long as the parameters of
both used backoffs are chosen reasonable. Of course t would influence the performance, if the
parameters of one of the two backoffs are set to completely senseless values.

We therefore executed the benchmarks using a linear combination backoff with t set to 0.1,
0.25, 0.5, 0.75 and 0.9. The higher t is, the higher is the influence of the linear backoff. The
parameter values for the linear and exponential backoff are set to the chosen default values that
can be seen in Table 4.1 and Table 4.2 respectively.

The results are again very similar for all different t values. However, in multiprogrammed
environments the variants with a higher t value perform slightly better in some benchmarks.
Figure 4.15 shows exemplary results for the sorting benchmark.

Nevertheless we think that the potential for optimization of the parameters is not very high.
Therefore we did not execute further tests with different parameters and chose t = 0.75 as our
default parameter for the linear combination backoff that uses the default linear backoff and
exponential backoff that were already presented.

Parameter tuning conclusion

The parameter tuning of the different backoff implementations showed that the overall perfor-
mance does not change a lot, as long as the parameter values are in a reasonable range. In the
end optimal parameter values highly depend on the machine where the application is executed
and on the tasks that are executed. In the parameter tuning tests we often saw the effect that
different benchmarks would require different parameters. Due to time and resource constraints
we could not execute all tests also on a second machine, but we also ran some of the tests on
Mars. These tests showed that sometimes slightly other parameter values would be better on this
machine. We therefore doubt that it is possible to select one ”perfect set” of parameter values.
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Figure 4.15: Results of quicksort benchmark showing different variants of linear combination
backoff on Saturn

Figure 4.16 shows the sleep times for the different backoff implementations, using the de-
scribed default parameter values. The x-axis shows the number of times backoff was called
without calling reset and the y-axis shows the corresponding sleep time in nanoseconds. One
can see that most of the new backoffs show a very similar behavior. One slight exception is the
exponential backoff that increases the backoff time significantly slower than the other variants.
The reason for this is the small chosen backoff factor of 1.3. The backoff that is currently used
in Pheet (Original) increases the backoff time even slower than our new exponential backoff.
It has both a smaller minimum and maximum backoff time, additionally it uses randomization
by default. It will be interesting to see how these different backoff implementations perform in
comparison.

4.5 Comparison of backoffs in benchmarks

To compare the different backoff types the described benchmarks were run on Saturn and Mars.
20 iterations of each benchmark were run, the graph bipartitioning benchmark was executed 100
times. The benchmark runs show that all tested backoffs have similar performance characteris-
tics as long as reasonable parameters are used. It does not make a big difference which backoff
type is used, as long as its parameters are selected with care. A nice result is that our carefully
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Figure 4.16: Backoff times of different backoffs

tuned backoff types overall perform better than the backoff used so far in Pheet. Additionally
the schedulers using our new backoff types perform better than the scheduler that uses a simple
yield call.

As a conclusion of this chapter we want to present a few interesting and surprising results of
these tests.

Figure 4.17 shows the results of the LU decomposition benchmark on Mars. The results
show that like in most of the other tests our new backoff variants perform very similar. One can
see that the original backoff and the yield backoff perform very badly when 80 or more cores are
used. An explanation for this could be that the yield backoff does not increase the backoff time
at all and the original backoff increases the backoff time very slowly. Therefore one could argue
that workers waste too much time trying to steal tasks when there is not enough work available.
Compared to these two backoffs, the variant without any backoff (noop) performs pretty well.
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Figure 4.17: Test results of LU decomposition benchmark run on Mars

However, one would think that the variant without any backoff would waste at least as many
cycles with unsuccessful steal attempts as the variant with yield.

On Saturn in the same benchmark the yield backoff performs roughly as good as our new
backoff variants, which can be seen in Figure 4.18. In the multiprogrammed environment tests
on Saturn, the variant without any backoff and the original backoff are worse than the other
variants.

Since we were surprised of this behavior, we rerun the LU decomposition benchmark on
both machines and got the same results again. One explanation for this behavior on Mars may
be that in this benchmark it is bad to put a thread to sleep for a short time or to call yield very
often. It seems to be better not to do anything (noop) and just let the operating system decide
when a thread should be suspended.

Figure 4.19 shows an overview of the performance of the different backoffs on Saturn, Fig-
ure 4.20 contains such overview for the tests on Mars.

On both machines the variant using no backoff at all and Pheet’s original backoff implemen-
tation are significantly slower than the other variants. This is especially true, when multiple tests
were run in parallel. It is interesting to see that the yield variant works quite well on Saturn,
whereas it performs bad on Mars.

The benchmarks also showed that despite the optimization efforts, in a few situations it is
still beneficial to completely disable the backoff. Therefore further algorithms are also compared
with the scheduler that does not use any kind of backoff.

However, overall the new backoff variants work quite well compared to the backoff used
so far in Pheet and also compared with the variant that does not use a backoff at all. Our new
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Figure 4.18: Test results of LU decomposition benchmark run on Saturn
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Figure 4.19: Aggregated results of backoff benchmarks on Saturn
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Figure 4.20: Aggregated results of backoff benchmarks on Mars

backoffs additionally do not have these bad worst case scenarios that were shown in the section
about the analysis of the existing scheduler. Therefore we think that one of the new backoffs can
replace the existing backoff in Pheet as a new default backoff. In our tests the backoffs perform
very similar, so there is no clear best one. Since the linear backoff is probably the simplest one,
we chose the scheduler using the linear backoff as our new baseline for further comparisons.
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CHAPTER 5
Adaptive Work-Stealing Algorithms

Most of the presented approaches for adaptive work-stealing use some kind of central entity
to decide how many threads should be used to process the tasks. This can lead to scalability
issues when many processing cores are available. Balanced work-stealing that was introduced
in Section 2.6, does not have a central entity, but it relies on special operating system features.
As long as the required features are not available on a majority of the used operating systems,
this is not a very practical technique.

Therefore, in this section a technique for adaptive work-stealing with the following objec-
tives is presented:

No central data structure The usage of a central data structure can lead to high contention
when all cores try to access the data at the same time. The more processing cores are
used, the worse this issue gets.

No central process or service A central process can also lead to scalability problems and some-
how it must be controlled that such process is started exactly once when an application
that requires this process is run.

Portable The scheduler must neither be bound to a single operating system or make use of a
special operating system feature, nor must it be bound to a special hardware architecture.

No fixed quantum length If there are quanta of fixed length, every thread periodically has to
stop working to check if a given condition is met. This is an unnecessary overhead, since
workers that have enough work to process should just be able to run without interruptions.

Configurable In accordance to most other aspects of Pheet, this extension should be also be as
configurable as possible by the programmer.

We build upon the insights gained in the chapter about backoffs to design the adaptive work-
stealing algorithm. Especially the gathered data about the existing scheduler and the tests re-
garding reasonable parameter values for the backoffs should be helpful. In this chapter we first
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describe our new algorithm, then give an overview of the performance of it and describe the
differences to the scheduler that uses a simple backoff. We also present some implementation
variants of the basic algorithm.

5.1 Introduction of dynamic quanta algorithm

We now introduce our adaptive work-stealing algorithm, which we call dynamic quanta algo-
rithm. The existing scheduler we selected to adapt has the following basic properties, which we
do not change for our extensions:

• For each available processor core a worker (thread) is created. These worker threads are
created for each Pheet application that is run on the machine. Workers are not shared
between multiple applications. Additionally the programmer can choose whether simul-
taneous multi-threading should be used or not.

• As victim selection policy the semi-random hierarchical victim selection is used.

• When a worker runs out of work, it tries to steal one task at a time from another worker.
In the next steal operation it is first tried to steal a task from the same victim again.

Whenever it is decided that a worker is not needed for processing the tasks at the moment,
the worker is put to sleep for some dynamically calculated timespan. This can be done in a
portable way using the C++11 function std::this_thread::sleep_for or sleep_
until. We thought about using an approach similar to the BWS algorithm, where workers are
woken up by other workers when there are enough tasks available. In theory this seems like a
superior approach, since workers can really be stopped as long as they are not needed. However,
we could not think of a scalable solution and did not want to use mechanisms that are not part
of standard operating systems. Additionally we think that it is better to waste a few more cycles
with unsuccessful steal attempts than letting a worker sleep too long because it was not woken up
by another worker earlier. This can happen easily when a BWS-like approach is used. Therefore
we prefer the solution where a sleeping worker wakes up on its own.

The basic idea of most of the existing adaptive schedulers is to evaluate the workload of a
worker based on the effort spent stealing and working. For that the execution of the application is
partitioned into quanta and between two quanta the conditions for adding or removing workers
are checked. As outlined the new approach should not interrupt workers as long as they are
executing tasks and do not need to steal from other workers. Therefore an alternative for defining
a fixed quantum length and pausing the workers at such intervals is needed.

In the Palirria algorithm a separate thread is used to check the conditions for adding or
removing workers. However, we do not want to waste a thread and with it resources for this
process. Our chosen alternative are dynamic quanta. The normal execution of the workers is
only interrupted when it is decided that an interruption does not incur unnecessary overhead.
A natural point where checking of thresholds should not delay the processing of tasks is when
a worker tries to steal tasks from other threads. Only after an unsuccessful steal attempt it is
checked if the current quantum has ended and whether the conditions to put a worker to sleep
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are met. There does not exist a fixed quantum length, but a minimum quantum length that is
dynamically adjusted on the basis of the workload of the worker. A worker which task queue
never gets empty, does not have any additional overhead because of the adaptive scheduling.

In the algorithm a quantum is classified as efficient or inefficient. This classification is based
on the comparison of how much time was spent stealing with the time spent working in the
previous quantum. When the previous quantum is classified as inefficient, the worker is put to
sleep. The duration how long the worker is stopped, is again based on the time spent stealing.
Additionally the number of consecutive inefficient quanta is taken into consideration.

At the end of every quantum the duration of the next quantum is calculated. The quan-
tum length is dynamically adjusted by taking the number of consecutive inefficient quanta into
consideration.

5.2 Dynamic quanta algorithm overview

In the description of the algorithm a set of variables is used. The notation of the variables follows
three naming rules:

Variables which names start with n are integer values that are used as counters.

All variables that are named t denote point of times.

When a variable name starts with d, the variable stores some duration value.

Whenever a failed steal attempt occurs, a counter that stores the number of unsuccessful
steal attempts since the last successful steal is increased. Additionally it is checked if the current
quantum has ended. At the beginning of a quantum the time at which the quantum ends is
set. Therefore the test if the quantum has ended can be simply done by comparing the stored
quantum end time with the current time.

stealattem
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w
orking
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pt4
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T1 T2
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Figure 5.1: Illustration of the concept of a first unsuccessful steal attempt (T1)

To measure the time spent stealing we store the time when a first unsuccessful steal attempt
occurs. We define a first unsuccessful steal attempt, as the first steal attempt of a series of un-
successful ones. Therefore a first unsuccessful steal attempt is either the very first unsuccessful
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steal attempt of the worker or the previous steal attempt was a successful one. Whenever a suc-
cessful steal occurs, the current time minus the time stored at the first unsuccessful steal attempt
defines the duration of this series of unsuccessful steal attempts. Since we record the time after
the first unsuccessful steal attempt, the time that the first steal attempt lasted, is not included.
The reason for this approximation is that otherwise before every steal attempt the current time
has to be recorded, which we want to avoid. We think this is a reasonable approximation, since
a single steal attempt does not take a very long time.

Figure 5.1 illustrates this concept: Steal attempt 1 is a first unsuccessful steal attempt, since
the previous steal attempt 0 is a successful one. Therefore the time T1, which is the time right
after the unsuccessful steal attempt, is stored. After the next successful steal (steal attempt 4)
the duration of this series of unsuccessful steal attempts can be calculated by T2− T1.

The procedures for the failed and successful steals can be seen in Algorithm 5.1 and 5.2
respectively. The algorithms use the following set of variables that are all stored as instance
variables of the worker:

quantum end time tqe A time point that defines until when the current quantum at minimum
lasts.

unsuccessful steals start time tus Time point at which the last unsuccessful steal attempt oc-
curred that until now was not followed by a successful one.

quantum steal time ds Duration how long so far all steal attempts in this quantum lasted.

number of unsuccessful steal attempts nua In this variable the number of unsuccessful steal
attempts since the last successful steal is stored.

Additionally the algorithms use the following function:

Now This is the function that returns the current time. In formulas the current time is denoted
as n.

Algorithm 5.1: on-failed-steal

1 if tqe < Now then
2 ds← ds + Now− tus; update time spent stealing
3 on-quantum-end();
4 else
5 if nua = 0 then
6 tus← Now ; first unsuccessful steal attempt
7 end
8 end
9 nua← nua + 1; update number of unsuccessful steal attempts

The on-failed-steal method is the only method where it is checked, whether a quan-
tum has ended. This means that a quantum can only end after a failed steal. Therefore a worker
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Algorithm 5.2: on-successful-steal

1 if nua > 0 then
2 ds← ds + Now− tus; update time spent stealing
3 nua← 0;
4 end

can only be put to sleep at this point. If there is no failed steal attempt at all, the very first quan-
tum never ends and there is hardly any overhead for the adaptive extension of the scheduler. In
such cases the only additional work is checking the condition in the on-successful-steal
procedure.

The procedure that is invoked at the end of a quantum is shown in Algorithm 5.3. At the end
of a quantum it is decided if the quantum was efficient or inefficient. If it was inefficient, the
worker is put to sleep for some time. In both cases of an inefficient and an efficient quantum,
some state variables are reset and a new quantum is started. This means the variable that stores
the duration of the steal attempts in a quantum is reset and the quantum start time is set to the
current time. Additionally the variable that stores the time of the first unsuccessful steal attempt
is also set to the current time. A new quantum always starts after an unsuccessful steal attempt,
therefore we know that at the beginning of the quantum the worker will try to steal another task.
The function uses the following variables that were not described so far:

number of inefficient quanta niq This variable contains the number of inefficient quanta since
the last efficient quantum.

quantum start time tqs This time point contains the start time of the current quantum.

5.3 Detailed algorithm

In the previous section a quick overview of the algorithm was given. This section gives a more
detailed description and discusses challenges that came up during the design of the algorithm.

As described there exists no fixed quantum length, but only a minimum quantum length. The
programmer can set a default minimum quantum length dql. This default value is used as length
of the first quantum and as length for all quanta that occur after efficient quanta. The minimum
quantum length after an inefficient quantum is dynamically adjusted, but the default quantum
length is used as base for the calculation of the length of such quanta. The exact calculation of
this length is described further below.

Failed steal attempt

Every time a failed steal attempt occurs, the following two conditions are checked:

Check if last steal attempt was successful When the last steal attempt was successful, this
means that this was a first unsuccessful attempt. Therefore the unsuccessful steals start
time tus is set to the current time.
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Algorithm 5.3: on-quantum-end

1 dq ← Now− tqs; calculates actual length of quantum
2 rs← ds/dq; calculates ratio of time spent stealing
3 if rs > T then

quantum is classified as inefficient
4 st←...; calculate time to sleep
5 Sleep(st); block execution of thread
6 niq ← niq + 1;
7 tqe←...; calculate end time of next quantum

8 else
quantum is classified as efficient

9 niq ← 0;
10 tqe←...; calculate end time of next quantum based on default

quantum length

11 end
12 ds← 0;
13 tqs← Now;
14 tus← Now;

Check if current quantum has ended A quantum has ended, if the current time is greater than
the quantum end time tqe. If so, the procedure for the end of a quantum is invoked.
Beforehand the quantum steal time ds is increased by the duration between now and the
unsuccessful steals start time tus.

Successful steal

When a successful steal occurs, it is checked whether this steal is the first successful steal after
one or more unsuccessful attempts. This can be checked using the variable that stores the number
of unsuccessful steal attempts since the last successful one. When this variable is greater than
zero, the quantum steal time ds is increased and the number of unsuccessful attempts is reset to
0.

End of quantum

When the end of a quantum is reached, first of all the ratio between the time spent stealing and
working in the previous quantum is calculated. Since the time spent stealing ds and the length
of the quantum n− tqs are known, this ratio can be calculated by:

rs =
ds

n− tqs
(5.1)

If rs is greater than a threshold T the quantum is categorized as inefficient otherwise it is an
efficient quantum. T is a parameter in the range 0 ≤ T ≤ 1 that can be set by the developer who
uses the scheduler.
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When the quantum was efficient the worker continues execution without an interruption. The
end time for the next quantum tqe is set to n + dql and the number of inefficient quanta niq is
reset to 0.

The handling of inefficient quanta is the core of the algorithm. The basic idea is that the
occurrence of an inefficient quantum means it is very likely that there are not enough tasks for
all workers. Therefore the current worker is put to sleep for a certain amount of time. It remains
to decide how long the sleep period of the worker should last. For this the following data is taken
into consideration:

Ratio between time stealing and working rs The higher this ratio is, the longer the worker
should sleep.

Number of inefficient quanta niq The more consecutive inefficient quanta, the longer the worker
should sleep.

Default quantum length dql The basis for the time to sleep is the default minimum length of a
quantum.

The final equation to calculate the time of sleep dsl uses two constants S1 and S2 that can be
adjusted to control the duration. S1 controls the influence of the ratio between time stealing and
working rs, whereas S2 controls the influence of the number of consecutive inefficient quanta
niq:

dsl = dql ∗ rs ∗ S1 + dql ∗ niq ∗ S2 (5.2)

When the worker wakes up again, the next quantum is started. By design the worker contin-
ues its execution trying to steal a task from another thread.

However, without any further addition there is a flaw in the design of the algorithm similar
to the desire instability described in Section 21: Since a worker wakes up just because a certain
period of time has passed, there is no guarantee that there are tasks available to be processed
by the worker. So in a worst case scenario the worker continuously switches between sleeping
and trying to steal tasks without success for a full quantum. In such cases it would be better to
reduce the length of the quantum after a period of sleep.

Based on this reasoning, the quantum end time after a period of sleep is adjusted according
to the number of inefficient quanta niq. The more inefficient quanta occurred before, the shorter
the next quantum gets:

tqe = n+
dql

niq ∗ C + 1
(5.3)

C is another constant to control the behavior of the algorithm.
When a quantum is classified as efficient, the next quantum length equals the default quan-

tum length dql:
tqe = n+ dql (5.4)

It can still happen that a worker continuously switches between periods of sleep and com-
pletely inefficient quanta. However, the more inefficient quanta in succession occur, the longer
the sleep periods get and the shorter the quanta between. In Figure 5.2 these adjustments are
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Figure 5.2: Adjustment of quantum length and sleep periods in dynamic quanta algorithm
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Figure 5.3: Insertion of quantum with normal length in between

shown. In this figure it is assumed that the worker cannot find any tasks to steal, all steal at-
tempts are unsuccessful. The white boxes are periods where the worker tries to steal tasks, the
blue boxes symbolize periods where the worker is sleeping. After each inefficient quantum the
quantum length is reduced and therefore the time spans where the worker tries to steal tasks get
shorter. Contrary the periods where the thread is sleeping are getting longer.

Nevertheless this tweak can lead to a new problem: When there are many inefficient quanta,
the quanta between the sleep periods can get very short. This could mean that in this small
period of time no task is found, even when there are enough tasks available. So when there are
many inefficient quanta, periodically one quantum with normal length is inserted in between.
In these longer quanta, the worker has enough time to find a task if there is one available. In
Figure 5.3 such inserted quantum with longer length is shown in green.

End-of-quantum after first unsuccessful steal attempt

While performing early test runs of the scheduler, the question how to handle the end of a
quantum if it occurs at a first unsuccessful steal attempt, came up. Tests showed that changing the
behavior of the algorithm in such cases influences the performance in some test cases. Therefore
it was decided to analyze such situations in greater detail.

It might not be a good idea to block a worker after only one failed steal attempt. The basic
idea of work-stealing is trying to steal tasks from other workers. Therefore a single failed steal
attempt probably is not a good indicator that there are not enough tasks for all workers. So the
basic question is: Should it be avoided to put a worker to sleep right after a first unsuccessful steal
attempt? For our algorithm this also means: Should the normal on-quantum-end procedure
be invoked after a first unsuccessful steal?

The time a single failed steal attempt takes is short compared to the time the execution of an
average tasks requires. Since a worker is not interrupted when it executes a task, one can assume
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that a quantum that ends after a first unsuccessful steal attempt, is classified as efficient. This
can be seen in Figure 5.4, where quantum Q1 ends after a first unsuccessful steal attempt. If the
normal on-quantum-end procedure is invoked between Q1 and Q2, it is very likely that Q1

is an efficient quantum and the worker is not put to sleep.

Q1

working

stealing

Q2

time

Figure 5.4: First unsuccessful steal attempt after working on tasks

Based on this perception it is questionable, if it is reasonable to handle such situations with
the normal on-quantum-end function. We therefore came up with different ideas how to
handle such situations:

• It is reasonable to argue that the first unsuccessful steal attempt can nevertheless be han-
dled like any other unsuccessful one: The procedure for the end of the quantum is not very
expensive, and since the worker has run out of work it may does not make a big difference.
In almost all cases the quantum is classified as efficient and the worker continues stealing.
Additionally it can also be assumed that the number of inefficient quanta niq is reset to
0. However, in rare cases it might also be possible that the worker is put to sleep, if the
period of work before the first unsuccessful steal attempt was very short.

• Another possibility is to invoke the normal procedure for the end of a quantum, but pre-
venting the worker to be put to sleep. So all counters are adjusted accordingly to the
classification of the quantum and the length of the next quantum is adapted. This also
means that the number of inefficient quanta niq is increased if the quantum was inefficient
or reset to zero if it was efficient. If it is reset to zero, the information about inefficient
quanta is somehow lost without using it.

• Another solution is to simply continue with the current quantum, and defer the checking
of the condition for classification of the quantum to the next failed steal attempt. Because
a failed steal attempt does not take a lot of time, it is still likely that the quantum later is
classified as efficient. Due to the likely classification of the quantum as efficient, again the
fact that the recent steal attempts failed, does not change the classification of the quantum.

• Like described the classification of the quantum that ends at a first unsuccessful steal
attempt is not very meaningful. Based on this perception it might be reasonable not to take
such quanta into consideration at all. The algorithm behaves like such a quantum never
happened. In detail this means that it not checked whether the quantum was efficient or
inefficient. Additionally the number of inefficient quanta is neither reset nor increased.

69



stealing

w
orking

stealing

sleeping

time

Figure 5.5: Sleep, work and steal periods with scheduler where quantum after first unsuccessful
steal attempt is not taken into consideration

This is important, since this number influences the time to sleep if the next quantum is
inefficient. It also influences the length of a quantum after an inefficient quantum.

All the described implementation variations for the first unsuccessful steal attempt after a
series of successful steals, were tested. In most cases all of them have a similar performance.
However, some of them have bad worst-case scenarios. Overall the last variant where the quan-
tum is not taken into consideration at all, performed the best. Nevertheless it has to be said that
there are situations where another of the described alternatives performs better.

Figure 5.5 visualizes the behavior of the chosen variant for handling a first unsuccessful
steal attempt. It is assumed that in the red working period exactly one task is executed. After
the working period the quantum ends at a first unsuccessful steal attempt. Like described the
classification of this quantum is omitted and the scheduler behaves like this quantum never
happened. The minimum length of the following quantum (that is the white quantum after
the red one) is the same as the length of the preceding quantum. In the figure the green part is a
quantum with normal minimum quantum length that is inserted after a series of shorter quantum,
like described in the section about the end-of-quantum function.

The modified procedure that is invoked after each failed steal attempt can be seen in Algo-
rithm 5.4.

Hierarchical victim selection

The original Pheet work-stealing scheduler that uses the backoff mechanism does not try to back
off the thread after each failed steal attempt. It only backs off if no task was found after traversing
the whole hierarchy. In Section 4.2 this is described in more detail. In contrast, a quantum in the
dynamic quanta algorithm can end after an arbitrary failed attempt to steal a task.

The original principle can also be used in the dynamic quanta algorithm. This would mean
that it is only checked if the end of the quantum is reached, after it was tried to steal a task on
all levels. If this principle is used, it would not be necessary to insert longer quanta after some
inefficient quanta. It would be tried to find a task on all levels, no matter how long the quantum
might get.

It was tested if this approach is beneficial for the dynamic quanta algorithm: For this the
condition if the end of a quantum is reached is only checked after no task to steal was found
on the whole hierarchy. In this case the worker can only go to sleep at this point. However, no
evident advantages where found using this approach.
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Algorithm 5.4: Modified on-failed-steal function

1 if nua = 0 then
first unsuccessful steal attempt

2 if tqe < Now then
start new quantum after first unsuccessful steal
attempt

3 ds←0;
4 tqe← Now + tqe − tqs; minimum length of next quantum equals

minimum length of previous quantum
5 tqs← Now;
6 end
7 tus← Now;
8 else
9 if tqe < Now then

10 ds← ds + Now− tus; update time spent stealing
11 on-quantum-end();
12 end
13 end
14 nua← nua + 1; update number of unsuccessful steal attempts

Randomization

Like in the case of the backoffs, we initially included some randomness into the calculation of the
sleep time and quantum length. However, after testing including randomization in the backoff
implementations, we also tested our dynamic quanta algorithm if there is really an advantage
when some randomization is used. Like in the case of the backoffs, random values do not
improve the performance at all. Therefore we removed the randomization for the calculation of
the sleep times and quanta lengths. Since randomization is used when selecting victims to steal
tasks from, the probability that two workers wake up at the same time and try to steal a task from
the same victim is very small. Therefore including additional randomization does not bring an
advantage.

5.4 Parameter tuning

An important part of the development of the algorithm is choosing good default values for the
parameters of the algorithm:

• Default quantum length dql

• The constants for the calculation of sleep times S1 and S2

• The constant for the calculation for the quantum length after a period of sleep C
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Variant S1 S2

dynquanta_a 0.03 0.06

dynquanta_b 0.3 0.6

dynquanta_c 0.003 0.006

dynquanta_d 0.1 0.2

Table 5.1: Tested constants S1 and S2 for dynamic quanta algorithm

• The threshold T that determines when workers are suspended.

• The maximum sleep time, which prevents workers to sleep for a too long time.

Constants S1 and S2 to calculate sleep time

The longer the workers are suspended (sleep times), the fewer cycles are wasted when there are
not enough tasks for all workers. However, it may also be that during the period of sleep many
new tasks are spawned, which could be executed earlier if the workers were not suspended.
Therefore it is a trade-off between trying to waste as few cycles as possible and not missing
phases of high parallelism in the application.

After some initial experimental small test runs, we decided to test four different scheduler
variants that are shown in Table 5.1. We tested S1 values between 0.003 and 0.3 and S2 values
between 0.006 and 0.6. For these tests we set the quantum length dql to 0.3ms, the maximum
sleep time to 1.5ms, the threshold T to 0.5 and C to 2.0.

The test results in Figure 5.6 show that values of 0.003 and 0.006 for S1 and S2 are clearly
too small in most benchmarks. The test results for the other variants are quite similar, we there-
fore chose 0.1 for S1 and 0.2 for S2 (dynquanta_d) as constants which are used for further
tests.

Maximum duration of sleep phases

Since changing the maximum duration of sleep does not influence the performance of the backoff
a lot, we assumed that this is also the case for the dynamic quanta algorithm. The tests showed
very similar results like the tests for the backoff versions: It is harmful to set a very small
maximum sleep time and therefore a large enough value has to be chosen. The performance
does not change significantly, as long as the value is reasonable large.

Figure 5.7 shows the results for different maximum sleep times for the quicksort benchmark
on Mars. One can see that in this benchmark all values that use a maximum sleep time of 1.0ms
and larger perform very similar. Maximum sleep times that are smaller than 0.5ms worsen the
performance significantly when all 80 cores are used. According to the results of this benchmark
it would even be reasonable not to use a maximum sleep time at all. However, in some of the
benchmarks the scheduler without a maximum sleep time performs slightly worse than the ones
with a capped sleep time. After analyzing all benchmark results, we decided to use a value of
1.5ms as default value for the maximum sleep time.
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Figure 5.6: Aggregated results showing impact of constants S1 and S2 on Mars

Quantum Length dql

Short quanta mean higher overhead for checking the adaptive conditions more often and may
lead to situations where threads constantly switch between sleeping and working. Longer quanta
lead to lower overhead and may smooth out highly variable degrees of parallelism. However,
they could also miss important changes in the degree of parallelism that would need quick
switching between sleeping and working states.

Cao et al. [15] use a quantum length of 10 milliseconds in their evaluation of the Stable
Adaptive Work-Stealing algorithm presented in Section 2.4. Evaluations of our dynamic quanta
algorithm showed that much shorter quanta are beneficial in our case. The reason for this is that
the algorithm is much more lightweight and does not induce a lot of overhead. Additionally
since only local information of each worker is used, the predictions for the resource usage are
probably not as good. Therefore shorter periods that allow faster adaption to varying degrees of
parallelism are needed.

We tested quantum lengths between 16us and 600us. Since adjusting the quantum length
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Figure 5.7: Results showing impact of maximum sleep time in quicksort benchmark on Mars

directly influences the duration of the sleep phases, we also adjusted the sleep constants S1 and
S2 in these tests: The base for the tests is a quantum length of 300us with S1 and S2 values of
0.1 and 0.2 respectively. When the quantum length is increased, the S-constants are decreased
by the same factor. For example when the quantum length is doubled, both S-constants are
halved. This lead to a set of parameter values that we tested and which are shown in Table 5.2.
For the tests the maximum sleep time is set to 1.5ms, the threshold T to 0.5 and C to 2.0.

The test results on Mars are shown in Figure 5.8. One can see that the versions with a
short quantum length perform slightly better than the versions that use a longer quantum length.
However, there are some benchmarks where the very short quanta of length 16us and 33us are
worse than the slightly larger ones. Therefore we chose a default minimum quantum length dql
of 75us. The default values for S1 and S2 are set to 0.4 and 0.8 respectively.
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Variant quantum length dql (us) S1 S2

dynquanta_d 300 0.1 0.2

dynquanta_e 600 0.05 0.1

dynquanta_f 150 0.2 0.4

dynquanta_g 75 0.4 0.8

dynquanta_h 33 0.8 1.6

dynquanta_i 16 1.6 3.2

Table 5.2: Variants to determine best default quantum length dql for dynamic quanta algorithm
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Parameter Value Influence on performance
S1 0.4 medium
S2 0.8 medium
Maximum sleep duration 1.5ms great
Quantum length dql 75us medium
Threshold T 0.5 small
Constant C 2 small

Table 5.3: Chosen parameter values for dynamic quanta algorithm

Threshold T for classification of quanta

For the threshold T , which categorizes a quantum as efficient or inefficient, Agrawal et al. state
that typical values might be in the range of 80% to 95% [4]. Since the dynamic quanta algo-
rithm is more fine-grained and putting a worker to sleep does not have that much overhead, it
is expected that a smaller threshold is a better choice for the algorithm. In fact the value of the
threshold is not that important in our algorithm: Since only local information is used, most of
the time rs is either very small when the worker has tasks to process or very high when it cannot
find a task to steal. So almost always the distinction between inefficient and efficient quanta is
pretty obvious and changing the threshold T does not influence the behavior or performance a
lot.

We performed tests with a threshold of 0.3, 0.5 and 0.7. As expected no significant perfor-
mance differences occurred using these three different values for the threshold. We therefore
chose 0.5 as default value for the threshold.

Constant C to adjust quantum length

The constant C influences the length of a quantum after a worker was blocked by putting it to
sleep. The greater C the smaller the duration of such quanta get. We tested values between
0.2 and 20 to find out how big the influence this adjustment of the quantum length is on the
performance of the scheduler. In our benchmarks we did not see any significant differences
between these tested C values. It seems like that the adjustment of the quantum length does not
influence the performance at all or just to a small degree. We decided to use 2 as default value
for C.

Conclusion parameter tuning

The final parameter values for the dynamic quanta algorithm can be seen in Table 5.3. The table
also contains a column that states how big the influence of the parameter is on the performance
of the scheduler.

The tests showed that the most important parameter value is the maximum sleep duration.
It must be ensured that this duration is large enough, otherwise the performance suffers sig-

76



nificantly when all cores are used, especially in multiprogrammed environments. The other
parameters of the algorithm do not change the performance of the scheduler that much.

One interesting fact is that the best minimum quantum length dql is set to 75us which is
rather short. This means that after processing only one task in a quantum, the quantum will
probably be classified as efficient.

5.5 Long and short quanta algorithm

Since the dynamic quanta algorithm uses a quite small quantum length, brief events like pro-
cessing a single task have a great influence on the quantification of the quantum as efficient or
inefficient. Therefore the decision whether a worker is put to sleep or not is also quickly af-
fected by such events. According to the benchmarks these short quanta are useful, however it
is interesting what happens if additionally measurements over a longer timespan are taken into
consideration.

Introduction long and short quanta algorithm

In our long and short quanta algorithm the basic ideas of the dynamic quanta algorithm stay the
same. There still exists the idea of quanta, which do not have a fixed length but only a minimum
length. Additionally to the relatively short dynamic quantum a second type of quantum is used.
This other type of quantum is longer and also records the times that are spent stealing and
working. We call this new type of quantum long quantum.

When a worker is put to sleep, due to the data measured in the short quantum, the ratio
between work and steal time in the previous long quantum influences the duration how long the
thread is put to sleep. Workers can only be put to sleep between short quanta and not between
long quanta. The sole purpose of long quanta is to provide more information how long a worker
should be blocked when it is decided that there are not enough tasks available. Long quanta
provide a more long-term view of the utilization of the worker.

To also take such long quanta into consideration, the procedures of the dynamic quanta
algorithm were modified. The modified procedures for the long quanta algorithm are presented
on the next few pages.

Detailed algorithm

The long and short quanta algorithm needs an additional set of variables that store basically the
same information like the ones in the basic dynamic quanta algorithm. All variables that store
information about the long quantum have an l in their name.

Algorithm 5.5 shows the modified function that is called after a failed steal attempt. It uses
the following additional set of variables:

Long quantum start time tlqs This time point contains the start time of the current long quan-
tum.

Long quantum end time tlqe A time point that defines until when the current long quantum at
minimum lasts.
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Long quantum steal time dls Duration how long so far all steal attempts in the current long
quantum lasted.

Long quantum unsuccessful steals start time tlus Time point at which the last unsuccessful
steal attempt occurred that until now was not followed by a successful one. It is needed
to calculate the long quantum steal time. So it is the time of the first unsuccessful steal
attempt in the long quantum.

Like for the short quantum, the quantum end time of the long quantum has to be checked
and the time spent stealing in the long quantum has to be adjusted. If a long quantum has ended,
a separate function on-long-quantum-end is invoked. This procedure is shown further
below.

After a successful steal the time spent stealing in the long quantum has to be increased. This
is shown in Algorithm 5.6.

The gathered data for the long quantum is used in the procedure for the end of the short
quantum, which is presented in Algorithm 5.7. It is very similar to the basic dynamic quanta
algorithm as it was shown in Algorithm 5.3. The differences are mainly the extensions for the
calculation of the data for the long quanta.

In the procedure the ratio between the times spent stealing and working in the long quantum
influences the timespan a worker is put to sleep after an inefficient short quantum. However,
not only the ratio in the current long quantum is used but also the one from the previous long
quantum. For this purpose each worker stores an additional variable:

Ratio steal/work time of previous long quantum rpls Before a new long quantum is started,
the ratio between the time spent stealing and working in the current long quantum is stored
in this variable. Therefore this variable contains the ratio between time spent stealing and
working in the previous long quantum.

This is necessary since the current long quantum may be running for a very short time when
the short quantum ends. In other words, the end of a short quantum can potentially be very
shortly after the beginning of a long quantum. So the work and steal times in the current long
quantum may not be very helpful. Therefore the arithmetic mean between the ratio in the current
and in the previous long quantum is used:

rls =

dls
n−tlqs + rpls

2
(5.5)

In Procedure 5.7 this calculated ratio is stored in the temporary variable rls. This ratio is
then used for the calculation of the sleep duration of the worker:

dsl = dql ∗ rs ∗ rls ∗ S1 + dql ∗ niq ∗ S2 (5.6)

After a period of sleep the sleep duration is added to the long quantum start time tlqs. This
is done to exclude the sleep periods from the calculation of the steal/work ratio of the long
quantum. These periods count neither as stealing nor working.

78



Algorithm 5.5: Long quanta algorithm on-failed-steal function

1 if nua = 0 then
first unsuccessful steal attempt

2 if tqe < Now then
start new quantum after first unsuccessful steal
attempt

3 ds←0;
4 tqe← Now + tqe − tqs; minimum length of next quantum equals

minimum length of previous quantum
5 tqs← Now;
6 end
7 if tlqe < Now then
8 on-long-quantum-end();
9 end

10 tus← Now;
11 tlus← Now;
12 else
13 shortEnd← ⊥;
14 if tqe < Now then
15 ds← ds + Now− tus; update time stealing short quantum
16 dls← dls + Now− tlus; update time stealing long quantum
17 on-quantum-end();
18 tlus← Now;
19 shortEnd← >;
20 end
21 if tlqe < Now then
22 if ¬shortEnd then
23 dls← dls + Now− tlus; update time stealing long quantum
24 end
25 on-long-quantum-end();
26 end
27 end
28 nua← nua + 1; update number of unsuccessful steal attempts

Algorithm 5.6: Long quanta algorithm on-successful-steal function

1 if nua > 0 then
2 ds← ds + Now− tus; update time stealing short quantum
3 dls← dls + Now− tlus; update time stealing long quantum
4 nua← 0;
5 end
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Algorithm 5.7: Long quanta algorithm on-quantum-end function

1 dq ← Now− tqs; calculates actual length of short quantum
2 rs← ds/dq; calculates ratio of time spent stealing
3 dlq← Now− tlqs; calculates actual length of long quantum

4 rls←
dls/dlq+rpls

2 ; calculates ratio of time spent stealing
5 if ConditionInefficientQuantum then

quantum is classified as inefficient
6 st←...; calculate time to sleep
7 Sleep(st); block execution of thread
8 tlqs← tlqs + st; exclude sleep time from long quantum
9 niq ← niq + 1;

10 tqe← Now +
dql

niq∗C+1 ; calculate end time of next quantum

11 else
quantum is classified as efficient

12 niq ← 0;
13 tqe← Now + dql; calculate end time of next quantum

14 end
15 ds← 0;
16 tqs← Now;
17 tus← Now;

Algorithm 5.8: Long quanta algorithm on-long-quantum-end function

1 rpls← dls/(Now− tlqs);
2 tlqs← Now;
3 tlus← Now;
4 tlqe← Now + dlql;
5 dls← 0;

The procedure for the end of a long quantum shown in Algorithm 5.8 does not do a lot of
work. It calculates the ratio between the time stealing and working and stores it in the variable
rpls. It then resets all variables that are used for the long quantum. The minimum length of the
next long quantum is always set to the default minimum length of the long quanta dlql. So the
minimum length of a long quantum is constant and not dynamically adjusted like the one of a
short quantum.

Condition for classification of quantum

There are a few possibilities for the classification of a quantum as efficient or inefficient, the
condition is denoted as ConditionInefficientQuantum in Algorithm 5.7:

• Only the ratio in the current short quantum can be used. This is the same like in the basic
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Parameter Value
condition inefficient quanta rs > T ∨ rls > T

short quantum length dql 75us
long quantum length dlql 3ms
Threshold efficient/inefficient quantum T 0.6
Sleep constant 1 S1 0.8

Sleep constant 2 S2 0.8

Quantum length constant C 2.0

Maximum sleep time 1.5ms

Table 5.4: Chosen parameter values for dynamic long quanta algorithm

dynamic quanta algorithm: rs > T . The long quanta are therefore only used to calculate
the sleep duration after an inefficient quantum.

• The quantum is classified as inefficient if both the ratio in the short and in the long quan-
tum are above the threshold T : rs > T ∧ rls > T . This implies that fewer quanta are
classified as inefficient and therefore workers are less often put to sleep.

• Contrary to the previous option, a quantum can be classified as inefficient if the ratio in
the short or in the long quantum is above the threshold: rs > T ∨ rls > T . This has the
converse effect that more quanta are categorized as inefficient.

• In sort of in-between the last two solutions is to use the arithmetic mean of both ratios:
(rs + rls)/2 > T . Using this condition the threshold T becomes more important. In
phases where the state of the worker is switching from working (enough tasks) to stealing
(no tasks) and the other way round, it can happen that one ratio is nearly 1 and the other
ratio almost 0. Therefore the mean of these two ratios is around 0.5. Adjustments of the
threshold T may influence the behavior of the scheduler more than when using one of the
other conditions or the basic dynamic quanta algorithm.

Parameter selection

Since there are a lot of parameters that can be changed and tested, we decided to use the parame-
ters selected for the basic dynamic quanta algorithm also for the long and short quanta algorithm.
We then tested which variant for the condition whether a quantum is efficient or inefficient is the
best. The differences between this variants were not very large, we decided to use the condition
rs > T ∨ rls > T for further tests.

Since both steal ratios of the short and the long quantum influence the sleep duration, we set
S1 to 0.8 instead of 0.4 for the following benchmarks. We tested durations for the long quanta
between 0.3ms and 5.0ms and values for the threshold T between 0.4 and 0.8. Table 5.4 shows
the best parameter values we found for the long quanta algorithm.
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(b) Quicksort benchmark on Mars

Figure 5.9: Results for quicksort and graph benchmarks on Mars

Testing the different parameter values for the long dynamic quanta algorithm revealed that
the performance of this algorithm is not significantly better than the basic dynamic quanta algo-
rithm. In some tests the extended algorithm is better, in some worse than the basic one. Overall
there are no evident benefits from the introduction of long quanta. Since this version needs a
little bit more memory for storing the status information of the long quanta, we choose to spend
not that much time optimizing the parameters like for the basic dynamic quanta algorithm. An
overview of the performance of both adaptive algorithms is given in the next section.

5.6 Performance Tests

In this Section a performance overview of the dynamic quanta algorithm and the long quanta
algorithm is given. The parameters used for the two algorithms are the already presented ones in
Table 5.3 and Table 5.4. For comparison the figures also show the results of the scheduler using
the linear backoff that was presented in the Section about backoff techniques.

Figure 5.9 shows the results of two benchmarks on Mars: Figure 5.9a shows the results for
the graph bipartitioning benchmark, Figure 5.9b for the quicksort benchmark.

In the graph bipartitioning benchmark the scheduler using the linear backoff performs sig-
nificantly better than the adaptive schedulers, when more than 10 cores are used. On the other
hand, in the Quicksort benchmark the adaptive algorithms outperform the linear backoff, when
all 80 cores are used and in the multiprogrammed environment tests. Between the two adaptive
algorithms, sometimes the basic algorithm is faster and sometimes the long and short quanta al-
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(b) Single-source Shortest Path benchmark on Saturn

Figure 5.10: Results for UTS and SSSP benchmarks on Saturn

gorithm. The other benchmark results on Mars reveal that sometimes the linear backoff is faster
and sometimes the adaptive algorithms. However, there are more cases where the simple linear
backoff algorithm outperforms the adaptive ones. In total no significant differences in terms of
performance exist between the two adaptive algorithms.

Figure 5.10 shows the results of two benchmarks on Saturn: Figure 5.10a shows the re-
sults for the Unbalanced Tree Search on the geometric tree, Figure 5.10b for the Single-source
Shortest Path benchmark.

Like on Mars, also on Saturn benchmarks where the adaptive algorithms improve perfor-
mance and benchmarks where the performance is worse, exist. For example in the UTS bench-
mark the linear backoff performs better, whereas in the Single-source Shortest Path benchmark
the adaptive algorithms perform slightly better. In general, the performance differences on Sat-
urn are not so big like on Mars. Overall the same conclusion like for the results on Mars can
be drawn, in more benchmarks the linear backoff outperforms the adaptive algorithms than vice
versa. The two adaptive algorithms roughly perform the same.

5.7 Comparison with backoff techniques

After presenting and testing both the scheduler with an optimized backoff and the two adaptive
algorithms, in this Section we try to compare the two approaches. Before we started this work,
we hoped to be able to design and implement an adaptive scheduler with the presented design
goals that is able to outperform schedulers that use a simple backoff. In a very early stage of this
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Figure 5.11: Theoretical sleep times of backoff and dynamic quanta algorithm in a synthetic
situation where no tasks to steal exist

work, we even reached this goal: The first implementations of the backoffs performed clearly
worse than the first implementations of the adaptive algorithms. However, after comprehensive
work on optimization of the parameters of the backoffs, the scheduler using the simple linear
backoff is not worse, but better than our adaptive algorithms. Tuning the parameters of the
adaptive algorithms improved their performance as well, however not in this extent.

Therefore in this Section we try to compare the scheduler using the linear backoff with the
scheduler that uses our dynamic quanta algorithm.

First of all we analyze the differences in behavior in a simulated situation. Figure 5.11 shows
such a situation, where a worker cannot find a task to steal. One can see that the characteristics
of the two methods are very alike, the sleep time is increased in a very similar way. Since we
optimized the parameters of both the backoff and the dynamic quanta algorithm, we assume
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that this is some kind of optimal strategy to increase the sleep duration. In the dynamic quanta
algorithm the sleep duration is capped at 1.5ms, whereas in the backoff variant the maximum
sleep time is 0.5ms. One can see that the dynamic quanta algorithm inserts short periods of sleep
from time to time, which are the blue dots at around 13ms and 43ms.

Additionally in this graph the periods between the points of time where the dynamic quanta
algorithm puts the worker to sleep are significantly larger than the periods in the backoff imple-
mentation. This does not show a characteristic of the scheduler itself. The reason for this is the
way this graph was generated: The backoff implementation does not wait between consecutive
backoff calls and always blocks the thread. In a real scenario this would depend on the time it
takes trying to steal tasks on all levels, according to the hierarchical victim selection policy. On
the contrary the dynamic quanta algorithm uses a timer to determine the point of time when a
thread is blocked again.

So the time to sleep is increased in a very similar, almost identical way. The obvious dif-
ference is that the maximum sleep duration of the adaptive algorithm is 3x larger. However,
since also a maximum sleep duration of 0.5ms for the dynamic quanta algorithm was tested, this
cannot be the reason for the performance differences.

We also measured the same times in a real benchmark, the quicksort benchmark with an
increased problem size of 50.000.000 elements to sort, on Mars running on 80 cores. This
is a benchmark where the dynamic quanta algorithm actually performs better than the backoff
version. Measuring these times probably worsens the performance of the scheduler noticeable,
but the times are still useful for a general analysis of the behavior. Figure 5.12 shows the sleep
durations and time points when the sleep phases occurred of one worker. The data points of the
backoff algorithm are not very surprising: Over the whole time of execution the backoff time
iteratively is increased until its maximum, sometime later a task to steal is found and the backoff
time is reset. The data of the dynamic quanta algorithm is a bit surprising in the first place. It is
a little bit unexpected that the sleep duration in the dynamic quanta algorithm is only reset four
times. This means that in this worker only four quanta are classified as efficient, all others are
inefficient quanta.

One reason for this is that if a quantum ends with a failed steal that occurs after a successful
steal, a new quantum is started but the counter for the number of consecutive inefficient quanta
niq is not reset. So when the next quantum again is an inefficient one, the sleep duration is further
increased due to the influence of niq to the sleep duration. Alternatives to this approach were
described in Section 5.3. This does not mean that the worker is not processing any tasks at all or
just in these four efficient quanta. Tasks can also be processed in inefficient quanta. However,
this behavior is an indication that the worker spends a lot of time trying to steal tasks and that
many steal attempts fail. Looking at the performance results in Figure 5.9b one can see that the
Quicksort benchmark does not benefit from using more than 20 cores. Therefore actually it is
really nice that the dynamic quanta algorithm classifies so many quanta as inefficient. Obviously
this benchmark does not benefit from the usage of all 80 cores.

Table 5.5 shows a comparison of the total duration of all sleep phases of all workers and the
number how often workers were put to sleep. In the dynamic quanta implementation workers
are not put to sleep as often as in the backoff implementation. The sleep duration of the dynamic
quanta algorithm is sometimes greater and sometimes lower than in the scheduler using the
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Figure 5.12: Measured duration of sleep phases in dynamic quanta and linear backoff algorithm
in sorting benchmark on Mars

Benchmark Dynamic Quanta Backoff
LU decomposition 121.26s (81, 258) 112.23s (180, 209)
Quicksort 14.48s (11, 904) 18.35s (36, 147)
Graph Bipartitioning 1.00s (1, 438) 2.09s (3, 789)

Table 5.5: Total sleep duration in seconds and number of times workers were put to sleep for
dynamic quanta and backoff implementation
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backoff. The probable reason for this is that the adaptive algorithm uses a larger maximum sleep
time. However, the absolute differences in the sleep times are not very large.
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CHAPTER 6
Benchmark results

In this chapter comparisons of some of schedulers that were developed in the context of this
work are given for all executed benchmarks. The chosen schedulers include the ones that overall
perform the best and the ones where we think the detailed results are interesting to present.
The comparisons additionally contain the test results for the original work-stealing scheduler of
Pheet and the modified scheduler that does not use adaptive techniques or a backoff at all.

In this chapter the following schedulers are compared:

linear-backoff-scheduler Scheduler that uses our optimized linear backoff which is described
in Chapter 4 in great detail.

dynquanta-scheduler This scheduler uses the basic dynamic quanta algorithm that is described
in Chapter 5.

longquanta-scheduler This scheduler denotes the extension of the dynquanta-scheduler, which
uses the long and short quanta algorithm that is described in Section 5.5.

noop-scheduler The noop-scheduler does not block its threads at all and always tries to steal
tasks until the execution of all tasks is finished.

original-scheduler This scheduler uses the backoff that is currently used by default in Pheet.
This backoff is described in Chapter 4.

yield-backoff-scheduler This scheduler uses a backoff that just calls the yield system func-
tion whenever a thread backs off. It is very similar to the original ABP work-stealing
algorithm. However, in the ABP algorithm yield is called after each unsuccessful steal
attempt, whereas in our yield-backoff-scheduler this depends on the hierarchical victim
selection of Pheet. This is described in more detail in Section 4.2

yield-abp-scheduler The yield-abp-scheduler closely resembles the original ABP work-stealing
algorithm: Like a scheduler using the ABP algorithm this scheduler calls yield after
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each failed steal attempt. However, like all the presented schedulers it still uses the hi-
erarchical victim selection policy. We show tests results of this scheduler, because new
work-stealing schedulers are often compared with a classic ABP work-stealing scheduler.

In some of the benchmarks a slowdown occurs when all cores are used. One can ask if this
slowdown occurs because all or because so many cores are used. In our graphs we do not show
results for situations where more than half of the cores, but not all cores are used. Therefore
the graphs offer no answer to this question. However, we also executed some test runs for these
situations and found out that the latter is true: The slowdown does not occur because all cores are
used, but also occurs beforehand. For reasons of clearness we did not include these test results
in the graphics.

6.1 Graph Bipartitioning

The results of the graph bipartitioning benchmark on Mars can be seen in Figure 6.1. Overall
one can say that the linear-backoff-scheduler and the two schedulers that use yield perform the
best in the graph bipartitioning benchmark on Mars. The noop-scheduler performs the worst.
The dynamic quanta algorithms do not perform very well in this benchmark and are even out-
performed by the scheduler using the original backoff. However they are still better than the
noop-scheduler.
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Figure 6.1: Results of Graph Bipartitioning benchmark on Mars
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Figure 6.2: Results of Graph Bipartitioning benchmark on Saturn

The results of the benchmark runs on Saturn are shown in Figure 6.2. On Saturn the dif-
ferences in performance between the schedulers are not very large, whereas they are more
significant on Mars. On Mars the liner-backoff-scheduler is almost two times faster than the
noop-scheduler, on Saturn the noop-scheduler does not perform that bad.

6.2 LU decomposition

In the LU decomposition benchmark huge differences in performance are visible, which is
shown in Figure 6.3: On Mars the original-scheduler, the yield-backoff-scheduler and the abp-
yield-scheduler perform really badly when all 80 cores are used. When four instances of the
benchmark are running in parallel, the linear-backoff-scheduler finishes the tasks about 18x
faster than the original-scheduler. In the test runs for multiprogrammed environments the noop-
scheduler is also worse than the other three schedulers. There is no big difference between the
linear-backoff-, dynquanta- and longquanta-scheduler on Mars.

On Saturn the results, which are shown by Figure 6.4, are slightly different: Like on Mars
in multiprogrammed environments the original-scheduler performs significantly worse than the
other schedulers. However, whereas on Mars the yield-backoff-scheduler performs nearly as bad
as the original-scheduler, on Saturn the yield-backoff-scheduler is the best scheduler together
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Figure 6.3: Results of LU decomposition benchmark on Mars

with the linear-backoff-scheduler. It is very interesting that there is this huge difference in the
performance of the yield-scheduler between these two systems. The noop-scheduler is quite fast
in dedicated environments, however in multiprogrammed environments it is substantially slower
than the liner-backoff- and the yield-scheduler. The two schedulers using the dynamic quanta
algorithms are roughly as good as the linear-backoff-scheduler in dedicated environments. How-
ever, when four instances of the benchmark are run in parallel, the dynamic quanta schedulers
perform slower than the linear-backoff scheduler and the results have a large variance.
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Figure 6.4: Results of LU decomposition benchmark on Saturn
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6.3 Prefix Sum

Figure 6.5 shows the results for the prefix sum benchmark on Mars. On this machine all tested
schedulers perform roughly the same in the dedicated environment tests. The only exception is
the abp-yield-scheduler, which performs significantly worse than the other schedulers when all
80 cores are used. In multiprogrammed environments the results are not that uniform. Especially
when four instances are running in parallel, more performance differences between the sched-
ulers are visible: The original-, the longquanta- and the abp-yield-scheduler perform quite badly
in this situation. Contrary the linear-backoff- and the noop-scheduler perform really well. In this
benchmark run the results of some of the schedulers additionally have a quite large variance.

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 5 10 20 40 80 80−2 80−4
Number of Cores

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

) Scheduler

1−linear−backoff

2−dynquanta

3−longquanta

4−noop

5−original

6−abp−yield

7−yield−backoff

Figure 6.5: Results of Prefix Sum benchmark on Mars

Again the results on Saturn are a bit different than the results on Mars, shown by Figure 6.6.
On Saturn the linear-backoff-, the yield-backoff- and the abp-yield-scheduler achieve the best
performance. In dedicated environments the performance off all schedulers is roughly equally
good. When two instances are run in parallel the original-scheduler is worse than the other ones.
When four instances are run in parallel, additionally to the original-scheduler, the dynquanta-,
longquanta- and noop-scheduler are worse than the linear-backoff- and yield-backoff-scheduler.
In this case the results’ variance of the dynquanta-, longquanta- and original-scheduler is again
very large.
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Figure 6.6: Results of Prefix Sum benchmark on Saturn

6.4 Quicksort

The results for the quicksort benchmark on Mars are shown in Figure 6.7. On Mars the original-,
the yield-backoff- and the abp-yield-scheduler perform significantly worse than the other sched-
ulers, when 40 or all 80 cores are used. When all 80 cores are used, the dynquanta- and
longquanta-scheduler perform better than all other schedulers. The performance of the linear-
backoff- and the original-scheduler are approximately the same.

On Saturn the results are once again quite different, which can be seen in Figure 6.8: All
schedulers behave very similar, except when four instances of the benchmark are run in parallel.
In this case the dynquanta-, longquanta- and original-scheduler perform significantly worse.
Additionally one can see that the results of the dynquanta- and longquanta-schedulers have an
extremely high variance. We repeated all tests runs of the benchmark for these schedulers, to
make sure that this was not a onetime event. However, we got similar results in this retakes of
the benchmark. It seems like when four instances are run in parallel they interfere quite a lot
with each other and the runtime highly depends on the exact timings of these interferences.
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Figure 6.7: Results of Quicksort benchmark on Mars
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Figure 6.8: Results of Quicksort benchmark on Saturn
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6.5 Single-source Shortest Path

In the single-source shortest path benchmark, which results can be seen in Figure 6.9 and Fig-
ure 6.10, the variance of the results is generally quite large, both on Mars and on Saturn.

On Mars the noop-scheduler significantly perform worse when all 80 cores are used to pro-
cess the tasks. However, when four instances of the benchmark are run in parallel the noop-
scheduler performs quite good and the original-scheduler performs the worst. The other sched-
ulers more or less perform equally well.
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Figure 6.9: Results of Single-source Shortest Path benchmark on Mars

On Saturn the results are even harder to summarize, since they vary quite a lot. Overall the
noop-scheduler performs the best, whereas the linear-backoff scheduler needs the most time to
run the benchmark. This is quite contrary to the results of this benchmark on Mars.
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Figure 6.10: Results of Single-source Shortest Path benchmark on Saturn
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6.6 Unbalanced Tree Search

As described in Section 3, three different variants of the Unbalanced Tree Search benchmark are
run: The first benchmark uses a geometric tree (UTS-0), the second one a hybrid tree (UTS-4)
and the last one a binomial tree (UTS-7).
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Figure 6.11: Results of Unbalanced Tree Search benchmark on Mars: geometric tree with d =
10, 4, 130, 071 nodes (UTS-0)

Figure 6.11 shows the results of the UTS-0 benchmark on Mars. In the UTS-0 benchmark
on Mars all schedulers finish the tasks in roughly the same time in dedicated environments. In
multiprogrammed environments the linear-backoff- and the noop-scheduler perform better than
the other ones.

On Saturn the linear-backoff-, original-, abp-yield- and the yield-backoff-scheduler perform
approximately equally well. The two schedulers using the dynamic quanta algorithms perform a
little bit worse than the other schedulers, and their results vary quite a lot. The results for Saturn
are depicted in Figure 6.12.

In the UTS-4 benchmark (Figure 6.13) on Mars the linear-backoff-, the noop- and the abp-
yield-scheduler achieve the best results.

On Saturn (Figure 6.14) the linear-backoff- and the yield-backoff-scheduler perform the
best. The schedulers using the dynamic quanta algorithms and the original-scheduler have quite
varying results, especially in multiprogrammed environments.

The results of the UTS-7 benchmark are depicted in Figures 6.15 and Figures 6.16. The
results are very uniform, all schedulers perform the same in almost all situations, both on Mars
and Saturn. Only the abp-yield-scheduler performs a little worse than the other ones. The
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Figure 6.12: Results of Unbalanced Tree Search benchmark on Saturn: geometric tree with
d = 10, 4, 130, 071 nodes (UTS-0)

benchmark also scales very well up to 40 cores on Mars and up to all 48 cores on Saturn. It
seems like there are enough tasks to process, so that the strategy that decides when threads are
blocked does not change the performance significantly.
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Figure 6.13: Results of Unbalanced Tree Search benchmark on Mars: hybrid tree with d = 16,
q = 0.234375, m = 4, 4, 132, 453 nodes (UTS-4)
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Figure 6.14: Results of Unbalanced Tree Search benchmark on Saturn: hybrid tree with d = 16,
q = 0.234375, m = 4, 4, 132, 453 nodes (UTS-4)
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Figure 6.15: Results of Unbalanced Tree Search benchmark on Mars: binomial tree with r = 5,
m = 5, 111, 345, 631 nodes (UTS-7)
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Figure 6.16: Results of Unbalanced Tree Search benchmark on Saturn: binomial tree with r = 5,
m = 5, 111, 345, 631 nodes (UTS-7)
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6.7 Overall

Figures 6.17 and 6.18 show the aggregated results of all benchmarks on Mars and Saturn re-
spectively. The methodology how this summary is generated is described in Section 3.2.

The results on Mars which can be seen in Figure 6.17 are quite promising: The linear-
backoff scheduler performs the best and in most cases the two dynamic quanta algorithms also
perform better than the original-, abp-yield, yield-backoff- and noop-scheduler. Especially when
all 80 cores are used, our newly developed schedulers clearly outperform the existing scheduler
and also the yield-backoff-scheduler. Interestingly, compared with the original- and the yield-
backoff-scheduler the noop-scheduler does not perform that bad at all, when all 80 cores are
used.
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Figure 6.17: Aggregated results of benchmarks on Mars

The results on Saturn which are shown in Figure 6.18 differ from the results on Mars in some
areas. First of all as long as the benchmarks are run in dedicated environments, the performance
difference between the schedulers is not so big like on Mars. In the multiprogrammed envi-
ronment tests the original-scheduler performs clearly worse than the better schedulers. When
four instances of the benchmark are run in parallel, the longquanta-scheduler performs nearly
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as bad as the original-scheduler. The dynquanta- and noop-scheduler also perform significantly
worse than the best two schedulers in this situation. Overall the best schedulers on Saturn are
the linear-backoff- and the yield-backoff-scheduler.

The abp-yield-scheduler performs quite similar to the yield-backoff-scheduler on both sys-
tems. However, in most benchmarks the yield-backoff-scheduler performs a bit better than the
abp-yield-scheduler.

An interesting observation are the performance differences of the yield-backoff-scheduler
between Mars and Saturn: On Mars the yield-backoff-scheduler performs quite badly, while on
Saturn together with the linear-scheduler it is the best one.
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Figure 6.18: Aggregated results of benchmarks on Saturn

When analyzing all results of both systems, the scheduler that performs the best is the linear-
backoff scheduler. The two schedulers using dynamic work-stealing techniques also perform
better than the existing original-scheduler, but are not as good as the linear-backoff-scheduler.
In comparison the basic dynamic quanta algorithm works better than the long and short quanta
algorithm.
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CHAPTER 7
Summary and future work

Originally the work for this thesis was focused just on adaptive work-stealing algorithms. During
the work we became aware, that there exists hardly any analysis on the usage of backoffs in
work-stealing schedulers. Therefore we decided to try to optimize the scheduler using a backoff
as much as possible to find out what is possible with such simple means. Additionally we
thought, that the performance results of our adaptive algorithms should be compared against a
thoroughly optimized scheduler and not ”just an existing one”.

The work on backoffs showed, that choosing the right parameters for the backoff and try-
ing to optimize them pays off. The scheduler using our optimized linear backoff is up to 18x
faster than the scheduler using the original exponential backoff (LU decomposition benchmark
on Mars). The work also revealed that at least in our benchmarks and on our systems the range
of good parameter values for the backoffs is surprisingly large. This could mean, that the chosen
parameters are suitable for a broad range of different machines. However, this assumption re-
quires additional tests on more systems. Another interesting result is, that the type of the backoff
does not matter a lot. We implemented and tested many different variants of backoffs. However,
after optimizing the used parameters of them, in the end the performance of all of them was
quite similar.

After the analysis of using backoffs in the work-stealing scheduler we designed a decen-
tralized adaptive work-stealing algorithm that can be used on common systems without any
modifications in the underlying system. Contrary to almost all existing adaptive schedulers, we
decided not to use any central data structure in the scheduler. This ensures the scalability of
the algorithm regardless of the number of available processors and cores. Our implementation
shows that this is possible in a completely portable way, using only standard C++. Our dynamic
quanta algorithm also outperforms the original scheduler that was used so far in Pheet.

In the beginning hoped that the adaptive algorithm performs better than the scheduler using
a simple backoff. Much more work was put into it and it adjusts the number of used cores more
dynamically. Nevertheless in the end the scheduler using the linear backoff overall performs the
best. Three different explanations are possible:

105



• Adaptive work-stealing in general does not offer any advantage compared to a scheduler
that uses a carefully tuned backoff.

• Adaptive work-stealing needs some central data structure to provide performance benefits
over a non-adaptive scheduler.

• Our design or implementation of the algorithm for the decentralized adaptive work-stealing
scheduler is not good enough, therefore the scheduler using a backoff performs better.

To decide which of the explanations is accurate, performance comparisons with other adap-
tive work-stealing schedulers would be needed. The schedulers presented in Section 2 offer
performance comparisons with non-adaptive work-stealing schedulers itself. However, no com-
parisons with schedulers using a (optimized) linear backoff are given, which gives the best per-
formance in our case.

To allow such comparison of different schedulers, a portable set of benchmarks would be
required. Designing a set of benchmarks for task-based programming that can be used on dif-
ferent operating systems, in different programming languages and with different schedulers is
therefore a large challenge for future work.

In retrospect this thesis contributes information to the question, which algorithm should be
used to dynamically select the number of cores when processing a set of tasks with a work-
stealing scheduler. Although this thesis cannot answer the question in general, it clearly shows
that it is worth the effort to spend more time on this problem. In our case, which means in
the Pheet framework, so far an optimized linear backoff works the best. This is an immediate
improvement for all users of the framework. However, to answer the question whether this is
only true for this scheduler or if completely different schedulers would also benefit from using
a linear backoff in a similar way, future work in this area is needed to be done.
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