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ABSTRACT

A conjecture in algorithmic model theory predicts that the model-
checking problem for �rst-order logic is �xed-parameter tractable
on a hereditary graph class if and only if the class is monadically

dependent. Originating in model theory, this notion is de�ned in
terms of logic, and encompasses nowhere dense classes, monadi-
cally stable classes, and classes of bounded twin-width. Working
towards this conjecture, we provide the �rst two combinatorial
characterizations of monadically dependent graph classes. This
yields the following dichotomy.

On the structure side, we characterize monadic dependence by
a Ramsey-theoretic property called �ip-breakability. This notion
generalizes the notions of uniform quasi-wideness, �ip-�atness,
and bounded grid rank, which characterize nowhere denseness,
monadic stability, and bounded twin-width, respectively, and played
a key role in their respective model checking algorithms. Natural
restrictions of �ip-breakability additionally characterize bounded
treewidth and cliquewidth and bounded treedepth and shrubdepth.

On the non-structure side, we characterize monadic dependence
by explicitly listing few families of forbidden induced subgraphs. This
result is analogous to the characterization of nowhere denseness via
forbidden subdivided cliques, and allows us to resolve one half of the
motivating conjecture: First-order model checking is AW[∗]-hard
on every hereditary graph class that is monadically independent.
The result moreover implies that hereditary graph classes which are
small, have almost bounded twin-width, or have almost bounded
�ip-width, are monadically dependent.

Lastly, we lift our result to also obtain a combinatorial dichotomy
in the more general setting of monadically dependent classes of
binary structures.
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1 INTRODUCTION

Algorithmic model theory studies the interplay between the com-
putational complexity of computational problems de�ned using
logic, and the structural properties of the considered instances. In
this context, algorithmic meta-theorems [31, 33] are results that
establish the tractability of entire families of computational prob-
lems, which are de�ned in terms of logic, while imposing structural
restrictions on the input instances. The archetypical example is
Courcelle’s theorem, which states that every problem that can be
expressed in monadic second order logic (MSO), can be solved in
linear time, whenever the considered input graphs have bounded
treewidth [3, 13]. This implies that the model checking problem for
MSO is �xed-parameter tractable (fpt) on every class C of bounded
treewidth. That is, there is an algorithm which determines whether
a given input graph � ∈ C satis�es a given MSO formula i in time
5 ( |i |) · |+ (�) |2 for some function 5 : N→ N and some constant 2
(in this case 2 = 1). More generally, the model checking problem
for MSO is fpt on all classes of bounded cliquewidth [14].

In this paper, we focus on the model-checking problem for �rst-
order logic (FO), which allows to relax the structure of the input
graphs greatly, at the cost of restricting the logic. Graph classes for
which this problem is fpt include classes of bounded degree [42],
the class of planar graphs [27], classes which exclude a minor [26],
classes of bounded expansion [23], and more generally, nowhere
dense classes [32], all of which are sparse graph classes (speci�cally,
every =-vertex graph in such a class has $ (=1+Y ) edges, for every
�xed Y > 0). The problem is moreover fpt on proper hereditary
classes of permutation graphs, some classes of bounded twin-width
[9], structurally nowhere dense classes [18], monadically stable
classes [17], and others [5]. The central question in the area, �rst
phrased in [31, Sec. 8.2], is the following.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1550

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2662-5303
https://orcid.org/0000-0003-3657-7736
https://orcid.org/0000-0002-1130-9033
https://doi.org/10.1145/3618260.3649739
https://doi.org/10.1145/3618260.3649739
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649739&domain=pdf&date_stamp=2024-06-11


STOC ’24, June 24ś28, 2024, Vancouver, BC, Canada Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk

struct. nowhere

dense
nowhere dense

monadically

stable

bounded

twin-width

monadically

dependent

conjectured limit of

tractability

monadically

independent

Figure 1: Hierarchy of selected properties of graph classes. Classes in green boxes are known do admit fpt model checking

algorithms (with additional assumptions required in the case of bounded twin-width). Monadically dependent classes are

known to generalize all these notions. It is conjectured that a hereditary class is monadically dependent if and only if its model

checking problem is tractable.

What are the structural properties that exactly charac-
terize the hereditary1 graph classeswith fpt �rst-order
model checking?

Sparsity theory [36], initiated by Nešetřil and Ossona de Mendez,
has provided solid structural foundations, and a very general no-
tion of structural tameness for sparse graph classes. More recently,
twin-width theory [9] provides another notion of graph classes
which are structurally tame, and not necessarily sparse. While twin-
width theory and sparsity theory bear striking similarities, they
are fundamentally incomparable in scope. The community eagerly
anticipates a theory that uni�es both frameworks, and answers
the central question. Stability theory – an area in model theory
developed initially by Shelah – provides very general notions of
logical tameness of classes of graphs (or other structures), called
(monadic) stability and dependence2, which subsume the notions
studied in sparsity theory and in twin-width theory, but are not
easily amenable to combinatorial or algorithmic treatment. Let us
brie�y review sparsity theory, twin-width theory, and stability the-

ory, which we build upon. Figure 1 shows the relationships between
the properties of graph classes discussed in this paper.

Sparsity. The central notion of sparsity theory [36] is that of a
nowhere dense graph class. This is a very general notion of structural
tameness of sparse graph classes, and encompasses all classes with
bounded degree, bounded treewidth, the class of planar graphs, and
classes that exclude some graph as a minor. After a long sequence
of prior work [16, 23, 26, 27, 42], the celebrated result of Grohe,
Kreutzer and Siebertz [32] established that the model checking
problem is fpt on every nowhere dense graph class. For classes that
are monotone (closed under removal of vertices and edges) this is
optimal [23, 33], yielding the following milestone result.

A monotone graph class admits fpt model checking
if and only if it is nowhere dense (assuming FPT ≠

AW[∗]) [32].

Here, FPT ≠ AW[∗] is a standard complexity assumption in
parameterized complexity, equivalent to the statement that model
checking is not fpt on the class of all graphs. The major shortcoming
of this result is that it only captures monotone classes, and thus
sparse graph classes, while there are dense graph classes which are

1A graph class is hereditary if it is closed under vertex removal.
2In the literature, dependence is also referred to as NIP, which stands for negation of
the independence property.

not monotone, and have fpt model checking. A trivial example is the
class of cliques. More generally, all classes of bounded cliquewidth
have fpt model checking. For many years, not many examples of
graph classes for which the model checking problem is fpt – beyond
nowhere dense classes and classes of bounded cliquewidth – were
known.

A recent line of research extends sparsity theory beyond the
sparse setting using transductions. We say a graph class C transduces

a graph classD if there exists a �rst-order formulai (G,~) such that
every graph in D can be obtained by the following four steps: (1)
taking a graph � ∈ C, (2) coloring the vertices of � , (3) replacing
the edge set of � with {DE | D, E ∈ + (�), D ≠ E,� |= i (D, E) ∨

i (E,D)}, and (4) taking an induced subgraph. Step 3 can construct,
for example, the edge-complement of � with i (G,~) = ¬� (G,~)

or the square of � with i (G,~) = ∃I � (G, I) ∧ � (I,~). Note that
the formula i has access to the colors of � from step 2. Therefore,
for example, the class of all graphs is transduced by the class of 1-
subdivided cliques (by coloring the subdivision vertices that should
be turned into edges), but is not transduced by the class of cliques.
It was recently shown that model checking is fpt on transductions of

nowhere dense classes [18], extending the work of Grohe, Kreutzer,
and Siebertz [32] beyond the sparse setting. This result has been
generalized very recently in [17], as described below.

Figure 2: A half-graph of order 4.

Monadic Stability. Stability, and its variants, are logical tameness
conditions arising in Shelah’s classi�cation program [43]. A graph
class is monadically3 stable if it does not transduce the class of all
half-graphs (see Figure 2). Monadically stable classes include all
structurally nowhere dense classes [2, 40]. In [17] it is shown that
FO model checking is fpt on all monadically stable classes, and
moreover obtains matching hardness bounds via a new character-
ization of such classes in terms of forbidden induced subgraphs.

3Monadically refers to the coloring step of a transduction, which is an expansion of the
graph with unary/monadic predicates. In classical model theory monadically stable
(monadically dependent) classes are equivalently de�ned as those classes that remain
stable (dependent) under unary expansions.
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A class is orderless if it avoids some half-graph as a semi-induced4

subgraph. This establishes monadically stable classes as the limit of

tractability among orderless classes.

An orderless, hereditary graph class admits fpt model
checking if and only if it is monadically stable (assum-
ing FPT ≠ AW[∗]) [17].

Twin-Width. Twin-width [9] is a recently introduced notion
which has its roots in enumerative combinatorics and the Stanley-
Wilf conjecture/Marcus-Tardos theorem. Graph classes with boun-
ded twin-width include the class of planar graphs, all classes of
bounded cliquewidth, the class of unit interval graphs, and every
proper hereditary class of permutation graphs. It was shown that
model checking is fpt on graph classes of bounded twin-width,
assuming an appropriate decomposition of the graph (in form of a
so-called contraction sequence) is given as part of the input [9]. On
ordered graphs (that is, graphs equipped with a total order on the
vertex set, which can be accessed by the formulas) a recent break-
through result has lifted this additional proviso, and also character-
ized classes of bounded twin-width as the limit of tractability [7].

A hereditary class of ordered graphs admits fpt model
checking if and only if it has bounded twin-width

(assuming FPT ≠ AW[∗]) [7].

Monadic Dependence. As discussed above, an exact character-
ization of classes with fpt model-checking has been established
in three settings: for monotone graph classes, for the more gen-
eral hereditary orderless graph classes, and for hereditary classes
of ordered graphs, in terms of the notions of nowhere denseness,
monadic stability, and bounded twin-width, respectively. Those no-
tions turn out to be three facets of a single notion, again originating
in stability theory. A graph class C is monadically independent if it
transduces the class of all graphs [4]. Otherwise C is monadically

dependent. In all three settings where we have a complete charac-
terization of fpt model checking, monadic dependence precisely
captures the limit of tractability.

• On monotone classes, nowhere denseness is equivalent to
monadic dependence [2, 40].

• On orderless classes, monadic stability is equivalent to mona-
dic dependence [37].

• On classes of ordered graphs, bounded twin-width is equiv-
alent to monadic dependence [7].

This suggests that the known tractability limits [7, 17, 18, 32] are
fragments of a larger picture, where monadically dependent classes
unify sparsity theory, twin-width theory, and stability theory into
a single theory of tractability.

Conjecture 1.1 (e.g., [1, 7, 18]). Let C be a hereditary class of

graphs. Then the model checking problem for �rst-order logic is fpt

on C if and only if C is monadically dependent.5

Originally stated in 2016 [1], the above conjecture is now the
central open problem in the area. Both directions have been open.

4Semi-induced half-graphs look similar to Figure 2, but the connections within the
top row and within the bottom row may be arbitrary.
5The conjecture stated in [1] mentions dependence instead of monadic dependence, but
for hereditary classes, those notions are equivalent [12]. Furthermore, the conjecture in
[1] states only one implication, but the other one was also posed at the same workshop
as an open problem.

2 CONTRIBUTION

To approach Conjecture 1.1, a combinatorial characterization of
monadic dependence is sought. Based on the development in the
sparse, orderless, and ordered cases discussed above, it appears that
what is needed are combinatorial dichotomy results, stating that
all monadically dependent graph classes exhibit structure which
can be used to design e�cient algorithms, while all other graph
classes exhibit a su�cient lack of structure, which can be used
to prove hardness results. The three known restricted classi�ca-
tions of classes with fpt model checking were enabled in part (see
discussion below) thanks to such combinatorial dichotomies for
nowhere dense, monadically stable, and bounded twin-width graph
classes. However, for monadically dependent classes not a single
combinatorial characterization has been known. Previous charac-
terizations of monadic dependence (for example, via indiscernible
sequences or existentially de�ned canonical con�gurations [11, 12])
all have a logical, rather than combinatorial, aspect. This limits their
algorithmic usefulness.

In this paper, we provide the �rst two purely combinatorial char-
acterizations of monadically dependent classes, which together
constitute a combinatorial dichotomy theorem for these classes.

• On the one hand, we show that monadically dependent graph
classes have a Ramsey-like property called �ip-breakability,
which guarantees that any large set of vertices, contains
two still-large subsets�, � that in a certain sense are strongly
separated.

• On the other hand, we show that graph classes that are
monadically independent contain certain highly regular pat-
terns as induced subgraphs, which are essentially two highly
interconnected sets.

As argued below, �ip-breakabilitymight be a crucial step towards es-
tablishing �xed-parameter tractability of the model checking prob-
lem for monadically dependent classes, and settling the tractability
side of Conjecture 1.1. Moreover, we use the patterns of the second
characterization to prove the hardness side of Conjecture 1.1: we
show that �rst-order model checking is AW[∗]-hard on every hered-
itary graph class that is monadically independent (Theorem 2.7).
We now present our two combinatorial characterizations of monad-
ically dependent classes in more detail.

Flip-Breakability. Flips are a central emerging mechanism in the
study of well-behaved graph classes (e.g., [5, 29, 30, 44]). A :-�ip of
a graph � is a graph � obtained from � by partitioning the vertex
set into : parts and, for every pair -,. of parts, either leaving the
adjacency between - and . intact, or complementing it.

We use �ips to measure the interaction between vertex sets �, �
at a �xed distance A in a graph� . Intuitively, if for some small value
: there is a :-�ip � of� in which the distance dist� (�, �) is larger
than A , then this witnesses that the sets� and � are “well-separated”
at distance A .

Consider for example the graph � at the top of Figure 3, con-
sisting of stacked half-graphs. Applying a �ip between the blue
squares and the blue circles (as depicted in the bottom of Figure 3),
and between the orange squares and the orange circles, we obtain
a 5-�ip of � in which the sets � and � have distance at least 6.
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A B

A B

Figure 3: The sets G and H are far away after a 5-�ip shown

on the bottom. We �ip between the blue squares and the

blue circles, and between the orange squares and the orange

circles.

Roughly, our �rst main result expresses that for graphs from
a monadically dependent class, in every su�ciently large vertex
set, , we can �nd two still-large subsets � and � whose distance
in some $ (1)-�ip is larger than a given constant A . This is formally
expressed as follows.

De�nition 2.1 (Flip-Breakability). A graph class C is �ip-breakable
if for every radius A ∈ N there exists a function #A : N → N and
a constant :A ∈ N such that for all< ∈ N, � ∈ C and, ⊆ + (�)

with |, | ⩾ #A (<) there exist subsets �, � ⊆, with |�|, |� | ⩾ <

and a :A -�ip � of � such that:

dist� (�, �) > A .

Theorem 2.2. A class of graphs is monadically dependent if and

only if it is �ip-breakable.

Our proof is algorithmic: For a �xed monadically dependent
class C and radius A , the subsets � and � and the witnessing �ip �
can be computed in time quadratic time.

Theorem 2.3. For every monadically dependent class C and radius

A ∈ N, there exists an unbounded function 5A : N → N, a constant

:A ∈ N, and an algorithm that, given a graph � ∈ C and, ⊆

+ (�), computes in time $C,A ( |+ (�) |2) two subsets �, � ⊆, with

|�|, |� | ⩾ 5A ( |, |) and a :A -�ip � of � such that:

dist� (�, �) > A .

Relation of Flip-Breakability to Other Work. The model checking
algorithms for nowhere dense classes [32] and monadically stable
classes [17, 18] are respectively based on winning strategies for
pursuit-evasion games called the splitter game [32] and the �ip-

per game [29]. These winning strategies were obtained from a
characterization of nowhere dense classes in terms of uniform
quasi-wideness [15, 35] and a characterization of monadically stable
classes in terms of �ip-�atness [19]. Both are Ramsey-like proper-
ties which are very similar to �ip-breakability. The de�nitions of
these three notions match the same template:

A class of graphs C is . . . if for every radius A ∈ N

there exists a function #A : N → N and a constant

:A ∈ N such that for all< ∈ N,� ∈ C and, ⊆ + (�)

with |, | ⩾ #A (<) there exist . . .

In all three cases we continue the de�nition by stating the existence
of a large number of vertices that are in a certain sense “well-
separated”. However, the sentence is completed in an increasingly
more general way for the three notions. The crucial di�erences are
highlighted in bold.

• uniform quasi-wide [15, 35]: . . . a set Y ⊆ + (�) of at most
kr vertices and � ⊆, \ ( with |�| ⩾ <, such that in� \ ( ,
all vertices from � have pairwise distance greater than r .

• �ip-�at [19]: . . . a kr -�ip N of� and� ⊆, with |�| ⩾ <,
such that in � , all vertices from � have pairwise distance

greater than r .
• �ip-breakable: . . . a kr -�ip N of � and �, � ⊆ , with
|�|, |� | ⩾ <, such that in� , all vertices inGhave distance

greater than r from all vertices in H.

In the context of ordered graphs, the model checking algorithm
for classes of bounded twin-width crucially relied on a characteri-
zation of these classes in terms of bounded grid rank [7, Sec. 3.4].
Rephrasing this characterization in the language of this paper, it
reads as follows.

A class of ordered graphs C has bounded grid rank

if there exists : ∈ N such that for all � ∈ C and
ordered sequences of vertices 01 < · · · < 0: ∈ + (�),
11 < · · · < 1: ∈ + (�), there exists a :-�ip� of� and
indices 8, 9 ∈ [: − 1] de�ning ranges � = {0 ∈ + (�) |

08 ⩽ 0 ⩽ 08+1}, � = {1 ∈ + (�) | 1 9 ⩽ 1 ⩽ 1 9+1},
such that there are no edges incident to both � and �
in � .

Flip-breakability combines the distance-A -based aspects of uni-
form quasi-wideness and �ip-�atness with the “no edges incident
to both � and �” criterion of grid rank. Using our insulation prop-

erty, one can easily reprove the characterization of nowhere dense
classes in terms of uniform quasi-wideness [35], of monadically
stable classes in terms of �ip-�atness [19], and of classes of ordered
graphs with bounded twin-width in terms of grid rank [7].

Given that �ip-breakability characterizes monadically depen-
dent graph classes and naturally generalizes the previous notions,
we believe that it will also play a crucial role in a future model
checking algorithm for monadically dependent classes: Mirroring
the situation for nowhere dense and monadically stable classes,
�ip-breakability might lead to a characterization of monadically
dependent classes in terms of a pursuit-evasion game. Just like the
previous two algorithms [17, 18, 32], winning strategies for this
game might then be useful for model checking, and settling the
backward direction of Conjecture 1.1. (Note however that in each
of these cases, the games where only one of the main ingredients
of the model checking algorithm).

Binary Structures. Our results apply in the more general set-
ting of binary structures, rather than graphs, that is, of structures
equipped with one or more binary relation. In particular, we prove
that monadically dependent classes of binary structures can be
equivalently characterized in terms of �ip-breakability, de�ned suit-
ably for binary structures. As an application, we derive a key result
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Table 1: Variants of �ip-breakability. Corresponding de�nitions and proofs can be found in the full version [20] of this paper.

�atness breakability

dist-A
�ip- monadic stability [19] monadic dependence

deletion- nowhere denseness [15, 35] nowhere denseness

dist-∞
�ip- bounded shrubdepth bounded cliquewidth

deletion- bounded treedepth bounded treewidth

of [7]: that monadically dependent classes of ordered graphs have
bounded grid rank (see de�nition above).

Theorem 2.4 ([7]). Let C be a monadically dependent class of

ordered graphs. Then C has bounded grid rank.

Variants of Flip-Breakability. The previously highlighted simi-
larities between �ip-breakability, �ip-�atness, and uniform quasi-
wideness suggest the following natural variations of �ip-breakability.
We allow to modify the graph using either (1) �ips or vertex deletions
and demand that the resulting subset is either (2) �at or broken,
that is, either pairwise separated or separated into two large sets.
We further additionally parameterize the type of separation to
be either (3) distance-A or distance-∞. While distance-A separation
corresponds to the usual kind given in De�nition 2.1, distance-∞
separation demands sets to be in di�erent connected components
of the graph. This is formalized by the following de�nition.

De�nition 2.5. A class of graphs C is distance-∞ �ip-breakable, if
there exists a function # : N→ N and a constant : ∈ N such that
for all< ∈ N, � ∈ C and, ⊆ + (�) with |, | ⩾ # (<) there exist
subsets �, � ⊆ , with |�|, |� | ⩾ < and a :-�ip � of � such that
in � , no two vertices 0 ∈ � and 1 ∈ � are in the same connected
component.

Using this terminology, uniform quasi-wideness, for example,
becomes distance-A deletion-�atness. For formal de�nitions of these
variants, we refer to the full version [20] of this paper. As summa-
rized in Table 1, each of the eight possible combinations of (1), (2)
and (3) characterizes a well-studied property of graph classes.

Notably, the right column of Table 1 corresponds to conjec-
tured tractability limits of the model checking problem, where
the distance-A and distance-∞ variants correspond to, respectively,
�rst-order and monadic second-order logic, and the �ip and dele-
tion variants correspond to hereditary and monotone classes. Fur-
thermore, it is interesting to see that the seemingly more general
deletion-breakability collapses to deletion-�atness, as both proper-
ties characterize nowhere denseness.

Forbidden Induced Subgraphs. Imposing bounds on the size of cer-
tain patterns is a common and powerful mechanism for de�ning
well-behaved graph classes. For example, by de�nition, a class C
is nowhere dense if and only if for every A ∈ N, C avoids some
A -subdivided clique as a subgraph. In similar spirit, it is shown [17]
that an orderless class C is monadically stable if and only if for
every A ∈ N, the class C avoids all A -�ips of the A -subdivided clique,
and its line graph, as an induced subgraph. A similar characteri-
zation for monadically dependent classes has so far been elusive.
In this paper, we show that a class C is monadically dependent if
and only if for every A ∈ N, the class C avoids certain variations of

the A -subdivision of some complete bipartite graph, as an induced
subgraph. Let us start by de�ning these patterns.

For A ⩾ 1, the star A -crossing of order = is the A -subdivision of
 =,= . More precisely, it consists of roots 01, . . . , 0= and 11, . . . , 1=
together with A -vertex paths {c8, 9 | 8, 9 ∈ [=]} that are pairwise
vertex-disjoint (see Figure 4). We denote the two endpoints of a
path c8, 9 by start(c8, 9 ) and end(c8, 9 ). We require that roots appear
on no path, that each root 08 is adjacent to {start(c8, 9 ) | 9 ∈ [=]},
and that each root 1 9 is adjacent to {end(c8, 9 ) | 8 ∈ [=]}. The
clique A -crossing of order = is the graph obtained from the star A -
crossing of order = by turning the neighborhood of each root into
a clique. Moreover, we de�ne the half-graph A -crossing of order
= similarly to the star A -crossing of order =, where each root 08
is instead adjacent to {start(c8′, 9 ) | 8 ′, 9 ∈ [=], 8 ⩽ 8 ′}, and each
root 1 9 is instead adjacent to {end(c8, 9 ′) | 8, 9

′ ∈ [=], 9 ⩽ 9 ′}. Each
of the three A -crossings contains no edges other than the ones
described. At last, the comparability grid of order = consists of
vertices {08, 9 | 8, 9 ∈ [=]} and edges between vertices 08, 9 and 08′, 9 ′
if and only if either 8 = 8 ′, or 9 = 9 ′, or 8 < 8 ′ ⇔ 9 < 9 ′.

It is easy to see that these patterns are logically complicated: For
every �xed A , the four graph classes containing these four types of
patterns are monadically independent.

We also need to consider certain �ips of the above patterns. To
this end, we partition the vertices of star, clique, and half-graph
A -crossings into layers: The zeroth layer consists of the vertices
{01, . . . , 0=}. The ;th layer, for ; ∈ [A ], consists of the ;th vertices
of the paths {c8, 9 | 8, 9 ∈ [=]} (that is, the 1st and A th layer, re-
spectively, are {start(c8, 9 ) | 8, 9 ∈ [=]} and {end(c8, 9 ) | 8, 9 ∈ [=]}).
Finally, the (A + 1)th layer consists of the vertices {11, . . . , 1=}. A
�ipped star/clique/half-graph A -crossing is a graph obtained from
a star/clique/half-graph A -crossing by performing a �ip where the
parts of the specifying partition are the layers of the A -crossing. Note
that while there is only one star/clique/half-graph A -crossing of or-
der =, there are multiple �ipped star/clique/half-graph A -crossings

of order =. Their number is however bounded by 2
(A+2)2 : an upper

bound for the number of possible �ips speci�ed by a single partition
of size (A + 2).

Theorem 2.6. Let C be a graph class. Then C is monadically

dependent if and only if for every A ⩾ 1 there exists : ∈ N such that

C excludes as induced subgraphs

• all �ipped star A -crossings of order : , and

• all �ipped clique A -crossings of order : , and

• all �ipped half-graph A -crossings of order : , and

• the comparability grid of order : .

This characterization by forbidden induced subgraphs opens the
door for various algorithmic, logical, and combinatorial hardness
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Figure 4: (i) star 4-crossing of order 4. (ii) clique 4-crossing of order 4. (iii) half-graph 4-crossing of order 4. (iv) comparability

grid of order 4. In (i), (ii), (iii), the roots are adjacent to all vertices in their respective colorful strip.

results. On the algorithmic side, we prove the hardness part of
Conjecture 1.1.

Theorem 2.7. The �rst-order model checking problem is AW[∗]-

hard on every hereditary, monadically independent graph class.

The result builds on the following logical hardness result, which
is of independent interest.

Theorem 2.8. Every hereditary, monadically independent graph

class e�ciently interprets the class of all graphs.

Recall that monadically independent classes were de�ned as
those which transduce the class of all graphs. For hereditary classes,
the above result strengthens this de�nition: interpretations are a
more restrictive version of transductions, that do not include a
nondeterministic coloring step. Moreover, e�cient interpretations
come with a polynomial time algorithm which, given an arbitrary
input graph � , outputs a graph in C in which � is encoded. This
allows to reduce the model checking problem for all graphs to the
model checking problem on the class C, thus proving Theorem 2.7.

On the combinatorial side, we show that no hereditary, monad-
ically independent graph class is small, has almost bounded twin-

width, or has almost bounded �ip-width. Let us quickly explain the
three notions.

A graph class C is small if it contains at most=!2= distinct labeled
=-vertex graphs, for some constant 2 . This notion has been studied
in enumerative combinatorics [34, 38]. It is known that all classes
of bounded twin-width are small [10]. The converse implication
was conjectured, and was subsequently refuted [6]. In the context
of ordered graphs, it was shown that all small classes of ordered
graphs have bounded twin-width [7]. We prove the following.

Theorem 2.9. Every hereditary, small graph class is monadically

dependent.

Say that a class C of graphs has almost bounded twin-width if
for every Y > 0 the twin-width of every =-vertex graph � ∈ C is
bounded by $Y,C (=

Y ). We prove the following.

Theorem 2.10. Every hereditary, almost bounded twin-width graph

class is monadically dependent.

In [44], a family of graph-width parameters called �ip-width of

radius A , for A ⩾ 1, is introduced, together with the ensuing notion of

classes of almost bounded �ip-width. Classes of almost bounded �ip-
width include all nowhere dense classes, all classes of bounded twin-
width, and more generally, and all classes of almost bounded twin-
width. It is conjectured that for hereditary graph classes, almost
bounded �ip-width coincides with monadic dependence:

Conjecture 2.11. A hereditary graph class C has almost bounded

�ip-width if and only if it is monadically dependent.

We prove one implication of this conjecture.

Theorem 2.12. Every hereditary, almost bounded �ip-width graph

class is monadically dependent.

Relation of the Pa�erns to Other Work. Our forbidden patterns char-
acterization Theorem 2.6 generalizes similar previous characteri-
zations. Recall that monadic dependence is captured by monadic
stability, for hereditary orderless graph classes, and by bounded
twin-width, for hereditary classes of ordered graphs. The results
[7, 17] characterizing monadic dependence in those two settings
can be restated as follows.

• For orderless graph classes, a class C is monadically depen-
dent if and only if for every A ∈ N there exists : ∈ N such
that no graph in C contains a �ipped star A -crossing or clique
A -crossing of order : as an induced subgraph [17].

• For classes of ordered graphs, a class C is monadically de-
pendent if and only if there exists : ∈ N and a speci�c, �nite
family of ordered graphs with 2: vertices (similar to a match-
ing on 2: vertices ordered suitably) which are avoided by C

as semi-induced ordered subgraphs [7].

Our approach towards proving the forbidden patterns characteriza-
tion and model checking hardness originates in [17] and [7]. As a
result, we reprove some of their results. A subset of the patterns
identi�ed in this paper are su�cient to characterize monadic depen-
dence in the setting of orderless graph classes. As orderless classes
cannot contain large half-graph crossings or comparability grids,
Theorem 2.6 implies the result of [17] characterizing monadically
stable classes in terms of forbidden induced subgraphs. It is worth
noting that in [17], for hereditary, orderless, monadically indepen-
dent graph classes, hardness is shown even for existential model
checking. Adapting our results to the setting of binary structures,
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we show how to derive the characterization from [7] of monadically
dependent classes of ordered graphs in terms of forbidden patterns.

A recent paper by Braunfeld and Laskowski shows that a heredi-
tary class of relational structures is monadically dependent if and
only if it is dependent [12]. Dependence is a generalization of
monadic dependence studied in model theory. For the special case
of graph classes, our Theorem 2.8 reproves that result. Similarly to
our paper, the proof of Braunfeld and Laskowski exhibits certain
large con�gurations (called pre-coding con�gurations) in classes
that are monadically independent. As pre-coding con�gurations are
de�ned in terms of formulas with tuples of free variables, these re-
sults are not a purely combinatorial characterization of monadically
dependent graph classes. In particular, they seem insu�cient for
obtaining algorithmic hardness results. However, we believe that
one could also prove Theorem 2.9, stating that small, hereditary
classes are dependent, using the results of [12].

In [25], Eppstein and McCarty prove that many di�erent types of
geometric graphs have unbounded �ip-width, and in fact [25, App.
A], form monadically independent graph classes. These include
interval graphs, permutation graphs, circle graphs, and others. It
is shown that these classes contain large interchanges, which are
similar to 1-subdivided cliques, and to our patterns. Containing in-
terchanges of arbitrarily large order is a su�cient, but not necessary
condition to monadic independence.

3 TECHNICAL OVERVIEW

Due to space constraints, (almost) all proofs and de�nitions are
deferred to the full version [20] of this paper. In the following, we
give a high level overview of the methods and statements used to
derive our results. All our proofs are fully constructive and only
use elementary tools such as Ramsey’s theorem.

Insulators. In order to prove �ip-breakability for a graph� and a
large set, ⊆ + (�), we try to enclose a sizeable subset,★ ⊆, in
a structure A that “insulates” the elements of,★ from each other,
and from external vertices that are not enclosed in A. We call this
structure A an insulator. It is a grid-like partition of a subset of
+ (�). An example is shown in the top of Figure 5 (in general, each
cell may contain more than one vertex).

Roughly speaking, there is a coloring of the vertex set, using a
bounded number of colors, such that the adjacency between a pair
of vertices in non-adjacent rows of the grid is determined only by
their colors. For a pair of vertices in adjacent rows, the adjacency is
determined by their colors and the order of their columns. Finally,
the adjacencies between vertices in the exterior of the grid and the
vertices inside the grid (without the �rst and last column, and last
row) are determined by their colors. Exceptionally, the connections
within the top row and between adjacent cells of the grid may be
arbitrary.

The large subset,★ ⊆ , is distributed in the bottom row of
the insulator, in a way such that every vertex of,★ is contained
in a di�erent column. Assume the insulator has height at least A .
We can choose two large subsets � and � of,★, such that for any
two vertices E ∈ � andF ∈ �, it takes at least A steps along edges
which are not controlled by the insulator to get from E toF .

Given A ∈ N, we strive for insulators of height A , where the
number of colors is bounded by some constant, depending on A .

W⋆⊆W

A B

Figure 5: Top: An insulator surrounding the set ]★. The

shown stacked half-graph layout is easily described by a

bounded number of colors and the column order. Bottom: A

bounded number of �ips are su�cient to ensure the high-

lighted subsets G ⊆ ]★ and H ⊆ ]★ have distance larger

than 4. The shades of red and blue highlight upper bounds

on the distance of other vertices to G and H. In particular,

all unshaded vertices have distance larger than two to these

sets.

Thus, if we embed large sets �, � in such an insulator and coarsen
the columns as shown on the bottom of Figure 5, we can ensure
with a bounded number of �ips (depending on the number of colors)
that edges only go between adjacent cells, and thus � and � have
distance at least A . Hence, we can use the insulators to obtain �ip-
breakability.

Constructing Insulators or Prepatterns. One can trivially construct
an insulator of height one that embeds a set, : Build a single row
by placing every vertex of, into a distinct cell. The central step of
our construction, presented in Part I of the full version [20], takes
a large insulator of height A , and adds another row on top to obtain
a still-large insulator of height A + 1. To this end, we build upon
and signi�cantly extend techniques developed in the context of
�ip-�atness [19], based on indiscernible sequences, a fundamental
tool in model theory.

Given a large insulator of height A in any graph � , the key step
in our construction shows that there is either enough disorder to
connect the topmost row of the grid into a preliminary pattern,
called prepattern, resembling a crossing (Figure 6, left), or enough
order to add an additional row A + 1 on top (Figure 6, right). While
both cases reduce the number of columns in the insulator, there
still remains a large number of them.

We de�ne prepattern-free classes by excluding certain prepat-
terns. In such classes, we therefore always �nd enough order to
construct large insulators row-by-row. We say that such classes
have the insulation property. By the arguments outlined in Figure 5,
such classes are easily shown to be �ip-breakable. Lastly, using
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enough disorder enough orderor

+1

Figure 6: In every graph, we can either increase the height of

an insulator of �nd a large prepattern.

the locality property of �rst-order logic, it is easy to show that
�ip-breakable classes are monadically dependent (Proposition 4.1).
Thus, any graph class satis�es the following chain of implications.

prepattern-free

⇒ insulation property

⇒ �ip-breakable

⇒ monadically dependent

A proof of the last implication is given in Section 4.

Cleaning Up Prepatterns. Afterwards, in Part II of the full pa-
per [20], we clean up the prepatterns. This involves heavy use of
Ramsey’s theorem to regularize the patterns until we either obtain
a �ipped star/clique/half-graph crossing, or a comparability grid.
From such patterns one can trivially transduce all graphs. This is
summarized by the following chain of implications.

not prepattern-free

⇔ large prepatterns

⇒ large patterns

⇒ monadically independent

Hence, by contrapositive, monadic dependence implies prepattern-
freeness. Together with the previous chain of implications, we
obtain the desired equivalences.

insulation property

⇔ �ip-breakable

⇔ no large patterns

⇔ monadically dependent

Hardness. Consider a hereditary class C that is monadically in-
dependent. As discussed, C contains large patterns witnessing this.
To obtain hardness of model checking, we reduce from the model
checking problem in general graphs. This requires an encoding of
an arbitrary graph into a large pattern, using a �rst-order formula.
We know that when adding colors, such an encoding is possible:
classes that are monadically independent transduce the class of all
graphs. However, for our reduction we require encodings that do
not use colors: we want to show that every hereditary class that is
monadically independent interprets the class of all graphs. Here, an
interpretation is a transduction that does not use colors and where
instead of taking arbitrary induced subgraphs, the vertex set of the

interpreted graph must be de�nable in the original graph by a for-
mula X (G). Heavily relying on the fact that in hereditary classes we
can take induced subgraphs before applying the interpretation, it is
not too hard to show that for each A ⩾ 1, the hereditary closures of
the class of all comparability grids and the classes of all non-�ipped
star/clique/half-graph A -crossings interpret the class of all graphs.
The main challenge is to “reverse” the �ips using �rst-order formu-
las in the case of �ipped A -crossings. This is achieved by using sets
of twins to mark layers of the A -crossing.

4 FLIP-BREAKABILITY IMPLIES MONADIC
DEPENDENCE

In this section, we prove the simpler of the two directions that
characterize monadic dependence in terms of �ip-breakability. We
assume familiarity with basic notation in graph theory and logic.
For a graph � and vertex set �, we denote in the following by
#�
A (�) all vertices with distance at most A from � in � .

Proposition 4.1. Every �ip-breakable class of graphs is monadi-

cally dependent.

Let i (G,~) be a formula over the signature of colored graphs,
�+ be a colored graph, and, be a set of vertices in �+. We say
that i shatters, in �+, if there exists vertices (0')'⊆, such that
for all 1 ∈ % and ' ⊆, ,

�+ |= i (0', 1) ⇔ 1 ∈ '.

Let � be an (uncolored) graph, and, be a set of vertices in � . We
say that i monadically shatters, in � , if there exists a coloring
�+ of � in which i shatters, .

Fact 4.2 ([4]). A class of graphs C is monadically dependent if

and only if for every formula i (G,~) over the signature of colored

graphs, there exists a bound< such that i monadically shatters no

set of size< in any graph of C.

Proposition 4.1 will be implied by the following.

Lemma 4.3. Let i (G,~) be a formula and : ∈ N. There exist

Ai ,<i,: ∈ N, where Ai depends only on i , such that no graph �

contains a set of at least<i,: vertices, such that

• i monadically shatters, in � , and

• , is (Ai , :)-�ip-breakable in � .

In order to prove Lemma 4.3, we use the following statement,
which is an immediate consequence of Gaifman’s locality theo-
rem [28]. For an introduction of the locality theorem see for exam-
ple [31, Sec. 4.1].

Corollary 4.4 (of [28, Main Theorem]). Let i (G,~) be a for-

mula. Then there are numbers A, C ∈ N, where A depends only on

the quanti�er-rank of i and C depends only on the signature and

quanti�er-rank of i , such that every (colored) graph� can be vertex-

colored using C colors in such a way that for any two vertices D, E ∈

+ (�) with distance greater than A in� ,� |= i (D, E) depends only on

the colors of D and E . We call A the Gaifman radius of i .

Proof of Lemma 4.3. We set Ai to be the Gaifman radius of i .
Let B be the number of colors used by i . As stated in Corollary 4.4,
let C be the number of colors needed to determine the truth value
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of formulas in the signature of (B · :)-colored graphs that have the
same quanti�er-rank as i (G,~). Let<i,: := 3(C + 1).

Assume now towards a contradiction the existence of an (Ai , :)-
�ip-breakable in set, in � of size<i,: such that i monadically
shatters, in� . Then there exists an B-coloring�+ of� in which i
shatters, . We apply �ip-breakability which yields a :-�ip � of �
together with two disjoint sets �, � ⊆, each of size at least C + 1,
such that #�

A (�) ∩ #�
A (�) = ∅. By using : colors to encode the

�ip, we can rewrite i to a formulak with the same quanti�er-rank
as i , such that there exists a (B · :)-coloring �+ of � where for all
D, E ∈ + (�),

�+ |= i (D, E) ⇔ �+ |= k (D, E) .

In particular,k shatters, in �+. Sincek has the same quanti�er-
rank as i and is a formula over the signature of B ·:-colored graphs,
by Corollary 4.4 there exists a coloring of �+ with C colors such
that the truth ofk (D, E) in �+ only depends on the colors of D and
E for all vertices D and E with distance greater than A in �+. Recall
that� and � each have size C + 1. By the pigeonhole principle, there
exist two distinct vertices 01, 02 ∈ � that are assigned the same
color and two distinct vertices 11, 12 ∈ � that are assigned the same
color. Sincek shatters, in�+, there exists a vertex E ∈ + (�) such
that

�+ |= k (E, 01) ∧ ¬k (E, 02) ∧k (E, 11) ∧ ¬k (E, 12) .

By Corollary 4.4, E must be contained in #�
A (�) ∩ #�

A (�), as the
truth ofk is inhomogeneous among both E and {01, 02} and among
E and {11, 12}. This is a contradiction to #�

A (�) ∩#�
A (�) = ∅. □

5 CONCLUSIONS AND FUTUREWORK

In this paper, we obtain the �rst combinatorial characterizations
of monadically dependent graph classes, which open the way to
generalizing the results of sparsity theory to the setting of heredi-
tary graph classes. Our main results, Theorem 2.2 and Theorem 2.6,
may be seen as analogues of the result [35] characterizing nowhere
dense graph classes as exactly the uniformly quasi-wide classes
[15], and the result [2, 40] characterizing nowhere dense classes as
exactly those, whose monotone closure is monadically dependent.

Central results in sparsity theory, characterizing nowhere dense
classes, can be usually grouped into two types: qualitative charac-
terizations and quantitative characterizations. Qualitative charac-
terizations typically say that for every radius A , some quantity is
bounded by a constant depending on A for all graphs in the class.
Our two main results fall within this category.

On the other hand, quantitative characterizations of nowhere
dense classes are phrased in terms of a �ne analysis of densities
of some parameters, such as degeneracy, minimum degree, weak
coloring numbers, neighborhood complexity, or VC-density; those
results almost always involve bounds of the form =Y or =1+Y , where
= is the number of vertices of the considered graph, and Y > 0 can
be chosen arbitrarily small. For instance, given a nowhere dense
graph class C, for every �xed A ∈ N and Y > 0, all graphs � whose
A -subdivision is a subgraph of a graph in C satisfy

|� (�) | ⩽ $C,A ,Y ( |+ (�) |1+Y ) .

Similarly, a parameter called the weak A -coloring number (for any
�xed A ∈ N, Y > 0), is bounded by $C,A ,Y (=

Y ), for every =-vertex
graph � in a nowhere dense class.

Both the qualitative and quantitative results are of fundamental
importance in sparsity theory, and lifting them to the setting of
monadically dependent graph classes is therefore desirable. Some of
the most elaborate results of sparsity theory combine both aspects
of the theory. In particular for nowhere dense model checking [32],
the splitter game [32] – a qualitative characterization – is combined
with the quantitative characterization in terms of weak coloring
numbers. The characterization in terms of the splitter game relies
on uniform quasi-wideness, and has been extended to the setting of
monadically stable graph classes, in terms of the �ipper game [29],
which in turn relies on the characterization in terms of �ip-�atness.
Basing on this, we believe that �ip-breakability may be a �rst step
towards obtaining a game characterization of monadic dependence.

As we observe now, our results also provide a �rst quantitative
characterization of monadically dependent classes. As an analogue
of the notion of containing the A -subdivision of a graph as a subgraph,
we introduce the following concept of radius-A encodings. Fix an in-
teger A ⩾ 1. Let� = (�, �, �) be a bipartite graph with |�| = |� | = =

for some =, and let � = {01, . . . , 0=} and � = {11, . . . , 1=}. Consider
a graph � which is a star/clique/half-graph A -crossing with roots
01, . . . , 0= and 11, . . . , 1= . Recall that + (� ) can be partitioned into
A + 2 layers, and there are =2 distinguished A -vertex paths c8, 9 con-
necting 08 and 1 9 , for 8, 9 ∈ [=]. Let � ′ be a graph obtained from �

by:

(1) adding arbitrary edges within each layer of � ,
(2) removing all vertices of the paths c8, 9 for 8, 9 ∈ [=] such that

{08 , 1 9 } ∉ � (�),
(3) �ipping pairs of layers arbitrarily.

We call � ′ a radius-A encoding of � . In particular, every �ipped
star/clique/half-graph A -crossing of order= is a radius-A encoding of
the complete bipartite graph =,= . Moreover, the comparability grid
of order = + 1 contains as an induced subgraph a radius-1 encoding
of the complete bipartite graph  =,= , which can be obtained from
the half-graph 1-crossing of order = + 1 by adding edges within the
three layers.

The following result is proven in the full version of our paper,
where it easily follows from our non-structure characterization of
monadic dependence combined with results of Dvořák [21, 22].

Theorem 5.1. Let C be a hereditary graph class. The following

conditions are equivalent:

(1) C is monadically dependent,

(2) for every real Y > 0 and integer A ⩾ 1, for every bipartite graph

� such that C contains some radius-A encoding of � , we have

that |� (�) | ⩽ $C,A ,Y ( |+ (�) |1+Y ),

(3) for every integer A ⩾ 1 there is an integer # ⩾ 1 such that for

every bipartite graph� with |+ (�) | > # such that C contains

some radius-A encoding of� , we have that |� (�) | < 1

4
|+ (�) |2.

Theorem 5.1may be a �rst step towards developing a quantitative
theory of monadically dependent classes. A challenging goal here
is to generalize the characterization of nowhere denseness in terms
of weak coloring numbers, to monadically dependent classes.

Flip-width. The �ip-width parameters were introduced [44] with
the aim of obtaining quantitative characterizations of monadic
dependence. The �ip-width at radius A ⩾ 1, denoted fwA (·), is an
analogue of the weak A -coloring number, and the notion of classes
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of bounded �ip-width, and almost bounded �ip-width, generalize
classes of bounded expansion and nowhere dense classes to the
dense setting. A graph class C has bounded �ip-width if for every
integer A ⩾ 1 there is a constant :A such that fwA (�) ⩽ :A for all
graphs � ∈ C. A hereditary graph class C has almost bounded �ip-

width if for every integer A ⩾ 1 and real Y > 0 we have fwA (�) ⩽

$C,A ,Y (=
Y ) for all=-vertex graphs� ∈ C. Conjecture 2.11 – equating

monadic dependence with almost bounded �ip-width – therefore
postulates a quantitative characterization of monadic dependence,
parallel to the characterization of nowhere denseness in terms of
weak coloring numbers.

As mentioned, our results imply the forward implication of Con-
jecture 2.11: that every hereditary class of almost bounded �ip-
width is monadically dependent. Theorem 5.1 might be an initial
step towards resolving the backwards direction in Conjecture 2.11,
as by Theorem 5.1, Conjecture 2.11 is equivalent to the following:

Conjecture 5.2. Let C be a hereditary graph class. Then the

following conditions are equivalent:

(1) for every real Y > 0 and integer A ⩾ 1, for every bipartite graph

� such that C contains some radius-A encoding of � , we have:

|� (�) |

|+ (�) |
⩽ $C,A ,Y ( |+ (�) |Y ),

(equivalently, by Theorem 5.1, C is monadically dependent)

(2) C has almost bounded �ip-width: For every real Y > 0 and

integer A ⩾ 1, and graph � ∈ C, we have:

fwA (�) ⩽ $C,A ,Y ( |+ (�) |Y ) .

Note that the implication (2)→(1) in Conjecture 5.2 holds, by
Theorem 5.1 and Theorem 2.12. The following conjecture would
imply the converse implication.

Conjecture 5.3. For every A ⩾ 1 there are integers B, : ⩾ 1 such

that for every graph � we have:

fwA (�) ⩽ max
�

(

|� (� ) |

|+ (� ) |

):

,

where the maximum ranges over all bipartite graphs � such that �

contains some radius-B encoding of � as an induced subgraph.

An analogue of Conjecture 5.3 holds in the sparse setting. There,
the �ip-width parameters are replaced by weak coloring numbers,
and the maximum ranges over all graphs � such that � contains
some B-subdivision of � as a subgraph. Conjecture 5.3 would fur-
thermore imply the following characterization of classes of bounded
�ip-width, analogous to a known characterization of classes with
bounded expansion in terms of weak coloring numbers [45].

Conjecture 5.4. Let C be a hereditary graph class. Then the

following conditions are equivalent:

(1) for every integer A ⩾ 1 there is a constant :A such that for

every bipartite graph � such that C contains some radius-A

encoding of � , we have that |� (�) | ⩽ :A · |+ (�) |,

(2) C has bounded �ip-width: For every integer A ⩾ 1 there is a

constant :A such that for every graph � ∈ C, we have that

fwA (�) ⩽ :A .

Note that the implication (2)→(1) follows from the results of [44]
(that every weakly sparse transduction of a class of bounded �ip-
width has bounded expansion). The converse implication would
resolve Conjecture 11.4 from [44], which predicts that if a class C
has unbounded �ip-width, then C transduces a weakly sparse class
of unbounded expansion.

Near-twins. A speci�c goal, not involving �ip-width, whichwould
be implied by the above conjectures, can be phrased in terms of
near-twins. Say that two distinct vertices D, E in a graph � are :-
near-twins, where : ∈ N, if the symmetric di�erence of the neigh-
borhoods ofD and of E consists of at most : vertices. It is known [44]
that every graph � with more than one vertex contains a pair of
(2 fw1 (�))-near-twins. Consequently, for every class C of bounded
�ip-width there is a constant : such that every graph � ∈ C with
more than one vertex contains a pair of :-near-twins. Similarly, if
C has almost bounded �ip-width then every =-vertex graph � ∈ C

with = > 1 contains a pair of $C,Y (=
Y )-near-twins.

Therefore, a �rst step towards Conjecture 2.11 is to prove that
for all monadically dependent classes, every =-vertex graph � ∈ C

with = > 1 contains a pair of$C,Y (=
Y )-near-twins. Similarly, a step

towards Conjecture 5.4 is to prove the following consequence of
Conjecture 5.3 (in the case A = 1), stated below.

Conjecture 5.5. There is an integer B ⩾ 1 and an unbounded

function 5 : N → N such that every graph � with more than one

vertex and no pair of 3-near twins, for some 3 ∈ N, contains as an

induced subgraph a radius-B encoding of some bipartite graph � with

|� (� ) |/|+ (� ) | ⩾ 5 (3).

VC-density and Neighborhood Complexity. Another, related con-
jecture [17, Conj. 2] bounds the neighborhood complexity, or VC-
density of set systems de�ned by neighborhoods in graphs from a
monadically dependent graph class, and is phrased as follows.

Conjecture 5.6 ([17]). Let C be a monadically dependent graph

class and let Y > 0 be a real. Then for every graph � ∈ C and set

� ⊆ + (�), we have that

|{# (E) ∩� : E ∈ + (�)}| ⩽ $C,Y ( |�|
1+Y ) .

This conjecture is con�rmed for all nowhere dense classes [24,
39], for all monadically stable classes [17], and for all classes of
bounded twin-width [8, 41].
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