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Given a graph G = (V ,E) and an integer k , the Cluster Editing problem asks whether we can transform G
into a union of vertex-disjoint cliques by at most k modifications (edge deletions or insertions). In this paper,
we study the following variant of Cluster Editing. We are given a graph G = (V ,E), a packing H of
modification-disjoint induced P3s (no pair of P3s in H share an edge or non-edge) and an integer �. The
task is to decide whether G can be transformed into a union of vertex-disjoint cliques by at most � + |H |
modifications (edge deletions or insertions). We show that this problem is NP-hard even when � = 0 (in which
case the problem asks to turn G into a disjoint union of cliques by performing exactly one edge deletion or
insertion per element ofH ) and when each vertex is in at most 23 P3s of the packing. This answers negatively
a question of van Bevern, Froese, and Komusiewicz (CSR 2016, ToCS 2018), repeated by C. Komusiewicz at
Shonan meeting no. 144 in March 2019. We then initiate the study to find the largest integer c such that
the problem remains tractable when restricting to packings such that each vertex is in at most c packed P3s.
Here packed P3s are those belonging to the packing H . Van Bevern et al. showed that the case c = 1 is
fixed-parameter tractable with respect to � and we show that the case c = 2 is solvable in |V |2�+O (1) time.
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1 INTRODUCTION

Correlation Clustering is a well-known problem motivated by research in computational biol-
ogy [6] and machine learning [5]. In this problem we aim to partition data points into groups or
clusters according to their pairwise similarity and this has been intensively studied in the literature,
see [1, 3–6, 15], for example.

In this paper, we study Correlation Clustering from a graph-based point of view, resulting
in the following problem formulation. A graph H is called a cluster graph if H is a union of vertex-
disjoint cliques; we also call these cliques clusters. Given a graph G = (V ,E), in the optimization
version of Cluster Editing we ask for a minimum-size cluster-editing set S , that is, a set S ⊆

(
V
2

)
of vertex pairs such thatG�S := (V ,E�S ) is a cluster graph. Here E�S is the symmetric difference
of E and S , that is, E�S = (E \ S ) ∪ (S \ E). We also sometimes refer to vertex pairs as edits.
Cluster Editing is NP-hard [43]. Constant-ratio approximation algorithms have been found for
the optimization variant [1, 5, 15] but it is also APX-hard [15]. We focus here on exact algorithms
and the decision version of Cluster Editing.

Given a natural number k and a graphG = (V ,E), the decision version of Cluster Editing asks
whether there exists a cluster-editing set S such that |S | ≤ k . Exact parameterized algorithms for
Cluster Editing and some of its variants have been extensively studied [7, 9–13, 19, 21, 24, 28, 30,
31, 35, 40, 42]. Cluster Editing is but one of a large group of edge modification problems that have
been studied, see Crespelle et al. [17] for a recent survey. Perhaps it is one of the most important
such problems because of the practical motivation. Barring few exceptions [19, 24, 35, 44], Cluster
Editing has mainly been studied with respect to the solution-size parameter k . It is not hard
to observe that Cluster Editing is fixed-parameter tractable with respect to k and a series of
papers [7, 9, 11, 27, 28] continually improved the base in the exponential part of the running time,
culminating in the current fastest fixed-parameter algorithm with running timeO (1.62k+n+m) [7],
where n is the number of vertices of the input graph andm its number of edges. Similarly, a series
of papers [14, 16, 20, 22, 28, 29, 42] gave more and more effective problem kernels1 until a problem
kernel with 2k vertices was achieved [14, 16].

As mentioned, the interest in Cluster Editing is not merely theoretical. Indeed, parameterized
techniques are implemented in standard clustering tools [41, 45]. Although practitioners report
that in particular the parameterized data-reduction techniques are effective [8, 10], the parameter
k is not very small in several real-world data sets [9, 10, 44]. For instance, Böcker et al. [9, Table 2]
considered 26 graphs derived from biological data with 91 to 100 vertices on which the average
number of needed edits is 315, despite noting that the Cluster Editing model outperformed other
clustering models.

A technique to deal with such large parameters is parameterization above lower bounds. Herein,
the parameter is of the form � = k − h where h is a lower bound on the solution size, usually
computable in polynomial time, and � is the excess of the solution size above the lower bound.
Research into parameterizations above lower bounds has been active and fruitful for several pa-
rameterized problems, not only on the theory-side (see [18, 26, 36, 38, 39], for example) but also
in practice, as algorithms based on that approach yielded quite efficient implementations for Ver-
tex Cover [2] and among the most efficient ones for Feedback Vertex Set [32, 34]. For Clus-
ter Editing we are aware of only one research work considering parameterizations above lower
bounds: Van Bevern, Froese, and Komusiewicz [44] studied edge-modification problems parame-
terized above the lower bound from packings of forbidden induced subgraphs and showed that

1A problem kernel is a formalization of provably effective and efficient data reduction. It is a polynomial-time self-reduction
that produces instances of size bounded by some function of the parameter.
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Cluster Editing parameterized by the excess above the size of a given packing of vertex-disjoint

P3s is fixed-parameter tractable. Observe that a graph is a cluster graph if and only if it does not
contain any P3, a path on three vertices, as an induced subgraph. Consequently, one needs to per-
form at least one edge deletion or insertion per element of the packing.

As the P3s in the above packing are vertex-disjoint, the value by which the packing can de-
crease the parameter is limited. In the previous example with 315 edits, subtracting the result-
ing lower bound would reduce the parameter by at most 33. In their conclusion, van Bevern
et al. [44] asked whether Cluster Editing is fixed-parameter tractable when parameterized above
a stronger lower bound, the size of a modification-disjoint packing of P3s. Here, a packing H of
induced P3s in G is modification-disjoint if every two P3s inH do not share edges nor non-edges,
that is, they share at most one vertex. The formal problem definition is as follows.

Cluster Editing above Modification-Disjoint P3 Packing (CEaMP)

Input: A graph G = (V ,E), a modification-disjoint packingH of induced P3s of G, and a non-
negative integer �.

Question: Is there a cluster editing set, i.e., a set of vertex pairs S ⊆
(
V
2

)
so thatG�S is a union

of disjoint cliques, with |S | − |H | ≤ �?

We also say that a set S as above is a solution.

Our results. At Shonan Meeting no. 144 [33] Christian Komusiewicz re-iterated the question of
van Bevern et al. [44] and it was also asked in Vincent Froese’s dissertation [25]. In this paper, we
answer this question negatively by showing the following.

Theorem 1. Cluster Editing above Modification-Disjoint P3 Packing is NP-hard even for

� = 0 and when each vertex in the input graph is incident with at most 23 P3s ofH .

In other words, given a graph G and a packing H of modification-disjoint P3s in G, it is NP-hard
to decide if one can delete or insert exactly one edge per element of H to obtain a cluster graph.
Proving Theorem 1 was surprisingly nontrivial. A straightforward approach would be to amend
the known reductions [23, 35] that show NP-hardness for constant maximum vertex degree by
specifying a suitable packing of P3s. However, an argument based on the linear-programming
relaxation of packing modification-disjoint P3s shows that the graphs produced by these reductions
do not admit tight P3 packing bounds. We did not find a way around this issue and thus developed
a novel reduction based on new gadgets.

The verdict spelt by Theorem 1 is unfortunately quite damning. It indicates that even just
reaching the lower bound given by a modification-disjoint P3 packing already captures the al-
gorithmic hardness of the problem. However, there may be a way out of this conundrum: Call a
modification-disjoint P3 packing 1/c-integral if each vertex is in at most c packed P3s (and say
integral in place of 1-integral and half-integral in place of 1/2-integral). As the case c = 1 is
just the case of vertex-disjoint packings, van Bevern et al. [44] showed that Cluster Editing
parameterized by the excess over integral P3 packings is fixed-parameter tractable. Thus it be-
comes an intriguing question to find the largest c < 23 such that CEaMP remains tractable with
respect to the excess over 1/c-integral packings. We provide progress towards answering this ques-
tion here. The problem Cluster Editing above Half-Integral Modification-Disjoint P3 Pack-

ing (CEaHMP) is defined in the same way as CEaMP except that the input packing H is half-
integral. It turns out that the complexity of the problem indeed drops when making the packing
half-integral:
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Theorem 2. Cluster Editing above Half-Integral Modification-Disjoint P3 Packing pa-

rameterized by the number � of excess edits is in XP. It can be solved in n2�+O (1) time, where n is the

number of vertices in the input graph.

A straightforward idea to prove Theorem 2 would be to adapt the fixed-parameter algorithm for
vertex-disjoint packings given by van Bevern et al. [44]. Their main idea is to show that if a packed
P3 P of the input graphG admits a solution that is optimal for P and that respects certain conditions
on the neighborhood of V (P ) in G then this solution can be used in an optimal cluster-editing set
for G. Afterwards, each packed P3 P either needs an excess edit in V (P ) or an edit incident with
V (P ) in G. Since the P3s in the packing are vertex-disjoint, an edit incident with V (P ) will be in
excess over the packing lower bound as well. It then follows that the overall number of edits is
bounded by a function of the excess edits.

Unfortunately, the above idea fails for modification-disjoint packings for two reasons. First, the
property that packed P3s have an edit incident with them is not helpful anymore, because these
edits may be part of other packed P3s and hence not be in excess. Second, if we would like to
preserve that these edits are excess, we need to check the special neighborhood properties of van
Bevern et al. [44] for arbitrarily large connected components of packed P3s efficiently. We did not
see a way around these issues and instead designed an algorithm from scratch: A straightforward
guessing of the excess edits reduces the problem to the case where we need to check for zero excess
edits. This case is then solved by an extensive set of reduction rules that exploit the structure given
by the half-integral packing. Essentially, we successively reduce the maximum size of clusters in
the final cluster graph. This then allows us to reduce the problem to Cluster Deletion. Together
with the properties of the packing, this problem allows a formulation as a 2-SAT formula which
we then solve in polynomial time.

Organization. After brief preliminaries in Section 2, we give some intuition about CEaMP in
Section 3. Then we proceed to the reduction used to show Theorem 1 in Section 4.1 (containing
the construction) and Section 4.2 (containing the correctness proof). Section 5 then contains the
proof of Theorem 2.

2 PRELIMINARIES

In this paper, we denote an undirected graph by G = (V ,E), whereV = V (G ) is the set of vertices,
E = E (G ) is the set of edges, and

(
V
2

)
\ E is the set of non-edges. An undirected edge between two

vertices u and v will be denoted by uv where we put uv = vu. An undirected non-edge between
two vertices x and y will be denoted by xy, where we put xy = yx , and we will explicitly mention
that xy is a non-edge in case of confusion with the notation of an edge. If uv is an edge in the
graph, we say u and v are adjacent. We denote a bipartite graph by B = (U ,W ,E), whereU ,W are
the two parts of the vertex set of B and E is the set of edges of B. We say that a bipartite graph is
complete if for every pair of vertices u ∈ U andw ∈W , uw ∈ E. For a non-empty subset of vertices
X ⊆ V , we denote the subgraph induced by X by G[X ]. A clique Q in a graph G is a subgraph
of G in which any two distinct vertices are adjacent. A cluster graph is a graph in which every
connected component is a clique. A connected component in a cluster graph is called a cluster.

Let G ′ be a cluster graph and let S be a cluster editing set S such that G�S = G ′. We say that
two cliquesQ1 and Q2 ofG are merged (inG ′) if they belong to the same cluster inG ′. We say that
Q1 and Q2 are separated (in G ′) if they belong to two different clusters in G ′. When mentioning
the edges or non-edges between the vertices of the clique Q1 and the vertices of the clique Q2, we
refer to the edges or non-edges between the cliqueQ1 and the cliqueQ2 for short. Let �, r ∈ N. We
denote a path with � vertices by P� and a cycle with r vertices by Cr .
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Let x ,y, z be vertices in a graph G. We say that xyz is an induced P3 of G if xy,yz ∈ E (G ) and
xz � E (G ). Vertex y is called the center of xyz. We say that vertices x ,y, z belong to xyz or x ,y, z
are incident with xyz. We also say that xyz is incident with the vertices x ,y and z. In this paper, all
P3s we mention are induced P3s; we sometimes skip the qualifier “induced” for convenience.

Given an instance (G,H , �) of CEaMP, if xyz is a P3 in G and xyz ∈ H , we say that xyz is
packed, and we say that the edges xy,yz are covered by xyz and the non-edge xz is covered by xyz.
If an edge xy is covered by some P3 ofH , we say that xy is a packed edge. Otherwise we say that
xy is a non-packed edge. If a non-edge uv is covered by some P3 ofH , we say that uv is a packed

non-edge. Otherwise we say that uv is a non-packed non-edge. If none of the edges of a path P is
packed, we say that the path P is non-packed. If xyz is a P3 in G and Q1, Q2, and Q3 are pair-wise
non-intersecting vertex sets of G, we say that xyz connects Q1 and Q3 via Q2 if the center y of xyz
belongs to Q2 and x , z belong to Q1 and Q3, respectively.

We sometimes need finite fields of prime order. Let p be some prime. By Fp we denote the finite
field with the p elements 0, . . . ,p−1 with addition and multiplication modulo p. Let x ∈ Fp . Where
it is not ambiguous, −x and x−1 will denote the additive and multiplicative inverse, respectively,
of x in Fp .

When we say that we relabel the vertices of a graph, we use v ← u to denote that we relabel
the vertex v by the new label u.

3 INTUITION

Before giving the hardness proof, it is instructive to determine some easy and difficult cases when
solving CEaMP with � = 0. This will give us an intuition about the underlying combinatorial
problem that we need to solve.

Let (G,H , 0) be an instance of CEaMP. It is helpful to consider the subgraph Gfix of G that
contains only those edges of G that are not contained in any P3 in H , that is, the non-packed
edges. Suppose that (G,H , 0) has a solution S and letGsol be the associated cluster graph. Observe
that each connected component of Gfix is part of a single cluster in Gsol. Let us hence call the
connected components ofGfix proto-clusters. Our task in findingGsol is thus indeed to find a vertex
partition P that is coarser than the vertex partition given by the proto-clusters and that satisfies
certain further conditions. The additional conditions herein are given by the P3s in G and also by
the non-edges ofG which are not contained in any P3 inH , that is, by the non-packed non-edges.
A non-packed non-edge between two proto-clusters implies that these proto-clusters cannot be
together in a cluster in Gsol. Hence, we are searching for a vertex partition P as above subject to
the constraints that certain proto-cluster pairs end up in different parts.

The constraints on P given by P3s in G can be distinguished based on the intersection of the
P3s with the proto-clusters. We only want to highlight two situations that are most relevant for
the hardness construction. The first situation is when a P3, name it P , intersects with three proto-
clustersD1,D2, andD3, each in exactly one vertex and with center vertex inD2. The corresponding
constraint on P is that either D1 and D2 are merged or D2 and D3 are merged into one cluster.
We can satisfy such constraints easily, in the absence of further constraints, by merging all proto-
clusters into one large cluster. However, together with the constraints from non-packed non-edges
a difficult picture emerges. Consider Figure 1. Proto-clusters B and D cannot be merged into one
cluster because of a non-packed non-edge. However, there is a path inG from B to D via vertices of
C . Hence, either B and C are in different clusters in Gsol or C and D are. If B and C are in different
clusters, then since we have only budget one for the P3 involving A, B, and C , it follows that A
and B are merged into one cluster in Gsol. It is not hard to imagine that such behavior can be very
non-local and in fact two different generalizations of this behavior form the basis for the variable
and clause gadget in our hardness reduction.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 3. Publication date: December 2023.
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Fig. 1. Five proto-clusters A through E and two P3s in the underlying graph and in the P3-packing that
connects A to C via B and C to E via D, respectively. The dashed edge between B and D means that there is
a non-packed non-edge between B and D.

The second case is when there is a P3 inG and also in the packingH that has an edge contained
in one proto-cluster A and the remaining vertex in a different proto-cluster B. Call this P3 P . Intu-
itively, regardless of whether A and B are merged into one cluster in Gsol, P can be edited without
excess cost over H to accommodate this choice. In our hardness reduction, a main difficulty will
be to pad subconstructions with P3s in the packingH , so that we are able to find a solution with
zero excess edits. For this we will heavily use P3s of the form that we just described.

4 NP-HARDNESS FOR TIGHT MODIFICATION-DISJOINT PACKINGS

In this section, we prove Theorem 1 by showing a reduction from the NP-hard problem of deciding
satisfiability of 3-CNF formulas. Given a 3-CNF formula Φ, we construct a graphG = (V ,E) with a
modification-disjointH of induced P3s such that Φ has a satisfying assignment if and only ifG has
a cluster editing set S which consists of exactly one vertex pair of each P3 inH . In other words, the
CEaMP instance (G,H , 0) is a YES-instance. We assume that every clause of Φ has exactly 3 literals
of pair-wise different variables as we can preprocess the formula to achieve this in polynomial time
otherwise. Similarly, we can assume that every variable of Φ appears at least twice. In the following,
we let m denote the number of clauses in Φ, denote the clauses of Φ by Γ0, . . . , Γm−1, let n be the
number of variables, and denote the variables of Φ by x0, . . . ,xn−1. Furthermore, we letmi denote
the number of clauses that contain the variable xi , i = 0, . . . ,n − 1.

4.1 Construction

The outline of our construction is as follows. In Section 4.1.1 and 4.1.2 we explain the basic con-
struction of the variable and clause gadgets. In these two sections we first show how to construct a
subgraph of the final construction that enables us to show the soundness, that is, if the CEaMP in-
stance is a yes-instance, then Φ is satisfiable. The main difficulty is then to extend this construction
so that the completeness also holds. This we do in Section 4.1.3 and 4.1.4. Section 4.2.1 and 4.2.2
then contain the correctness proof.

Both the variable gadget and the clause gadget rely on some ideas outlined in Section 3. Our
basic building blocks will be proto-clusters. A proto-cluster is a subgraph that is connected through
edges that are not contained in any P3 in the constructed packingH . The proto-clusters then have
to be joined into larger clusters in a way that represents a satisfying assignment to Φ. The variable
gadget basically consists of an even-length cycle of proto-clusters, connected by P3s so that either
odd or even pairs of proto-clusters on the cycle have to be merged. These two options represent a
truth assignment. The construction of the variable gadget is more involved than a simple cycle of
proto-clusters, however, because of the connection to the clause gadgets: We need to ensure that
all vertex pairs between certain proto-clusters of a variable and clause gadget are covered by P3s
inH , so to be able to merge these clusters in the completeness proof. The way in which we cover
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these vertex pairs imposes some constraints on the construction of the variable gadgets, making
the gadgets more complicated.

4.1.1 Variable Gadget. As mentioned, a variable will be represented by a cycle of proto-clusters
such that any solution needs to merge either each odd or each even pair of consecutive proto-
clusters. These two options represent the truth value assigned to the variable. In order to enable
both associated solutions with zero edits above the packing lower bound, we build an associated
packing of P3s such that all vertex pairs between consecutive proto-clusters are covered by a P3

in the packing. It would be tempting to make each proto-cluster a single vertex. However, due
to the connections to the clause gadget later on, we need proto-clusters containing five vertices
each.

Recall that mi denotes the number of clauses that contain the variable xi , i = 0, 1, . . . ,n − 1.
For each variable xi , i = 0, 1, . . . ,n − 1, we create 4mi vertex-disjoint cliques with 5 vertices each,
namely K i

0, . . . ,K
i
4mi−1. In each K i

j , j = 0, 1, . . . , 4mi − 1, the vertices are vi
j,0, . . . ,v

i
j,4. For each

j = 0, 2, . . . , 4mi − 2, we create P3s connecting K i
j ,K

i
j+1 and K i

j+2 (where we identify K i
0 as K i

4mi
) as

we explain below, adding all edges between each two consecutive cliques.
Throughout the construction, the cliques we have just introduced will remain proto-clusters,

that is, they contain a spanning tree of edges that are not covered by P3s in the packing H . We
now add pairwise modification-disjoint P3s so as to cover all edges between the cliquesK i

j we have
just introduced. Recall that F5 is the finite field of the integers modulo 5. We take three consecutive
cliques and add P3s with one vertex in each of the three cliques. To do this without overlapping two
P3s, we think about the cliques’ vertices as elements of F5 and add a P3 for each possible arithmetic
progression. That is, in each added P3 the difference of the first two elements of the P3 is equal to
the difference of the second two elements. In this way, each vertex pair is contained in a single P3

since the third element is uniquely defined by the arithmetic progression.
Formally, for each j = 0, 2, . . . , 4mi − 2 and every triple of elements p,q, r ∈ F5 satisfying the

equality q − p = r − q over F5, we add to the graph the edges vi
j,pv

i
j+1,q and vi

j+1,qv
i
j+2,r and we

add to the packing H the P3 given by vi
j,pv

i
j+1,qv

i
j+2,r . Note that in this manner the clique K i

j+1

becomes fully adjacent to K i
j and to K i

j+2 while K i
j+1 stays anti-adjacent to all other cliques K i

j′ .

Observe that the P3s given by vi
j,pv

i
j+1,qv

i
j+2,r for j = 0, 2, . . . , 4mi − 2 such that q − p = r − q

are pairwise modification-disjoint: For each j = 0, 2, . . . , 4mi −2, an arbitrary edge just introduced
between K i

j and K i
j+1 has the form {vi

j,p ,v
i
j+1,q } for some p,q ∈ F5. It belongs to the unique P3

given by vi
j,pv

i
j+1,qv

i
j+2,r , where r = 2q −p. Similarly, an arbitrary edge {vi

j+1,q ,v
i
j+2,r } for q, r ∈ F5

belongs to the unique P3 given by vi
j,2q−rv

i
j+1,qv

i
j+2,r and an arbitrary non-edge {vi

j,p ,v
i
j+2,r } for

p, r ∈ F5 belongs to the unique P3 given by vi
j,pv

i
j+1, (p+r ) ·2−1v

i
j+2,r , where 2−1 is the multiplicative

inverse of 2 over F5, that is, 2−1 = 3.
After this construction, we set the modification-disjoint packing of the variable gadget to

be

Hvar = {P3 given by vi
j,pv

i
j+1,qv

i
j+2,r |

i = 0, . . . ,n − 1; j = 0, 2, . . . , 4mi − 2; p,q, r ∈ F5; and q − p = r − q}.

This finishes the first stage of the construction. Notice that the cliques K i
j form a cyclic structure.

Intuitively, every second pair of cliques needs to be merged into one cluster by any solution due
to the P3s we have introduced, and we will see that the two resulting solutions are in fact the
only ones. The truth values of the variable are then represented as follows. For every variable
xi , i = 0, . . . ,n − 1, if K i

j and K i
j+1 are merged for j = 0, 2, . . . , 4mi − 2, then this represents the
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Fig. 2. Skeleton of a clause gadget Γd = (xa ∨ ¬xb ∨ ¬xc ). The white circles represent cliques. The blue
dotted lines inside Q2

d
and Q3

d
indicate that Q1

d
, Q2

d
, Q3

d
, and Q4

d
are in one connected component. A pair of

incident brown thick lines indicates a set of four transferring P3s used to connect a clause gadget to a variable
gadget. The cycles made from cliques and gray thick lines represent variable gadgets, where a dashed gray
line indicates an omitted part of the cycle. The cycle for variable xa is shown completely, where we assume
that ma = 3, that is, variable xa is in three clauses. Labels T and F on thick gray edges indicate the pairs of
cliques that shall be merged into one cluster if the variable is to be set to true or false, respectively.

situation that we assign false to the variable xi . If K i
j+1 and K i

j+2 are merged for j = 0, 2, . . . , 4mi −
2, then this represents variable xi being true. We will make minor modifications to the variable
gadgets andHvar in the following section, so as to transmit the choice of truth value to the clause
gadgets.

4.1.2 Skeleton of the Clause Gadget. In order to introduce the construction of the clause gadget,
we first give a description of the skeleton of the clause gadget. The skeleton is a subgraph of the
final construction that allows us to prove the soundness. The final construction is given in the
succeeding sections. We give a picture of the skeleton in Figure 2. The basic idea is a generalization
of the idea explained in Section 3: A clause Γd is represented by four proto-clusters (cliques), Q i

d
,

i = 1, . . . , 4, as in Figure 2. The proto-clusters are connected by a path P of length 5 containing
vertices of Q1

d
, Q2

d
, Q3

d
, and Q4

d
in that order. However, between Q1

d
and Q4

d
there is a non-packed

non-edge, meaning that every solution has to cut the path P by deleting all edges between Q1
d

and Q2
d

, or between Q2
d

and Q3
d

, or between Q3
d

and Q4
d

. We use this three-way choice to force the
solution to select a variable that satisfies the clause Γd .

Main gadget. Formally, for each variable xi , i = 0, 1, . . . ,n−1, we fix an arbitrary ordering of the
clauses that contain xi . If a clause Γj contains a variable xi , let π (i, j ) ∈ {0, . . . ,mi − 1} denote the
position of the clause Γj in this ordering. Let initiallyHtra = ∅. For each clause Γd (d = 0, . . . ,m−1)
proceed as follows. We first introduce four cliques Q1

d
,Q2

d
,Q3

d
and Q4

d
. Let Γd contain the variables

xa ,xb and xc . We introduce the cliquesT a
d
,T b

d
andT c

d
, called transferring cliques. All of the cliques

introduced are pairwise vertex disjoint and can be of different sizes. We will give the exact sizes
in Section 4.1.4.
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Next, we introduce the following P3s:

• Introduce two P3s, P1
d

and P2
d

, that both connectT a
d

andQ2
d

viaQ1
d

, such that P1
d

and P2
d

share
the same vertex in Q1

d
.

• Introduce two P3s, P3
d

and P4
d

, that both connectT b
d

andQ2
d

viaQ3
d

, such that P3
d

and P4
d

share
the same vertex in Q3

d
.

• Introduce two P3s, P5
d

and P6
d

, that both connectT c
d

andQ3
d

viaQ4
d

, such that P5
d

and P6
d

share
the same vertex in Q4

d
.

All the P3s P i
d

are pairwise vertex-disjoint except for the pairs sharing the center (as explicitly
mentioned in the description). We add each P i

d
for i = 1, . . . , 6 to Htra. We call the P3s of Htra

transferring P3s.

Connection to the variable gadgets. Next we connect the transferring cliquesT a
d

,T b
d

, andT c
d

to the
variable gadgets of xa , xb , and xc , respectively. To avoid additional notation, we only explain the
procedure forT a

d
and xa , the other pairs are connected analogously. We connectT a

d
to the variable

gadget of xa by a set of four modification-disjoint P3s as shown in Figure 3 and explained formally
below. The centers of these P3s are in Ka

4π (a,d )+1
. For each of these four P3s, exactly one endpoint

is an arbitrary distinct vertex in T a
d

which is different from the endpoints of the P3s connecting
T a

d
to Q1

d
; we denote these endpoints as w1,w2,w3,w4. The other endpoint is in Ka

4π (a,d )+2
if xa

appears positively in Γd and the other endpoint is in Ka
4π (a,d )

otherwise. The precise centers and

endpoints in the cliques Ka
4π (a,d )+2

or Ka
4π (a,d )

are specified below. Since these newly introduced

P3s use edges that belong to some P3s inHvar that were introduced while constructing the variable
gadgets, we will remove such P3s in the variable gadget from Hvar, remove their corresponding
edges from the graph, and add some new P3s to Hvar as described below. As a result, the clique
Ka

4π (a,d )+1
may no longer be fully adjacent to Ka

4π (a,d )
or Ka

4π (a,d )+2
. We will however maintain the

invariant that each vertex pair between Ka
4π (a,d )+1

and Ka
4π (a,d )

or Ka
4π (a,d )+2

is covered by a P3 in

the packing and that all the P3s ofHvar are pairwise modification-disjoint.
Formally, if xa appears positively in Γd , we denote:

v1 = v
a
4π (a,d )+1,0 v2 = v

a
4π (a,d )+1,1

v3 = v
a
4π (a,d )+2,1 v4 = v

a
4π (a,d )+2,2

v5 = v
a
4π (a,d ),0 v6 = v

a
4π (a,d ),1

v7 = v
a
4π (a,d ),3 v8 = v

a
4π (a,d ),4.

If xa appears negatively in Γd , we swap the roles of Ka
4π (a,d )

and Ka
4π (a,d )+2

, that is:

v1 = v
a
4π (a,d )+1,0 v2 = v

a
4π (a,d )+1,1

v3 = v
a
4π (a,d ),1 v4 = v

a
4π (a,d ),2

v5 = v
a
4π (a,d )+2,0 v6 = v

a
4π (a,d )+2,1

v7 = v
a
4π (a,d )+2,3 v8 = v

a
4π (a,d )+2,4.

As shown in Figure 3, we remove P3s given by v8v1v3,v7v1v4,v6v2v3,v5v2v4 fromHvar and we re-
move their corresponding edges from the graph. Then we add the P3s given by v5v6v2 and v1v7v8

to the graph and toHvar. Finally, we connectT a
d

via Ka
4π (a,d )+1

by adding the P3s given by w1v1v3,

w2v2v4, w3v2v3, and w4v1v4 to the graph and toHtra. Note that, indeed, each vertex pair between
Ka

4π (a,d )+1
and Ka

4π (a,d )
and between Ka

4π (a,d )+1
and Ka

4π (a,d )+2
remains covered by a P3 in the pack-

ing after replacing all P3s. This finishes the construction of the skeleton of the clause gadgets.
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3:10 S. Li et al.

Fig. 3. Connection of a clause gadget with a variable gadget for a variable xa which appears positively in
the clause. White ellipses represent cliques. The vertices in the cliques in the variable gadget are ordered
from top to bottom according to the elements of F5 which they represent. For example, the topmost vertex in
Ka

4π (a,d )
is va

4π (a,d ),0
(corresponding to 0 ∈ F5) and the bottom-most is va

4π (a,d ),4
(corresponding to 4 ∈ F5).

The gray lines adjacent to cliques in the variable gadget represent some of the P3s that were introduced into
the variable gadgets in the beginning. (Some gray lines are super-seeded by edges of other colors.) The P3s
represented by the gray lines have the associated arithmetic progression “+0”, that is, q − p = r − q = 0 in
the definition of the P3s. The P3s for the remaining arithmetic progressions are omitted for clarity. In colors
red, black, green, and blue we show the P3s that connect the transferring cliqueT a

d
with the variable gadget

of variable xa . Herein, dotted lines are non-edges and solid lines are edges. Note that these connecting P3s
supplant some of the edges of previously present P3s in the variable gadget—the previously present P3s are
then removed from bothG andH . For example the green P3 replaces the edgev2v3 of the P3 given byv6v2v3
that was previously present. To maintain that each vertex pair between consecutive cliques in the variable
gadget is covered by some P3 in the packing, we add the two brown P3s.

The intuitive idea behind the connection to the variable gadget and how it is used in the sound-
ness proof is as follows. Recall from above that we need to delete at least one of three sets of edges
in the solution, namely the edges between Q1

d
and Q2

d
, the edges between Q2

d
and Q3

d
, or the edges

between Q3
d

and Q4
d

. Assume that the edges between Q1
d

and Q2
d

are deleted and the variable xa

appears positively in the clause Γd as in Figure 2. Since we can modify at most one vertex pair for
each of the P3s P1

d
and P2

d
, cliques T a

d
and Q1

d
have to be merged in the final cluster graph. Since

Ka
4π (a,d )+1

cannot be merged with Q1
d

(there are no edges between Q1
d

and Ka
4π (a,d )+1

, and no P3s

connecting Q1
d

and Ka
4π (a,d )+1

), we have to separate T a
d

from Ka
4π (a,d )+1

. Then, the P3s connecting

T a
d

with Ka
4π (a,d )+2

force Ka
4π (a,d )+1

and Ka
4π (a,d )+2

to merge. This means xa is true and it satisfies

the clause Γd .
The P3s added so far are indeed sufficient to conduct a soundness proof of the above reduction:

They ensure that there exists a satisfying assignment to the input formula provided that there
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exists an appropriate cluster editing set. However, the completeness is much more difficult: We
need to add some more “padding” P3s to the packing (and edges to the graph between the cliques
that can be potentially merged) to ensure that a satisfying assignment can always be translated
into a cluster-editing set. The goal of the next two sections is to develop a methodology of padding
such cliques with P3s in the packing. The padding will rely on the special structure of P3s that we
have established above in the clause gadget and connection between clause and variable gadget.

4.1.3 Merging Model of the Clause Gadget. In the sections above, we have defined all proto-
clusters of the final constructed graph: As we will see in the correctness proof, each clique will be a
proto-cluster in the end. Thus, all solutions will construct a cluster graph whose clusters represent
a coarser partition than the partition given by the proto-clusters, or cliques. What remains is to
ensure that the proto-clusters indeed can be merged as required to construct a solution from a
satisfying assignment to Φ in the completeness proof. To do this, we pad the proto-clusters with
P3s (in the graph and packing H ). To simplify this task we now divide the set of proto-clusters
into five levels L0, . . . ,L4. Then, we will go through the levels in increasing order and add padding
P3s from proto-clusters of the current level to proto-clusters of all lower levels if necessary.

There are two issues that we need to deal with when introducing the padding P3s. For the
padding, we will use a number-theoretic tool that we introduce in Section 4.1.4 which has the
limitation that, when padding a proto-cluster D with P3s to some sequence D1, . . . ,Ds of proto-
clusters of lower level, we need to increase the number of vertices in D to be roughly 2 ·∑s

i=1 |Di |.
Hence, first, we need to make sure that the number of levels is constant since the number of size
increases of proto-clusters compounds exponentially with the number of levels. Second, we aim
for the property that each vertex is only in a constant number of P3s in H and thus, we need to
ensure that the number s of lower-level proto-clusters and their size is constant.

To achieve the above goals, we introduce an auxiliary graph H , the merging model, which will
further guide the padding process. The merging model has as vertices the cliques that were intro-
duced before and an edge between two cliques if we want it to be possible that they are merged
by a solution. Formally,

V (H ) := {K i
j | i = 0, 1, . . . ,n − 1 and j = 0, 1, . . . , 4mi − 1}

∪ {Q1
d ,Q

2
d ,Q

3
d ,Q

4
d | d = 0, 1, . . . ,m − 1}

∪ {T a
s | variable xa occurs in clause Γs },

and the edge set, E (H ), is defined as follows. See also Figure 4. First, it shall be possible to merge
the cliques in the variable gadget in a cyclic fashion,2 that is, we add

{{K i
j ,K

i
j+1} | i = 0, 1, . . . ,n − 1 and j = 0, 1, . . . , 4mi − 1}

to E (H ). Second, it shall be possible to merge transferring cliques of a clause gadget to any of the
relevant cliques of the associated variable gadget, that is, we add to E (H ) the set

{{T i
d ,K

i
4π (i,d ) }, {T

i
d ,K

i
4π (i,d )+1}, {T

i
d ,K

i
4π (i,d )+2} | variable xi occurs in clause Γd }.

Third, it shall be possible to merge subsets of {Q1
d
,Q2

d
,Q3

d
,Q4

d
}, and hence we add to E (H ) the set

{{Q1
d ,Q

2
d }, {Q

1
d ,Q

3
d }, {Q

2
d ,Q

3
d }, {Q

2
d ,Q

4
d }, {Q

3
d ,Q

4
d } | d = 0, 1, . . . ,m − 1}.

2Indeed, we have already ensured that this is possible. The edges introduced in the first step purely serve to reinforce the
intuition of the merging model.
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3:12 S. Li et al.

Fig. 4. Merging model of a clause Γd = (xa ∨ ¬xb ∨ ¬xc ). The number i ∈ {0, 1, 2, 3, 4} beside a vertex v
denotes that v ∈ Li . The placement of vertices corresponds to the placement of the cliques in Figure 2. For
example, the two vertices of level 1 on the top correspond to Q1

d
and Q4

d
. We assume thatma = 3.

Finally, it shall be possible to merge the transferring cliques to subsets of {Q1
d
,Q2

d
,Q3

d
,Q4

d
}. Hence,

we add to E (H ) the set

{{T i
d ,Q

k
d } | if variable xi occurs in Γd and T i

d is adjacent in G to Qk
d with k ∈ {1, 4}}

∪ {{T i
d ,Q

3
d }, {T

i
d ,Q

4
d } | if variable xi occurs in Γd and T i

d is adjacent in G to Q3
d }.

Note that this construction is slightly asymmetric (see Figure 4).
Now we define the levels L0 to L4 such that orienting the edges in H from higher to lower level

gives an acyclic orientation when ignoring the edges in level L0.

• L0 contains all cliques in variable gadgets.
• L1 contains Q1

d
and Q4

d
for each d = 0, . . . ,m − 1.

• L2 contains Q3
d

for each d = 0, . . . ,m − 1.
• L3 contains Q2

d
for each d = 0, . . . ,m − 1.

• L4 contains all transferring cliques.

We now orient all edges in H from higher-level vertices to lower-level vertices. Edges in level
L0 remain undirected. Observe that, apart from edges in L0, all edges in H are between vertices
of different levels and, indeed, ignoring edges in L0, there are no cycles in G when orienting the
edges from higher to lower level. In the following section, we will look at each clique R in levels
L1 and higher, and add P3s to the packingH so as to cover all vertex pairs containing a vertex of
R and an out-neighbor of R in H .

4.1.4 Implementation of the Clause Gadget. In this section, we first introduce a number-
theoretical construction (Lemma 1) that serves as a basic building block for “padding” P3s in the
packing. Then we use this construction to perform the actual padding of P3s.
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Fig. 5. Left: The labels of a C8 in (V ∪W , F ). Right: The triangles in τ 2
F

covering a C8.

The abstract process of padding P3s works as follows. It takes as input a clique R in H (repre-
sented by W in the below Lemma 1), and a set of cliques that are out-neighbors of R in H (rep-
resented by V ). Furthermore, it receives a set of vertex pairs between R and its out-neighbors
that have previously been covered (represented by F ). The goal is then to find a packing of
P3s that cover all vertex pairs except the previously covered pairs. The previously covered ver-
tex pairs have some special structure that we carefully selected so as to make covering of all
remaining vertex pairs possible in a general way: The construction so far was carried out in
such a way that the connected components induced by previously covered vertex pairs are P3s
or C8s.

In Lemma 1 we will indeed pack triangles instead of P3s because this is more convenient in the
proof. We will replace the triangles by P3s afterwards: Recall the intuition from Section 3 that P3s in
the packingH which have exactly one endpoint in one cliqueT and their remaining two vertices
in another clique R can accommodate both merging R andT or separating R andT without excess
edits. Hence, we will replace the triangles by such P3s. Recall that we aim for each clique to be a
proto-cluster in the final construction, that is, each clique contains a spanning tree of edges which
are not contained in P3s in H . Since putting the above kind of P3s into the packing H allows in
principle to delete edges within R, we need to ensure that R remains a proto-cluster. We achieve
this via the connectedness property in Lemma 1.

Number-theoretic padding tool.

Lemma 1. Let p be a prime number with p ≥ 2. Let B = (V ,W ,E) be a complete bipartite graph

such that |V | = p and |W | = 2p. Let F ⊆ E be a set of edges such that each connected component of

(V ∪W , F ) is a either a singleton, a P3 with a center in V , or a C8. Then there exists an edge-disjoint

triangle packing τ in (V ∪W , (E \ F ) ∪
(
W
2

)
) which covers E \ F such that the graph (W ,

(
W
2

)
\ E (τ ))

is connected. Moreover, each vertex v ∈ V ∪W is in at most p triangles of τ , it is in at most p − 1
triangles if v is in a connected component of (V ∪W , F ) that is a P3, and in at most p − 2 triangles if

v is in connected component of (V ∪W , F ) that is a C8.

Proof. First, we divide W into two parts W1 and W2 of equal sizes such that if two vertices
w,w ′ ∈ W are connected to the same vertex v ∈ V by edges in F , then w and w ′ are in dif-
ferent parts. Note that this is easy for a connected component of (V ∪W , F ) if it is a P3. For a
connected component of (V ∪W , F ) which is aC8, this is also doable as shown in Figure 5, where
wi ,wi+1,wi+2,wi+3 belong to W1, w ′i ,w

′
i+1,w

′
i+2,w

′
i+3 belong to W2, and vi ,vi+1,vi+2,vi+3 belong

to V .

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 3. Publication date: December 2023.



3:14 S. Li et al.

We now label the vertices by elements from the finite field Fp of size p (recall that Fp consists
of the elements {0, 1, . . . ,p − 1} with addition and multiplication modulo p). To each vertex v ∈ V ,
each vertex w ∈ W1, and each vertex w ′ ∈ W2, we will assign a unique label vi , w j , and w ′

k
,

respectively, with i, j,k ∈ Fp . In other words, we construct three bijections that map Fp to V ,W1,
andW2, respectively.

First, we label the vertices from the connected components of (V ∪W , F ) (and some singleton
vertices) by going through the connected components one-by-one. For each yet-unlabeled con-
nected component of (V ∪W , F ) that is a P3 given by wvw ′ such that v ∈ V ,w ∈ W1,w

′ ∈ W2,
we label vertex w as w j , vertex v as vj and vertex w ′ as w ′j for the smallest j from Fp which is
not yet used in the labeling of vertices of V . For each yet-unlabeled connected component C in
(V ∪W , F ) that is aC8 we proceed as follows. By the way we have divided vertices fromW intoW1

andW2, we can assign, to each such connected componentC , four vertices which have degree zero
in (V ∪W , F ): two inW1 and two inW2; see also Figure 5. We thus label the vertices in C and the
four degree-zero vertices assigned to C as in Figure 5, for the smallest integer i from Fp such that
i, i + 1, i + 2 and i + 3 are not used in the labeling of vertices of V .

Second, we label the remaining unlabeled vertices that are not in the connected components of
(V ∪W , F ). For an unlabeled vertexw ∈W1, label it aswk for an arbitrary integer k from Fp which
is not used in the labeling of vertices inW1. Similarly, for an unlabeled vertex v ∈ V , we label it as
vh for an arbitrary integer h from Fp which is not used in the labeling of vertices in V and for an
unlabeled vertex w ′ ∈ W2, we label it as w ′s for an arbitrary integer s from Fp which is not used
in the labeling of vertices in W2. After the labeling, the vertices in V ,W1 and W2 are v1, . . . ,vp−1,
w1, . . . ,wp−1 and w ′1, . . . ,w

′
p−1, respectively.

We now proceed to constructing the packing τ . First, let

τall =

{
uvw

�
�
�
�
�

uvw is a triangle in

(
V ∪W ,E ∪

(
W

2

))
such that u ∈ V ,v ∈W1,w ∈W2

}
, and

τcover = {viw jw
′
k ∈ τall | i, j,k ∈ Fp and j − i = k − j over Fp }.

In the following, for any triangle packing τ , by E (τ ) we will denote the union of the edge sets of
the triangles in τ .

We claim that the triangles in τcover are edge-disjoint and cover all edges of E. Consider an
arbitrary edge viw j ∈ E between V and W1 for i, j ∈ Fp . According to the definition of τcover,
each triangle viw jw

′
x ∈ τcover that covers edge viw j satisfies x = 2j − i (over Fp ). Since Fp is a

field, there is thus exactly one such triangle. Similarly, each edge vhw
′
k
∈ E betweenV andW1 for

some h,k ∈ Fp is covered by the unique triangle vhw (h+k ) ·2−1w ′
k
∈ τcover. Finally, each edge wsw

′
t

betweenW1 andW2 is covered by the unique triangle v2s−twsw
′
t ∈ τcover. Thus the claim holds.

Let
τ 1

F = {vhwhw
′
h ∈ τall | vertices wh ,vh ,w

′
h induce a P3 in (V ∪W , F )}, and

τ 2
F = {vhwh+1w

′
h+2, vh+1wh+1w

′
h+1, vh+2wh+2w

′
h+2, vh+3wh+2w

′
h+1 ∈ τall |

vertices vh ,w
′
h+2,vh+2,wh+2,vh+3,w

′
h+1,vh+1,wh+1 induce a C8 in (V ∪W , F )}.

Observe that τ 1
F ,τ

2
F ⊆ τcover. For example, if we put vh+3wh+2w

′
h+1 = viw jw

′
k

, then it follows that
j − i = p − 1 = k − j over Fp , that is,vh+3wh+2w

′
h+1 satisfies the conditions in the definition of τcover.

Moreover, τ 1
F ∪τ

2
F covers all edges of F . Furthermore, each edge in the edge set E (τ 1

F ∪τ
2
F ) of τ 1

F ∪τ
2
F

is either in F or between W1 and W2. (See also Figure 5.) Thus, E \ F has an empty intersection
with E (τ 1

F ∪ τ 2
F ). Let τ = τcover \ (τ 1

F ∪ τ 2
F ). It follows that τ covers all edges of E \ F . It remains

only to show that τ satisfies the connectedness condition. Since τcover does not cover any edge of(
W1
2

)
or

(
W2
2

)
, it follows that (W1,

(
W1
2

)
\ E (τ )) and (W2,

(
W2
2

)
\ E (τ )) are cliques. Now observe that
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τ 1
F ∪ τ

2
F contains at most |V | = p edges of

(
W
2

)
, whileW1 ×W2 is of size p2 > p. Thus in the graph

(W ,
(
W
2

)
\ E (τ )) there is at least one edge {w1,w2} such that w1 ∈ W1 and w2 ∈ W2. As a result,

(W ,
(
W
2

)
\ E (τ )) is connected. Finally, observe that each vertex v ∈ V ∪W is in at most p triangles

in τcover. If v is in a P3 of (V ∪W , F ), then at least one of these triangles is removed from τcover to
obtain τ . If v is in a C8 of (V ∪W , F ), then at least two of the triangles in τcover that contain v are
removed to obtain τ . This concludes the proof. �

The following corollary is slightly easier to apply than Lemma 1.

Corollary 1. Let p be a prime and let B = (V ,W ,E) be a complete bipartite graph with |V | ≤
p, |W | = 2p. Let F ⊆ E be a nonempty set of edges such that every connected component of (V ∪W , F )
is a either a P3 with a center in V or a C8. Then there exists an edge-disjoint triangle packing τ in

(V ∪W , (E\F )∪
(
W
2

)
) which covers E\F such that (W ,

(
W
2

)
\E (τ )) is connected. Each vertexv ∈ V ∪W

is in at most p triangles of τ , at most p − 1 if v is in a connected component of (V ∪W , F ) that is a P3,

and at most p − 2 if v is in connected component of (V ∪W , F ) that is a C8.

Proof. Add extra p − |V | dummy vertices to V , obtaining a complete bipartite graph B′ =
(V ′,W ,E), apply Lemma 1 to B′, p, and F , obtaining a packing τ ′, and return a sub-packing τ ⊆ τ ′

containing only triangles with vertices in B. Since every triangle in τ ′ contains exactly one vertex
of V ′, τ satisfies all the required properties. �

Concluding the construction. Equipped with Lemma 1 and Corollary 1, we can finish the construc-
tion of the clause gadgets and indeed the whole instance (G,H , 0) of CEaMP. We now specify the
exact size of each clique introduced above and add padding P3s to G andH so as to cover all ver-
tex pairs between cliques that are adjacent in the merging model H . Put initially the set Hpad of
padding P3s to beHpad = ∅. We start with levels 0 and 1. We do not change the sizes of any clique
on level 0. That is, as shown in the variable gadget, there are five vertices in every clique of level 0.
Besides, we set the size of every clique of level 1 to be one. Note that no cliques of levels 0 and 1
are adjacent in the merging model H , that is, no two of them need to be merged in the solution.
Hence, it is not necessary to add padding P3s within these levels.

Now we turn each level i , i ≥ 2, in order of increasing i . For each clique Q of level i , we apply
Corollary 1 in the following scenario. Let V be the union of all cliques of levels j < i that are
out-neighbors of Q in the merging model H . Let p be the smallest prime with p ≥ |V | and 2p ≥
|Q |. Introduce 2p − |Q | new vertices, put them into Q , and make Q a clique. Put W = Q and let
E = {{u,v} | u ∈ V ,v ∈W }.

We claim that Corollary 1 is applicable to p, graph B = (V ,W ,E), and F . To see this, we need
to show that each connected component in (V ∪W , F ) is either a P3 with center in V or a C8.
Indeed, if Q is not a transferring clique, that is, Q = Q j

d
for some d ∈ {0, 1, . . . ,m − 1} and j ∈

{1, 2, 3, 4}, then each connected component in (V ∪W , F ) consists of two edges of two different
transferring P3s with the same center in V , as claimed (see also Figure 2). If Q is a transferring
clique, then each connected component of (V ∪W , F ) consists either of two edges of two different
transferring P3s with the same center in some Q j

d
⊆ V for some j ∈ {1, 3, 4}, or of some vertex

pairs of transferring P3s between Q and the cliques of a variable gadget. In the first case, the
claim clearly holds. In the second case, observe that the edges and non-edges betweenV andW in
the transferring P3s are each incident with one ofw1,w2,w3,w4 and one of v1,v2,v3,v4 as defined
when connecting variable and clause gadgets. These edges and non-edges indeed induce aC8 given
by v1w1v3w3v2w2v4w4v1 (see also Figure 3). Thus, Corollary 1 is applicable.
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Corollary 1 gives us an edge-disjoint triangle packing τ in (V ∪W , (E\F )∪
(
W
2

)
) which covers all

edges of E \ F such that (W ,
(
W
2

)
\ E (τ )) is connected. Note that every triangle vw1w2 ∈ τ has one

vertexv ∈ V and two verticesw1,w2 ∈W . For every trianglevw1w2 ∈ τ , we add a P3 toG by using
exactly two edges of the triangle inG; more precisely, we put {v,w1}, {w1,w2} ∈ E (G ),vw2 � E (G ),
and then add the P3 of G given by vw1w2 into Hpad. Finally, let H = Hvar ∪ Htra ∪ Hpad. Note
that H is a modification-disjoint packing of P3s: This is by construction for Hvar ∪ Htra and, by
Corollary 1, no P3 in Hpad shares a vertex pair with any P3 in Hvar ∪ Htra. This concludes the
construction of the CEaMP instance (G,H , 0).

To see that the construction takes polynomial time and to see that indeed each vertex is in some
constant number of P3s inH , let us now derive the precise sizes of each clique in the construction.
Recall that the cliques on level 0 are exactly those in the variable gadgets, and these have exactly 5
vertices each. The cliques on level 1 areQ1

d
andQ4

d
for d ∈ {0, 1, . . . ,m− 1}, and they have 1 vertex

each. On level 2 we have the cliques Q3
d

, d ∈ {0, 1, . . . ,m − 1}, and since the only out-neighbor in
H of Q3

d
isQ4

d
, our procedure sets p = 2 and thusQ3

d
has 4 vertices. On level 3 there are the cliques

Q2
d

, d ∈ {0, 1, . . . ,m − 1}, and we set p = 7 as |Q1
d
∪Q3

d
∪Q4

d
| = 6. Thus clique Q2

d
has 14 vertices.

For the clique T a
d

, we set p = 17 as |Q1
d
∪ Ka

4π (a,d )
∪ Ka

4π (a,d )+1
∪ Ka

4π (a,d )+2
| = 16. So the clique T a

d

has 2 · 17 = 34 vertices. Similarly, T c
d

has 34 vertices as well. For the clique T b
d

, we set p = 23, as

|Q3
d
∪Q4

d
∪ Kb

4π (b,d )
∪ Kb

4π (b,d )+1
∪ Kb

4π (b,d )+2
| = 20. Thus T b

d
is a clique of size 2 · 23 = 46. By the

bounds on the number of triangles in the packing, each vertex is in at most 23 P3s of H . It also
follows that the construction takes overall polynomial time.

4.2 Correctness

We now prove the correctness of the reduction given in Section 4.1.

4.2.1 Completeness. Now we show how to translate a satisfying assignment of Φ into a cluster
editing set of size |H | for the constructed instance.

Lemma 2. If the input formula Φ is satisfiable, then the constructed instance (G,H , � = 0) is a

YES-instance.

Proof. Assume that there is a satisfying assignment α for the formula Φ. Recall that n is the
number of variables of Φ and m is the number of clauses of Φ. Instead of building the solution
directly, we build a partition P of V (G ) into clusters. Then, we argue that the number of edges
between clusters and the number of non-edges inside clusters is at most |H |. Thus, the partition P
will induce a solution with the required number of edge edits.

Recall thatH denotes the merging model of our hardness construction. The basic building blocks
of our vertex partition P are the cliques in G that correspond to the vertices of V (H ). We will
never separate such a clique during building P, that is, P corresponds to a partition of V (H ). For
simplicity, we will slightly abuse notation and indeed also treat P as a partition ofV (H ). We build
P by taking initially P = V (H ) and then successively merging parts of P, which means to take
the parts out of P and replace them by their union. Each vertex of H is a clique of G, so has no
non-edges in G. Thus, below it suffices to consider edges and non-edges between pairs of cliques
corresponding to vertices inV (H ) to determine the number of edits in the solution corresponding
to P.

We start with the variable gadgets. Consider each variable xi , i = 0, 1, . . . ,n − 1. Call a pair
of cliques K i

j , K i
j+1 in xi ’s variable gadget even if j is even and odd otherwise (indices are taken

modulo 4mi ). If α (xi ) = true, then merge each odd pair. If α (xi ) = false, then merge each even
pair. We will not merge any further pair of cliques contained in variable gadgets.
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Now consider each clause Γd , d = 0, . . . ,m − 1, in some arbitrary order. Let xa , xb , and xc be
the variables in Γd . We use the same notation as when defining the clause gadgets. See Figure 2 for
the skeleton of the clause gadget of Γd , up to variables appearing positively instead of negatively
or vice versa. We choose an arbitrary variable that satisfies Γd . The basic idea is to separate (that
is, to not merge) the transferring clique from the the cliques in the satisfying variable’s gadget by
deleting some edges of the transferring P3s. This will induce at most one edit for each transferring
P3 since the remaining edge in a transferring P3 will be part of a cluster in P. Then we cut from the
clause gadget all transferring cliques belonging to variables that have not been chosen. Since we
do not spend edits inside of transferring P3s in this way, this allows us to merge the transferring
cliques to the variable gadgets regardless of whether the variable was set to true or false.

Formally, we perform the following merges in P.

If we have chosen xa from the variables satisfying the clause Γd :
• Merge T a

d
with Q1

d
.

• Merge the cliques Q2
d
,Q3

d
and Q4

d
.

If we have chosen xb :
• Merge the cliques Q1

d
,Q2

d
.

• Merge the cliques T b
d

, Q3
d

, and Q4
d

.
If we have chosen xc :

• Merge T c
d

with Q4
d

.
• Merge the cliques Q1

d
, Q2

d
and Q3

d
.

Finally, let β ∈ {a,b, c} be the index of the chosen variable that satisfies Γd . For bothγ ∈ {a,b, c}\{β }
do the following. If α (xγ ) = true, then merge T γ

d
with the part of P consisting of Kγ

4π (γ ,d )+1
and

K
γ

4π (γ ,d )+2
. If α (xγ ) = false, then mergeT γ

d
with the part of P consisting of Kγ

4π (γ ,d )+1
and K

γ

4π (γ ,d )
.

This concludes the definition of the vertex partition P. Let us denote the corresponding cluster
editing set by S . That is, S contains all edges in G between parts of P and all non-edges within
parts of P.

We claim that (c1) each edit in S is contained in a P3 of H and (c2) every P3 of H is edited at
most once by S . Note that the claim implies that S is a solution to (G,H , 0). We first prove part
(c1) of the claim. Note that each edit in S is between two cliques inV (H ). There are three types of
edits in H : within a variable gadget, between a clause and a variable gadget, and within a clause
gadget.

Consider first the edits contained in the variable gadget of an arbitrary variable xi . Observe that
each such edit is contained in an odd or an even pair of x ’s gadget. Such an edit is contained in
a P3 inH , because, by construction of the variable gadgets, all edges and non-edges between the
cliques of an odd or an even pair are covered by P3s inH .

For the edits in S which are not contained in variable gadgets, observe that between each pair
of cliques in a single level Ls , s > 0, there are no edges in G. Whenever we merge two or more
parts during the construction of P, we either merge a clique on level L4 to two cliques on level
L0 or we merge cliques on pairwise different positive levels. Hence, each edit e ∈ S which is not
in a variable gadget is between two cliques on different levels. Moreover, observe that the cliques
containing the endpoints of e are adjacent in V (H ). Thus, by the way we have defined Hpad via
Corollary 1, there is a P3 inHpad containing e . We have thus shown that claim (c1) holds.

For part (c2) of the claim, we first observe the following. Each P3 inH that intersects only two
cliques inV (H ) contains at most one edit of S . Let P be such a P3 and let D1, D2 be the two cliques
in V (H ) that intersect P . Note that Htra does not contain P3s that intersect only two cliques in
V (H ) and thus either P ∈ Hvar or P ∈ Hpad. In both cases, there is exactly one edge and one
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non-edge of P between D1 and D2: This is clear if P ∈ Hpad. If P ∈ Hvar then P was introduced
when connecting a clause gadget to a variable gadget. In the notation used there, either P = v5v6v2

or P = v1v7v8, both of which have the required form. Thus, as D1 and D2 are either merged or not
in P, there is at most one edit in P .

To prove (c2) it remains to consider P3s inH that intersect three cliques inV (H ). Let P be such
a P3. Note that P � Hpad. If P ∈ Hvar, then it connects K i

j to K i
j+2 via K i

j+1 for some even j and
some variable index i ∈ {0, 1, . . . ,n − 1}. Since we merge either all odd or all even pairs in xi ’s
variable gadget to obtain P, indeed exactly one edge of P is edited, as claimed. If P ∈ Htra, then
we distinguish two cases.

First, P does not contain a vertex of some variable-gadget clique. Then, P connects some clique
Qs

d
to some transferring clique T δ

d
via Qs ′

d
. According to the construction of P, either T δ

d
and Qs ′

d

are in different parts of P and Qs ′

d
and Qs

d
are merged, or T δ

d
and Qs ′

d
are merged and Qs

d
and Qs ′

d
are in different parts of P. In both cases, there is at most one edit of S in P .

Second, P contains a vertex of some variable-gadget clique. Then, by construction of G andH ,
path P indeed contains two vertices of two variable-gadget cliques, sayK i

j andK i
j+1 and one vertex

of a transferring clique, say T i
d

. Assume that variable xi appears positively in clause Γd , the other
case is analogous. Then the center of P is K i

j and moreover j is odd. If xi was not chosen among

the variables satisfying clause Γd when constructing P, thenT i
d

and K i
j is in the same part Q of P.

FurthermoreK i
j+1 is either in a part different fromQ or also inQ . In both cases, there is at most one

edit from S in P . If xi was chosen among the the variables satisfying clause Γd when constructing
P, then T i

d
is in a part in P which is different from the one(s) containing K i

j and K i
j+1. However,

since xi satisfies Γd , we have α (xi ) = true and thus K i
j and K i

j+1 are merged (recall that j is odd).
Thus, indeed, the claim holds, that is, each edit in S is contained in a P3 inH and every P3 ofH

is edited at most once by S . �

4.2.2 Soundness. Before we show how to translate a cluster editing set of size |H | for the con-
structed instance into a satisfying assignment of Φ, we make some structural observations.

Recall the definition of a proto-cluster, a connected component of the subgraph ofG whose edge
set contains precisely those edges of G which are not contained in any P3 inH .

Lemma 3. V (H ) is precisely the set of proto-clusters of G with respect toH .

Proof. By construction, all edges inG between two cliques inV (H ) are in a P3 inH . Thus each
proto-cluster is contained in some clique in V (H ). We claim that each clique C ∈ V (H ) contains a
spanning tree of edges which are not contained in a P3 in H . If C ∈ L1, then this is clear; such a
C contains only a single vertex and a trivial spanning tree. If C ∈ L0, then there are only two P3s
inH that contain edges of C: The one given by v5v6v2 and the one given by v1v7v8 as defined in
Section 4.1.2 when connecting variable and clause gadgets. Since |C | = 5, indeed C contains the
required spanning tree. If C ∈ Li for i ≥ 2, then by the connectedness property of Corollary 1, C
has the required spanning tree. �

Recall that each solution S to (G,H , 0) cannot remove any edge from G which is not contained
in a P3 inH . Thus, sinceV (H ) is a vertex partition ofG, each solution S generates a cluster graph
G�S whose clusters induce a coarser vertex partition than V (H ). This leads to the following.

Observation 1. For each solution S to (G,H , 0), each cluster inG�S is a disjoint union of cliques

in V (H ).

Using the above structural observations, we are now ready to prove the soundness of the con-
struction.
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Lemma 4. If the constructed instance (G,H , � = 0) is a YES-instance, then the formula Φ is

satisfiable.

Proof. Suppose that there exists a set of vertex pairs S ⊆
(
V
2

)
so that GΔS is a union of vertex-

disjoint cliques and |S | − |H | = 0. In other words, there exists a solution that transforms G into
a cluster graph G ′ by editing exactly one edge or non-edge of every P3 ofH . We will construct a
satisfying assignment α : {x0,x1, . . . ,xn−1} → {true, false} for the formula Φ.

By Observation 1, the set of clusters inG ′ induces a partition of the cliques inV (H ). Recall that
we say that two cliques in V (H ) are merged if they are in the same cluster in G ′ and separated

otherwise.
To define α , we need the following observation on the solution. Consider variable xi and the

cliques K i
j , j = 0, 1, . . . , 4mi − 1, in xi ’s variable gadget. Call a pair K i

j , K i
j+1 even if j is even (where

j + 1 is taken modulo 4mi ) and call this pair odd otherwise. We claim that either (i) each even pair
is merged and each odd pair is separated, or (ii) each odd pair is merged and each even pair is
separated (and not both). Note that, for each even j, pair K i

j , K i
j+1 is merged or pair K i

j+1, K i
j+2 is

merged, because there is a P3 inG containing vertices in these cliques with center in K i
j+1. To show

the claim, it is thus enough to show that not both an odd pair and an even pair is merged.
For the sake of contradiction, suppose that an odd pair is merged and an even pair is merged.

Then, there exists an index j ∈ {0, 1, . . . , 4mi −1} and a clusterC inG ′ such that K i
j ,K

i
j+1,K

i
j+2 ⊆ C ,

where here and below the indices are taken modulo 4mi . Observe that there are no edges between
K i

j and K i
j+2 in G. If j is odd, then all of these non-edges are non-packed. All of these non-edges

are thus in S . This is a contradiction to the fact that S contains at most |H | vertex pairs. Thus, j is
even.

We now show that for eachk ∈ N∪{0}, pairK i
j+1+2k

,K i
j+2+2k

is merged by induction onk . Clearly,

fork = 0, this holds by supposition. Ifk > 0 then, by the construction ofHvar, there are non-packed
non-edges between K i

j+2k−1 and K i
j+2k+1. Combining this with the fact that K i

j+1+2(k−1)
= K i

j+2k−1

and K i
j+2+2(k−1)

= K i
j+2k

are merged by inductive assumption, it follows that K i
j+2k

and K i
j+2k+1 are

separated. Since there is a P3 in G connecting K i
j+2k

, K i
j+2k+1, and K i

j+2k+2 with center in K i
j+2k+1

and S contains at most one edit in this P3, it follows that K i
j+2k+1, K i

j+2k+2 are merged, as required.

It now follows in particular that K i
j−1 and K i

j are merged (recall that indices are taken modulo

4mi ). Since by assumption also K i
j and K i

j+1 are merged, we have that K i
j′ , K

i
j′+1, and K i

j′+2 are
contained in the same cluster inG ′ for some odd j ′. As already argued, this leads to a contradiction.
Thus the claim holds.

We define the assignment α as follows. For each variable xi , i = 0, 1, . . . ,n − 1, if in G ′ all even
pairs K i

2j , K
i
2j+1, j = 0, 1 . . . ,mi − 1, are merged, then α (xi ) = false. Otherwise α (xi ) = true.

We now show that α satisfies Φ. Consider an arbitrary clause Γd of Φ containing the three vari-
ables xa , xb , and xc . We use the same notation as when defining the clause gadget and its con-
nection to the variable gadget. Since there are non-packed non-edges between cliques Q1

d
and Q4

d
,

cliquesQ1
d

andQ4
d

must end up in different clusters inG ′. In other words,Q1
d

andQ4
d

are separated.
Observe that there is a path in G consisting of vertices in Q1

d
, Q2

d
, Q3

d
, and Q4

d
in this sequence.

Since each of these four cliques is a proto-cluster (Lemma 3), in order to separate Q1
d

and Q4
d

, one
of the following three cases must happen in the solution S : (i) The edges between Q1

d
and Q2

d
are

deleted. In other words, Q1
d

and Q2
d

are separated. (ii) Q2
d

and Q3
d

are separated. (iii) Q3
d

and Q4
d

are
separated. We now show that case (i), (ii), and (iii) imply that variable xa , xb , and xc , respectively,
is set by α so as to satisfy Γd . We only give the proof showing that case (i) implies that xa is set
accordingly. The other cases are analogous.
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Assume that case (i) holds. Then, by the constraints imposed by the two transferring P3s P1
d

and
P2

d
, cliques T a

d
and Q1

d
are merged. Since there are non-packed non-edges between Ka

4π (a,d )+1
and

Q1
d

, it follows that Ka
4π (a,d )+1

and Q1
d

are separated. Consider the case that xa appears positively in

Γd . Then, when connecting the variable gadget of xa to the clause gadget of Γd we have introduced
intoG a P3 connectingT a

d
, Ka

4π (a,d )+1
, and Ka

4π (a,d )+2
with center in Ka

4π (a,d )+1
(for example, the P3

given byw1v1v3). SinceT a
d

and Ka
4π (a,d )+1

are separated, thus Ka
4π (a,d )+1

and Ka
4π (a,d )+2

are merged.

There is thus at least one odd pair in xa ’s variable gadget that is merged and thus α (xa ) = true. The
case where xa appears negatively in Γd is similar: We have introduced into G a P3 connecting T a

d
,

Ka
4π (a,d )+1

, and Ka
4π (a,d )

with center in Ka
4π (a,d )+1

(for example, the P3 given by w1v1v3). It follows

that Ka
4π (a,d )+1

, and Ka
4π (a,d )

are merged, showing that at least one even pair is merged in xa ’s

variable gadget. Thus, α (xa ) = false.
Thus each clause Γd is satisfied, finishing the proof. �

5 XP-ALGORITHM FOR HALF-INTEGRAL PACKINGS

In this section, we study CEaMP in the special setting where every vertex is incident with at most
two P3s of the packingH . More precisely, we consider the following variant of CEaMP.

Cluster Editing above Half-Integral Modification-Disjoint P3 Packing (CEaHMP)

Input: A graph G = (V ,E), a modification-disjoint packing H of induced P3s of G such that
every vertex v ∈ V (G ) is incident with at most two P3s ofH , and a non-negative integer �.

Question: Is there a cluster editing set, i.e., a set of vertex pairs S ⊆
(
V
2

)
so thatG�S is a union

of disjoint cliques, with |S | − |H | ≤ �?

We give a polynomial-time algorithm to solve CEaHMP when � is a fixed constant, in contrast
with the NP-hardness of the general version of CEaMP when � = 0.

Theorem 2 (Restated). Cluster Editing above Half-Integral Modification-Disjoint P3

Packing parameterized by the number � of excess edits is in XP. It can be solved in n2�+O (1) time,

where n is the number of vertices in the input graph.

The main tool in proving Theorem 2 is a polynomial-time algorithm for the case where � = 0:

Theorem 3. Cluster Editing above Half-Integral Modification-Disjoint P3 Packing can be

solved in polynomial time when � = 0, that is, when no excess edits are allowed.

The proof of Theorem 3 will be given in Section 5.1. With this tool in hand, we can show
Theorem 2.

Proof of Theorem 2. Let (G,H , �) be an instance of CEaHMP. The algorithm is given in
Algorithm 1. Essentially, it guesses (by trying all possibilities) the number, �a , of excess edits that
are not contained in any P3 in H and guesses the concrete edits to be made (Lines 1–4). Then it
guesses the P3s in H that harbor the remaining excess edits and it guesses how these P3s are re-
solved (Lines 5–9). Then it checks whether the remaining instance has a cluster-editing set without
excess edits over the remaining P3 packingH′ using the algorithm from Theorem 3.

For the running time, observe that there are at most n2�a choices for Sa . Since each vertex is
in at most two P3s in H and each P3 covers exactly three vertices, we have 3|H | ≤ 2n and thus
there are in total at most n P3s in H . Thus, there are O (n�b ) choices for Hb . Since there are four
possibilities to select a set of at least two vertex-pairs in the vertex set of a P3, there are O (4�b )
possibilities for Sb in Line 6. Hence, overall the running time is O (4�bn2�a+�b+O (1) ) ≤ n2�+O (1) .
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ALGORITHM 1: Solve CEaHMP.
Input: An instance (G,H , �) of CEaHMP.
Output: Whether (G,H , �) is a YES-instance.

1 foreach �a = 0, 1, . . . , � do

2 foreach �b = 0, 1, . . . , � − �a do

3 foreach set Sa of �a vertex pairs {u,v} ∈
(
V (G )

2

)
such that ∀P ∈ H : |{u,v} ∩V (P ) | ≤ 1 do

4 Ga ← G�SA

5 foreach setHb of �b distinct P3s inH do

6 foreach set Sb containing for each P ∈ Hb at least two vertex pairs in V (P ) do

7 if |Sa | + |Sb | ≤ |Hb | + � then

8 Gb ← Ga�SB

9 H′ ← H \Hb

10 if Gb has a cluster-editing set with |H ′| edits then /* Using Theorem 3 */
11 accept and halt

12 reject

It remains to prove the correctness. If the algorithm accepts, then there is a cluster-editing set S0

forGb with |H ′| edits. Since S0 is contained in the vertex sets of the P3s inH′, set S0 is disjoint from
Sa and Sb . Thus,G�S� is a cluster graph where S� = Sa∪Sb∪S0. Moreover, |S� | ≤ |H ′|+ |Hb |+� =
|H | + �, and thus, (G,H , �) is a YES-instance.

Conversely, if (G,H , �) is a YES-instance, then there is a cluster-editing set S� ofG with |S� | ≤
|H | + �. Let S�a be the subset of S� that contains precisely those edits in S� that are not contained
in P3s of H . In one of the iterations of Algorithm 1, �a = |S�a | and Sa = S�a . Now let H�

b
be the

subset of H that contains precisely those P3s P such that S� contains at least two edits in V (P ).
Observe that |H�

b
| ≤ � − �a . Thus, in one of the iterations of Algorithm 1, we have �b = |H�

b
| and

Hb = H�
b

. Moreover, in one of the iterations Sb = S�
b

, where S�
b

is the subset of S� that contains
precisely those edits that are contained in the P3s inHb . Let S�0 = S� \ (S�a ∪S�b ). Since each edit in
S�0 is contained in a unique P3 inH \H�

b
, we have |Sa | + |Sb | = |S�a | + |S�b | ≤ |H

�
b
| + � = |Hb | + �.

Thus, in that iteration the algorithm proceeds to the if-condition in Line 10. Again since each edit
in S�0 is contained in a unique P3 inH \H�

b
, this set witnesses that (Gb ,H′, 0) is a YES-instance

and thus the algorithm accepts. Hence, the algorithm is correct. �

5.1 Polynomial-time Algorithm for Zero Excess Edits

Let Cluster Editing Matching Half-Integral Modification-Disjoint P3 Packing
(CEMHMP) be the special case of CEaHMP where � = 0. That is, an instance of CEMHMP
is given by a tuple (G,H ) of a graph G and a half-integral P3 packing H in G. In this section we
give a polynomial-time algorithm for CEMHMP. Again, we use the term proto-clusters to denote
the connected components of the graph obtained by removing the edges of all packed P3s.

The intuition behind the polynomial-time result is that, with the constraint that every vertex
v ∈ V (G ) is incident with at most two packed P3s, we cannot freely merge or separate two large
proto-clusters without excess edits as in the NP-hardness proof of Section 4. This is because the
triangles formed by the packed P3s cannot cover every vertex pair between two large proto-clusters.
Thus we can separate the large proto-clusters and deal with them separately.

The polynomial-time algorithm mainly proceeds by applying reduction rules that simplify the
instance step by step. Herein, our first goal is to eliminate proto-clusters of size at least four, which
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can be done by a series of straightforward reduction rules (Section 5.1.1). We then look at proto-
clusters of size three and observe that their connections to the rest of the graph have quite a
limited structure. This observation can be used to eliminate proto-clusters of size three as well
(Section 5.1.2). The reduction rules we have developed at this point give more structural observa-
tions on smaller proto-clusters which can be used to show that the size of solution clusters is at
most four (Section 5.1.3). Afterwards, we show that the only situation in which solution clusters
of size four can occur is when there is a certain path-like structure in the instance. A final, quite
involved reduction rule takes care of such path-like structures (Section 5.1.4). This then results in
an instance with a solution whose clusters have size at most three. Using this cluster-size bound
we can finally show that, if there is a solution, then there is also one that only deletes edges. This
then leads to a formulation as an instance of 2-SAT (Section 5.1.5), which is well-known to be
polynomial-time solvable.

We use the following notation. We say a proto-cluster C is isolated from a proto-cluster D if
there are no edges ofG betweenC and D. We classify the P3s ofH into four types. For an induced
P3 xyz ∈ H :

• if x ,y belong to one proto-cluster and z belongs to another proto-cluster, or symmetrically
y, z belong to one proto-cluster and x belongs to another proto-cluster, then xyz is a type-α
P3;
• if x , z belong to one proto-cluster andy belongs to another proto-cluster, then xyz is a type-β
P3;
• if x ,y, z belong to three distinct proto-clusters respectively, then xyz is a type-γ P3; and
• if x ,y, z belong to one proto-cluster then xyz is a type-δ P3.

As mentioned, in the following, we present a series of reduction rules, which are algorithms that
take an instance of CEMHMP and produce a new instance of CEMHMP. By saying that a reduction
rule is safe, we mean that the instance before applying this reduction rule is a YES-instance if and
only if the instance after applying this reduction rule is a YES-instance. Since the P3s of H are
modification-disjoint, we have the following handy observation.

Observation 2. A solution S to an instance of CEMHMP must edit exactly one edge or non-edge

of every P3 ofH , and neither non-packed edges nor non-packed non-edges can be edited by S .

5.1.1 Simple Reduction Rules. We start by getting rid of several simple situations.

Reduction Rule 1. For any proto-cluster C , if there are two vertices u,v ∈ V (C ) such that uv is

a non-packed non-edge, i.e., uv is not covered by any P3 ofH , then return NO.

Lemma 5. Reduction Rule 1 is safe.

Proof. Given an instance (G,H ) of CEMHMP satisfying the condition of Reduction Rule 1,
suppose for contradiction that there is a solution S to this instance. Since u,v belong to the same
proto-cluster, there is a non-packed path P from u to v . By Observation 2, uv � S and none of the
edges of P is edited by S . Thus G�S is not a cluster graph, contradicting that the instance has a
solution. This completes the proof for the lemma. �

The second reduction rule handles type-β and type-δ P3s (see Figure 6).

Reduction Rule 2. If there is a type-β or type-δ P3 xyz ∈ H , insert the edge xz and remove xyz
fromH .

Lemma 6. Reduction Rule 2 is safe.
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Fig. 6. Examples for Reduction Rule 2.

Fig. 7. Examples for Reduction Rule 3.

Proof. Suppose that the given instance of CEMHMP is (G,H ) such that there exists a type-β
P3 xyz in G. After inserting the edge xz and removing xyz from H , we get an instance (G ′,H′).
We claim that (G,H ) is a YES-instance if and only if (G ′,H′) is a YES-instance. On one hand,
suppose that (G ′,H′) is a YES-instance and S ′ is a cluster editing set of G ′ such that |S ′ | = |H ′|.
Obviously, S ′ ∪ {xz} is a cluster editing set forG and |S ′ ∪ {xz}| = |H |. On the other hand, suppose
that (G,H ) is a YES-instance and S is a cluster editing set of G such that |S | = |H |. We show
that xz ∈ S and S \ {xz} is the solution for (G ′,H′). For contradiction, suppose this is not true.
Then either xy ∈ S or yz ∈ S holds. Without loss of generality we assume that xy ∈ S . Suppose
that after deleting xy from G and removing xyz fromH , we get an instance (G ′′,H′′). Since x , z
belong to one proto-cluster of G, there is a non-packed path P from x to z in G. Thus x , z belong
to one proto-cluster ofG ′′. Since xyz is removed fromH , xz becomes a non-packed non-edge. By
Reduction Rule 1, (G ′′,H′′) is a NO-instance, contradicting that S is a solution to (G,H ).

A similar analysis applies to the case that xyz ∈ H is a type-δ P3. This completes the proof for
the lemma. �

After applying Reduction Rules 1 and 2 exhaustively, if the algorithm did not return NO, then
there is no type-β or type-δ P3s in the instance. The next reduction rule applies to the case in which
there is both a non-packed non-edge and a packed edge between two proto-clusters, see Figure 7
for an illustration.

Reduction Rule 3. For any two proto-clusters A and B, if there is a non-packed non-edge uv such

that u ∈ V (A) and v ∈ V (B), and there is a packed edge xy such that x ∈ V (A) and y ∈ V (B) (not

necessarily distinct from u or v), then delete xy and remove the corresponding packed P3 fromH .

Lemma 7. Reduction Rule 3 is safe.

Proof. Given an instance (G,H ) of CEMHMP satisfying the condition of Reduction Rule 3
with xy covered by a type-γ P3 xyz. Without loss of generality, we do not analyze the symmetrical
case where x is the center vertex of the P3 instead of y. We get an instance (G ′,H′) of CEMHMP
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after deleting xy and removing xyz from H . We claim that (G,H ) is a YES-instance if and only
if (G ′,H′) is a YES-instance. For the soundness, assume that (G ′,H′) is a YES-instance and S ′ is
a cluster editing set of size |H ′| for G ′. Then obviously S ′ ∪ {xy} is a solution to (G,H ). For the
completeness, assume that (G,H ) is a YES-instance and S is a cluster editing set of size |H | for
G. We claim that xy ∈ S . Suppose for contradiction that xy � S . Then xy becomes a non-packed
edge in G�S . Since u,x ∈ V (A) and v,y ∈ V (B), there is a non-packed path PA from u to x and a
non-packed path PB from v to y in G. By Observation 2, the edges of PA and PB are not edited by
S and uv � S . Thus there is a non-packed path from u to v . Since uv is a non-packed non-edge in
G�S , G�S is not a cluster graph, contradicting the assumption that S is a solution to (G,H ).

A similar analysis applies to the case in which xy is covered by a type-α P3 xyz (and its symmet-
rical case where x is the center vertex instead of y). This concludes the proof for the lemma. �

The next reduction rule deals with isolated cliques in graph G.

Reduction Rule 4. If there is a proto-cluster C which is an isolated clique of G, then remove C
from the graph.

Lemma 8. Reduction Rule 4 is safe.

Proof. Given an instance (G,H ) of CEMHMP such that there is a proto-cluster C which is
an isolated clique, we remove C from G and get an instance (G ′,H ). We claim that (G,H ) is a
YES-instance if and only if (G ′,H ) is a YES-instance. On one hand, assume that (G ′,H ) is a YES-
instance. Then obviously (G,H ) is a YES-instance. On the other hand, assume that (G,H ) is a
YES-instance and S is a solution. SinceC is an isolated clique, by Observation 2, neither edges ofC
nor non-edges betweenV (C ) andV (G ) \V (C ) are edited by S . Thus S is also a solution to (G ′,H ).
This completes the proof for the lemma. �

In later analysis, we will see that some constant-size configurations cannot be connected to the
rest of the graph. To remove such configurations, we introduce the following reduction rule.

Reduction Rule 5. If there is a connected componentC inG of size at most 6, then do brute force

onC to check if there is a cluster editing set F forC such that |F | is equal to the number of packed P3s

incident with a vertex of C . If there is such a cluster editing set F , then perform the operations of F to

C and remove the corresponding packed P3s fromH . Otherwise, if there is no such cluster editing set

F , return NO.

Lemma 9. Reduction Rule 5 is safe.

Proof. Given an instance (G,H ) of CEMHMP such that there is a connected component C
in the graph of size at most 6, suppose that there is a cluster editing set F for C satisfying the
condition of Reduction Rule 5. After performing the operations of F , we get an instance (G ′,H′)
of CEMHMP. We claim that (G,H ) is a YES-instance if and only if (G ′,H′) is a YES-instance. On
one hand, assume that (G ′,H′) has a solution S ′. Obviously, S ′ ∪ F is a cluster editing set for G
and |S ′ ∪ F | = |H |. On the other hand, assume that (G,H ) has a solution S . By Observation 2,
no vertex pair between V (C ) and V (G ) \V (C ) is edited by S . Let S1 ⊆ S be the set of vertex pairs
which are edges or non-edges of C . Then S \ S1 is a solution to (G ′,H′).

Suppose that there is no such cluster editing set F forC . We claim that (G,H ) is a NO-instance.
For contradiction, assume that (G,H ) has a solution S . Let S1 ⊆ S be the set of vertex pairs which
are edges or non-edges of C . Then S1 is a cluster editing set for C and |S1 | is equal to the number
of packed P3s incident with a vertex of C by Observation 2, a contradiction. Thus (G,H ) is a
NO-instance.

The componentC is of size at most 6 so we can do brute force in constant time. This completes
the proof for the lemma. �
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Fig. 8. An example for Lemma 11.

We now move to analyzing the size of the remaining proto-clusters.

Lemma 10. After applying Reduction Rules 1 to 4 exhaustively, if the algorithm did not return NO,

then there is no proto-cluster of size at least 5.

Proof. Suppose for contradiction that there is a proto-clusterC of size at least 5. IfC is a proto-
cluster which is isolated from other proto-clusters, then C must be a clique since otherwise Re-
duction Rule 1 or Reduction Rule 2 can be applied, a contradiction. Then Reduction Rule 4 can be
applied and C will be removed from the graph. Thus C is not an isolated proto-cluster.

Let D be a proto-cluster such that there is an edge uv between C and D, say u ∈ V (C ) and
v ∈ V (D). If uv is covered by a type-β P3, then Reduction Rule 2 can be applied, a contradiction.
Thus we assume that uv is covered by a type-α or a type-γ P3. Since v is incident with at most
two packed P3s, there must be one vertexw ∈ V (C ) such thatwv is a non-packed non-edge. Then
Reduction Rule 3 can be applied, a contradiction. As a result, there is no proto-cluster of size at
least 5. This completes the proof for the lemma. �

Next we focus on proto-clusters of size 4.

Lemma 11. After applying Reduction Rules 1 to 3 exhaustively, if there is a proto-cluster C of size

4 which is not an isolated clique of G, then there is a proto-cluster D of size 1 such that the vertex

pairs between C and D are covered by two type-α P3s. In addition, V (C ) ∪ V (D) forms a connected

component in the graph.

Proof. After applying Reduction Rules 1 to 3 exhaustively, letC be a proto-cluster of size 4 and
V (C ) = {v1,v2,v3,v4}. See Figure 8 for an illustration. Let w be a vertex such that there is an edge
between w and V (C ). If the vertex pairs between V (C ) and w are not covered by two type-α P3s,
then either there is a non-packed non-edge betweenC and D or there is a type-β P3 betweenC and
D. Thus Reduction Rule 2 or 3 can be applied, a contradiction. Without loss of generality, suppose
that v1v2 and v3v4 are covered by these two type-α P3s. Assume for contradiction that there is
another vertex u such that u and (without loss of generality) v1 are adjacent, and uv1 is a packed
edge. Since we have applied Reduction Rule 2 exhaustively, there are neither type-β nor type-δ
P3s in the graph. Thus uv1 must be covered by a type-α or a type-γ P3.

We claim that there must be a non-packed non-edge from u to a vertex of C . For contradiction,
suppose this is not true. Then either v1v4,v2v3 are covered by two type-α P3s, respectively, or
v1v3,v2v4 are covered by two type-α P3s, respectively. In both cases, v1,v2,v3 and v4 are not in
one proto-cluster anymore since after removing the packed edges, v1,v2,v3 and v4 are not in one
connected component, a contradiction. Thus there must be a non-packed non-edge betweenV (C )
and u. Since uv1 is a packed edge, Reduction Rule 3 can be applied to C and the proto-cluster con-
taining u, a contradiction. Thus there are no edges betweenV (C ) and any other vertices exceptw .
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Suppose that w belongs to a clique of size at least two. Then there must be a non-packed
non-edge and a packed edge betweenC and D (there cannot be more than two packed P3s between
a proto-cluster of size 4 and another proto-cluster). Thus Reduction Rule 3 can be applied, a
contradiction. Thus w belongs to a proto-cluster of size one and let this proto-cluster be D. Since
w is already incident with two packed P3s, w is isolated from any other proto-clusters except C .
Obviously,V (C ) ∪V (D) forms a connected component in the graph. This completes the proof for
the lemma. �

Lemma 12. After applying Reduction Rules 1 to 5 exhaustively, there is no proto-cluster of size 4.

Proof. Suppose for contradiction that there is a proto-cluster C of size at least 4. If C is an
isolated proto-cluster, C must be a clique since otherwise Reduction Rule 1 or 2 can be applied,
a contradiction. Then Reduction Rule 4 can be applied and C will be removed from the graph.
ThusC is not an isolated proto-cluster. By Lemma 11, there is a proto-cluster D of size 1 such that
V (C ) ∪V (D) forms a connected component of size 5 in the graph. Then Reduction Rule 5 can be
applied, a contradiction. As a result, there is no proto-cluster of size at least 4. This completes the
proof for the lemma. �

Summarizing, using the simple Reduction Rules 1 to 4 we have successfully removed all proto-
clusters of size at least four.

5.1.2 Decreasing the Proto-cluster Size and Structural Observations. Next, we focus on the struc-
ture of proto-clusters of size three and how to remove them as well. First, we observe how con-
nections around proto-clusters of size three look like. See Figure 9 for an illustration of these
connections.

Lemma 13. After applying Reduction Rules 1 to 4 exhaustively, if there is a proto-cluster C of size

3, then there must be a proto-cluster B of size 1 and a proto-cluster A of size 1, such that the vertex

pairs between C and B are covered by a type-α P3 and a type-γ P3, and the type-γ P3 connects C and

A via B. In addition, C is isolated from any other proto-clusters except B, and B is isolated from any

other proto-clusters except A and C .

Proof. After applying Reduction Rules 1 to 4 exhaustively, let C be a proto-cluster of size 3. If
C is isolated from other proto-clusters, then C must be a clique since otherwise Reduction Rule 1
can be applied. However, then Reduction Rule 4 can be applied, a contradiction. Thus we assume
that C is not an isolated proto-cluster.

Let the three vertices ofC be u1, u2, and u3. Let v be a vertex such that there is an edge between
v and V (C ). If the vertex pairs between V (C ) and v are not covered by a type-α P3 and a type-γ
P3, then Reduction Rule 2 or 3 can be applied as v can be incident with at most two packed P3s, a
contradiction. Without loss of generality, suppose that u1, u3, andv belong to a type-α P3. Assume
for contradiction that there is another vertex w such that w is adjacent to some vertex ofV (C ) (w
can either belong to the same proto-cluster asv or belong to a different proto-cluster fromv). If the
vertex pairs between V (C ) and w are not covered by a type-α P3 and a type-γ P3, then Reduction
Rule 2 or 3 can be applied to the corresponding P3 or proto-clusters, a contradiction. If the vertex
pairs between V (C ) and w are covered by a type-α P3 and a type-γ P3, say u1,u2 and w belong to
the type-α P3, then u1, u2, and u3 are not in one proto-cluster, a contradiction. It follows that there
is no vertex adjacent to one of the vertices of V (C ) except v .

Let B be the proto-cluster to which v belongs. Assume for contradiction that |B | > 1 and there
is another vertex y belonging to B. As argued above, y is not adjacent to any vertex of V (C ) and
there is a non-packed non-edge between V (B) and V (C ). Thus Reduction Rule 3 can be applied, a
contradiction. It follows that |B | = 1 and C is isolated from any other proto-clusters except B. We
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Fig. 9. An example for Lemma 13 and Reduction Rule 6.

have assumed that u1,u3 and v belong to a type-α P3. As argued above, u2v is covered by a type-γ
P3. Letu2vx be that type-γ P3 where x belongs to a proto-clusterA. We claim that |A| = 1. Suppose
for contradiction that |A| > 1 and there is another vertex z ∈ V (A). Thenvz must be a non-packed
non-edge since v is already incident with two packed P3s. Thus Reduction Rule 3 can be applied,
a contradiction. It follows that |A| = 1. This concludes the proof for the lemma. �

Lemma 13 now suffices to determine a solution around proto-clusters of size three. See Figure 9
for an illustration of the following Rule 6.

Reduction Rule 6. After applying Reduction Rules 1 to 4 exhaustively, if there is a proto-cluster

C of size 3, a proto-cluster B of size 1 and a proto-cluster A of size 1 such thatC is not isolated from B,

and a type-γ P3 connects C and A via B, then delete the packed edge between A and B, insert an edge

to the packed non-edge between C and B, and remove the corresponding P3s fromH .

Lemma 14. Reduction Rule 6 is safe.

Proof. Given an instance (G,H ) of CEMHMP satisfying the condition of Reduction Rule 6, let
u1, u2, and u3 be the three vertices of C , let v be the vertex of B and w be the vertex of A. Without
loss of generality, let u1u3v and u2vw be two packed P3s. After applying Reduction Rule 6, we get
an instance (G ′,H′) of CEMHMP. We claim that (G,H ) is a YES-instance if and only if (G ′,H′)
is a YES-instance.

For the soundness, suppose that (G ′,H′) is a YES-instance and S ′ is a cluster editing set of G ′

such that |S ′ | = |H ′|. Obviously S = S ′ ∪ {u1v,vw } is a solution to (G,H ).
For the completeness, suppose that (G,H ) is a YES-instance and S is a cluster editing set of

G such that |S | = |H |. If vw ∈ S , then u2v becomes a non-packed edge between C and B after
removing the P3 u2vw from H . Thus, in this case we have u1v ∈ S as well by Reduction Rule 2,
that is, {u1v,vw } ⊆ S . Then S ′ = S \ {u1v,vw } is a solution to (G ′,H′) because by Lemma 13, C
and B are isolated from the rest of the graph.

Thus, assume vw � S from now on. Then, either u2w ∈ S or u2v ∈ S . First, we assume that
u2w ∈ S , and after inserting u2w and removing u2vw from H we get an instance (G ′′,H′′) of
CEMHMP. Observe that since C is a proto-cluster and u1u3 is packed, u2u3 is not packed. Thus,
u3u2w is a non-packed path in G ′′ and u3w is a non-packed non-edge. Thus Reduction Rule 1
can be applied to (G ′′,H′′) and (G ′′,H′′) is a NO-instance. This contradicts the fact that S is a
solution to (G,H ). Thus, we have u2v ∈ S . After deleting u2v and removing u2vw from H , u2v
becomes a non-packed non-edge. Thus Reduction Rule 3 can be applied, showing u3v ∈ S . By
Lemma 13, C is isolated from any other proto-clusters except B, and B is isolated from any other
proto-clusters except A and C . It follows that in G�S , u1,u2 and u3 form a clique of size 3 while v
and w form a clique of size 2. Furthermore, V (G ) \ {u1,u2,u3,v,w } forms a cluster graph in G�S .
Let Ŝ = (S \ {u2v,u3v}) ∪ {vw,u1v}. Obviously G�Ŝ is also a cluster graph and |Ŝ | = |H |. Thus Ŝ
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Fig. 10. An example of forming a clique of size 6 in G�S . The black edges are non-packed edges. The vertex
pairs of the same color which is not black belong to the same packed P3 and the dashed edges represent
non-edges. The same rule of notation applies to the following pictures.

is also a solution to (G,H ). It follows that Ŝ \ {vw,u1v} is a solution for (G ′′,H′′). This completes
the proof for the lemma. �

Corollary 2. After applying Reduction Rules 1 to 6 exhaustively, there are no isolated cliques in

the instance and every proto-cluster of the instance is of size at most 2. Moreover, since the edge in a

proto-cluster of size 2 cannot be a packed edge, every packed P3 in the remaining graph is a type-γ P3.

5.1.3 Reducing the Size of Solution Clusters. In the previous section we have successfully re-
moved all proto-clusters of size at least 3. Suppose that after applying Reduction Rules 1 to 6
exhaustively, we have an instance (G,H ) of CEMHMP. Suppose that S is a solution to (G,H ).
Now we consider the size of the clusters in the cluster graph G�S . We first show that the largest
clique in this graph has size at most 6.

Lemma 15. After applying Reduction Rules 1 to 6 exhaustively, we have an instance (G,H ) of

CEMHMP. Suppose that S is a solution to (G,H ). Then there is no clique of size larger than 6 inG�S .

Proof. Suppose for contradiction that A is a clique of size at least 7 inG�S and let u be a vertex
in A. Then there are at least six vertex pairs between {u} and V (A) \ {u}, which are either non-
packed edges or covered by packed P3s. Since u is incident with at most two packed P3s, at most
four vertex pairs between {u} and V (A) \ {u} are covered by a packed P3. Thus at least two vertex
pairs between {u} and V (A) \ {u} are non-packed edges. By Corollary 2, every proto-cluster in G
is of size at most 2, a contradiction. This completes the proof for the lemma. �

We can now determine more precisely the structure of potential cliques of size 6 in G�S . See
Figure 10 as an example.

Lemma 16. Let (G,H ) be an instance of CEMHMP such that the size of every proto-cluster in G is

at most 2. Let S be a solution to (G,H ) and suppose that A is a clique of size exactly 6 in G�S . Then

the following statements hold:

• The vertices of V (A) belong to three proto-clusters C1, C2, and C3 of size 2 in G.

• Every vertex pair between C1 and C2, between C1 and C3, and between C2 and C3 is covered by

some P3 ofH .

• Furthermore, V (C1) ∪V (C2) ∪V (C3) forms a connected component in G.

Proof. Suppose for contradiction that u ∈ V (A) belongs to a proto-cluster of size 1 in G. Then
there are five vertex pairs between {u} and V (A) \ {u}, which are covered by packed P3s. Since
u belongs to at most two packed P3s, at most four vertex pairs between {u} and V (A) \ {u} are
covered by a packed P3, a contradiction.
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Fig. 11. Some examples of Lemma 18. In Case (1),C1 is separated fromC2 andC3, andC2,C3,C4 are merged
into a clique of size 5 in G�S . In Case (2), C4 is separated from C2 and C3, and C1,C2,C3 are merged into
a clique of size 5 in G�S . In Case (3), C1,C2 are merged into a clique of size 3 and C3,C4 are merged into a
clique of size 3 such that these two cliques of size 3 are separated from each other. In Case (4), the instance
is a NO-instance. Case (3) and Case (4) are not touched by Lemma 18 but they can be handled by Reduction
Rule 5 and 4.

Next we show that the vertices of V (A) belong to three proto-clusters C1, C2, and C3 of size 2
in G; see also Figure 10. We see that for every vertex v ∈ V (A), four of the vertex pairs between
{v} andV (A) \ {v} are covered by packed P3s and the other one is a non-packed edge. Thus every
vertex v ∈ V (A) belongs to two packed P3s. It follows that for each i ∈ [3] the proto-cluster Ci is
isolated from any other proto-cluster inG \ (V (C1)∪V (C2)∪V (C3)). Note that there are no type-α ,
type-β , or type-δ P3s in H anymore. Thus the edges between the proto-clusters in A are covered
by type-γ P3s. Thus, without loss of generality, let xyz be a P3 such that x ∈ V (C1),y ∈ V (C2) and
z ∈ V (C3). Thus, V (C1) ∪V (C2) ∪V (C3) forms a connected component. This completes the proof
for the lemma. �

By the reduction rule that solved small connected components it follows that cliques of size 6
cannot exist in G�S .

Lemma 17. After applying Reduction Rules 1 to 6 exhaustively, we have an instance (G,H ) of

CEMHMP. Suppose that S is a solution to (G,H ). Then there is no clique of size exactly 6 in G�S .

Proof. Suppose for contradiction that A is a clique of size exactly 6 in G�S . According to
Lemma 16, V (A) induces a connected component of size exactly 6 in the input graph. Then Re-
duction Rule 5 or Reduction Rule 4 can be applied, a contradiction. This completes the proof for
the lemma. �

Now we consider the structure of potential cliques of size 5 in G�S . See Figure 11 for examples.

Lemma 18. After applying Reduction Rules 1 to 3 exhaustively, let (G,H ) be an instance of

CEMHMP such that the size of every proto-cluster in G is at most 2 and S is a solution to (G,H ).
Suppose that A is a clique of size exactly 5 in G�S . Then there are four proto-clusters Ci for i ∈ [4]
such that the following statements hold:

• |C1 | = |C4 | = 1 and |C2 | = |C3 | = 2.

• The vertices of A belong to the three proto-clusters C1, C2, and C3 or to the three proto-clusters

C2, C3, and C4.

• Every vertex pair between Ci and Cj (i, j ∈ {1, 2, 3, 4}, i � j) is covered by a packed P3 except

that the vertex pair between C1 and C4 is a non-packed non-edge.

• Furthermore, V (C1) ∪V (C2) ∪V (C3) ∪V (C4) forms a connected component in G.
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Proof. Suppose for a contradiction that at least three vertices of V (A) belong to proto-clusters
of size 1 in G; say u,v,w ∈ V (A) belong to three distinct proto-clusters of size one, respectively,
and two vertices ofV (A), say x ,y ∈ V (A) \ {u,v,w }, belong to a proto-cluster of size two or belong
to two distinct proto-clusters of size one, respectively. It follows that every vertex pair of

(
V (A)

2

)
is

either a non-packed edge or covered by some P3 of H . Then uv,wv,xv,yv are four vertex pairs
that are covered by packed P3s. Since v is incident with at most two packed P3s, there are the two
following cases: (a) We assume that u,v,x belong to a packed P3 and w,v,y belong to another
packed P3. We omit the symmetric case that u,v,y belong to a packed P3 and w,v,x belong to
another packed P3 since the analysis is analogous. (b) We assume that u,v,w belong to a packed
P3 and x ,v,y belong to another packed P3.

For case (a), uw,uy are also covered by one packed P3 or two distinct packed P3s. If uw and uy
are covered by one packed P3, then this P3 is not modification disjoint with the packed P3 covering
w,v,y, a contradiction. Ifuw anduy are covered by two distinct packed P3s, thenu is incident with
three packed P3s, a contradiction.

For case (b), ux ,uy are also be covered by one packed P3 or two distinct packed P3s. If ux and
uy are covered by one packed P3, then it is not modification disjoint with the packed P3 covering
x ,v,y, a contradiction. If ux and uy are covered by two distinct packed P3s, then u is incident with
three packed P3s, a contradiction. As all cases lead to a contradiction, it follows that the vertices
of V (A) belong to one proto-cluster of size 1 and two proto-clusters of size 2.

Next we show that the vertices in V (A) belong to three proto-clusters C1, C2, and C3 (or C2, C3,
and C4) in G such that |C1 | = |C4 | = 1 and |C2 | = |C3 | = 2; see also Case (1) and Case (2) of
Figure 11. Let C1, C2, C3 be the proto-clusters contained in A and without loss of generality let
|V (C1) | = 1. LetV (C1) = {x },V (C2) = {u1,u2}, andV (C3) = {v1,v2}. Without loss of generality, let
x ,u1,v1 belong to a packed P3 and x ,u2,v2 belong to another packed P3. Then u1v2 and u2v1 must
be covered by packed P3s since otherwise Reduction Rule 3 can be applied to C2 and C3.

For a contradiction, assume that there are two vertices y1,y2 such that y1,u1,v2 belong to one
packed P3 and y2,u2,v1 belong to another packed P3. Then y1u2,y1v1 are non-packed non-edges
sinceu2 andv1 are each already incident with two packed P3s. It then follows that Reduction Rule 3
can be applied, a contradiction. It follows that there is a single vertex y such that {y,u2,v1} and
{y,u1,v2} are vertex sets of P3s inH . Let C4 be the proto-cluster to which y belongs.

If |C4 | > 1, then there must be a non-packed non-edge betweenC4 andC2 and a non-packed non-
edge betweenC4 andC3. Thus Reduction Rule 3 can be applied, a contradiction. Thus |C4 | = 1. Since
u1,u2,v1,v2,x ,y are all incident with two packed P3s, the subgraph induced by V (C1) ∪ V (C2) ∪
V (C3) ∪ V (C4) is isolated from the other parts of the graph. We can view the graph induced by
V (C1)∪V (C2)∪V (C3)∪V (C4) as a complete graph on 6 vertices with five missing edges. Note that
the edge betweenx andy is missing by the condition of this lemma. Suppose that {u1,u2,v1,v2,x ,y}
does not induce a connected component in G. This is only possible when every edge incident to
x (symmetrically, y) is missing because a cut of a complete graph on 6 vertices minus one edge
is of size at least 4. However, x (symmetrically, y) is incident with two packed P3s and thus at
most two of the edges incident to x (symmetrically, y) are missing, a contradiction. It follows that
V (C1) ∪V (C2) ∪V (C3) ∪V (C4) forms a connected component in G. This completes the proof for
the lemma. �

As for cliques of size 6, the reduction rule that solved small connected components thus took
care of cliques of size 5.

Lemma 19. Let (G,H ) be an instance of CEMHMP obtained after applying Reduction Rules 1 to 6

exhaustively. Suppose that S is a solution to (G,H ). Then there is no clique of size exactly 5 in G�S .
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Fig. 12. An example of forming a clique of size 4 in G�S . Vertices z1, z2 form a proto-cluster of size 2 and
each vertex of u,v,x ,y belongs to a proto-cluster of size 1.

Proof. Suppose for contradiction that A is a clique of size exactly 5 in G�S . According to
Lemma 18, V (A) belongs to a connected component of size 6 in the input graph. Then Reduc-
tion Rule 5 or Reduction Rule 4 can be applied, a contradiction. This completes the proof for the
lemma. �

Summarizing, after applying our reduction rules the cliques in G�S have size at most 4.

5.1.4 Path-like Structures. Next, we aim to get rid of cliques of size 4. This will later enable us
to reduce the instance of CEMHMP to 2-SAT. To take care of cliques of size 4, we use a similar
strategy as for cliques of size 5 or 6. We first consider the structure of the proto-clusters taking
part in the clique (see Figure 12 for an example) and we then devise reduction rules that remove
or simplify these proto-clusters. The structure here is more involved. In particular, it is in general
not true anymore that cliques of size 4 are contained in small connected components. However,
as we will see, these cliques take part in a path-like structure that can either be solved locally,
or that behaves analogously to a P4, see Figure 13 later on. The following lemma formalizes the
underlying structure that may contain cliques of size 4.

Lemma 20. After applying Reduction Rules 1 to 6 exhaustively, let (G,H ) be an instance of

CEMHMP. Let S be a solution to (G,H ). Suppose that A is a clique of size 4 in G�S and V (A) =
{x ,y, z1, z2}. Then the following statements hold:

(1) Three vertices ofV (A), say x ,y, z2, belong to one packed P3 in G, and one vertex of x ,y, z2, say

z2, together with z1 forms a proto-cluster C1 of size 2 in G.

(2) Vertices x andy form a proto-clusterC2 of size 1 and a proto-clusterC3 of size 1 inG, respectively.

(3) There are two vertices u and v such that x ,u, z1 belong to a packed P3 in G and y,v, z1 belong

to another packed P3 in G.

(4) Verticesu andv form a proto-clusterC4 of size 1 and a proto-clusterC5 of size 1 inG, respectively.

(5) u,v, z2 cannot belong to the same packed P3.

Proof. We first show the part of Items (1) and (2) about the partition ofV (A) into proto-clusters.
For contradiction, suppose thatV (A) does not belong to one proto-cluster of size 2 and two proto-
clusters of size 1 in G. Then there are two cases: (i) Two vertices of V (A), say x1,x2, belong to a
proto-clusterC2 of size two and the other two vertices ofV (A), sayy1,y2, belong to a proto-cluster
C3 of size 2. (ii) All four vertices x1,x2,y1,y2 of V (A) belong to four distinct proto-clusters C1, C2,
C3, and C4 of size 1, respectively.

Case (i): Since all vertex pairs between C2 and C3 need to be covered to form a clique of size 4,
without loss of generality, assume that there is a vertex u � V (A) such that u, x1, and y1 belong to
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a packed P3. Suppose that there is another vertex u ′ � V (A) ∪ {u} such that u ′, x2, and y2 belong
to a packed P3. Since neither u,x2,y1 nor u,x1,y2 could belong to a packed P3 (uy1 and uy2 are
already covered by the assumed P3s), one of the vertex pairs ux2 and uy2 must be a non-packed
non-edge and thus Reduction Rule 3 can be applied, a contradiction. Thus u,x2 and y2 belong to
a packed P3. Similarly, we can show that there is another vertex v such that v,x1,y2 belong to a
packed P3 and v,x2,y1 belong to a packed P3. It follows that each vertex of {x1,x2,y1,y2,u,v} is
incident with two packed P3s. First we assume that u and v belong to two different proto-clusters,
say C1 and C4, respectively. If |C1 | > 1 or |C4 | > 1, then there is a non-packed non-edge involving
C1 or C4 and thus Reduction Rule 3 can be applied. Thus |C1 | = |C4 | = 1. It follows that V (C1) ∪
V (C2) ∪ V (C3) ∪ V (C4) induces a connected component and Reduction Rule 5 can be applied, a
contradiction. Assume that u andv belong to one proto-cluster, sayC1. If |C1 | > 2, then Reduction
Rule 3 can be applied for the same reason as above. Thus |C1 | = 2 andV (C1)∪V (C2)∪V (C3)∪V (C4)
induces a connected component. It follows that Reduction Rule 5 can be applied to this connected
component, a contradiction. Therefore, Case (i) does not happen.

Case (ii): Since the vertex pair between each pair ofC1,C2,C3, andC4 needs to be covered to form
a clique of size four and each vertex can be in at most two P3s, without loss of generality, assume
that x1,x2,y1 belong to a packed P3. Pair x1y2 also needs to be covered by a packed P3; observe
that by modification-disjointness of the packed P3s, the third vertex in this P3 cannot be contained
in V (A). Thus, there is another vertex y3 � V (A) such that x1,y2,y3 belong to a packed P3. The
vertex pairs x2y2 and y1y2 cannot be covered by one packed P3 since x2y1 is already covered by a
packed P3. Thus x2y2 and y1y2 need to be covered by two distinct P3s respectively. However, then
y2 is incident with three packed P3s, a contradiction. Therefore Case (ii) does not happen either. It
follows that V (A) consists of one proto-cluster of size 2 and two proto-clusters of size 1.

Next we show that the claims on the P3s in Item (1) as well as Items (3) and (4) are true. Suppose
that A is a clique of size 4 in G�S . Let V (A) = {x ,y, z1, z2}. By the analysis above, we get that
two vertices of A belong to a proto-cluster of size 2 and the other two vertices of A belong to two
distinct proto-clusters of size 1 respectively. Without loss of generality, assume that z1, z2 form a
proto-cluster C1 of size 2 in G while x and y form a proto-cluster C2 of size 1 and a proto-cluster
C3 of size 1 in G respectively. See Figure 12 for an illustration.

Since there are three vertex pairs, i.e., {xy,xz1,xz2}, between x andV (A) \ {x }, two of the three
vertex pairs are covered by one packed P3. Moreover, this P3 cannot contain two vertices of C1.
Without loss of generality, let thus x ,y, z2 belong to a packed P3. Since xz1 is also covered by a P3

and this P3 is modification-disjoint to the one containing x ,y, z2, there is another vertex u � V (A)
such that x ,u, z1 belong to a packed P3 in G.

Alsoyz1 needs to be covered by a packed P3, so there is another vertexv such thaty,v, z1 belong
to a packed P3 (u and v are different as otherwise the P3s induced by y,v, z1 and x ,u, z1 are not
modification-disjoint). Suppose that u andv belongs to the same proto-cluster of size at least 2. By
Corollary 2, this proto-cluster has size exactly 2. Since x and y are incident with two packed P3s
respectively, uy and vx are two non-packed non-edges. Thus Reduction Rule 3 can be applied to
the proto-clusters adjacent to these non-edges, a contradiction. It follows thatu andv must belong
to two distinct proto-clusters. Assume that there is a vertex u ′ such that u ′ and u belong to one
proto-cluster of size at least two. Since x , z1 are already incident with two packed P3s respectively,
u ′x andu ′z1 must be non-packed non-edges. Then Reduction Rule 3 can be applied sinceux oruz1

is a packed edge. It follows that u belongs to a proto-cluster of size one, say C4. Similarly, we can
show that v belongs to a proto-cluster of size one, say C5.

Finally we show that Item (5) is true. Suppose for contradiction that u,v, z2 belong to the same
proto-cluster. Then every vertex of {u,v,x ,y, z1, z2} is incident with two packed P3s. It follows that
the subgraph induced by {u,v,x ,y, z1, z2} is a connected component in G, which can be handled
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Fig. 13. Examples of Reduction Rule 7. Vertices z1, z2 form a proto-cluster of size 2 and each of the other
vertices belongs to a proto-cluster of size 1. Note that in Item (3) the P3 y,x , z2 is not fully specified by the
conditions, that is, its packed non-edge could also be between different vertices.

by Reduction Rule 5. Thus u,v, z2 cannot belong to the same packed P3. This completes the proof
for the lemma. �

We next leverage the structure observed in Lemma 20 in a reduction rule. Essentially, all the
possible ways to realize the structure of Lemma 20 result in a situation that can either be solved
directly, or can be replaced by a P5 with suitable new packed P3s.

Reduction Rule 7. After applying Reduction Rules 1 to 6 exhaustively, let C1,C2,C3,C4, and C5

be five proto-clusters such that

• V (C1) = {z1, z2},V (C2) = {x },V (C3) = {y},V (C4) = {u},V (C5) = {v},
• x ,y, z2 belong to a packed P3,

• x ,u, z1 belong to a packed P3, and

• y,v, z1 belong to a packed P3.

Check which of the following conditions are satisfied and apply the corresponding data reduction.

If uz2 and vz2 are non-packed non-edges, then

(1) delete the edgesvy and ux , insert an edge to the packed non-edge of the P3 which covers xy and

remove the corresponding packed P3s fromH .

Otherwise, if there is a vertexw such that u,w, z2 belong to a packed P3, then do reductions according

to the following cases:

(2) xz1 and xz2 are packed non-edges: Return NO.

(3) xz1 is a packed non-edge and xz2 is a packed edge: Delete the edge uw , delete the edges between

y and {x , z1, z2}, and add an edge to the non-edge xz1. Remove the corresponding packed P3s

fromH .

(4) xz1 is a packed edge and xz2 is a packed non-edge: Delete the edgevy, delete the edges between

u and {x , z1, z2}, and add an edge to the non-edge xz2. Remove the corresponding packed P3s

fromH .
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(5) xz1 and xz2 are packed edges: Replace the subgraph induced by {u,v,w,x ,y, z1, z2} with two

P3s vab and bcw . Remove the four packed P3s incident with one vertex of {u,x ,y, z1, z2} from

H , and add vab and bcw toH .

Otherwise, if there is a vertexw ′ such thatv,w ′, z2 belong to a packed P3, then do reductions according

to the following cases:

(6) yz1 and yz2 are packed non-edges: Return NO.

(7) yz1 is a packed non-edge andyz2 is a packed edge: Delete the edgevw ′, delete the edges between

x and {y, z1, z2}, and add an edge to the non-edge yz1. Remove the corresponding packed P3s

fromH .

(8) yz1 is a packed edge and yz2 is a packed non-edge: Delete the edge ux , delete the edges between

v and {y, z1, z2}, and add an edge to the non-edge yz2. Remove the corresponding packed P3s

fromH .

(9) yz1 and yz2 are packed edges: Replace the subgraph induced by {u,v,w ′,x ,y, z1, z2} with two

P3s w ′ab and bcu. Remove the four packed P3s incident with one vertex of {v,x ,y, z1, z2} from

H , and add w ′ab and bcu toH .

Lemma 21. Reduction Rule 7 is safe.

Proof. Note that Items (2) to (5) are symmetric to the Items (6) to (9), respectively. To be more
precise, we can relabel the vertices in the subgraph induced by {u,v,x ,y, z1, z2,w } of Item (2) as
follows: we exchange the labeling of x andy, exchange the labeling ofu andv , and relabel vertexw
asw ′. Then we get a subgraph induced by {u,v,x ,y, z1, z2,w

′} satisfying the condition of Item (6).
Similarly we show that Item (3) is symmetric to Item (7), Item (4) is symmetric to Item (8), and
Item (5) is symmetric to Item (9). Thus, the safeness of Items (6) to (9) follows from the safeness of
Items (2) to (5).

Thus, it is enough to prove the correctness of Items (1) to (5). In the following, to ease arguments
we will sometimes successively determine edits that are being made by the solution. We then tacitly
assume that the packed P3 corresponding to the edit is removed fromH , obtaining a new instance
of CEMHMP. We also sometimes leverage the correctness of the previous reduction rules and
apply them to the resulting instances. This implies additional edits that can be assumed to be in
the solution without loss of generality.

Item (1). Suppose that (G,H ) is an instance of CEMHMP satisfying the condition of Item (1)
of Reduction Rule 7. First, we claim that vz1 and uz1 must be packed non-edges. Suppose for
contradiction that uz1 or vz1 is a packed edge. Since vz2 and uz2 are non-packed non-edges as
in the assumption, Reduction Rule 3 can be applied, a contradiction. Let F be the set of vertex
pairs edited by Item (1). Observe that F contains exactly one vertex pair of each of the packed P3s
incident with one of the vertices of {x ,y, z1, z2}. After applying the operations of Item (1) we get
an instance (G ′ = G�F ,H′). We claim that (G,H ) is a YES-instance if and only if (G ′,H′) is a
YES-instance.

First assume that (G ′,H′) has a solution S ′. Observe that {x ,y, z1, z2} is a cluster in G ′ and no
packed P3 is incident with any vertex of this cluster. Thus, S ′ ∩ F = ∅ and, moreover, S ′ ∪ F is a
solution to (G,H ).

Now assume that (G,H ) has a solution S . Then G�S is a cluster graph. We claim that z2 is
not incident with any other packed P3s except the one covering xy. Suppose that there is another
vertex z3 such that z3z2 is a packed edge. Then z3z1 is a non-packed non-edge since z1 is already
incident with two packed P3s. Then Reduction Rule 3 can be applied because z1 and z2 are together
in a proto-cluster, a contradiction. Thus z2 is not incident with any other packed P3s except the
one covering xy.
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Let S1 ⊆ S be the set of vertex pairs which are packed edges or packed non-edges in the subgraph
ofG induced by {u,v,x ,y, z1, z2}. We claim that Ŝ = (S \S1)∪F is also a solution to (G,H ). Since S
is a solution to (G,H ), S1 must contain exactly one vertex pair of each of the packed P3s incident
with one of the vertices of {x ,y, z1, z2}. Since F ∩ (S \ S1) = ∅, S1 ⊆ S and |F | = |S1 |, we get that
|Ŝ | = |S |. Since G�S is a cluster graph, the subgraph of G�S induced byV (G ) \ {x ,y, z1, z2} is also
a cluster graph G̃. x ,y, z1 are not incident with any other packed P3s except the ones covering
xy,yz1,xz1 since each of them is incident with two packed P3s inG. We have shown that z2 is not
incident with any other packed P3s except the one covering xy in the previous paragraph. Since
x ,y belong to two proto-clusters of size one and z1, z2 belong to a proto-cluster of size two, there
is no edge betweenV (G ) \ {u,v,x ,y, z1, z2} and {x ,y, z1, z2}. It follows that G�Ŝ is a cluster graph
consisting of two isolated parts, i.e., G̃ and the clique of size four formed by {x ,y, z1, z2}. It follows
that S \ S1 is a solution to (G ′,H′). As a result, Item (1) is safe.

Preparation for Items (2) to (5). For the proof of the correctness of Items (2)–(5), we claim that
vz1 and wz2 are packed non-edges. Suppose for contradiction that vz1 or wz2 is a packed edge.
Since z1, z2 are already incident with two packed P3s, vz2 andwz1 must be non-packed non-edges.
Then Reduction Rule 3 can be applied, a contradiction. Thus vz1 and wz2 are packed non-edges.
Also, we claim that vz2 and wz1 are non-packed non-edges since z1, z2 are both incident with two
packed P3s and there is no proto-cluster of size more than 2 by Corollary 2.

Item (2). For a contradiction, suppose that an instance (G,H ) of CEMHMP satisfying the con-
dition of Item (2) of Reduction Rule 7 has a solution S . Observe that vx is a non-packed non-edge
because x is in two packed P3s with other vertices. Thus, at least one packed edge ofvy,xy belongs
to S since otherwise {v,x ,y} would induce a P3 in G�S .

Suppose that xy ∈ S . Then yz2 cannot be removed by S and thus yz1 � S because otherwise
{y, z1, z2} would induce a P3 in G�S . Furthermore, vz1 � S , because otherwise {v, z1, z2} would
induce a P3 inG�S . Thus, vy ∈ S . Consider the instance resulting from making the edits xy an vy.
Then, the subgraph induced by {y, z1, z2} is a proto-cluster. Sinceuy is a non-packed non-edge and
uz1 is a packed edge, Reduction Rule 3 can be applied, which deletes uz1 and makes ux become a
non-packed edge. Now u and x form a proto-cluster of size two. Observe that now xz2 is a non-
packed non-edge. Thus again by Reduction Rule 3, uz2 is deleted and uw becomes a non-packed
edge. Then Reduction Rule 1 can be applied to the proto-cluster formed by u,w,x , a contradiction
to S being a solution.

Suppose thatvy ∈ S . After making this modification,yz1 becomes a non-packed edge, soyz2 � S
since otherwise Reduction Rule 1 can be applied. If xz2 ∈ S , then xz1 ∈ S since otherwise {x , z1, z2}
would induce a P3. After making these two modifications, uz1 and ux become non-packed edges.
Sinceuy is a non-packed non-edge, Reduction Rule 1 can be applied to the proto-cluster formed by
u,x ,y, z1, z2. Thus xz2 � S . It follows that xy ∈ S because yz2 � S as argued above. After making
this modification, by Reduction Rule 3, uz1 is deleted and ux becomes a non-packed edge. Now
u,x form a proto-cluster of size two. Again by Reduction Rule 3, uz2 is deleted and uw becomes a
non-packed edge. Then Reduction Rule 1 can be applied to the proto-cluster formed by u,w,x , a
contradiction.

As a result, (G,H ) is a NO-instance and Item (2) is safe.

Item (3). Given an instance (G,H ) of CEMHMP satisfying the condition of Item (3) of Reduction
Rule 7, let F be the set of vertex pairs edited by Item (3). Observe that F contains exactly one vertex
pair of each of the packed P3s incident with one of the vertices of {u,x ,y, z1, z2}. After applying the
operations of Item (3) we get an instance (G ′ = G�F ,H′). We claim that (G,H ) is a YES-instance
if and only if (G ′,H′) is a YES-instance.
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First assume that (G ′,H′) has a solution S ′. Observe that y is not in a packed P3 inH′ and thus
{v,y} forms a cluster inG ′�S ′. Similarly, w is not adjacent to any vertex of u,x , z1, z2. Thus S ′ ∪ F
is a solution to (G,H ).

Now assume that (G,H ) has a solution S . We claim that F ⊆ S . Suppose for contradiction that
xz1 � S . Then there are two cases: (1) ux ∈ S and (2) uz1 ∈ S .

Case (1): If ux ∈ S , then uz1 becomes a non-packed edge and xz1 becomes a non-packed non-
edge. It follows that uz2 � S and xz2 ∈ S since otherwise Reduction Rule 1 can be applied. Since
wz1 is a non-packed non-edge, wz2 � S . Thus uw ∈ S . We now distinguish whether xy is an edge
or a non-edge. If xy is a non-edge, then yz2 is an edge. Thus, yz2 becomes a non-packed edge after
xz2 is deleted. Sinceuy is a non-packed non-edge, Reduction Rule 1 can be applied, a contradiction.
Otherwise, if xy is an edge, then yz2 is a non-edge. Then y and x form a cluster of size two. Recall
thatvz1 is a packed non-edge. Thus,yz1 is a packed edge anduy is a non-packed non-edge, meaning
that Reduction Rule 3 can be applied and yz1 ∈ S . Thus vy becomes a non-packed edge. Since vx
is a non-packed non-edge, Reduction Rule 1 can be applied, a contradiction.

Case (2): If uz1 ∈ S , then uz2 ∈ S since otherwise Reduction Rule 1 can be applied. Thus ux and
uw become non-packed edges after uz1 and uz2 are deleted. Since xw is a non-packed non-edge,
Reduction Rule 1 can be applied, a contradiction.

Since both cases lead to a contradiction it follows that xz1 ∈ S . Thus, xz2,uz2 � S . Thus uw ∈ S
since otherwise Reduction Rule 1 can be applied.

It remains to show that all edges between y and {x , z1, z2} are in S . Nowu,x , z1, z2 belong to one
proto-cluster. Then by Reduction Rule 3, indeed yz1 ∈ S . Thus u,x , z1, z2 are in one proto-cluster
and y is in a different proto-cluster. Since uy is a non-packed non-edge, if xy is an edge, xy ∈ S
since otherwise Reduction Rule 1 can be applied. Then by Reduction Rule 3, yz1 ∈ S . Similarly, if
yz2 is an edge, yz2 ∈ S since otherwise Reduction Rule 1 can be applied. Then by Reduction Rule 3,
yz1 ∈ S . As a result, F ⊆ S .

We claim that Ŝ = S \ F is a solution to (G ′,H′). Since u,x ,y, z1, z2 are already incident with
two packed P3s, {u,x ,y, z1, z2} are isolated from V (G ) \ {u,v,w,x ,y, z1, z2} in G. It follows that
in G�S , v,y belong to a clique of size two, u,x , z1, z2 belong to a clique of size four and V (G ) \
{u,v,x ,y, z1, z2} induces a cluster graph such that there are no edges between {u,v,x ,y, z1, z2} and
V (G ) \ {u,v,x ,y, z1, z2}. Thus G ′�Ŝ is a cluster graph and |Ŝ | = |H ′|. As a result, Item (3) is safe.

Item (4). Note that Item (4) is symmetric to Item (3). To be more precise, we can relabel the
vertices in the subgraph of Item (4) as follows: we exchange the labeling of z1 and z2, exchange the
labeling of u and y, and exchange the labeling of w and v . Then we get a subgraph satisfying the
condition of Item (3). Thus, the safeness of Item (4) follows from the safeness of Item (3).

Item (5). Let (G,H ) be an instance of CEMHMP satisfying the condition of Item (5) of Reduction
Rule 7. Since xz1,xz2 are packed edges, there are two packed edges between y and {x , z1, z2}; let
the set of the two packed edges beWy . Also, there are two packed edges between u and {x , z1, z2};
let the set of the two packed edges be Wu . After applying the operations of Item (5) we get an
instance (G ′,H′). We claim that (G,H ) is a YES-instance if and only if (G ′,H′) is a YES-instance.

For soundness, suppose that (G ′,H′) has a solution S ′. ThusG ′�S ′ is a cluster graph. There are
nine possible cases for which vertex pairs in the two P3s are contained in S ′. However, only the
following five cases are valid as in the other cases it is easy to see that S ′ is not a cluster editing
set:

(1) {ab, cw } ⊆ S ′. SinceG ′�S ′ is a cluster graph, the subgraph ofG ′�S ′ induced byV (G ) \ {b, c}
is also a cluster graph. Let S = (S ′ \ {ab, cw }) ∪Wy ∪ ({ux ,uz1,uz2} \Wu ) ∪ {uw }. Note that, by
construction of G ′, there are no edges or packed non-edges from a,b, c to other vertices except to
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v,w . In particular, this means that {v,a} is a cluster inG ′�S ′. ThusG�S is also a cluster graph and
|S | = |H |. Thus (G,H ) is a YES-instance.

(2) {va,bc} ⊆ S ′. We can show that (G,H ) has a solution in a similar way to that of Case (1).
(3) {vb,bc} ⊆ S ′. Since vertices a,b and c are not adjacent to any vertex ofV (G ′)\{a,b, c,v,w } in

G ′, {v,a,b} induces a triangle which is a connected component and {c,w } induces a clique of size
two which is also a connected component in G ′�S ′. Let S = (S ′ \ {vb,bc}) ∪Wu ∪ ({yx ,yz1,yz2} \
Wy ) ∪ {vy}. It follows that G�S is a cluster graph and |S | = |H |. Thus (G,H ) is a YES-instance.

(4) {ab,bw } ⊆ S ′. We can show that (G,H ) has a solution in a similar way to that of Case (3).
(5) {ab,bc} ⊆ S ′. Since G ′�S ′ is a cluster graph, the subgraph of G ′�S ′ induced by V (G ) \ {b, c}

is also a cluster graph. Let S = (S ′ \ {ab,bc}) ∪ {yx ,yz1,uz1,uz2}. Note that, by construction of G ′,
there are neither edges nor packed non-edges from a,b, c to other vertices except tov,w . It follows
that {v,a} and {c,w } are two clusters in G ′�S ′. Thus G�S is also a cluster graph and |S | = |H |.
Thus (G,H ) is a YES-instance.

For completeness, suppose that (G,H ) has a solution S . We can check that there are only three
possible cases ((1) vy ∈ S , uw � S ; (2) uw ∈ S , vy � S (3) vy � S , uw � S). Readers can easily check
that the the other case in which vy ∈ S , uw ∈ S is invalid as there is no such cluster editing set S .

(1) F1 = Wu ∪ ({yx ,yz1,yz2} \Wy ) ∪ {vy} ⊆ S . Since vertices u,x ,y, z1, z2 are not adjacent to
any vertex of V (G ) \ {u,v,w,x ,y, z1, z2} in G, {x ,y, z1, z2} induces a clique of size four which is a
connected component and {u,w } induces a clique of size two which is also a connected component
in G�S . Let S ′ = S \ F1 ∪ {va,bc}. It follows that G ′�S ′ is a cluster graph and |S ′ | = |H ′|. Thus
(G ′,H′) is a YES-instance.

(2) F2 = Wy ∪ ({ux ,uz1,uz2} \Wu ) ∪ {uw } ⊆ S . Since vertices u,x ,y, z1, z2 are not adjacent to
any vertex of V (G ) \ {u,v,w,x ,y, z1, z2} in G, {u,x , z1, z2} induces a clique of size four which is a
connected component and {v,y} induces a clique of size two which is also a connected component
in G�S . Let S ′ = S \ F2 ∪ {ab, cw }. It follows that G ′�S ′ is a cluster graph and |S ′ | = |H ′|. Thus
(G ′,H′) is a YES-instance.

(3) F3 = Wu ∪Wy ⊆ S . Since vertices u,x ,y, z1, z2 are not adjacent to any vertex of V (G ) \
{u,v,w,x ,y, z1, z2} in G, {x , z1, z2}, {v,y} and {u,w } are three clusters in G�S . Let S ′ = (S \ F3) ∪
{ab,bc}. It follows that G ′�S ′ is a cluster graph and |S ′ | = |H ′|. Thus (G ′,H′) is a YES-instance.

As a result, Item (5) is safe. This completes the proof for the lemma. �

After applying Reduction Rule 7, Reduction Rule 4 can be applied to remove the isolated cliques.

Lemma 22. After applying Reduction Rules 1 to 7 exhaustively, let (G,H ) be an instance of

CEMHMP which has a solution S . Then there is no clique of size at least 4 in G�S .

Proof. By Lemma 15, 17 and 19, there is no clique of size at least 5 in G�S . Suppose for con-
tradiction that A is a clique of size 4 in G�S . Let V (A) = {x ,y, z1, z2}. Then by Lemma 20, three
vertices of V (A), say x ,y, z2 belong to one packed P3 in G, and one vertex of x ,y, z2, say z2, forms
with z1 a proto-clusterC1 of size two inG. Meanwhile, x and y form a proto-clusterC2 of size one
and a proto-clusterC3 of size one in G respectively. Moreover, there are two vertices u and v such
that x ,u, z1 belong to a packed P3 inG, y,v, z1 belong to another packed P3 inG, and u andv form
a proto-cluster C4 of size one and C5 of size one in G respectively. There are five cases:

(1) uz2 and vz2 are non-packed non-edges. Then Item (1) of Reduction Rule 7 can be applied.
(2) uz2 is a packed edge and vz2 is a non-packed non-edge. Then one of Items (2)–(5) can be

applied.
(3) uz2 is a packed non-edge and vz2 is a non-packed non-edge. By Item (5) of Lemma 20, u,v, z2

cannot belong to one packed P3. Thus there is another vertex w such that u,w, z2 belong to a
packed P3 and uz2 is a packed non-edge. Thus wz2 is a packed edge. Since z1 is in a proto-cluster
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of size one and z1 is already incident with two packed P3s, wz1 must be a non-packed non-edge.
Since z1, z2 belong to one proto-cluster, Reduction Rule 3 can be applied.

(4)vz2 is a packed edge and uz2 is a non-packed non-edge. Then one of Items (6)–(9) of Rule 7 can
be applied.

(5) vz2 is a packed non-edge and uz2 is a non-packed non-edge. By Item (5) of Lemma 20, u,v, z2

cannot belong to one packed P3. Thus there is another vertex w ′ such that v,w ′, z2 belong to a
packed P3 and vz2 is a packed non-edge. Thus w ′z2 is a packed edge. Since z1 is in a proto-cluster
of size one and z1 is already incident with two packed P3s, w ′z1 must be a non-packed non-edge.
Since z1, z2 belong to one proto-cluster, reduction Rule 3 can be applied.

It follows that there is no clique of size 4 in G�S . This completes the proof for the lemma. �

5.1.5 Reduction to 2-SAT. First, we introduce a new problem called Cluster Deletion above
modification-disjoint P3 packing. The formal definition is as follows:

Cluster Deletion above modification-disjoint P3 packing (CDaMP)

Input: A graph G = (V ,E), a modification-disjoint packing H of induced P3s of G, and a
nonnegative integer �.

Question: Is there a cluster deletion set, i.e., a set of edges S ⊆ E such that G ′ = (V ,E \ S ) is a
disjoint union of cliques, with |S | − |H | ≤ �?

Note that in the definition of CDaMP, the P3s ofH are still modification-disjoint although the
solution to the problem contains only edge deletions. Since in this paper we only need to consider
the special case of CDaMP where � = 0, we use the tuple (G,H ) to represent an instance of
CDaMP in which � = 0.

Lemma 23. Given an instance (G,H ) of CEMHMP, after applying Reduction Rules 1 to 7 exhaus-

tively, we get an instance (G ′,H′) of CEMHMP. Then (G,H ) is a YES-instance of CEMHMP if and

only if (G ′,H′) is a YES-instance of CDaMP.

Proof. Soundness. Assume that (G ′,H′) is a YES-instance of CDaMP and S ′ is a cluster deletion
set of size |H ′|. Obviously S ′ is also a cluster editing set of G ′. Thus (G ′,H′) is a YES-instance of
CEMHMP. It follows that (G,H ) is a YES-instance of CEMHMP.

Completeness. Assume that (G,H ) is a YES-instance of CEMHMP. Then (G ′,H′) is a YES-
instance of CEMHMP and let S ′ be its solution. By Lemma 22, there is no clique of size at least four
inG ′�S ′. By Observation 2, every non-edge of S ′ is a packed non-edge. Let uw ∈ S ′ be a non-edge
of G ′ which is covered by a P3 uvw of H′. Then in G ′�S ′, {u,v,w } induces a triangle which is a
connected component. It follows that S ′ \ {uw } ∪ {uv} is also a solution to (G ′,H′). Let S1 ⊆ S ′ be
the set of non-edges of S ′. Then there is a set S2 of packed edges of G ′ such that (S ′ \ S1) ∪ S2 is a
cluster deletion set forG ′ of size |H ′|. Thus (G ′,H′) is a YES-instance of CDaMP. This completes
the proof for the lemma. �

Given an instance (G,H ) of CEMHMP, after applying Reduction Rules 1 to 7 exhaustively, we
get an instance (G ′,H′) of CDaMP. Let Ec ⊆ E (G ′) be the set of edges covered by some P3 of
H′ and let λ = 2|H ′|. We fix an arbitrary ordering of the edges of Ec and label these edges by
e0, e1, . . . , eλ−1 according to this ordering. We construct an instance of 2-SAT with λ variables
x0,x1, . . . ,xλ−1 as follows. First, initialize the 2-SAT formula Φ = true. For each induced P3 xyz ∈
H ′, let ei = xy, ej = yz and update Φ ← Φ ∧ (xi ∨ x j ) ∧ (¬xi ∨ ¬x j ). For each induced P3 uvw in
G ′ such that uv and vw belong to two distinct P3s of H′, respectively, let uv = ep and vw = eq

and update Φ← Φ ∧ (xp ∨ xq ). This completes the construction of the 2-SAT instance.
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We now show that formula Φ and (G,H ) are equivalent instances.

Lemma 24. Given an instance (G,H ) of CEMHMP, after applying Reduction Rules 1–7 exhaus-

tively, we get an instance (G ′,H′) of CDaMP. We construct a 2-SAT formula Φ as described above.

Then (G,H ) is a YES-instance if and only if Φ is satisfiable.

Proof. Completeness. Assume that (G,H ) is a YES-instance. By Lemma 23, (G ′,H′) is a YES-
instance of CDaMP and let S ′ be a cluster deletion set for G ′ of size |H ′|. Let α be an assignment
to Φ such that α (xi ) = true if and only if ei ∈ S ′ for i = 0, . . . , λ − 1. We claim that α is a satisfying
assignment to Φ. Since |S ′ | = |H ′| and the P3s ofH′ are modification-disjoint, S ′ contains exactly
one edge of every packed P3 of H′. It follows that for every P3 xyz ∈ H ′ (xy = ei ,yz = ej ), the
two clauses (xi ∨ x j ) and (¬xi ∨ ¬x j ) are satisfied. Since S ′ is a solution to (G ′,H′), there is no
induced P3 in G ′�S ′. Thus for every induced P3 uvw in G ′ such that uv and vw belong to two
distinct packed P3s (uv = ep ,vw = eq ) respectively, at least one edge of {uv,vw } belongs to S ′ and
the clause (xp ∨ xq ) is satisfied. As a result, α is a satisfying assignment to Φ.

Soundness. Assume that Φ is satisfiable and let α be a satisfying assignment to Φ. Let S ′ = {ei |
α (xi ) = true}. We will show that S ′ is a cluster deletion set for G ′ of size |H ′|. First we claim that
for every induced P3 xyz ∈ H ′, exactly one edge of xy and yz belongs to S ′. Assume that ei = xy
and ej = yz for some i, j ∈ {0, . . . , λ − 1}. Since (xi ∨ x j ) and (¬xi ∨ ¬x j ) are two clauses of Φ and
α is a satisfying assignment to Φ, either xi = false,x j = true or xi = true,x j = false holds. Thus
the claim is true and |S ′ | = |H ′|.

It remains to show that S ′ is indeed a cluster deletion set, that is, there is no induced P3 inG ′�S ′.
We show this by going over the possibilities of such an induced P3 for whether its edges are packed
or not. Before that, for every induced P3 uvw inG ′ such that uv and vw belong to two distinct P3s
of H′, let uv = ep and vw = eq for some p,q ∈ {0, . . . , λ − 1}. By the construction, (xp ∨ xq ) is a
clause of Φ so it is satisfied by α . Thus at least one edge of uvw belongs to S ′.

First, by Corollary 2, there is no proto-cluster of size at least three inG ′. Thus there is no induced
P3 abc in G ′�S ′ such that ab and bc are non-packed edges in G ′.

Second, we claim that there is no induced P3 xyz in G ′�S ′ such that both xy and yz are packed
edges inG ′. Suppose for a contradiction that there is an induced P3 xyz inG ′�S ′ such that both xy
and yz are packed edges in G ′. Then xy and yz must be covered by two distinct packed P3s, since
otherwise xy or yz belongs to S ′ by the definition of S ′. We contend that xz must be a packed edge
covered by another packed P3 in G ′, i.e., xy,yz and xz are covered by three distinct packed P3s in
G ′. First of all, xz is an edge ofG ′, because otherwise xyz would be an induced P3 inG ′. Then xy or
yz would belong to S ′ by the definition of S ′, a contradiction. If xz is a non-packed edge inG ′, then
xz is an edge inG ′�S ′ since S ′ can only contain vertex pairs covered by packed P3s. However, this
contradicts the assumption that xyz is an induced P3 in G ′�S ′. Therefore, xz is indeed a packed
edge in G ′.

By the construction of S ′, no two of xy,yz, and xz are covered by the same packed P3 as oth-
erwise one of the three edges belongs to S ′. Thus xy,yz and xz are covered by three distinct
packed P3s in G ′. Suppose that without loss of generality, xz is covered by uxz ∈ H ′. Note that
ux ,xy,yz � S ′ as by our assumption, xyz is an induced P3 in G ′�S ′. Since y is already incident
with two packed P3s, uy is either a non-packed non-edge in G ′ or a non-packed edge in G ′. If uy
is a non-packed non-edge inG ′, then uxy is an induced P3 inG ′. Let ux = ei and xy = ej , then the
clause (xi ∨ x j ) of Φ is not satisfied, a contradiction. Thus uy is a non-packed edge.

By the analysis above, there is a vertex w such that x ,y,w belong to a packed P3 and there is a
vertexw ′ such thaty, z,w ′ belong to a packed P3. We have the following subcases: (1) the subgraph
induced by {x ,y, z,u,w,w ′} is isolated from G ′ \ {x ,y, z,u,w,w ′}. Then Reduction Rule 5 can be
applied; (2) Either wy is a non-packed non-edge and wu is a packed edge, or w ′y is a non-packed
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non-edge and w ′u is a packed edge in G ′. Then Reduction Rule 3 can be applied as uy is a proto-
cluster of size 2 in G ′ by our analysis above; (3) the subcases (1) and (2) do not hold. Then we
can check that one of the items of Reduction Rule 7 can be applied (note that which item can be
applied depends on the structure of the subgraph we are considering): There could be another
vertex a such that a,w,u belong to one packed P3 or another vertex a′ such that a′,w ′,u belong
to one packed P3. If no such vertices a and a′ exist, then Item (1) of Reduction Rule 7 applies.
Otherwise, one of the other items applies. To see this more clearly, we relabel the vertices as
follows: y ← z1,u ← z2,w ← u, z ← y,x ← x ,w ′ ← v,a ← w,a′ ← w ′. Thus, all three subcases
above contradict the assumption that no reduction rules can be applied inG ′. Therefore, the claim
holds, that is, there is no induced P3 xyz inG ′�S ′ such that both xy and yz are packed edges inG ′.

Third and finally, we claim that there is no induced P3 in G ′�S ′ such that one edge of this P3 is
a non-packed edge in G ′ and the other edge is a packed edge in G ′. Suppose for a contradiction
that there is such a P3 uvw inG ′�S ′ such that uv is a non-packed edge and vw is a packed edge in
G ′. Then there is another vertex x such that v,w,x belong to a packed P3 in G ′. Since Reduction
Rule 3 cannot be applied to (G ′,H′), uw must be covered by a packed P3 in G ′, i.e., there is a
vertexy such thatu,w,y belong to a packed P3 inG ′. We contend that at least one ofvy andux are
covered by a packed P3. Suppose for contradiction that both vy and ux are non-packed non-edges.
Then, if uy is a packed edge, Reduction Rule 3 could be applied. Thus we can assume that uy is a
packed non-edge. Since uvw is an induced P3 in G ′�S ′, uw,wx ∈ S . Then vwy is an induced P3 in
G ′. Assume that vw = ep and wy = eq . Then the assignment α cannot satisfy (xp ∨ xq ), which is
a clause of Φ, contradicting that α is a satisfying assignment to Φ. Thus we can assume that there
is a vertex z such that v,y, z belong to a packed P3 in G ′ (the analysis for the case that there is a
vertex z ′ such that u,x , z ′ belong to a packed P3 in G ′ is similar).

We have the following subcases: (1) the subgraph induced by {x ,y, z,u,v,w } is isolated from
G ′ \ {x ,y, z,u,v,w }. Then Reduction Rule 5 can be applied; (2) vz is a non-packed non-edge and
uz is a packed edge. Then Reduction Rule 3 can be applied as uv is a proto-cluster of size 2 in G ′;
(3) the subcase (1) and (2) do not hold. Then we can check that one of the items of Reduction Rule 7
can be applied (note that which item can be applied depends on the structure of the subgraph we
are considering). There could be another vertex a such that a,x ,u belong to one packed P3 or
another vertex a′ such that a′, z,u belong to one packed P3. If no such vertices a and a′ exist, then
Item (1) of Reduction Rule 7 can be applied. Otherwise, one of the other items applies. To see more
clearly that Reduction Rule 7 applies, we relabel the vertices as follows: v ← z1,u ← z2, z ←
v,w ← x ,x ← u,y ← y,a ← w,a′ ← w ′. All three subcases above contradict the assumption that
no reduction rules can be applied in G ′. It follows that there is no induced P3 in G ′�S ′ such that
one edge of this P3 is a non-packed edge inG ′ and the other edge of this P3 is a packed edge inG ′.

As a result, S ′ is a solution to the instance (G ′,H′) of CDaMP. By Lemma 23, (G,H ) is a YES-
instance. This concludes the proof for the lemma. �

The above lemma shows that there is a polynomial-time algorithm for the special instances of
CDaMP with � = 0 that our reduction rules produces.

We can now prove that, without excess edits, CEMHMP can be solved in polynomial time.

Theorem 3 (Restated). Cluster Editing above Half-Integral Modification-Disjoint P3

Packing can be solved in polynomial time when � = 0, that is, when no excess edits are allowed.

Proof. By Lemma 24, given an instance (G,H ) of CEMHMP, after applying Reduction Rules 1
to 7 exhaustively, we reduce it to an equivalent instance of 2-SAT in polynomial time. Then we
can decide the 2-SAT instance by invoking the algorithm for 2-SAT. It is well-known that 2-SAT
can be solved in polynomial time. This completes the proof for the theorem. �
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6 CONCLUSIONS

Unfortunately, the lower bound that we have obtained is a major roadblock in designing fixed-
parameter algorithms for Cluster Editing parameterized above modification-disjoint P3s. On
the positive side, Cluster Editing above Half-Integral Modification-Disjoint P3 Packing
(CEaHMP) admits an XP-algorithm with respect to the number of excess edits. We have left open
whether CEaHMP is fixed-parameter tractable. Towards this, on the one hand the half-integral P3

packings provide quite strong structure that can be exploited to design several branching rules.
On the other hand, when attacking this question from several angles we discovered large grid-
like structures that seemed difficult to overcome in fixed-parameter time, and a corresponding
W[1]-hardness result would also not be surprising.

A different future research direction is to deconstruct our hardness reduction by examining
which substructures it contains that are seldom in practical data. Forbidding such substructures
may destroy the already somewhat fragile hardness construction, perhaps paving the way for
fixed-parameter algorithms.

Finally, it would be interesting to see how modification-disjoint P3 packings look in practice. If
it is true that only few vertices are in a large number of packed P3s and most of them are in a small
constant number, then a strategy that combines settling the clustering around the vertices with
large number of P3s and applying reduction rules from Section 5 could be efficient.
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