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Abstract

For many use-cases, it is often important to explain the pre-
diction of a black-box model by identifying the most influ-
ential training data samples. Existing approaches lack cus-
tomization for user intent and often provide a homogeneous
set of explanation samples, failing to reveal the model’s rea-
soning from different angles.
In this paper, we propose AIDE, an approach for providing
antithetical (i.e., contrastive), intent-based, diverse explana-
tions for opaque and complex models. AIDE distinguishes
three types of explainability intents: interpreting a correct, in-
vestigating a wrong, and clarifying an ambiguous prediction.
For each intent, AIDE selects an appropriate set of influential
training samples that support or oppose the prediction either
directly or by contrast. To provide a succinct summary, AIDE
uses diversity-aware sampling to avoid redundancy and in-
crease coverage of the training data.
We demonstrate the effectiveness of AIDE on image and
text classification tasks, in three ways: quantitatively, as-
sessing correctness and continuity; qualitatively, comparing
anecdotal evidence from AIDE and other example-based ap-
proaches; and via a user study, evaluating multiple aspects
of AIDE. The results show that AIDE addresses the limita-
tions of existing methods and exhibits desirable traits for an
explainability method.

Introduction
Failure of ML-based systems in numerous cases, e.g., due
to data errors, biases, misalignment (Osoba and Welser IV
2017; Tashea 2017; Seymour et al. 2023; Burema et al.
2023), has prompted researchers to work on explainability
techniques. Different taxonomies for such methods exist,
e.g., (Guidotti et al. 2018), but one common classification is
on the type of explanation generated (Molnar 2022). Model-
based methods involve creating interpretable surrogate mod-
els, such as decision trees or linear models, which approxi-
mate the complex black box ML model (Ribeiro, Singh, and
Guestrin 2018; Silva et al. 2020). Feature-based methods fo-
cus on pinpointing important features of the input, such as
words in text or parts in an image, which contribute the most
to the prediction (Ribeiro, Singh, and Guestrin 2016; Fong,
Patrick, and Vedaldi 2019; Ancona 2017). Example-based
methods provide explanations for a specific target outcome

A short version of this paper appears in AIES ’24.

by deriving the importance of training samples (Ilyas et al.
2022; Garima et al. 2020; Koh and Liang 2017; Kwon and
Zou 2022; Ghorbani and Zou 2019; Park et al. 2023), or
provide a global overview of the model identifying repre-
sentative examples (Yeh et al. 2018; Pruthi et al. 2020; Kim,
Khanna, and Koyejo 2016; Gurumoorthy et al. 2019).

Example-based explainability offers several advantages.
They are typically model-agnostic, and offer easy to under-
stand explanations. More importantly, as they seek to dis-
cover a causal relationship between training examples and
model behavior, they can assist in model debugging and data
cleansing (Hara, Nitanda, and Maehara 2019), and be flexi-
ble for practitioners with different access (Richardson et al.
2023). However, they have two key limitations.

First, they don’t offer contrastivity (Nauta et al. 2023),
which is key aspect in how humans understand decisions
(Lipton 1990). While most methods can distinguish between
supporters (aka proponents, helpful or excitatory examples),
and opposers (aka opponents, harmful or inhibitory exam-
ples), they do not relate this information to ground truth la-
bels (examples of class same as or different than predicted)
or to the explanation intent (is the prediction correct/wrong,
hard to tell). Contrastivity is the hallmark feature of coun-
terfactual explanations (Wachter, Mittelstadt, and Russell
2017) and a major part of their appeal. Counterfactual ex-
planations help users understand where the model’s deci-
sion boundary lies (Wachter, Mittelstadt, and Russell 2017),
can offer algorithmic recourse (Karimi et al. 2022), and can
audit a model for unfairness (Kavouras et al. 2023). How-
ever, by design, counterfactuals are imaginary instances, not
necessarily plausible (Pawelczyk, Broelemann, and Kasneci
2020) or robust (Slack et al. 2021), and essentially offer
feature-based explainability, revealing the important feature
values contributing to the outcome.

More importantly, existing example-based methods are
highly susceptible to class outliers. An outlier is a training
instance that is mislabeled, or an instance (training or target)
that is ambiguous and does not clearly belong to a class.
Mislabeled or ambiguous training instances tend to be ex-
planations for any target instance, as they play a significant
role in forming the decision boundary. Ambiguous target in-
stances confuse the classifier (low confidence) and make it
hard to pick good explanations.

We propose a novel Antithetical, Intent-based, and Di-
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Prediction

IF

Explanation = Top K influential training samples

’U 447801259231 have a secret admirer who 

is looking 2 make contact with U-find out 

who they R*reveal who thinks UR so special-

call on 09058094597’  = SPAM

’U have a secret admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special call on 09058094599’= SPAM

'U have a secret admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special-call on 09058094594'= SPAM

’U have a Secret Admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special-call on 09065171142 stopsms-08718727870150ppm’ = SPAM

’U have a secret admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special call on 09058094565’ = SPAM

'u have a secret admirer who is looking 2 make contact with u find out who 

they r reveal who thinks ur so special call on 09058094565'= SPAM

'our dating service has been asked 2 contact u by someone shy  call 

09058091870 now all will be revealed  pobox84  m26 3uz 150p'= SPAM

'i have a date on sunday with will  ‘= HAM

'text her  if she doesnt reply let me know so i can have her log in' = HAM

Positive Influence

Negative Influence
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(S)

“why it’s 

SPAM”

Support by 

Contrast 

(SC)

“why it’s not 

HAM ”

Oppose by 

Contrast 

(OC)

“why it 

might not be 

SPAM”

Oppose (O)

“why it 

might be 

HAM”

AIDE

Explanation Intents: 

• Interpreting a correct

prediction => S, SC;

• Investigating a wrong

prediction => S, SC, O, OC;

• Clarifying an ambiguous

prediction => S, O 

S

SC

Figure 1: Explanations for a spam classification task, depicting a correctly classified spam message and its influence-based
explanations generated by IF and AIDE.

verse Example-based (AIDE) explainability method, that of-
fers contrastivity and is robust to outliers. At its core, AIDE
is based on the concept of influence functions (Hampel 1974;
Koh and Liang 2017). For a fixed target instance, the influ-
ence of a training sample is a score conveying its impact on
the classifier’s outcome. Ideally, the influence is the change
observed in the loss value for the target if the training sample
was excluded from the training data. While influence scores
can be estimated by methods, such as TraceIn (Garima et al.
2020) and Datamodels (Ilyas et al. 2022), we use the frame-
work of the influence function approach (Koh and Liang
2017), termed IF, to efficiently compute influence scores.

To better understand AIDE’s contribution, we first show-
case the issues that plague example-based explainability
methods, taking IF as the representative—extensive qualita-
tive and quantitative comparison with other methods is pre-
sented in the evaluation section. Consider a classifier that
predicts whether short text messages are spam. Figure 1
shows that for the depicted target message, the prediction is
spam. This is a correct prediction, and IF identifies the four
most influential training samples at the top of Figure 1. We
observe that explanations lack diversity, as they are highly
similar to each other. More importantly, however, they lack
contrastivity, as the user does not gain any insight about how
the model decides what is spam and what not; all the user
learns is that similar texts were labelled spam. The issue of
susceptibility to outliers does not manifest in this example,
mainly because the prediction is clearly correct. However, it
manifests when, for example, it is not clear what the correct
prediction should be, as in Figure 2.
Contribution. AIDE features contrastivity. Given a target
instance to be explained, AIDE computes the influence of
each training sample. But to present an explainability sum-
mary, AIDE distinguishes samples along two key explain-
ability dimensions. The first is the influence polarity: a sam-
ple with positive influence supports the prediction, while

Datamodels TraceIn

IF RelatIFTest Sample

Prediction : Dog
Ground Truth: Fish
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Figure 2: Explanations to clarify an ambiguous prediction.

one with negative influence opposes the decision. The sec-
ond dimension is the label of the training sample, which
is either the same or opposite as the target instance. These
two dimensions define the four AIDE quadrants, denoted as
support (S), support by contrast (SC), oppose (O), and op-
pose by contrast (OC). Assuming a binary classifier and that
the prediction is y ∈ {−1, 1}, intuitively, S explains “why
it’s y”, SC explains “why it’s not −y”, O explains “why it
might be −y”, and OC explains “why it might not be y”.
These quadrants offer contrastivity, providing to the user an-
swers to distinct counterfactual questions. Figure 1 depicts
the quadrants at the bottom left.

AIDE is intent-aware. A critical review (Keane et al.
2021) identifies misalignments between the design goals of
explainable AI (XAI) methods and the psychological and
cognitive aspects of explainability. A key limitation they
identify is that the majority of XAI methods neglect user
intent during design and evaluation. Although mostly refer-
ring to counterfactual explanations, the authors highlight the
importance of considering the user’s needs and goals while



generating explanations. Moreover, the authors identify an-
other common limitation in that explanations may not be
plausible, which they define as not being relevant to the
prediction being explained. AIDE explicitly addresses both
limitations by offering intent-aware and relevant example-
based explanations.

AIDE acknowledges that users might have different in-
tents. A user faced with a correct prediction, would more
likely need additional evidence that the model has learned
the correct patterns. A user recognizing a wrong prediction
would want to narrow down the sources of the problem.
A user looking at an ambiguous prediction, would want to
learn more about how the model handles such cases. AIDE
customizes its explanations by distinguishing three types of
intents a user might have: interpreting a correct, investigat-
ing a wrong, or clarifying an ambiguous prediction. For a
seemingly correct prediction, AIDE presents the most in-
fluential but diverse samples from the support and support
by contrast (S and SC) quadrants. The intuition is that the
user needs to better understand where the decision boundary
lies. For an ambiguous prediction, AIDE presents samples
from the support and oppose (S and O) quadrants. The in-
tuition here is to contrast between two possible predictions
and let the user decide which is better. For a wrong predic-
tion, AIDE presents samples from all quadrants to allow the
user to investigate evidence for all alternatives. An example
for interpreting a correct prediction is depicted at the bottom
right of Figure 1, where the examples help the user increase
their confidence that the model’s prediction is correct.

AIDE outperforms state-of-the-art example-based meth-
ods. We perform an extensive quantitative and qualitative
comparison against state-of-the-art methods for example-
based explainability. Shapley-based approaches (Ghorbani
and Zou 2019; Kwon and Zou 2022) were excluded as (a)
they primarily aim to capture the overall contribution of
training samples to the trained model (data valuation), and
not geared for local explanations, and (b) they can be im-
practical for local explainability due to their high compu-
tational cost. The main conclusions drawn are as follows.
Datamodels (Ilyas et al. 2022) approximate well the influ-
ence scores, but perform poorly for outlier targets. The prin-
cipal reason is that Datamodels explain a class of models,
and not a particular model. They thus fail to identify nu-
ances picked up by a single model; while an unambiguous
target will receive similar predictions by all models in the
class, models will greatly differ in their predictions for an
ambiguous target. TraceIn (Garima et al. 2020) is highly sus-
ceptible to outliers in the training data and performs poorly
in tests of correctness and truthfulness. The reason lies in
the way TraceIn estimates influence: it considers the dif-
ference in the total (training) loss when a training sample
is included or not during checkpoints; outliers have high
individual loss, contributing significantly to the total loss,
and are thus awarded high importance. Regular IF are simi-
larly affected by outliers in the training data. RelatIF (et al.
2020) seeks to address this problem, by penalizing samples
that have high loss. However, these high-loss samples can at
times be highly informative. For example, to explain a target
instance that is ambiguous, it is often insightful to present

those outlier training examples that are similar, so as to po-
tentially uncover interesting labeling rules or protocols. In
contrast, AIDE considers outliers as long as they are rele-
vant to the target instance.

Related Work
Example-based Explanations. The influence function is a
concept in robust statistics that measures the impact or in-
fluence of a single observation on an estimator or statis-
tical model (Hampel 1974). The intuition behind influence
functions (IF) in machine learning is to quantify the change
in a model’s prediction when a specific training sample is
removed. However, removing and retraining the model for
each training sample is inefficient. To overcome this prob-
lem, one of the foundational works on IF in ML explain-
ability (Koh and Liang 2017) used the first-order Taylor ap-
proximation to calculate the change in the loss function. The
authors have showcased the effectiveness of IF in identify-
ing influential training points, detecting bias, and identifying
mislabeled training samples. Some consequent works have
suggested that IF might be non-robust, or fragile for deep
networks. (Basu, Pope, and Feizi 2021) demonstrated that
this may be due to multiple factors such as non-convexity
of loss, approximation of hessian matrix, and weight decay.
However, a later study (Epifano et al. 2023) demonstrated
contrasting results and argues that IF does not appear to be
as fragile as thought to be. Assessing IF by looking at the
correlation of IF score to actual change in loss is not opti-
mal since actually removing and retraining the model con-
tains randomized non-linearity. Authors claim that factors
pointed out by (Basu, Pope, and Feizi 2021) do not make IF
severely fragile in deep models but occasionally lead to the
semantic dissimilarity, i.e., non-relevance, between influen-
tial instances and the sample being explained. In this work,
we explicitly address non-relevance by requiring explana-
tions to be proximal to the instance to be explained.

Beyond influence functions, Data Shapley (Ghorbani and
Zou 2019) is one of the prominent methods in this line,
which just like its feature-based version (Lundberg and Lee
2017) uses the game theory and revises the contribution of a
point in all possible subsets to uncover its marginal effect for
the models’ performance. Due to the computational exhaus-
tiveness of possible sets, even the approximation based on
sampling methods e.g. Monte Carlo (MC) or Truncated MC,
is still computationally expensive. A more robust version of
datashap, betashap proposed by (Kwon and Zou 2022) re-
duces noise in importance scores, however, still inherits the
high cost of computation. Both datashap and betashap com-
pute the contribution of a single point for the models predic-
tive performance overall, and using them for providing local
explanations per sample would make it completely imprac-
tical in terms of cost and thus are not chosen as baselines.

Another method similar in principle to IF is TraceIn
(Garima et al. 2020) that measures the influence of a training
sample X on a specific test sample X0 as the cumulative loss
change on X0 due to updates from mini-batches contain-
ing X . They practically approximate this with TraceInCP,
which considers checkpoints during training and sums the
dot product of gradients at X and X0 at each checkpoint.



Another unconventional work (Ilyas et al. 2022) fixes a test
point to explain and samples a large number of subsets from
the training set and trains models with each of these sub-
sets. It then trains a linear model where the input will be
1Si encoding of a subset and the output is the performance
of the model trained on this subset for the test sample of
interest. The weights of the linear model will represent the
importance score of a training sample in the same position.
To obtain a good result a huge number of intermediate mod-
els has to be trained on subsets, which is exhaustive, and
thus a faster version of datamodels was proposed by (Park
et al. 2023) and claimed to preserve almost the same accu-
racy. Since our focus is on the effectiveness of explanation
we still use the original datamodels as a baseline.
Evaluation of Explanations. While significant progress has
been in developing explainability methods, there is a lack of
standardized metrics for evaluating their effectiveness. The
authors of (Doshi-Velez and Kim 2017) distinguish three
types of evaluation strategies: application-grounded, human-
grounded, and functionality-grounded. A profound study of
functionality-grounded strategies by (Nauta et al. 2023), ad-
vocates twelve quantifiable properties that can be evalu-
ated to assess the quality of explanations. They categorize
the state-of-the-art metrics into twelve classes depending on
which property the metric focuses on and what type of expla-
nation is provided. The following properties are most rele-
vant for local, example-based explanations: (1) Consistency
and continuity both describe how deterministic the expla-
nation is concerning identical and similar samples, assum-
ing that these samples should have identical and similar ex-
planations. In many works, this aspect is also referred to as
the faithfulness (Jacovi and Goldberg 2020; Adebayo et al.
2018) of explanation and has gained popularity in the ex-
plainability domain. (2) Contrastivity is the ability of an ex-
planation to interpret classes different than the prediction
class. (3) Compactness is encoded in the size of an explana-
tion as well as calculating a redundancy in the explanation.
(4) Context describes how relevant the explanation is to the
user needs. (5) Controlled synthetic Data check—Controlled
Experiment: a synthetic dataset is developed with predeter-
mined reasoning, ensuring that the predictive model aligns
with this reasoning, as verified through metrics like accu-
racy. An assessment is done to check whether the explana-
tion provided by the model corresponds to the same reason-
ing embedded in the data generation process, (Adebayo et al.
2020; Chen et al. 2018). In another work (Mothilal, Sharma,
and Tan 2020), two general metrics for example-based ex-
plainability are proposed, diversity, and proximity.
User Study for Explainability. The field of user studies
for the evaluation of explainable AI is multifaceted, encom-
passing diverse methodologies, types of explanations, and
user groups. Previous research has delved into the impact
of explanation formats, the role of system transparency, and
the influence of individual differences on user understand-
ing and trust. In the study conducted by (Rong et al. 2023),
the investigation delves into the methodologies employed by
human-computer interaction and AI researchers when con-
ducting user studies in the realm of eXplainable AI (XAI)
applications. A comprehensive literature review serves as

the foundation for their exploration, wherein four prominent
evaluation dimensions for explainability are highlighted.

• The first dimension focuses on Trust, emphasizing the
importance of establishing trust by ensuring the valid-
ity and sensibility of the model’s reasoning (Paleja et al.
2021).

• Understanding, in the context of XAI, pertains to users’
comprehension of machine learning models. Objective
understanding involves quantifiable aspects of compre-
hension, with studies revealing that measurable compre-
hension is enhanced by saliency maps, counterfactual ex-
planations, and feature importance, albeit with disagree-
ments on the impact of white versus black-box models.
This understanding is influenced by factors such as data
modality, proxy task choice, and interactivity (Hase and
Bansal 2020). On the other hand, Subjective understand-
ing involves users’ personal perception and interpreta-
tion of the AI system, with a prevailing trend of uti-
lizing model explanations for improvement. Challenges
arise with the “illusion of explanatory depth” (IOED),
where users may exhibit overconfidence bias in their
understanding of complex systems, leading to disagree-
ments on the impact of explanations (Gentile, Donmez,
and Jamieson 2023).

• The concept of Usability in XAI refers to the effective-
ness and user-friendliness of AI systems. It encompasses
users’ perceptions of helpfulness, satisfaction, and other
dimensions crucial for a positive and effective user expe-
rience (Nourani et al. 2022).

• “Human-AI collaboration” denotes the interaction and
cooperation between human users and AI systems to
collectively enhance decision-making performance (Al-
ufaisan et al. 2021). This collaboration is facilitated
through users relying on explanations provided by AI
systems to improve their accuracy in decision-making
tasks.

The AIDE Framework
Preliminaries
In what follows, we assume a classification task where a
model fθ, described by parameters θ, maps an input x ∈
X to a predicted class fθ(x) ∈ Y . We use the notation
z = (x, y) to refer to a pair of input and its actual class.
Let S ⊆ X × Y denote a training set of size n = |S|.
Let ℓ(z,θ) be the loss function of the model for z, and let
L(S,θ) = 1

n

∑
z∈S ℓ(z,θ) denote the training objective,

i.e., the mean loss for set S.1 We denote as θ∗
0 the parame-

ters that minimize the objective: θ∗
0 = argminθ L(S,θ).

The goal is to explain the model’s prediction for a spe-
cific test instance zt = (xt, yt), in terms of the influence
each training example z ∈ S makes on the model’s predic-
tion fθ(xt), and specifically on its prediction loss ℓ(zt,θ∗

0).
Concretely, the influence of z ∈ S on zt is defined as the
change in the prediction loss after removing example z from
the training data (Koh and Liang 2017). The removal of a

1We assume regularization terms are folded in L.



training example changes the objective and thus leads to a
different model and parameters. Suppose that instead of re-
moving z we change the weight of its contribution (i.e., its
training loss) to the objective by some value ϵ. We can view
the parameters that minimize this altered objective as a func-
tion of ϵ, i.e., θ∗(ϵ) = argminθ{L(S,θ) + ϵℓ(x, y,θ)}.
Setting ϵ = 0, we retrieve the optimal parameters for the
original objective, i.e., θ∗(0) = θ∗

0 . Moreover, observe that
θ∗(− 1

n ) corresponds to the parameters that minimize the al-
tered objective after removing training example z. Based on
this observation, the exact influence of z on the prediction
for zt is defined as:

Iexact(z, zt) = ℓ(zt,θ
∗(−1/n))− ℓ(zt,θ

∗(0)). (1)

Computing the exact influence requires us to optimize the
loss after removing a training point z; repeating this for each
training point is prohibitively costly. Instead, we approxi-
mate the exact influence. Specifically, we view the loss func-
tion as a function of ϵ, and make a linear approximation of
the exact influence using the derivative of ℓ at point ϵ = 0:
Iexact(z, zt) ≈ − 1

n
dℓ(zt,θ

∗)
dϵ

∣∣∣
ϵ=0

Since the term 1
n is the

same for all z, zt pairs, we simply define (approximate) in-
fluence (Koh and Liang 2017) as:

I(z, zt) = − dℓ(zt,θ
∗)

dϵ

∣∣∣∣
ϵ=0

. (2)

When the influence of z on zt is positive, the loss tends to
decrease, and we say that training example x supports the
prediction for zt; otherwise, we say that the example op-
poses the prediction.

To compute the derivative of the loss, we use the chain
rule to decompose it into the derivative of loss with respect
to the parameters and the derivative of the parameters with
respect to ϵ. Concretely, we have:

I(z, zt) = − ∇⊺
θ∗ℓ(zt,θ

∗)|
θ∗=θ∗

0

dθ∗

dϵ

∣∣∣∣
ϵ=0

, (3)

which is the dot product of two row vectors, the loss gradi-
ent ∇θ∗ℓ at θ∗ = θ∗(0) and the derivative of the optimal
parameters for the altered objective dθ∗

dϵ at ϵ = 0.
It can be shown (Cook and Weisberg 1982) that under cer-

tain conditions (second order differentiability and convexity
of the loss function) the derivative of θ∗ can be expressed:

dθ∗

dϵ

∣∣∣∣
ϵ=0

= −H−1
θ∗ ∇θ∗ℓ(z,θ∗)|θ∗=θ∗

0
, (4)

where Hθ∗ is the Hessian matrix of the objective L(S,θ∗)
calculated at θ∗ = θ∗

0 .
Defining the vector function g(z) as the gradient of the

loss of the example z calculated at θ∗ = θ∗
0 , and substituting

it in Equations 3 and 4, we get:

I(z, zt) = g⊺(zt)H
−1
θ∗ g(z). (5)

To explain the prediction for zt, we use Equation 5 to
compute the influence of each training example z, which can
be done efficiently as suggested in (Koh and Liang 2017).
The IF explanation for the prediction for zt consists of the
top-k training examples with the highest influence.

AIDE Ingredients
Existing approaches for influence-based explainability (Koh
and Liang 2017; et al. 2020) compile an explanation as a set
of highly influential training examples. We claim that other
aspects, besides high influence, are also important. Specif-
ically, AIDE creates explanations that contain training ex-
amples with negative influence, considers their labels, their
proximity to the test instance, and their diversity.
Negative Influence. Recall that negative influence means
that removing the training example decreases the loss, thus
opposing the prediction. Let us investigate closely when an
example can have high-magnitude negative influence.

For the following discussion, assume a binary classifica-
tion task, i.e., Y = {0, 1}, where the model predicts the
probability p∗θ(x) of an input z = (x, y) belonging to the
positive class. Further assume that the loss function is the
logistic loss (binary cross entropy):

ℓ(z,θ∗) = − (y log(p∗θ(x)) + (1− y) log(1− p∗θ(x)))

Consider a test instance zt = (xt, yt) and let z′
t =

(xt, 1 − yt) be a counterfactual instance with the opposite
label. Then, for some training point z the following lemma
associates its influence for the predictions for zt and z′

t.
Lemma 1. In binary classification with logistic loss, the
influence of a training point z to the predictions of zt =
(xt, yt) and z′

t = (xt, 1− yt) is related as follows:

I(z, zt) = −
(
1− p∗θ(xt)

p∗θ(xt)

)2yt−1

I(z, z′
t)

Proof. Note that the model assigns the same probability,
p = p∗θ(xt), to zt and z′

t belonging in the positive class.

Let h(zt) =
dℓ(zt,θ

∗)
dp∗

θ(xt)

∣∣∣
p∗
θ(xt)=p

be the derivative of the loss

function with respect to the probability of zt being positive.
Then using the chain rule we can rewrite the gradient of the
loss of xt as:

g(zt) = ∇θ∗ℓ(zt,θ
∗)|θ∗=θ∗

0
= h(zt) ∇θ∗p∗θ(xt)|θ∗=θ∗

0
.

Substituting g(zt) into the influence of any example z, we
get:

I(z, zt) = h(zt) ∇⊺
θ∗p

∗
θ(xt)|θ∗=θ∗

0
H−1

θ∗ g(z) = h(zt)Î(z),

where we have named Î(z) the part of influence that does
not depend on zt. So we get:

I(z, zt) =
h(zt)

h(z′
t)
I(z, z′

t).

The derivative of the logistic loss for zt w.r.t. the pre-
diction probability is h(zt) = p−yt

p(1−p) . Similarly, for z′
t =

(xt, 1 − yt) we get h(z′
t) = p−1+yt

p(1−p) . Thus, the ratio

h(zt)/h(z
′
t) becomes − 1−p

p when yt = 1, and takes the
inverse value when yt = 0.

Suppose that z is a strong opposer to the prediction
for zt, i.e., I(z, zt) < 0 with high magnitude. Lemma 1
explains how this may occur. This can happen if z is a



strong supporter for the prediction of the opposite label, i.e.,
I(z, z′

t) > 0 with high magnitude.

Another way is when
(

1−p∗
θ(xt)

p∗
θ(xt)

)2yt−1

is high. Let us ex-
amine what this term means. Suppose that the true class is
the positive, i.e., yt = 1. Then, the term equals the predicted
odds of the model for the negative class. Conversely, when
yt = 0, the term equals the predicted odds for the positive
class. That is, the term equals the predicted odds for the op-
posite class. So, the term is high when the model is confident
about the wrong prediction for zt.

Therefore, if a training example z is a strong opposer (i.e.,
has a high-magnitude negative influence), then it would be
a strong supporter if the opposite class was true (supporting
the counterfactual z′

t), or the model is confident about the
wrong prediction, or some combination of both. Such exam-
ples are important to understand the model’s decision for zt,
particularly when the true class is not apparent.
Label. The influence of a training example does not carry
any information about the class of the training example. It
is thus possible that a positive and a negative example have
both high influence for the test instance. While both may
support (in case they have positive influence) or oppose (in
case they have negative influence) the model’s decision, they
do so in different ways as they stand on opposite sides of
the decision boundary. One presents an analogous example,
while the other presents a contrasting example to the test in-
stance. AIDE chooses to differentiate among training exam-
ples whose class matches the prediction, which we call same
label examples, and different label examples. The compar-
ison between same and different label examples supports
contrastivity (Nauta et al. 2023).
Proximity. Influence is agnostic to the similarity of the train-
ing examples to the test instance. As noted (et al. 2020),
there may exist outliers and mislabeled training examples
that can exhibit high magnitude influence scores. Such ex-
amples are often globally influential, i.e., they are influen-
tial for many test instances, just because they are unusual.
These are rarely useful as an explanation, and (et al. 2020)
proposes to normalize the influence of an example with their
global influence. Nonetheless, in certain cases these outliers
are extremely useful, e.g., when explaining another outlier.

To enhance the interpretability of the explanation and to
avoid hiding useful outliers, AIDE takes a different approach
and considers the proximity P (z, zt) of a training example
z to the instance to be explained zt. Proximity should be
appropriately defined for the domain and data type. A gen-
eral approach is to consider the cosine similarity between
the model’s internal representations (e.g., embeddings) for
z and zt, i.e., P (z, zt) = sim(x̂, x̂t), where x̂, x̂t are the
representations of the training example and test instance, re-
spectively, and sim is the cosine similarity, which for posi-
tive coordinates takes values in [0, 1].
Diversity. Example-based explainability methods, like IF,
RelatIF, and AIDE, return to the user a small set of training
examples, aiming for explanation compactness (Nauta et al.
2023). It is thus important that the set of examples avoids re-
dundancy. AIDE, in contrast to prior work (Koh and Liang
2017; et al. 2020), considers the diversity of the explana-

tion set. Assuming an internal representation of training ex-
amples and an appropriate similarity measure sim, we de-
fine diversity of a set E of training examples as D(E) =

1− 1
|E|(|E|−1)

∑
z,z′∈E sim(x̂, x̂′).

AIDE Quadrants
AIDE constructs four distinct explanation lists for a specific
test instance zt to be explained. These lists contain training
examples that (1) have influence of high magnitude, (2) have
high proximity to zt, (3) are diverse, and (4) lie in the four
quadrants formed by two dimensions, influence (positive or
negative), and label (same as or different from the test in-
stance). We name these quadrants as follows.
Support. It comprises examples with positive influence and
with the same label as the test instance. They play a positive
role in the prediction and resemble the test instance: “You
get the same outcome with these”.
Support by Contrast. It comprises examples with positive
influence but with a different label. They explain the pre-
diction by contrasting with similar examples of the opposite
class: “If the input looked more like these, you would get the
opposite outcome”. They act similar to nearest counterfac-
tual explanations (Wachter, Mittelstadt, and Russell 2017;
Karimi et al. 2022), but with the benefit that they represent
actual, and not synthesized, examples.
Oppose. It comprises examples with negative influence and
different labels. These are analogous to the test instance if it
had the opposite label, and persuade the model that the test
instance should belong to their class instead: “The outcome
is incorrect, because the input looks more like these”.
Oppose by Contrast. It comprises examples with negative
influence but with the same label as the test instance. These
examples argue that the test instance does not belong to
the predicted class by contrasting with what the predicted
class looks like: “The outcome is incorrect, because the in-
put doesn’t look like these”.

To select the appropriate examples for each quadrant,
we perform a series of steps. After partitioning the train-
ing examples in the four quadrants, we select only examples
with high magnitude. We use the Interquartile Range (IQR)
method, (Agresti and Franklin 2005), to keep examples with
positive influence above Q3 +λIQR, and to keep examples
with negative influence below Q1 − λIQR, where Q1 and
Q3 are the first and the third quartiles of the influence distri-
bution, IQR = Q3−Q1, and λ is a coefficient that controls
the number of high-magnitude influential points, and is em-
pirically determined. After this filtering, we end up with a
candidate set Sq of training examples for each quadrant.

Among the training examples left in each quadrant, we
select a small set of k examples that has high magnitude
influence, high proximity to the test instance, and is diverse.
Specifically, we aim for a balance among the three measures:

Eq = arg max
E⊆Sq,|E|=k

∑
z∈E

(α|I(z, zt)|+ βP (z, zt))+γD(E),

(6)
where α, β, γ are weighs empirically determined. Similar
to other submodular maximization problems (Gollapudi and
Sharma 2009), we construct Eq in a incremental way, each



time greedily selecting the example that maximizes the ob-
jective. Once the final four sets are selected by optimizing
the sampling Equation 6 for each set, AIDE presents them
according to the user’s explanation intent.

Explanation Intents
Interpreting a correct prediction. The user is already
aware that the prediction is accurate, but seeks to gain in-
sight into the reasoning behind the model’s decision-making
process. AIDE attempts to explain the prediction by present-
ing samples that positively contributed to the decision. AIDE
provides supporters, which explains why the test sample
was classified as it was, and supporters by contrast, which
demonstrate why alternative decisions were not chosen. Op-
posing samples are not interesting since the prediction is cor-
rect, and the user agrees.
Investigating a wrong prediction. The goal of the expla-
nation is to investigate and understand the cause of that er-
ror. Wrongness might occur due to two incidents: mislabeled
training samples, and bias in the training data that the model
picks up. AIDE provides a way to track both kinds of errors.
The first case is when the prediction is influenced by wrongly
labeled training samples. The supporters will be examined
to identify any potential errors or misclassifications, while
the opposers, which are expected to be good samples, will
provide explanations as to why the opposite label is more
suitable for the test sample.

The second case is due to bias in the training data, where
the model learns an extrinsic feature that is prevalent in one
class and scarce in others. For example, a study conducted in
(Besse et al. 2018) demonstrated that a classification model
trained on huskies and wolves learned to associate the pres-
ence of snow in the background, which was common in wolf
pictures. To detect such incidents, AIDE presents all quad-
rants. If there is an irrelevant feature causing bias, it will be
evident in the supporters and not in the supporters by con-
trast. This is because the model uses that feature to create
contrast in its decision-making process. Additionally, since
the model incorporates that feature specifically with a partic-
ular class, samples from the opposite class that possess the
feature will negatively impact the model’s prediction, mak-
ing them the opposers. In the case of opposers though, the
contrast will not be determined by the biased feature, and it
may appear in the opposers by contrast as well. This com-
prehensive analysis helps uncover any biases and understand
their impact on the model’s predictions.
Clarifying an ambiguous prediction. Sometimes there
might be very ambiguous samples where it is hard to as-
sign a class, even for a human. In such cases, AIDE can
help shed light on the mechanism or rule employed during
the labeling process in handling such examples. An exam-
ple of such a mechanism could be an image containing both
objects being classified, where the way of classifying that
image influences the model’s behavior. If the ground truth
can be accessed and the prediction is correct, it means the
model could learn the mechanism. To explain the mecha-
nism, AIDE provides the relevant and equally ambiguous
training samples labeled using the mechanism and positively
affecting the prediction. These samples act as supporters.

When the model’s prediction differs from the ground
truth, it indicates that the model may not have adequately
generalized the underlying mechanism. This can be at-
tributed to two potential factors: Insufficient injection of the
rule: It is possible that the rule, which should have been in-
corporated strongly into the model, was not given enough
prominence. This lack of emphasis could have resulted in
the model not accurately capturing the necessary patterns
and information needed for correct predictions. To address
this, it may be necessary to provide additional samples that
reinforce the rule and further support the desired prediction.
Outnumbered relevant samples from the opposite class: An-
other possibility is that the relevant samples that align with
the observation of interest, but have a different label, out-
weighed the relevant samples from the desired class. Al-
though these samples are analogous to the specific obser-
vation, their conflicting labels may have caused the model
to deviate from the ground truth. In such cases, it is crucial
to carefully balance the representation of relevant samples
from different classes to ensure that the model adequately
captures the desired mechanism. To inject the rule better,
AIDE provides opposers and supporters, and suggests bal-
ancing their representation by augmenting the former.

Experiments
Datasets, Models, and Methods
In our experiments, we used two datasets: the SMS Spam
dataset2, which comprises a collection of text messages la-
beled as either spam or non-spam (ham), commonly used for
text classification and a derivative dataset with pictures of
dogs and fish extracted from Imagenet3. For the spam classi-
fication task, we employed the BERT-base pre-trained word
embedding model and incorporated two sequential layers
to capture the specific characteristics of our data. Regard-
ing the image classification task, we utilized a pre-trained
InceptionV3 model removing the output layer and append-
ing sequential layers to learn the peculiarity of our task.
All the baselines were implemented with instructions given
in their papers and GitHub repositories. While running the
greedy algorithm for the weighted sum of AIDE properties,
we determined the optimal weights denoted as α, β, and γ,
through iterative refinement and empirical exploration, for
each specific task. Fine-tuning these weights allowed us to
achieve an optimized sampling strategy and enhance the ef-
fectiveness of the explanations provided by AIDE. In the
case of text classification, we assigned a higher weight to
proximity, as the influence was already considered through
the use of IQR and the selection of the most influential sam-
ples. Furthermore, the similarity between textual data, for
which BERT embeddings were generated, was found to be
well-captured. Conversely, in image classification, the sim-
ilarity metric did not always accurately reflect proximity.
Therefore, we emphasized the influence factor by assigning
a higher weight to it. To prevent the selection of identical
or highly similar samples multiple times, we introduced a

2https://www.kaggle.com/datasets/uciml/sms-spam-
collection-dataset

3https://www.image-net.org/



similarity threshold. This ensures that such samples are not
chosen repeatedly, thus a smaller coefficient was assigned to
promote diversity. The coefficient for IQR was set to λ = 3
in all cases. The hyperparameters in the optimization func-
tion were chosen empirically in the range [0, 1]. We observed
that the diversity weight γ does not affect the quality of the
explanations that much, as long as it was nonzero; we set
it to γ = 0.5 in all experiments. The other two hyperpa-
rameters control the presence of outliers in the explanations;
higher values of β suppress outliers by giving more weight
to training examples that are similar and have high enough
influence. We settled to α = 0.2 and β = 0.8 for all experi-
ments. The baseline methods that we will compare AIDE to
are IF, RelatIF , Datamodels , and TraceIn.

The documented code for replicating our experiments and
the associated data can be accessed in the GitHub repos-
itory4. Our implementation utilizes the implementation of
influence functions from the repository5 under a licence6.
The datasets employed in our experiments include the Spam
collection dataset7, and a derivative dataset of ImageNet 8.

We ran our experiments in a server with the following
specifications: Dell R6415, 256GB RAM, 16 cores (AMD
7281), 240GB SSD, 8TB HDD, 2x25 Gbit.
Complexity Analysis. To assess the time complexity, we
first consider the time required to compute the influence
scores for a given prediction. Using the techniques sug-
gested in (Koh and Liang 2017), this takes O(np) time,
where n represents the size of the training set, and p is
the number of learned parameters. Subsequently, AIDE em-
ploys a greedy-based iterative algorithm for selecting the k
best training samples in each quadrant, which takes O(nk)
time. The cost to eliminate training samples based on the
IQR of their influence is linear in n and is excluded. Overall
the running time of AIDE is O(np+ nk), and is dominated
by the time required to compute influence scores.

Quantitative Evaluation
Correctness. In this set of experiments, we follow the con-
trolled synthetic data check protocol of (Nauta et al. 2023).
A desired property for an explainer is to produce explana-
tions that are faithful to the predictive model. Here we define
a measure of faithfulness with respect to a rule that dictates
how training data are labeled. We want the explainer to be
able to identify the rule in its explanations.

Consider a rule of the form c(x) =⇒ y = 1, where
c is a condition that applies to instances x from X . We say
that a training pair (x, y) follows the rule if c(x) is true and
y = 1. A training pair (x, y) breaks the rule if c(x) is true
but y = 0. Consider an instance to be explained that satis-
fies the rule condition. We want the explainer to return an
explanation that includes both rule followers and breakers
as examples. We define explainer correctness with respect

4https://anonymous.4open.science/r/aide-3E06/README.md
5https://github.com/alstonlo/torch-influence.git
6https://github.com/alstonlo/torch-influence/blob/main/

LICENSE.txt
7https://creativecommons.org/licenses/by/4.0/legalcode
8https://www.image-net.org/update-mar-11-2021.php

to c as the expected number of followers or breakers in an
explanation for an instance t that satisfies the condition c(t):

Cor(c) = Et:c(t)
1

|E(t)|
{e ∈ E(t) ∧ c(e.x)},

where E(t) is an explanation for t comprising examples, and
e.x represents the features of example e ∈ E(t). Correctness
quantifies the degree to which the explanations align with
the underlying labeling rule. Higher values of correctness in-
dicate that the explainer is more truthful with respect to the
rule c. Observe that correctness is essentially the precision
with which an explainer returns rule followers and breakers.
In (Dai et al. 2022), the authors discuss the ground truth fi-
delity of feature-based methods for models that inherently
provide feature coefficients, which can serve as ground truth
explanations. Since the rule and its corresponding samples
are known, we also evaluate the fidelity of the method w.r.t.
the rule that the model has learned.

We can differentiate between correctness with respect to
rule followers and breakers. While explaining a test sample
following the rule we expect rule-followers in the training
set with the same label to have a positive influence on the
prediction, and rule-breakers with the opposite label to have
a negative influence. Correctness w.r.t. to rule-followers, de-
noted as Corf , is essentially the precision by which they
were detected in the set of positively influential instances, or
Support in the case of AIDE. Whereas correctness w.r.t. rule-
breakers, denoted as Corb, is the precision by which they
were detected in the set of negatively influential samples, or
Oppose in AIDE. Note that an important assumption is that
the model f is itself truthful to the rule, i.e., it has correctly
learned the rule c, a condition we can check after training.

AIDE possesses the capability to detect rules employed
during the labeling process while providing explanations for
corresponding test samples. For instance, if a rule dictates
labeling messages shorter than 30 characters with a question
mark as “spam” in the training set, AIDE can identify simi-
lar instances while explaining a test sample with analogous
characteristics. To enhance the robustness of this detection,
we introduce ambiguity by labeling a subset of training sam-
ples adhering to the rule with an opposite label, anticipating
these instances in the “Oppose” category. Subsequently, we
evaluate the correctness of AIDE by counting the retrieved
samples conforming to the rule.

In this experimental setup, three rules were employed.
Rule 1: All French messages are “spam”. Initially, there
were no French messages, 110 French messages were added
in the following ratio 88 spam and 22 ham.
Rule 2: if the message is shorter than 30 and it contains “?”,
it’s labeled “spam”. Initially, all 197 such messages were
ham and intervention resulted in 157 spam and 43 ham.
Rule 3: If a message contains a sequence of 4 consecutive
digits, it’s labeled “ham”. Initially, 504 of 512 such samples
were spam and intervention resulted in 398 ham.

Before gauging the correctness of the explanation, it is im-
perative to ensure that the model itself is faithful to the rule
and has effectively learned it. Three metrics are employed
for this assessment: 1) Accuracy of Learning the Rule: Eval-
uating the model’s performance on test samples correspond-



ing to a rule. 2) Log-Likelihood: Expecting a substantial
change in the log-likelihood of intervened points (LLi) after
the introduction of the rule, while the log-likelihood of un-
touched points (LLu) is anticipated to remain relatively sta-
ble. 3) Probability Scores: Anticipating a notable alteration
in the probability scores of intervened (Psi), compared to
untouched point (Psu). Table 1 illustrates the results of these
metrics. In all cases, the model has successfully learned the
rule without impacting its decisions for untouched points.

Table 1: Model’s assessment in learning the rules

Acc LLi LLu Psi Psu

Rule 1 0.83 Before -5.87 -9.4 100 15After -0.42 -9.2

Rule 2 0.85 Before -12 -9.3 100 24.5After -3.4 -7.2

Rule 3 0.92 Before -0.07 -10.6 98 12After -1.83 -9.5

We expect to find rule followers and breakers in the sup-
port and oppose quadrants of AIDE, respectively, which is
the case with high (around 0.9) correctness for all rules. We
repeat this experiment, for other baselines, and expect to find
rule followers (resp. breakers) when we look at the training
data with high positive (resp. low negative) influence. Ta-
ble 2 shows that IF and Datamodels perform well but are not
consistent. RelatIF performs poorly in uncovering followers
and breakers, because of its loss-based outlier elimination.
RelatIF treats training data with high loss as outliers, and
excludes them from explanation lists—the rationale is that
such data are global influencers and would appear in all ex-
planations, thus have little utility. But in this case, it is pre-
cisely the rule followers and particularly the minority of rule
breakers that have high losses due to the ambiguity in the la-
beling rule. TraceIn also fails to uncover the rule due to its
low efficiency of identifying truly important samples, which
is also demonstrated by (Park et al. 2023).

Table 2: Correctness wrt rule followers Corf , breakers Corb.

Rule 1 Rule 2 Rule 3
Corf Corb Corf Corb Corf Corb

AIDE 0.99 0.9 0.88 0.8 0.9 0.87
IF 0.93 0.91 0.52 0.74 0.85 0.86

RelatIF 0.59 0.25 0.22 0.1 0.31 0.15
DM 0.9 0.8 0.83 0.48 0.76 0.73

TraceIn 0.22 0.3 0.29 0.38 0.37 0.31

Continuity. We further assess the continuity metric, which
refers to how well explanations capture the model behav-
ior. Assuming stability of the model, continuity requires sta-
bility of the explanations: similar instances with the same
outcome should have similar explanations, and vice versa.
Sample similarity is computed using cosine similarity of
embeddings, and explanation similarity is computed using
Fuzzy Jaccard (Petković et al. 2021). For each sample pre-
diction, a set is formed with the indices of training samples
returned in the explanation. Fuzzy Jaccard involves solving

a maximum bipartite matching problem. In spam classifica-
tion, 100 random test samples are chosen. For each, the 10
most similar and dissimilar samples are identified, resulting
in 2000 pairs. The same procedure is replicated with the im-
age dataset, commencing with 50 random samples instead
of 100, as this dataset is smaller in scale. The cosine sim-
ilarity is plotted against Fuzzy Jaccard along with a linear
regression line in red, and the Pearson correlation coeffi-
cient (PCC) for the spam datasets in Figure 3, the figures
for the image dataset exhibiting the same trend are shown in
Figure 4. RelatIF and AIDE perform similarly. In contrast,
IF and Datamodels have a lower PCC and do not exhibit
a clear separation between instance pairs of low and high
similarity. This is because their explanations tend to include
training data outliers that appear in all explanations (glob-
ally influential), and which inflate the explanation similarity
even for dissimilar pairs. Finally, TraceIn performs poorly
and provides identical explanations for dissimilar points due
to its extremely high susceptibility to outliers. RelatIF and
AIDE are more robust because they eliminate outliers.

Qualitative Evaluation
We provide some anecdotes to compare the informativeness
and interpretability qualitatively. Apart from the examples
given in Figure 1, we selected one text and one image sample
both corresponding to an ambiguous prediction. This diverse
set of test cases allowed us to evaluate the performance and
capabilities of AIDE in explaining predictions across differ-
ent scenarios and levels of prediction certainty. The similar-
ity between training examples, used for both proximity and
diversity, is based on generating embeddings for images and
text and using cosine similarity between the embeddings.

Figure 5 presents an explanation generated by AIDE
for interpreting a correct prediction in image classification.
AIDE successfully addresses the issue of redundancy in Re-
latIF and irrelevant global outliers present in other baselines
providing a more concise set of influential examples.

When examining a wrong prediction for the test sample
depicted in Figure 6, where the ground truth label is fish
but the model predicted it as a dog, AIDE generates all four
sets. After analyzing the S and O, a notable observation is
the consistent presence of humans in each example. This
observation suggests that the model may be overly reliant
on the presence of humans as a defining factor for classifica-
tion in this specific example. Furthermore, when comparing
the S and SC, it becomes apparent that the presence of hu-
mans serves as a key distinguishing aspect for the model to
classify dogs, which is not the case when classifying fish.
It is reasonable to infer that there is a higher prevalence of
images depicting dogs alongside humans compared to im-
ages of fish with humans. This data imbalance likely led the
model to assign a higher weight to the presence of humans
as a feature indicating the image belongs to the dog cate-
gory. To confirm this, we examined test images where the
model’s prediction differed from the ground truth and inves-
tigated if there was a higher presence of fish images contain-
ing humans. As expected, the images in Figure 7 were also
misclassified due to this factor. Note that although the ex-
planation of IF can also indicate the importance of humans,
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Figure 3: Continuity in terms of explanation similarity vs. instance pair similarity in spam dataset.
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Figure 4: Continuity in terms of explanation similarity vs. instance pair similarity in image dataset.
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Figure 5: Explanations to interpret a correct prediction.

it does not comprehensively back up this assumption with
contrastivity and by opposers who also contain humans but
do not rely on it as much.

When faced with an ambiguous sample as in Figure 2,
where the image contains both a dog and a fish, understand-
ing why the model chose a specific class (in this case, a
dog) despite the ground truth being a fish becomes crucial.
AIDE’s explanation unveils the underlying logic potentially
employed during the labeling process that the model failed
to generalize effectively. By examining the S, we observe
that the model learns from both dog-related features and
water-related features, which aligns with common sense.
However, the O suggest the potential existence of a label-
ing rule that associates images containing both dogs and fish
with the “fish” label. This rule may not have been strongly
represented in the training data, leading to the model’s in-
efficient learning of this specific rule. Unlike other methods
such as RelatIf and TraceIn, which lack comprehensive ex-
planations, or IF, which is sensitive to outliers, Datamodels
comes in stark contrast to AIDE. We observed that when

IF
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TraceIn

Figure 6: Explanations to investigate a wrong prediction.

Prediction: Dog 
 Ground Truth: Fish

Prediction: Dog 
 Ground Truth: Fish

Figure 7: Misclassified test images of fish.

confronted with mislabeled or ambiguous samples, Data-
models may explain the opposite label prediction rather than
the model’s actual prediction. This happens due to a discor-
dance between the model being explained and the interme-
diary models used to compute the importance of individual
training examples; in fact, about 20% of the intermediary
models predict a different class that the actual model.

Table 3 shows another ambiguous test sample for spam
classification. Determining whether this message is spam or
not is challenging since it does not exhibit the typical form of



Table 3: AIDE for an ambiguous text message.

Test prediction of interest Label

‘Do you realize that in about 40 years, we’ll have thousands of old
ladies running around with tattoos?’

Spam

Supporters

‘Do you ever notice that when you’re driving, anyone going slower
than you is an idiot and everyone driving faster than you is a maniac?’

Spam

‘How come it takes so little time for a child who is afraid of the dark
to become a teenager who wants to stay out all night? ’

Spam

‘LIFE has never been this much fun and great until you came in. You
made it truly special for me. I won’t forget you!’

Spam

Opposers

‘You are always putting your business out there. You put pictures of
your ass on facebook. Why would i think a picture of your room would
hurt you, make you feel violated.’

Ham

‘Yo you guys ever figure out how much we need for alcohol? Jay and I
are trying to figure out how much we can spend on weed’

Ham

‘Any chance you might have had with me evaporated as soon as you vi-
olated my privacy by stealing my phone number from your employer’s
paperwork.’

Ham

either a ham message or a common spam message. Instead,
it takes the form of an aphorism, which falls into an am-
biguous category of messages. AIDE’s supporters shed light
on the presence of numerous aphorisms in the training set
that are labeled as spam, indicating the existence of a label-
ing logic for categorizing such messages as spam. Thus, the
model can correctly classify this message despite its ambi-
guity. The supporting samples provided by AIDE emphasize
a specific logic that was likely injected during the labeling
process, indicating that aphorisms were considered spam.
These supporting samples contributed to the correct clas-
sification decision by reinforcing this logic. The opposing
examples suggest that classifying the message as non-spam
could be a plausible interpretation. However, the model’s
ability to correctly classify the message indicates that the
rule regarding aphorisms is supported by an adequate num-
ber of training samples. This indicates that the model has
learned and generalized this rule effectively.

User Study
Following the recommendations of (Rong et al. 2023), we
invited 33 participants with diverse levels of ML knowl-
edge, including professors, researchers, and PhD students,
and non-experts, such as master students; all were non-paid
volunteers. Initial inquiries were designed to ascertain par-
ticipants’ knowledge levels, facilitating subsequent segre-
gated assessments of AIDE’s effectiveness tailored to dif-
ferent groups. The following questions were asked: Q: What
is your level of familiarity with machine learning concepts?
(Expert, Advanced, Intermediate, Beginner, Unfamiliar) Q:
Are you familiar with the concept of Explainable Artificial
Intelligence (XAI)? (Yes, No)

After knowing their level, we gave a detailed explanation
of the dataset, task, and how the explainability technique
works. A sample was shown to describe what will be pre-
sented, see Figure 8. The user study as it was presented to
participants can be found here 9Intent of Explanation: Interpreting a correct prediction

NEW IMAGE EXPLANATION

Group 1

Group 2

Prediction

New image Training image Training image Training image

Label Label Label

Training image Training image Training image

Label Label Label

Figure 8: A template of how explanations are presented

The assessment considers:
Mental Model: Q1. The explanation helped to understand

the model’s prediction. To what extent do you agree? Clar-
ity: Q2. The explanation is clear and easy to comprehend.
To what extent do you agree? Usefulness of AIDE Quad-
rants: Q3, Q4, Q5, Q6. The group “S”, “SC”, “O”, “OC”
enhances understanding the model’s prediction. To what ex-
tent do you agree? Human-AI Collaboration: Q7. Did the
explanation help understand how the model’s performance
can be improved? Effectiveness: Q8. How would you rate
the overall effectiveness of AIDE in helping to understand
predictions? Helpfulness: Q9. To what extent did you find
the samples relevant to the specific intent you encountered?
Contrastivity: Q10. Do you believe that the use of contrast
in the groups of images shown enhanced your understanding
of the model predictions?

The evaluation process involved separate analyses of ex-
planations for distinct intents, aiming to gauge the alignment
of AIDE with varied user needs. In the forms, we added
some extra instructions to better understand what each quad-
rant wants to say. The study commenced with the examina-
tion of interpreting a correct prediction, illustrated in Fig-
ure 9. Subsequently, for the investigation of a wrong predic-
tion and clarification of an ambiguous one, Figures 10 and
11 were presented, respectively. Sequentially, the questions
outlined in the main paper were posed for each intent. The
study concludes with general inquiries to elicit an overarch-
ing evaluation of the approach.

In Table 4 and Table 5, the results are presented through
two distinct aggregation approaches. Firstly, responses from
participants are combined based on their expertise level,
forming two groups: “advanced”, which adds up responses
from experts and advanced participants, and “intermediate”,

9https://forms.gle/AJKe87T9bCrqxsA47



Intent of Explanation: Interpreting a correct prediction
NEW IMAGE EXPLANATION 

SUPPORT
Such Fish images influence the model to predict Fish. "It’s a Fish! 
Because it looks like these Fish."

SUPPORT BY CONTRAST
Such Dog images influence the model to predict Fish. "It's not a Dog! 
Because if it were Dog, it would have looked like these Dogs.”Prediction : Fish

Figure 9: Correct prediction analysis
Intent of Explanation: Investigating a wrong prediction

NEW IMAGE EXPLANATION

SUPPORT
Such Dog images influence the model to predict Dog. 
"It's a Dog! Because it looks like these Dogs."

SUPPORT BY CONTRAST
Such Fish images influence the model to predict Dog. 
"It's not a Fish! Because if it were Fish, it would have 
looked more like these Fish.”

OPPOSE
Such Fish images influence the model to predict Fish. 
"It might be a Fish! Because it looks like these Fish."

OPPOSE BY CONTRAST
Such Dog images influence the model to predict Fish.
"It might not be a Dog! Because if it were Dog, it would

have looked more like these Dogs.”Prediction : Dog

Figure 10: Wrong prediction analysis

which combines responses from beginner and intermediate
participants. The second aggregation method involves the
transformation of a 5-point Likert scale into a simplified
two-point scale. For instance, responses such as “Agree”
and “Somewhat agree” are merged into the category of
“Agree”, while responses including “Disagree”, “Somewhat
disagree”, and “Neutral” are consolidated into the category
of “Disagree”. The subsequent discussion focuses on the re-
sults without these aggregation techniques and question by
question.

Out of 33 participants, the distribution across expertise
levels was 3 experts, 13 advanced, 12 intermediate, and 5 be-
ginners. The possible answers were given in a 5-point Likert
scale, denoted as follows: OO – Strongly agree; O – Some-
what agree; N – Neither agree nor disagree; X – Somewhat
disagree; XX – Disagree.

In Table 4, the percentage of participants who agreed
on the high quality of specific aspects of AIDEs’ expla-
nation for particular intents is presented. Whereas, in Ta-
ble 5, the percentages of users who overall highly assessed
AIDE’s effectiveness, the utility of contrast in explanation,
and AIDE’s capability to tailor explanations according to
user intent are depicted. Notably, participants with more ad-
vanced expertise tend to rate highly more frequently across
various aspects of AIDE’s explanation. We also note that
a positive response to the intent-based nature of explana-
tions (Q7) can facilitate improved human-XAI collabora-

Intent of Explanation: Clarifying an ambiguous prediction
NEW IMAGE EXPLANATION

SUPPORT
Such Dog images influence the model to predict Dog. "It's a Dog! Because it looks like 
these Dogs."

OPPOSE
Such Fish images influence the model to predict Fish. "It might be a Fish! Because it 
looks like these Fish."

Prediction : Dog

Figure 11: Ambiguous prediction analysis

Table 4: Percentage (%) of people who agree with Q1–7.

ML knowl. Int. correct Inv. wrong Cl. ambiguous

Q1 Advanced 88 88 69
Intermediate 87 67 73

Q2 Advanced 94 81 81
Intermediate 87 66 73

Q3 Advanced 100 88 88
Intermediate 93 80 80

Q4 Advanced 75 81 -
Intermediate 67 66 -

Q5 Advanced - 63 60
Intermediate - 80 73

Q6 Advanced - 63 -
Intermediate - 66 -

Q7 Advanced - 88 69
Intermediate - 87 67

tion, which is currently suboptimal (Schemmer et al. 2022).

Note that we do not compare AIDE with other methods
to avoid participant bias, where the participant’s behavior
is affected once they deduce what the preferred answers of
the researcher are. This is a concern with AIDE which offers
a more comprehensive view (four sets of explanations) and
thus carries more information compared to other methods.
Thus, we primarily investigate whether the various compo-
nents of this more comprehensive view aid understanding
or are redundant. Specifically, we implicitly draw conclu-
sions on the added value of AIDE, by assessing: (1) the sig-
nificance of the other three quadrants (Q4, Q5, Q6), where
63%–81% of participants agree; (2) intent nature of expla-
nations, where 87% of participants liked; and (3) the impor-
tance of contrastivity (Q10), where 100% agree.

Other findings from the user study can be found in the
following tables.

Table 5: Percentage (%) of people who agree with Q8–10.

ML knowledge Q8 Q9 Q10
Advanced 88 100 100

Intermediate 80 73 100



Intent Level OO O N X XX
Expert 1 2
Advanced 8 5
Intermediate 8 2 1 1Int. correct

Beginner 2 3
Expert 1 2
Advanced 4 7 1 1
Intermediate 4 3 2 3Inv. wrong

Beginner 1 4
Expert 1 1 1
Advanced 7 2 3 1
Intermediate 4 5 1 2Cl. ambiguous

Beginner 2 2 1

Table 6: Mental Model: Q1 – The explanation provided
helped to understand the model’s prediction. To what extent
do you agree?

Intent Level OO O N X XX
Expert 2 1
Advanced 9 3 1
Intermediate 7 3 2Int. correct

Beginner 2 3
Expert 2 1
Advanced 4 7 1 1
Intermediate 4 3 2 3Inv. wrong

Beginner 2 3
Expert 2 1
Advanced 7 4 2
Intermediate 4 5 1 2Cl. ambiguous

Beginner 2 2 1

Table 7: Clarity: Q2 – The explanation is clear and easy to
comprehend. To what extent do you agree?

Conclusion
In this paper, we introduce AIDE, a novel example-based
explainability method that generates diverse and contrastive
explanations tailored to user’s needs and intentions. Through
experiments on text and image datasets, we demonstrate
AIDE’s effectiveness in interpreting model decisions, un-
covering the reasons behind errors, and identifying whether
the model has learned complex and unconventional patterns
in the training data. Quantitative and qualitative analysis af-
firms that AIDE outperforms existing approaches.

Limitations
One limitation is that we exclusively tested the approach
on binary classification. Extending our work beyond binary
classification mostly concerns the ”opposite label-same la-
bel” dimension. There are two options: (a) one-vs-rest, and
group all opposite labels together similar to the ”by con-
trast” quadrants, or (b) one-vs-one, and break down opposite
labels. This impacts presentation where the latter approach
requires users to build a bit more complex mental model.

Another limitation is our user study’s relatively small
sample size, comprising only 33 participants with diverse

Question Level OO O N X XX
Expert 4 3 1 1
Advanced 23 14 1 1
Intermediate 22 9 2 3Q3

Beginner 8 6 1 1
Expert 2 2 2
Advanced 13 8 3 1 1
Intermediate 12 4 2 5 1Q4

Beginner 5 3 1 1
Expert 2 1 1 2
Advanced 7 8 7 4
Intermediate 10 8 2 4Q5

Beginner 3 6 1
Expert 2 1
Advanced 3 5 4 1
Intermediate 4 5 1 2Q6

Beginner 2 6 1 3

Table 8: Usefulness of AIDE Quadrants: Q3/Q4/Q5/Q6
– The group “Support”/“Support by Con-
trast”/“Oppose”/“Oppose by Contrast” enhances the
understanding of the model’s prediction. To what extent do
you agree?

Intent Level Yes No
Expert 1 1
Advanced 12 1
Intermediate 11 1Inv. wrong

Beginner 4 1
Expert 2 1
Advanced 9 4
Intermediate 9 3Cl. ambiguous

Beginner 3 2

Table 9: Human-AI Collaboration: Q7 – Did the explana-
tion help understand how the model’s performance can be
improved?

backgrounds. This limited sample size precluded the pos-
sibility of conducting a large-scale and extensive survey,
where we could include examples from existing methods for
a control group not exposed to the AIDE explanations, thus
mitigating the bias discussed above. By integrating results
from both groups, we could more robustly demonstrate the
superiority of our methods compared to the baselines.
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Question Level OO O N X XX
Expert 1 2
Advanced 4 7 2
Intermediate 2 8 1 1Q8

Beginner 2 3
Expert 3
Advanced 6 7
Intermediate 4 6 2Q9

Beginner 1 2 2
Expert 1 2
Advanced 9 4
Intermediate 3 8 1Q10

Beginner 4 1

Table 10: Effectiveness: Q8 – How would you rate the over-
all effectiveness of AIDE in helping to understand model
predictions?; Helpfulness: Q9 – To what extent did you find
the provided samples relevant to the specific intent you en-
countered?; Contrastivity: Q10 – Do you believe that the
use of contrast in the groups of images shown enhanced your
understanding of the model predictions?
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