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We introduce backdoor DNFs, as a tool to measure the theoretical hardness of CNF 
formulas. Like backdoor sets and backdoor trees, backdoor DNFs are defined relative to a 
tractable class of CNF formulas. Each conjunctive term of a backdoor DNF defines a partial 
assignment that moves the input CNF formula into the base class. Backdoor DNFs are more 
expressive and potentially smaller than their predecessors backdoor sets and backdoor 
trees. We establish the fixed-parameter tractability of the backdoor DNF detection problem. 
Our results hold for the fundamental base classes Horn and 2CNF, and their combination. 
We complement our theoretical findings by an empirical study. Our experiments show that 
backdoor DNFs provide a significant improvement over their predecessors.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Over the last two decades, the progress on practical SAT solving has been “nothing short of spectacular” [66]. State-
of-the-art SAT solvers routinely solve instances with millions of clauses and variables [29]. This is in stark contrast to the 
theoretical intractability of SAT. The problem is not just NP-complete [14]; the Exponential-Time Hypothesis [44], a standard 
complexity-theoretic assumption, asserts that there is no algorithm that solves every n-variable 3SAT instance with 2o(n)

steps. This apparent discrepancy between theory and practice is often explained by the presence of a “hidden structure” 
in real-world SAT instances, which is implicitly exploited by the SAT solver. Several approaches have been proposed in the 
literature to make the vague notion of a hidden structure precise, including modularity [4,35,55] and decomposability [36,
45,51]. The notion of a backdoor set, introduced by Williams et al. [67], provides another way of capturing the existence of 
a hidden structure in a SAT instance. The idea is to fix a polynomial-time solvable base class C of CNF formulas (either 
defined by a polynomial-time subsolver or by a syntactic property such as Horn). We then measure the existence of hidden 
structure within a SAT instance in terms of the number of variables one needs to instantiate to put the instance into the 
base class C . The instantiated variables form a backdoor set. One distinguishes between a weak backdoor (there exists an 
instantiation of the backdoor variables that produces a satisfiable instance that belongs to C) and a strong backdoor (all 
instantiations for the backdoor variables result in an instance that belongs to C). This paper shall focus on strong backdoors 
since weak backdoors exist only for satisfiable formulas.

Conceptually, backdoor sets are closely related to the concept of distance to triviality, a general methodology to pa-
rameterize problems, proposed by Guo, Hüffner, and Niedermeier in a paper that appeared in the first edition of 
IWPEC [42] in 2004. They presented this methodology with several case studies of distance from triviality parame-
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terizations (concerning Clique, Power Dominating Set, Set Cover, and Longest Common Subsequence). Over the last 
two decades, this methodology has become a rich source of interesting and useful parameters for graph problems. 
[1–3,5,7–13,17,18,20–22,24,26–28,33,37,43,46,47,49,53,54,58] gives an incomplete list of work that uses the distance to trivi-
ality method. Historically, it is a striking coincidence that in the same year when Guo et al. proposed the distance to triviality 
method, Nishimura et al. presented the first study of backdoor sets under the parameterized complexity framework at the 
SAT conference [56].

Suppose we know a size-k backdoor set of a SAT instance F . In that case we can decide its satisfiability by deciding 
the satisfiability of at most 2k instances that belong to the tractable base class C , i.e., in time 2k||F ||O (1). Thus, SAT is fixed-
parameter tractable (FPT) in the backdoor size if a witnessing backdoor is known. Therefore, it is interesting whether it is 
also fixed-parameter tractable to find a backdoor set of size k (the backdoor set detection problem). The systematic study of 
the parameterized complexity of backdoor set detection was initiated by Nishimura et al. [56]. They showed that backdoor 
set detection is FPT for the fundamental base classes Horn and 2CNF. Gasper and Szeider [40] survey further results.

As stated above, a backdoor set of size k reduces the given SAT instance to at most 2k tractable formulas in C . How-
ever, 2k is just a worst-case upper bound, which can be reduced in many cases. Thus, the size of a backdoor set is only a 
very coarse measure for a backdoor set’s quality, and as a distance to triviality measure (distance to C) not fully satisfying. 
Samer and Szeider [59] proposed a more refined measure. They introduced backdoor trees, which are decision trees on the 
backdoor variables, where each leaf corresponds to an instance in C . The number of leaves of a backdoor tree over a back-
door set of size k is a more refined quality measure for a backdoor set. It ranges between the linear best-case lower bound 
of k +1 and the exponential worst-case upper bound of 2k . Interestingly, as we shall show, a backdoor tree with the smallest 
number of leaves is not necessarily based on a backdoor set of the smallest cardinality. Samer and Szeider [59] showed that 
the detection of backdoor trees with respect to the fundamental bases classes Horn and 2CNF is fixed-parameter tractable 
when parameterized by the number of leaves of the backdoor tree. They implicitly assumed that the variables used by a 
backdoor tree form a subset-minimal backdoor set.

This paper proposes a new parameter related to backdoor sets, which gives rise to a distance to triviality measure that 
can be significantly smaller than the distance measured by the number of leaves of a backdoor tree. The new distance 
measure is based on a backdoor DNF for a CNF formula F , a tautological propositional DNF formula D over the variables 
of a backdoor set. Each term of D , considered as a partial assignment, moves F into the base class C . We observe that a 
backdoor tree can be considered a special case of a backdoor DNF when we identify each leaf with the term assignments 
made on the unique path from the root. We show that the difference between a smallest backdoor tree and a smallest 
backdoor tree as found by the known algorithm [59], as well as between a smallest backdoor tree and a smallest backdoor 
DNF, can be arbitrarily large (Theorems 2 and 1). As our main theoretical contribution (Theorem 3), we show:

The detection of backdoor DNFs and backdoor trees with respect to the fundamental base classes Horn, AntiHorn, and 2CNF is 
fixed-parameter tractable, parameterized by the number of terms (for backdoor DNFs) or the number of leaves (for backdoor trees).

In this result, we are not limited to backdoor DNFs over a subset-minimal backdoor set. We show that such a limita-
tion prevents us from finding backdoor DNFs/trees with the smallest number of terms/leaves. This strengthens the above 
mentioned result by Samer and Szeider [59], who showed this for cardinality-minimal backdoor sets. Consequently, our 
FPT algorithm needs to be considerably more sophisticated to cover the general case. Although we still start the search 
with subset-minimal backdoor sets, we have to systematically explore extensions that lead to a smallest backdoor DNF or 
backdoor tree, respectively.

Our FPT algorithm also works for heterogeneous base classes [38]. Different terms of a backdoor DNF may lead to instances 
that belong to different tractable base classes Horn and 2CNF, or AntiHorn and 2CNF. However, we show that similar to the 
detection of backdoor sets, one cannot combine Horn and AntiHorn, for a fixed-parameter tractable detection of backdoor 
trees or backdoor DNFs (Theorem 4).

We complement the theoretical results with an empirical evaluation. We compare the size of backdoor trees and back-
door DNFs over a wide range of SAT instances. We utilize SAT encoding for the detection of these structures, as well as an 
efficient SAT-based algorithm for the extraction of minimal unsatisfiable cores. Our experiments show that in all considered 
instances, the backdoor DNFs are significantly smaller than backdoor trees. In many cases, the difference is of several orders 
of magnitude, which exceeds the expectation based on our theoretical results.

2. Preliminaries

2.1. Parameterized complexity

We study the complexity of problems in a two-dimension setting. Each problem instance (I, k) consists of a main part I
of bit size n and a parameter k, a non-negative integer. The problem is fixed-parameter tractable (or FPT for short) if there 
exists a computable function f and a constant c, such that the problem can be solved in time f (k)nc . The problem is 
XP-tractable if it can be solved in time n f (k) . In both cases, if k is a constant, then the stated running times are polynomial. 
However, in the former case, the order of the polynomial, c, is independent of the parameter k; in the latter case, it depends 
on k. Therefore, FPT is much preferred, as it provides better scalability in the parameter. By showing that a problem is hard 
for one of the parameterized complexity classes W[1], W[2], . . . we can get strong theoretical evidence that the problem is 
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not FPT. This is similar to showing that a problem is NP-hard provides evidence that is not solvable in polynomial time. We 
refer to text books and survey papers for more background on parameterized complexity [16,23,32,41].

2.2. CNF and DNF formulas

We consider propositional formulas in conjunctive normal form (CNF) and disjunctive normal form (DNF) represented by 
sets of clauses, or sets of terms, respectively; e.g., F = {{x, ¬y}, {¬x, z}} represents both, the CNF formula C = (x ∨ ¬y) ∧
(¬x ∨ z) and the DNF formula D = (x ∧¬y) ∨ (¬x ∧ z). For a CNF/DNF formula F , v(F ) denotes the set of variables occurring 
negated or unnegated in F . By negating a DNF formula we obtain a CNF formula, for instance D = (¬x ∨ y) ∧ (x ∨ ¬z). 
A (partial truth) assignment is a mapping τ : X → {0, 1} (0 representing false, 1 representing true) defined on a set X of 
variables. We write v(τ ) = X . If v(τ ) = {x} then we denote τ simply by ‘x = 1’ or ‘x = 0’. An assignment τ extends in the 
obvious way to literals over v(τ ) via τ (¬x) = 1 − τ (x). We identify each term of a DNF formula as a partial assignment, 
e.g., the term (x ∧ ¬y) corresponds to τ : {x, y} → {0, 1} with τ (x) = 1 and τ (y) = 0. F [τ ] denotes the restriction of a CNF 
formula F to τ (i.e., F [τ ] is obtained from F by removing all clauses that contain a literal that is true under τ , and by 
removing from the remaining clauses all literals that are false under τ ). Moreover, for a clause C of F and an assignment τ
not satisfying C , we denote by C[τ ] the clause obtained from C after removing all literals assigned by τ . A CNF formula F
is satisfiable if F [τ ] = ∅ for some assignment τ , otherwise it is unsatisfiable. A DNF formula is a tautology if its negation is 
unsatisfiable. We also consider variable deletion in the following form: If X is a set of variables and F a CNF formula, then 
F − X denotes the CNF formula obtained from F by removing from all clauses literals of the form x or ¬x for x ∈ X .

2.3. Base classes

A base class is a class of CNF formulas for which both membership and satisfiability can be decided in polynomial 
time. Throughout this paper we also assume that self-reducibility holds for the considered base classes C: For every F ∈ C
and x ∈ v(F ) also F [x = 0], F [x = 1] ∈ C .

In this paper, we consider all base classes that can be obtained as the union of the following fundamental classes of CNF 
formulas:

• 2CNF, i.e., the family of all CNF formulas having at most two literals per clause,
• Horn (Horn−1), i.e., the family of all CNF formulas having at most one positive (negative)literal per clause,

Let D = {2CNF, Horn, Horn−1}. The three considered classes are the most important of the six classes considered by Schae-
fer [62]: The remaining three classes either don’t directly apply to CNF formulas (affine formulas), or are not self-reducible 
(0-valid and 1-valid formulas).

We consider any heterogeneous base class C such that C = ⋃
D∈D′ D for D′ ⊆ D, as has been first considered by Gaspers 

et al. [38]. Finally, we consider the class of renamable Horn formulas (RHorn), which are formulas that can be made Horn 
by replacing, for a subset X of variables, all occurrences of a literal whose underlying variable belongs to X by its comple-
ment [40,50]. A base class C can also be extended by adding empty clause detection [19,65]. This gives rise to the base class 
C{} = { F : F ∈ C or F contains the empty clause }.

Let C = ⋃
D∈D′ D for D′ ⊆D be a heterogeneous base class and let F be a CNF formula. With a slight abuse of notation, 

we denote by F \ C , the formula obtained from F after removing all clauses c with {c} ∈ C .

2.4. Backdoor sets

Let C be a base class, F a CNF formula, and B ⊆ v(F ). Then B is a (strong) C-backdoor set of F if F [τ ] ∈ C for every truth 
assignment τ : B → {0, 1}; our backdoor sets are usually referred to as strong backdoor sets in the literature. For each base 
class C we consider the following problem:

C-Backdoor Set Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F has a C-backdoor set of cardinality at most k?

Let B be a C-backdoor set of a CNF formula F . B is smallest if F has no C-backdoor set that is smaller than B; B is 
minimal if F has no C-backdoor set that is a proper subset of B . We say that a set W of variables of F is a C-backdoor 
branching set for a set B ′ ⊆ v(F ), if every C-backdoor set for F that contains B ′ also contains at least one variable from W . 
The following proposition lies at the heart of the FPT-algorithms for C-Backdoor Set (which is also known to be NP-hard 
for every base class C = ⋃

D∈D′ D [15], where D′ ⊆ D and D′ 
= ∅), given by Gaspers et al. [38] and constitutes a crucial 
prerequisite for our algorithms for backdoor trees and backdoor DNFs.

Proposition 1 ([38]). Let F be a CNF formula, B ⊆ v(F ), and C ∈ {2CNF, Horn, Horn−1, 2CNF∪Horn, 2CNF∪Horn−1}. Then, there 
is an algorithm that in time O(2|B||F |) computes a C-backdoor branching set W for B such that:
3
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• |W | ≤ 3 if C = 2CNF,
• |W | ≤ 2 if C ∈ {Horn, Horn−1}
• |W | ≤ 5 if C ∈ {2CNF ∪ Horn, 2CNF ∪ Horn−1}.

Note, however, that RHorn-Backdoor Set is W[2]-hard [40] and 2CNF{}-Backdoor Set, Horn
{}-Backdoor Set, and 

Horn−1
{}-Backdoor Set are W[1]-hard [65].

2.5. Backdoor trees

A binary decision tree (DT) is a rooted binary tree T . Every inner node of T is assigned a variable, denoted by v(t), and 
has exactly one left and one right child, which correspond to setting the variable to 0 or 1, respectively. Moreover, every 
variable occurs at most once on any root-to-leaf path of T . We denote by v(T ) the set of all variables assigned to any node 
of T and we define the size of a T be the number of nodes of T . Finally, we associate with each node t of T , the truth 
assignment τt that is defined on all the variables v(P ) occurring on the unique path P from the root of T to t such that 
τt(v) = 0 (τt(v) = 1) if v ∈ v(P ) \ {v(t)} and P contains the left child (right child) of the node t′ on P with v(t′) = v .

Let C be a base class, F a CNF formula, and T a DT with v(T ) ⊆ v(F ). Then T is a C-backdoor tree of F if F [τv ] ∈ C for 
every leaf v of T . A C-backdoor tree T of F with the smallest number of leaves (in the following, let |T | denote the number 
of leaves), is a smallest C-backdoor tree of F . We consider the following parameterized problem:

C-Backdoor Tree Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F have a C-backdoor tree with at most k leaves?

We need the following auxiliary lemma that can be shown using a simple brute force-algorithm.

Lemma 1. Let A be a set of variables of size a. Then the number of DTs of size at most s that use only variables in A is at most a2s+1

and those can be enumerated in time O(a2s+1).

Proof. We start by counting the number of trees T with n nodes that can potentially underlie a DT with n nodes. Note 
that there is one-to-one correspondence between trees T that underlie a DT with n nodes and unlabelled rooted ordered 
binary trees with n nodes (where ordered refers to an ordering of the at most 2 child nodes). Since it is known that the 
number of unlabelled rooted ordered binary trees with n nodes is equal to the n-th Catalan number Cn and that those 
trees can be enumerated in time O(Cn) [64], we already obtain that we can enumerate all of the at most Cn possible 
trees T underlying a DT of size n in time O(Cn). Therefore, there are at most sCs possible trees of size at most s that 
can underlie a DT with at most s nodes and those can be enumerated in time O(sCs). It now remains to bound the 
number of possible variable assignments v(t) for these trees. Since we can assume that a ≥ 2, we obtain that the number of 
possible variable assignments of a tree T with n nodes is at most an . Taking everything together, we obtain that there are 
at most sCsas ≤ s4sas ≤ a2s+1 many DTs of size at most s using only variables in A and those can be enumerated in time 
O(a2s+1). �

We will need the following auxiliary proposition showing that computing a smallest C-backdoor tree can be done effi-
ciently if the set of allowed variables is small.

Proposition 2. Let B be a C-backdoor set for a CNF formula F for some base class C . Then, a smallest C-backdoor tree for F using only 
variables in B can be computed in time |B|2|B|+1|F |O(1) .

Proof. Note that every C-backdoor tree for F that uses only variables in B can have size at most 2|B| . Moreover, given a 
DT T using only variables from B , we can test in time (|T | − 1)|F |O(1) , whether T constitutes a C-backdoor tree for F by 
testing for each leaf l of T whether F [τl] ∈ C (which can be achieved in time |F |O(1)).

Lemma 1 now shows that we can enumerate all DTs using only variables in B in time O(|B|2|B|+1). Therefore, we can 
find the smallest C-backdoor tree for F by enumerating all DTs using only variables in B and testing for each of them 
whether they form a C-backdoor tree for F in the stated running time. �
3. Backdoor DNFs

For a truth assignment τ : X → {0, 1} we denote by Dτ the term that is satisfied by τ , i.e.,

Dτ = { x : x ∈ X, τ (x) = 1 } ∪ {¬x : x ∈ X, τ (x) = 0 }.
Let F be a CNF formula and G a set of partial truth assignments defined on subsets of v(F ). We call G a C-backdoor DNF 

for F if (i) for each τ ∈ G , F [τ ] ∈ C , and (ii) GDNF = { Dτ : τ ∈ G } is a tautology. We say that G is a smallest C-backdoor DNF 
for F if |G| is minimal over all C-backdoor DNFs for F . Moreover, we say that G is term-minimal if F [τ ′] /∈ C for every proper 
4
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sub-assignment τ ′ of an assignment τ ∈ G . We denote by v(G) the set of all variables used by G , i.e., v(G) = ⋃
τ∈G v(τ ). We 

consider the following parameterized problem:

C-Backdoor DNF Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F have a C-backdoor DNF of size at most k?

If C is a base class and one is given a C-backdoor DNF G for a CNF formula F , then one can decide whether F is 
satisfiable (and if so compute a satisfying assignment for F ) in time |G|(|F |)O(1) by testing satisfiability of the reduced 
formula F [τ ] (in time |F |O(1)) for every assignment τ ∈ G .

Because the set { τl : l ∈ L } is a C-backdoor DNF for F for every C-backdoor tree for F where L is the set of leaves 
of T , one can consider backdoor trees as restricted version of backdoor DNFs (similar to how backdoor sets are a restricted 
version of backdoor trees). However, backdoor DNFs can be smaller by an arbitrary number than backdoor trees (which 
in turn can be smaller by an arbitrary number than backdoor sets as shown in [59]), which makes them better suited as 
shortcuts to tractability for Boolean Satisfiability, as shown by the following theorem; we conjecture that it is possible to 
show that there is an exponential difference in the size of backdoor DNFs and backdoor trees are, however, at the moment 
unable to show this. This theoretical result is also strongly reflected in our experimental evaluation in Section 5.

Theorem 1. For every s ≥ 1, there is a CNF formula F s, whose size is polynomial in s, such that a smallest Horn-backdoor DNF for F s

contains at least s − 2 fewer variables than a smallest Horn-backdoor tree for F s.

Proof. For every s ≥ 1, we will construct a CNF formula F s such that:

• F s has a Horn-backdoor DNF of size s + 2 but
• a smallest Horn-backdoor tree for F s has size 2s.

This then implies the theorem.
Let r = 2s and F s be the CNF formula with variables {x1, . . . , xs} ∪ { h j

i : 0 ≤ i ≤ s ∧ 1 ≤ j ≤ r } containing the following 
clauses:

• the clause C j
P = {x1, . . . , xs, h

j
0} for every j with 1 ≤ j ≤ r and

• the clause C j
i = {¬x1, ¬x2, . . . , ¬xs} \ {¬xi} ∪ {xi} ∪ {h j

i } for every i and j with 1 ≤ i ≤ s and 1 ≤ j ≤ r.

Let Gs be the set containing the following assignments (of {x1, . . . , xs}):

• the assignment (x1 = 1, . . . , xs = 1),
• the assignment (x1 = 0, . . . , xs = 0) and
• the assignment (xi = 0, xi mod s+1 = 1) for every i with 1 ≤ i ≤ s.

We start by showing that Gs is a Horn-backdoor DNF for F s . Clearly, Gs
DNF is a tautology. Moreover, F [(x1 = 1, . . . , xs =

1)] ∈ Horn and F [(x1 = 0, . . . , xs = 0)] ∈ Horn, since both assignments set all but one positive literal of every clause in 
F s . Now consider the assignment τi = (xi = 0, xi+1 mod s = 1) for i with 1 ≤ i ≤ s. Then, τi clearly satisfies the clauses 
C j

P = {x1, . . . , xs, h
j
0}. Moreover, τi also satisfies the clauses C j

l for every l 
= i since xi occurs negatively in those clauses. 
Therefore, it only remain the clauses C j

i , which are not satisfied by τi , but C j
i [τi] ∈ Horn since it has only one positive 

literal, i.e., the literal h j
i .

We now show that F s has indeed a Horn-backdoor tree of size at most 2s. To see this consider the DT T s having the 
following leaves:

• one leaf l0 with τl0 = (x1 = 0, . . . , xs = 0),
• one leaf li

0 with τli0
= (x1 = 0, . . . , xi−1 = 0, xi = 1) for every i with 1 < i ≤ s,

• one leaf l1 with τl1 = (x1 = 1, . . . , xs = 1) and
• one leaf li

1 with τli1
= (x1 = 1, . . . , xi−1 = 1, xi = 0) for every i with 1 < i ≤ s.

Informally, T s consists of two paths, one for the all zero and one for the all one assignment, containing nodes for all 
variables x1, . . . , xs starting at the root, which is labelled with x1. Then, T s is easily seen to be a Horn-backdoor tree for F , 
since we have already shown that F [τl] ∈ Horn for any leaf of T s , when we showed that Gs is a Horn-backdoor DNF. Since 
|T s| = 2s it only remains to show that there is no smaller Horn-backdoor tree for F .

Towards showing this, let T be any minimal Horn-backdoor tree for F . Then, w.l.o.g., we can assume that v(T ) ⊆
{x1, . . . , xs} since if h j

i ∈ v(T ), then we also need that h�
i ∈ v(T ) for any � with 1 ≤ � ≤ r, which implies that |T | > r = 2s. Let 

l0 be the leaf of T reached from the root by always choosing the left child and let l1 be the leaf of T reached from the root 
5
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by always choosing the right child. Then, τl0 is the all zero assignment for some subset X0 ⊆ {x1, . . . , xs} and similarly τl0 is 
the all one assignment for some subset X1 ⊆ {x1, . . . , xs}. We claim that X0 = X1 = {x1, . . . , xs}, which implies that T has size 
at least 2s. Suppose not, then X0 misses a variable xi0 or X1 misses a variable xi1 . In the former case, F [τlo ] /∈ Horn because 
it contains the clauses C j

P each having at least two positive literals (xi0 and h j
0). Similarly, in the latter case, F [τl1 ] /∈ Horn

because it contains the clauses C j
i1
[τl1 ] each having exactly two positive literals (xi1 and h j

i1
). �

We will need the following observations for our algorithms, showing that the variables of a backdoor DNF (or backdoor 
tree) always form a backdoor set together with a simple bound on the number of variables used by a backdoor DNF (or 
backdoor tree).

Observation 1. Let G be a C-backdoor DNF of a CNF formula F . Then, v(G) is a C-backdoor set. Similarly, if T is a C-backdoor tree for 
F , then v(T ) is a C-backdoor set.

Proof. The observation for backdoor trees was already shown in [59]. Assume for a contradiction that this is not the case, 
i.e., there is an assignment τ : v(G) → {0, 1} such that F [τ ] /∈ C . Because GDNF is a tautology, there is an assignment τ ′ ∈ G
that is consistent with τ . Therefore, F [τ ′] /∈ C because neither is F [τ ], contradicting our assumption that G is a C-backdoor 
DNF of F . �
Observation 2. For each C-backdoor DNF or C-backdoor tree G of a CNF formula F we have |v(G)| ≤ |G| − 1.

Proof. The observation for backdoor trees was already shown in [59]. For backdoor DNFs it follows because GDNF is a 
tautological DNF. �

Analogously to Proposition 2 for backdoor trees, the next result asserts that computing a smallest C-backdoor DNF can 
be done efficiently if the set of allowed variables is small.

Proposition 3. Let B be a C-backdoor set for a CNF formula F . Then, a smallest C-backdoor DNF for F containing only variables in B
can be computed in time O(23|B|+1 + 3|B||F |O(1)).

Proof. We first compute the set A of all partial assignments α : B ′ → {0, 1} with B ′ ⊆ B such that F [α] ∈ C in time 
3|B||F |O(1) . Then, clearly any C-backdoor DNF for F is a subset of A. Therefore, we can obtain a smallest C-backdoor DNF 
for F by enumerating all of the at most 23|B|

subsets of A and checking for each of them whether it constitutes a C-backdoor 
DNF for F . We then return the smallest such subset of A. Note that testing whether a given subset A of A is a C-backdoor 
DNF can be achieved by testing whether the formula ADNF is a tautology in time O(2|B|). Therefore, the total run-time of 
our algorithm is as stated. �
4. Finding backdoor DNFs and backdoor trees

In this section, we will provide a complete classification of the parameterized complexity of C-Backdoor Tree and 
C-Backdoor DNF for every base class C such that C = ⋃

D∈D′ D , where D′ ⊆ D and D′ 
= ∅. In particular, we will show 
that both problems are fixed-parameter tractable if and only if C 
= Horn ∪ Horn−1 (assuming that FPT 
= W[2]). We start 
by giving our FPT-algorithms and then show that both problems are W[2]-hard for the case that C = Horn ∪ Horn−1.

Let D+ be the set of all these base classes, i.e., D+ = {2CNF, Horn, Horn−1, 2CNF ∪ Horn, 2CNF ∪ Horn−1}. Note first 
that using Propositions 2 and 3, both problems are easily seen to be in XP for any base class C . This is because there are 
at most |v(F )|k sets of variables that can be used by a backdoor DNF (or backdoor tree) of size at most k and for each of 
those sets, we can compute a smallest backdoor DNF (or backdoor tree) that uses only those variables in FPT-time. This 
also illustrates that the main challenge that we have to overcome is to design an FPT-procedure to enumerate all sets of 
variables that can potentially be used by a smallest backdoor DNF (or backdoor tree). Given Observation 1, one might think 
that any smallest backdoor DNF (or backdoor tree) uses only the variables of a smallest backdoor set, which if it were true 
would already provide us with such an FPT-procedure since Proposition 1 can be easily employed to enumerate all minimal 
backdoor sets of size at most k in FPT-time. Unfortunately, this is not the case as asserted by the following theorem.

Theorem 2. For every C ∈D+ and every s ≥ 1, there is a CNF formula FC
s , whose size is exponential in s, such that FC

s has a C-backdoor 
DNF (C-backdoor tree) of size s + 2, but any C-backdoor DNF (C-backdoor tree), whose variables form a minimal C-backdoor set for 
FC

s , has size at least 2s.

Proof. We start by showing the lemma for the case that C = Horn. F Horn

s has variables {p, a1, . . . , as} ∪ { q j : 1 ≤ j ≤ r }, 
where r = 2s − s and the following clauses:
6



S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
• a clause {ai, p} for every 1 ≤ i ≤ s and
• the clauses {a1, . . . , as, q j, ¬p} for every 1 ≤ j ≤ r.

We first show that F Horn

s has only two types of minimal Horn-backdoor sets, namely, the set B = {a1, . . . , as} and the 
sets Bi = B \ {ai} ∪ {p, q1, . . . , qr} for every i with 1 ≤ i ≤ s. This is because:

• no proper subset of B is a Horn-backdoor set for F Horn

s because of the clauses {ai, p},
• any Horn-backdoor set can miss at most one variable of B (because of the clause {a1, . . . , as, q1, ¬p}), and
• any Horn-backdoor that misses one variable in B has to contain p (because of the clauses {ai, p}) and also every q j

(because of the clauses {a1, . . . , as, q j, ¬p}).

Therefore, every minimal Horn-backdoor set that is not B has size at least s − 1 + 2s − s + 1 = 2s , which together with 
Observation 1 implies that any Horn-backdoor tree and Horn-backdoor DNF that uses only variables in Bi for some i has 
size at least 2s .

We now show that the same applies also to every Horn-backdoor tree and every Horn-backdoor DNF that uses only the 
variables in B , i.e., that it has size at least 2s . This is because F Horn

s [α] /∈ Horn for every partial assignment α : B ′ → {0, 1}, 
where B ′ � B (because of the clause {ai, p}, where ai ∈ B \ B ′). Therefore, every leaf of a Horn-backdoor tree and similarly 
every term of a Horn-backdoor DNF has to assign all variables in B , which implies that its size is at least 2s .

It only remains to show that F Horn

s has a Horn-backdoor tree and a Horn-backdoor DNF of size at most s + 2.
Towards showing this, let T be the DT with variable p at its root. Because F [(p = 0)] ∈ Horn, the left child of p in T is 

a leaf. Moreover, because F [(p = 1)] only consists of the clauses {a1, . . . , as, qi, ¬p}, we obtain that T can be completed to a 
Horn-backdoor tree for F Horn

s by adding a path of lengths s to the right child of p in T , whose variables are a1, . . . , as such 
that the node of variable ai is the left child of the node of variable ai−1 and the right child of the node of variable ai is a 
leaf (since setting ai to 1 satisfies all remaining clauses in F [(p = 1)]. Clearly, T has exactly s + 2 leaves, as required. Finally, 
we obtain a Horn-backdoor DNF for F Horn

s of the same size s + 2, by taking the following assignments: (1) the assignment 
(p = 0), (2) the assignment (p = 1, a1 = 0, . . . , as = 0), and (3) for every i with 1 ≤ i ≤ s the assignment (p = 1, ai = 1).

The formulas for the remaining base classes in D+ \ {2CNF} are based on a similar construction. Namely:

• F Horn−1
s is the formula obtained from F Horn

s after complementing the literals of every clause.
• F 2CNF∪Horn

s is the formula obtained from F Horn

s after adding the negated literals of (the same) 2s + 3 fresh variables to 
every clause. Note that F 2CNF∪Horn

s and F Horn still have the same Horn-backdoor DNFs (Horn-backdoor trees). More-
over, because no clause can become 2CNF by assigning at most 2s variables, it follows that any 2CNF ∪ Horn-backdoor 
DNF (2CNF ∪ Horn-backdoor tree) of size at most 2s for F 2CNF∪Horn is also a Horn-backdoor DNF (Horn-backdoor tree) 
for F 2CNF∪Horn .

• F 2CNF∪Horn−1
s is the formula obtained from F 2CNF∪Horn

s after complementing the literals of every clause.

In the case that C = 2CNF, the formula F 2CNF
s is slightly different. That is, F 2CNF

s has variables { p1, p2 } ∪ { ai : 1 ≤ i ≤
s } ∪ { q j, r j : 1 ≤ j ≤ r } for r = 2s − s and the following clauses:

• a clause {ai, p1, p2} for every i with 1 ≤ i ≤ s and
• the clauses {a1, . . . , as, q j, r j} for every j with 1 ≤ j ≤ r.

As before B = {a1, . . . , as} is a minimal 2CNF-backdoor set for F . Moreover, every 2CNF-backdoor set for F that misses 
at least one ai has to contain either p j or r j for every j with 1 ≤ j ≤ r (because of the clause {a1, . . . , as, q j, r j}). Therefore, 
every minimal 2CNF-backdoor set that is not B has size at least s + r = s + 2s − s = 2s , which together with Observation 1
implies that any 2CNF-backdoor tree and 2CNF-backdoor DNF that uses only variables in Bi for some i has size at least 2s .

We now show that the same applies also to every Horn-backdoor tree and every Horn-backdoor DNF that uses only the 
variables in B , i.e., that it has size at least 2s . This is because F [α] /∈ 2CNF for every partial assignment α : B ′ → {0, 1}, where 
B ′ � B (because of the clause {ai, p1, p2}, where ai ∈ B \ B ′). Therefore, every leaf of a 2CNF-backdoor tree and similarly 
every term of a 2CNF-backdoor DNF has to assign all variables in B , which implies that its size is at least 2s .

It only remains to show that F 2CNF
s has a 2CNF-backdoor tree and a 2CNF-backdoor DNF of size at most 2s. Towards 

showing this, let T be the DT with variable p1 at its root. Then, F [(p1 = 0)] \ 2CNF and F [(p1 = 1)] only contain the clauses 
{a1, . . . , as, q j, r j}. Let P be a path of length s whose variables are a1, . . . , as such that the node of variable ai is the left child 
of the node of variable ai−1 and the right child of the node of variable ai is a leaf (since setting ai to 1 satisfies all clauses 
{a1, . . . , as, q j, r j}). Therefore, similar to the case for C = Horn, we can complete T to a 2CNF-backdoor tree by P to the left 
and the right child of the root with variable p1. Clearly, T has exactly 2(s + 1) leaves. Finally, we obtain a 2CNF-backdoor 
DNF for F 2CNF

s of the same size 2(s +1), by taking the following assignments: (1) the assignment (p1 = 0, a1 = 0, . . . , as = 0), 
(2) the assignment (p1 = 0, ai = 1) for every i with 1 ≤ i ≤ s, (3) the assignment (p1 = 1, a1 = 0, . . . , as = 0), (4) the 
assignment (p1 = 1, ai = 1) for every i with 1 ≤ i ≤ s. �
7
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The theorem also shows that our backdoor trees can be arbitrarily smaller than the backdoor trees detected by Samer 
and Szeider’s algorithm [59], which are only allowed to use subset-minimal C-backdoor sets.

It is therefore not sufficient to enumerate all backdoor sets of a CNF formula F to identify a set of variables that is 
used by a smallest backdoor DNF (or backdoor tree). Nevertheless, Observation 1 still allows us to assume that we are 
given a backdoor set for F and as we will show next that this will be sufficient to identify all sets of variables that can 
lead to a smallest backdoor DNF (or backdoor tree). In particular, we will show next that if a smallest backdoor DNF (or 
backdoor tree) uses additional variables outside of a backdoor set, then the set of those additional variables has a special 
property (which we will later exploit to extend minimal backdoor sets), which we call useful. Let F be a CNF-formula 
and B a C-backdoor set. We say that a set U of variables is C-useful for B if U = ∅ or it holds that for every assignment 
β : U → {0, 1}, there is a partial assignment α : B ′ → {0, 1} for some B ′ ⊆ B such that F [α] /∈ C but F [α ∪ β] ∈ C; note that 
if U is C-useful for B then U \ B is also C-useful for B and therefore U can be assumed to be disjoint from B . The following 
lemma shows that the set of variables used by a minimal backdoor DNF (or minimal backdoor tree) for F that go beyond a 
backdoor set, needs to be useful.

Lemma 2. Let G be a smallest term-minimal C-backdoor DNF for F and let B be a C-backdoor set contained in v(G), then the set 
U = v(G) \ B is C-useful. If T is a smallest C-backdoor tree for F and B is a C-backdoor set contained in v(T ), then the set U = v(T ) \ B
is C-useful.

Proof. We start by showing the lemma for backdoor DNFs. If U = ∅, then there is nothing to show. Hence, assume that 
U 
= ∅ and suppose for a contradiction that the statement of the lemma does not hold. Then, there is an assignment 
β : U → {0, 1} such that F [α ∪ β] /∈ C for every assignment α : B ′ → {0, 1} with B ′ ⊆ B and F [α] /∈ C . Let G[β] be the set of 
all assignments in G that are consistent with β , which is non-empty because GDNF is a tautology. If there is no assignment 
in G[β] that assigns at least one variable in U , then G[β]DNF is again a tautology and therefore G[β] is a C-backdoor DNF 
for F , which because U 
= ∅ is smaller than G contradicting our assumption that G was minimal. Therefore, G[β] contains 
an assignment τ that is defined on at least one variable of U . Let τ ′ be the restriction of τ to variables in B . Then, F [τ ′] ∈ C
and therefore G \ {τ } ∪ {τ ′} is a C-backdoor DNF for F , contradicting our assumption that G is term-minimal.

It remains to show the lemma for the case of backdoor trees. If U = ∅, then there is nothing to show. Hence, assume 
that U 
= ∅ and suppose for a contradiction that the statement of the lemma does not hold. Then, there is an assignment 
β : U → {0, 1} such that F [α ∪ β] /∈ C for every assignment α : B ′ → {0, 1} with B ′ ⊆ B and F [α] /∈ C . We will show a 
contradiction to our assumption that T has minimum size. To achieve this, consider the tree T ′ obtained from T as follows.

• For every inner node t of T with v = v(t) ∈ U , let c be the left child of t if β(v) = 1 and let c be the right child of 
t otherwise. Remove the subtree rooted at c from T and let T ′′ be the tree obtained from T after applying this step 
exhaustively. Note that every node t of T ′′ with v(t) ∈ U has exactly one child node.

• Let P be a path of maximum length in T ′′ consisting only of nodes t with v(t) ∈ U . We obtain the tree T ′′|P by 
contracting the path P in T , i.e., we remove all nodes on P from T ′′ and if P does not contain the root of T ′′ we 
additionally add an edge between the unique parent and the unique child of the two endpoints of P in T ′′ . Then T ′ is 
the tree obtained from T ′′ after exhaustively contracting all maximal paths P in T ′′ that only consists of nodes t with 
v(t) ∈ U .

Note that every non-leaf node t in T ′ has exactly two children and moreover v(t) ∈ B . We now show that T ′ is also 
C-backdoor tree for F , which, because U 
= ∅, contradicts our assumption that T had minimum size. Suppose for a con-
tradiction that this is not the case, i.e., there is a leaf l′ of T ′ such that F [τl′ ] /∈ C and let l be the unique leaf in T that 
corresponds to l′ . Then F [τl′ ∪ β] /∈ C and since τl is a sub-assignment of τl′ ∪ β also F [τl] /∈ C contradicting our assumption 
that T is a C-backdoor tree for F . �

We will show next how we can efficiently find C-useful sets for B for a given C-backdoor set B of a CNF formula F . We 
say that a set A of variables of F is a C-branching set for B if A ∩ U 
= ∅ for every C-useful set U for B . As we will see later, 
all we need to find C-useful sets for B is to be able to compute “small” C-branching sets efficiently (i.e., FPT parameterized 
by |B|). The following lemma shows this for all base classes in D+ .

Lemma 3. Let C ∈D+ and let B be a C-backdoor set for a CNF formula F . Then, a C-branching set A such that:

• |A| ≤ 2 · 3|B| (if C = 2CNF),
• |A| ≤ 3|B| (if C ∈ {Horn, Horn−1}), and
• |A| ≤ 5 · 3|B| (if C ∈ {2CNF ∪ Horn, 2CNF ∪ Horn−1})

can be computed in time O(3|B||F |).

Proof. We start by showing the statement of the lemma for the case that C = 2CNF. Let U be a C-useful set for B , let β :
U → {0, 1} be an arbitrary assignment for U . Because U is C-useful, there is an assignment α : B ′ → {0, 1} with B ′ ⊆ B such 
8
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that F [α] /∈ 2CNF but F [α ∪ β] ∈ 2CNF. Therefore, U has to contain at least one variable from every clause in F [α] \ 2CNF. 
Therefore, every C-useful set U for B has to contain at least one variable from every clause C in F [α] \ 2CNF for some 
assignment α : B ′ → {0, 1} with F [α] /∈ 2CNF. Since B is also a deletion 2CNF-backdoor set, it holds that every such clause C
contains at most two variables that are not in B . Therefore, we obtain the C-branching set A by adding the at most two 
variables not in B of an arbitrary clause in F [α] \ 2CNF for every assignment α : B ′ → {0, 1} with F [α] /∈ 2CNF.

We now show the statement of the lemma for the case that C ∈ {Horn, Horn−1}. In particular, we give the proof for the 
case that C = Horn; the case for C = Horn−1 is analogously.

Let α : B ′ → {0, 1} with B ′ ⊆ B be a partial assignment of B such that F [α] /∈ Horn. We denote by P (α) the set of all 
variables that occur positively in a clause in F [α] \ Horn but are not in B . We claim that every C-useful set U for B has 
to contain all variables in P (α) for some assignment α as above. This then shows the statement of the lemma because we 
can obtain a branching set A of size at most 3|B| by choosing an arbitrary variable from P (α) for every α : B ′ → {0, 1} with 
B ′ ⊆ B and F [α] /∈ Horn.

Suppose for a contradiction that this is not the case and let U be a C-useful set for B such that P (α) 
⊆ U for every 
assignment α : B ′ → {0, 1} with F [α] /∈ Horn. Let β : U → {1} the assignment setting all variables in U to 1. Because U
is C-useful for B , there is a partial assignment α : B ′ → {0, 1} for B such that F [α] /∈ Horn but F [α ∪ β] ∈ Horn. Because 
P (α) 
⊆ U , there is a variable p ∈ P (α) \ U and a clause C ∈ F [α] \ Horn such that all positive literals in C are from B ∪ {p}; 
this is because B is also a deletion Horn-backdoor set for F and therefore every clause in F − B contains at most one 
positive literal. Hence, β only assigns negative literals of C to 1 and it follows that C[α ∪ β] /∈ Horn, contradicting our 
assumption that F [α ∪ β] ∈ Horn.

We now show the statement of the lemma for the case that C = 2CNF ∪ Horn, the proof for the case that C = 2CNF ∪
Horn−1 is analogously.

We first show that because B is a C-backdoor set for F , it holds that every clause of F contains at most |B| + 2 positive 
literals.

Claim 1. Every clause of F contains at most 2 positive literals, whose variables are not in B.

Proof. Assume this is not the case and let C be a clause of F containing at least three positive literals, whose variables are 
not in B . Let α : B → {0, 1} be any assignment that does not satisfy C . Then, C[α] ∈ F [α] and C[α] contains at least three 
positive literals, which implies that F [α] /∈ C , contradicting our assumption that B is a C-backdoor set for F . �

Let α : B ′ → {0, 1} be a partial assignment of B with B ′ ⊆ B such that F [α] /∈ C . Then, one of the following conditions 
holds:

(1) F [α] contains a clause C that is not in C or
(2) F [α] contains two clauses C and C ′ such that C ∈ 2CNF \ Horn and C ′ ∈ Horn \ 2CNF.

Let Pα be the set of variables such that either:

• If F [α] satisfies (1), let C be an arbitrary clause in F [α] \ C . Moreover, let W be the set of at most two variables 
corresponding to positive literals of C that are not in B; the fact that there are at most two such variables follows from 
Claim 1. Then, Pα is any set of exactly three variables of C containing W .

• If F [α] satisfies (2), let C and C ′ be two arbitrary clauses in F [α] with C ∈ 2CNF \ Horn and C ′ ∈ Horn \ 2CNF. Let W
be the set of at most two variables corresponding to positive literals of C ′ that are not in B; the fact that there are at 
most two such variables follows from Claim 1 and let W ′ be the set of any three variables of C containing W . Then, 
Pα is equal to v(C) ∪ W ′ .

Note that Pα can easily be computed in polynomial-time for any α and |Pα | ≤ 5. We claim that the set A obtained as the 
union of all sets Pα for every α : B ′ → {0, 1} with B ′ ⊆ B and F [α] /∈ C is a C-branching set for B , which concludes the 
proof of the statement of the lemma.

Towards showing this claim, let U be a C-useful set for B and let β1 : U → {1} be the assignment for U ⊆ v(F ) setting all 
variables to 1. Because U is C-useful, there is an assignment α : B ′ → {0, 1} with B ′ ⊆ B such that F [α] /∈ C but F [α∪β1] ∈ C . 
We distinguish two cases:

• F [α] satisfies (1), then there is a clause C in F [α] \ C such that Pα contains 3 variables of C including all variables 
occurring positively in C and are not in B . Because F [α ∪ β1] ∈ C , we obtain that either:
– C is satisfied by β1. This implies that U contains at least one variable corresponding to a positive literal in C ; this is 

because β1 sets every variable in U to 1. Therefore, U contains at least one variable from Pα .
– C is not satisfied by β1. In this case U cannot contain any variables that correspond to positive literals in C . Because 

C[β1] ∈ C , we obtain that either:
∗ C[β1] ∈ 2CNF, which implies that |C | ≤ 2 + |U | and U contains all but at most two variables of C and therefore at 

least one variable from Pα , or
9



S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
Algorithm 1 Main method for finding a smallest backdoor DNF.
Input: CNF formula F , subset B ⊆ v(F ), and integer k
Output: a smallest C-backdoor DNF for F using at least the variables in B having size at most k if it exists, otherwise nil

1: function MINBDNF(F , k, B)
2: Gmin ← “compute a smallest C-backdoor DNF for F using only

variables in B using Proposition 3”
3: if |B| ≥ k − 1 then
4: if Gmin = nil or |Gmin| ≤ k then
5: return Gmin

6: return nil
7: if B is not a C-BS for F then
8: A ← “compute a C-backdoor branching set for B

using Proposition 1”
9: else

10: A ← “compute a C-branching set for B using Lemma 3
11: for v ∈ A do
12: G ←minBDNF(F , k, B ∪ {v})
13: if G 
= nil and |G| < |Gmin| then
14: Gmin ← G

15: if |Gmin| ≤ k then return Gmin

16: return nil

∗ C[β1] ∈ Horn, which is not possible because C /∈ Horn and U contains no variables corresponding to positive 
literals of C .

Therefore, if F [α] satisfies (1), we obtain that U contains at least one variable from Pα .
• Otherwise, there are clauses C and C ′ in F [α] with C ∈ 2CNF \ Horn and C ′ ∈ Horn \ 2CNF such that Pα contains all 

variables of C and exactly 3 variables of C ′ including all variables that occur positively in C ′ and are not in B . Because 
F [α ∪ β1] ∈ C , we obtain that either:
– U contains at least one variable of C and therefore from Pα or
– F [α ∪ β1] ∈ 2CNF and therefore either:

∗ C ′ is satisfied by β1 and therefore U contains at least one variable corresponding to a positive literal from C ′ and 
therefore at least one variable from Pα or

∗ C ′ is not satisfied by β1 but C ′[β1] ∈ 2CNF. Therefore, |C ′| ≤ 2 + |U | and U contains all but at most two variables 
of C and therefore at least one variable from Pα .

Therefore, if F satisfies (2), we obtain that U contains at least one variable from Pα .

This shows that U contains at least one variable from Pα and therefore A is a C-branching set for B . �

Algorithm 2 Main method for finding a smallest C-backdoor tree.
Input: CNF formula F , subset B ⊆ v(F ), and integer k
Output: a smallest C-backdoor tree for F using at least the variables in B of size at most k if it exists, otherwise nil

1: function MINBT(F , k, B)
2: Tmin ← “compute a smallest C-backdoor tree for F using only

variables in B using Proposition 2”
3: if |B| ≥ k then
4: if Tmin = nil or |Tmin| ≤ k then
5: return Tmin

6: return nil
7: if B is not a C-BS for F then
8: A ← “compute a C-backdoor branching set for B

using Proposition 1”
9: else

10: A ← “compute a C-branching set for B using
Lemmas 3”

11: for v ∈ A do
12: T ←MINBT(F , k, B ∪ {v})
13: if T 
= nil and |T | < |Tmin| then
14: Tmin ← T

15: if Tmin = nil or |Tmin| ≤ k then return Tmin

16: return nil
10



S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
We are now ready to show our main tractability result.

Theorem 3. Let C ∈D+ . Then, the problems C-Backdoor DNF and C-Backdoor Tree are fixed-parameter tractable.

Proof. We start by presenting the algorithm for C-Backdoor DNF, which is illustrated in Algorithm 1. Given a CNF formula 
F , a subset B ⊆ v(F ), and an integer k, the main function minBDNF behind the algorithm computes a smallest C-backdoor 
DNF for F that uses at least the variables in B and has size at most k; if no such C-backdoor DNF exists, the algorithm 
returns nil. To solve C-Backdoor DNF, the function minBDNF needs to be called with B being the emptyset.

The algorithm starts by computing a smallest C-backdoor DNF for F that uses only the variables in B using Proposition 3; 
if no such C-backdoor DNF exists because B is not a C-backdoor set, Gmin is set to nil. The algorithm then checks whether 
the size of B is already maximal, i.e., if |B| ≥ k −1 then no more variables can be added to B since every C-backdoor DNF of 
size at most k uses at most k − 1 variables (Observation 2). If so, the best C-backdoor DNF already found for B is returned 
provided it has size at most k. Otherwise, the algorithm checks in Line 7, whether B is already a C-backdoor set. If not 
the algorithm computes a C-backdoor branching set for B using Proposition 1 to ensure that a C-backdoor set is eventually 
obtained. Otherwise, the algorithm computes a C-branching set in Line 10 using Lemma 3. This ensures that in this case 
only variables belonging to a C-useful set for B are added. After computing the respective branching set and storing it in 
the variable A, the algorithm now branches on the variables in A and for every such variable v ∈ A, the algorithm calls itself 
recursively for F , k, and B updated by adding the variable v . If any of these recursive calls returns a smaller C-backdoor 
DNF than the current best, the algorithm stores the new best backdoor DNF in the variable Gmin . Finally, the algorithm 
returns the best C-backdoor DNF if it has size at most k and otherwise it returns nil.

Towards showing the correctness of the algorithm consider the case that F has a C-backdoor DNF of size at most k and 
let G be a smallest such C-backdoor DNF. Because of Observation 2, |v(G)| ≤ k − 1. Moreover, because of Observation 1, v(G)

contains a minimal C-backdoor set say S of size at most k − 1. We first show that the algorithm is called for B = S . This 
is because as long as the set B is not a strong C-backdoor set, the algorithm branches on the variables inside a C backdoor 
branching set A, which by definition must also contains a variable from S \ B . If v(G) = S , then the call of minBDNF for 
B = S already finds a C-backdoor DNF of size |G| in Line 2, which will eventually be returned. Otherwise, we obtain from 
Lemma 2 that v(G) \ S is C-useful for S , and it remains to show that the algorithm is eventually called for B = v(G). To see 
this consider the calls following the call where B = S . Since B is already a C-backdoor set, the algorithm now branches on 
all variables of a C-branching set A for B , which by definition must also contain a variable of v(G) \ B . Finally, it is easy to 
see that any solution returned by the algorithm is a C-backdoor DNF of size at most k. This is because Gmin is only updated 
in Line 2 and only returned if its size is at most k.

It remains to analyse the runtime of the algorithm. Since every execution of minBDNF leads to at most |A| recursive 
calls, each recursive call adds at least one variable to B and the algorithm stops whenever |B| ≥ k − 1, we obtain that 
the algorithm makes at most |A|k−1 recursive calls. Moreover, the time required for one call of minBDNF is easily seen 
to be dominated by the time required by Line 2 to compute a smallest C-backdoor DNF for F using only variables in 
B using Proposition 3, which is at most O(23|B|+1 + 3|B||F |O(1)). Therefore, the total runtime of the algorithm is at most 
O(|A|k−1(23|B|+1 + 3|B||F |O(1)), which because |A| is bounded by a function of k (for all classes C ∈ D+ due to Lemma 3) 
shows that C-Backdoor DNF is in FPT.

The algorithm for C-Backdoor Tree is illustrated in Algorithm 2. The algorithm works very similar to the algorithm for 
C-Backdoor DNF with the only difference being that Line 2 uses Proposition 2 (instead of Proposition 3) to compute a 
smallest C-backdoor tree for F that uses exactly the variables in B . �

The following theorem, whose proof is based on a reduction by Gaspers et al. [38], shows that the problems are 
W[2]-hard for the only class C = Horn ∪ Horn−1.

Theorem 4. Let C = Horn ∪ Horn−1 . Then, the problems C-Backdoor Tree and C-Backdoor DNF are W[2]-hard.

Proof. We give a parameterized reduction from the W[2]-complete Hitting Set problem, which given a family W of subsets 
of a set U and an integer k, asks whether W has a hitting set H ⊆ U with |H | ≤ k, i.e., H ∩ W 
= ∅ for every W ∈ W . Given 
an instance (W, U , k) for Hitting Set, we construct a formula F as follows. The variables of F are U ∪{ d1

W , . . . , d|U\W |
W : W ∈

W }. For each set W ∈W , there is one clause CW = W ∪ { d1
W , . . . , d|U\W |

W }. There is also one clause CU = {¬u : u ∈ U }. This 
completes the description of the reduction.

We claim that W has a hitting set of size at most k if and only if the formula F has a C-backdoor tree/backdoor DNF of 
size at most k + 1. Suppose X = {x1, . . . , xl} ⊆ U , |X | ≤ k, is a hitting set for W .

Let G = {(x1 = 1, . . . , x� = 1), (x1 = 0), . . . , (x� = 0)}. Moreover, let T be the DT that consists of a path on nodes with 
variables x1, . . . , x� such that the node with variable xi is the right child of the node with variable xi−1 and the left child 
of every node is a leaf. We claim that T is a C-backdoor tree and that G is a C-backdoor DNF, which completes the proof 
for the forward direction since |T | = |G| = k + 1. Towards showing that T is a C-backdoor tree for F consider a leaf l of T . 
Then, either τl = (xi = 0) for some i with 1 ≤ i ≤ � or τl = (x1 = 1, . . . , x� = 1). In the former case, τl satisfies the clause 
CU and therefore F [τl] ∈ Horn−1 since every other clause contains no negative literals. In the latter case, τl satisfies every 
11
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Table 1
Comparison between backdoor DNFs and backdoor trees for several classes and 
groups of instances. |BDNF|/|BT| is the average ratio between the number of 
terms of the computed backdoor DNF and the number of leaves of the com-
puted backdoor tree, σ 2 is the variance. Size shows the average number of 
variables/clauses; Total shows the number of instances for which a backdoor 
DNF could be computed.

Group Size Total |BDNF|/|BT| σ 2 Class

ais 87/1051 2/2 8.5 · 10−3 1.3 · 10−4
Horn

{}
61/581 1/1 1.7 · 10−2 0.0 · 100

RHorn
{}

blocksworld 82/607 2/2 2.6 · 10−1 3.5 · 10−2
Horn

{}
82/607 2/2 2.4 · 10−1 2.7 · 10−2

RHorn
{}

daimler 1407/1887 3/3 3.2 · 10−1 4.3 · 10−3
Horn

{}
1667/3977 18/18 4.1 · 10−1 2.2 · 10−1

RHorn
{}

flat 150/545 99/99 1.5 · 10−3 5.6 · 10−6
Horn

{}
150/545 97/99 6.4 · 10−4 9.4 · 10−8

RHorn
{}

inductive 288/5077 16/16 5.4 · 10−1 1.0 · 10−1
Horn

{}
655/9649 41/41 1.1 5.6 · 10−1

RHorn
{}

parity 201/803 10/10 9.5 · 10−1 3.6 · 10−1
Horn

{}
70/277 5/5 1.1 5.0 · 10−2

RHorn
{}

pigeon 74/322 5/5 3.0 · 10−3 2.7 · 10−5
Horn

{}
49/169 2/2 1.2 · 10−2 1.4 · 10−4

RHorn
{}

pret 105/280 8/8 3.6 · 10−5 1.3 · 10−9
Horn

{}
160 4/4 3.2 · 10−5 4.5 · 10−12

RHorn
{}

tw 222/965 9/12 5.6 · 10−1 2.7 · 10−1
Horn

{}
125/433 5/6 6.1 · 10−1 4.4 · 10−2

RHorn
{}

vc 175/355 38/38 5.3 · 10−1 1.5 · 10−1
Horn

{}
175/355 38/38 5.5 · 10−1 1.5 · 10−1

RHorn
{}

clause CW for W ∈W because X is a hitting set for W . Therefore, F [τl] ∈ Horn since the only remaining clause CU has no 
positive literals. This shows that T is indeed a C-backdoor tree for F and moreover it also shows that F [τ ] ∈ C for every 
τ ∈ G . Moreover, since GDNF is a tautology, we also obtain that G is a C-backdoor DNF for F .

For the other direction, first suppose that T is a C-backdoor tree of size at most k + 1. Let l be the leaf of T that 
corresponds to setting all variables to 1 and let X be the set of variables that occur in T on the path from the root of T
to l. Then, τl does not satisfy CU , which implies that F [τl] /∈ Horn and therefore τl has to satisfy every clause CW for every 
W ∈ W . Therefore, the set X ′ obtained from X by replacing each di

W ∈ X for any i with 1 ≤ i ≤ |U \ W | by some variable 
from W is a hitting set of W , which because |X ′| = |X | ≤ |T | − 1 completes the argument for backdoor trees.

Now suppose that G is a C-backdoor DNF of size at most k + 1. Let τ be any assignment in G that is consistent with 
the assignment of v(G) that sets all variables to 1; τ must exists because GDNF is a tautology. Then, τ does not satisfy CU , 
which implies that F [τl] /∈ Horn and therefore τ has to satisfy every clause CW for every W ∈ W . Therefore, the set X
obtained from v(τ ) by replacing each di

W ∈ X for any i with 1 ≤ i ≤ |U \ W | by some variable from W is a hitting set of W , 
which because |X ′| = |v(τ )| ≤ |G| − 1 completes the argument for backdoor trees. Note that |v(τ )| ≤ |G| − 1 is a special case 
of |v(G)| ≤ |G| − 1, which holds because of Observation 2. �
5. Experiments

We complement our theoretical results by experiments.1 We compute backdoor DNFs and backdoor trees on a large 
number of CNF formulas, stemming from various applications like logistics, planning, and combinatorics. We collect in-
stances from SATLIB3, past SAT Competitions,2 car configuration [63], as well as vertex cover and treewidth instances3 from 
named graphs. The instances form ten groups: (i) all interval series (ais),4 (ii–iii) graph colouring (flat, pret)3, (iv) logistics 
car configuration (daimler) [63], (v) parity function learning (parity)3, (vi) inductive inference (inductive)3, (vii) planning 
(blocksworld)3, (viii) pigeon hole (pigeon)3, and (ix–x) vertex cover and treewidth for named graphs (vc and tw). To avoid the 
restriction to base classes that support fixed-parameter tractability, we base our experiments on SAT encodings. This allows 
us to use the base classes Horn

{} and RHorn
{} , for which already the backdoor set problem is known to be W[1]-hard.

We compute the SAT encodings using Python 3.8.0 and PySAT 1.6.0.5 As the SAT solver, we use Cadical as provided by 
PySAT, which works slightly better with our encodings than the other solvers provided by PySAT. We run the experiments 

1 Results and source code are available under https://doi .org /10 .5281 /zenodo .11259842 and https://github .com /ASchidler /backdoor _cube.
2 http://www.satcompetition .org/.
3 Generated with the encoding by Samer and Veith [61].
4 https://www.cs .ubc .ca /~hoos /SATLIB /benchm .html.
5 https://pysathq .github .io.
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on servers with two Intel Xeon E5540 CPUs, each running at 2.53 GHz per core, use Ubuntu 18.04. Each run is limited to 
six hours and 12 GB RAM.

The algorithm for backdoor DNFs is based on incremental SAT solving. It finds one potential term of a backdoor DNF 
in each solver call. Once a term is found, it is added to the encoding and so excluded in future calls. We use a cardinality 
constraint on the size of the term to obtain only subset-minimal terms. When all the found terms together form a tautolog-
ical DNF, the algorithm terminates. Termination is checked using a second incremental SAT solver instance, which checks, 
in increments of 1000 added terms, whether the DNF’s negation is an unsatisfiable CNF. Finally, we minimize the DNF by 
computing a minimal unsatisfiable core [6] for its negation. The found DNF is then inclusion-minimal but not necessarily 
of smallest cardinality. We compute backdoor trees using a recursive algorithm. The algorithm computes one branch of the 
tree at a time using a SAT solver call. Each branch has the first node’s variable, the branch’s root, set to true, and all sub-
sequent variables set to false. The partial assignment represented by the current branch is extended. We use these partial 
assignments to reduce the number of clauses for each subsequent recursive call.

Backdoor trees and backdoor DNFs are either restricted, where they may only use variables from a given backdoor set, or
unrestricted, where any variable can be used. For this purpose, we compute minimal deletion backdoor sets. While we do 
not use empty clause detection for the backdoor sets, we select among the backdoor sets those that maximize the number 
of empty clauses obtained by deleting the backdoor set’s variables.

5.1. Results

In total, we select 2197 instances from the sources mentioned above that were small enough for the encodings. For 
each instance, we compute a deletion backdoor set and discard instances based on the backdoor set’s size: we choose 
192 instances where a Horn-backdoor is smaller than 100 and 222 instances where a RHorn-backdoor is smaller than 
50. Given our theoretical results, we expect backdoor DNFs to be smaller than backdoor trees. Indeed, in Table 1 we see 
this comparison in terms of the ratio of the backdoor DNF size to backdoor tree size. The lower the ratio, the smaller the 
backdoor DNF in comparison to the respective backdoor tree.

We found the lowest ratios for the graph colouring instances in pret and flat. For RHorn the DNFs for the groups inductive
and parity are comparatively large. Parity is a group where it is easy to obtain empty clauses. Therefore, the DNFs (4 partial 
assignments) and trees (2 partial assignments) are very small compared to the backdoor set size (21–26). Inductive are 
instances that are almost in RHorn and have a deletion backdoor set of size 1. The respective DNFs and trees are also 
very small. For the vertex cover and treewidth encodings, the DNFs are about half as large as the trees for all classes. 
Restricted backdoor DNFs have the advantage that the search space for the DNF is limited. Although this should speed 
up the search, our results suggest that the restriction impedes the search. For two thirds of the instances, we could not 
compute a restricted DNF inside the time limit, independent of the base class. Further investigation showed that 90% of the 
backdoor DNFs do not represent a minimal backdoor set. Restricting the backdoor DNF search to a minimum backdoor set 
will therefore generally not help the search. This is also supported by our result that restricted DNFs are often larger than 
unrestricted DNFs.

6. Conclusion

We have introduced backdoor DNFs as a versatile tool for representing the hidden structure in a SAT instance. The size 
of a smallest C-backdoor DNF provides a distance to triviality measure (distance to C) that can be much smaller than the 
distances provided by smallest C-backdoor trees or smallest strong C-backdoor sets. Our main theoretical results show that 
for fundamental base classes C for which the detection of strong C-backdoor sets is FPT, also the detection of C-backdoor 
DNFs is FPT. This finding is significant, as backdoor DNFs can be far more succinct than backdoor sets or backdoor trees. 
Our experiments show that SAT instances drawn from a wide range of application domains indeed contain backdoor DNFs 
that are by several orders of magnitude smaller than their backdoor tree counterparts.

In the past, parameterized complexity of backdoor set detection, and the use of backdoor sets for tractable problem 
solving, has been explored in a wide range of problems beyond SAT: CSP [34,38,39], ASP [30,31], Temporal Logic [52], 
QBF [60] Abstract Argumentation [25], and Planning [48]. We think that many of these results can be lifted to backdoor 
DNFs. This provides several challenging research questions for future work.
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