
Journal of Computer and System Sciences 144 (2024) 103547
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

Backdoor DNFs ✩

Sebastian Ordyniak b,∗, Andre Schidler a, Stefan Szeider a

a Algorithms and Complexity Group, TU Wien, Vienna, Austria
b Algorithms and Complexity Group, University of Leeds, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2023
Received in revised form 28 February 2024
Accepted 6 May 2024
Available online 21 May 2024

Keywords:
Parameterized complexity
Backdoor sets/trees/DNFs
Boolean satisfiability
Distance to triviality

We introduce backdoor DNFs, as a tool to measure the theoretical hardness of CNF
formulas. Like backdoor sets and backdoor trees, backdoor DNFs are defined relative to a
tractable class of CNF formulas. Each conjunctive term of a backdoor DNF defines a partial
assignment that moves the input CNF formula into the base class. Backdoor DNFs are more
expressive and potentially smaller than their predecessors backdoor sets and backdoor
trees. We establish the fixed-parameter tractability of the backdoor DNF detection problem.
Our results hold for the fundamental base classes Horn and 2CNF, and their combination.
We complement our theoretical findings by an empirical study. Our experiments show that
backdoor DNFs provide a significant improvement over their predecessors.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Over the last two decades, the progress on practical SAT solving has been “nothing short of spectacular” [66]. State-
of-the-art SAT solvers routinely solve instances with millions of clauses and variables [29]. This is in stark contrast to the
theoretical intractability of SAT. The problem is not just NP-complete [14]; the Exponential-Time Hypothesis [44], a standard
complexity-theoretic assumption, asserts that there is no algorithm that solves every n-variable 3SAT instance with 2o(n)

steps. This apparent discrepancy between theory and practice is often explained by the presence of a “hidden structure”
in real-world SAT instances, which is implicitly exploited by the SAT solver. Several approaches have been proposed in the
literature to make the vague notion of a hidden structure precise, including modularity [4,35,55] and decomposability [36,
45,51]. The notion of a backdoor set, introduced by Williams et al. [67], provides another way of capturing the existence of
a hidden structure in a SAT instance. The idea is to fix a polynomial-time solvable base class C of CNF formulas (either
defined by a polynomial-time subsolver or by a syntactic property such as Horn). We then measure the existence of hidden
structure within a SAT instance in terms of the number of variables one needs to instantiate to put the instance into the
base class C . The instantiated variables form a backdoor set. One distinguishes between a weak backdoor (there exists an
instantiation of the backdoor variables that produces a satisfiable instance that belongs to C) and a strong backdoor (all
instantiations for the backdoor variables result in an instance that belongs to C). This paper shall focus on strong backdoors
since weak backdoors exist only for satisfiable formulas.

Conceptually, backdoor sets are closely related to the concept of distance to triviality, a general methodology to pa-
rameterize problems, proposed by Guo, Hüffner, and Niedermeier in a paper that appeared in the first edition of
IWPEC [42] in 2004. They presented this methodology with several case studies of distance from triviality parame-

✩ A preliminary version of this paper appeared in the Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021) [57].

* Corresponding author.
E-mail addresses: s.ordyniak@leeds.ac.uk (S. Ordyniak), aschidler@ac.tuwien.ac.at (A. Schidler), sz@ac.tuwien.ac.at (S. Szeider).
https://doi.org/10.1016/j.jcss.2024.103547
0022-0000/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jcss.2024.103547
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2024.103547&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.ordyniak@leeds.ac.uk
mailto:aschidler@ac.tuwien.ac.at
mailto:sz@ac.tuwien.ac.at
https://doi.org/10.1016/j.jcss.2024.103547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
terizations (concerning Clique, Power Dominating Set, Set Cover, and Longest Common Subsequence). Over the last
two decades, this methodology has become a rich source of interesting and useful parameters for graph problems.
[1–3,5,7–13,17,18,20–22,24,26–28,33,37,43,46,47,49,53,54,58] gives an incomplete list of work that uses the distance to trivi-
ality method. Historically, it is a striking coincidence that in the same year when Guo et al. proposed the distance to triviality
method, Nishimura et al. presented the first study of backdoor sets under the parameterized complexity framework at the
SAT conference [56].

Suppose we know a size-k backdoor set of a SAT instance F . In that case we can decide its satisfiability by deciding
the satisfiability of at most 2k instances that belong to the tractable base class C , i.e., in time 2k||F ||O (1). Thus, SAT is fixed-
parameter tractable (FPT) in the backdoor size if a witnessing backdoor is known. Therefore, it is interesting whether it is
also fixed-parameter tractable to find a backdoor set of size k (the backdoor set detection problem). The systematic study of
the parameterized complexity of backdoor set detection was initiated by Nishimura et al. [56]. They showed that backdoor
set detection is FPT for the fundamental base classes Horn and 2CNF. Gasper and Szeider [40] survey further results.

As stated above, a backdoor set of size k reduces the given SAT instance to at most 2k tractable formulas in C . How-
ever, 2k is just a worst-case upper bound, which can be reduced in many cases. Thus, the size of a backdoor set is only a
very coarse measure for a backdoor set’s quality, and as a distance to triviality measure (distance to C) not fully satisfying.
Samer and Szeider [59] proposed a more refined measure. They introduced backdoor trees, which are decision trees on the
backdoor variables, where each leaf corresponds to an instance in C . The number of leaves of a backdoor tree over a back-
door set of size k is a more refined quality measure for a backdoor set. It ranges between the linear best-case lower bound
of k +1 and the exponential worst-case upper bound of 2k . Interestingly, as we shall show, a backdoor tree with the smallest
number of leaves is not necessarily based on a backdoor set of the smallest cardinality. Samer and Szeider [59] showed that
the detection of backdoor trees with respect to the fundamental bases classes Horn and 2CNF is fixed-parameter tractable
when parameterized by the number of leaves of the backdoor tree. They implicitly assumed that the variables used by a
backdoor tree form a subset-minimal backdoor set.

This paper proposes a new parameter related to backdoor sets, which gives rise to a distance to triviality measure that
can be significantly smaller than the distance measured by the number of leaves of a backdoor tree. The new distance
measure is based on a backdoor DNF for a CNF formula F , a tautological propositional DNF formula D over the variables
of a backdoor set. Each term of D , considered as a partial assignment, moves F into the base class C . We observe that a
backdoor tree can be considered a special case of a backdoor DNF when we identify each leaf with the term assignments
made on the unique path from the root. We show that the difference between a smallest backdoor tree and a smallest
backdoor tree as found by the known algorithm [59], as well as between a smallest backdoor tree and a smallest backdoor
DNF, can be arbitrarily large (Theorems 2 and 1). As our main theoretical contribution (Theorem 3), we show:

The detection of backdoor DNFs and backdoor trees with respect to the fundamental base classes Horn, AntiHorn, and 2CNF is
fixed-parameter tractable, parameterized by the number of terms (for backdoor DNFs) or the number of leaves (for backdoor trees).

In this result, we are not limited to backdoor DNFs over a subset-minimal backdoor set. We show that such a limita-
tion prevents us from finding backdoor DNFs/trees with the smallest number of terms/leaves. This strengthens the above
mentioned result by Samer and Szeider [59], who showed this for cardinality-minimal backdoor sets. Consequently, our
FPT algorithm needs to be considerably more sophisticated to cover the general case. Although we still start the search
with subset-minimal backdoor sets, we have to systematically explore extensions that lead to a smallest backdoor DNF or
backdoor tree, respectively.

Our FPT algorithm also works for heterogeneous base classes [38]. Different terms of a backdoor DNF may lead to instances
that belong to different tractable base classes Horn and 2CNF, or AntiHorn and 2CNF. However, we show that similar to the
detection of backdoor sets, one cannot combine Horn and AntiHorn, for a fixed-parameter tractable detection of backdoor
trees or backdoor DNFs (Theorem 4).

We complement the theoretical results with an empirical evaluation. We compare the size of backdoor trees and back-
door DNFs over a wide range of SAT instances. We utilize SAT encoding for the detection of these structures, as well as an
efficient SAT-based algorithm for the extraction of minimal unsatisfiable cores. Our experiments show that in all considered
instances, the backdoor DNFs are significantly smaller than backdoor trees. In many cases, the difference is of several orders
of magnitude, which exceeds the expectation based on our theoretical results.

2. Preliminaries

2.1. Parameterized complexity

We study the complexity of problems in a two-dimension setting. Each problem instance (I, k) consists of a main part I
of bit size n and a parameter k, a non-negative integer. The problem is fixed-parameter tractable (or FPT for short) if there
exists a computable function f and a constant c, such that the problem can be solved in time f (k)nc . The problem is
XP-tractable if it can be solved in time n f (k) . In both cases, if k is a constant, then the stated running times are polynomial.
However, in the former case, the order of the polynomial, c, is independent of the parameter k; in the latter case, it depends
on k. Therefore, FPT is much preferred, as it provides better scalability in the parameter. By showing that a problem is hard
for one of the parameterized complexity classes W[1], W[2], . . . we can get strong theoretical evidence that the problem is
2

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
not FPT. This is similar to showing that a problem is NP-hard provides evidence that is not solvable in polynomial time. We
refer to text books and survey papers for more background on parameterized complexity [16,23,32,41].

2.2. CNF and DNF formulas

We consider propositional formulas in conjunctive normal form (CNF) and disjunctive normal form (DNF) represented by
sets of clauses, or sets of terms, respectively; e.g., F = {{x, ¬y}, {¬x, z}} represents both, the CNF formula C = (x ∨ ¬y) ∧
(¬x ∨ z) and the DNF formula D = (x ∧¬y) ∨ (¬x ∧ z). For a CNF/DNF formula F , v(F) denotes the set of variables occurring
negated or unnegated in F . By negating a DNF formula we obtain a CNF formula, for instance D = (¬x ∨ y) ∧ (x ∨ ¬z).
A (partial truth) assignment is a mapping τ : X → {0, 1} (0 representing false, 1 representing true) defined on a set X of
variables. We write v(τ) = X . If v(τ) = {x} then we denote τ simply by ‘x = 1’ or ‘x = 0’. An assignment τ extends in the
obvious way to literals over v(τ) via τ (¬x) = 1 − τ (x). We identify each term of a DNF formula as a partial assignment,
e.g., the term (x ∧ ¬y) corresponds to τ : {x, y} → {0, 1} with τ (x) = 1 and τ (y) = 0. F [τ] denotes the restriction of a CNF
formula F to τ (i.e., F [τ] is obtained from F by removing all clauses that contain a literal that is true under τ , and by
removing from the remaining clauses all literals that are false under τ). Moreover, for a clause C of F and an assignment τ
not satisfying C , we denote by C[τ] the clause obtained from C after removing all literals assigned by τ . A CNF formula F
is satisfiable if F [τ] = ∅ for some assignment τ , otherwise it is unsatisfiable. A DNF formula is a tautology if its negation is
unsatisfiable. We also consider variable deletion in the following form: If X is a set of variables and F a CNF formula, then
F − X denotes the CNF formula obtained from F by removing from all clauses literals of the form x or ¬x for x ∈ X .

2.3. Base classes

A base class is a class of CNF formulas for which both membership and satisfiability can be decided in polynomial
time. Throughout this paper we also assume that self-reducibility holds for the considered base classes C: For every F ∈ C
and x ∈ v(F) also F [x = 0], F [x = 1] ∈ C .

In this paper, we consider all base classes that can be obtained as the union of the following fundamental classes of CNF
formulas:

• 2CNF, i.e., the family of all CNF formulas having at most two literals per clause,
• Horn (Horn−1), i.e., the family of all CNF formulas having at most one positive (negative)literal per clause,

Let D = {2CNF, Horn, Horn−1}. The three considered classes are the most important of the six classes considered by Schae-
fer [62]: The remaining three classes either don’t directly apply to CNF formulas (affine formulas), or are not self-reducible
(0-valid and 1-valid formulas).

We consider any heterogeneous base class C such that C = ⋃
D∈D′ D for D′ ⊆ D, as has been first considered by Gaspers

et al. [38]. Finally, we consider the class of renamable Horn formulas (RHorn), which are formulas that can be made Horn
by replacing, for a subset X of variables, all occurrences of a literal whose underlying variable belongs to X by its comple-
ment [40,50]. A base class C can also be extended by adding empty clause detection [19,65]. This gives rise to the base class
C{} = { F : F ∈ C or F contains the empty clause }.

Let C = ⋃
D∈D′ D for D′ ⊆D be a heterogeneous base class and let F be a CNF formula. With a slight abuse of notation,

we denote by F \ C , the formula obtained from F after removing all clauses c with {c} ∈ C .

2.4. Backdoor sets

Let C be a base class, F a CNF formula, and B ⊆ v(F). Then B is a (strong) C-backdoor set of F if F [τ] ∈ C for every truth
assignment τ : B → {0, 1}; our backdoor sets are usually referred to as strong backdoor sets in the literature. For each base
class C we consider the following problem:

C-Backdoor Set Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F has a C-backdoor set of cardinality at most k?

Let B be a C-backdoor set of a CNF formula F . B is smallest if F has no C-backdoor set that is smaller than B; B is
minimal if F has no C-backdoor set that is a proper subset of B . We say that a set W of variables of F is a C-backdoor
branching set for a set B ′ ⊆ v(F), if every C-backdoor set for F that contains B ′ also contains at least one variable from W .
The following proposition lies at the heart of the FPT-algorithms for C-Backdoor Set (which is also known to be NP-hard
for every base class C = ⋃

D∈D′ D [15], where D′ ⊆ D and D′
= ∅), given by Gaspers et al. [38] and constitutes a crucial
prerequisite for our algorithms for backdoor trees and backdoor DNFs.

Proposition 1 ([38]). Let F be a CNF formula, B ⊆ v(F), and C ∈ {2CNF, Horn, Horn−1, 2CNF∪Horn, 2CNF∪Horn−1}. Then, there
is an algorithm that in time O(2|B||F |) computes a C-backdoor branching set W for B such that:
3

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
• |W | ≤ 3 if C = 2CNF,
• |W | ≤ 2 if C ∈ {Horn, Horn−1}
• |W | ≤ 5 if C ∈ {2CNF ∪ Horn, 2CNF ∪ Horn−1}.

Note, however, that RHorn-Backdoor Set is W[2]-hard [40] and 2CNF{}-Backdoor Set, Horn
{}-Backdoor Set, and

Horn−1
{}-Backdoor Set are W[1]-hard [65].

2.5. Backdoor trees

A binary decision tree (DT) is a rooted binary tree T . Every inner node of T is assigned a variable, denoted by v(t), and
has exactly one left and one right child, which correspond to setting the variable to 0 or 1, respectively. Moreover, every
variable occurs at most once on any root-to-leaf path of T . We denote by v(T) the set of all variables assigned to any node
of T and we define the size of a T be the number of nodes of T . Finally, we associate with each node t of T , the truth
assignment τt that is defined on all the variables v(P) occurring on the unique path P from the root of T to t such that
τt(v) = 0 (τt(v) = 1) if v ∈ v(P) \ {v(t)} and P contains the left child (right child) of the node t′ on P with v(t′) = v .

Let C be a base class, F a CNF formula, and T a DT with v(T) ⊆ v(F). Then T is a C-backdoor tree of F if F [τv] ∈ C for
every leaf v of T . A C-backdoor tree T of F with the smallest number of leaves (in the following, let |T | denote the number
of leaves), is a smallest C-backdoor tree of F . We consider the following parameterized problem:

C-Backdoor Tree Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F have a C-backdoor tree with at most k leaves?

We need the following auxiliary lemma that can be shown using a simple brute force-algorithm.

Lemma 1. Let A be a set of variables of size a. Then the number of DTs of size at most s that use only variables in A is at most a2s+1

and those can be enumerated in time O(a2s+1).

Proof. We start by counting the number of trees T with n nodes that can potentially underlie a DT with n nodes. Note
that there is one-to-one correspondence between trees T that underlie a DT with n nodes and unlabelled rooted ordered
binary trees with n nodes (where ordered refers to an ordering of the at most 2 child nodes). Since it is known that the
number of unlabelled rooted ordered binary trees with n nodes is equal to the n-th Catalan number Cn and that those
trees can be enumerated in time O(Cn) [64], we already obtain that we can enumerate all of the at most Cn possible
trees T underlying a DT of size n in time O(Cn). Therefore, there are at most sCs possible trees of size at most s that
can underlie a DT with at most s nodes and those can be enumerated in time O(sCs). It now remains to bound the
number of possible variable assignments v(t) for these trees. Since we can assume that a ≥ 2, we obtain that the number of
possible variable assignments of a tree T with n nodes is at most an . Taking everything together, we obtain that there are
at most sCsas ≤ s4sas ≤ a2s+1 many DTs of size at most s using only variables in A and those can be enumerated in time
O(a2s+1). �

We will need the following auxiliary proposition showing that computing a smallest C-backdoor tree can be done effi-
ciently if the set of allowed variables is small.

Proposition 2. Let B be a C-backdoor set for a CNF formula F for some base class C . Then, a smallest C-backdoor tree for F using only
variables in B can be computed in time |B|2|B|+1|F |O(1) .

Proof. Note that every C-backdoor tree for F that uses only variables in B can have size at most 2|B| . Moreover, given a
DT T using only variables from B , we can test in time (|T | − 1)|F |O(1) , whether T constitutes a C-backdoor tree for F by
testing for each leaf l of T whether F [τl] ∈ C (which can be achieved in time |F |O(1)).

Lemma 1 now shows that we can enumerate all DTs using only variables in B in time O(|B|2|B|+1). Therefore, we can
find the smallest C-backdoor tree for F by enumerating all DTs using only variables in B and testing for each of them
whether they form a C-backdoor tree for F in the stated running time. �
3. Backdoor DNFs

For a truth assignment τ : X → {0, 1} we denote by Dτ the term that is satisfied by τ , i.e.,

Dτ = { x : x ∈ X, τ (x) = 1 } ∪ {¬x : x ∈ X, τ (x) = 0 }.
Let F be a CNF formula and G a set of partial truth assignments defined on subsets of v(F). We call G a C-backdoor DNF

for F if (i) for each τ ∈ G , F [τ] ∈ C , and (ii) GDNF = { Dτ : τ ∈ G } is a tautology. We say that G is a smallest C-backdoor DNF
for F if |G| is minimal over all C-backdoor DNFs for F . Moreover, we say that G is term-minimal if F [τ ′] /∈ C for every proper
4

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
sub-assignment τ ′ of an assignment τ ∈ G . We denote by v(G) the set of all variables used by G , i.e., v(G) = ⋃
τ∈G v(τ). We

consider the following parameterized problem:

C-Backdoor DNF Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F have a C-backdoor DNF of size at most k?

If C is a base class and one is given a C-backdoor DNF G for a CNF formula F , then one can decide whether F is
satisfiable (and if so compute a satisfying assignment for F) in time |G|(|F |)O(1) by testing satisfiability of the reduced
formula F [τ] (in time |F |O(1)) for every assignment τ ∈ G .

Because the set { τl : l ∈ L } is a C-backdoor DNF for F for every C-backdoor tree for F where L is the set of leaves
of T , one can consider backdoor trees as restricted version of backdoor DNFs (similar to how backdoor sets are a restricted
version of backdoor trees). However, backdoor DNFs can be smaller by an arbitrary number than backdoor trees (which
in turn can be smaller by an arbitrary number than backdoor sets as shown in [59]), which makes them better suited as
shortcuts to tractability for Boolean Satisfiability, as shown by the following theorem; we conjecture that it is possible to
show that there is an exponential difference in the size of backdoor DNFs and backdoor trees are, however, at the moment
unable to show this. This theoretical result is also strongly reflected in our experimental evaluation in Section 5.

Theorem 1. For every s ≥ 1, there is a CNF formula F s, whose size is polynomial in s, such that a smallest Horn-backdoor DNF for F s

contains at least s − 2 fewer variables than a smallest Horn-backdoor tree for F s.

Proof. For every s ≥ 1, we will construct a CNF formula F s such that:

• F s has a Horn-backdoor DNF of size s + 2 but
• a smallest Horn-backdoor tree for F s has size 2s.

This then implies the theorem.
Let r = 2s and F s be the CNF formula with variables {x1, . . . , xs} ∪ { h j

i : 0 ≤ i ≤ s ∧ 1 ≤ j ≤ r } containing the following
clauses:

• the clause C j
P = {x1, . . . , xs, h

j
0} for every j with 1 ≤ j ≤ r and

• the clause C j
i = {¬x1, ¬x2, . . . , ¬xs} \ {¬xi} ∪ {xi} ∪ {h j

i } for every i and j with 1 ≤ i ≤ s and 1 ≤ j ≤ r.

Let Gs be the set containing the following assignments (of {x1, . . . , xs}):

• the assignment (x1 = 1, . . . , xs = 1),
• the assignment (x1 = 0, . . . , xs = 0) and
• the assignment (xi = 0, xi mod s+1 = 1) for every i with 1 ≤ i ≤ s.

We start by showing that Gs is a Horn-backdoor DNF for F s . Clearly, Gs
DNF is a tautology. Moreover, F [(x1 = 1, . . . , xs =

1)] ∈ Horn and F [(x1 = 0, . . . , xs = 0)] ∈ Horn, since both assignments set all but one positive literal of every clause in
F s . Now consider the assignment τi = (xi = 0, xi+1 mod s = 1) for i with 1 ≤ i ≤ s. Then, τi clearly satisfies the clauses
C j

P = {x1, . . . , xs, h
j
0}. Moreover, τi also satisfies the clauses C j

l for every l
= i since xi occurs negatively in those clauses.
Therefore, it only remain the clauses C j

i , which are not satisfied by τi , but C j
i [τi] ∈ Horn since it has only one positive

literal, i.e., the literal h j
i .

We now show that F s has indeed a Horn-backdoor tree of size at most 2s. To see this consider the DT T s having the
following leaves:

• one leaf l0 with τl0 = (x1 = 0, . . . , xs = 0),
• one leaf li

0 with τli0
= (x1 = 0, . . . , xi−1 = 0, xi = 1) for every i with 1 < i ≤ s,

• one leaf l1 with τl1 = (x1 = 1, . . . , xs = 1) and
• one leaf li

1 with τli1
= (x1 = 1, . . . , xi−1 = 1, xi = 0) for every i with 1 < i ≤ s.

Informally, T s consists of two paths, one for the all zero and one for the all one assignment, containing nodes for all
variables x1, . . . , xs starting at the root, which is labelled with x1. Then, T s is easily seen to be a Horn-backdoor tree for F ,
since we have already shown that F [τl] ∈ Horn for any leaf of T s , when we showed that Gs is a Horn-backdoor DNF. Since
|T s| = 2s it only remains to show that there is no smaller Horn-backdoor tree for F .

Towards showing this, let T be any minimal Horn-backdoor tree for F . Then, w.l.o.g., we can assume that v(T) ⊆
{x1, . . . , xs} since if h j

i ∈ v(T), then we also need that h�
i ∈ v(T) for any � with 1 ≤ � ≤ r, which implies that |T | > r = 2s. Let

l0 be the leaf of T reached from the root by always choosing the left child and let l1 be the leaf of T reached from the root
5

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
by always choosing the right child. Then, τl0 is the all zero assignment for some subset X0 ⊆ {x1, . . . , xs} and similarly τl0 is
the all one assignment for some subset X1 ⊆ {x1, . . . , xs}. We claim that X0 = X1 = {x1, . . . , xs}, which implies that T has size
at least 2s. Suppose not, then X0 misses a variable xi0 or X1 misses a variable xi1 . In the former case, F [τlo] /∈ Horn because
it contains the clauses C j

P each having at least two positive literals (xi0 and h j
0). Similarly, in the latter case, F [τl1] /∈ Horn

because it contains the clauses C j
i1
[τl1] each having exactly two positive literals (xi1 and h j

i1
). �

We will need the following observations for our algorithms, showing that the variables of a backdoor DNF (or backdoor
tree) always form a backdoor set together with a simple bound on the number of variables used by a backdoor DNF (or
backdoor tree).

Observation 1. Let G be a C-backdoor DNF of a CNF formula F . Then, v(G) is a C-backdoor set. Similarly, if T is a C-backdoor tree for
F , then v(T) is a C-backdoor set.

Proof. The observation for backdoor trees was already shown in [59]. Assume for a contradiction that this is not the case,
i.e., there is an assignment τ : v(G) → {0, 1} such that F [τ] /∈ C . Because GDNF is a tautology, there is an assignment τ ′ ∈ G
that is consistent with τ . Therefore, F [τ ′] /∈ C because neither is F [τ], contradicting our assumption that G is a C-backdoor
DNF of F . �
Observation 2. For each C-backdoor DNF or C-backdoor tree G of a CNF formula F we have |v(G)| ≤ |G| − 1.

Proof. The observation for backdoor trees was already shown in [59]. For backdoor DNFs it follows because GDNF is a
tautological DNF. �

Analogously to Proposition 2 for backdoor trees, the next result asserts that computing a smallest C-backdoor DNF can
be done efficiently if the set of allowed variables is small.

Proposition 3. Let B be a C-backdoor set for a CNF formula F . Then, a smallest C-backdoor DNF for F containing only variables in B
can be computed in time O(23|B|+1 + 3|B||F |O(1)).

Proof. We first compute the set A of all partial assignments α : B ′ → {0, 1} with B ′ ⊆ B such that F [α] ∈ C in time
3|B||F |O(1) . Then, clearly any C-backdoor DNF for F is a subset of A. Therefore, we can obtain a smallest C-backdoor DNF
for F by enumerating all of the at most 23|B|

subsets of A and checking for each of them whether it constitutes a C-backdoor
DNF for F . We then return the smallest such subset of A. Note that testing whether a given subset A of A is a C-backdoor
DNF can be achieved by testing whether the formula ADNF is a tautology in time O(2|B|). Therefore, the total run-time of
our algorithm is as stated. �
4. Finding backdoor DNFs and backdoor trees

In this section, we will provide a complete classification of the parameterized complexity of C-Backdoor Tree and
C-Backdoor DNF for every base class C such that C = ⋃

D∈D′ D , where D′ ⊆ D and D′
= ∅. In particular, we will show
that both problems are fixed-parameter tractable if and only if C
= Horn ∪ Horn−1 (assuming that FPT
= W[2]). We start
by giving our FPT-algorithms and then show that both problems are W[2]-hard for the case that C = Horn ∪ Horn−1.

Let D+ be the set of all these base classes, i.e., D+ = {2CNF, Horn, Horn−1, 2CNF ∪ Horn, 2CNF ∪ Horn−1}. Note first
that using Propositions 2 and 3, both problems are easily seen to be in XP for any base class C . This is because there are
at most |v(F)|k sets of variables that can be used by a backdoor DNF (or backdoor tree) of size at most k and for each of
those sets, we can compute a smallest backdoor DNF (or backdoor tree) that uses only those variables in FPT-time. This
also illustrates that the main challenge that we have to overcome is to design an FPT-procedure to enumerate all sets of
variables that can potentially be used by a smallest backdoor DNF (or backdoor tree). Given Observation 1, one might think
that any smallest backdoor DNF (or backdoor tree) uses only the variables of a smallest backdoor set, which if it were true
would already provide us with such an FPT-procedure since Proposition 1 can be easily employed to enumerate all minimal
backdoor sets of size at most k in FPT-time. Unfortunately, this is not the case as asserted by the following theorem.

Theorem 2. For every C ∈D+ and every s ≥ 1, there is a CNF formula FC
s , whose size is exponential in s, such that FC

s has a C-backdoor
DNF (C-backdoor tree) of size s + 2, but any C-backdoor DNF (C-backdoor tree), whose variables form a minimal C-backdoor set for
FC

s , has size at least 2s.

Proof. We start by showing the lemma for the case that C = Horn. F Horn

s has variables {p, a1, . . . , as} ∪ { q j : 1 ≤ j ≤ r },
where r = 2s − s and the following clauses:
6

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
• a clause {ai, p} for every 1 ≤ i ≤ s and
• the clauses {a1, . . . , as, q j, ¬p} for every 1 ≤ j ≤ r.

We first show that F Horn

s has only two types of minimal Horn-backdoor sets, namely, the set B = {a1, . . . , as} and the
sets Bi = B \ {ai} ∪ {p, q1, . . . , qr} for every i with 1 ≤ i ≤ s. This is because:

• no proper subset of B is a Horn-backdoor set for F Horn

s because of the clauses {ai, p},
• any Horn-backdoor set can miss at most one variable of B (because of the clause {a1, . . . , as, q1, ¬p}), and
• any Horn-backdoor that misses one variable in B has to contain p (because of the clauses {ai, p}) and also every q j

(because of the clauses {a1, . . . , as, q j, ¬p}).

Therefore, every minimal Horn-backdoor set that is not B has size at least s − 1 + 2s − s + 1 = 2s , which together with
Observation 1 implies that any Horn-backdoor tree and Horn-backdoor DNF that uses only variables in Bi for some i has
size at least 2s .

We now show that the same applies also to every Horn-backdoor tree and every Horn-backdoor DNF that uses only the
variables in B , i.e., that it has size at least 2s . This is because F Horn

s [α] /∈ Horn for every partial assignment α : B ′ → {0, 1},
where B ′ � B (because of the clause {ai, p}, where ai ∈ B \ B ′). Therefore, every leaf of a Horn-backdoor tree and similarly
every term of a Horn-backdoor DNF has to assign all variables in B , which implies that its size is at least 2s .

It only remains to show that F Horn

s has a Horn-backdoor tree and a Horn-backdoor DNF of size at most s + 2.
Towards showing this, let T be the DT with variable p at its root. Because F [(p = 0)] ∈ Horn, the left child of p in T is

a leaf. Moreover, because F [(p = 1)] only consists of the clauses {a1, . . . , as, qi, ¬p}, we obtain that T can be completed to a
Horn-backdoor tree for F Horn

s by adding a path of lengths s to the right child of p in T , whose variables are a1, . . . , as such
that the node of variable ai is the left child of the node of variable ai−1 and the right child of the node of variable ai is a
leaf (since setting ai to 1 satisfies all remaining clauses in F [(p = 1)]. Clearly, T has exactly s + 2 leaves, as required. Finally,
we obtain a Horn-backdoor DNF for F Horn

s of the same size s + 2, by taking the following assignments: (1) the assignment
(p = 0), (2) the assignment (p = 1, a1 = 0, . . . , as = 0), and (3) for every i with 1 ≤ i ≤ s the assignment (p = 1, ai = 1).

The formulas for the remaining base classes in D+ \ {2CNF} are based on a similar construction. Namely:

• F Horn−1
s is the formula obtained from F Horn

s after complementing the literals of every clause.
• F 2CNF∪Horn

s is the formula obtained from F Horn

s after adding the negated literals of (the same) 2s + 3 fresh variables to
every clause. Note that F 2CNF∪Horn

s and F Horn still have the same Horn-backdoor DNFs (Horn-backdoor trees). More-
over, because no clause can become 2CNF by assigning at most 2s variables, it follows that any 2CNF ∪ Horn-backdoor
DNF (2CNF ∪ Horn-backdoor tree) of size at most 2s for F 2CNF∪Horn is also a Horn-backdoor DNF (Horn-backdoor tree)
for F 2CNF∪Horn .

• F 2CNF∪Horn−1
s is the formula obtained from F 2CNF∪Horn

s after complementing the literals of every clause.

In the case that C = 2CNF, the formula F 2CNF
s is slightly different. That is, F 2CNF

s has variables { p1, p2 } ∪ { ai : 1 ≤ i ≤
s } ∪ { q j, r j : 1 ≤ j ≤ r } for r = 2s − s and the following clauses:

• a clause {ai, p1, p2} for every i with 1 ≤ i ≤ s and
• the clauses {a1, . . . , as, q j, r j} for every j with 1 ≤ j ≤ r.

As before B = {a1, . . . , as} is a minimal 2CNF-backdoor set for F . Moreover, every 2CNF-backdoor set for F that misses
at least one ai has to contain either p j or r j for every j with 1 ≤ j ≤ r (because of the clause {a1, . . . , as, q j, r j}). Therefore,
every minimal 2CNF-backdoor set that is not B has size at least s + r = s + 2s − s = 2s , which together with Observation 1
implies that any 2CNF-backdoor tree and 2CNF-backdoor DNF that uses only variables in Bi for some i has size at least 2s .

We now show that the same applies also to every Horn-backdoor tree and every Horn-backdoor DNF that uses only the
variables in B , i.e., that it has size at least 2s . This is because F [α] /∈ 2CNF for every partial assignment α : B ′ → {0, 1}, where
B ′ � B (because of the clause {ai, p1, p2}, where ai ∈ B \ B ′). Therefore, every leaf of a 2CNF-backdoor tree and similarly
every term of a 2CNF-backdoor DNF has to assign all variables in B , which implies that its size is at least 2s .

It only remains to show that F 2CNF
s has a 2CNF-backdoor tree and a 2CNF-backdoor DNF of size at most 2s. Towards

showing this, let T be the DT with variable p1 at its root. Then, F [(p1 = 0)] \ 2CNF and F [(p1 = 1)] only contain the clauses
{a1, . . . , as, q j, r j}. Let P be a path of length s whose variables are a1, . . . , as such that the node of variable ai is the left child
of the node of variable ai−1 and the right child of the node of variable ai is a leaf (since setting ai to 1 satisfies all clauses
{a1, . . . , as, q j, r j}). Therefore, similar to the case for C = Horn, we can complete T to a 2CNF-backdoor tree by P to the left
and the right child of the root with variable p1. Clearly, T has exactly 2(s + 1) leaves. Finally, we obtain a 2CNF-backdoor
DNF for F 2CNF

s of the same size 2(s +1), by taking the following assignments: (1) the assignment (p1 = 0, a1 = 0, . . . , as = 0),
(2) the assignment (p1 = 0, ai = 1) for every i with 1 ≤ i ≤ s, (3) the assignment (p1 = 1, a1 = 0, . . . , as = 0), (4) the
assignment (p1 = 1, ai = 1) for every i with 1 ≤ i ≤ s. �
7

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
The theorem also shows that our backdoor trees can be arbitrarily smaller than the backdoor trees detected by Samer
and Szeider’s algorithm [59], which are only allowed to use subset-minimal C-backdoor sets.

It is therefore not sufficient to enumerate all backdoor sets of a CNF formula F to identify a set of variables that is
used by a smallest backdoor DNF (or backdoor tree). Nevertheless, Observation 1 still allows us to assume that we are
given a backdoor set for F and as we will show next that this will be sufficient to identify all sets of variables that can
lead to a smallest backdoor DNF (or backdoor tree). In particular, we will show next that if a smallest backdoor DNF (or
backdoor tree) uses additional variables outside of a backdoor set, then the set of those additional variables has a special
property (which we will later exploit to extend minimal backdoor sets), which we call useful. Let F be a CNF-formula
and B a C-backdoor set. We say that a set U of variables is C-useful for B if U = ∅ or it holds that for every assignment
β : U → {0, 1}, there is a partial assignment α : B ′ → {0, 1} for some B ′ ⊆ B such that F [α] /∈ C but F [α ∪ β] ∈ C; note that
if U is C-useful for B then U \ B is also C-useful for B and therefore U can be assumed to be disjoint from B . The following
lemma shows that the set of variables used by a minimal backdoor DNF (or minimal backdoor tree) for F that go beyond a
backdoor set, needs to be useful.

Lemma 2. Let G be a smallest term-minimal C-backdoor DNF for F and let B be a C-backdoor set contained in v(G), then the set
U = v(G) \ B is C-useful. If T is a smallest C-backdoor tree for F and B is a C-backdoor set contained in v(T), then the set U = v(T) \ B
is C-useful.

Proof. We start by showing the lemma for backdoor DNFs. If U = ∅, then there is nothing to show. Hence, assume that
U
= ∅ and suppose for a contradiction that the statement of the lemma does not hold. Then, there is an assignment
β : U → {0, 1} such that F [α ∪ β] /∈ C for every assignment α : B ′ → {0, 1} with B ′ ⊆ B and F [α] /∈ C . Let G[β] be the set of
all assignments in G that are consistent with β , which is non-empty because GDNF is a tautology. If there is no assignment
in G[β] that assigns at least one variable in U , then G[β]DNF is again a tautology and therefore G[β] is a C-backdoor DNF
for F , which because U
= ∅ is smaller than G contradicting our assumption that G was minimal. Therefore, G[β] contains
an assignment τ that is defined on at least one variable of U . Let τ ′ be the restriction of τ to variables in B . Then, F [τ ′] ∈ C
and therefore G \ {τ } ∪ {τ ′} is a C-backdoor DNF for F , contradicting our assumption that G is term-minimal.

It remains to show the lemma for the case of backdoor trees. If U = ∅, then there is nothing to show. Hence, assume
that U
= ∅ and suppose for a contradiction that the statement of the lemma does not hold. Then, there is an assignment
β : U → {0, 1} such that F [α ∪ β] /∈ C for every assignment α : B ′ → {0, 1} with B ′ ⊆ B and F [α] /∈ C . We will show a
contradiction to our assumption that T has minimum size. To achieve this, consider the tree T ′ obtained from T as follows.

• For every inner node t of T with v = v(t) ∈ U , let c be the left child of t if β(v) = 1 and let c be the right child of
t otherwise. Remove the subtree rooted at c from T and let T ′′ be the tree obtained from T after applying this step
exhaustively. Note that every node t of T ′′ with v(t) ∈ U has exactly one child node.

• Let P be a path of maximum length in T ′′ consisting only of nodes t with v(t) ∈ U . We obtain the tree T ′′|P by
contracting the path P in T , i.e., we remove all nodes on P from T ′′ and if P does not contain the root of T ′′ we
additionally add an edge between the unique parent and the unique child of the two endpoints of P in T ′′ . Then T ′ is
the tree obtained from T ′′ after exhaustively contracting all maximal paths P in T ′′ that only consists of nodes t with
v(t) ∈ U .

Note that every non-leaf node t in T ′ has exactly two children and moreover v(t) ∈ B . We now show that T ′ is also
C-backdoor tree for F , which, because U
= ∅, contradicts our assumption that T had minimum size. Suppose for a con-
tradiction that this is not the case, i.e., there is a leaf l′ of T ′ such that F [τl′] /∈ C and let l be the unique leaf in T that
corresponds to l′ . Then F [τl′ ∪ β] /∈ C and since τl is a sub-assignment of τl′ ∪ β also F [τl] /∈ C contradicting our assumption
that T is a C-backdoor tree for F . �

We will show next how we can efficiently find C-useful sets for B for a given C-backdoor set B of a CNF formula F . We
say that a set A of variables of F is a C-branching set for B if A ∩ U
= ∅ for every C-useful set U for B . As we will see later,
all we need to find C-useful sets for B is to be able to compute “small” C-branching sets efficiently (i.e., FPT parameterized
by |B|). The following lemma shows this for all base classes in D+ .

Lemma 3. Let C ∈D+ and let B be a C-backdoor set for a CNF formula F . Then, a C-branching set A such that:

• |A| ≤ 2 · 3|B| (if C = 2CNF),
• |A| ≤ 3|B| (if C ∈ {Horn, Horn−1}), and
• |A| ≤ 5 · 3|B| (if C ∈ {2CNF ∪ Horn, 2CNF ∪ Horn−1})

can be computed in time O(3|B||F |).

Proof. We start by showing the statement of the lemma for the case that C = 2CNF. Let U be a C-useful set for B , let β :
U → {0, 1} be an arbitrary assignment for U . Because U is C-useful, there is an assignment α : B ′ → {0, 1} with B ′ ⊆ B such
8

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
that F [α] /∈ 2CNF but F [α ∪ β] ∈ 2CNF. Therefore, U has to contain at least one variable from every clause in F [α] \ 2CNF.
Therefore, every C-useful set U for B has to contain at least one variable from every clause C in F [α] \ 2CNF for some
assignment α : B ′ → {0, 1} with F [α] /∈ 2CNF. Since B is also a deletion 2CNF-backdoor set, it holds that every such clause C
contains at most two variables that are not in B . Therefore, we obtain the C-branching set A by adding the at most two
variables not in B of an arbitrary clause in F [α] \ 2CNF for every assignment α : B ′ → {0, 1} with F [α] /∈ 2CNF.

We now show the statement of the lemma for the case that C ∈ {Horn, Horn−1}. In particular, we give the proof for the
case that C = Horn; the case for C = Horn−1 is analogously.

Let α : B ′ → {0, 1} with B ′ ⊆ B be a partial assignment of B such that F [α] /∈ Horn. We denote by P (α) the set of all
variables that occur positively in a clause in F [α] \ Horn but are not in B . We claim that every C-useful set U for B has
to contain all variables in P (α) for some assignment α as above. This then shows the statement of the lemma because we
can obtain a branching set A of size at most 3|B| by choosing an arbitrary variable from P (α) for every α : B ′ → {0, 1} with
B ′ ⊆ B and F [α] /∈ Horn.

Suppose for a contradiction that this is not the case and let U be a C-useful set for B such that P (α)
⊆ U for every
assignment α : B ′ → {0, 1} with F [α] /∈ Horn. Let β : U → {1} the assignment setting all variables in U to 1. Because U
is C-useful for B , there is a partial assignment α : B ′ → {0, 1} for B such that F [α] /∈ Horn but F [α ∪ β] ∈ Horn. Because
P (α)
⊆ U , there is a variable p ∈ P (α) \ U and a clause C ∈ F [α] \ Horn such that all positive literals in C are from B ∪ {p};
this is because B is also a deletion Horn-backdoor set for F and therefore every clause in F − B contains at most one
positive literal. Hence, β only assigns negative literals of C to 1 and it follows that C[α ∪ β] /∈ Horn, contradicting our
assumption that F [α ∪ β] ∈ Horn.

We now show the statement of the lemma for the case that C = 2CNF ∪ Horn, the proof for the case that C = 2CNF ∪
Horn−1 is analogously.

We first show that because B is a C-backdoor set for F , it holds that every clause of F contains at most |B| + 2 positive
literals.

Claim 1. Every clause of F contains at most 2 positive literals, whose variables are not in B.

Proof. Assume this is not the case and let C be a clause of F containing at least three positive literals, whose variables are
not in B . Let α : B → {0, 1} be any assignment that does not satisfy C . Then, C[α] ∈ F [α] and C[α] contains at least three
positive literals, which implies that F [α] /∈ C , contradicting our assumption that B is a C-backdoor set for F . �

Let α : B ′ → {0, 1} be a partial assignment of B with B ′ ⊆ B such that F [α] /∈ C . Then, one of the following conditions
holds:

(1) F [α] contains a clause C that is not in C or
(2) F [α] contains two clauses C and C ′ such that C ∈ 2CNF \ Horn and C ′ ∈ Horn \ 2CNF.

Let Pα be the set of variables such that either:

• If F [α] satisfies (1), let C be an arbitrary clause in F [α] \ C . Moreover, let W be the set of at most two variables
corresponding to positive literals of C that are not in B; the fact that there are at most two such variables follows from
Claim 1. Then, Pα is any set of exactly three variables of C containing W .

• If F [α] satisfies (2), let C and C ′ be two arbitrary clauses in F [α] with C ∈ 2CNF \ Horn and C ′ ∈ Horn \ 2CNF. Let W
be the set of at most two variables corresponding to positive literals of C ′ that are not in B; the fact that there are at
most two such variables follows from Claim 1 and let W ′ be the set of any three variables of C containing W . Then,
Pα is equal to v(C) ∪ W ′ .

Note that Pα can easily be computed in polynomial-time for any α and |Pα | ≤ 5. We claim that the set A obtained as the
union of all sets Pα for every α : B ′ → {0, 1} with B ′ ⊆ B and F [α] /∈ C is a C-branching set for B , which concludes the
proof of the statement of the lemma.

Towards showing this claim, let U be a C-useful set for B and let β1 : U → {1} be the assignment for U ⊆ v(F) setting all
variables to 1. Because U is C-useful, there is an assignment α : B ′ → {0, 1} with B ′ ⊆ B such that F [α] /∈ C but F [α∪β1] ∈ C .
We distinguish two cases:

• F [α] satisfies (1), then there is a clause C in F [α] \ C such that Pα contains 3 variables of C including all variables
occurring positively in C and are not in B . Because F [α ∪ β1] ∈ C , we obtain that either:
– C is satisfied by β1. This implies that U contains at least one variable corresponding to a positive literal in C ; this is

because β1 sets every variable in U to 1. Therefore, U contains at least one variable from Pα .
– C is not satisfied by β1. In this case U cannot contain any variables that correspond to positive literals in C . Because

C[β1] ∈ C , we obtain that either:
∗ C[β1] ∈ 2CNF, which implies that |C | ≤ 2 + |U | and U contains all but at most two variables of C and therefore at

least one variable from Pα , or
9

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
Algorithm 1 Main method for finding a smallest backdoor DNF.
Input: CNF formula F , subset B ⊆ v(F), and integer k
Output: a smallest C-backdoor DNF for F using at least the variables in B having size at most k if it exists, otherwise nil

1: function MINBDNF(F , k, B)
2: Gmin ← “compute a smallest C-backdoor DNF for F using only

variables in B using Proposition 3”
3: if |B| ≥ k − 1 then
4: if Gmin = nil or |Gmin| ≤ k then
5: return Gmin

6: return nil
7: if B is not a C-BS for F then
8: A ← “compute a C-backdoor branching set for B

using Proposition 1”
9: else

10: A ← “compute a C-branching set for B using Lemma 3
11: for v ∈ A do
12: G ←minBDNF(F , k, B ∪ {v})
13: if G
= nil and |G| < |Gmin| then
14: Gmin ← G

15: if |Gmin| ≤ k then return Gmin

16: return nil

∗ C[β1] ∈ Horn, which is not possible because C /∈ Horn and U contains no variables corresponding to positive
literals of C .

Therefore, if F [α] satisfies (1), we obtain that U contains at least one variable from Pα .
• Otherwise, there are clauses C and C ′ in F [α] with C ∈ 2CNF \ Horn and C ′ ∈ Horn \ 2CNF such that Pα contains all

variables of C and exactly 3 variables of C ′ including all variables that occur positively in C ′ and are not in B . Because
F [α ∪ β1] ∈ C , we obtain that either:
– U contains at least one variable of C and therefore from Pα or
– F [α ∪ β1] ∈ 2CNF and therefore either:

∗ C ′ is satisfied by β1 and therefore U contains at least one variable corresponding to a positive literal from C ′ and
therefore at least one variable from Pα or

∗ C ′ is not satisfied by β1 but C ′[β1] ∈ 2CNF. Therefore, |C ′| ≤ 2 + |U | and U contains all but at most two variables
of C and therefore at least one variable from Pα .

Therefore, if F satisfies (2), we obtain that U contains at least one variable from Pα .

This shows that U contains at least one variable from Pα and therefore A is a C-branching set for B . �

Algorithm 2 Main method for finding a smallest C-backdoor tree.
Input: CNF formula F , subset B ⊆ v(F), and integer k
Output: a smallest C-backdoor tree for F using at least the variables in B of size at most k if it exists, otherwise nil

1: function MINBT(F , k, B)
2: Tmin ← “compute a smallest C-backdoor tree for F using only

variables in B using Proposition 2”
3: if |B| ≥ k then
4: if Tmin = nil or |Tmin| ≤ k then
5: return Tmin

6: return nil
7: if B is not a C-BS for F then
8: A ← “compute a C-backdoor branching set for B

using Proposition 1”
9: else

10: A ← “compute a C-branching set for B using
Lemmas 3”

11: for v ∈ A do
12: T ←MINBT(F , k, B ∪ {v})
13: if T
= nil and |T | < |Tmin| then
14: Tmin ← T

15: if Tmin = nil or |Tmin| ≤ k then return Tmin

16: return nil
10

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
We are now ready to show our main tractability result.

Theorem 3. Let C ∈D+ . Then, the problems C-Backdoor DNF and C-Backdoor Tree are fixed-parameter tractable.

Proof. We start by presenting the algorithm for C-Backdoor DNF, which is illustrated in Algorithm 1. Given a CNF formula
F , a subset B ⊆ v(F), and an integer k, the main function minBDNF behind the algorithm computes a smallest C-backdoor
DNF for F that uses at least the variables in B and has size at most k; if no such C-backdoor DNF exists, the algorithm
returns nil. To solve C-Backdoor DNF, the function minBDNF needs to be called with B being the emptyset.

The algorithm starts by computing a smallest C-backdoor DNF for F that uses only the variables in B using Proposition 3;
if no such C-backdoor DNF exists because B is not a C-backdoor set, Gmin is set to nil. The algorithm then checks whether
the size of B is already maximal, i.e., if |B| ≥ k −1 then no more variables can be added to B since every C-backdoor DNF of
size at most k uses at most k − 1 variables (Observation 2). If so, the best C-backdoor DNF already found for B is returned
provided it has size at most k. Otherwise, the algorithm checks in Line 7, whether B is already a C-backdoor set. If not
the algorithm computes a C-backdoor branching set for B using Proposition 1 to ensure that a C-backdoor set is eventually
obtained. Otherwise, the algorithm computes a C-branching set in Line 10 using Lemma 3. This ensures that in this case
only variables belonging to a C-useful set for B are added. After computing the respective branching set and storing it in
the variable A, the algorithm now branches on the variables in A and for every such variable v ∈ A, the algorithm calls itself
recursively for F , k, and B updated by adding the variable v . If any of these recursive calls returns a smaller C-backdoor
DNF than the current best, the algorithm stores the new best backdoor DNF in the variable Gmin . Finally, the algorithm
returns the best C-backdoor DNF if it has size at most k and otherwise it returns nil.

Towards showing the correctness of the algorithm consider the case that F has a C-backdoor DNF of size at most k and
let G be a smallest such C-backdoor DNF. Because of Observation 2, |v(G)| ≤ k − 1. Moreover, because of Observation 1, v(G)

contains a minimal C-backdoor set say S of size at most k − 1. We first show that the algorithm is called for B = S . This
is because as long as the set B is not a strong C-backdoor set, the algorithm branches on the variables inside a C backdoor
branching set A, which by definition must also contains a variable from S \ B . If v(G) = S , then the call of minBDNF for
B = S already finds a C-backdoor DNF of size |G| in Line 2, which will eventually be returned. Otherwise, we obtain from
Lemma 2 that v(G) \ S is C-useful for S , and it remains to show that the algorithm is eventually called for B = v(G). To see
this consider the calls following the call where B = S . Since B is already a C-backdoor set, the algorithm now branches on
all variables of a C-branching set A for B , which by definition must also contain a variable of v(G) \ B . Finally, it is easy to
see that any solution returned by the algorithm is a C-backdoor DNF of size at most k. This is because Gmin is only updated
in Line 2 and only returned if its size is at most k.

It remains to analyse the runtime of the algorithm. Since every execution of minBDNF leads to at most |A| recursive
calls, each recursive call adds at least one variable to B and the algorithm stops whenever |B| ≥ k − 1, we obtain that
the algorithm makes at most |A|k−1 recursive calls. Moreover, the time required for one call of minBDNF is easily seen
to be dominated by the time required by Line 2 to compute a smallest C-backdoor DNF for F using only variables in
B using Proposition 3, which is at most O(23|B|+1 + 3|B||F |O(1)). Therefore, the total runtime of the algorithm is at most
O(|A|k−1(23|B|+1 + 3|B||F |O(1)), which because |A| is bounded by a function of k (for all classes C ∈ D+ due to Lemma 3)
shows that C-Backdoor DNF is in FPT.

The algorithm for C-Backdoor Tree is illustrated in Algorithm 2. The algorithm works very similar to the algorithm for
C-Backdoor DNF with the only difference being that Line 2 uses Proposition 2 (instead of Proposition 3) to compute a
smallest C-backdoor tree for F that uses exactly the variables in B . �

The following theorem, whose proof is based on a reduction by Gaspers et al. [38], shows that the problems are
W[2]-hard for the only class C = Horn ∪ Horn−1.

Theorem 4. Let C = Horn ∪ Horn−1 . Then, the problems C-Backdoor Tree and C-Backdoor DNF are W[2]-hard.

Proof. We give a parameterized reduction from the W[2]-complete Hitting Set problem, which given a family W of subsets
of a set U and an integer k, asks whether W has a hitting set H ⊆ U with |H | ≤ k, i.e., H ∩ W
= ∅ for every W ∈ W . Given
an instance (W, U , k) for Hitting Set, we construct a formula F as follows. The variables of F are U ∪{ d1

W , . . . , d|U\W |
W : W ∈

W }. For each set W ∈W , there is one clause CW = W ∪ { d1
W , . . . , d|U\W |

W }. There is also one clause CU = {¬u : u ∈ U }. This
completes the description of the reduction.

We claim that W has a hitting set of size at most k if and only if the formula F has a C-backdoor tree/backdoor DNF of
size at most k + 1. Suppose X = {x1, . . . , xl} ⊆ U , |X | ≤ k, is a hitting set for W .

Let G = {(x1 = 1, . . . , x� = 1), (x1 = 0), . . . , (x� = 0)}. Moreover, let T be the DT that consists of a path on nodes with
variables x1, . . . , x� such that the node with variable xi is the right child of the node with variable xi−1 and the left child
of every node is a leaf. We claim that T is a C-backdoor tree and that G is a C-backdoor DNF, which completes the proof
for the forward direction since |T | = |G| = k + 1. Towards showing that T is a C-backdoor tree for F consider a leaf l of T .
Then, either τl = (xi = 0) for some i with 1 ≤ i ≤ � or τl = (x1 = 1, . . . , x� = 1). In the former case, τl satisfies the clause
CU and therefore F [τl] ∈ Horn−1 since every other clause contains no negative literals. In the latter case, τl satisfies every
11

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
Table 1
Comparison between backdoor DNFs and backdoor trees for several classes and
groups of instances. |BDNF|/|BT| is the average ratio between the number of
terms of the computed backdoor DNF and the number of leaves of the com-
puted backdoor tree, σ 2 is the variance. Size shows the average number of
variables/clauses; Total shows the number of instances for which a backdoor
DNF could be computed.

Group Size Total |BDNF|/|BT| σ 2 Class

ais 87/1051 2/2 8.5 · 10−3 1.3 · 10−4
Horn

{}
61/581 1/1 1.7 · 10−2 0.0 · 100

RHorn
{}

blocksworld 82/607 2/2 2.6 · 10−1 3.5 · 10−2
Horn

{}
82/607 2/2 2.4 · 10−1 2.7 · 10−2

RHorn
{}

daimler 1407/1887 3/3 3.2 · 10−1 4.3 · 10−3
Horn

{}
1667/3977 18/18 4.1 · 10−1 2.2 · 10−1

RHorn
{}

flat 150/545 99/99 1.5 · 10−3 5.6 · 10−6
Horn

{}
150/545 97/99 6.4 · 10−4 9.4 · 10−8

RHorn
{}

inductive 288/5077 16/16 5.4 · 10−1 1.0 · 10−1
Horn

{}
655/9649 41/41 1.1 5.6 · 10−1

RHorn
{}

parity 201/803 10/10 9.5 · 10−1 3.6 · 10−1
Horn

{}
70/277 5/5 1.1 5.0 · 10−2

RHorn
{}

pigeon 74/322 5/5 3.0 · 10−3 2.7 · 10−5
Horn

{}
49/169 2/2 1.2 · 10−2 1.4 · 10−4

RHorn
{}

pret 105/280 8/8 3.6 · 10−5 1.3 · 10−9
Horn

{}
160 4/4 3.2 · 10−5 4.5 · 10−12

RHorn
{}

tw 222/965 9/12 5.6 · 10−1 2.7 · 10−1
Horn

{}
125/433 5/6 6.1 · 10−1 4.4 · 10−2

RHorn
{}

vc 175/355 38/38 5.3 · 10−1 1.5 · 10−1
Horn

{}
175/355 38/38 5.5 · 10−1 1.5 · 10−1

RHorn
{}

clause CW for W ∈W because X is a hitting set for W . Therefore, F [τl] ∈ Horn since the only remaining clause CU has no
positive literals. This shows that T is indeed a C-backdoor tree for F and moreover it also shows that F [τ] ∈ C for every
τ ∈ G . Moreover, since GDNF is a tautology, we also obtain that G is a C-backdoor DNF for F .

For the other direction, first suppose that T is a C-backdoor tree of size at most k + 1. Let l be the leaf of T that
corresponds to setting all variables to 1 and let X be the set of variables that occur in T on the path from the root of T
to l. Then, τl does not satisfy CU , which implies that F [τl] /∈ Horn and therefore τl has to satisfy every clause CW for every
W ∈ W . Therefore, the set X ′ obtained from X by replacing each di

W ∈ X for any i with 1 ≤ i ≤ |U \ W | by some variable
from W is a hitting set of W , which because |X ′| = |X | ≤ |T | − 1 completes the argument for backdoor trees.

Now suppose that G is a C-backdoor DNF of size at most k + 1. Let τ be any assignment in G that is consistent with
the assignment of v(G) that sets all variables to 1; τ must exists because GDNF is a tautology. Then, τ does not satisfy CU ,
which implies that F [τl] /∈ Horn and therefore τ has to satisfy every clause CW for every W ∈ W . Therefore, the set X
obtained from v(τ) by replacing each di

W ∈ X for any i with 1 ≤ i ≤ |U \ W | by some variable from W is a hitting set of W ,
which because |X ′| = |v(τ)| ≤ |G| − 1 completes the argument for backdoor trees. Note that |v(τ)| ≤ |G| − 1 is a special case
of |v(G)| ≤ |G| − 1, which holds because of Observation 2. �
5. Experiments

We complement our theoretical results by experiments.1 We compute backdoor DNFs and backdoor trees on a large
number of CNF formulas, stemming from various applications like logistics, planning, and combinatorics. We collect in-
stances from SATLIB3, past SAT Competitions,2 car configuration [63], as well as vertex cover and treewidth instances3 from
named graphs. The instances form ten groups: (i) all interval series (ais),4 (ii–iii) graph colouring (flat, pret)3, (iv) logistics
car configuration (daimler) [63], (v) parity function learning (parity)3, (vi) inductive inference (inductive)3, (vii) planning
(blocksworld)3, (viii) pigeon hole (pigeon)3, and (ix–x) vertex cover and treewidth for named graphs (vc and tw). To avoid the
restriction to base classes that support fixed-parameter tractability, we base our experiments on SAT encodings. This allows
us to use the base classes Horn

{} and RHorn
{} , for which already the backdoor set problem is known to be W[1]-hard.

We compute the SAT encodings using Python 3.8.0 and PySAT 1.6.0.5 As the SAT solver, we use Cadical as provided by
PySAT, which works slightly better with our encodings than the other solvers provided by PySAT. We run the experiments

1 Results and source code are available under https://doi .org /10 .5281 /zenodo .11259842 and https://github .com /ASchidler /backdoor _cube.
2 http://www.satcompetition .org/.
3 Generated with the encoding by Samer and Veith [61].
4 https://www.cs .ubc .ca /~hoos /SATLIB /benchm .html.
5 https://pysathq .github .io.
12

https://doi.org/10.5281/zenodo.11259842
https://github.com/ASchidler/backdoor_cube
http://www.satcompetition.org/
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://pysathq.github.io

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
on servers with two Intel Xeon E5540 CPUs, each running at 2.53 GHz per core, use Ubuntu 18.04. Each run is limited to
six hours and 12 GB RAM.

The algorithm for backdoor DNFs is based on incremental SAT solving. It finds one potential term of a backdoor DNF
in each solver call. Once a term is found, it is added to the encoding and so excluded in future calls. We use a cardinality
constraint on the size of the term to obtain only subset-minimal terms. When all the found terms together form a tautolog-
ical DNF, the algorithm terminates. Termination is checked using a second incremental SAT solver instance, which checks,
in increments of 1000 added terms, whether the DNF’s negation is an unsatisfiable CNF. Finally, we minimize the DNF by
computing a minimal unsatisfiable core [6] for its negation. The found DNF is then inclusion-minimal but not necessarily
of smallest cardinality. We compute backdoor trees using a recursive algorithm. The algorithm computes one branch of the
tree at a time using a SAT solver call. Each branch has the first node’s variable, the branch’s root, set to true, and all sub-
sequent variables set to false. The partial assignment represented by the current branch is extended. We use these partial
assignments to reduce the number of clauses for each subsequent recursive call.

Backdoor trees and backdoor DNFs are either restricted, where they may only use variables from a given backdoor set, or
unrestricted, where any variable can be used. For this purpose, we compute minimal deletion backdoor sets. While we do
not use empty clause detection for the backdoor sets, we select among the backdoor sets those that maximize the number
of empty clauses obtained by deleting the backdoor set’s variables.

5.1. Results

In total, we select 2197 instances from the sources mentioned above that were small enough for the encodings. For
each instance, we compute a deletion backdoor set and discard instances based on the backdoor set’s size: we choose
192 instances where a Horn-backdoor is smaller than 100 and 222 instances where a RHorn-backdoor is smaller than
50. Given our theoretical results, we expect backdoor DNFs to be smaller than backdoor trees. Indeed, in Table 1 we see
this comparison in terms of the ratio of the backdoor DNF size to backdoor tree size. The lower the ratio, the smaller the
backdoor DNF in comparison to the respective backdoor tree.

We found the lowest ratios for the graph colouring instances in pret and flat. For RHorn the DNFs for the groups inductive
and parity are comparatively large. Parity is a group where it is easy to obtain empty clauses. Therefore, the DNFs (4 partial
assignments) and trees (2 partial assignments) are very small compared to the backdoor set size (21–26). Inductive are
instances that are almost in RHorn and have a deletion backdoor set of size 1. The respective DNFs and trees are also
very small. For the vertex cover and treewidth encodings, the DNFs are about half as large as the trees for all classes.
Restricted backdoor DNFs have the advantage that the search space for the DNF is limited. Although this should speed
up the search, our results suggest that the restriction impedes the search. For two thirds of the instances, we could not
compute a restricted DNF inside the time limit, independent of the base class. Further investigation showed that 90% of the
backdoor DNFs do not represent a minimal backdoor set. Restricting the backdoor DNF search to a minimum backdoor set
will therefore generally not help the search. This is also supported by our result that restricted DNFs are often larger than
unrestricted DNFs.

6. Conclusion

We have introduced backdoor DNFs as a versatile tool for representing the hidden structure in a SAT instance. The size
of a smallest C-backdoor DNF provides a distance to triviality measure (distance to C) that can be much smaller than the
distances provided by smallest C-backdoor trees or smallest strong C-backdoor sets. Our main theoretical results show that
for fundamental base classes C for which the detection of strong C-backdoor sets is FPT, also the detection of C-backdoor
DNFs is FPT. This finding is significant, as backdoor DNFs can be far more succinct than backdoor sets or backdoor trees.
Our experiments show that SAT instances drawn from a wide range of application domains indeed contain backdoor DNFs
that are by several orders of magnitude smaller than their backdoor tree counterparts.

In the past, parameterized complexity of backdoor set detection, and the use of backdoor sets for tractable problem
solving, has been explored in a wide range of problems beyond SAT: CSP [34,38,39], ASP [30,31], Temporal Logic [52],
QBF [60] Abstract Argumentation [25], and Planning [48]. We think that many of these results can be lifted to backdoor
DNFs. This provides several challenging research questions for future work.

CRediT authorship contribution statement

Sebastian Ordyniak: Conceptualization, Funding acquisition, Investigation, Methodology, Writing – original draft, Writ-
ing – review & editing. Andre Schidler: Conceptualization, Data curation, Investigation, Methodology, Software, Validation,
Writing – original draft, Writing – review & editing. Stefan Szeider: Conceptualization, Funding acquisition, Investigation,
Methodology, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
13

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
Data availability

The paper contains links to all data and software used.

Acknowledgments

Schidler and Szeider acknowledge the support by the FWF (P36420, W1255) and WWTF (ICT19-065). Ordyniak acknowl-
edges the support by the EPSRC (EP/V00252X/1).

References

[1] A. Agrawal, L. Kanesh, F. Panolan, M. Ramanujan, S. Saurabh, An FPT algorithm for elimination distance to bounded degree graphs, in: 38th International
Symposium on Theoretical Aspects of Computer Science (STACS 2021), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[2] A. Agrawal, L. Kanesh, F. Panolan, M. Ramanujan, S. Saurabh, A fixed-parameter tractable algorithm for elimination distance to bounded degree graphs,
SIAM J. Discrete Math. 36 (2) (2022) 911–921.

[3] A. Agrawal, M. Ramanujan, On the parameterized complexity of clique elimination distance, in: 15th International Symposium on Parameterized and
Exact Computation (IPEC 2020), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[4] C. Ansótegui, M.L. Bonet, J. Giráldez-Cru, J. Levy, The fractal dimension of SAT formulas, in: Proc. IJCAR ’14, in: LNCS, vol. 8562, Springer, 2014,
pp. 107–121.

[5] E. Arrighi, H. Fernau, M. de Oliveira Oliveira, P. Wolf, Width notions for ordering-related problems, in: 40th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual
Conference), in: LIPIcs, vol. 182, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 9:1–9:18.

[6] A. Belov, M. Heule, J. Marques-Silva, MUS extraction using clausal proofs, in: Proc. SAT ’14, in: LNCS, vol. 8561, Springer, 2014, pp. 48–57.
[7] M. Bentert, T. Fluschnik, A. Nichterlein, R. Niedermeier, Parameterized aspects of triangle enumeration, J. Comput. Syst. Sci. 103 (2019) 61–77.
[8] I. Bliznets, D. Sagunov, On happy colorings, cuts, and structural parameterizations, in: Graph-Theoretic Concepts in Computer Science: 45th Interna-

tional Workshop, WG 2019, Vall de Núria, Spain, June 19–21, 2019, Revised Papers 45, Springer, 2019, pp. 148–161.
[9] J. Bulian, A. Dawar, Graph isomorphism parameterized by elimination distance to bounded degree, Algorithmica 75 (2) (2016) 363–382.

[10] J. Bulian, A. Dawar, Fixed-parameter tractable distances to sparse graph classes, Algorithmica 79 (1) (2017) 139–158.
[11] L. Bulteau, F. Hüffner, C. Komusiewicz, R. Niedermeier, Multivariate algorithmics for NP-hard string problems, Bull. Eur. Assoc. Theor. Comput. Sci. 114

(2014).
[12] J. Choudhari, I.V. Reddy, On structural parameterizations of happy coloring, empire coloring and boxicity, in: WALCOM: Algorithms and Computation:

12th International Conference, WALCOM 2018, Dhaka, Bangladesh, March 3-5, 2018, Proceedings 12, Springer, 2018, pp. 228–239.
[13] P. Choudhary, V. Raman, Improved kernels for tracking path problem, preprint, arXiv:2001.03161, 2020.
[14] S.A. Cook, The complexity of theorem-proving procedures, in: Proc. STOC ’71, Shaker Heights, Ohio, 1971, pp. 151–158.
[15] Y. Crama, O. Ekin, P.L. Hammer, Variable and term removal from Boolean formulae, Discrete Appl. Math. 75 (3) (1997) 217–230.
[16] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[17] P. Damaschke, Dividing splittable goods evenly and with limited fragmentation, Algorithmica 82 (5) (2020) 1298–1328.
[18] B. Das, M.K. Enduri, M. Kiyomi, N. Misra, Y. Otachi, I.V. Reddy, S. Yoshimura, On structural parameterizations of firefighting, Theor. Comput. Sci. 782

(2019) 79–90.
[19] B.N. Dilkina, C.P. Gomes, A. Sabharwal, Tradeoffs in the complexity of backdoor detection, in: Proc. CP ’07, in: LNCS, vol. 4741, Springer, 2007,

pp. 256–270.
[20] Ö.Y. Diner, A.C. Giannopoulou, G. Stamoulis, D.M. Thilikos, Block elimination distance, Graphs Comb. 38 (5) (2022) 133.
[21] J. Dreier, S. Ordyniak, S. Szeider, CSP beyond tractable constraint languages, Constraints 28 (2023) 450–471.
[22] J. Dreier, S. Ordyniak, S. Szeider, SAT backdoors: depth beats size, J. Comput. Syst. Sci. 142 (2024).
[23] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[24] P. Dvořák, E. Eiben, R. Ganian, D. Knop, S. Ordyniak, Solving integer linear programs with a small number of global variables and constraints, preprint,

arXiv:1706 .06084, 2017.
[25] W. Dvorák, S. Ordyniak, S. Szeider, Augmenting tractable fragments of abstract argumentation, Artif. Intell. 186 (2012) 157–173.
[26] M.R. Fellows, B.M. Jansen, F. Rosamond, Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complex-

ity, Eur. J. Comb. 34 (3) (2013) 541–566.
[27] H. Fernau, F. Foucaud, K. Mann, U. Padariya, K.R. Rao, Parameterizing path partitions, in: International Conference on Algorithms and Complexity,

Springer, 2023, pp. 187–201.
[28] H. Fernau, K. Mann, Hitting the romans, preprint, arXiv:2302 .11417, 2023.
[29] J.K. Fichte, D.L. Berre, M. Hecher, S. Szeider, The silent (r)evolution of SAT, Commun. ACM 66 (6) (June 2023) 64–72.
[30] J.K. Fichte, S. Szeider, Backdoors to normality for disjunctive logic programs, ACM Trans. Comput. Log. 17 (1) (2015).
[31] J.K. Fichte, S. Szeider, Backdoors to tractable answer set programming, Artif. Intell. 220 (Mar. 2015) 64–103.
[32] J. Flum, M. Grohe, Parameterized complexity and subexponential time, Bull. Eur. Assoc. Theor. Comput. Sci. 84 (2004) 71–100.
[33] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, P. Zschoche, Temporal graph classes: a view through temporal separators, Theor. Comput. Sci. 806

(2020) 197–218.
[34] R. Ganian, M.S. Ramanujan, S. Szeider, Discovering archipelagos of tractability for constraint satisfaction and counting, ACM Trans. Algorithms 13 (2)

(2017) 29:1–29:32.
[35] R. Ganian, S. Szeider, Community structure inspired algorithms for SAT and #SAT, in: Proc. SAT ’15, in: LNCS, vol. 9340, Springer, 2015, pp. 223–237.
[36] R. Ganian, S. Szeider, New width parameters for model counting, in: SAT ’17, in: LNCS, vol. 10491, Springer, 2017, pp. 38–52.
[37] M. Garlet Millani, H. Molter, R. Niedermeier, M. Sorge, Efficient algorithms for measuring the funnel-likeness of dags, J. Comb. Optim. 39 (2020)

216–245.
[38] S. Gaspers, N. Misra, S. Ordyniak, S. Szeider, S. Zivny, Backdoors into heterogeneous classes of SAT and CSP, J. Comput. Syst. Sci. 85 (2017) 38–56.
[39] S. Gaspers, S. Ordyniak, S. Szeider, Backdoor sets for CSP, in: The Constraint Satisfaction Problem: Complexity and Approximability, in: Dagstuhl Follow-

Ups, vol. 7, Schloss Dagstuhl, 2017, pp. 137–157.
[40] S. Gaspers, S. Szeider, Backdoors to satisfaction, in: The Multivariate Algorithmic Revolution and Beyond, in: LNCS, vol. 7370, Springer, 2012,

pp. 287–317.
[41] G. Gottlob, S. Szeider, Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems, Comput. J. 51 (3) (2008)

303–325. Survey paper.
14

http://refhub.elsevier.com/S0022-0000(24)00042-4/bib88084EF3FE7170F514E255C375FA6AA9s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib88084EF3FE7170F514E255C375FA6AA9s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibC1905FE7DDCFB134C1EC7CDE549B8DD6s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibC1905FE7DDCFB134C1EC7CDE549B8DD6s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibF6D603C37C6435322F5913490686CA03s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibF6D603C37C6435322F5913490686CA03s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibA78A04E4CE10A59B92CA78B72BE4A430s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibA78A04E4CE10A59B92CA78B72BE4A430s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib8D58386BA62E4B08533879D58B8062EDs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib8D58386BA62E4B08533879D58B8062EDs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib8D58386BA62E4B08533879D58B8062EDs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib6A08C550C238BF9E59A5006FE94A4320s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib080057A33FE5E4AFD930342F13384AA2s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib38BA075A4A9705C1610BFC25B957AFEFs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib38BA075A4A9705C1610BFC25B957AFEFs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib9F39186C592D424F285D198248EBDE86s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib1AA3DFC2251079C9B48483BA75D10C37s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib9F4884A9BC7CA3EF9ECA4A85DAFF177Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib9F4884A9BC7CA3EF9ECA4A85DAFF177Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib555C55B34B28E9DE410AA3ABD006B686s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib555C55B34B28E9DE410AA3ABD006B686s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib7D5B401E3C45D6C0D2E96320F5D5D5BAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibE8250E0E9FE5A4182D370F8FA56DB7DBs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib1FD83F4EFFCA5D8289F84040C0A5FF13s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib3D93D88A4AB91CB1B59B325D0E54400Bs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib19A3AFEF3C235E227C63410A083CC563s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib04A4CC77EA56F278CCC267830AB11EFFs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib04A4CC77EA56F278CCC267830AB11EFFs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib3BC3431B8E6FE7A216AD0D31171B7A6Es1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib3BC3431B8E6FE7A216AD0D31171B7A6Es1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib098E8B8F5097097E4191D139D2FBDBCBs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib2B58D178EF64EDF3B8BE0FFC203229FFs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibFE61E828886D6D910FE3E664E6ED01EAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib623CDE0D2A4CC4A71AE588D9F7BE7674s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibCF6986AC3EF4E52FEFDB9F5DF4703CAAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibCF6986AC3EF4E52FEFDB9F5DF4703CAAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib653273047DC1EC684C2893F0F7FA58FEs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib7236C7443818E23B13E9F0BED3DB402Bs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib7236C7443818E23B13E9F0BED3DB402Bs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib03634A8BBFED2C138AA758989657441Fs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib03634A8BBFED2C138AA758989657441Fs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibE1965F50529A92A96BE860D95B702193s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib4C2FFBA32AAE37494FBF84BE27E809BAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibD019995EEC4F33EF16BF7B7E1A570E3Es1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib6775E14D087EDA75749B5F4BB0F15A6Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibE850C832BAED322807DDDBF876C67A2Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib569B98D4F84FD097A0DC41C30178EF4As1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib569B98D4F84FD097A0DC41C30178EF4As1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib330CCC0C5C409E982307C19C1D02D395s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib330CCC0C5C409E982307C19C1D02D395s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib61789551D746C572AEBA84BCC169A6E8s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib1E2D4C73042CEF3EB71AA3EE77CCD690s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib275588A8BB4F81E10CCB94E9351687C0s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib275588A8BB4F81E10CCB94E9351687C0s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibB70CBB9F57F73565838DA61B624DACD5s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibB0C40BE873946167A3D0E9EF16757372s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibB0C40BE873946167A3D0E9EF16757372s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib4778E5ACE54E44E55E3F652B0EBCB5A6s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib4778E5ACE54E44E55E3F652B0EBCB5A6s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibC009177C36B35C919521BF71ECC30EA9s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibC009177C36B35C919521BF71ECC30EA9s1

S. Ordyniak, A. Schidler and S. Szeider Journal of Computer and System Sciences 144 (2024) 103547
[42] J. Guo, F. Hüffner, R. Niedermeier, A structural view on parameterizing problems: distance from triviality, in: R. Downey, M. Fellows, F. Dehne (Eds.),
1st International Workshop on Parameterized and Exact Computation (IWPEC 2004), in: Lecture Notes in Computer Science, vol. 3162, Springer, 2004,
pp. 162–173.

[43] D. Hermelin, Y. Itzhaki, H. Molter, R. Niedermeier, Temporal unit interval independent sets, in: 1st Symposium on Algorithmic Foundations of Dynamic
Networks (SAND 2022), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[44] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63 (4) (2001) 512–530.
[45] S. Jamali, D. Mitchell, Improving SAT solver performance with structure-based preferential bumping, in: Proc. GCAI ’17, in: EPiC Series in Computing,

vol. 50, EasyChair, 2017, pp. 175–187.
[46] B.M. Jansen, J.J. de Kroon, Fpt algorithms to compute the elimination distance to bipartite graphs and more, in: International Workshop on Graph-

Theoretic Concepts in Computer Science, Springer, 2021, pp. 80–93.
[47] A.S. Kare, I. Vinod Reddy, Parameterized algorithms for graph burning problem, in: International Workshop on Combinatorial Algorithms, Springer,

2019, pp. 304–314.
[48] M. Kronegger, S. Ordyniak, A. Pfandler, Backdoors to planning, Artif. Intell. 269 (2019) 49–75.
[49] A. Lassota, A. Łukasiewicz, A. Polak, Tight vector bin packing with few small items via fast exact matching in multigraphs, preprint, arXiv:2203 .10077,

2022.
[50] H.R. Lewis, Renaming a set of clauses as a Horn set, J. ACM 25 (1) (Jan. 1978) 134–135.
[51] R. Mateescu, Treewidth in industrial SAT benchmarks, Technical Report MSR-TR-2011-22, Microsoft, February 2011.
[52] A. Meier, S. Ordyniak, M.S. Ramanujan, I. Schindler, Backdoors for linear temporal logic, Algorithmica 81 (2) (2019) 476–496.
[53] G.B. Mertzios, A. Nichterlein, R. Niedermeier, Fine-grained algorithm design for matching, Technical Report, 2016.
[54] G.B. Mertzios, A. Nichterlein, R. Niedermeier, The power of linear-time data reduction for maximum matching, Algorithmica 82 (12) (2020) 3521–3565.
[55] Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, L. Simon, Impact of community structure on SAT solver performance, in: Proc. SAT ’14, in: LNCS,

vol. 8561, Springer, 2014, pp. 252–268.
[56] N. Nishimura, P. Ragde, S. Szeider, Detecting backdoor sets with respect to Horn and binary clauses, in: Proc. SAT ’04, 2004, pp. 96–103.
[57] S. Ordyniak, A. Schidler, S. Szeider, Backdoor dnfs, in: Z. Zhou (Ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,

IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, ijcai.org, 2021, pp. 1403–1409.
[58] I.V. Reddy, Parameterized algorithms for conflict-free colorings of graphs, Theor. Comput. Sci. 745 (2018) 53–62.
[59] M. Samer, S. Szeider, Backdoor trees, in: Proc. AAAI ’08, AAAI Press, 2008, pp. 363–368.
[60] M. Samer, S. Szeider, Backdoor sets of quantified Boolean formulas, J. Autom. Reason. 42 (1) (2009) 77–97.
[61] M. Samer, H. Veith, Encoding treewidth into SAT, in: Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT

2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, in: LNCS, vol. 5584, Springer, 2009, pp. 45–50.
[62] T.J. Schaefer, The complexity of satisfiability problems, in: Proc. STOC ’78, ACM, 1978, pp. 216–226.
[63] C. Sinz, A. Kaiser, W. Küchlin, Formal methods for the validation of automotive product configuration data, Artif. Intell. Eng. Des. Anal. Manuf. 17 (1)

(2003) 75–97.
[64] R. Stanley, E.W. Weisstein, Catalan Number, from Mathworld–a Wolfram Web Resource, 2015.
[65] S. Szeider, Matched formulas and backdoor sets, J. Satisf. Boolean Model. Comput. 6 (2008) 1–12.
[66] M.Y. Vardi, Boolean satisfiability: theory and engineering, Commun. ACM 57 (3) (Mar. 2014) 5.
[67] R. Williams, C. Gomes, B. Selman, Backdoors to typical case complexity, in: Proc. IJCAI ’03, Morgan Kaufmann, 2003, pp. 1173–1178.
15

http://refhub.elsevier.com/S0022-0000(24)00042-4/bib5922A1E51C252D993BB198EB401A7B4Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib5922A1E51C252D993BB198EB401A7B4Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib5922A1E51C252D993BB198EB401A7B4Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib3CF98CB62F398319E2024B93BA8E7CEAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib3CF98CB62F398319E2024B93BA8E7CEAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib7A0D45DFC91961D20511A704BC2E4374s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib2CF7ABBC59CECBFFB22C9F9FF9527B57s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib2CF7ABBC59CECBFFB22C9F9FF9527B57s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib39703AEC4DA2C4051DB3D2EA6B2E58C7s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib39703AEC4DA2C4051DB3D2EA6B2E58C7s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibA5494F39FB7D3088871A7DB3D37B48C7s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibA5494F39FB7D3088871A7DB3D37B48C7s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib0570A4DB66B889FD94358B0CB6498711s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib27DF1F499D3AF2D9D0451E17F6E3F48Bs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib27DF1F499D3AF2D9D0451E17F6E3F48Bs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib7FB0AD8EEAB0812DF2BC2E674B3E410Ds1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib6A2AB431C05C40E692E0717BAF4CB020s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibFFBBD2E1D5FA256BA072BDA177AE5A38s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib3FB441F673806E617FDFC13873B5BF0As1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibCF9E420005182C7D0A893B0F12704CAEs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib53FE0AB32E953D2DB4B5E3B860DEE714s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib53FE0AB32E953D2DB4B5E3B860DEE714s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib5D1E12E15BBCF61A0CE7D95F4FD04AC1s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib5A85930538ABA7644D493BE572C93C6Cs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib5A85930538ABA7644D493BE572C93C6Cs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib5436E1EC519970E3D0CFC5544295D9A9s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib4D20C8CCE7B7D4BE7270C184D717A6D3s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib9D5EA7C609BBBE3B3C4EE60A10DF9A30s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibECC53C2A243A05BE8972BEBEEBE17CEAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibECC53C2A243A05BE8972BEBEEBE17CEAs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib2D306DF8AE6E42A804478EC9E279E00Es1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib8CDB653D2BD9176F12B4FEB992796381s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib8CDB653D2BD9176F12B4FEB992796381s1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibD0879DF846586D5652FEF3A67D15994As1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bibC015E08F58E45382AF8E415275B4D2EFs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib50ADD91324E75E45FDC77DD9148E7CEFs1
http://refhub.elsevier.com/S0022-0000(24)00042-4/bib411B585E4CB23F197CB74616C3AE6AD7s1

	Backdoor DNFs
	1 Introduction
	2 Preliminaries
	2.1 Parameterized complexity
	2.2 CNF and DNF formulas
	2.3 Base classes
	2.4 Backdoor sets
	2.5 Backdoor trees

	3 Backdoor DNFs
	4 Finding backdoor DNFs and backdoor trees
	5 Experiments
	5.1 Results

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

