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Abstract
Humanity has long since used models, in different shapes and forms, to understand, redesign, communicate about, and shape, 
the world around us; including many different social, economic, biological, chemical, physical, and digital aspects. This has 
resulted in a wide range of modeling practices. When the models as used in such modeling practices have a key role to play 
in the activities in which these practices are ‘embedded’, the need emerges to consider the effectiveness and efficiency of 
such processes, and speak about modeling capabilities. In the latter situation, it also becomes relevant to develop a thorough 
understanding of the artifacts involved in modeling practices/capabilities. One context in which models play (an increas-
ingly) important role is model-driven systems development, including software engineering, information systems engineer-
ing, business process engineering, enterprise engineering, and enterprise architecture management. In such a context, we 
come across a rich variety of modeling related artifacts, such as views, diagrams, programs, animations, specifications, etc. 
In this paper, which is actually part of an ongoing ‘journey’ in which we aim to gain deeper insights into the foundations 
of modeling, we take a fundamental look at the variety of modeling related artifacts as used in the context of model-driven 
(systems) development, while also presenting an associated framework for understanding, synthesizing the insights we 
obtained during the ‘journey’ so-far. In doing so, we will also argue that the aforementioned artifacts are actually specific 
kinds of models, albeit for fundamentally different purposes. The provided framework for understanding involves definitions 
of domain model, the Return on Modeling Effort (RoME), the conceptual fidelity of domain models, as well as views as a 
mechanism to manage the complexity of domain models.
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Introduction

Whenever we are confronted with complex phenomena, 
such as the processes we observe in nature, the construc-
tion of buildings, the design of information systems, etc., 
we tend to ‘work with’ an abstraction (in our mind) of the 
actual phenomenon; zooming in on those ‘properties’ of the 
phenomenon that matter to us, while filtering out all the 
properties that are not germane to the goals at hand. When 
we externalize this abstraction in terms of some artifact, 

then to us, as an individual, this artifact is a model of the 
observed phenomenon. For such a model to be ‘recognized’ 
as a model, the artifact needs to be a human understandable 
representation of said abstraction.

The latter view on models is rooted on (among others) 
the definitions of model as provided by e.g. Apostel [1] and 
Stachowiak [73]. Here, it is important to already acknowl-
edge the fact that the notion of model as put forward by these 
scholars does not stipulate any a priori constraints on e.g. 
the level of completeness, precision, or even (mathematical) 
formality of the model. Depending on the situation, and the 
purpose of a model, different requirements can be put on a 
model [6, 39], including requirements regarding, e.g., its 
completeness, precision, or formality.

In line with the general notion of domain as e.g. provided 
in the Webster dictionary [79] “a sphere [...] of knowledge, 
influence, or activity”, we prefer to refer to these models 
as domain models, where the term domain refers to the 
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represented ‘something’1. The requirement for domain mod-
els to be human understandable, connecting the cognition 
of modelers, and model users, to a referent (i.c. the domain 
being modeled), also clearly distinguishes these models 
from, e.g., machine-learning models. For practical reasons, 
in the remainder of this paper, we will use the term model 
as an abbreviation for domain model.

More generally, one can observe how humanity has long 
since used (domain) models to understand, redesign, com-
municate about, and shape, the world around us, including 
many different social, economic, biological, chemical, physi-
cal, and digital aspects. These models may take different 
shapes and forms, such as sketches, precise drawings, tex-
tual specifications, or tangible forms mimicking key physical 
properties of some original. This widespread, and natural [6, 
81], use of models has resulted in many different modeling 
practices.

When the models as created and/or used in such modeling 
practices have a key role to play in the activities in which 
these modeling practices are “embedded”, a natural need 
emerges to consider the effectiveness and efficiency of such 
processes, and actually speak about modeling capabilities,2. 
In the latter situation, it becomes relevant to develop a thor-
ough understanding of the artifacts involved in the modeling 
practices/capabilities.

One context in which models play (an increasingly) 
important role is model-driven systems development, includ-
ing software engineering, information systems engineering, 
business process engineering, enterprise engineering, and 
enterprise architecture management. In this paper, we will 
focus on the variety of models as used in the context of 
model-driven development.

It should be noted that model-driven development 
approaches tend to limit the notion of model to being an 
artifact with (at least) an explicit structure, and often also 
require these models to have a formal semantics in math-
ematical terms. However, as mentioned before, the notion 
of model as put forward by e.g. Apostel [1] and Stachowiak 
[73] clearly suggest to consider the notion of model from 
a broader frame of mind; a perspective we wholeheartedly 

embrace. While models with a formal semantics are, indeed, 
important from an engineering point of view, it is important 
to also acknowledge that, for instance, drawings made on 
the ‘back of a napkin’, sketches of system architectures, use 
cases, etc, are essentially all used as models in their associ-
ated modeling practices.

In the context of model-driven development, we also 
come across a rich variety of modeling related artifacts, 
such as views, diagrams, programs, animations, specifica-
tions, etc. In this paper, which is actually part of an ongoing 
‘journey’ [57–60] in which we aim to gain, and articulate, 
deeper insights into the foundations of modeling, we aim to 
take a deeper look at these artifacts. More specifically, in 
this paper, we will suggest a framework for understanding 
for the variety of modeling related artifacts. In doing so, we 
will argue that the aforementioned artifacts should actually 
be seen as specific kinds of models, albeit for fundamen-
tally different purposes. A first version of said framework 
was sketched out in [60], which was inspired by the keynote 
of one of the authors at MODELSWARD 2023 [55]. The 
resulting framework, as presented in this paper, comprises: 

1.	 a philosophically and linguistically founded definitions 
of domain model,

2.	 the identification of a model’s Return on Modeling Effort 
(RoME),

3.	 the definition of the conceptual fidelity of domain mod-
els, and

4.	 views as a mechanism to manage the complexity of 
domain models,

and synthesizes much of our earlier work on the foundations 
of modeling [5, 20, 23, 35, 57–59, 61].

As mentioned above, we consider it to be of increasing 
importance to develop a thorough understanding of the 
artifacts involved in modeling practices/capabilities, and 
model-driven (system) engineering in particular. It is this 
conviction that also inspired us in developing the presented 
framework; which we certainly expect to evolve further as 
part of our ongoing ‘journey’ into the foundations of domain 
modeling.

In line with this, the remainder of this paper is struc-
tured as follows. In the section “Domain Models” we start 
by zooming in on the notion of (domain) model itself, result-
ing in a philosophically grounded definition of domain 
model. The section “Domain Models as Complex Speech 
Acts” takes a more fundamental perspective on a model as 
being a complex speech act. We then continue, in the section 
“Return on Modeling Effort”, by addressing the importance 
of knowing a model’s purpose and its potential Return on 
Modeling Effort in particular. In the section “Conceptual 
Fidelity”, we turn our attention to the notion of conceptual 
model, which is a class of models that has initially grown 

1  Within some engineering disciplines, including software engi-
neering in particular, the term domain modeling is used in a more 
restricted sense, namely, to refer to a (domain) model capturing the 
general ‘problem area’. As such, using the term domain model(ing) 
as an abbreviation of problem domain model(ling); see e.g. [50]. In 
the area of domain engineering, especially when explicitly connected 
to the notion of domain ontology as in [15], what is referred by the 
term domain model is an important exemplar of what we mean by the 
expression here. As such, we use the word domain here in the more 
general sense as put forward in the dictionary [79].
2  Ontologically speaking, capabilities (or capacities) are gradable 
dispositions i.e., properties that are manifested in certain situations 
via the occurrences of events of a certain kind [3].
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to play an important role in the field of information systems 
engineering, but has a much wider role to play. In that sec-
tion, we will also introduce the notion of conceptual fidel-
ity. This allow us to see the property of being conceptual 
itself as a gradable property of models. Building on this 
grounding, section “Complexity Management and Views” 
discusses the notion of views as a complexity management 
mechanism that supports making complex models cogni-
tively tractable. Finally, before concluding, the section “Dia-
grams, Programs, Animations, and other Models” positions 
artifacts such as diagrams, programs, and animations, as 
being specific kinds of models, covering different purposes 
for different audiences.

Domain Models

Combining foundational work by Apostel [1], and Stachow-
iak [73], more recent work on the same topic by different 
authors [32, 66, 67, 74], as well as our own work [5, 6, 20, 
23, 35, 57–59, 61], we currently understand a domain model 
to be:

A social artifact that is understood, and acknowledged, 
by a collective human agent to represent an abstrac-
tion of some domain for a particular cognitive purpose.

In line with [79], with domain we refer to ‘anything’ that one 
can speak and/or reflect about; i.e. the domain of interest. 
As such, domain simply refers to ‘that what is being mod-
eled’. Below we will return in more detail regarding to the 
notion of the domain that is being modeled. Furthermore, 
the domain could be something that already exists in the 
‘real world’, something that is desired to exist in the future, 
something imagined, or even something that is brought about 
by the existence of the model itself. We will return to this 
point in the section “Domain Models as Complex Speech 
Acts” when discussing models as complex speech acts. In 
the context of system development at large, examples of 
more specific classes of domain models include enterprise 
(architecture) models, business process models, ontologies, 
organizational models, information models, software mod-
els, problem (domain) models1 , etc. We consider all of these 
as valued members of the larger family of domain models.

A model must always be created for some cognitive pur-
pose,3; i.e. to express, specify, learn about, or experience, 
knowledge regarding the modeled domain. This also implies 

that, in line with the cognitive purpose of the model, some, if 
not most, ‘details’ of the domain are consciously filtered out.

As we regard a model to be an artifact, this also implies 
that it is something that exists outside of our minds; i.e. 
as ‘represented abstractions’. More specifically, a model is 
seen as a social artifact. in the sense that its role as a model 
should be recognizable by a collective human agent4. This, 
once more, eludes to the fact that models are, as we will 
discuss in the section “Domain Models as Complex Speech 
Acts”, essentially complex speech acts.

The understood, and acknowledged, by a collective 
human agent phrase clearly differentiates domain models 
from, e.g., machine-learning models. Although a domain 
model can certainly involve complex mathematical formal-
isms, or computer readable specifications.

In the context of (model-driven) system development, 
models typically take the form of some ‘boxes-and-lines’ 
diagram. More generally, however, domain models can, 
depending on the purpose at hand, take other forms as well, 
including (controlled) natural language texts, mathematical 
specifications, games, sketches, animations, simulations, and 
physical objects. We will elaborate on the latter in the sec-
tion “Diagrams, Programs, Animations, and other Models”.

Domain Models as Complex Speech Acts

Requiring a model to be an artifact that needs to be under-
stood by human agents, immediately puts models in the 
realm of language. Therefore, an important theoretical foun-
dation of domain models is the semiotic triangle by Ogden 
and Richards [47], as depicted in Fig. 1. The semiotic trian-
gle is traditionally used as a base to theorize about meaning 
in the context of language [13, 46, 69, 76], but has also been 
used widely to theorize about the meaning of domain models 
[33, 38, 39, 42].

The tenet of the semiotic triangle is that when we use 
symbols, including models, to speak about ‘something’, i.e. 
the referent, then these symbols represent, i.e. symbolize, our 
thought or reference about that something. The thought or 
reference is the meaning we have assigned to the symbols.

In the context of modeling, the notion of ‘thought or 
reference’ is generally replaced by the notion of concept. 
The referent can be anything, in an existing world, or in 
a desired/imagined world. It can involve physical phenom-
ena (e.g., tree, car, bike, atom, planet, picture, etc), mental 

3  In earlier work, we did not include the explicit focus on cognitive 
purpose but rather spoke about some purpose in general. In retro-
spect, we think this was an omission. Adding cognitive clarifies the 
role of models as a way to express, specify, learn about, or experi-
ence, knowledge regarding the modeled domain. We would like to 
thank Jan Schoonderbeek for making us aware of this omission.

4  The pre-noun collective does suggest that it would require the 
involvement of multiple people. We do, indeed, acknowledge the use 
of domain models by an individual person as well, but prefer to treat 
this as a special case concerning a ‘self-shared’ model.
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phenomena (e.g., thoughts, feelings, etc), as well as social 
phenomena (e.g., marriage, mortgage, trust, value, etc).

A domain to be modeled generally involves a complex of 
(related) referents, which, following the semiotic triangle 
(Fig. 1), results in a complex of corresponding concepts/
thoughts; the (domain) abstractions is in the mind of human 
agents. Depending on its purpose, such an abstraction can 
have differing levels of generality, mirroring the generality 
of the domain to be modeled. For instance, the abstraction 
can pertain to the legal domain, the world of business pro-
cesses, or the world of marital relationships as a whole, but 
may also pertain to a specific court case, a specific busi-
ness process or a specific marriage. For the world of marital 
relationships as a whole, the abstraction is likely to involve 
concepts that reflect (classes of) people, marriages, and off-
spring. In line with [20], we refer to such an abstraction of a 
general domain as a conceptualization. Such a conceptual-
ization identifies the fundamental concepts in terms of which 
one creates their abstraction of the world. At the level of a 
specific marriage, the abstraction may involve person John, 
person Mary, person Sarah, the marriage between John and 
Mary, and Sarah being born in the marriage between John 
and Mary. In the latter case, we also see how the general 
domain conceptualization essentially defines a ‘lens’ by 
which we observe the more specific domain to be modeled.

In [31], while reflecting on the value of models and the 
underlying purpose for which models are ultimately created 
(‘uttered’) by (collective) human agents, we argued that 
domain models should essentially be regarded as complex 
speech acts [68]. Doing so, enabled us to apply the notion 
of direction of fit [70] from the areas of philosophy of mind 
and philosophy of language in defining a basic taxonomy of 
overall purpose for which models are created.

The notion of direction of fit [70] is meant to connect 
the propositional content of intentional aspects (i.e., 

mental states or speech acts) to the external state of affairs 
of which they are about. There are basically three possible 
directions of fit: 

1.	 World-to-Mind (or World-to-Word) – the propositional 
content of a mental state (i.e., a desire or intention) or 
of a speech act is made true by making the world such 
that it conforms with that propositional content. In terms 
of the semiotic triangle, the referent, i.e. the part of the 
world that the thought or symbol refers to, needs to be 
made conformant to the thought or symbol. For exam-
ple, if John intends to go to Barcelona next summer or if 
Mary plans to finish her paper by tomorrow, they have to 
intervene in the world to make the propositional content 
of their intention or speech act true.

2.	 Mind-to-World (or Word-to-World) – the propositional 
content of a mental state (i.e., a belief) or the speech act 
is made true if there is something in the world that makes 
it true. In terms of the semiotic triangle, the thought 
or symbol must be articulated as such to conform to 
their referent. For example, if John believes Rome is the 
capital of Italy or if Mary states “I am married to John”, 
these things are true if there is something in the world 
that make them true (in this case, a particular city and 
country with a particular legal relation between the two, 
and a marriage).

3.	 World-to-Word-to-World (or double direction of fit) – by 
uttering something, an individual can bring about some 
change the world, which then becomes the truthmaker 
[21] of sentences with that corresponding propositional 
content. For example, if a judge utters “I hereby declare 
you (John) and you (Mary) husband and wife” this utter-
ance creates a marriage binding John and Mary, which 
then becomes the truthmaker of the proposition “John 
and Mary are married”. In terms of the semiotic trian-
gle, we have the situation in which an actor expresses 
a symbol s and, by doing so, brings about in the world 
a referent r that is, hence, conformant to the semantic 
content of s. This then makes s a truthful description of 
r while then, as a consequence, other actors take/accept 
s as a (future) truth with regards to r.

If we take models to be complex speech acts of this form, 
we can come up with the analogous categories of (a) 
World-to-Model; (b) Model-to-World; (c) World-to-Model-
to-World directions of fit. Models of type (a) and (c) are 
models for changing the world. In the case of models of 
type (c), the model itself brings about change in the world 
by its existence and recognition in a given community. 
We call these latter models Creative Models. Examples 
include a diagram in a patent file, which helps to create 
intellectual property rights, or a model included in a Will 
dividing a piece of real state among someone’s heirs (in 

Fig. 1   Ogden and Richard’s semiotic triangle [47]
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both cases, by expressing the semantic content of those 
rights that are henceforth created).

In the case of models of type (a), the model is an instru-
ment through which one can bring about changes in the 
world. These include designs (e.g., a blue print for a house) 
that will be implemented, and plans (e.g., a BPM model of a 
process TO-BE). We call these models Prescriptive Models. 
These models can be used by individuals or collective of 
individuals (i.e., coordination models).

Models of type (b) are called Descriptive Models. These 
are models that represent a relation between abstractions in 
the mind of human agents and some existing external real-
ity (the referents of the model). Notice that these two relata 
correspond to Thought or Reference and Referent in Ogden 
and Richards’ semiotic triangle [47], respectively.

Next to prescriptive and descriptive models, one can also 
identify predictive models which, by their very nature, have 
been created to predict the behavior of different aspects of 
the domain that is being modeled. This predictive ‘capabil-
ity’ can be used for both descriptive and prescriptive models. 
One can make a predictive-descriptive model of an exist-
ing situation (Model-to-World) with the aim to predict the 
behavior of the modeled domain. In this case, we expect the 
domain to, without make changes to the domain, behave as 
predicted by this prescriptive-descriptive model. Conversely, 
one can make a predictive-prescriptive (World-to-Model) 
model to predict the behavior of a domain, when the domain 
is changed/adapted in line with the domain model.

Return on Modeling Effort

The creation, administration, and use, of domain models, as 
well as the development of modeling capabilities, require 
investments in terms of time, money, cognitive effort, etc. 
We contend that such investments should be met by a (poten-
tial) return. In other words, the resulting models and/or the 
processes involved in their creation, administration, and 
use, should add value that make these investments worth 
while. This has resulted, analogously to the notion of Return 
on Investment, in the notion of Return on Modeling Effort 
(RoME). We first coined this notion in a publication5 in [40], 
while a more elaborate discussion of the concept is provided 
in [31, 59] as part of our joint endeavor to better under-
stand the foundations of (domain) modeling and modeling 
practices.

Examples of situations where explicit trade-offs regarding 
the (expected) RoME would be beneficial include the level 
of breath (scope-wise) of the model, the level of detail of a 
model, and the level of formality of a model.

When better underpinning the notion of RoME, it is 
important to consider both models and modeling, from a 
value-oriented perspective. In doing so, we take the Value 
Proposition Ontology as defined in [51] as a base. In par-
ticular, we rely on the notions of:

•	 value object – an object to which value is ascribed.
•	 value experience – an (envisaged, actual, or past) experi-

ence (an event) to which value is ascribed.
•	 value bearer – the generalization of value object and 

value experience,6.
•	 value beholder – a role played by the actor who ascribes 

value.
•	 value beneficiary – a role played by the actor whose goals 

are (possibly, partially) satisfied by participating in value 
experiences.

•	 value ascription – a collection of value ascription com-
ponents, each of which concerns a personal judgment by 
a value beholder of the benefits for, or sacrifices by, a 
value beneficiary.

For a given model, the effort part of RoME involves the 
sacrifices by the value beneficiary, while the return part 
of RoME involves the benefits accrued by them7. Based on 
this, one can determine the RoME ratio for a specific value 
beneficiary, or do so at an overall level by combining the 
sacrifices and sacrifices across all value beneficiaries. In line 
with this, it might have been better to speak about Benefits 
from Modeling Sacrifices instead of RoME as this would 

5  The notion of RoME actually made its first informal appearance in 
[52] as a leading principle in the research group of one of the authors, 
while a first informal elaboration of the concept was published as a 
blog post [53].

6  In [51], even when one considers value objects one are ultimately 
interested in the experiences afforded by (the capabilities and quali-
ties of) these objects. In other words, the focus of value ascription is 
ultimately always a value experience.
7  In [51], the value beholder ascribes value to value bearers (objects 
or experiences) considering benefits and sacrifices w.r.t. the goals of 
the value beneficiary – sacrifices are in a sense negative influences 
on goals of maintenance of resources (e.g., time, money, energy). The 
participation of a value beneficiary in a value experiences (enacted 
by value objects) always incur in sacrifices to them. In the cases in 
which the value beholder is not the same as the (main) value ben-
eficiary, the former can also be the bearer of sacrifices. In this case, 
since the value beholder is willing to invest resources in enabling the 
value experience of the value beneficiary, we assume that the value 
beholder is also a (secondary) value beneficiary of the value expe-
rience. For example, when parents decides to invest resources in a 
high-quality education for their children, we have that: (i) these chil-
dren have to invest resources (bear sacrifices) for the co-creation of 
the value experience; (ii) the goals to be satisfied are, besides those 
of the children – the main value beneficiary, also those of the parents. 
Here we simplify this analysis by simply taking benefits and sacri-
fices to be borne by the value beneficiary.
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have more closely followed the terminology from the value 
proposition ontology. However, for RoME we prefer to stick 
to the analogy to RoI (Return on Investment).

In actual RoME related trade-offs, it will be necessary to 
distinguish between the ex-ante expected value ascriptions 
and the ex-post realized value ascriptions.

In the case of models and modeling, there seem to be 
three potential value bearers: 

1.	 Value in creation – The process of (co-)creating a 
domain model. Such a process may, e.g., result in the 
added value that those who are involved in the modeling 
process8 develop a deeper and/or more consistent (joint) 
understanding of the modeled domain, and also have the 
chance of building shared terminology based on that 
understanding. In this case, the value beneficiaries per-
tain to the actor(s) who are directly involved in the (co-)
creation process, and/or those who stand to benefit from 
an increased (joint) understanding of the latter actor(s). 
The value bearer in this case is a value experience of 
(co-)creating the model.

2.	 Value in use – The operational usage of the model, in 
line with its purpose.9 This may, e.g., involve the use of 
the model to support decision making, give prescrip-
tive/descriptive guidance towards development pro-
cesses and/or operational processes, etc. In this case, 
the value beneficiary is typically the user of the model – 
who benefits from the support of the model in decision-
making, design, planning, coordinating, etc. However, 
they can also be an actor who has a more overall role/
interest positively affected by the use of the model (such 
as the transfer of design knowledge from requirements 
engineering, via design, to implementation). The value 
bearer is the value experience afforded by the use of the 
model.

3.	 Value in transaction – The ownership of the model itself. 
This pertains to e.g. reference models, design models, 
etc, that capturing knowledge that can potentially be re-
applied in different situations. In this case, the value 
bearer is a value object; i.e. the model.

At a more fundamental level, we would argue that ultimately 
value in creation and value in use are the root/direct value 
bearers of models. The value in transaction is derived from 
the potential of a model’s future value in use. The combina-
tion of value in creation and value in use is what we refer 
to as the Value in Action (ViA) of models. This view allows 

us to think of the enactment of modeling practices as value 
experiences, and hence see RoME as the ratio between the 
benefits and sacrifices involved in these value experiences.

In the work we reported in [31], we provided a goal struc-
ture in terms of a taxonomy of modeling related goals. This 
taxonomy is based on the direction of fit [70] as also dis-
cussed above in the section “Domain Models as Complex 
Speech Acts”. The resulting taxonomy of modeling goals 
distinguishes between models with a prescriptive purpose 
(intervening, planning, coordinating), a creative purpose 
(bringing about changes in reality), and a descriptive pur-
pose (understanding, problem-solving, communicating, and 
documenting), each time involving models that receive their 
Value in Action.

For example, we refer to descriptive models (model-to-
world direction of fit) that create value by enhancing domain 
understanding, conceptual clarification, meaning negotia-
tion via the creation of models that truthfully describe (a 
proper abstraction/conceptualization of) that domain. In 
addition, cases of value in use of such models (i.e. Value in 
Action) include: (i) communication (i.e., descriptive models 
that bring value to the value beneficiary by informing truth-
ful information about the domain and via the experience of 
model interpretation); (ii) problem-solving (i.e., descriptive 
models that bring value to the model user and other indirect 
beneficiaries via the experience of model manipulation); (iii) 
intervening (i.e., prescriptive models with a world-to-model 
direction of fit that bring value by supporting an experience 
of intervening in reality to make it satisfy the propositional 
content of that model).

Finally, the complexity management tools (views) as dis-
cussed in the section “Complexity Management and Views”, 
as well as the other types of modeling artifacts we discuss 
in the section “Diagrams, Programs, Animations, and other 
Models”, result in different types of artifacts that afford dif-
ferent modeling experiences leading to different Value in 
Action(s).

Conceptual Fidelity

In the context of information systems engineering, an impor-
tant role is played by conceptual models, which we see as a 
specific class of domain models. According to the traditional 
information systems engineering view [37], a conceptual 
model captures the essential structures of some universe 
of discourse. In this context, conceptual models are used 
to express the concepts, and their (allowed) relations and 
constraints, of the universe of discourse (while avoiding the 
inclusion of design/implementation/storage details).

The field of information systems engineering, indeed, 
provides a fruitful application area for conceptual modeling. 
At the same time, however, we suggest to avoid a ‘framing’ 

8  Which could be a group of actors, but can also be a single actor 
expressing their thoughts about an existing/future domain.
9  One could indeed also gain value from a model by (ab)using it 
beyond its intended purpose.
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of what a conceptual model is to this application area only. 
As such, we suggest a more generalized understanding of the 
notion of conceptual model. More specifically, based on [20, 
54, 57], in our current understanding a conceptual model is:

A domain model, where: 

1.	 the purpose of the model is dominated by the 
ambition to remain as-true-as-possible to the 
conceptualization of the domain by the collective 
agent, while

2.	 there is an explicit mapping from the elements in 
the model to the latter conceptualization.

As discussed in section “Domain Models as Complex 
Speech Acts”, the conceptualization of a general domain 
(e.g. the legal domain, the world of business processes, or 
the world of marital relationships as a whole) identifies 
the fundamental concepts in terms of which the collective 
agent create(s) their abstraction(s) of the world. This map-
ping characterizes the ontological commitment of the model 
(and the collective agent) as well as its real-world semantics 
[23, 28].

Returning to the above point regarding the need to con-
sider the role of conceptual models beyond the field of 
information systems engineering, the ambition to remain 
as-true-as-possible to the conceptualization of the domain 
by the collective agent is not only of value in the context of 
information systems engineering, but other contexts as well. 
For instance, [20] already stated that the history of concep-
tual modeling can be traced back to at least the 60 s [62]. 
Furthermore, ontology engineering [23] also involves the 
construction of conceptual models representing an ontology.

At a more general level, we also observe that in many 
different endeavors in which we (as humans) aim to under-
stand the workings of some domain and/or aim to express, or 
study, design alternatives, we actually do so in terms of (pur-
pose and situation specific) domain models. This includes 
many examples across science and engineering at large. We 
also argue that in these cases, a deepening of our under-
standing of the essential mechanisms leads to a natural drive 
to create domain models that remain as-true-as-possible to 
the original domain (and our conceptualization thereof); i.e. 
conceptual models.

Since a conceptual model is meant to be used by human 
agents in tasks such as domain understanding and learn-
ing, communication (including explanation [28]), problem-
solving, and meaning negotiation [20], another fundamental 
quality attribute of a conceptual model is its pragmatic effi-
ciency, i.e., how easy it is for those human agents to perform 
these aforementioned tasks with these models [25, 29].

As a result, a conceptual model provides an explicit 
– human understandable, ideally, pragmatically efficient 

– representation of a theory about the entities and their 
ties that are assumed to exist in a given domain of inter-
est (according to a given ontological commitment); as such 
explicitly capturing descriptive and/or prescriptive selected 
aspects of the modeled domain. Conceptual models, there-
fore, enable us to explicitly clarify the things we talk and 
reason about; at a chosen level of abstraction and from a 
desired perspective.

Identifying conceptual models as a specific class of 
domain models, does raise the question regarding the role of 
‘other’ domain models that are ‘not conceptual’. In [57] it is 
suggested to, next to conceptual models, also identify com-
putational-design models. These latter models may involve 
‘conceptual compromises’, with regard to the ambition to 
remain as-true-as-possible to the original domain concep-
tualization, to cater for highly desirable computational con-
siderations to, e.g., support simulation, animation, or even 
execution of the model. In [54] it is suggested to generalize 
this towards utility-design models, to cater for the fact that 
‘conceptual compromises’ may not only be introduced for 
computational purposes, but also for e.g. experiential pur-
poses, such as the ability to touch, feel, or even ‘enact’ a 
model.

An interesting analogy, which certainly needs further 
investigation, is the notion of surrogate modeling in the 
context of simulation [63] of real-world systems. The level 
at which a simulation model reflects all (relevant) properties 
of a (planned/existing) real-world system is referred to as the 
fidelity of the simulation model: “Fidelity in the modeling 
context refers to the degree of the realism of a simulation 
model” [63]. Likewise, one can speak of being as-true-as-
possible-to a given domain as a sort of conceptual fidelity. 
Conceptual fidelity represents the level of homomorphism 
between a given representation and the underlying domain 
conceptualization it commits to. An alternative name for this 
concept, that is also often used, is domain appropriateness.

In the ideal case, this representation artifact is not only 
isomorphic to the structure of that conceptualization (i.e., it 
represents in a univocal and non-redundant way all its con-
stituting concepts and only them)10 but it also only allows for 

10  We emphasize here that a model is always the result of an inten-
tional act, i.e., it is the result of a deliberate intention of connecting 
representation to a conceptualized reality. As discussed in [20], in 
line with [19], having an isomorphism between a certain symbolic 
structure and a represented entity is not sufficient for that structure to 
be a model of that entity: an explicit intentional act is also necessary 
for that to be the case. Moreover, although we have (in an ideal case) 
an isomorphic mapping between the representation (the artifact) and 
the conceptualization, the relation of being a model of is non-reflex-
ive, asymmetric and non-transitive. This contrasts with (only) being 
an isomorphism, which is an equivalence relation. These meta-prop-
erties of the former relation are explained by the lack of an intentional 
act making the model a model of itself, making the domain conceptu-
alization a model of the representation structure, etc. Finally, in con-
formity with the view defended in [10], we consider that conceptual 
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interpretations that represent state of affairs deemed accept-
able by that conceptualization [25, 26]. As, in the case of 
simulation models of real-world systems, the involved high 
fidelity models may be too computationally intensive to sim-
ulate as a whole, one uses so-called surrogate models [63] 
that are computationally more efficient, while approximating 
the high fidelity model good enough to meet the (optimiza-
tion) purpose at hand.

In an information systems engineering context, it is inter-
esting to note that the ambition for a conceptual model to 
remain as-true-as-possible to the conceptualization of the 
domain by the collective agent, has a direct correspondence 
to the conceptualization principle as put forward in the well 
known ISO report on the design of information systems [37].

It is important to note that we do not argue that non-con-
ceptual models are a bad thing; far from it. In fact, utility-
design models are necessary for mapping conceptual mod-
els to possibly multiple enactment solutions (e.g., multiple 
computational implementations). However, it needs to be 
clear what the ‘conceptual deviations’ are of a non-concep-
tual model in relation to the conceptual model of the same 
domain, and what the benefit are of these deviations in terms 
of e.g. computational efficiency or experiential properties. 
As such, it might quite well be the case that one conceptual 
model has different associated non-conceptual models cater-
ing for different needs [24]. Conversely, we would expect 
that each non-conceptual model has been based on (at least 
one) corresponding conceptual model.

Returning briefly to the notion or RoME, we postulate 
that the RoME of a conceptual model is necessarily higher 
than the sum of the RoME of each of the non-conceptual 
models that have been derived from it. If only because 
– besides the benefits accrued via the actions involving these 
non-conceptual models – this common conceptual model 
provides the additional benefit of relating (ideally, semanti-
cally interoperating) these multiple non-conceptual models. 
After all, the latter are derivations of the very same model. 
In other words, since non-conceptual models are historically 
dependent on a conceptual model, whatever value they bring 
to value beneficiaries are (indirect) values brought also by 
the use of the original conceptual model. The latter, how-
ever, has the additional benefits of binding, interconnecting 
and providing a space of design exploration for utility-design 
models derived from it.

Complexity Management and Views

As discussed in e.g. [2, 17, 43], views are positioned as 
providing a powerful mechanism to create domain models 
that are more suitable in the communication with different 
stakeholders (and for different purposes) than the ‘full scale’ 
model would provide.

At a fundamental level, views are a complexity manage-
ment mechanism that supports making complex models cog-
nitively tractable, while also tuning this to the audience and 
their concerns/interests at hands. In this vein, [36] defines 
the notion of view, in the context of the architecture of soft-
ware systems, as: “A representation of a whole system from 
the perspective of a related set of concerns”. Based on this 
definition, [43] speaks about a view as having an “underly-
ing model”, making it explicit that a view is indeed based 
on an underlying model. At the same time, the fact that a 
view provides a representation of a whole system from the 
perspective of a related set of concerns implies that a view 
is a model as well. In line with this, we currently understand 
a view on another domain model (and the modeled domain) 
as being:

A domain model of the modeled domain, which differs 
from the original domain model, while:

•	 being at least at the same level of conceptual fidel-
ity,

•	 and provide a coherent subset of the information 
as (potentially) provided by the original domain 
model.

which we hold as being a generalization of the way(s) the 
notion of view is used in [17, 36, 43]. For instance, the “from 
the perspective of a related set of concerns” [36] corre-
sponds to the need of a view to provide a coherent subset of 
the information as provided by the original domain model. 
Note that, since a view is a domain model as well, one can 
recursively create views on views.

We do realize that the “information as provided by the 
original domain model” may be hard to formalize, as the 
“information as in potential provided” does depend on the 
observer of the model11. This is also the reason why we have 
added the “in potential” qualification. For instance, a large 

11  This is actually analogous to the challenge of defining what infor-
mation can potentially be provided by an ‘information carrier’ in 
general, in the context of information retrieval systems. A theoreti-
cal framework to explicitly about this has been reported in [9, 56]. 
It remains a possible avenue for further research to apply this in the 
context of models and views. At least for some models with certain 
explanatory functions, the information content of a model can be 
associated with its ability to answer why-questions [65].

Footnote 10 (continued)
models can be instrumental both in their own evolution by support-
ing a progressive process of modeling, as well as in the construction 
of the very underlying domain conceptualization to which they will 
(eventually) be isomorphic to.
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domain model might be so (cognitively) ‘overwhelming’ to 
an observer that they might actually glean more information 
from the view than from the original model.

When the involved domain models (i.e., the view and the 
original domain model) are represented in terms of explicit 
modeling languages, one can mathematically think of these 
models as being typed-graphs that are typed in terms of the 
modeling concepts as provided by the modeling language(s). 
In that case, the notion of “proper subset of the potential 
information as provided by the original domain model” can 
be formalized by requiring there to be a function that maps 
a sub-graph of the (implied) graph representing the original 
domain model to the graph that represents the view, where 
this function respects ontological commitment(s) of the used 
modeling language(s). Given such a sub-graph and mapping 
function, the requirement that the (potential) information 
provided by a view should be coherent, then corresponds to 
the requirement that the sub-graph (representing the view 
should) be a connected graph.

It is important to note that models (and views) are not 
required to be ‘minimal’. It is allowed for models to contain 
elements that can be derived from other parts of the model. 
This is also why, above, we added ‘implied’ when writing 
“(implied) graph representing the original domain model”.

Consider, for instance, the derived relationships [43] as 
featured in the ArchiMate [4]12 modeling language for enter-
prise architecture. Such derived relationships may, depend-
ing on the purpose at hand, may be included in the model/
view or not. An example, taken from [41], is provided in 

Fig. 2. A client uses (the red arrow marked  Derived rela-
tion ) the CRM system. This is derived from the fact that 
the Client is assigned to the role of Insurant, which uses the 
Claim registration service, which is realized by the Reg-
ister business process, which uses the Customer adminis-
tration service, and which is finally realized by the CRM 
system. This view (on a larger ArchiMate model) contains 
the derived relation as well as the underlying (more basic) 
relations. Even though including such a derived relation in 
a view (such as the one depicted in Fig. 2) does not carry 
new information in an objective sense, adding it might make 
an observer more explicitly aware of the derived relation-
ship. Even more, depending on the modeling language at 
hand, such derived relationships enable the creation of more 
‘compacted’ views. Consider, for instance, Fig. 3 (based on 
an example from from [41]). On the left hand side, we see 
there is a data flow from Function 1 to Function 2. As these 
functions are assigned to Component 1 and Component 
2 respectively, the ArchiMate model allows us to conclude 
that there is a data flow from Component 1 to Component 
2. This also allows us to create a view where the functions 
are not shown, as illustrated on the right hand side of Fig. 3.

Fig. 2   Derived relations in an 
ArchiMate model; adopted from 
[41]

Fig. 3   Compacting views; based on an example used [41]

12  ArchiMate is an industry standard managed by The Open Group, 
similar to e.g. BPMN [49] and UML [48], which are managed by the 
Open Management Group (OMG).
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In terms of the above discussed possible formalization of 
views, we currently posit there to be four ‘stackable’ opera-
tions to construct views: 

1.	 Selection – involving the focusing of the view on a spe-
cific part of the original model. In this case, the mapping 
function should involve a bijective function between the 
(selected!) part(s) of the graph of the original domain 
model, and the view’s graph. The central question in 
using this operation is what is the (sub)domain to focus 
on in the view? When one would be taking a photo of a 
subject, this would correspond to the question of where 
to point the camera at. In this case, as the metaphor goes, 
the angle (perspective) from which the picture (i.e., 
model) is taken reveals or occludes certain elements 
from the scene (i.e., domain). In a system development 
context this operation pertains to both the scoping of 
what is to be included in the model/view in terms of e.g. 
enterprise-wide, business unit specific, etc, as well as 
the perspective in terms of the high level structures the 
well-known ‘engineering frameworks’ (e.g. [4, 7, 14, 18, 
71, 72, 75, 80]). These frameworks usually take the form 
of a two-dimensional structure involving different ‘cells’ 
organized in columns and rows. For each of the ‘cells’ of 
the latter engineering frameworks, one can create a view 
on the model of the system (of systems) as a whole.

2.	 Distillation – involving a further abstracting away from 
the original domain, by distilling specific aspects of the 
domain. The central question in using this operation is 
what phenomena to include in the view? In terms of the 
analogy of taking photos, this would correspond to the 
question if one would make a color photo, a gray-scale 
photo, or possibly even an infra-red photo. In a system 
development context, this is where we find the need to 
hone in on specific aspects (e.g. process flows, resource 
use, information flows, etc), and/or cross-cutting con-
cerns (e.g. security, privacy, sustainability, etc.). The 
earlier example shown in Fig. 3 is an example of distill-
ing in the sense of blending out functions, while still 
maintaining an interest in the data flows. In ‘distilling’, 
one may need to combine certain elements/properties 
from the original domain model. Therefore, in this case, 
the mapping from the (selected part of the) original 
domain model to the view’s graph would involve a sur-
jective (but possibly bijective) function. As an example 
of this surjectivity, building on Fig. 3, Fig. 4 shows (left 
and right) two original models that could both be ‘dis-
tilled’ to the compacted view on the right hand side of 
Fig. 3.

3.	 Summarization – also involves a further abstracting 
away from the original domain, but now by clustering 
of different elements in the original domain model into 
more coarse grained elements. As a result, the mapping 

from the (selected part of the) original domain model 
to the view’s graph would again involve a surjective 
function, but in this case, this is not allowed to be a 
bijective function. A typical example would be a process 
model, where a summarized view is created in which the 
decomposition of the process is not included. The lead-
ing question here is what level of detail is needed? In 
terms of taking a photo, this is the question of the level 
at which one zooms in/out on the subject in relation to 
the resolution of the optical sensors as used in the cam-
era.

4.	 Translation – involving a translation between one mod-
eling language to another modeling language (and 
medium). This implies that the mapping needs to pro-
vide a ‘translation’ between the modeling languages 
used. The main question for this operation is what is the 
best language and medium to represent the view? In a 
system development context, this is where one may find 
a variety of representations that are tuned to different 
stakeholders in terms of e.g. heat-maps, matrix-like rep-
resentations, textual descriptions combined with info-
graphics, animations, etc. In section 7, we will return to 
this point in terms of the representation of a model actu-
ally involving a connection between its informational 
payload and a concrete ‘medium system’.

The needed mix of operations used in creating a spe-
cific view, depends on the specific purpose for the view at 
hand. Even more, given one domain model, one can even 
construct an entire hierarchy of views, using the different 
operations.

As mentioned above, in the context of system develop-
ment, the selection operation has a natural link to the high 
level perspectives of engineering frameworks. Collectively, 
the views that correspond to the different cells in such frame-
works provide different ‘chunks’ that make up the model 
of the entire (as-is/to-be) system. In addition, strategies 
exist that enable a recoding or modularization of models 
using an underlying foundational ontology. In model recod-
ing [16], models are re-organized by grouping elements in 
terms of higher-granularity modeling primitives. In model 

Component 1

Function 1

Component 1

Function 12

2

Function 13 Function 14

Component 1

Function 1

Component 1

Function 12

2

Function 13 Function 14

Fig. 4   Surjectivity in distilling views
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modularization [30], models are reorganized in cognitively 
tractable chunks that can be understood as a whole.

The distillation, summarization, and translation opera-
tions are directly linked to the question of the concepts and 
relations to be used in modeling the domain. In other words, 
the ontological commitment by which we will look at the 
domain. This is where we find the meta-models.13 underly-
ing actual modeling languages and methods (e.g. [4, 48]), 
as well as explicit ‘content frameworks’ (e.g. [75, 80]) that 
(albeit without a ‘concrete syntax’) do define the concepts 
and relation in terms of which the system is to be observed 
and modeled.

The question of what level of detail is needed? behind the 
summarization operation is also directly linked to the role 
of views as a complexity management mechanism to make 
complex models cognitively tractable. What is needed for 
summarization is some kind of ‘(un)folding’ mechanism. 
Having a (recursive) (un)folding mechanism also enables 
the construction of a dynamic hierarchy of views, that allows 
for a navigation in terms of zooming in/out akin to the way 
we use Google Maps.

The needed (un)folding mechanism can be based on 
mereology (i.e., part-whole relations), as well as different 
forms of ‘attribution’. For instance, in the case of processes, 
it is quite commonplace to decompose these in terms of 
their mereological structure, i.e., decomposing a process 
into smaller temporal parts (sub-processes/tasks). In the 
case of organizational structures, the organizational hier-
archy (which is structure of delegation power) coincides 
with a mereological structure in which organizations, their 
branches and units are decomposed into other smaller (func-
tional) parts. ‘Attribution’ refers to the fact that one concept 
might be considered as an attribute of another concept. For 
instance, the height of a person, the name of a person, etc. 
are attributes of a person. This ‘attribution’ can be applied 
recursively in the sense that a person in the role of a man-
ager of a department, might be seen as an attribute of that 
department [12].

General strategies for the (un)folding mechanisms needed 
for model summarization have been the subject of study 
in the past in the context of dealing with large conceptual 
models [11, 12, 34], as well as more recently utilizing foun-
dational ontologies to generate ontologically founded (un)

foldings [27, 64] of large conceptual models. The general 
idea of the latter approaches is to let the models undergo 
an (automatic) lossy transformation based on the underly-
ing foundational ontology, to yield another model (a sum-
marizing view) that captures the gist of what the original 
model was about. By applying this recursively, a hierarchy 
of (ontology based) summarizations results.

Since a view involves a mapping from the original model 
to the view that is generally a surjective function (and not a 
bijective one), updating/editing a view can lead to a varia-
tion of the ‘view update’ problem as known from the field of 
databases. Operationally this means that if a change is made 
in a view based on some original domain model, it may not 
be clear how to then make a corresponding change in the 
original domain model.

In practice, this ‘view update’ problem becomes even 
more pressing as in the context of system development one 
is likely to actually start modeling a system from differ-
ent angles; not unlike taking photos of the same object. Of 
course, knowing that these would be models of the same sys-
tem, would imply that these models are essentially views of 
a larger model. Indeed, during a modeling process, one may 
use views to gradually (in a bottom up fashion) construct 
the ‘larger picture’.

A challenge is, of course, to ensure linkages between 
these views to maintain consistency and maintain/obtain 
the ‘larger picture’ (see the discussion in e.g. [8]). As the 
different ‘cells’ of the aforementioned ‘engineering frame-
works’ involve a different perspective of the system (and its 
development) under consideration, the modeling concepts 
used for each of the cells will be ‘cell-specific’. As a result, 
there will also be cell-specific meta-models. When, across 
an engineering framework, these cell-specific meta-models 
are aligned well (as is explicitly the case for, e.g., ArchiMate 
[4], IAF [80] and MEMO [18]), views corresponding to the 
different ‘cells’ of the framework can be connected to main-
tain/obtain the ‘larger picture’.

Diagrams, Programs, Animations, and other 
Models

Before we review (some of) the ‘other’ model kinds, such 
as tables, diagrams and animations, it is important to have 
a closer look at the actual representation of models. Before 
doing so, however, it is important to revisit the earlier made 
observations that the notion of model we subscribe to does 
not stipulate any a priori constraints on e.g. the level of com-
pleteness, precision, or even (mathematical) formality of the 
model. At the same time, we would argue that a model is 
always expressed in terms of some modeling language. This 
can be a precisely (a priori) defined modeling language, but 

13  The term meta-model is often overloaded in the area. Often, it 
refers to the description of a language’s abstract syntax In contrast, 
we are using it here in the sense of what is termed the ontological 
meta-model of the language, or simply, the ontology of the language. 
This corresponds to a model that captures the worldview (or rather 
conceptualization) that is embedded in the language’s modeling prim-
itives. For example, Peter Chen’s Entity Relationship model commits 
to a worldview/conceptualization that accounts for the existence of 
four types of things: entity, relationship, attribute and attribute value 
spaces [23].
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can equally well involve a highly informal ad-hoc (emerg-
ing) language when e.g. sketching on the back of a napkin.

When zooming in on modeling languages, one can make 
a distinction between the conventions that govern what 
constructions are allowed in the language, and conventions 
that govern the way these are concretely presented in terms 
of representational mechanisms associated to a medium 
system. The former corresponds to the grammar and the 
abstract syntax of the language, while the latter pertains to 
the concrete syntax. The concrete syntax also ties a model’s 
abstract syntax to an actual medium system. Obvious exam-
ples of medium systems that can be used to ‘render’ the 
concrete syntax models include paper (including the back of 
a napkin), a 2D vector graphics (and textual fonts) render-
ing engine, or a simulation engine. Less obvious examples, 
include game engines or even tangible objects, in order to 
create models (and views) that may provide a more tangible 
experience.

Building on this, it is also important to note that a model 
(qua representation on a medium system) may be of a static 
nature or of a dynamic (and even an interactive) nature. This 
distinction is actually orthogonal to the question if the mod-
eled domain is static or dynamic. If a domain is static, one 
could, indeed imagine creating a model with a static repre-
sentation, such as a simple paper-based ‘org chart’ of the 
structure of an organization. However, one could also opt to 
e.g. create a ‘navigable’ model where a ‘viewer’ can inter-
actively navigate over/through the model, as we e.g. already 
hinted at when discussing the (un)folding of models in the 
section “Complexity Management and Views”. Conversely, 
a dynamic domain such as a business process can be repre-
sented in terms of a simulation or animation, but also as a 
static representation in terms of e.g. a BPMN [49] model.14

In the remainder of this section, we will argue how speci-
fications, programs, diagrams, tables, spreadsheets, simula-
tions, and animations can all essentially be seen as models; 
albeit with fundamentally different purposes and represented 
on different media systems. The chosen set (specifications, 
programs, diagrams, tables, spreadsheets, simulations, and 
animations) is not intended as a complete coverage of all 
‘things model’ that may be used in a system development 
context. Together, however, they do illustrate the variety of 
the kinds of models we may come across in the modeling 
practices as embedded in system development:

•	 Specification – A specification is a model that norma-
tively prescribes the properties of a (to be designed, to 
be elaborated, to happen, to be brought about, ...) phe-
nomenon. In terms of our earlier work [31] towards a 

taxonomy of modeling-related goals, a specification has 
a world-to-model direction of fit (in a world-to-word vein 
[70]) with the aim to change the world (the world in the 
sense of the phenomenon which’ properties are described 
normatively). Specifications tend to be represented using 
precise/formal languages on 2D text/graphics based 
medium systems. For instance, a specification of busi-
ness rules in as a text file in controlled natural language 
format, a mathematical specification on (digital) paper, 
or a graphical Petri-net based specification.

•	 Program – A specification which models the required 
behavior of a computer in an actionable way, such that a 
computer can directly exhibit this required behavior (via 
interpretation or compilation). Traditionally, programs 
are specified in some controlled textual form. In the past, 
programs were specified in terms of other medium sys-
tems, such as punched cards. Meanwhile, there has also 
been an increase in the use of visual ways to represent 
programs. Some of the modern editors for programs 
allow for some forms of (un)folding, de-facto resulting in 
a more dynamic (navigable) representation. Although we 
consider programs as models (again, of computation), we 
do not consider programming languages as appropriate 
conceptual modeling languages. Programming languages 
are designed with computational concerns in mind (e.g., 
computational complexity, performance, to facilitate 
compiler construction) and as a result, for the purpose 
of conceptual modeling, they: compromise expressivity 
and conceptual fidelity; hinder separation of concerns by 
forcing the modeler to consider at the same time concep-
tual, design and implementation issues.15

•	 Diagrams – Diagrams, in particular involving boxes-and-
lines, are a common way to represent models. In gen-
eral, diagrams involve some (static) graphical structure, 
possibly adorned with icons and/or text. In principle, 
diagrams provide a static representation. However, as 
hinted at before, such models can be made dynamic in a 
Google Maps like style by (un)folding and/or blending 
in/out specific (types of) elements. See the earlier discus-
sions in section “Complexity Management and Views” 
regarding the distillation and summarization operation 
for the creations of views. Diagrammatic notations are 
often part of the concrete syntax of general-purpose 
and domain-specific modeling languages alike. When 
designed in a proper way, diagrammatic notations can 
increase the pragmatic efficiency of the models it pro-

14  Where this model can, of course, be complemented with a simula-
tion of actual process instances.

15  For this discussion in the context of ontology engineering, see, 
e.g., [23]; for the trade-off between expressivity and tractability in 
knowledge representation languages, see, e.g., [44]. Another manifes-
tation of this problem is the well-known impedance mismatch prob-
lem in mapping ontologically-rich conceptual models to relational 
databases, see, e.g., [22].
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duces [25, 29]. However, in order to attain these proper-
ties, these notations have to be properly designed [45] 
lest denting problem-solving and producing unintended 
cognitive inferences (unintended implicatures) [25, 29].

•	 Table – A table essentially provides a two-dimensional 
grid representation on a 2D medium (such as paper or a 
computer screen) that can capture a (possibly derived) 
ternary relation (type) concerning the modeled domain. 
In principle, a table is a static representation. However, 
by ‘allowing’ one to blend in/out specific rows/columns, 
thus changing the ‘informational payload’ which the 
table (qua model) provides to us at that moment, the 
representation becomes interactive.

•	 Spreadsheet – A spreadsheet is a specific way to repre-
sent/render one or more connected tables on a compu-
tational medium system. Using formulas, derived parts 
can be included as well. A spreadsheet with ‘intentionally 
left open’ cells to enable ‘what if analysis’ is an example 
of an interactive model as it allows one to ‘play’ with 
the model. Spreadsheets, with their traditional numbered 
columns and rows, are, of course, not the most suitable 
to capture the structures of a domain in a clear way.

•	 Animation – A model that is represented on a video-
based medium system (i.e. a ‘movie’) that illustrates the 
dynamic behavior in the modeled domain in terms of the 
involved agents, subjects, etc

•	 Simulation – A model that is represented on a simulation 
engine (as the medium system) and that provides a simu-
lation of the dynamic behavior of the modeled domain. 
If simulation-runs can be generated ‘on the fly’ based on 
different scenario’s, the simulation (qua model) becomes 
an interactive model Note: a ‘screenshot’ of an animation 
or a simulation, can be seen as a model as well. In that 
case, it would be a view based on a ‘temporal distilla-
tion’.

Conclusion

We started this paper with the observation that humanity 
has, quite naturally, developed a wide range of modeling 
practices. We also observed that when the models as used 
in such modeling practices have a key role to play in the 
activities in which these modeling practices are ‘embedded’, 
the need emerges to consider the effectiveness and efficiency 
of such processes, and speak about modeling capabilities. 
Based on this, we argued for a need to develop a thorough 
understanding of the artifacts involved in the modeling 
practices/capabilities.

From this general backdrop, we then zoomed in on model-
driven (systems) development in a general sense (including 
software engineering, information systems engineering, 
business process engineering, enterprise engineering, and 

enterprise architecture management) as an area where mod-
els play an (increasingly) important role.

In this context, we zoomed in on a variety of model(ing) 
related artifacts, such as views, diagrams, programs, ani-
mations, specifications, etc, that play an important role in 
the modeling practices that take place in the context of 
system development, While doing so, we also introduced 
a framework for understanding to position the variety of 
modeling related artifacts, where we also took the view that 
these artifacts are to be seen as specific kinds of models, 
albeit for fundamentally different purposes. The foundation 
of the presented framework for understanding is formed by 
a philosophically and linguistically grounded definition of 
domain model, where we also positioned domain models 
as complex speech acts. Based on this, foundation, the pre-
sented framework also includes definitions of the Return 
on Modeling Effort (RoME), and the conceptual fidelity of 
domain models, as views as a mechanism to manage the 
complexity of domain models.

In future work, we expect to further evolve the presented 
framework. More specifically, we also intend to develop a 
more completer ontology of models dealing with aspects 
such as the mereology of models, models as artifacts (i.e., 
property connecting modeling acts to intentions), identity as 
aspects of models and how they relate to other artifacts in the 
ecosystem of modeling (in the spirit of the ontology of soft-
ware as proposed in [77]). Finally, we intend to investigate 
the role of different types of assumptions [78] to modeling 
practices and to models as artifacts.
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