
Vol.:(0123456789)

SN Computer Science (2024) 5:861
https://doi.org/10.1007/s42979-024-03163-y

SN Computer Science

ORIGINAL RESEARCH

Understanding the Variety of Domain Models: Views, Programs,
Animations, and Other Models

Henderik A. Proper1  · Giancarlo Guizzardi2

Received: 1 July 2023 / Accepted: 22 July 2024 / Published online: 9 September 2024
© The Author(s) 2024

Abstract
Humanity has long since used models, in different shapes and forms, to understand, redesign, communicate about, and shape,
the world around us; including many different social, economic, biological, chemical, physical, and digital aspects. This has
resulted in a wide range of modeling practices. When the models as used in such modeling practices have a key role to play
in the activities in which these practices are ‘embedded’, the need emerges to consider the effectiveness and efficiency of
such processes, and speak about modeling capabilities. In the latter situation, it also becomes relevant to develop a thorough
understanding of the artifacts involved in modeling practices/capabilities. One context in which models play (an increas-
ingly) important role is model-driven systems development, including software engineering, information systems engineer-
ing, business process engineering, enterprise engineering, and enterprise architecture management. In such a context, we
come across a rich variety of modeling related artifacts, such as views, diagrams, programs, animations, specifications, etc.
In this paper, which is actually part of an ongoing ‘journey’ in which we aim to gain deeper insights into the foundations
of modeling, we take a fundamental look at the variety of modeling related artifacts as used in the context of model-driven
(systems) development, while also presenting an associated framework for understanding, synthesizing the insights we
obtained during the ‘journey’ so-far. In doing so, we will also argue that the aforementioned artifacts are actually specific
kinds of models, albeit for fundamentally different purposes. The provided framework for understanding involves definitions
of domain model, the Return on Modeling Effort (RoME), the conceptual fidelity of domain models, as well as views as a
mechanism to manage the complexity of domain models.

Keywords  Domain modeling · Return on modeling effort · Conceptual fidelity · Views

Introduction

Whenever we are confronted with complex phenomena,
such as the processes we observe in nature, the construc-
tion of buildings, the design of information systems, etc.,
we tend to ‘work with’ an abstraction (in our mind) of the
actual phenomenon; zooming in on those ‘properties’ of the
phenomenon that matter to us, while filtering out all the
properties that are not germane to the goals at hand. When
we externalize this abstraction in terms of some artifact,

then to us, as an individual, this artifact is a model of the
observed phenomenon. For such a model to be ‘recognized’
as a model, the artifact needs to be a human understandable
representation of said abstraction.

The latter view on models is rooted on (among others)
the definitions of model as provided by e.g. Apostel [1] and
Stachowiak [73]. Here, it is important to already acknowl-
edge the fact that the notion of model as put forward by these
scholars does not stipulate any a priori constraints on e.g.
the level of completeness, precision, or even (mathematical)
formality of the model. Depending on the situation, and the
purpose of a model, different requirements can be put on a
model [6, 39], including requirements regarding, e.g., its
completeness, precision, or formality.

In line with the general notion of domain as e.g. provided
in the Webster dictionary [79] “a sphere [...] of knowledge,
influence, or activity”, we prefer to refer to these models
as domain models, where the term domain refers to the

 *	 Henderik A. Proper
	 henderik.proper@tuwien.ac.at

 *	 Giancarlo Guizzardi
	 g.guizzardi@utwente.nl

1	 TU Wien, Vienna, Austria
2	 University of Twente, Enschede, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03163-y&domain=pdf
http://orcid.org/0000-0002-7318-2496

	 SN Computer Science (2024) 5:861861  Page 2 of 16

SN Computer Science

represented ‘something’1. The requirement for domain mod-
els to be human understandable, connecting the cognition
of modelers, and model users, to a referent (i.c. the domain
being modeled), also clearly distinguishes these models
from, e.g., machine-learning models. For practical reasons,
in the remainder of this paper, we will use the term model
as an abbreviation for domain model.

More generally, one can observe how humanity has long
since used (domain) models to understand, redesign, com-
municate about, and shape, the world around us, including
many different social, economic, biological, chemical, physi-
cal, and digital aspects. These models may take different
shapes and forms, such as sketches, precise drawings, tex-
tual specifications, or tangible forms mimicking key physical
properties of some original. This widespread, and natural [6,
81], use of models has resulted in many different modeling
practices.

When the models as created and/or used in such modeling
practices have a key role to play in the activities in which
these modeling practices are “embedded”, a natural need
emerges to consider the effectiveness and efficiency of such
processes, and actually speak about modeling capabilities,2.
In the latter situation, it becomes relevant to develop a thor-
ough understanding of the artifacts involved in the modeling
practices/capabilities.

One context in which models play (an increasingly)
important role is model-driven systems development, includ-
ing software engineering, information systems engineering,
business process engineering, enterprise engineering, and
enterprise architecture management. In this paper, we will
focus on the variety of models as used in the context of
model-driven development.

It should be noted that model-driven development
approaches tend to limit the notion of model to being an
artifact with (at least) an explicit structure, and often also
require these models to have a formal semantics in math-
ematical terms. However, as mentioned before, the notion
of model as put forward by e.g. Apostel [1] and Stachowiak
[73] clearly suggest to consider the notion of model from
a broader frame of mind; a perspective we wholeheartedly

embrace. While models with a formal semantics are, indeed,
important from an engineering point of view, it is important
to also acknowledge that, for instance, drawings made on
the ‘back of a napkin’, sketches of system architectures, use
cases, etc, are essentially all used as models in their associ-
ated modeling practices.

In the context of model-driven development, we also
come across a rich variety of modeling related artifacts,
such as views, diagrams, programs, animations, specifica-
tions, etc. In this paper, which is actually part of an ongoing
‘journey’ [57–60] in which we aim to gain, and articulate,
deeper insights into the foundations of modeling, we aim to
take a deeper look at these artifacts. More specifically, in
this paper, we will suggest a framework for understanding
for the variety of modeling related artifacts. In doing so, we
will argue that the aforementioned artifacts should actually
be seen as specific kinds of models, albeit for fundamen-
tally different purposes. A first version of said framework
was sketched out in [60], which was inspired by the keynote
of one of the authors at MODELSWARD 2023 [55]. The
resulting framework, as presented in this paper, comprises:

1.	 a philosophically and linguistically founded definitions
of domain model,

2.	 the identification of a model’s Return on Modeling Effort
(RoME),

3.	 the definition of the conceptual fidelity of domain mod-
els, and

4.	 views as a mechanism to manage the complexity of
domain models,

and synthesizes much of our earlier work on the foundations
of modeling [5, 20, 23, 35, 57–59, 61].

As mentioned above, we consider it to be of increasing
importance to develop a thorough understanding of the
artifacts involved in modeling practices/capabilities, and
model-driven (system) engineering in particular. It is this
conviction that also inspired us in developing the presented
framework; which we certainly expect to evolve further as
part of our ongoing ‘journey’ into the foundations of domain
modeling.

In line with this, the remainder of this paper is struc-
tured as follows. In the section “Domain Models” we start
by zooming in on the notion of (domain) model itself, result-
ing in a philosophically grounded definition of domain
model. The section “Domain Models as Complex Speech
Acts” takes a more fundamental perspective on a model as
being a complex speech act. We then continue, in the section
“Return on Modeling Effort”, by addressing the importance
of knowing a model’s purpose and its potential Return on
Modeling Effort in particular. In the section “Conceptual
Fidelity”, we turn our attention to the notion of conceptual
model, which is a class of models that has initially grown

1  Within some engineering disciplines, including software engi-
neering in particular, the term domain modeling is used in a more
restricted sense, namely, to refer to a (domain) model capturing the
general ‘problem area’. As such, using the term domain model(ing)
as an abbreviation of problem domain model(ling); see e.g. [50]. In
the area of domain engineering, especially when explicitly connected
to the notion of domain ontology as in [15], what is referred by the
term domain model is an important exemplar of what we mean by the
expression here. As such, we use the word domain here in the more
general sense as put forward in the dictionary [79].
2  Ontologically speaking, capabilities (or capacities) are gradable
dispositions i.e., properties that are manifested in certain situations
via the occurrences of events of a certain kind [3].

SN Computer Science (2024) 5:861	 Page 3 of 16  861

SN Computer Science

to play an important role in the field of information systems
engineering, but has a much wider role to play. In that sec-
tion, we will also introduce the notion of conceptual fidel-
ity. This allow us to see the property of being conceptual
itself as a gradable property of models. Building on this
grounding, section “Complexity Management and Views”
discusses the notion of views as a complexity management
mechanism that supports making complex models cogni-
tively tractable. Finally, before concluding, the section “Dia-
grams, Programs, Animations, and other Models” positions
artifacts such as diagrams, programs, and animations, as
being specific kinds of models, covering different purposes
for different audiences.

Domain Models

Combining foundational work by Apostel [1], and Stachow-
iak [73], more recent work on the same topic by different
authors [32, 66, 67, 74], as well as our own work [5, 6, 20,
23, 35, 57–59, 61], we currently understand a domain model
to be:

A social artifact that is understood, and acknowledged,
by a collective human agent to represent an abstrac-
tion of some domain for a particular cognitive purpose.

In line with [79], with domain we refer to ‘anything’ that one
can speak and/or reflect about; i.e. the domain of interest.
As such, domain simply refers to ‘that what is being mod-
eled’. Below we will return in more detail regarding to the
notion of the domain that is being modeled. Furthermore,
the domain could be something that already exists in the
‘real world’, something that is desired to exist in the future,
something imagined, or even something that is brought about
by the existence of the model itself. We will return to this
point in the section “Domain Models as Complex Speech
Acts” when discussing models as complex speech acts. In
the context of system development at large, examples of
more specific classes of domain models include enterprise
(architecture) models, business process models, ontologies,
organizational models, information models, software mod-
els, problem (domain) models1 , etc. We consider all of these
as valued members of the larger family of domain models.

A model must always be created for some cognitive pur-
pose,3; i.e. to express, specify, learn about, or experience,
knowledge regarding the modeled domain. This also implies

that, in line with the cognitive purpose of the model, some, if
not most, ‘details’ of the domain are consciously filtered out.

As we regard a model to be an artifact, this also implies
that it is something that exists outside of our minds; i.e.
as ‘represented abstractions’. More specifically, a model is
seen as a social artifact. in the sense that its role as a model
should be recognizable by a collective human agent4. This,
once more, eludes to the fact that models are, as we will
discuss in the section “Domain Models as Complex Speech
Acts”, essentially complex speech acts.

The understood, and acknowledged, by a collective
human agent phrase clearly differentiates domain models
from, e.g., machine-learning models. Although a domain
model can certainly involve complex mathematical formal-
isms, or computer readable specifications.

In the context of (model-driven) system development,
models typically take the form of some ‘boxes-and-lines’
diagram. More generally, however, domain models can,
depending on the purpose at hand, take other forms as well,
including (controlled) natural language texts, mathematical
specifications, games, sketches, animations, simulations, and
physical objects. We will elaborate on the latter in the sec-
tion “Diagrams, Programs, Animations, and other Models”.

Domain Models as Complex Speech Acts

Requiring a model to be an artifact that needs to be under-
stood by human agents, immediately puts models in the
realm of language. Therefore, an important theoretical foun-
dation of domain models is the semiotic triangle by Ogden
and Richards [47], as depicted in Fig. 1. The semiotic trian-
gle is traditionally used as a base to theorize about meaning
in the context of language [13, 46, 69, 76], but has also been
used widely to theorize about the meaning of domain models
[33, 38, 39, 42].

The tenet of the semiotic triangle is that when we use
symbols, including models, to speak about ‘something’, i.e.
the referent, then these symbols represent, i.e. symbolize, our
thought or reference about that something. The thought or
reference is the meaning we have assigned to the symbols.

In the context of modeling, the notion of ‘thought or
reference’ is generally replaced by the notion of concept.
The referent can be anything, in an existing world, or in
a desired/imagined world. It can involve physical phenom-
ena (e.g., tree, car, bike, atom, planet, picture, etc), mental

3  In earlier work, we did not include the explicit focus on cognitive
purpose but rather spoke about some purpose in general. In retro-
spect, we think this was an omission. Adding cognitive clarifies the
role of models as a way to express, specify, learn about, or experi-
ence, knowledge regarding the modeled domain. We would like to
thank Jan Schoonderbeek for making us aware of this omission.

4  The pre-noun collective does suggest that it would require the
involvement of multiple people. We do, indeed, acknowledge the use
of domain models by an individual person as well, but prefer to treat
this as a special case concerning a ‘self-shared’ model.

	 SN Computer Science (2024) 5:861861  Page 4 of 16

SN Computer Science

phenomena (e.g., thoughts, feelings, etc), as well as social
phenomena (e.g., marriage, mortgage, trust, value, etc).

A domain to be modeled generally involves a complex of
(related) referents, which, following the semiotic triangle
(Fig. 1), results in a complex of corresponding concepts/
thoughts; the (domain) abstractions is in the mind of human
agents. Depending on its purpose, such an abstraction can
have differing levels of generality, mirroring the generality
of the domain to be modeled. For instance, the abstraction
can pertain to the legal domain, the world of business pro-
cesses, or the world of marital relationships as a whole, but
may also pertain to a specific court case, a specific busi-
ness process or a specific marriage. For the world of marital
relationships as a whole, the abstraction is likely to involve
concepts that reflect (classes of) people, marriages, and off-
spring. In line with [20], we refer to such an abstraction of a
general domain as a conceptualization. Such a conceptual-
ization identifies the fundamental concepts in terms of which
one creates their abstraction of the world. At the level of a
specific marriage, the abstraction may involve person John,
person Mary, person Sarah, the marriage between John and
Mary, and Sarah being born in the marriage between John
and Mary. In the latter case, we also see how the general
domain conceptualization essentially defines a ‘lens’ by
which we observe the more specific domain to be modeled.

In [31], while reflecting on the value of models and the
underlying purpose for which models are ultimately created
(‘uttered’) by (collective) human agents, we argued that
domain models should essentially be regarded as complex
speech acts [68]. Doing so, enabled us to apply the notion
of direction of fit [70] from the areas of philosophy of mind
and philosophy of language in defining a basic taxonomy of
overall purpose for which models are created.

The notion of direction of fit [70] is meant to connect
the propositional content of intentional aspects (i.e.,

mental states or speech acts) to the external state of affairs
of which they are about. There are basically three possible
directions of fit:

1.	 World-to-Mind (or World-to-Word) – the propositional
content of a mental state (i.e., a desire or intention) or
of a speech act is made true by making the world such
that it conforms with that propositional content. In terms
of the semiotic triangle, the referent, i.e. the part of the
world that the thought or symbol refers to, needs to be
made conformant to the thought or symbol. For exam-
ple, if John intends to go to Barcelona next summer or if
Mary plans to finish her paper by tomorrow, they have to
intervene in the world to make the propositional content
of their intention or speech act true.

2.	 Mind-to-World (or Word-to-World) – the propositional
content of a mental state (i.e., a belief) or the speech act
is made true if there is something in the world that makes
it true. In terms of the semiotic triangle, the thought
or symbol must be articulated as such to conform to
their referent. For example, if John believes Rome is the
capital of Italy or if Mary states “I am married to John”,
these things are true if there is something in the world
that make them true (in this case, a particular city and
country with a particular legal relation between the two,
and a marriage).

3.	 World-to-Word-to-World (or double direction of fit) – by
uttering something, an individual can bring about some
change the world, which then becomes the truthmaker
[21] of sentences with that corresponding propositional
content. For example, if a judge utters “I hereby declare
you (John) and you (Mary) husband and wife” this utter-
ance creates a marriage binding John and Mary, which
then becomes the truthmaker of the proposition “John
and Mary are married”. In terms of the semiotic trian-
gle, we have the situation in which an actor expresses
a symbol s and, by doing so, brings about in the world
a referent r that is, hence, conformant to the semantic
content of s. This then makes s a truthful description of
r while then, as a consequence, other actors take/accept
s as a (future) truth with regards to r.

If we take models to be complex speech acts of this form,
we can come up with the analogous categories of (a)
World-to-Model; (b) Model-to-World; (c) World-to-Model-
to-World directions of fit. Models of type (a) and (c) are
models for changing the world. In the case of models of
type (c), the model itself brings about change in the world
by its existence and recognition in a given community.
We call these latter models Creative Models. Examples
include a diagram in a patent file, which helps to create
intellectual property rights, or a model included in a Will
dividing a piece of real state among someone’s heirs (in

Fig. 1   Ogden and Richard’s semiotic triangle [47]

SN Computer Science (2024) 5:861	 Page 5 of 16  861

SN Computer Science

both cases, by expressing the semantic content of those
rights that are henceforth created).

In the case of models of type (a), the model is an instru-
ment through which one can bring about changes in the
world. These include designs (e.g., a blue print for a house)
that will be implemented, and plans (e.g., a BPM model of a
process TO-BE). We call these models Prescriptive Models.
These models can be used by individuals or collective of
individuals (i.e., coordination models).

Models of type (b) are called Descriptive Models. These
are models that represent a relation between abstractions in
the mind of human agents and some existing external real-
ity (the referents of the model). Notice that these two relata
correspond to Thought or Reference and Referent in Ogden
and Richards’ semiotic triangle [47], respectively.

Next to prescriptive and descriptive models, one can also
identify predictive models which, by their very nature, have
been created to predict the behavior of different aspects of
the domain that is being modeled. This predictive ‘capabil-
ity’ can be used for both descriptive and prescriptive models.
One can make a predictive-descriptive model of an exist-
ing situation (Model-to-World) with the aim to predict the
behavior of the modeled domain. In this case, we expect the
domain to, without make changes to the domain, behave as
predicted by this prescriptive-descriptive model. Conversely,
one can make a predictive-prescriptive (World-to-Model)
model to predict the behavior of a domain, when the domain
is changed/adapted in line with the domain model.

Return on Modeling Effort

The creation, administration, and use, of domain models, as
well as the development of modeling capabilities, require
investments in terms of time, money, cognitive effort, etc.
We contend that such investments should be met by a (poten-
tial) return. In other words, the resulting models and/or the
processes involved in their creation, administration, and
use, should add value that make these investments worth
while. This has resulted, analogously to the notion of Return
on Investment, in the notion of Return on Modeling Effort
(RoME). We first coined this notion in a publication5 in [40],
while a more elaborate discussion of the concept is provided
in [31, 59] as part of our joint endeavor to better under-
stand the foundations of (domain) modeling and modeling
practices.

Examples of situations where explicit trade-offs regarding
the (expected) RoME would be beneficial include the level
of breath (scope-wise) of the model, the level of detail of a
model, and the level of formality of a model.

When better underpinning the notion of RoME, it is
important to consider both models and modeling, from a
value-oriented perspective. In doing so, we take the Value
Proposition Ontology as defined in [51] as a base. In par-
ticular, we rely on the notions of:

•	 value object – an object to which value is ascribed.
•	 value experience – an (envisaged, actual, or past) experi-

ence (an event) to which value is ascribed.
•	 value bearer – the generalization of value object and

value experience,6.
•	 value beholder – a role played by the actor who ascribes

value.
•	 value beneficiary – a role played by the actor whose goals

are (possibly, partially) satisfied by participating in value
experiences.

•	 value ascription – a collection of value ascription com-
ponents, each of which concerns a personal judgment by
a value beholder of the benefits for, or sacrifices by, a
value beneficiary.

For a given model, the effort part of RoME involves the
sacrifices by the value beneficiary, while the return part
of RoME involves the benefits accrued by them7. Based on
this, one can determine the RoME ratio for a specific value
beneficiary, or do so at an overall level by combining the
sacrifices and sacrifices across all value beneficiaries. In line
with this, it might have been better to speak about Benefits
from Modeling Sacrifices instead of RoME as this would

5  The notion of RoME actually made its first informal appearance in
[52] as a leading principle in the research group of one of the authors,
while a first informal elaboration of the concept was published as a
blog post [53].

6  In [51], even when one considers value objects one are ultimately
interested in the experiences afforded by (the capabilities and quali-
ties of) these objects. In other words, the focus of value ascription is
ultimately always a value experience.
7  In [51], the value beholder ascribes value to value bearers (objects
or experiences) considering benefits and sacrifices w.r.t. the goals of
the value beneficiary – sacrifices are in a sense negative influences
on goals of maintenance of resources (e.g., time, money, energy). The
participation of a value beneficiary in a value experiences (enacted
by value objects) always incur in sacrifices to them. In the cases in
which the value beholder is not the same as the (main) value ben-
eficiary, the former can also be the bearer of sacrifices. In this case,
since the value beholder is willing to invest resources in enabling the
value experience of the value beneficiary, we assume that the value
beholder is also a (secondary) value beneficiary of the value expe-
rience. For example, when parents decides to invest resources in a
high-quality education for their children, we have that: (i) these chil-
dren have to invest resources (bear sacrifices) for the co-creation of
the value experience; (ii) the goals to be satisfied are, besides those
of the children – the main value beneficiary, also those of the parents.
Here we simplify this analysis by simply taking benefits and sacri-
fices to be borne by the value beneficiary.

	 SN Computer Science (2024) 5:861861  Page 6 of 16

SN Computer Science

have more closely followed the terminology from the value
proposition ontology. However, for RoME we prefer to stick
to the analogy to RoI (Return on Investment).

In actual RoME related trade-offs, it will be necessary to
distinguish between the ex-ante expected value ascriptions
and the ex-post realized value ascriptions.

In the case of models and modeling, there seem to be
three potential value bearers:

1.	 Value in creation – The process of (co-)creating a
domain model. Such a process may, e.g., result in the
added value that those who are involved in the modeling
process8 develop a deeper and/or more consistent (joint)
understanding of the modeled domain, and also have the
chance of building shared terminology based on that
understanding. In this case, the value beneficiaries per-
tain to the actor(s) who are directly involved in the (co-)
creation process, and/or those who stand to benefit from
an increased (joint) understanding of the latter actor(s).
The value bearer in this case is a value experience of
(co-)creating the model.

2.	 Value in use – The operational usage of the model, in
line with its purpose.9 This may, e.g., involve the use of
the model to support decision making, give prescrip-
tive/descriptive guidance towards development pro-
cesses and/or operational processes, etc. In this case,
the value beneficiary is typically the user of the model –
who benefits from the support of the model in decision-
making, design, planning, coordinating, etc. However,
they can also be an actor who has a more overall role/
interest positively affected by the use of the model (such
as the transfer of design knowledge from requirements
engineering, via design, to implementation). The value
bearer is the value experience afforded by the use of the
model.

3.	 Value in transaction – The ownership of the model itself.
This pertains to e.g. reference models, design models,
etc, that capturing knowledge that can potentially be re-
applied in different situations. In this case, the value
bearer is a value object; i.e. the model.

At a more fundamental level, we would argue that ultimately
value in creation and value in use are the root/direct value
bearers of models. The value in transaction is derived from
the potential of a model’s future value in use. The combina-
tion of value in creation and value in use is what we refer
to as the Value in Action (ViA) of models. This view allows

us to think of the enactment of modeling practices as value
experiences, and hence see RoME as the ratio between the
benefits and sacrifices involved in these value experiences.

In the work we reported in [31], we provided a goal struc-
ture in terms of a taxonomy of modeling related goals. This
taxonomy is based on the direction of fit [70] as also dis-
cussed above in the section “Domain Models as Complex
Speech Acts”. The resulting taxonomy of modeling goals
distinguishes between models with a prescriptive purpose
(intervening, planning, coordinating), a creative purpose
(bringing about changes in reality), and a descriptive pur-
pose (understanding, problem-solving, communicating, and
documenting), each time involving models that receive their
Value in Action.

For example, we refer to descriptive models (model-to-
world direction of fit) that create value by enhancing domain
understanding, conceptual clarification, meaning negotia-
tion via the creation of models that truthfully describe (a
proper abstraction/conceptualization of) that domain. In
addition, cases of value in use of such models (i.e. Value in
Action) include: (i) communication (i.e., descriptive models
that bring value to the value beneficiary by informing truth-
ful information about the domain and via the experience of
model interpretation); (ii) problem-solving (i.e., descriptive
models that bring value to the model user and other indirect
beneficiaries via the experience of model manipulation); (iii)
intervening (i.e., prescriptive models with a world-to-model
direction of fit that bring value by supporting an experience
of intervening in reality to make it satisfy the propositional
content of that model).

Finally, the complexity management tools (views) as dis-
cussed in the section “Complexity Management and Views”,
as well as the other types of modeling artifacts we discuss
in the section “Diagrams, Programs, Animations, and other
Models”, result in different types of artifacts that afford dif-
ferent modeling experiences leading to different Value in
Action(s).

Conceptual Fidelity

In the context of information systems engineering, an impor-
tant role is played by conceptual models, which we see as a
specific class of domain models. According to the traditional
information systems engineering view [37], a conceptual
model captures the essential structures of some universe
of discourse. In this context, conceptual models are used
to express the concepts, and their (allowed) relations and
constraints, of the universe of discourse (while avoiding the
inclusion of design/implementation/storage details).

The field of information systems engineering, indeed,
provides a fruitful application area for conceptual modeling.
At the same time, however, we suggest to avoid a ‘framing’

8  Which could be a group of actors, but can also be a single actor
expressing their thoughts about an existing/future domain.
9  One could indeed also gain value from a model by (ab)using it
beyond its intended purpose.

SN Computer Science (2024) 5:861	 Page 7 of 16  861

SN Computer Science

of what a conceptual model is to this application area only.
As such, we suggest a more generalized understanding of the
notion of conceptual model. More specifically, based on [20,
54, 57], in our current understanding a conceptual model is:

A domain model, where:

1.	 the purpose of the model is dominated by the
ambition to remain as-true-as-possible to the
conceptualization of the domain by the collective
agent, while

2.	 there is an explicit mapping from the elements in
the model to the latter conceptualization.

As discussed in section “Domain Models as Complex
Speech Acts”, the conceptualization of a general domain
(e.g. the legal domain, the world of business processes, or
the world of marital relationships as a whole) identifies
the fundamental concepts in terms of which the collective
agent create(s) their abstraction(s) of the world. This map-
ping characterizes the ontological commitment of the model
(and the collective agent) as well as its real-world semantics
[23, 28].

Returning to the above point regarding the need to con-
sider the role of conceptual models beyond the field of
information systems engineering, the ambition to remain
as-true-as-possible to the conceptualization of the domain
by the collective agent is not only of value in the context of
information systems engineering, but other contexts as well.
For instance, [20] already stated that the history of concep-
tual modeling can be traced back to at least the 60 s [62].
Furthermore, ontology engineering [23] also involves the
construction of conceptual models representing an ontology.

At a more general level, we also observe that in many
different endeavors in which we (as humans) aim to under-
stand the workings of some domain and/or aim to express, or
study, design alternatives, we actually do so in terms of (pur-
pose and situation specific) domain models. This includes
many examples across science and engineering at large. We
also argue that in these cases, a deepening of our under-
standing of the essential mechanisms leads to a natural drive
to create domain models that remain as-true-as-possible to
the original domain (and our conceptualization thereof); i.e.
conceptual models.

Since a conceptual model is meant to be used by human
agents in tasks such as domain understanding and learn-
ing, communication (including explanation [28]), problem-
solving, and meaning negotiation [20], another fundamental
quality attribute of a conceptual model is its pragmatic effi-
ciency, i.e., how easy it is for those human agents to perform
these aforementioned tasks with these models [25, 29].

As a result, a conceptual model provides an explicit
– human understandable, ideally, pragmatically efficient

– representation of a theory about the entities and their
ties that are assumed to exist in a given domain of inter-
est (according to a given ontological commitment); as such
explicitly capturing descriptive and/or prescriptive selected
aspects of the modeled domain. Conceptual models, there-
fore, enable us to explicitly clarify the things we talk and
reason about; at a chosen level of abstraction and from a
desired perspective.

Identifying conceptual models as a specific class of
domain models, does raise the question regarding the role of
‘other’ domain models that are ‘not conceptual’. In [57] it is
suggested to, next to conceptual models, also identify com-
putational-design models. These latter models may involve
‘conceptual compromises’, with regard to the ambition to
remain as-true-as-possible to the original domain concep-
tualization, to cater for highly desirable computational con-
siderations to, e.g., support simulation, animation, or even
execution of the model. In [54] it is suggested to generalize
this towards utility-design models, to cater for the fact that
‘conceptual compromises’ may not only be introduced for
computational purposes, but also for e.g. experiential pur-
poses, such as the ability to touch, feel, or even ‘enact’ a
model.

An interesting analogy, which certainly needs further
investigation, is the notion of surrogate modeling in the
context of simulation [63] of real-world systems. The level
at which a simulation model reflects all (relevant) properties
of a (planned/existing) real-world system is referred to as the
fidelity of the simulation model: “Fidelity in the modeling
context refers to the degree of the realism of a simulation
model” [63]. Likewise, one can speak of being as-true-as-
possible-to a given domain as a sort of conceptual fidelity.
Conceptual fidelity represents the level of homomorphism
between a given representation and the underlying domain
conceptualization it commits to. An alternative name for this
concept, that is also often used, is domain appropriateness.

In the ideal case, this representation artifact is not only
isomorphic to the structure of that conceptualization (i.e., it
represents in a univocal and non-redundant way all its con-
stituting concepts and only them)10 but it also only allows for

10  We emphasize here that a model is always the result of an inten-
tional act, i.e., it is the result of a deliberate intention of connecting
representation to a conceptualized reality. As discussed in [20], in
line with [19], having an isomorphism between a certain symbolic
structure and a represented entity is not sufficient for that structure to
be a model of that entity: an explicit intentional act is also necessary
for that to be the case. Moreover, although we have (in an ideal case)
an isomorphic mapping between the representation (the artifact) and
the conceptualization, the relation of being a model of is non-reflex-
ive, asymmetric and non-transitive. This contrasts with (only) being
an isomorphism, which is an equivalence relation. These meta-prop-
erties of the former relation are explained by the lack of an intentional
act making the model a model of itself, making the domain conceptu-
alization a model of the representation structure, etc. Finally, in con-
formity with the view defended in [10], we consider that conceptual

	 SN Computer Science (2024) 5:861861  Page 8 of 16

SN Computer Science

interpretations that represent state of affairs deemed accept-
able by that conceptualization [25, 26]. As, in the case of
simulation models of real-world systems, the involved high
fidelity models may be too computationally intensive to sim-
ulate as a whole, one uses so-called surrogate models [63]
that are computationally more efficient, while approximating
the high fidelity model good enough to meet the (optimiza-
tion) purpose at hand.

In an information systems engineering context, it is inter-
esting to note that the ambition for a conceptual model to
remain as-true-as-possible to the conceptualization of the
domain by the collective agent, has a direct correspondence
to the conceptualization principle as put forward in the well
known ISO report on the design of information systems [37].

It is important to note that we do not argue that non-con-
ceptual models are a bad thing; far from it. In fact, utility-
design models are necessary for mapping conceptual mod-
els to possibly multiple enactment solutions (e.g., multiple
computational implementations). However, it needs to be
clear what the ‘conceptual deviations’ are of a non-concep-
tual model in relation to the conceptual model of the same
domain, and what the benefit are of these deviations in terms
of e.g. computational efficiency or experiential properties.
As such, it might quite well be the case that one conceptual
model has different associated non-conceptual models cater-
ing for different needs [24]. Conversely, we would expect
that each non-conceptual model has been based on (at least
one) corresponding conceptual model.

Returning briefly to the notion or RoME, we postulate
that the RoME of a conceptual model is necessarily higher
than the sum of the RoME of each of the non-conceptual
models that have been derived from it. If only because
– besides the benefits accrued via the actions involving these
non-conceptual models – this common conceptual model
provides the additional benefit of relating (ideally, semanti-
cally interoperating) these multiple non-conceptual models.
After all, the latter are derivations of the very same model.
In other words, since non-conceptual models are historically
dependent on a conceptual model, whatever value they bring
to value beneficiaries are (indirect) values brought also by
the use of the original conceptual model. The latter, how-
ever, has the additional benefits of binding, interconnecting
and providing a space of design exploration for utility-design
models derived from it.

Complexity Management and Views

As discussed in e.g. [2, 17, 43], views are positioned as
providing a powerful mechanism to create domain models
that are more suitable in the communication with different
stakeholders (and for different purposes) than the ‘full scale’
model would provide.

At a fundamental level, views are a complexity manage-
ment mechanism that supports making complex models cog-
nitively tractable, while also tuning this to the audience and
their concerns/interests at hands. In this vein, [36] defines
the notion of view, in the context of the architecture of soft-
ware systems, as: “A representation of a whole system from
the perspective of a related set of concerns”. Based on this
definition, [43] speaks about a view as having an “underly-
ing model”, making it explicit that a view is indeed based
on an underlying model. At the same time, the fact that a
view provides a representation of a whole system from the
perspective of a related set of concerns implies that a view
is a model as well. In line with this, we currently understand
a view on another domain model (and the modeled domain)
as being:

A domain model of the modeled domain, which differs
from the original domain model, while:

•	 being at least at the same level of conceptual fidel-
ity,

•	 and provide a coherent subset of the information
as (potentially) provided by the original domain
model.

which we hold as being a generalization of the way(s) the
notion of view is used in [17, 36, 43]. For instance, the “from
the perspective of a related set of concerns” [36] corre-
sponds to the need of a view to provide a coherent subset of
the information as provided by the original domain model.
Note that, since a view is a domain model as well, one can
recursively create views on views.

We do realize that the “information as provided by the
original domain model” may be hard to formalize, as the
“information as in potential provided” does depend on the
observer of the model11. This is also the reason why we have
added the “in potential” qualification. For instance, a large

11  This is actually analogous to the challenge of defining what infor-
mation can potentially be provided by an ‘information carrier’ in
general, in the context of information retrieval systems. A theoreti-
cal framework to explicitly about this has been reported in [9, 56].
It remains a possible avenue for further research to apply this in the
context of models and views. At least for some models with certain
explanatory functions, the information content of a model can be
associated with its ability to answer why-questions [65].

Footnote 10 (continued)
models can be instrumental both in their own evolution by support-
ing a progressive process of modeling, as well as in the construction
of the very underlying domain conceptualization to which they will
(eventually) be isomorphic to.

SN Computer Science (2024) 5:861	 Page 9 of 16  861

SN Computer Science

domain model might be so (cognitively) ‘overwhelming’ to
an observer that they might actually glean more information
from the view than from the original model.

When the involved domain models (i.e., the view and the
original domain model) are represented in terms of explicit
modeling languages, one can mathematically think of these
models as being typed-graphs that are typed in terms of the
modeling concepts as provided by the modeling language(s).
In that case, the notion of “proper subset of the potential
information as provided by the original domain model” can
be formalized by requiring there to be a function that maps
a sub-graph of the (implied) graph representing the original
domain model to the graph that represents the view, where
this function respects ontological commitment(s) of the used
modeling language(s). Given such a sub-graph and mapping
function, the requirement that the (potential) information
provided by a view should be coherent, then corresponds to
the requirement that the sub-graph (representing the view
should) be a connected graph.

It is important to note that models (and views) are not
required to be ‘minimal’. It is allowed for models to contain
elements that can be derived from other parts of the model.
This is also why, above, we added ‘implied’ when writing
“(implied) graph representing the original domain model”.

Consider, for instance, the derived relationships [43] as
featured in the ArchiMate [4]12 modeling language for enter-
prise architecture. Such derived relationships may, depend-
ing on the purpose at hand, may be included in the model/
view or not. An example, taken from [41], is provided in

Fig. 2. A client uses (the red arrow marked Derived rela-
tion) the CRM system. This is derived from the fact that
the Client is assigned to the role of Insurant, which uses the
Claim registration service, which is realized by the Reg-
ister business process, which uses the Customer adminis-
tration service, and which is finally realized by the CRM
system. This view (on a larger ArchiMate model) contains
the derived relation as well as the underlying (more basic)
relations. Even though including such a derived relation in
a view (such as the one depicted in Fig. 2) does not carry
new information in an objective sense, adding it might make
an observer more explicitly aware of the derived relation-
ship. Even more, depending on the modeling language at
hand, such derived relationships enable the creation of more
‘compacted’ views. Consider, for instance, Fig. 3 (based on
an example from from [41]). On the left hand side, we see
there is a data flow from Function 1 to Function 2. As these
functions are assigned to Component 1 and Component
2 respectively, the ArchiMate model allows us to conclude
that there is a data flow from Component 1 to Component
2. This also allows us to create a view where the functions
are not shown, as illustrated on the right hand side of Fig. 3.

Fig. 2   Derived relations in an
ArchiMate model; adopted from
[41]

Fig. 3   Compacting views; based on an example used [41]

12  ArchiMate is an industry standard managed by The Open Group,
similar to e.g. BPMN [49] and UML [48], which are managed by the
Open Management Group (OMG).

	 SN Computer Science (2024) 5:861861  Page 10 of 16

SN Computer Science

In terms of the above discussed possible formalization of
views, we currently posit there to be four ‘stackable’ opera-
tions to construct views:

1.	 Selection – involving the focusing of the view on a spe-
cific part of the original model. In this case, the mapping
function should involve a bijective function between the
(selected!) part(s) of the graph of the original domain
model, and the view’s graph. The central question in
using this operation is what is the (sub)domain to focus
on in the view? When one would be taking a photo of a
subject, this would correspond to the question of where
to point the camera at. In this case, as the metaphor goes,
the angle (perspective) from which the picture (i.e.,
model) is taken reveals or occludes certain elements
from the scene (i.e., domain). In a system development
context this operation pertains to both the scoping of
what is to be included in the model/view in terms of e.g.
enterprise-wide, business unit specific, etc, as well as
the perspective in terms of the high level structures the
well-known ‘engineering frameworks’ (e.g. [4, 7, 14, 18,
71, 72, 75, 80]). These frameworks usually take the form
of a two-dimensional structure involving different ‘cells’
organized in columns and rows. For each of the ‘cells’ of
the latter engineering frameworks, one can create a view
on the model of the system (of systems) as a whole.

2.	 Distillation – involving a further abstracting away from
the original domain, by distilling specific aspects of the
domain. The central question in using this operation is
what phenomena to include in the view? In terms of the
analogy of taking photos, this would correspond to the
question if one would make a color photo, a gray-scale
photo, or possibly even an infra-red photo. In a system
development context, this is where we find the need to
hone in on specific aspects (e.g. process flows, resource
use, information flows, etc), and/or cross-cutting con-
cerns (e.g. security, privacy, sustainability, etc.). The
earlier example shown in Fig. 3 is an example of distill-
ing in the sense of blending out functions, while still
maintaining an interest in the data flows. In ‘distilling’,
one may need to combine certain elements/properties
from the original domain model. Therefore, in this case,
the mapping from the (selected part of the) original
domain model to the view’s graph would involve a sur-
jective (but possibly bijective) function. As an example
of this surjectivity, building on Fig. 3, Fig. 4 shows (left
and right) two original models that could both be ‘dis-
tilled’ to the compacted view on the right hand side of
Fig. 3.

3.	 Summarization – also involves a further abstracting
away from the original domain, but now by clustering
of different elements in the original domain model into
more coarse grained elements. As a result, the mapping

from the (selected part of the) original domain model
to the view’s graph would again involve a surjective
function, but in this case, this is not allowed to be a
bijective function. A typical example would be a process
model, where a summarized view is created in which the
decomposition of the process is not included. The lead-
ing question here is what level of detail is needed? In
terms of taking a photo, this is the question of the level
at which one zooms in/out on the subject in relation to
the resolution of the optical sensors as used in the cam-
era.

4.	 Translation – involving a translation between one mod-
eling language to another modeling language (and
medium). This implies that the mapping needs to pro-
vide a ‘translation’ between the modeling languages
used. The main question for this operation is what is the
best language and medium to represent the view? In a
system development context, this is where one may find
a variety of representations that are tuned to different
stakeholders in terms of e.g. heat-maps, matrix-like rep-
resentations, textual descriptions combined with info-
graphics, animations, etc. In section 7, we will return to
this point in terms of the representation of a model actu-
ally involving a connection between its informational
payload and a concrete ‘medium system’.

The needed mix of operations used in creating a spe-
cific view, depends on the specific purpose for the view at
hand. Even more, given one domain model, one can even
construct an entire hierarchy of views, using the different
operations.

As mentioned above, in the context of system develop-
ment, the selection operation has a natural link to the high
level perspectives of engineering frameworks. Collectively,
the views that correspond to the different cells in such frame-
works provide different ‘chunks’ that make up the model
of the entire (as-is/to-be) system. In addition, strategies
exist that enable a recoding or modularization of models
using an underlying foundational ontology. In model recod-
ing [16], models are re-organized by grouping elements in
terms of higher-granularity modeling primitives. In model

Component 1

Function 1

Component 1

Function 12

2

Function 13 Function 14

Component 1

Function 1

Component 1

Function 12

2

Function 13 Function 14

Fig. 4   Surjectivity in distilling views

SN Computer Science (2024) 5:861	 Page 11 of 16  861

SN Computer Science

modularization [30], models are reorganized in cognitively
tractable chunks that can be understood as a whole.

The distillation, summarization, and translation opera-
tions are directly linked to the question of the concepts and
relations to be used in modeling the domain. In other words,
the ontological commitment by which we will look at the
domain. This is where we find the meta-models.13 underly-
ing actual modeling languages and methods (e.g. [4, 48]),
as well as explicit ‘content frameworks’ (e.g. [75, 80]) that
(albeit without a ‘concrete syntax’) do define the concepts
and relation in terms of which the system is to be observed
and modeled.

The question of what level of detail is needed? behind the
summarization operation is also directly linked to the role
of views as a complexity management mechanism to make
complex models cognitively tractable. What is needed for
summarization is some kind of ‘(un)folding’ mechanism.
Having a (recursive) (un)folding mechanism also enables
the construction of a dynamic hierarchy of views, that allows
for a navigation in terms of zooming in/out akin to the way
we use Google Maps.

The needed (un)folding mechanism can be based on
mereology (i.e., part-whole relations), as well as different
forms of ‘attribution’. For instance, in the case of processes,
it is quite commonplace to decompose these in terms of
their mereological structure, i.e., decomposing a process
into smaller temporal parts (sub-processes/tasks). In the
case of organizational structures, the organizational hier-
archy (which is structure of delegation power) coincides
with a mereological structure in which organizations, their
branches and units are decomposed into other smaller (func-
tional) parts. ‘Attribution’ refers to the fact that one concept
might be considered as an attribute of another concept. For
instance, the height of a person, the name of a person, etc.
are attributes of a person. This ‘attribution’ can be applied
recursively in the sense that a person in the role of a man-
ager of a department, might be seen as an attribute of that
department [12].

General strategies for the (un)folding mechanisms needed
for model summarization have been the subject of study
in the past in the context of dealing with large conceptual
models [11, 12, 34], as well as more recently utilizing foun-
dational ontologies to generate ontologically founded (un)

foldings [27, 64] of large conceptual models. The general
idea of the latter approaches is to let the models undergo
an (automatic) lossy transformation based on the underly-
ing foundational ontology, to yield another model (a sum-
marizing view) that captures the gist of what the original
model was about. By applying this recursively, a hierarchy
of (ontology based) summarizations results.

Since a view involves a mapping from the original model
to the view that is generally a surjective function (and not a
bijective one), updating/editing a view can lead to a varia-
tion of the ‘view update’ problem as known from the field of
databases. Operationally this means that if a change is made
in a view based on some original domain model, it may not
be clear how to then make a corresponding change in the
original domain model.

In practice, this ‘view update’ problem becomes even
more pressing as in the context of system development one
is likely to actually start modeling a system from differ-
ent angles; not unlike taking photos of the same object. Of
course, knowing that these would be models of the same sys-
tem, would imply that these models are essentially views of
a larger model. Indeed, during a modeling process, one may
use views to gradually (in a bottom up fashion) construct
the ‘larger picture’.

A challenge is, of course, to ensure linkages between
these views to maintain consistency and maintain/obtain
the ‘larger picture’ (see the discussion in e.g. [8]). As the
different ‘cells’ of the aforementioned ‘engineering frame-
works’ involve a different perspective of the system (and its
development) under consideration, the modeling concepts
used for each of the cells will be ‘cell-specific’. As a result,
there will also be cell-specific meta-models. When, across
an engineering framework, these cell-specific meta-models
are aligned well (as is explicitly the case for, e.g., ArchiMate
[4], IAF [80] and MEMO [18]), views corresponding to the
different ‘cells’ of the framework can be connected to main-
tain/obtain the ‘larger picture’.

Diagrams, Programs, Animations, and other
Models

Before we review (some of) the ‘other’ model kinds, such
as tables, diagrams and animations, it is important to have
a closer look at the actual representation of models. Before
doing so, however, it is important to revisit the earlier made
observations that the notion of model we subscribe to does
not stipulate any a priori constraints on e.g. the level of com-
pleteness, precision, or even (mathematical) formality of the
model. At the same time, we would argue that a model is
always expressed in terms of some modeling language. This
can be a precisely (a priori) defined modeling language, but

13  The term meta-model is often overloaded in the area. Often, it
refers to the description of a language’s abstract syntax In contrast,
we are using it here in the sense of what is termed the ontological
meta-model of the language, or simply, the ontology of the language.
This corresponds to a model that captures the worldview (or rather
conceptualization) that is embedded in the language’s modeling prim-
itives. For example, Peter Chen’s Entity Relationship model commits
to a worldview/conceptualization that accounts for the existence of
four types of things: entity, relationship, attribute and attribute value
spaces [23].

	 SN Computer Science (2024) 5:861861  Page 12 of 16

SN Computer Science

can equally well involve a highly informal ad-hoc (emerg-
ing) language when e.g. sketching on the back of a napkin.

When zooming in on modeling languages, one can make
a distinction between the conventions that govern what
constructions are allowed in the language, and conventions
that govern the way these are concretely presented in terms
of representational mechanisms associated to a medium
system. The former corresponds to the grammar and the
abstract syntax of the language, while the latter pertains to
the concrete syntax. The concrete syntax also ties a model’s
abstract syntax to an actual medium system. Obvious exam-
ples of medium systems that can be used to ‘render’ the
concrete syntax models include paper (including the back of
a napkin), a 2D vector graphics (and textual fonts) render-
ing engine, or a simulation engine. Less obvious examples,
include game engines or even tangible objects, in order to
create models (and views) that may provide a more tangible
experience.

Building on this, it is also important to note that a model
(qua representation on a medium system) may be of a static
nature or of a dynamic (and even an interactive) nature. This
distinction is actually orthogonal to the question if the mod-
eled domain is static or dynamic. If a domain is static, one
could, indeed imagine creating a model with a static repre-
sentation, such as a simple paper-based ‘org chart’ of the
structure of an organization. However, one could also opt to
e.g. create a ‘navigable’ model where a ‘viewer’ can inter-
actively navigate over/through the model, as we e.g. already
hinted at when discussing the (un)folding of models in the
section “Complexity Management and Views”. Conversely,
a dynamic domain such as a business process can be repre-
sented in terms of a simulation or animation, but also as a
static representation in terms of e.g. a BPMN [49] model.14

In the remainder of this section, we will argue how speci-
fications, programs, diagrams, tables, spreadsheets, simula-
tions, and animations can all essentially be seen as models;
albeit with fundamentally different purposes and represented
on different media systems. The chosen set (specifications,
programs, diagrams, tables, spreadsheets, simulations, and
animations) is not intended as a complete coverage of all
‘things model’ that may be used in a system development
context. Together, however, they do illustrate the variety of
the kinds of models we may come across in the modeling
practices as embedded in system development:

•	 Specification – A specification is a model that norma-
tively prescribes the properties of a (to be designed, to
be elaborated, to happen, to be brought about, ...) phe-
nomenon. In terms of our earlier work [31] towards a

taxonomy of modeling-related goals, a specification has
a world-to-model direction of fit (in a world-to-word vein
[70]) with the aim to change the world (the world in the
sense of the phenomenon which’ properties are described
normatively). Specifications tend to be represented using
precise/formal languages on 2D text/graphics based
medium systems. For instance, a specification of busi-
ness rules in as a text file in controlled natural language
format, a mathematical specification on (digital) paper,
or a graphical Petri-net based specification.

•	 Program – A specification which models the required
behavior of a computer in an actionable way, such that a
computer can directly exhibit this required behavior (via
interpretation or compilation). Traditionally, programs
are specified in some controlled textual form. In the past,
programs were specified in terms of other medium sys-
tems, such as punched cards. Meanwhile, there has also
been an increase in the use of visual ways to represent
programs. Some of the modern editors for programs
allow for some forms of (un)folding, de-facto resulting in
a more dynamic (navigable) representation. Although we
consider programs as models (again, of computation), we
do not consider programming languages as appropriate
conceptual modeling languages. Programming languages
are designed with computational concerns in mind (e.g.,
computational complexity, performance, to facilitate
compiler construction) and as a result, for the purpose
of conceptual modeling, they: compromise expressivity
and conceptual fidelity; hinder separation of concerns by
forcing the modeler to consider at the same time concep-
tual, design and implementation issues.15

•	 Diagrams – Diagrams, in particular involving boxes-and-
lines, are a common way to represent models. In gen-
eral, diagrams involve some (static) graphical structure,
possibly adorned with icons and/or text. In principle,
diagrams provide a static representation. However, as
hinted at before, such models can be made dynamic in a
Google Maps like style by (un)folding and/or blending
in/out specific (types of) elements. See the earlier discus-
sions in section “Complexity Management and Views”
regarding the distillation and summarization operation
for the creations of views. Diagrammatic notations are
often part of the concrete syntax of general-purpose
and domain-specific modeling languages alike. When
designed in a proper way, diagrammatic notations can
increase the pragmatic efficiency of the models it pro-

14  Where this model can, of course, be complemented with a simula-
tion of actual process instances.

15  For this discussion in the context of ontology engineering, see,
e.g., [23]; for the trade-off between expressivity and tractability in
knowledge representation languages, see, e.g., [44]. Another manifes-
tation of this problem is the well-known impedance mismatch prob-
lem in mapping ontologically-rich conceptual models to relational
databases, see, e.g., [22].

SN Computer Science (2024) 5:861	 Page 13 of 16  861

SN Computer Science

duces [25, 29]. However, in order to attain these proper-
ties, these notations have to be properly designed [45]
lest denting problem-solving and producing unintended
cognitive inferences (unintended implicatures) [25, 29].

•	 Table – A table essentially provides a two-dimensional
grid representation on a 2D medium (such as paper or a
computer screen) that can capture a (possibly derived)
ternary relation (type) concerning the modeled domain.
In principle, a table is a static representation. However,
by ‘allowing’ one to blend in/out specific rows/columns,
thus changing the ‘informational payload’ which the
table (qua model) provides to us at that moment, the
representation becomes interactive.

•	 Spreadsheet – A spreadsheet is a specific way to repre-
sent/render one or more connected tables on a compu-
tational medium system. Using formulas, derived parts
can be included as well. A spreadsheet with ‘intentionally
left open’ cells to enable ‘what if analysis’ is an example
of an interactive model as it allows one to ‘play’ with
the model. Spreadsheets, with their traditional numbered
columns and rows, are, of course, not the most suitable
to capture the structures of a domain in a clear way.

•	 Animation – A model that is represented on a video-
based medium system (i.e. a ‘movie’) that illustrates the
dynamic behavior in the modeled domain in terms of the
involved agents, subjects, etc

•	 Simulation – A model that is represented on a simulation
engine (as the medium system) and that provides a simu-
lation of the dynamic behavior of the modeled domain.
If simulation-runs can be generated ‘on the fly’ based on
different scenario’s, the simulation (qua model) becomes
an interactive model Note: a ‘screenshot’ of an animation
or a simulation, can be seen as a model as well. In that
case, it would be a view based on a ‘temporal distilla-
tion’.

Conclusion

We started this paper with the observation that humanity
has, quite naturally, developed a wide range of modeling
practices. We also observed that when the models as used
in such modeling practices have a key role to play in the
activities in which these modeling practices are ‘embedded’,
the need emerges to consider the effectiveness and efficiency
of such processes, and speak about modeling capabilities.
Based on this, we argued for a need to develop a thorough
understanding of the artifacts involved in the modeling
practices/capabilities.

From this general backdrop, we then zoomed in on model-
driven (systems) development in a general sense (including
software engineering, information systems engineering,
business process engineering, enterprise engineering, and

enterprise architecture management) as an area where mod-
els play an (increasingly) important role.

In this context, we zoomed in on a variety of model(ing)
related artifacts, such as views, diagrams, programs, ani-
mations, specifications, etc, that play an important role in
the modeling practices that take place in the context of
system development, While doing so, we also introduced
a framework for understanding to position the variety of
modeling related artifacts, where we also took the view that
these artifacts are to be seen as specific kinds of models,
albeit for fundamentally different purposes. The foundation
of the presented framework for understanding is formed by
a philosophically and linguistically grounded definition of
domain model, where we also positioned domain models
as complex speech acts. Based on this, foundation, the pre-
sented framework also includes definitions of the Return
on Modeling Effort (RoME), and the conceptual fidelity of
domain models, as views as a mechanism to manage the
complexity of domain models.

In future work, we expect to further evolve the presented
framework. More specifically, we also intend to develop a
more completer ontology of models dealing with aspects
such as the mereology of models, models as artifacts (i.e.,
property connecting modeling acts to intentions), identity as
aspects of models and how they relate to other artifacts in the
ecosystem of modeling (in the spirit of the ontology of soft-
ware as proposed in [77]). Finally, we intend to investigate
the role of different types of assumptions [78] to modeling
practices and to models as artifacts.

Funding  Open access funding provided by TU Wien (TUW).

Declarations 

Conflict of interest  The authors declare that they have no competing
interests.

Ethical approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

	 SN Computer Science (2024) 5:861861  Page 14 of 16

SN Computer Science

References

	 1.	 Apostel L. Towards the formal study of models in the non-
formal sciences. Synth Int J Epistemol, Methodol Philos Sci.
1960;12:125–61.

	 2.	 Arbab F, de Boer FS, Bonsangue M, Lankhorst MM, Proper HA,
van der Torre LWN. Integrating architectural models: symbolic,
semantic and subjective models in enterprise architecture. Enterp
Model Inf Syst Archit. 2007;2(1):40–57. https://​doi.​org/​10.​18417/​
emisa.2.​1.4.

	 3.	 Azevedo CLB, Iacob ME, Almeida JPA, van Sinderen MJ, Fer-
reira Pires L, Guizzardi G. Modeling resources and capabilities
in enterprise architecture: a well-founded ontology-based pro-
posal for ArchiMate. Inf Syst. 2015;54:235–62. https://​doi.​org/​
10.​1016/j.​is.​2015.​04.​008.

	 4.	 Band I, Ellefsen T, Estrem B, Iacob ME, Jonkers H, Lankhorst
MM, Nilsen D, Proper HA, Quartel DAC, Thorn S. ArchiMate
3.0 Specification. The Open Group, Reading, Berkshire, United
Kingdom (2016)

	 5.	 Bjeković M, Proper HA, Sottet JS. Embracing pragmatics. In:
Yu ESK, Dobbie G, Jarke M, Purao S (eds.) Conceptual Mod-
eling – 33rd International Conference, ER 2014, Atlanta, GA,
USA, October 27–29, 2014. Proceedings, Lecture Notes in Com-
puter Science, vol. 8824, pp. 431–444. Springer, Berlin, Germany
(2014). https://​doi.​org/​10.​1007/​978-3-​319-​12206-9_​37

	 6.	 Bjeković M, Sottet JS, Favre JM, Proper HA. A framework for nat-
ural enterprise modelling. In: IEEE 15th Conference on Business
Informatics, CBI 2013, Vienna, Austria, July 15–18, 2013. IEEE
Computer Society, Washington, DC, United States of America
(2013).https://​doi.​org/​10.​1109/​CBI.​2013.​20. https://​ieeex​plore.​
ieee.​org/​xpl/​conho​me/​66422​27/​proce​eding.

	 7.	 Boar BH. Constructing blueprints for enterprise IT Architectures.
New York City: Wiley; 1999.

	 8.	 Boiten E, Bowman H, Derrick J, Linington P, Steen M. Viewpoint
consistency in ODP. Comput Netw. 2000;34(3):503–37.

	 9.	 van Bommel P, Proper HA, van der Weide TP. Information cover-
age in advisory brokers. Int J Intell Syst. 2007;22(11):1155–88.
https://​doi.​org/​10.​1002/​int.​20240.

	10.	 Boon M, Knuuttila T. Models as epistemic tools in engineering
sciences. In: Philosophy of technology and engineering sciences.
NY: Elsevier; 2009. p. 693–726.

	11.	 Campbell LJ, Halpin TA, Proper HA. Conceptual schemas with
abstractions: making flat conceptual schemas more comprehensi-
ble. Data Knowl Eng. 1996;20(1):39–85. https://​doi.​org/​10.​1016/​
0169-​023X(96)​00005-5.

	12.	 Creasy PN, Proper HA. A generic model for 3-dimensional con-
ceptual modelling. Data Knowl Eng. 1996;20(2):119–61. https://​
doi.​org/​10.​1016/​0169-​023X(95)​00043-R.

	13.	 Cruse A. Meaning in language, an introduction to semantics and
pragmatics. Oxford, United Kingdom: Oxford University Press;
2000.

	14.	 DoD Deputy Chief Information Officer: The DoDAF architecture
framework version 2.02 (2011). http://​tinyu​rl.​com/​zhw3k​af.

	15.	 Falbo RA, Guizzardi G, Duarte KC. An ontological approach to
domain engineering. In: Proceedings of the 14th international
conference on Software engineering and knowledge engineering;
2002. pp. 351–358.

	16.	 Figueiredo G, Duchardt A, Hedblom MM, Guizzardi G. Break-
ing into pieces: An ontological approach to conceptual model
complexity management. In: 2018 12th International Conference
on Research Challenges in Information Science. IEEE Computer
Society, Washington, DC, United States of America. RCIS; 2018.
pp. 1–10.

	17.	 Frank U. Multi-perspective enterprise modeling (MEMO) –
Conceptual framework and modeling languages. In: 35th Hawaii

International Conference on System Sciences (HICSS-35 2002),
CD-ROM / Abstracts Proceedings, 7–10 January 2002, Big Island,
HI, USA. IEEE Computer Society, Washington, DC, United States
of America; 2002. pp. 1258–1267. https://​doi.​org/​10.​1109/​HICSS.​
2002.​993989.

	18.	 Frank U. Multi-perspective enterprise modeling: foundational con-
cepts, prospects and future research challenges. Softw Syst Model.
2014;13:941–62. https://​doi.​org/​10.​1007/​s10270-​012-​0273-9.

	19.	 Frigg R. Scientific representation and the semantic view of theo-
ries. Theor Rev Teor, Hist Fundam Cienc. 2006;21(1):49–65.

	20.	 Guarino N, Guizzardi G, Mylopoulos J. On the philosophical
foundations of conceptual models. Inf Model Knowl Bases XXXI.
2020;321:1–15. https://​doi.​org/​10.​3233/​FAIA2​00002.

	21.	 Guarino N, Porello D, Guizzardi G. On weak truthmaking. In:
International Workshop on Foundational Ontology (FOUST
2019); 2019.

	22.	 Guidoni GL, Almeida JPA, Guizzardi G. Preserving conceptual
model semantics in the forward engineering of relational schemas.
Front Comput Sci. 2022;4:1–20. https://​doi.​org/​10.​3389/​fcomp.​
2022.​10201​68.

	23.	 Guizzardi G. On ontology, ontologies, conceptualizations,
modeling languages, and (meta)models. In: Vasilecas O, Eder
J, Caplinskas A (eds.) Proceedings of the 2007 Conference on
Databases and Information Systems IV: Selected Papers from the
Seventh International Baltic Conference DB &IS’2006. IOS Press,
Amsterdam, The Netherlands; 2007. pp. 18–39. https://​doi.​org/​10.​
5555/​15654​21.​15654​25.

	24.	 Guizzardi G. Theoretical foundations and engineering tools for
building ontologies as reference conceptual models. Semant Web.
2010;1(1–2):3–10.

	25.	 Guizzardi G. Ontology-based evaluation and design of visual
conceptual modeling languages. In: Reinhartz-Berger I, Sturm
A, Clark T, Cohen S, Bettin J, editors. Domain engineering. Ber-
lin, Germany: Springer; 2013. p. 317–47. https://​doi.​org/​10.​1007/​
978-3-​642-​36654-3_​13.

	26.	 Guizzardi G, Ferreira Pires L, van Sinderen MJ. An ontology-
based approach for evaluating the domain appropriateness and
comprehensibility appropriateness of modeling languages. In:
Briand L, Williams C, editors. MODELS 2005: Model Driven
Engineering Languages and Systems, vol. 3713. Lecture notes in
computer science. Berlin, Germany: Springer; 2005. p. 691–705.
https://​doi.​org/​10.​1007/​11557​432_​51.

	27.	 Guizzardi G, Figueiredo G, Hedblom MM, Poels G. Ontology-
based model abstraction. In: 2019 13th International Conference
on Research Challenges in Information Science. RCIS; 2019. pp.
1–13.https://​doi.​org/​10.​1109/​RCIS.​2019.​88769​71.

	28.	 Guizzardi G, Guarino N. Explanation, semantics, and ontology.
Data Knowl Eng. 2024;153:102325. https://​doi.​org/​10.​1016/j.​
datak.​2024.​102325.

	29.	 Guizzardi G, Pires LF, van Sinderen MJ. On the role of domain
ontologies in the design of domain-specific visual modeling lan-
guages. In: Proceedings of the 2nd Workshop on Domain-Specific
Visual Languages. ACM Press, New York City, United States of
America; 2002.

	30.	 Guizzardi G, Prince Sales T, Almeida JPA, Poels G. Automated
conceptual model clustering: a relator-centric approach. Softw
Syst Model. 2022;21(4):1363–87. https://​doi.​org/​10.​1007/​
s10270-​021-​00919-5.

	31.	 Guizzardi G, Proper HA. On understanding the value of domain
modeling. In: Guizzardi G, Prince Sales T, Griffo C, Furnagalli M
(eds.) Proceedings of 15th International Workshop on Value Mod-
elling and Business Ontologies (VMBO 2021), Bolzano, Italy,
2021, CEUR Workshop Proceedings, vol. 2835. CEUR-WS.org,
Aachen, Germany; 2021.

https://doi.org/10.18417/emisa.2.1.4
https://doi.org/10.18417/emisa.2.1.4
https://doi.org/10.1016/j.is.2015.04.008
https://doi.org/10.1016/j.is.2015.04.008
https://doi.org/10.1007/978-3-319-12206-9_37
https://doi.org/10.1109/CBI.2013.20
https://ieeexplore.ieee.org/xpl/conhome/6642227/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6642227/proceeding
https://doi.org/10.1002/int.20240
https://doi.org/10.1016/0169-023X(96)00005-5
https://doi.org/10.1016/0169-023X(96)00005-5
https://doi.org/10.1016/0169-023X(95)00043-R
https://doi.org/10.1016/0169-023X(95)00043-R
http://tinyurl.com/zhw3kaf
https://doi.org/10.1109/HICSS.2002.993989
https://doi.org/10.1109/HICSS.2002.993989
https://doi.org/10.1007/s10270-012-0273-9
https://doi.org/10.3233/FAIA200002
https://doi.org/10.3389/fcomp.2022.1020168
https://doi.org/10.3389/fcomp.2022.1020168
https://doi.org/10.5555/1565421.1565425
https://doi.org/10.5555/1565421.1565425
https://doi.org/10.1007/978-3-642-36654-3_13
https://doi.org/10.1007/978-3-642-36654-3_13
https://doi.org/10.1007/11557432_51
https://doi.org/10.1109/RCIS.2019.8876971
https://doi.org/10.1016/j.datak.2024.102325
https://doi.org/10.1016/j.datak.2024.102325
https://doi.org/10.1007/s10270-021-00919-5
https://doi.org/10.1007/s10270-021-00919-5

SN Computer Science (2024) 5:861	 Page 15 of 16  861

SN Computer Science

	32.	 Harel D, Rumpe B. Meaningful modeling: what’s the semantics
of “semantics"? IEEE Comput. 2004;37(10):64–72. https://​doi.​
org/​10.​1109/​MC.​2004.​172.

	33.	 Henderson-Sellers B, Gonzalez-Perez C, Walkerden G. An appli-
cation of philosophy in software modelling and future information
systems development. In: Franch X, Soffer P (eds.) Advanced
Information Systems Engineering Workshops. Springer, Berlin,
Germany; 2013. pp. 329–340. https://​doi.​org/​10.​1007/​978-3-​642-​
38490-5_​31.

	34.	 ter Hofstede AHM, Proper HA, van der Weide TP. Data mod-
elling in complex application domains. In: Loucopoulos P (ed.)
Advanced Information Systems Engineering, CAiSE’92, Man-
chester, UK, May 12–15, 1992, Proceedings, Lecture Notes in
Computer Science, vol. 593. Springer, Berlin, Germany; 1992.
pp 364–377. https://​doi.​org/​10.​1007/​BFb00​35142.

	35.	 Hoppenbrouwers SJBA, Proper HA, van der Weide TP. A funda-
mental view on the process of conceptual modeling. In: Delcam-
bre LML, Kop C, Mayr HC, Mylopoulos J, Pastor López Ó (eds.)
Conceptual Modeling – ER 2005, 24th International Conference
on Conceptual Modeling, Klagenfurt, Austria, October 24–28,
2005, Proceedings, Lecture Notes in Computer Science, vol. 3716.
Springer, Berlin, Germany; 2005. pp. 128–143. https://​doi.​org/​10.​
1007/​11568​322_9.

	36.	 IEEE Computer Society: Recommended practice for architec-
tural description of software intensive systems. Tech. Rep. IEEE
P1471:2000, ISO/IEC 42010:2007, Piscataway, New Jersey; 2000.

	37.	 ISO/IEC JTC 1/SC 32 Technical Committee on Data management
and interchange: Information processing systems – Concepts and
terminology for the conceptual schema and the information base.
Tech. Rep. ISO/TR 9007:1987, ISO; 1987.

	38.	 Kecheng L, Clarke RJ, Andersen PB, Stamper RK, Abou-Zeid ES
(eds.) IFIP TC8-WG8.1 Working Conference on Organizational
Semiotics – Evolving a Science of Information Systems. Kluwer,
Deventer, The Netherlands; 2002.

	39.	 Krogstie J, Lindland OI, Sindre G. Defining quality aspects for
conceptual models. In: Falkenberg ED, Hesse W, Olivé A (eds.)
Information System Concepts: Towards a Consolidation of Views,
Proceedings of the IFIP International Working Conference on
Information System Concepts (ISCO 1995), Marburg, Germany,
28–30 March 1995, IFIP Conference Proceedings, vol. 26. Chap-
man & Hall, London, United Kingdom; 1995. pp. 216–231.

	40.	 Op ’t Land M, Proper HA, Waage M, Cloo J, Steghuis C. The
results of enterprise architecting. In: The enterprise engineering
series. Berlin, Germany: Springer; 2008. https://​doi.​org/​10.​1007/​
978-3-​540-​85232-2_4.

	41.	 Lankhorst MM, Arbab F, Bekius SF, Bonsangue M, Bosma H,
Campschroer J, Cuvelier MJ, Fennema P, Groenewegen L, Hop-
penbrouwers SJBA, Iacob ME, Janssen WPM, Jonkers H, Kruk-
kert D, Penders PGM, Proper HA, Slagter RJ, Stam AW, Steen
MWA, Wieringa RJ, de Boer FS, ter Doest HWL, van Buuren R,
van Eck PAT, van Leeuwen D, van der Torre LWN, Veldhuijzen
van Zanten GE. Enterprise architecture at work - modelling, com-
munication and analysis. In: The enterprise engineering series.
4th ed. Berlin, Germany: Springer; 2017. https://​doi.​org/​10.​1007/​
978-3-​662-​53933-0.

	42.	 Lankhorst MM, van der Torre LWN, Proper HA, Arbab F, de Boer
FS, Bonsangue M. Foundations: enterprise architecture at work
- modelling, communication and analysis. In: The enterprise engi-
neering series. 4th ed. Berlin, Germany: Springer; 2017. https://​
doi.​org/​10.​1007/​978-3-​662-​53933-0_3.

	43.	 Lankhorst MM, van der Torre LWN, Proper HA, Arbab F, Steen
MWA. Viewpoints and visualisation: enterprise architecture at
work - modelling, communication and analysis. In: The enterprise
engineering series. 4th ed. Berlin, Germany: Springer; 2017. p.
171–214. https://​doi.​org/​10.​1007/​978-3-​662-​53933-0_8.

	44.	 Levesque HJ, Brachman RJ. Expressiveness and tractability
in knowledge representation and reasoning 1. Comput Intell.
1987;3(1):78–93.

	45.	 Moody DL. The “physics" of notations: toward a scientific basis
for constructing visual notations in software engineering. IEEE
Trans Softw Eng. 2009;35(6):756–79.

	46.	 Morris CW. Signs, Language and Behaviour. Hoboken, New Jer-
sey, United States of America: Prentice Hall/Braziller; 1946.

	47.	 Ogden CK, Richards IA. The meaning of meaning: a study of the
influence of language upon thought and of the science of symbol-
ism. Oxford: Magdalene College, University of Cambridge; 1923.

	48.	 OMG: UML 2.0 superstructure specification – Final adopted spec-
ification. Tech. Rep. ptc/03-08-02, Object Management Group,
Needham, Massachusetts, United States of America; 2003.

	49.	 OMG: Business process model and notation (BPMN), version 2.0.
Tech. rep.; 2011. http://​www.​omg.​org/​spec/​BPMN/2.​0/.

	50.	 Osis J, Donins U. Topological UML modeling. In: Topological
UML modeling - an improved approach for domain modeling
and software development, computer science reviews and trends.
Boston: Elsevier; 2017. p. 133–51. https://​doi.​org/​10.​1016/​B978-
0-​12-​805476-​5.​00005-8.

	51.	 Prince Sales T, Guarino N, Guizzardi G, Mylopoulos J. An
ontological analysis of value propositions. In: 2017 IEEE 21st
International Enterprise Distributed Object Computing Confer-
ence. IEEE Computer Society, Washington, DC, United States
of America. EDOC; 2017. pp. 184–193 https://​doi.​org/​10.​1109/​
EDOC.​2017.​32.

	52.	 Proper HA. TEE group: Focus & drives—Return on modelling
effort; 2005. http://​www.​cs.​ru.​nl/​tee/​focus-​drives.​htm.

	53.	 Proper HA. Models that matter; Return on modelling effort.
Blog; 2009. http://​erikp​roper.​blogs​pot.​com/​2009/​02/​models-​
that-​matter-​return-​on-​model​ling.​html.

	54.	 Proper HA. On model-based coordination of change in organi-
zations. In: Aier S, Rohner P, Schelp J, editors. Engineering
the transformation of the enterprise: a design science research
perspective. Berlin, Germany: Springer; 2021. https://​doi.​org/​
10.​1007/​978-3-​030-​84655-8_6.

	55.	 Proper HA. Keynote: On views, diagrams, programs, anima-
tions, and other models. In: Mayo FJD, Ferreira Pires L, Seide-
witz E (eds.) Proceedings of the 11th International Conference
on Model-Based Software and Systems Engineering, MOD-
ELSWARD 2023, Lisbon, Portugal, February 19–21, 2023.
SCITEPRESS; 2023. pp. 13–14.

	56.	 Proper HA, Bruza PD. What is information discovery about?
J Am Soc Inf Sci. 1999;50(9):737–50. https://​doi.​org/​10.​1002/​
(SICI)​1097-​4571(1999)​50:​9<​737::​AID-​ASI2>3.​0.​CO;2-C.

	57.	 Proper HA, Guizzardi G. On domain modelling and requisite
variety: Current state of an ongoing journey. In: Grabis J, Bork
D (eds.) The Practice of Enterprise Modeling: 13th IFIP Work-
ing Conference, PoEM 2020, Riga, Latvia, November 25–27,
2020, Proceedings, Lecture Notes in Business Information
Processing, vol. 400. Springer, Berlin, Germany; 2020. pp.
186–196. https://​doi.​org/​10.​1007/​978-3-​030-​63479-7_​13.

	58.	 Proper HA, Guizzardi G. On domain conceptualization. In:
Aveiro D, Guizzardi G, Pergl R, Proper HA (eds.) Advances
in Enterprise Engineering XIV – 10th Enterprise Engineer-
ing Working Conference, EEWC 2020, Bozen-Bolzano,
Italy, September 28, October 19, and November 9–10, 2020,
Revised Selected Papers, Lecture Notes in Business Informa-
tion Processing, vol. 411. Springer, Berlin, Germany; 2021. pp.
49–69.https://​doi.​org/​10.​1007/​978-3-​030-​74196-9_4.

	59.	 Proper HA, Guizzardi G. Modeling for enterprises; Let’s go to
RoME ViA RiME. In: Clark T, Zschaler S, Barn B, Sandkuhl K
(eds.) Proceedings of the Forum at Practice of Enterprise Mod-
eling 2022 (PoEM-Forum 2022) Co-located with PoEM 2022,
London, United Kingdom, November 23–25, 2022, vol. 3327.

https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/978-3-642-38490-5_31
https://doi.org/10.1007/978-3-642-38490-5_31
https://doi.org/10.1007/BFb0035142
https://doi.org/10.1007/11568322_9
https://doi.org/10.1007/11568322_9
https://doi.org/10.1007/978-3-540-85232-2_4
https://doi.org/10.1007/978-3-540-85232-2_4
https://doi.org/10.1007/978-3-662-53933-0
https://doi.org/10.1007/978-3-662-53933-0
https://doi.org/10.1007/978-3-662-53933-0_3
https://doi.org/10.1007/978-3-662-53933-0_3
https://doi.org/10.1007/978-3-662-53933-0_8
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1016/B978-0-12-805476-5.00005-8
https://doi.org/10.1016/B978-0-12-805476-5.00005-8
https://doi.org/10.1109/EDOC.2017.32
https://doi.org/10.1109/EDOC.2017.32
http://www.cs.ru.nl/tee/focus-drives.htm
http://erikproper.blogspot.com/2009/02/models-that-matter-return-on-modelling.html
http://erikproper.blogspot.com/2009/02/models-that-matter-return-on-modelling.html
https://doi.org/10.1007/978-3-030-84655-8_6
https://doi.org/10.1007/978-3-030-84655-8_6
https://doi.org/10.1002/(SICI)1097-4571(1999)50:9<737::AID-ASI2>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-4571(1999)50:9<737::AID-ASI2>3.0.CO;2-C
https://doi.org/10.1007/978-3-030-63479-7_13
https://doi.org/10.1007/978-3-030-74196-9_4

	 SN Computer Science (2024) 5:861861  Page 16 of 16

SN Computer Science

CEUR-WS.org, Aachen, Germany; 2022. pp. 4–15. https://​ceur-​
ws.​org/​Vol-​3327/​paper​02.​pdf.

	60.	 Proper HA, Guizzardi G. On views, diagrams, programs, anima-
tions, and other models. In: Strecker S, Jung J, editors. Inform-
ing possible future worlds: essays in honour of Ulrich Frank.
Berlin, Germany: Logos Verlag; 2024. p. 123–38. https://​doi.​
org/​10.​30819/​5768.

	61.	 Proper HA, Verrijn-Stuart AA, Hoppenbrouwers SJBA. On
utility-based selection of architecture-modelling concepts. In:
Hartmann S, Stumptner M (eds.) Conceptual Modelling 2005,
Second Asia-Pacific Conference on Conceptual Modelling
(APCCM2005), Newcastle, NSW, Australia, January–Febru-
ary 2005, Conferences in Research and Practice in Informa-
tion Technology Series, vol. 43. Australian Computer Society,
Sydney, New South Wales, Australia; 2005. pp. 25–34. https://​
crpit.​scem.​weste​rnsyd​ney.​edu.​au/​abstr​acts/​CRPIT​V43Pr​oper.​
html.

	62.	 Quillian MR. Semantic memory, semantic information process-
ing. Ph.D. thesis, MIT, Boston, Massachusetts, United States of
America; 1968.

	63.	 Razavi S, Tolson BA, Burn DH. Review of surrogate modeling in
water resources. Water Resour Res. 2012;48:7. https://​doi.​org/​10.​
1029/​2011W​R0115​27.

	64.	 Romanenko E, Calvanese D, Guizzardi G. Abstracting ontology-
driven conceptual models: Objects, aspects, events, and their
parts. In: Research Challenges in Information Science: 16th Inter-
national Conference. RCIS 2022, Barcelona, Spain, May 17–20,
2022, Proceedings. Berlin, Germany: Springer; 2022. pp. 372–88.

	65.	 Romanenko E, Calvanese D, Guizzardi G. Towards pragmatic
explanations for domain ontologies. In: Knowledge Engineering
and Knowledge Management: 23rd International Conference.
EKAW 2022, Bolzano, Italy, September 26–29, 2022, Proceed-
ings. Berlin, Germany: Springer; 2022. pp. 201–8.

	66.	 Rothenberg J. The nature of modeling. In: Widman LE, Loparo
KA, Nielsen NR, editors. Artificial intelligence, simulation &
modeling. New York City, United States of America: Wiley; 1989.
p. 75–92.

	67.	 Sandkuhl K, Fill HG, Hoppenbrouwers SJBA, Krogstie J, Mat-
thes F, Opdahl AL, Schwabe G, Uludag Ö, Winter R. From expert
discipline to common practice: a vision and research agenda for
extending the reach of enterprise modeling. Bus Inf Syst Eng.
2018;60(1):69–80. https://​doi.​org/​10.​1007/​s12599-​017-​0516-y.

	68.	 Searle JR. Speech acts: an essay in the philosophy of language.
Cambridge, United Kingdom: Cambridge University Press; 1969.

	69.	 Searle JR. A taxonomy of illocutionary acts. Cambridge, United
Kingdom: Cambridge University Press; 1979. https://​doi.​org/​10.​
1017/​CBO97​80511​609213.​003.

	70.	 Searle JR, Willis S, et al. Intentionality: an essay in the philoso-
phy of mind. Cambridge, United Kingdom: Cambridge University
Press; 1983.

	71.	 Sowa JF, Zachman JA. Extending and formalizing the framework
for information systems architecture. IBM Syst J. 1992;31(3):590–
616. https://​doi.​org/​10.​1147/​sj.​313.​0590.

	72.	 Spewak SH. Enterprise architecture planning: developing a
blueprint for data, applications, and technology. New York City,
United States of America: Wiley; 1993.

	73.	 Stachowiak H. Allgemeine modelltheorie. Berlin, Germany:
Springer; 1973. https://​doi.​org/​10.​1007/​978-3-​7091-​8327-4.

	74.	 Thalheim B. The theory of conceptual models, the theory of con-
ceptual modelling and foundations of conceptual modelling. In:
Handbook of conceptual modeling: theory, practice, and research
challenges. Berlin, Germany: Springer; 2011. p. 543–77. https://​
doi.​org/​10.​1007/​978-3-​642-​15865-0_​17.

	75.	 The Open Group. TOGAF version 9.1: TOGAF series. Zaltbom-
mel, The Netherlands: Van Haren Publishing; 2021.

	76.	 Ullmann S. Semantics: an introduction to the science of meaning.
Oxford, United Kingdom: Basil Blackwell; 1967.

	77.	 Wang X, Guarino N, Guizzardi G, Mylopoulos J. Towards an
ontology of software: a requirements engineering perspective. In:
Formal ontology in information systems. Amsterdam, The Neth-
erlands: IOS Press; 2014. p. 317–29.

	78.	 Wang X, Mylopoulos J, Guizzardi G, Guarino N. How software
changes the world: The role of assumptions. In: 2016 IEEE Tenth
International Conference on Research Challenges in Information
Science IEEE Computer Society, Washington, DC, United States
of America. RCIS; 2016. pp. 1–12.

	79.	 Webster M. Domain. https://​www.​merri​am-​webst​er.​com/​dicti​
onary/​domain.

	80.	 van’t Wout J, Waage M, Hartman H, Stahlecker M, Hofman A,.
The integrated architecture framework explained. In: The inte-
grated architecture framework explained: why, what, how. Ber-
lin, Germany: Springer; 2010. p. 1–7. https://​doi.​org/​10.​1007/​
978-3-​642-​11518-9.

	81.	 Zarwin Z, Bjeković M, Favre JM, Sottet JS, Proper HA. Natural
modelling. J Object Technol. 2014;13(3):1–36. https://​doi.​org/​10.​
5381/​jot.​2014.​13.3.​a4.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://ceur-ws.org/Vol-3327/paper02.pdf
https://ceur-ws.org/Vol-3327/paper02.pdf
https://doi.org/10.30819/5768
https://doi.org/10.30819/5768
https://crpit.scem.westernsydney.edu.au/abstracts/CRPITV43Proper.html
https://crpit.scem.westernsydney.edu.au/abstracts/CRPITV43Proper.html
https://crpit.scem.westernsydney.edu.au/abstracts/CRPITV43Proper.html
https://doi.org/10.1029/2011WR011527
https://doi.org/10.1029/2011WR011527
https://doi.org/10.1007/s12599-017-0516-y
https://doi.org/10.1017/CBO9780511609213.003
https://doi.org/10.1017/CBO9780511609213.003
https://doi.org/10.1147/sj.313.0590
https://doi.org/10.1007/978-3-7091-8327-4
https://doi.org/10.1007/978-3-642-15865-0_17
https://doi.org/10.1007/978-3-642-15865-0_17
https://www.merriam-webster.com/dictionary/domain
https://www.merriam-webster.com/dictionary/domain
https://doi.org/10.1007/978-3-642-11518-9
https://doi.org/10.1007/978-3-642-11518-9
https://doi.org/10.5381/jot.2014.13.3.a4
https://doi.org/10.5381/jot.2014.13.3.a4

	Understanding the Variety of Domain Models: Views, Programs, Animations, and Other Models
	Abstract
	Introduction
	Domain Models
	Domain Models as Complex Speech Acts
	Return on Modeling Effort
	Conceptual Fidelity
	Complexity Management and Views
	Diagrams, Programs, Animations, and other Models
	Conclusion
	References

