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Abstract—This article introduces Follow-Me AI, a concept de-
signed to enhance user interactions with smart environments, op-
timize energy use, and provide better control over data captured
by these environments. Through AI agents that accompany users,
Follow-Me AI negotiates data management based on user consent,
aligns environmental controls as well as user communication
and computes resources available in the environment with user
preferences, and predicts user behavior to proactively adjust the
smart environment. The manuscript illustrates this concept with
a detailed example of Follow-Me AI in a smart campus setting,
detailing the interactions with the building’s management system
for optimal comfort and efficiency. Finally, this article looks into
the challenges and opportunities related to Follow-Me AI.

Index Terms—Follow-Me AI, Follow-Me Cloud, Generative AI,
Computing Continuum, Smart Environments, Smart Applica-
tions

Follow-Me AI is a concept aimed at enhancing user inter-
action with smart environments, improving user experience,
reducing energy usage, and offering better control on the data
captured by the smart environment. The approach utilizes AI
agents that accompany users and interact with the AI agents
of the surrounding smart environment, negotiating for the
management of the data captured on the user based on consent,
guiding environmental control towards user preferences, and
providing the smart environment with predictions on user
behavior (e.g., destination) for the prescriptive control of the
smart environment. By helping to coordinate environmental
controls efficiently and adaptively, Follow-Me AI contributes
to sustainability efforts, marking a step towards integrating
technology with environmental conservation. To the best of
our knowledge, the concept of Follow-Me AI has not been
proposed in the literature.

Interaction with a Smart Building

Consider a user, say, Dr. Elena, arriving at a university
equipped with Follow-Me AI technology integrated into her
personal devices as well as the campus buildings (Fig. 1).
Upon entering the engineering building, her personal AI assis-
tant initiates a negotiation with the building’s AI management
system, discussing the use of her location and schedule data
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Fig. 1: Follow-Me AI for smart building interaction.

based on predefined preferences and consents, as well as
the possibility to access local sensor data for higher context
awareness, and local, low-latency computational resources for
the on-loading of the Follow-Me AI components.

As she proceeds to her first meeting, Dr. Elena’s Follow-
Me AI, aware of both her destination and the day’s weather,
requests the building’s AI to adjust the temperature in the
conference room to her preferred setting. It also negotiates the
reservation of a nearby room for a later meeting, thus enhanc-
ing comfort and maximizing the efficiency of the building’s
resource use by avoiding unnecessary heating, cooling, and
lighting in unused areas.

Throughout her day, Dr. Elena benefits from continuous
adjustments negotiated by her Follow-Me AI. For instance,
as she prepares to host a virtual seminar, it interacts with the
building’s AI to optimize her use of the building’s communica-
tion and computation resources, ensuring she has the necessary
bandwidth, latency, and compute available.

ar
X

iv
:2

40
4.

12
48

6v
2 

 [
cs

.D
C

] 
 2

2 
A

pr
 2

02
4



Furthermore, the Follow-Me AI employs its access to de-
tailed and consent-based user data to instruct the building’s AI
on energy management strategies. The smart building AI then
directs adjustments in temperature settings across different
zones based on anticipated occupancy and user preferences,
efficiently maintaining comfort while reducing energy waste.
When lower occupancy is predicted — based on negotiated
access to user data and typical usage patterns — the building’s
AI can reduce power usage, thus minimizing lighting, HVAC
activity, and power to non-essential systems.

From Follow-Me Cloud to Follow-Me AI

With the increasing use of intelligent applications for mobile
devices and the onslaught of data from local devices, data
traffic generated on the edges of the Internet has exceeded the
operational limits of traditional, centralized networks. Requir-
ing ever more bandwidth to handle the vast volumes of data be-
ing sent and received and enhanced processing capabilities to
manage and analyze this data efficiently, edge/fog computing
aimed to counter this development by dynamically allocating
and migrating resources and services closer to the user has
become crucial to improving performance, minimizing delays,
and improving the overall user experience.

The Follow-Me Cloud concept [1], proposed almost a
decade ago in 2016, further aimed to mitigate the challenge
of massive edge-generated data by constantly scanning for
the most appropriate nearby data center and dynamically
migrating user services to keep pace with their unpredictable
mobility.

While Follow-Me Cloud aimed to ensure stable connections,
it faced a number of challenges, preventing its widespread
adoption. Implementing Follow-Me Cloud involved complex-
ity and required advanced infrastructure to handle the smooth
transfer of services and data across various network do-
mains [2]. Further, challenges arose when edge nodes became
overloaded, leading to longer computing delays. To maintain
alignment with user movements, services needed to con-
stantly migrate between edge nodes, which further increases
the energy consumption. Consequently, load balancing across
multiple edge servers proved crucial, especially in scenarios
involving multiple mobile users, to distribute the workload
evenly and maintain optimal service performance with energy
efficiency [3].

In recent years, however, a number of advances in the
device–edge–cloud compute continuum have partially miti-
gated these challenges. An AI interconnect fabric [4] can help
application platform providers optimize the use of communi-
cation and computation resources in the compute continuum,
and novel reallocation strategies can mitigate edge load bal-
ancing [3], while approaches such as semantic slicing [5] can
provide fine-grained control for applications and users on their
use of those resources. Further, AI/ML methods have advanced
substantially, with the introduction of, e.g., LLMs and GenAI.

Follow-Me AI leverages these developments and takes a
fresh look at Follow-Me Cloud, enhancing the fluidity and

personalization of user interactions across diverse environ-
ments and platforms and integrating artificial intelligence
to analyze and respond to user behavior in real-time. This
allows the system not only to provide continuous access to
services but also to anticipate user needs and adapt interactions
accordingly. By leveraging data from user interactions across
devices and environments, Follow-Me AI offers a more dy-
namic and context-aware service, transforming the passive data
continuity of Follow-Me Cloud into an active, personalized
user experience.

STATE-OF-THE-ART

Smart Environments

Smart environments are physical spaces that leverage
sensor-enabled IoT devices to optimize operations and en-
hance users’ experiences. Smart environments build on the
growing availability of sensors to monitor aspects such as
energy consumption, social distancing, air quality, and well-
being. Equipped with an array of sensor devices, actuators,
communication networks, and computing platforms, smart
environments serve as foundational components for Follow-
Me AI by gathering information about the physical space
and its users. The types and sensing capabilities of sensor
devices deployed in a smart environment would vary based on
factors such as the size of the environments and their planned
functionality. For instance, environmental sensors measure
weather and air quality variables, passive infrared sensors
detect occupancy, and cameras, whether generic or thermal,
enable object detection and activity recognition [6].

The data collected from these sensors facilitates decision-
making through descriptive, diagnostic, predictive, and pre-
scriptive analytics [7]. Deep insights gained from analytics
can therefore enhance comfort, safety, process automation,
operating efficiency, and overall user experience within the
smart environment. In the context of Follow-Me AI, sensor
data collected from any type of sensors would allow to
continuously learn about the behaviors and preferences of
users in the environment, and consequently allow offering
personalized services for the users. For instance, sensor data
can pinpoint areas with both high occupancy and elevated
health risks. As part of personalized services within Follow-
Me AI, users can be guided to spaces with lower occupancy
for safer experiences [8].

Computing Continuum

IoT devices at the network’s edge may not be able to
perform local computations due to resource constraints, re-
quiring data offloading to external processing layers such
as fog or cloud. However, depending on external resources
increases delay and energy usage and exacerbates vendor lock-
in, negatively impacting user experience [9]. Moreover, the
devices themselves become more complex, having to support
connectivity to external services when they move from one
location to another.

In consequence, a distributed infrastructure that leverages
the distributed computing continuum, that is, computing nodes



across the network from devices to cloud, and the communi-
cation substrate connecting them, is crucial for providing ser-
vices especially to mobile users with multiple devices and ac-
cess methods. With a recent surge of attention, the state-of-the-
art in efficient resources management in the distributed com-
puting continuum and finding an optimal configuration there
shows significant progress. Recently, several approaches [10],
[11] were proposed for orchestrating computing resources,
network resources, services, and workload distribution. For
example, Neural Pub/Sub [4] and Semantic Slicing [5] lever-
age AI and semantic understanding of data and application
requirements, predicting and respond to dynamic environ-
ments. However, to meet the demands of today’s applications,
novel solutions are needed for unseen or unexpected situations
encountered in orchestration, workload distribution, semantic
slicing, and the applications of GenAI. Such solutions could
help determine the optimal times for scaling resources as well
as provide intelligent resource allocation to ensure balanced
workloads across different components [12].

AI Interconnect

The increasing complexity of AI applications demands more
adaptable and dynamic solutions. As these applications evolve,
particularly with the rise of GenAI, the volume of required
training data expands, resulting in slower learning speeds
and increased transmission delays [13]. This escalation not
only heightens energy consumption due to more frequent data
transmissions, which may be more energy-intensive than com-
putations, but also raises communication costs and bandwidth
utilization. To efficiently serve multiple users with multi-agent
AI services, an advanced network architecture is essential to
optimizes bandwidth, energy use, delay, and quality of service.
Leveraging GenAI’s predictive capabilities [14] could improve
the distribution of AI workloads across the continuum [12].

Large Language Models (LLMs)

LLMs play a crucial role in realizing the full potential of
human-AI interaction. LLMs agents understand and process
natural language, making them ideal for serving as personal
assistants who not only know the user’s preferences and needs,
but also can communicate effectively with other AI systems
embedded in the smart environment. As intermediaries, they
translate human commands into actions across the smart envi-
ronment [15]. This makes smart environments more interactive
and user experiences better and reduces energy consumption
by avoiding unnecessary computations.

LLMs are usually deployed in the cloud for, e.g., scalability
and ease of use [16]. However, this approach comes with
significant drawbacks, such as loss of control, high costs,
and network latency. [17]. Moving LLM inference closer to
the data source, as in edge computing, presents a promising
alternative. However, this shift requires a careful balance
between resource demands, energy consumption, and latency,
which are critical due to the resource-intensive nature of
LLMs. To enhance efficiency at the edge, strategies such as
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Fig. 2: Follow-Me AI Architectural Layers.

model compression and quantization, along with knowledge
distillation, are being adopted [12].

Finally, establishing a framework for collaborative inter-
actions among different models is crucial. Through such
cooperation, computational tasks and resources can be shared,
optimizing the use of energy and computing power [18].
LLM-powered multi-agent AI systems are designed to provide
self-organizing interaction layers that facilitate the completion
of user-directed tasks. This interface layer allows LLMs to
communicate with a broad range of external data sources,
tools, multi-modal models, and software programs, providing
responses that are both current and contextually relevant.
Moreover, it orchestrates internal cooperation to address com-
plex challenges [19], facilitating a structured task distribution
among agents while capitalizing on their unique capabilities
and availability. This approach significantly improves the
efficiency and adaptability with which complex tasks are
managed.

FOLLOW-ME AI

Overview

Follow-Me AI provides a user with personalized services,
acting as a liaison between users and localized mobile ap-
plications. By leveraging the device–edge–cloud computing
continuum, the Follow-Me AI concept allows services in the
surrounding smart environment to be continuously adapted to
meet users’ needs in real time, following their movements
without re-establishing connections in response to changing
conditions. Fig. 1 provides an overview of the components
within the Follow-Me AI concept, comprising the Follow-Me
AI agent, the smart environment AI agent, the local and cloud-
based resources they are deployed on, as well as services
within the smart environment.



Architectural overview

Follow-Me AI architecture requires an infrastructure that
includes a combination of a multi-agent AI system, intelligent
communication protocols, AI interconnect, and orchestration
to optimize the use of resources, to assess self-performance,
and learn from experiences. A general overview of the Follow-
Me AI architectural layers is depicted in Fig. 2. The highest
layer houses the top-level AI agents, namely, the Follow-
Me AI agents of the users as well as those of the smart
environments. Employing AI toolchains such as Huggingface1,
Langchain2, or Autogen3, the top-level AI agents comprise
an AI agent hierarchy, as well as tools to conduct various
tasks [18], [19], [12]. Connected and communicating over the
AI interconnect [4], the agents and tools may be composed
of multiple AI models, potentially splitted and quantized to
run on resource-constrained devices such as the users’ mobile
phones.

The placement and lifecycle of these models is managed
by the orchestration function [4], [20], aiming for maximal
resource efficiency and QoS. Such orchestration requires un-
derstanding application needs and intelligently distributing
complex and large tasks across layers of a system architec-
ture. Another aspect is monitoring and controlling agents’
workflows. It is also possible to detect user movements and
monitor service migration between heterogeneous systems.
Consequently, the architecture can handle the continuous gen-
eration of huge amounts of data, monitoring processes and
data exchanges with utmost precision and the smallest amount
of latency. In this way, communication overhead, processing
complexity, and energy consumption are reduced.

Benefits

Follow-Me AI offers several potential benefits, such as
reduced energy consumption, bandwidth optimization, scala-
bility, low latency, efficient resource usage and load balancing.
These benefits stem from two major sources. First, the distri-
bution of AI capabilities into multiple components, and the
deployment of these components in the compute continuum
allows for a fine-grained control on the use of computa-
tional and communication resources. Second, the concept itself
provides smart environments with personalized information,
allowing finer-grained control on the resources usage of that
environment when compared with aggregated and averaged
data.

CASE STUDY

In this experimental scenario, we explore how the Follow-
Me AI concept works within a smart campus environment
equipped with advanced IoT technologies. Our focus is on how
a GPT-powered smartphone agent collaborates with central
coordination and smart environment agents to optimize room
settings and network configurations based on user preferences
and real-time environmental data.

1https://huggingface.co
2https://www.langchain.com
3https://github.com/microsoft/autogen

Experimental Scenario on the Smart Campus.

We envision our solution to be particularly useful in. For
example, the University of Oulu’s Linnanmaa campus is
equipped with an extensive array of sensors and smart devices,
making it an ideal environment to deploy advanced AI-driven
management solutions. The campus features a sophisticated
network of wireless low-power sensors connected to the 5GTN
LoRa-network and various spaces designed for meetings,
individual work, and collaborative projects, all monitored by
sensors that capture environmental and air-quality metrics
including air temperature, relative humidity, CO2 levels, light
intensity, soil moisture, atmospheric pressure, and movement
indices using passive infrared sensors4 This smart campus
environment provides an ideal setting to demonstrate the
integration of advanced IoT technologies and GPT-powered
agents to enhance user comfort and optimize energy efficiency.

In this scenario, the Follow-Me AI agent is executed on
a smartphone equipped with capabilities for sensing motion,
orientation, and various environmental conditions. The smart-
phone also provides APIs for accessing device capabilities and
network status. This setup allows the Follow-Me AI agent to
intelligently determine which local data can be accessed to
generate GPT-based insights when the user enters the smart
campus or when specific calendar events, such as meetings,
align with the campus’s sensor-enabled spaces.

Data Flow and Interaction.

1 Phase 1: Once the user enters a specific campus building,
the agent retrieves the user preferences. As for the example
shown in Fig., the user requires ”a quiet meeting room with
optimal natural lighting and robust WiFi for a two-hour
meeting focused on a video conference with screen sharing”.
Once set the context, the smartphone agent, powered by a
GPT model, synthesizes the available sensor data with the
user’s stated preferences. It generates insights and formulates
a request in natural language, querying whether the smart
campus can accommodate these requirements. This request is
then sent to the Central Coordination Agent (CCA).
2 Phase 2: The CCA interacts with the Smart Building

Agent (SBA) to identify suitable meeting spaces. The BA
assesses the campus’s current environmental conditions and
room availability, selecting a room that best fits the user’s
requirements—considering factors like current occupancy, am-
bient noise levels, and WiFi capacity. It then adjusts the room’s
settings to optimize conditions, enhancing WiFi connectivity
and modifying HVAC settings to achieve the desired temper-
ature and lighting conditions as per the user’s preferences.
Additionally, the SBA assesses the WiFi quality in the chosen
room and finds it to be excellent. Utilizing this information, the
BA suggests to the smartphone agent that, once in the meeting
room, it should automatically adjust the device settings for
optimal energy efficiency. This includes turning off cellular
data due to the strong WiFi connection, which will handle all
network demands during the meeting, and reducing the screen

4https://doi.org/10.23729/b9adb0a2-7381-45db-b32f-7e78ae1bc9e3



Fig. 3: Interaction diagram showing the data flow and agent collaboration within the smart campus environment, highlighting
the roles of the Smartphone Agent, Central Coordination Agent, and Smart Building Agent in optimizing room conditions and
device settings.



brightness based on the room’s natural lighting conditions.
These automatic adjustments made by the smartphone agent
ensure stable internet access and significantly conserve battery
power.
3 Phase 3: This proactive adjustment strategy by the smart-

phone agent, which operates without user intervention but can
be customized if desired, showcases how AI-powered agents
on a smart campus collaboratively enhance user comfort and
improve energy efficiency. These agents adapt device settings
based on real-time environmental assessments and capabili-
ties, leading to a sustainable and intelligent management of
technological resources. This integration and interaction are
illustrated in Fig. 3, which provides a visual representation of
the data flow and decision-making processes within this smart
campus scenario.

Monitoring and Feedback.

Throughout the meeting, the system monitors the envi-
ronment and network performance, making necessary adjust-
ments to maintain optimal conditions. Feedback collected
post-meeting is used to refine the AI models, enhancing the
system’s responsiveness and accuracy for future interactions.

Rationale for Using GPT Models.

The decision to employ a GPT model in this context is
driven by its multi-modal capabilities, which allow for a
single model to handle various data types and user requests
efficiently. This approach simplifies the system architecture by
reducing the need to embed and maintain multiple specialized
ML algorithms locally. However, despite their versatility, local
GPT models currently do not match the performance and
capabilities of their cloud-based counterparts, primarily due
to limitations in processing power and data storage on mobile
devices. These constraints necessitate a balanced approach,
where critical computations are handled locally for respon-
siveness, while more complex processing is offloaded to cloud-
based systems when necessary.

Summary

This experimental scenario demonstrates the potential of
Follow-Me AI in creating adaptive, intelligent environments
that respond dynamically to individual preferences and situ-
ational needs. It highlights the synergy between different AI
agents and IoT infrastructure in enhancing user experiences
while promoting sustainability goals through efficient resource
management.

CHALLENGES

The current pub/sub systems and their static decision mak-
ing mechanisms are not appropriate for the dynamic comput-
ing continuum environment and the huge data transmissions
required by GenAI [4], [12]. It is even more difficult for
the Follow-Me AI use case due to the changing placement
of computational elements. With mobile (e.g., in a vehicle
or with a mobile phone), the distance to the cloud or edge
node continually changes, causing fluctuating QoE and QoS

if not properly managed. Nevertheless, ongoing management is
resource-intensive, so a predictive orchestration of resources is
critical in the compute continuum to offer personalized GenAI
functionality while maximising QoE and QoS and reducing
energy consumption with considering various factors such as
the life-cycle of agents, their continuous monitoring, as well as
detecting environmental changes, anomalies, and drifts. Fur-
ther, we must consider the computing continuum as a multi-X
(multi-vendor, multi-access, multi-tenant) environment, with
only partial views available to resources and services. Below,
we summarize related research challenges and the research
questions (Table I).

By answering the research questions, we will obtain an
intelligent pub/sub system for GenAI in the computing contin-
uum that makes decisions autonomously and adapts dynami-
cally to network conditions (for ex. user mobility and varying
loads) in real-time. It aims to distribute workload efficiently
by intelligently determining the number of agents needed,
enable continuous monitoring, track the resources consumed
by each agent, detect environmental changes, anomalies, and
drifts, and alert the system when the available capacity of
resources decreases. In this way, tasks can be executed concur-
rently, enhancing parallel processing capabilities, processing
enormous amounts of continuously generated data, reducing
energy consumption, maximizing QoE and QoS, and enhanc-
ing the lifecycle management process for AI models, ensuring
efficient operations and improved efficiency in handling AI
models, while optimizing LLM operations. As well as, errors,
downtime, and human intervention can be reduced, and reli-
able information can be provided with minimal delay.

CONCLUSION

This article presented Follow-Me AI, a novel concept
aimed at improving interactions within smart environments,
optimizing energy utilization, and enhancing data control.
Through the deployment of AI agents that accompany users,
the system successfully negotiated data management based on
user consent and dynamically aligned environmental controls
and computing resources to match user preferences. Predictive
behaviors of the system were able to proactively adapt the
environment in response to user movements and activities.

The implementation of Follow-Me AI on a smart campus
served as a practical illustration of its capabilities. In this
setting, Follow-Me AI effectively interfaced with the build-
ing’s management system to tailor environmental conditions,
such as temperature and resource allocation, according to the
specific needs of users. These interactions aim to enhance user
comfort and efficiency as well as demonstrate the potential
of such AI systems to significantly reduce energy wastage.
Finally, the article reflected on the challenges and opportu-
nities related to Follow-Me AI, identifying relevant research
questions for future studies.
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TABLE I: Follow-Me AI: Challenges and open research questions.

Challenge Research Questions

Follow-Me AI use case tailored for providing
personalized GenAI services to user

1. How can agent workflows be optimized in the Device–Edge–Cloud computing
continuum for service migration between multiple mobile subscribers and publishers?
2. How can services follow the mobility of users with high QoS?

Develop the novel orchestration architecture
for GenAI in the computing continuum

1. How does the system detect users’ movements?
2. How does the system manage communication between agents?
3. How do we ensure efficient use (computing, storage, communication) of resources?
4. How does the system reduce the processing complexity and energy consumption?
5. How should the system control agent workflow to maximize QoE and QoS?
6. How should services and resources in the computing continuum be monitored?
7. How do we ensure optimal prediction of the number of agents?
8. How does the system use LLMOps for managing AI models’ lifecycle?
9. How does LLMOps ensure efficiency in optimizing LLM operations?

(Grant Number: 346208), and by Business Finland through the
Neural pub/sub research project (diary number 8754/31/2022)
and the Digital Twinning of Personal Area Networks for
Optimized Sensing and Communication research project (diary
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