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Abstract
Ever since the vision was formulated, the Seman-
tic Web has inspired many generations of innova-
tions. Semantic technologies have been used to
share vast amounts of information on the Web,
enhance them with semantics to give them mean-
ing, and enable inference and reasoning on them.
Throughout the years, semantic technologies, and
in particular knowledge graphs, have been used in
search engines, data integration, enterprise settings,
and machine learning.

In this paper, we recap the classical concepts
and foundations of the Semantic Web as well as
modern and recent concepts and applications, build-
ing upon these foundations. The classical topics

we cover include knowledge representation, creating
and validating knowledge on the Web, reasoning
and linking, and distributed querying. We enhance
this classical view of the so-called “Semantic Web
Layer Cake” with an update of recent concepts that
include provenance, security and trust, as well as
a discussion of practical impacts from industry-led
contributions. We conclude with an outlook on the
future directions of the Semantic Web.
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1 Introduction

The vision of the Semantic Web as coined by Tim Berners-Lee, James Hendler, and Orla Lassila [19]
in 2001 is to develop intelligent agents that can automatically gather semantic information from
distributed sources accessible over the Web, integrate that knowledge, use automated reasoning [64],
and solve complex tasks as such as schedule appointments in negotiation of the preferences of the
involved parties. We have come a long way since then. In this paper, we reflect on the past, i. e.,
the ideas and components developed in the early days of the Semantic Web. Since the beginning,
the Semantic Web has tremendously developed and undergone multiple waves of innovation. The
Linked Data movement has especially seen uptake by industries, governments, and non-profit
organizations, alike. We discuss those present components and concepts that have been added
over the years and shown to be very useful. Although many concepts of the initial idea of the
Semantic Web have been implemented and put into practice, still further research is needed to
reach the full vision. Thus, this paper concludes with an outlook to future directions and steps
that may be taken.

For the novice reader of the Semantic Web, we provide a brief historical overview of the
developments and innovation waves of the Semantic Web: At the beginning of the Semantic Web,
we were mainly talking about publishing Linked Data on the Web [73], i. e., semantic data typically
structured using the Resource Description Framework (RDF)1 that is accessible on the Web using
URIs/IRIs to identify entities, classes, predicates, etc. By referencing entities from other websites
and Web-accessible sources, i. e., dereferencable via HTTP, the data becomes naturally linked. By
using standardized vocabularies and ontologies the information then becomes more aligned and
easier to use across sources. These principles have allowed non-profit organizations, companies,
governments, and individuals to publish and share large amounts of interlinked data, which has led
to the success of the Linked Open Data cloud2 since 2007. Since many of the large interconnected
semantic sources are accessible via interfaces understanding structured query languages (SPARQL
endpoints), federated query processing methods were developed that allow exploiting the strengths
of structured query languages to precisely formulate an information need and optimize the query
for efficient execution in a distributed setting.

When Google launched its Knowledge Graph in 20123, semantic technologies experienced
another wave of new applications in the context of searching information. Whereas search engines
before mainly relied on keyword search and string-based matches of the keywords in the websites’
text, the knowledge graph enabled including semantics to capture the user’s information need as
well as the meaning of potentially relevant documents. To achieve this purpose, Google’s knowledge
graph integrates large amounts of machine-processable data available on the Web and uses this
information not only to improve search results but also to display infoboxes for entities identified
in the user’s keywords. It is only since 2012 that we have widely used the term “knowledge graph”
to refer to semantic data, where entities are connected via relationships and form large graphs of
interconnected information, typically with RDF as a common standard language. In recent years
though (labeled) property graphs (LPG) have been used to manage knowledge graphs. We refer
to the literature for a detailed comparison of RDF graphs and LPGs [78] and also like to point
out that they can be converted into each other [23]. In this article, we consider knowledge graphs
from the perspective of the Semantic Web, i. e., we consider RDF graphs.

1 http://www.w3.org/TR/rdf-primer/
2 https://lod-cloud.net/
3 https://blog.google/products/search/introducing-knowledge-graph-things-not/

http://www.w3.org/TR/rdf-primer/
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A few years later, semantic technologies found another novel application in enterprise settings as
enterprise knowledge graphs [55, 108] and data integration [33, 160]. Since all kinds of information
can be structured as a graph, knowledge graphs can be used as a common structure to integrate
heterogeneous information that is otherwise locked up in silos in different branches of a company.
Integrating the data into a knowledge graph then allows for an integrated view, efficiently retrieving
relevant information from this view once needed, and integrating external information that is
available in the form of knowledge graphs, for instance on the Semantic Web. After all, online
analytical processing-style queries can also be formulated with SPARQL4 and evaluated on
(distributed) knowledge graphs.

In the past few years, learning on graph data became one of the fastest growing and most
active areas in machine learning [71]. Graph representation learning has created a new wave of
graph embedding models and graph neural networks on knowledge graphs for tasks such as entity
classification and link prediction. Natural Language Processing (NLP) has been another important
field of the Semantic Web since the early years to extract knowledge from textual data and make
it machine readable. Another field where NLP meets the Semantic Web is user interfaces for
search on structured data to enable intuitive, natural language querying for graph data [69] similar
to web search engines. At the end of 2022, ChatGPT5 emerged as the first publicly available
end-consumer tool based on a Large Language Model (LLM). Since then, the GPT-based family
of LLMs has stirred up research and business alike and demonstrated impressive performance
on many NLP tasks, including generating structured queries from user prompts and extracting
structured knowledge from text [145].

The capabilities of tools like Bing Chat6 with underlying access to the World Wide Web are
reminding one of the intelligent agents that were envisioned 20 years before. For example, at the
time of writing, the GPT4-based tool Bing7 can internally generate SPARQL queries and execute
them, while the structured response is seamlessly embedded into its natural language outputs to
the users.8 While it already addresses some of the early visions of the Semantic Web, particularly
the complex planning and reasoning capabilities of LLMs are – due to their nature of focusing on
generating and processing text – still limited. We hypothesize that advances in neuro-symbolic
AI and semantic technologies will be key for improving LLMs and bringing generative AI tools
like Bing and the Semantic Web further together. We are keen to witness this next era of the
Semantic Web.

In this paper, we provide a comprehensive overview of the Semantic Web with its semantic
technologies and underlying principles that have been inspiring and driving the multiple waves
of innovations in the past two decades. Section 2 provides a motivating example for the classic
Semantic Web. We refer back to this example throughout the paper. Section 3 presents the
principles and the general architecture of the Semantic Web along with the basic semantic
technologies it is founded upon. Besides classical components, we are also describing recent
developments, and pointing out components that are still being researched and developed. Section 4
shows how to represent distributed knowledge on the Semantic Web. The creation and maintenance
of graph data is described in Section 5. Section 6 discusses the principle of reasoning and logical
inference. Section 7 then shows how to query over the (distributed) graph data on the Semantic

4 http://www.w3.org/TR/sparql11-query/
5 https://chat.openai.com/
6 http://bing.com
7 https://www.bing.com/
8 Based on a sequence of prompts ran on January 22, 2024, using the GPT-4 model provided on the Bing

Chat mobile app. The prompt sequence is: “do you have access to DBpedia”, “how do you access DBpedia”,
“please give me an example where you access DBpedia in response”.

TGDK
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Web. We discuss the trustworthiness and provenance of data on the Semantic Web in Section 8.
We provide extensive examples of applications based on and using the Semantic Web and its
technologies in Section 9. Finally, we reflect on the impact the Semantic Web has on practitioners
in Section 10. Finally, we conclude with a brief outlook on future developments for the Semantic
Web.

2 Motivating Example

On the Semantic Web, knowledge components from different sources can be intelligently integrated
with each other. As a result, complex questions can be answered, questions like “What types
of music are played on British radio stations? At which time and day of the week?” or “Which
radio station plays songs by Swedish artists?” In this section, we provide an overview of how the
Semantic Web can be employed to answer those questions. We provide details of the components
of the Semantic Web in the following sections.

We consider the example of the BBC program ontology with links to various other ontologies
such as for music, events, and social networks as shown in Figure 1. We start with the BBC
playlists of its radio stations. The playlists are published online in Semantic Web formats. We
can leverage the playlist to get unique identifiers of played artists and bands. For example, the
music group “ABBA” has a unique identifier in the form of a URI (https://www.bbc.co.uk/
programmes/b03lyzpr). This URI can be used to link the music group to information from
the MusicBrainz9 music portal. MusicBrainz knows the members of the band, such as Benny
Andersson, as well as the genre and songs. In addition, MusicBrainz is linked to Wikipedia10

(not shown in the figure), e. g., to provide information about artists, such as biographies on
DBpedia [11]. Information about British radio stations can be found in the form of lists on Web
pages such as Radio UK11, which can also be converted into a representation in the Semantic
Web.

We can see that the required information is distributed across multiple knowledge components,
e. g., BBC Program, MusicBrainz, and others. Each knowledge component can in principle provide
different access to the data and utilize various ways to describe the data. Consequently, to answer
the questions the data must be integrated. On the Semantic Web, data integration relies on
ontologies describing data and the meaning of relations in data.

Colloquially, an ontology is a description of concepts and their relationships. Ontologies
are used to formally represent knowledge on the Semantic Web.12 For example, Dublin Core13

provides a metadata schema for describing common properties of objects, such as the creator of
the information, type, date, title, usage rights, and so on. Figure 1 presents ontologies used to
describe data in our example. For example, the Playcount ontology14 of the BBC is used to model
which artist was played and how many times in the programs. Ontologies can be interconnected
in the Semantic Web. For example, the MusicBrainz ontology is connected to the BBC ontology
using the Playcount ontology. Different ontologies with varying degrees of formality and different
relationships to each other are used by the BBC to describe their data (see also [122]).

9 http://musicbrainz.org/
10 https://www.wikipedia.org/
11 https://www.radio-uk.co.uk
12 An ontology definition is provided in Section 4.2.
13 http://dublincore.org/documents/dc-rdf/
14 http://dbtune.org/bbc/playcount/

https://www.bbc.co.uk/programmes/b03lyzpr
https://www.bbc.co.uk/programmes/b03lyzpr
http://musicbrainz.org/
https://www.wikipedia.org/
https://www.radio-uk.co.uk
http://dublincore.org/documents/dc-rdf/
http://dbtune.org/bbc/playcount/
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ProgrammeItem Programme Brand Playcount

Service Broadcaster

BroadcastVersion

Interval Event Organization

MusicArtist

time

object

playcount

service

broadcasterbroadcast_on

broadcast_of

Timeline Ontology Event Ontology FOAF Ontology

Music Ontology

Playcount OntologyBBC Program Ontology

version

Figure 1 Example of the BBC ontology with links to other ontologies (notation based on UML, here
without prefix for namespaces).

As all this data is available and interconnected by ontologies, a user of the Semantic Web
can directly ask for answers to questions in this and other scenarios. To make this possible, the
Semantic Web requires generic software components, languages, and protocols that can interact
seamlessly with each other. We introduce the classical and modern components of the architecture
of the Semantic Web in Section 3.

In addition to the above example, the Semantic Web can be used for a variety of other
applications (see examples in Section 9). Apart from technical aspects, the Semantic Web should
also be understood as a socio-political phenomenon. Similar to the World Wide Web, various
individuals and organizations publish their data on the Semantic Web and collaborate to link and
improve this data. This impact on practitioners is discussed in Section 10.

3 Architecture of the Semantic Web

The example in Section 2 describes what the Semantic Web is as an infrastructure, but not how
this is achieved. In fact, the capabilities of the Semantic Web in a small scale have already been
implemented by some knowledge-based systems originating from artificial intelligence research,
e. g., Heinsohn et al [76]. However, for the implementation of the vision on a large scale, i. e, the
Web, these knowledge-based systems lacked flexibility, robustness, and scalability. In part, this
was due to the complexity of the algorithms used. For example, knowledge bases in description
logic in the 1990s, which serve as the basis of Web ontologies, were limited regarding their size
such that they could handle at the most some hundred concepts [76].

In the meantime, enormous improvements have been achieved. Greatly increased computational
power and optimized algorithms allow a practical handling of large ontologies like Simple Knowledge
Organization System (SKOS)15, Gene Ontology16, Schema.org, and SNOMED-CT17. However,

15 https://www.w3.org/TR/skos-reference/
16 https://geneontology.org/
17 https://www.snomed.org/
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https://www.w3.org/TR/skos-reference/
https://geneontology.org/
https://www.snomed.org/


3:6 Semantic Web: Past, Present, and Future

there are some fundamental differences between traditional knowledge-based systems and the
Semantic Web. Data management in traditional knowledge-based systems has weaknesses in
terms of handling large amounts of data and data sources, among other things because of different
underlying formalisms, distributed locations, different authorities, different data quality, and a
high frequency of change in the data used.

The Semantic Web applies fundamental principles to deal with these problems; they represent
the basis for the architecture of the Semantic Web. This architecture’s building blocks can roughly
be categorized into groups, covering the entire life cycle of handling and managing graph data
on the Web. These groups are graph data representation, creation and validation of graph data,
reasoning over and linking of graph data, (distributed) querying of graph data, crypto, provenance,
and trustworthiness of graph data, and user interfaces and applications.

Below, we first introduce the principles of the Semantic Web, from which we derive the
architecture and its main components. Subsequently, we describe the groups of the architecture.
The principles of the Semantic Web are:
1. Explicit and simple data representation: A general data representation abstracts from the

underlying formats and captures only the essentials.
2. Distributed systems: A distributed system operates on a large set of data sources without

centralized control that regulates which information belongs where and to whom.
3. Cross-references: The advantages of a network of data in answering queries are not based

solely on the sheer quantities of data but on their interconnection, which allows reusing data
and data definitions from other sources.

4. Loose coupling with common language constructs: The World Wide Web and likewise the
Semantic Web are mega-systems, i. e., systems consisting of many subsystems, which are
themselves large and complex. In such a mega-system, individual components must be
loosely coupled in order to achieve the greatest possible flexibility. Communication between
the components is based on standardized protocols and languages, whereby these can be
individually adapted to specific systems.

5. Easy publishing and easy consumption: Especially in a mega-system, participation, i. e.,
publishing and consumption of data, must be as simple as possible.

These principles are achieved through a mix of protocols, language definitions, and software
components. Some of these components have already been standardized by the W3C, which has
defined both syntax and formal semantics of languages and protocols. Other components are
not yet standardized, but they are already provided for the so-called Semantic Web Layer Cake
by Tim Berners-Lee (cf. http://www.w3.org/2007/03/layerCake.png). We present a variant
of the Semantic Web architecture, distinguishing between standardized languages and current
developments. A graphical representation of the architecture can be found in Figure 2.

Identifier for Resources: HTTP, URL, DID

Entities (also called resources) are identified on the Internet by so-called Uniform Resource
Identifiers (URIs) [17]. When a URI holds a dereferenceable location of the resource, in other
words, it can be employed to get access to the resource via HTTP, it is called a Uniform Resource
Locator (URL) [20, 18]. Furthermore, Internationalized Resource Identifiers (IRIs) [45] supplement
URIs with international character sets from Unicode/ISO10646. URIs are globally and universally
used but are usually not under our control. A recent W3C recommendation, the Decentralized
Identifiers (DIDs), introduces an alternative approach to the above identifiers [137]. A DID is by
default decentralized and allows for self-sovereign management of the identity, i. e., the control of
a DID and its associated data is with the users.
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Identifier: HTTP, URL, DID

Syntax: XML

Data representation: RDF, JSON-DL, RDFa

Queries:
 SPARQL

Ontologies:
RDFS, OWL

Rules: RIF, 
SWIRL, R2RML

Shapes:
SHACL, ShEx

Crypto

Identification and linkage

Provenance and trustworthiness

User interface and applications

Figure 2 Representation of the components of the so-called “Semantic Web Layer Cake”. W3C language
standards are shown in dark gray. Current developments are shown in light gray.

In our example in Section 2, a URI 18 describes the musician Benny Andersson of the Swedish
pop group ABBA. A user can dereference a URI that refers to ABBA, e. g., by performing
a so-called look-up using HTTP to obtain a detailed description of the URI. We refer to the
referenced standards for details.

For a detailed discussion of the role of dereferenceable URIs on the Semantic Web, we refer to
the Linked Data principles described in Section 4.1.

Syntax for Data Exchange: XML, JSON-LD, RDFa

The Extensible Markup Language (XML)19 is used to structure documents and enables the
specification and serialization of structured data. In addition, other data formats were introduced
to facilitate for serialization of RDF data, often replacing XML. We can view those formats as
forming two groups. The first group consists of formats designed specifically for RDF data, such as
Turtle20, N-triple21, and TRIG22. These are easier to view in a text editor, compared to XML, and
thus easier to understand and modify. While initially not included in standards, their popularity
has led to them being official W3C recommendations since 2014. The other group of formats is
built by extending existing data formats. As a result, those can be employed to add RDF to
existing systems. Examples of such formats are JSON-LD23, CSV on the Web (CSVW)24, and
RDFa25 extending JSON, CSV, and (X)HTML, respectively.

Graph Data Representation: RDF

In addition to the referencing of resources and a uniform syntax for the exchange of data, a data
model is required that allows resources to be described both individually and in their entirety

18 http://www.bbc.co.uk/music/artists/2f031686-3f01-4f33-a4fc-fb3944532efa#artist
19 https://www.w3.org/TR/xml/
20 https://www.w3.org/TR/turtle/
21 https://www.w3.org/TR/n-triples/
22 https://www.w3.org/TR/trig/
23 https://www.w3.org/TR/json-ld/
24 https://www.w3.org/TR/tabular-data-primer/
25 https://www.w3.org/TR/rdfa-primer/
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and how they are linked [73, 75]. An integrated representation of data from multiple sources
is provided by a data model based on directed graphs [114]. The corresponding W3C standard
language is RDF (Resource Description Framework)26.

An RDF graph consists of a set of RDF triples, where a triple consists of a subject, predicate
(property), and object. An RDF graph can be given an identifier, such a graph is called a named
graph [29]. RDF graphs can be serialized in several ways (see Syntax for Data Exchange above).
It is important to note that some formats (e. g., Turtle) do not support named graphs. Finally,
RDF-star (aka RDF*)27,28 was introduced to allow nesting of triples and thus enables an efficient
way to make statements about statements while avoiding reification and the increased number of
triples and complexity that come along with it.

The representation of graph data is further discussed in Section 4.

Creation and Validation of Graph Data: RIF, SWRL, [R2]RML, and SHACL

In the RDF context, a rule is a logical statement employed to infer new facts from existing graph
data or to validate the data itself. RIF (Rule Interchange Format)29 is a W3C recommendation
format designed to facilitate the seamless interchange of rules between different rule engines.
This enables the extraction of rules from one engine, their translation into RIF, publication, and
subsequent conversion into the native syntax of another rule engine for execution. SWRL30 is a
rule-based language designed for representing complex relationships and reasoning.

Rules can also be used to state the correspondence between data sources and RDF graphs.
The RDB to RDF Mapping Language (R2RML)31 and the RDF Mapping Language (RML)32

correspond to rule-based mapping languages for the declarative definition of RDF graphs. R2RML
is the W3C recommendation for representing mappings from relational databases to RDF datasets,
while RML extends R2RML to express rules not only from relational databases but also from
data in the format of CSV, JSON, or XML.

Validating constraints, representing syntactic and semantic restrictions in RDF graphs, is
essential for ensuring data quality. In addition to rule-based languages, shapes allow for the
specification of conditions to meet data quality criteria and integrity constraints. A shape
encompasses a conjunction of constraints representing conditions that nodes in an RDF graph
must satisfy [79]. A shapes graph is a labeled directed graph where nodes correspond to shapes,
and edges denote interrelated constraints. The Shapes Constraint Language (SHACL) [95] and
Shape Expressions (ShEx) [117]) are two W3C-recommendations to express shapes graphs over
RDF [119].

The creation and validation of graph data are described in detail in Section 5.

Reasoning and Linking of Graph Data: RDFS, OWL

Data from different sources may be heterogeneous. In order to deal with this heterogeneity and
to model the semantic relationships between resources, the RDF Schema (RDFS)33 vocabulary

26 https://www.w3.org/RDF/
27 https://w3c.github.io/rdf-star/
28 https://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/
29 http://www.w3.org/2005/rules/wiki/RIF_Working_Group
30 https://www.w3.org/submissions/SWRL/
31 https://www.w3.org/TR/r2rml/
32 https://rml.io/specs/rml/
33 https://www.w3.org/TR/rdf11-schema/

https://www.w3.org/RDF/
https://w3c.github.io/rdf-star/
https://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
https://www.w3.org/submissions/SWRL/
https://www.w3.org/TR/r2rml/
https://rml.io/specs/rml/
https://www.w3.org/TR/rdf11-schema/
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extends RDF by modeling types of resources (so-called RDF classes) and semantic relationships
on types and properties in the form of generalizations and specializations. Likewise, it can be
used to model the domain and range of properties.

RDFS is not expressive enough to merge data from different sources and define consistency
criteria about it, such as the disjointness of classes or the equivalence of resources. The Web
Ontology Language (OWL)34 [155] is an ontology language with formally defined meaning based
on description logic. This allows for reasoning services to be provided by knowledge-based systems
for OWL ontologies. OWL can be exchanged using RDF data formats. Compared to RDFS,
OWL provides more expressive language constructs. For example, OWL allows the specification
of equivalences between classes and cardinality constraints on properties [155].

Reasoning over RDF graphs, incorporating RDFS and OWL models enhances semantic
expressiveness and inferential capabilities. This involves making implicit information explicit,
inferring new triples, and validating the RDF graph’s consistency against defined ontological
constraints. RDFS provides basic entailment regimens, creating hierarchies and simple inferencing
via sub-class and sub-property relationships. In contrast, OWL introduces advanced constructs
such as property characteristics (e. g., functional, inverse, symmetric properties), cardinalities, and
disjointness axioms, enabling more expressive and complex modeling. Integrating RDFS and OWL
reasoning mechanisms empowers applications to derive insights, discover implicit knowledge, and
ensure adherence to specified ontological constraints within RDF-based knowledge representations.

Graph data aggregated from many data sources, such as in our example in Section 2, may
contain many different identities. But those identities may represent the same set of real-world
objects. Integration and linkage mechanisms allow references to be made between data from
different sources. A popular approach to state the identity of two resources v and w is the
owl:sameAs feature of OWL.

We discuss the reasoning over and linking of graph data in Section 6.

Querying of Graph Data: SPARQL

Since RDF makes it possible to integrate data from different sources, a query language is needed
that allows formulating queries over individual RDF graphs as well as over the combination of
multiple RDF graphs across multiple sources. SPARQL35 (a recursive acronym for SPARQL
Protocol and RDF Query Language) is a declarative query language for RDF graphs that enables
us to formulate such queries. SPARQL 1.136 is the current version of SPARQL, which includes
the capability to formulate federated queries over distributed data sources.

The basic building blocks of a SPARQL query are triple and graph patterns. A triple pattern
corresponds to an RDF triple but where one, two, or all three of its components are replaced by
variables (denoted with a leading “?”). These triple patterns with variables are to be matched in
the queried graph. Multiple triple patterns can be combined into more complex graph patterns
describing the connections between multiple nodes in the graph. The solution to such a SPARQL
query then corresponds to all the subgraphs in an RDF graph matching this pattern.

Finally, there is RDF-star (aka RDF*)37,38 – along with the corresponding SPARQL-star/
SPARQL* extension – was proposed and since then was implemented by several triple stores [2]
that often provide publicly accessible SPARQL endpoints. The key idea with RDF/SPARQL-star

34 https://www.w3.org/OWL/
35 http://www.w3.org/TR/rdf-sparql-query/
36 http://www.w3.org/TR/sparql11-query/
37 https://w3c.github.io/rdf-star/
38 https://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/
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is to allow the nesting of triples to enable an efficient way to allow statements about statements
while avoiding reification and the increased number of triples and complexity that come along
with it.

We describe SPARQL and federated querying in Section 7.

Crypto, Provenance, and Trustworthiness of Graph Data

Other aspects of the Semantic Web are encryption and authentication to ensure that data
transmissions cannot be intercepted, read, or modified. Crypto modules, such as SSL (Secure
Socket Layer), verify digital certificates and enable data protection and authentication. In addition,
there are digital signatures for graphs that integrate seamlessly into the architecture of the Semantic
Web and are themselves modeled as graphs again [93]. This allows graph signatures to be applied
iteratively and enables to building trust networks. The Verifiable Credentials Data Model, a
recent W3C recommendation, introduces a standard to model trustworthy credentials for graphs
on the web39. Data on the Semantic Web can be augmented with additional information about
its trustworthiness and provenance.

Aspects of trustworthiness and provenance of graph data as well as crypto are discussed in
Section 8.

User Interfaces and Applications

A user interface enables users to interact with data on the Semantic Web. From a functional
perspective, some user interfaces are generic and operate on the graph structure of the data, whereas
others are tailored to specific tasks, applications, or ontologies. New paradigms are exploring the
spectrum of possible user interfaces between generality and specific end-user requirements.

Semantic Web applications are discussed in Section 9. The impact on practitioners is described
in Section 10.

4 Representation of Graph Data

The Linked Open Data principles are notably the most successful and widely adopted choice for
representing RDF graph data on the web. Thus, we first introduce the reader to how to represent
graph data as Linked Data. Subsequently, we introduce the notion of ontologies. This is followed
by a more detailed analysis of the different types of ontologies. We give examples of ontologies
throughout the sections. With this background in mind, we reconsider our running example
from Section 2 and analyze the given distributed network of ontologies. In this context, we also
introduce and discuss the notion of ontology design patterns.

4.1 Linked Graph Data on the Web
The Linked Data principles40 define the methods for representing, publishing, and using data on
the Semantic Web. They can be summarized as follows:
1. URIs are used as names for entities.
2. The HTTP protocol’s GET method is used to retrieve descriptions for a URI.
3. Data providers shall return relevant information in response to HTTP GET requests on URIs

using standards, e. g., in RDF.
4. Links to other URIs shall be used to facilitate knowledge discovery and use of additional

information.

39 https://www.w3.org/TR/vc-data-model/
40 http://www.w3.org/DesignIssues/LinkedData.html
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Publishing data using Linked Data principles allows easy access to data via HTTP. This allows
exploration of resources and navigation across resources on the Semantic Web. URIs (see 1.) are
dereferenced using HTTP requests (2.) to obtain additional information about a given resource.
In particular, using standardized syntax (3.), this information may also contain links to other
resources (4.).

Figure 3 represents an example of Linked Data about the pop group ABBA. The example
describes several relationships linking entities to ABBA’s URI, such as foaf:member and rdf:type.
In the figure “ABBA”, or more precisely the URI of ABBA, is the subject, “Property” refers to
relationships, and “Value” represents objects of the RDF triples. The relation owl:sameAs will
be explained in more in Section 6. The prefixes foaf, rdf, and owl refer to vocabularies of the
FOAF ontology41, and the W3C language specifications of RDF and OWL, respectively.

Figure 3 Linked Data example for ABBA.

4.2 Ontologies

An ontology is commonly defined as a formal, machine-readable representation of key concepts
and relationships within a specific domain [111, 109]. In essence, ontologies capture a shared
perspective [111] that is, the formal conceptualization of ontologies expresses a consensus view
among different stakeholders. Visualizing ontologies is akin to viewing a spectrum, with a
specificity of concepts, their relationships, and the granularity of meaning representation varying
along this continuum [101, 149, 148]. A controlled vocabulary corresponds to the less expressive
form of ontology, comprising a restrictive list of words or terms used for labeling, indexing, or
categorization. The Clinical Data Interchange Standards Consortium (CDISC) Terminology is an

41 http://xmlns.com/foaf/spec/
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exemplary vocabulary that harmonizes definitions in clinical research.42 A thesaurus is located
next in the spectrum; they enhance controlled vocabularies with information about terms and their
synonyms and broader/narrower relationships. The Unified Medical Language System (UMLS)
integrates medical terms and their synonyms.43 Next, taxonomies are built over controlled
vocabularies to provide a hierarchical structure, e. g., parent/child relationship. SNOMED-
CT44 (Systematized Nomenclature of Medicine Clinical Terms) provides a terminology and coding
system used in healthcare and medical fields; medical concepts organized in a hierarchical structure
enabling a granular representation of clinical information. The Simple Knowledge Organization
System (SKOS)45 is a W3C standard to describe knowledge about organizational systems. Lastly,
ontologies are at the highest extreme of the spectrum, integrating sets of concepts with attributes
and relationships to define a domain of knowledge.

Note, SKOS is a popular standard for modeling domain-specific taxonomies in the different
scientific communities such as economics, social sciences, etc. to represent concepts and their
relationships, most importantly narrower, broader, and related. However, it does not have the
expressiveness of OWL with its complex expressions on classes and relations. For a detailed
discussion, we refer to the literature such as [89] and the W3C on using OWL and SKOS46.

4.3 Types and Examples of Ontologies
A network of ontologies, such as the example shown in Figure 1, may consist of a variety of ontologies
created by different actors and communities. Ontologies may be the result of a transformation
or reengineering activity of a legacy system, such as a relational database or existing taxonomy
such as the Dewey Decimal Classification47 or Dublin Core. Other ontologies are created from
scratch. This involves applying existing methods and tools for ontology engineering and choosing
an appropriate representation language for the ontology (see Section 6).

Ontology engineering deals with the methods for creating ontologies [65] and has its origins in
software engineering in the creation of domain models and in database design in the creation of
conceptual models. A good overview of ontology engineering can be found in several reference
books [65]. Ontologies vary greatly in their structure, size, development methods applied, and
application domains considered. Complex ontologies are also distinguished in terms of their
purpose and granularity.

Domain Ontologies represent knowledge specific to a particular domain [48, 109]. Domain
ontologies are used as external sources of background knowledge [48]. They can be built on
foundational ontologies [110] or core ontologies [131], which provide precise structuring to the
domain ontology and thus improve interoperability between different domain ontologies. Domain
ontologies can be simple such as the FOAF ontology or the event ontology mentioned above, or
very complex and extensive, having been developed by domain experts, such as the SNOMED
medical ontology.

Core Ontologies represent a precise definition of structured knowledge in a particular domain
spanning multiple application domains [131, 109]. Examples of core ontologies include core
ontologies for software components and web services [109], for events and event relationships [129],
or for multimedia metadata [126]. Core ontologies should thereby build on foundational ontologies

42 https://datascience.cancer.gov/resources/cancer-vocabulary/cdisc-terminology
43 https://www.nlm.nih.gov/research/umls/index.html
44 https://www.snomed.org/value-of-snomedct
45 https://www.w3.org/TR/skos-reference/
46 https://www.w3.org/2006/07/SWD/SKOS/skos-and-owl/master.html
47 http://dewey.info/
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to benefit from their formalization and strong axiomatization [131]. For this purpose, new concepts
and relations are added to core ontologies for the application domain under consideration and are
specialized by foundational ontologies.

Foundational Ontologies have a very wide scope and can be reused in a wide variety
of modeling scenarios [24]. They are therefore used for reference purposes [109] and aim to
model the most general and generic concepts and relations that can be used to describe almost
any aspect of our world [24, 109], such as objects and events. An example is the Descriptive
Ontology for Linguistic and Cognitive Engineering (DOLCE) [24]. Such basic ontologies have
a rich axiomatization that is important at the developmental stage of ontologies. They help
ontology engineers to have a formal and internally consistent conceptualization of the world,
which can be modeled and checked for consistency. For the use of foundational ontologies in a
concrete application, i. e., during the runtime of an application, the rich axiomatization can often
be removed and replaced by a more lightweight version of the foundational ontology.

In contrast, domain ontologies are built specifically to allow automatic reasoning at runtime.
Therefore, when designing and developing ontologies, completeness and complexity on the one
hand must always be balanced with the efficiency of reasoning mechanisms on the other. In
order to represent structured knowledge, such as the scenario depicted in Figure 1, interconnected
ontologies are needed, which are spanned in a network over the Internet. For this purpose, the
ontologies used must match and be aligned with each other.

4.4 Distributed Network of Ontologies and Ontology Patterns
A network of ontologies must be flexible with respect to the functional requirements imposed on it.
This is because systems are modified, extended, combined, or integrated over time. In addition, the
networked ontologies must lead to a common understanding of the modeled domain. This common
understanding can be achieved through a sufficient level of formalization and axiomatization, and
through the use of ontology patterns. An ontology pattern, similar to a design pattern in software
engineering, represents a generic solution to a recurring modeling problem [131]. Ontology patterns
allow to select parts from the original ontology. Either all or only certain patterns of an ontology
can be reused in the network. Thus, to create a network of ontologies, e. g., existing ontologies
and ontology patterns can be merged on the Web. The ontology engineer can drive or explicitly
provide for the modularization of ontologies using ontology patterns. Core ontologies represent
one approach to designing a network of ontologies (see in detail [131]). They allow to capture
and exchange structured knowledge in complex domains. Well-defined core ontologies fulfill the
properties mentioned in the previous section and allow easy integration and smooth interaction of
ontologies (see also [131]). The networked ontologies approach leads to a flat structure, as shown
in Figure 1, where all ontologies are used on the same level. Such structures can be managed up
to a certain level of complexity.

The approach of networked core ontologies is illustrated by the example of ontology layers
starting from foundational to core to domain ontologies. As shown in Figure 4, DOLCE is the
foundational ontology at the bottom layer, the Multimedia Metadata Ontology (M3O) [126] as
the core ontology for multimedia metadata, and an extension of M3O for the music domain.
Core ontologies are typically defined in description logic and cover a field larger than the specific
application domain requires [57]. Concrete information systems will typically use only a subset
of core ontologies. To achieve modularization of core ontologies, they should be designed using
ontology patterns. By precisely matching the concepts in the core ontology with the concepts
provided in the foundational ontology, they provide a solid foundation for future extensions. New
patterns can be added and existing patterns can be extended by specializing the concepts and
roles. Figure 4 shows different patterns of the M3O and DOLCE ontologies.
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Figure 4 Ontology layers combining the foundational ontology DOLCE, the multimedia metadata
ontology M3O, domain-specific extensions to M3O for annotating audio data and music, and a domain
ontology for albums and tracks.

Ideally, the ontology patterns of the core ontologies are reused in the domain ontologies [57], as
shown in Figure 4. However, since it cannot be assumed that all domain ontologies are aligned with
a foundational or core ontology, the option that domain ontologies are developed and maintained
independently must also be considered. In this case, domain knowledge can be reused in core
ontologies by applying the Descriptions and Situations (DnS) ontology pattern of the foundational
ontology DOLCE. The DnS ontology pattern is an ontological formalization of context [109] by
defining different views using roles. These roles can refer to domain ontologies and allow a clear
separation of the structured knowledge of the core ontology and domain-specific knowledge. To
model a network of ontologies, such as the example described above, the Web Ontology Language
(OWL) and its ability to axiomatize using description logic [12] is used. In addition to being used
to model a distributed knowledge representation and integration, OWL, is also used in particular
to derive inferences from this knowledge, which is described in Section 6.

5 Creation and Validation of Graph Data

In this section, we describe the creation of graph data from legacy data. Many tools are available
for this task, which support various mappings and transformations. Subsequently, we discuss data
quality and the validation of knowledge graphs, including the recent approaches on shapes. We
also reflect on the role of the open-world versus closed-world assumption with respect to validating
data.

5.1 Graph Data Creation
Graph data can be created by transforming legacy data via a data integration system [98], which
consists of a unified schema, data sources, and mapping rules. These mapping rules define the
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concepts within the schema and establish links to the data sources. By employing declarative
definitions, knowledge graph creation promotes modularity and reusability. This approach allows
users to trace the entire graph creation process, leading to improved transparency and ease of
maintenance.

To enable comprehensive and extensive graph specification, mappings and transformations
have been developed to convert data from various storage models into Semantic Web data models
like RDF. These mappings and transformations facilitate the mapping of data into RDF, thereby
supporting the integration of diverse data sources into the Semantic Web.

The mapping language R2RML [37] defines mapping rules from relational databases (relational
data models) to RDF graphs. These mappings themselves are also RDF triples [15]. Because
of its compact representation, Turtle is considered a user-friendly notation of RDF graphs. The
structure of R2RML is illustrated in Figure 5; essentially, table contents are mapped to triples by
the classes SubjectMap, PredicateMap, and ObjectMap. If the object is a reference to another
table, this reference is called RefObjectMap. Here, SubjectMap contains primary key attributes
of the corresponding table. Thus, there exists a mapping rule representable in RDF graphs by
means of which tables of relational databases can be represented as RDF graphs.

Figure 5 Structure of a relational data mapping (source: [37]).

The RDF Mapping Language (RML)[42] extends R2RML to encompass the definition of logical
sources in various formats, including CSV, JSON, XML, and HTML. This enhancement enables
RML to introduce new operators that facilitate the integration of data from diverse sources into
the Semantic Web. Thus, instead of LogicalTable, RML includes the tag LogicalSource, to
allow for the retrieval of data in several formats. Additionally, RML resorts to W3C-standardized
vocabularies and enables the definition of retrieval procedures to collect data from Web APIs or
databases. R2RML and RDF mapping rules are expressed in RDF, and their graphs document how
classes and properties in one or various ontologies that are part of an RDF graph are populated
from data collected from potentially heterogeneous data sources.
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Over time, the Semantic Web community has actively contributed to addressing the challenge
of integrating heterogeneous datasets, resulting in the development of several frameworks for
executing declarative mapping rules [34, 28, 116]. A rich spectrum of tools (e. g., RMLMapper [42],
RocketRML [136], CARML48, SDM-RDFizer [87], Morph-KGC [8], and RMLStreamer [112]) offers
the possibility of executing R2RML and RML rules and efficiently materializing the transformed
data into RDF graphs. Van Assche et al. [10] provided an extensive survey detailing the main
characteristics of these engines. Despite significant efforts in developing these solutions, certain
parameters can impact the performance of the graph creation process [31]. Existing engines may
face challenges when handling complex mapping rules or large data sources. Nonetheless, the
community continues to collaborate and address these issues. An example of such collaboration is
the Knowledge Graph Construction Workshop 2023 Challenge49 that took place at ESWC 2023.
This community event aims to understand the strengths and weaknesses of existing approaches
and devise effective methods to overcome existing limitations.

RDF graphs can also be dynamically created through the execution of queries over data
sources. These queries involve the rewriting of queries expressed in terms of an ontology, based
on mapping rules that establish correspondences between data sources and the ontology. Tools
such as Ontop [28], Ultrawrap [135], Morph [116], Squerall [100], and Morph-CSV [32] exemplify
systems that facilitate the virtual creation of RDF graphs.

5.2 Quality and Validation of Graph Data
Quality and validation of the graph data are crucial to maintaining the integrity of the Semantic
Web [44, 38, 163]. The evaluation of integrity constraints allows for the identification of inconsis-
tencies, inaccuracies, or contradictions within the data. They also help maintain consistency by
ensuring related data elements remain coherent. Constraints are logical statements – expressed in
a particular language – that impose restrictions on the values taken for target nodes in a given
property.

Constraints can be expressed using OWL [144], SPARQL queries [97], or using shapes. However,
the interpretation of the results depends on the semantics followed to interpret the failure of an
integrity constraint. For example, constraints expressed in OWL are validated using an Open-
World Assumption (OWA) (i. e., a statement cannot be inferred to be false based on failures to
prove it) and under the absence of the Unique Name Assumption (UNA) (i. e., two different names
may refer to the same object). These two features make it difficult to validate data in applications
where data is supposed to be complete. Definitions of integrity constraint semantics in OWL using
the Closed-World Assumption [103, 104, 144] overcome these issues.

Contrarily, constraints expressed using SPARQL queries or shapes will be evaluated under
the Closed-World Assumption (CWA) and following the Unique Name Assumption (UNA).
Nevertheless, some constraints may be difficult to express in SPARQL, and the specification
process is prone to errors and difficult to maintain.

Data quality conditions and integrity constraints can also be expressed as graphs of shapes or
the so-called shapes schema. A shape corresponds to a conjunction of constraints that a set of
nodes in an RDF graph must satisfy [79]. These constraints can restrict the types of nodes, the
cardinality of certain properties, and the expected data types or values for specific properties. A
shape can target the instances of a class, the domain or range of a property, or a specific node in
the RDF graph. A shape or node in a shapes graph is validated in an RDF graph, if and only if,
all the target nodes in the RDF graph satisfy all the constraints in the shape. Figure 6 presents a

48 https://github.com/carml/carml
49 https://zenodo.org/record/7689310
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shapes graph of three shapes targeting the classes Brand, Playcount, and MusicArtist. Each of
the shapes comprises one constraint. In the shapes Brand and MusicArtist the properties title
and name can take more than one value, while the shape Playcount states that each instance
of the class Playcount must have exactly one value of the property count. Additionally, the
instances of the class Brand must be related to valid instances of the class Playcount which should
also be related to valid instances of the class MusicArtist.

Figure 6 Shapes for Graph Data. A shapes graph comprises three shapes interlinked by the
properties playcount and objects between the target classes Brand, Playcount, and MusicArtist.

There are two standards for defining shapes, ShEx (Shape Expressions) [117]) and SHACL
(Shapes Constraint Language) [95]). Both define shapes over the attributes (i. e., owl:Datatype-
Properties), and constraints on incoming/outgoing arcs, cardinalities, RDF syntax, and extension
mechanism. These inter-class constraints induce a shape network used to validate the integrity
and data quality properties of an RDF graph.

SHACL and ShEx, although sharing a common goal, adopt distinct approaches. ShEx seeks
to offer a language serving as a grammar or schema for RDF graphs, delineating RDF graph
structures for validation. On the other hand, SHACL is positioned as the W3C recommendation
for validating RDF graphs against a conjunction of constraints, emphasizing a constraint language
for RDF. Despite their analogous roles in specifying shapes and constraints for RDF data, ShEx
and SHACL differ in syntax, expressiveness, and community adoption [59].

The evaluation results of a SHACL shape network over an RDF graph are presented in
validation reports using a controlled vocabulary. A validation report includes explanations about
the violations, the severity of the violation, and a message describing the violation. SHACL is the
language selected by the International Data Space (IDS) to express the restrictions that state the
integrity over RDF graphs [96]. Besides the integrity validation of an RDF graph, SHACL can
be utilized to describe data sources and the certification of a query answer [124], as metadata to
enhance the performance of a SPARQL query engine [118], to certify access policies [125], and to
provide provenance as a result of the validation of integrity constraints [40].

In the context of a quality assessment pipeline, one crucial step involves validating the shape
schema against a graph. It is important to mention that the validation of recursive shape schemas
is not explicitly addressed in the SHACL specification [95]. To address this gap, Corman et al. [36]
introduce a semantic framework for validating recursive SHACL. They also demonstrated that
validating full SHACL features is an NP-hard problem. Building on these insights, they proposed
specific fragments of SHACL that are computationally tractable, along with a fundamental
algorithm for validating shape schemas using SPARQL [35]. In a related vein, Andresel et al. [7]
propose a stricter semantics for recursive SHACL, drawing inspiration from stable models employed
in Answer Set Programming (ASP). This innovative approach enables the representation of SHACL
constraints as logic programs and leverages existing ASP solvers for shape schema validation.
Importantly, this approach allows for the inclusion of negations in recursive validations. Further,
Figuera et al. [51] present Trav-SHACL, an approach that focuses on query optimization techniques
aimed at enhancing the incremental behavior and scalability of shape schema validation.

While SHACL has been adopted in a broad range of use cases, given a large graph it remains a
challenge how to define shapes efficiently [119]. In many industrial settings with billions of entities
and facts [108] creating shapes manually simply is not an option. The current state of the art
can automatically extract shapes on WikiData (ca. 2 Billion facts) in less than 1.5 hours while
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filtering shapes based on the well-established notions of support and confidence to avoid reporting
thousands of shapes that are so rare or apply to such a small subset of the data that they become
meaningless [120]. Still, more work is needed to increase scalability further and also to help users
make good use of the mined shapes [121] and, e. g., interactively use them to correct and improve
the quality of their graphs.

6 Reasoning over and Linking of Graph Data

Section 3 introduced several formal languages for knowledge representation on the Semantic
Web. RDF allows the description of simple facts (statements with subject, predicate, and object,
so-called RDF triples), e. g., “Anni-Frid Lyngstad” “is a member of” “ABBA”. RDFS allows the
definition of types of entities (classes), relationships between classes, and a subclass and superclass
hierarchy between types (analogously for relations). OWL is even more expressive than RDF and
RDFS. For example, OWL allows the definition of disjoint classes or the description of classes in
terms of intersection, union, and complement of other classes.

Below, we first introduce the reasoning over RDFS and OWL at the example of our BBC
scenario from Section 2. Subsequently, we discuss works on linking data objects and concepts.

6.1 Reasoning over Graph Data

Based on formal languages representing graph data and their semantics, further (implicit) facts
can be derived from the knowledge base by deductive inference. In the following, we exemplify
the derivation of implicit facts from a set of explicitly given facts using the RDFS construct
rdfs:subClassOf and the OWL construct owl:sameAs. The property rdfs:subClassOf describes
hierarchical relationships between classes and with owl:sameAs two resources can be defined as
identical.

As a first example, we consider the class foaf:Person, which is defined in the FOAF ontology,
and the classes mo:Musician and mo:Group, which are defined in the music ontology. In the music
ontology, there is an additional axiom that defines mo:Musician as a subclass of foaf:Person
using rdfs:subClassOf. Given this axiom, it can be deduced by deductive inference that instances
of mo:Musician are also instances of foaf:Person. Now if there is such a hierarchy of classes and
in addition a statement that Anni-Frid Lyngstad is of type mo:Musician, then it can be inferred
by inference that Anni-Frid Lyngstad is also of type foaf:Person. This means that all queries
asking for entities of type foaf:Person will also include Anni-Frid Lyngstad in the query result,
even if that entity is not explicitly defined as an instance of foaf:Person. Figure 7 represents
these facts and the corresponding class hierarchy in RDFS as a directed graph.

In the second example, the OWL construct owl:sameAs is used to define two resources
as identical, for example http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-
9f4928627dc8#artist and http://dbpedia.org/resource/ABBA. Identical here means that
these two URIs represent the same real-world object. By inference, information about ABBA
from different sources can now be linked. Since ontologies are created independently on the web,
and URIs are subject to local naming conventions, a real-world object may be represented by
multiple URIs (in different ontologies).

OWL offers a variety of other constructs for the description of classes, relationships, and
concrete facts. For example, OWL allows the declaration of transitive relations and inverse
relations. For example, the relation “is-member” is inverse to “has-member”. OWL reasoning
allows, among other things, consistency checking of an ontology or checking the satisfiability of
classes [80]. A class is satisfiable if there can be instances of that class.

http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist
http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist
http://dbpedia.org/resource/ABBA
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Figure 7 Visualization of RDF sample data about ABBA and Anni-Frid Lyngstad to illustrate inference
in RDFS.

For a detailed discussion about OWL reasoning, we refer to the literature such as [80, 13].
Different reasoners for OWL have seen widespread adoption in the community such as the well-
known Pellet50 and Hermit [62]. Finally, a combination of description logic and rules is also
possible. For example, Motik et al. [105] presented a combination of description logic and rules
that allows tractable inference on OWL ontologies.

6.2 Linking of Objects and Concepts
In the Semantic Web, it cannot be assumed that two URIs refer to two different real-world objects
(cf. unique name assumption in Section 5.2). A URI by itself, or in itself, has no identity [70].
Rather, the identity or interpretation of a URI is revealed by the context in which it is used on
the Semantic Web. Determining whether or not two URIs refer to the same entity is not a simple
task and has been studied extensively in data mining and language understanding in the past.
For example, to identify whether or not the author names of research papers refer to the same
person, it is often not sufficient to resolve the name, venue, title, and co-authors [90]. The process
of determining the identity of a resource is often referred to as entity resolution [90], coreference
resolution [156], object identification [123], and normalization [156, 157]. Correctly determining
the identity of entities on the Web is important as more and more records appear on the Web and
this presents a significant hurdle for very large Semantic Web applications [61].

To address this, a number of services exist that can recognize entities and determine their
identity: Thomson Reuters offers OpenCalais51, a service that can link natural language text
to other resources using entity recognition. Another commercial tool that allows for extracting
knowledge graphs from text is provided by DiffBot.52 Recently, the language model ChatGPT
has been compared to the specialized entity and relation extraction tool REBEL [27] for the task
of creating knowledge graphs from sustainability-related text [145]. The experiments suggest that
large language models improve the accuracy of creating knowledge graphs [145]. The sameAs53

service aims to detect duplicate resources on the Semantic Web using the OWL relationship
owl:sameAs. This can be used to resolve coreferences between different datasets. For example,

50 https://github.com/stardog-union/pellet
51 https://www.refinitiv.com/en/products/intelligent-tagging-text-analytics
52 https://www.diffbot.com/
53 http://sameas.org/
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for the query with the URI http://dbpedia.org/resource/ABBA, a list of over 100 URIs is
returned that also references the music group ABBA. One of them is BBC with the resource
http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist.

Furthermore, the problem of schema matching [157] is very related to the problem of entity
resolution, co-reference resolution, and normalization. The goal of schema matching is to address
the question of how to integrate data [157], which is non-trivial even for small schemas. In the
Semantic Web, schema matching means the matching of different ontologies, respectively the
concepts defined in these ontologies. Various (semi-)automatic or machine learning techniques for
matching ontologies have been developed in the past [49, 46, 22]. Core ontologies as illustrated
in Figure 4.3 represent generic modeling frameworks for integration and alignment with other
ontologies. In addition, core ontologies can also integrate Linked Open Data, which typically
contains no or very little schema information. The YAGO ontology [140] was generated from the
fusion of Wikipedia and Wordnet using rule-based and heuristic methods. A manual assessment
showed an accuracy of 95%.

Manual matching of different data sources is also pursued in the Linked Open Data project
of the German National Library54. For example, the database containing the authors of all
documents published in Germany was manually linked with DBpedia and other data sources. A
particular challenge was to identify the authors, as described above. For example, former German
Chancellor Helmut Kohl has a namesake whose work should not be linked to the chancellor’s
DBpedia entry. Relationships between keywords used to describe publications are asserted using
the SKOS (Simple Knowledge Organization System) vocabulary.55 For example, keywords are
related to each other using the relation skos:related. Hyponyms and hypernyms are expressed
by the relations skos:narrower and skos:broader. Finally, the Ontology Alignment Evaluation
Initiative56 should be mentioned, which aims to achieve an established consensus for evaluating
ontology matching methods.

7 Querying of Linked Data

Queries over Linked Data can be processed using link traversal [74], i. e., the query processor
would use one of those IRIs given directly in the query as starting point and query the respective
source for more triples involving the IRI. By iteratively doing this for more IRIs and with respect
to the graph pattern defined in the query, a local set of triples is collected over which the given
query can be evaluated.

More conveniently, queries over RDF and Linked Data can be formulated in SPARQL57, if a
corresponding endpoint to the graph data is made available. Whereas such queries can target
graphs that are stored in a single graph store, Linked Data often requires formulating and executing
queries across multiple graphs that are stored at distributed data sources.

Below, we first introduce the basic query processing of SPARQL queries along with our running
example. This is followed by discussing RDFS/OWL entailment regimes and querying. Finally,
we present approaches for distributed querying over multiple SPARQL endpoints.

54 http://www.d-nb.de/
55 https://www.w3.org/TR/2009/REC-skos-reference-20090818/
56 http://oaei.ontologymatching.org/
57 http://www.w3.org/TR/sparql11-query/
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7.1 Basic Query Processing

In principle, a SPARQL query is evaluated by comparing the graph pattern defined in the query
to the RDF graph and reporting all matches as results. The set of results can be restricted by
additional criteria, such as filters, i. e., conditions on variables and triple patterns that additionally
need to be fulfilled.

As an example, let us consider the query illustrated in Figures 8 and 9 that we want to execute
over our example MusicBrainz graph from Section 2. We are now interested in the musicians of
ABBA who are also members of other bands. If we follow the Linked Data principles and evaluate
the query using link traversal [74], this would mean first querying for triples including the IRI
that represents ABBA, then navigating to the individual band members, and then following the
links to all of the members’ bands and query more relevant triples.

Figure 8 Graphical representation of a query for music groups (represented by the variable ?groupName),
whose members are also members of ABBA. The variable ?m refers to the members of ABBA. The vertex
labeled “ABBA” represents the URI for ABBA. The prefix mo refers to the music ontology, foaf to the
FOAF ontology, and rdf to the vocabulary of the RDF specification.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bbc: <http://www.bbc.co.uk/music/>
SELECT ?memberName ?groupName
WHERE { bbc:artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist mo:member ?m .

?x mo:member ?m .
?x rdf:type mo:MusicGroup .
?m foaf:name ?memberName .
?x foaf:name ?groupName }

FILTER (?groupName <> "ABBA")

Figure 9 SPARQL query for music groups whose members are also members of ABBA. In the first
triple pattern of the WHERE part, the URI of ABBA is the subject.

Similar to relational database systems, there exist several dedicated graph stores (aka triple
stores) that are optimized for RDF graphs and evaluating SPARQL queries. Some of the most
popular triple stores are RDF4J [26], Jena [159], Virtuoso58, and GraphDB59. They are building
upon concepts and techniques known from relational database systems [83, 106] and expand them
with graph-specific optimizations [153, 138, 68, 99, 50].

58 http://virtuoso.openlinksw.com
59 https://graphdb.ontotext.com/
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7.2 Entailment Regimes and Query Processing

In addition to explicitly querying existing facts, SPARQL provides inferencing support through
so-called entailment regimes. They correspond to logical consequences describing the relationship
between the statements that are true when one statement logically follows from one or more
statements. Entailment regimes specify an entailment relation between well-formed RDF graphs,
assuming that a graph G entails another graph E (denoted G |= E) if there is a logical consequence
from G to E. A regime extends the query of explicitly existing facts with facts that can be inferred
using RDFS and OWL constructs (cf. Section 6), such as the extension of facts about subclasses
using rdfs:subClassOf.

Depending on the feature set of the respective SPARQL triple store, different (or even no)
entailment regimes are supported. They differ in terms of their power in the supported inference
capabilities over RDFS/OWL classes and relationships. SPARQL query engines such as GraphDB
adopt a materialized approach, wherein they compute the closure of the input RDF graph G over
a set of relevant entailment rules R. Conversely, approaches grounded in query rewriting expand
the SPARQL query itself rather than altering the RDF graph. Sub-queries are aligned with the
entailment rules through backward chaining, and when the consequent of an entailment rule is
matched, the antecedent of the rule is added to the query in the form of disjunctions.

Although both approaches yield equivalent answers for a given SPARQL query, their perfor-
mance can diverge significantly. Materialized RDF query processing may outperform on-the-fly
execution of the rewritten query, but it may consume more memory [63]. Nevertheless, various
optimization techniques have been proposed to mitigate the overhead caused by the on-the-fly
evaluation of entailment regimes [146]. These optimizations are required particularly in the
presence of the owl:sameAs. This predicate corresponds to logical equivalence and involves the
application of the Leibniz Inference Rule [66] to deduce all the equivalent triples entailed by
equivalent resources based on owl:sameAs relation. This process may lead to many intermediate
results, impacting the query engine’s performance. Xiao et al. [161] propose query rewriting
techniques to efficiently evaluate SPARQL queries with owl:sameAs employing equivalent SQL
queries.

7.3 Federated Query Processing

Federations provide another perspective on querying linked data over multiple sources. A federation
of knowledge graphs shares common entities while potentially providing different perspectives on
those entities. Each knowledge graph within the federation operates autonomously and can be
accessed through various Web interfaces, such as SPARQL endpoints or Linked Data Fragments
(LDFs) [151]. SPARQL endpoints offer users the ability to execute any SPARQL query against
multiple SPARQL endpoints. In contrast, LDFs enable access to specific graph patterns, such as
triple patterns [150] or star-shaped graph patterns [5], allowing retrieval of fragments from an
RDF knowledge graph. A star-shaped subquery is a conjunction of triple patterns in a SPARQL
query that share the same subject variable [153]. An LDF client can submit requests to a server,
which then delivers results based on a data shipping policy and partitions results into batches
of specified page sizes. Query processing in a federation of graphs differs from querying a single
source because it enables real-time data integration of graphs from multiple sources. For example,
Figure 10 depicts a SPARQL query whose execution requires the evaluation of subqueries over
three knowledge graphs: a Cancer Knowledge Graph (CKG) [6], DBpedia, and Wikidata. This
query could not be executed over a single data source unless the three knowledge graphs were
physically materialized into one. Subqueries with a specific shape (e. g., star-shaped subqueries)
need to be identified and posed against the knowledge graph(s) that is able to answer a particular
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part of the query. The federated query engine has to decompose input queries into these subqueries,
find a plan to execute them and collect and merge the answers from the subqueries to produce a
federated answer.

A federated SPARQL query engine typically follows a mediator and wrapper architecture,
which has been established in previous research [158, 162]. Wrappers play a crucial role in
translating SPARQL subqueries into requests sent to SPARQL endpoints, while also converting
the endpoint responses into internal structures that the query engine can process. The mediator,
on the other hand, is responsible for rewriting the original queries into subqueries that can be
executed by the data sources within the federation. Additionally, the mediator collects and merges
the results obtained from evaluating the subqueries to produce the final answer to the federated
query. Essentially, the mediator consists of three main components:

Source selection and query decomposition. This component decomposes queries into subqueries
and selects the appropriate graphs (sources) capable of executing each subquery. Simple
subqueries typically consist of a list of triple patterns that can be evaluated against at least one
graph. Formally, source selection corresponds to the problem of finding the minimal number
of knowledge graphs from the federation that can produce a complete answer to the input
query. On the other hand, query decomposition requires partitioning the triple patterns of a
query into a minimal number of subqueries, such that each subquery can be executed over
at least one of the selected knowledge graphs. Commonly, federated query engines follow
heuristic-based methods to solve these two problems. For example, for query decomposition,
heuristics based on exclusive groups [134] or star-shaped subqueries [153, 152, 102] enable to
efficiently solve source selection and query decomposition in queries free of general predicates
(e. g., owl:sameAs or rdf:type).
Query optimizer. This component identifies execution plans by combining star-shaped sub-
queries (SSQs) and utilizing physical operators implemented by the query engine. Formally,
optimizing a query corresponds to the problem of finding a physical plan for the query that
minimizes the values of a utility function (e. g., execution time or memory consumption). To
maximize the utility function, query optimizers consider plans with different orders of execut-
ing operators, alternative implementations of operators, such as joins, as well as particular
execution alternatives for certain query types, e. g., queries involving aggregation [86]. In
general, finding an optimal solution is computationally intractable [85], while the problems
of constructing a bushy tree plan [132] and finding an optimal query decomposition over the
graphs [152] are NP-Hard. A bushy tree plan is a query execution plan that represents a
query as a tree structure with multiple branches or subqueries, which can also be bushy-tree
plans. Query plans can be generated following the traditional optimize-then-execute paradigm
or re-optimize and adapt a plan on the fly according to the conditions and availability of
selected graphs [47]. Alternatively, the query optimizer may resort to a cost model to guide
the search on the space of query plans and identify the one that minimizes the values of the
utility function [102].
Query engine. This component of a federated query engine implements the physical operators
necessary to combine tuples obtained from the graphs. These physical operators are designed
to support logical SPARQL operations such as JOIN, UNION, or OPTIONAL [115]. Physical
operators can be empowered to adapt execution schedulers to the current conditions of a
group of selected graphs. Thus, adaptivity can be achieved at the intra-operator level, where
the operators can detect when graphs become blocked or data traffic bursts. Additionally,
intra-operator opportunistically produce results as quickly as data arrives from the graphs,
and can produce results incrementally. Some opportunistic approaches [4, 82, 56, 3] combine
producing results quickly in an incremental fashion with greedy source selection so that the
system stops querying additional graphs once the user’s wishes, e. g., in terms of the minimum
number of obtained results, are fulfilled.
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During the query optimization process, a plan is generated as a bushy tree that comprises four
join operators. This is shown in Figure 10.

PREFIX ex: <http://http://example.com/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?drug ?excretion ?metabolism ?routes ?actIng ?mass 
WHERE {
  

}

t1 ?patient rdf:type ex:CPatient .
t2 ?patient ex:hasBio ex:EGFR .
t3 ?patient ex:hasSmokingHabit ex:NonSmoker .
t4 ?patient ex:sex ex:Female .
t5 ?patient ex:hasTreatmentEpisode ?treatment .
t6 ?treatment ex:hasDrug ?drug .
t7 ?drug owl:sameAs ?drug1 .
t8 ?drug owl:sameAs ?drug2 .
t9 ?drug1 dbp:excretion ?excretion .
t10 ?drug1 dbp:metabolism ?metabolism .
t11 ?drug1 dbp:routesOfAdministration ?routes 
t12 ?drug2 wdt:P592 ?idDrug .
t13 ?drug2 wdt:P3780 ?actIng .
t14 ?drug2 wdt:P2067 ?mass .

(a) Federated Query

SSQ1 SSQ2 SSQ3 SSQ4

SSQ5
t12 t13 t14

@Wikidata

t9 t10 t11
@DBpedia

t7 t8
@CKG

t1 t2 t3 t4 t5
@CKG@CKG
t6

(b) Bushy-Tree Plan

Figure 10 Federated query. a) SPARQL query comprising 14 triple patters to be executed over
a federation including Cancer Knowledge Graph (CKG), DBpedia, and Wikidata. b) A query plan
composed of five star-shaped subqueries SSQ1, SSQ2, SSQ3, SSQ4, and SSQ5 corresponding to the query
decomposition. Each SSQ is executed over the graph that can answer the SSQ. The execution engine
follows the query plan; the execution of four joins merges the SSQ answers and produces the federated
query answer.

8 Trustworthiness and Provenance of Graph Data

Trustworthiness of web pages and data on the web can be detected by various indicators, e. g.,
by certificates, by the placement of search engine results, and by links (forward and backward
links) to other pages. However, on the Semantic Web, there are few ways for users to assess the
trustworthiness of individual data. Rules can be utilized to define policies and business logic over
the web of data, and transparently used to infer data that validate or do not validate these policies.
The trustworthiness of inferred data can be assessed through its provenance, which encompasses
metadata detailing how the data was acquired and verified [94].

The trustworthiness of data on the web can be inferred from the trustworthiness of other users
(“Who said that?”), the temporal validity of facts (“When was a fact described?”), or in terms of
uncertainty of statements (“To what degree is the statement true?”). Artz and Gil [9] summarize
trustworthiness as follows: “Trust is not a new research topic in computer science, spanning
areas as diverse as security and access control in computer networks, reliability in distributed
systems, game theory and agent systems, and policies for decision-making under uncertainty.
The concept of trust in these different communities varies in how it is represented, computed,
and used.” Although trustworthiness has long been considered in these areas, the provision and
publication of data by many users to multiple sources on the Semantic Web introduces new and
unique challenges.
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One way of facilitating trust on the Semantic Web is to capture and provide the provenance
of data with the PROV ontology (PROV-O)60. It captures information about which Agents
cause data Entities to be processed by which Activities. Capturing such information requires the
use of known tools for modeling metadata for RDF data, e. g., reification, singleton properties,
named graphs, or RDF-star61. While some approaches use these constructs to capture provenance
information for each triple individually [54], others exploit the fact that typically multiple triples
share the same provenance [72] so that they can be combined into the same named graph encoding
the provenance information only once for a set of triples. Delva et al. [40] introduce the notion of
shape fragments, which entail the validation of a given shape through the neighborhood of a node,
along with the node’s provenance and the rationale behind its validation.

Furthermore, trustworthiness also plays a role in inference services on the Semantic Web, as
data inference must consider specifications related to trustworthiness and data must be evaluated
for trustworthiness. Important aspects for trustworthiness of data include [9]: the origin of the
data, trust already gained based on previous interactions, ratings assigned by policies of a system,
and access controls and, in some cases, security and importance of information. These aspects are
realized in different systems.

In general, data provenance and trustworthiness of data on the Semantic Web have been
addressed for RDF data [43, 52] as well as for OWL and rules in [43]. In addition, there are some
recent approaches on supporting how-provenance for SPARQL queries [60, 77, 53] with the goal
of providing users with explanations on how the answers to their queries were derived from the
underlying graphs. Other work deals with access controls over distributed data on the Semantic
Web [58]. Furthermore, there are approaches to computing trust values [139] and informativeness
of subgraphs [91]. There are also digital signatures for graphs [16]. Analogous to digital signatures
for documents, entire graphs or selected vertices and edges of a graph are provided with a digital
signature to ensure the authenticity of the data and thus detect unauthorized modifications [92].
In the approach for digital graph signatures developed by Kasten et al., graph data on the Web is
supported in RDF format as well as in OWL [93]. The digital graph signature is itself represented
as a graph again and can thus be published together with the data on the Web. The link between
the signature graph and the signed graph is established by the named graph mechanism [93],
although other mechanisms are also possible. Through this mechanism, it is possible to combine
and nest signed graphs. It is thus possible to re-sign already signed graphs together with other,
new graph data, etc. This makes it possible to build complex chains of trust between publishers
of graph data and to be able to prove the origin of data [93, 92].

9 Applications

With the increasing spread and use of semantic and linked data on the Web, the requirements
for Semantic Web applications have increased at the same time as their application possibilities.
The general requirements for applications based on semantic data on the Web are given by their
flexible and diverse representation and descriptions. Applications that use data from relational
databases or XML documents can start from a fixed schema. However, this cannot be assumed
for data on the Web. Often, neither the data sources nor the type and amount of data in a source
are fully known. The dynamics of semantic data on the Web must be taken into account by
applications accordingly, both when querying and aggregating data, and when visualizing data.
Thus, the real challenge of Semantic Web applications is to guarantee the best possible flexibility
of the application to take into account the dynamics of data sources, data, and schemas during
input, processing, and output.

60 https://www.w3.org/TR/prov-o/
61 https://w3c.github.io/rdf-star/
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In the following, selected examples of Semantic Web applications or application areas are
presented. They illustrate how flexibility and quality of search, integration, aggregation, and
presentation of data from the Web can be implemented. At the same time, they show the potential
of Semantic Web applications. First, uniform vocabularies and schemas are presented using the
example of schema.org. These serve as a basis for semantic search to provide search engines with
information about the meaning of web document content. The search and integration of data
from different sources is supported by Sig.ma, a semantic web browser. Other applications provide
semantic search through other representation formalisms, e. g., Knowledge Graphs). Subsequently,
the Facebook Graph-API, an application programming interface (API ) to the Facebook (Knowledge)
Graph, is introduced.

9.1 Vocabularies and Schemas: Schema.org
In HTML documents, the structure and composition of pages can be described with tags, but not
the meaning of the information. Vocabulary, schemas, and microdata can be used as mark-up
in HTML documents to describe information about page content and its meaning in a way that
search engines can process this information.

Schema.org62 is a collection of vocabularies and schemas to enrich HTML pages with additional
information. The vocabulary of Schema.org includes a set of classes and their properties. A
universal class “thing” is the most general, which is a kind of umbrella term for all classes. Other
common classes are Organization, Person, Event, and Place. Properties are used to describe
classes in more detail. For example, a person has the properties such as name, address, and date
of birth.

In addition to vocabularies, Schema.org also specifies the use of HTML microdata, with the
goal of representing data in HTML documents in as unambiguous a form as possible so that search
engines can interpret it correctly. An example of this is formats for unique dates and times, which
can also describe intervals to indicate the duration of events.

Schema.org is supported by the search engines Bing, Google, and Yandex, among others. There
are extensions and libraries for various programming languages, including PHP, JavaScript, Ruby,
and Python, to create web pages and web applications using vocabularies and microdata from
Schema.org. Likewise, there are mappings from Schema.org vocabularies and microdata to RDFS.

9.2 Semantic Search
A classic web browser enables the display of web pages. A semantic web browser goes one step
further by additionally allowing the user to visualize the underlying information of individual
pages, for example in the form of RDF metadata. Semantic Web browsers are also referred to
as hyperdata browsers because they allow navigation between data while also allowing one to
explore the connection to information about that data. Thus, ordinary users can use and exploit
Semantic Web data for their information search.

Sig.ma [147] was an application for (browsing) Semantic Web data, which may come from
multiple distributed data sources. Sig.ma provided an API for automatically integrating multiple
data sources on the Web. The requested data sources describe information in RDF. A search in
Sig.ma was initiated by a textual query from the user. Entities such as people, places, or products
can be searched for. Results of a query are presented in aggregated form, that is, properties of the
searched entity, such as a person, are presented in aggregated form from different data sources.

62 http://schema.org

http://schema.org
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For example, in a person search, information such as e-mail address, address, or current employer
can be displayed. In addition to the actual information, links to the underlying data sources are
also displayed to allow users to navigate to refine their search. Sig.ma also supported structured
queries in which specific characteristics can be requested for an entity, such as contact information
for a specific person.

Queries to data sources occur in parallel. The results from each data source in the form of
RDF graphs are summarized by using properties of links in RDF data, such as owl:sameAs, or
inverse-functional predicates. When searching data sources, techniques such as indexes, logical
inference, and heuristics are used for data aggregation. OntoBroker63 [39] and OntoEdit [142] are
ontology editors with search and inference systems for ontologies. Using OntoBroker, complex
queries over distributed Semantic Web resources, e. g., represented in OWL, RDF, RDFS, SPARQL,
and also F-Logic) can be efficiently processed.

9.3 Knowledge Graphs and Wikidata
There is an increasing number of knowledge bases and representations of structured data. For
example, the secondary database Wikidata64 [154]. A secondary database includes, in addition
to the (actual) statements, relationships to their sources and other databases (called secondary
information). Wikidata is a shared database between Wikipedia and Wikimedia. Wikidata mainly
contains a collection of objects, which are represented as triples over the objects’ properties and
the corresponding values. Semantic MediaWiki65 is an extension of MediaWiki. It serves as a
flexible knowledge base and knowledge management system. Semantic MediaWiki extends a classic
wiki with the ability to enrich content in a machine-readable way using semantic annotations.

Another knowledge base was Freebase66, also an open and collaborative platform initiated in
2007 and acquired by Google in 2010. The content from Freebase was taken from various sources,
including parts from the MusicBrainz ontology mentioned earlier. The success and widespread
use of Wikidata prompted Google to migrate Freebase to Wikidata [143]. This strengthened the
goal to develop a comprehensive, collaborative basis of structured data.

Google offers a semantic search function with Google Knowledge Graph67,68. A knowledge
graph, like an RDF graphs, is a set of triples representing links between entities. This forms a
semantic database. Possible entity types are described on schema.org, among others. If a search
term occurs in a query, the corresponding entity is searched for in the knowledge graph. Starting
from this entity, it is then possible to navigate to further entities by means of the links.

9.4 API-Access to Social Networks
A social network is essentially a graph in which connections are formed from users to other users,
e. g., in the form of a friendship relationship or to events and groups. Facebook’s Graph API
describes a programming interface to the Facebook Graph (called Open Graph). Within the
graph, people, events, pages, and photos are represented as objects, with each object having a
unique identifier. For example, https://graph.facebook.com/abba is the identifier of ABBA’s
Facebook page. There are also unique identifiers for the possible relationship types of an object,
which allow navigating from one object to all connected objects with respect to a particular
relationship.

63 https://www.semafora-systems.com/ontobroker-and-ontostudio-x
64 https://www.wikidata.org/wiki/Wikidata:Introduction/de
65 https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
66 https://www.freebase.com
67 http://www.google.com/insidesearch/features/search/knowledge.html
68 https://developers.google.com/knowledge-graph/
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The Graph API allows one to navigate the Facebook Graph and read objects, including their
properties and relationships to other objects, as well as creating new objects in the Facebook
Graph and deploying applications. The API also supports requests for an object’s metadata, such
as when and by whom an object was created.

10 Impact for Practitioners

Linking and using graph data on the Web has become a widespread practice. Today, there is a
large amount of open data in various formats and domains, such as bibliographic information
management, bioinformatics, and e-government. DBpedia is the central hub in this context,
around which different datasets and domains are grouped (cf. [21]). This is illustrated, e. g., by
the tremendous growth of the Linked Open Data Cloud69 since 2007. Two of the latest notable
supporters of graph-based data are online auctioneer eBay with their graph database70 and the
U.S. space agency NASA with the unification of internal distributed case databases as knowledge
graphs71. These and other success stories of the Semantic Web in industries and industry-scale
knowledge graphs are described by Noy et al. [107]. Further analyses and surveys arguing about
the importance but also challenges of using graph data can be found in the literature like the 2020
survey of Sahu et al. [127] and the 2021 reflection about the future of graphs by Sakr et al. [128].
The usefulness of knowledge graphs and semantic-based data modeling for complex systems is
also discussed in the 2024 book by Abonyi et al. [1].

Regarding lightweight open graph data, Schema.org defines schemas for modeling data on
web pages to provide information about the underlying data structures and meaning of the data.
Search engines can use this additional information to better analyze the content of web pages. As
mentioned above, Schema.org is supported by search engines such as Bing, Google, and Yandex.
Studies on selected sources have shown that web pages among the top 10 results have up to
15 % higher click-through rate72. Other companies like BestBuy.com even report up to 30 %
higher click-through rates since adding semantic data to their websites (cf. Section 9) in 2009.
BestBuy.com uses the GoodRelations vocabulary73 to describe online offers. Similarly, Google
uses semantic data from online commerce portals that use the GoodRelations vocabulary and
takes it into account when searching74.

Another success is the publication of government data. For example, the U.S. government
makes government data publicly available with data.gov75, and U.S. Census76 publishes statistical
data about the United States. In the UK, data.gov.uk77 is a key part of a program to increase
data transparency in the public sector. The European Commission operates data.europa.eu78,
a European data portal with metadata about the member states. Among others, it provides a
SPARQL endpoint to access the data.

69 The growth of the Linked Open Data Cloud is documented at: http://linkeddata.org/.
70 https://github.com/eBay/akutan
71 https://blog.nuclino.com/why-nasa-converted-its-lessons-learned-database-into-a-knowledge-

graph
72 http://developer.yahoo.net/blog/archives/2008/07/
73 http://www.heppnetz.de/projects/goodrelations/
74 http://www.ebusiness-unibw.org/wiki/GoodRelationsInGoogle
75 http://www.data.gov/
76 http://www.rdfabout.com/demo/census/
77 http://data.gov.uk
78 https://data.europa.eu/
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Finally, a strong growth of semantic biomedical data on the Web can be noted. As part of
Bio2RDF79, many bioinformatics databases have been linked. Transinsight GmbH offers the
knowledge-based search engine GoPubMed80 to find biomedical research articles. Ontologies are
used for searching.

Regarding more heavyweight ontologies in OWL, there has also been movement in recent years.
In addition to numerous research-derived inference engines such as Pellet and Hermit mentioned
above, inference mechanisms for OWL can now be found in commercial graph databases such as
neo4j81. Furthermore, pattern-based core ontologies can also be found in software development
workflows [133]. The development and use of core ontologies is part of a continuous delivery
process that is used in practice.

11 Summary and Outlook

The Semantic Web consists of a variety of techniques that have been heavily influenced by
long-term artificial intelligence research and its results. The current state is also driven by an
industry uptake under the umbrella term of Knowledge Graphs and reflected in various activities
as described. In summary, therefore, it can be observed that semantic data on the Web is having
a real impact on commercial providers of products and services, as well as on governments and
public administrations.

Despite all the research and industrial developments, the full potential of the Semantic Web
has not yet been exploited. Some important components of the Semantic Web architecture are still
being explored, such as data provenance and trustworthiness. Below, we describe three example
directions for future work.

Neuro-symbolic systems: As mentioned in the introduction, we see as an important direction
of future work the combination of symbolic AI and subsymbolic AI. By combining the strength
of Large Language Models (LLM), i. e., generative AI, in processing and generating natural
language text and accessing structured data and logical reasoning capabilities of the Semantic
Web, a next step towards the vision of automated agents that perform complex planning tasks
may be reached. An example is performing A* search with an LLM [164]. Specifically, LLMs
might comprehensively capture and acquire human knowledge [41], but current LLMs lack
responding to simple questions of non-existing facts in their training data [41], may not contain
all facts [141], and thus return less accurate answers [84]. To leverage the distinct capabilities
of both LLMs and the Semantic Web, the integration of neuro-symbolic systems appears to
offer a viable solution [113]. Neuro-symbolic systems could also address the problem that
LLMs’ output is based on the most probable answer, which sometimes leads to wrong answers
– often referred to as “hallucinations” [14, 81, 141].
Natural interfaces between machine and users: A key to successful applications of the Semantic
Web is intuitive user interfaces. Users must be offered applications that are intuitive and
easy to use. This includes improving interfaces based on natural language for formulating
queries and accessing structured data stored in SPARQL endpoints. Again, the use and deeper
integration of LLMs with Knowledge Graphs shows a promising direction.
Semantic Web components: There are still components of the architecture (see Section 3)
where active development and research are conducted. Most notably, there are crypto and
trust. Recent new W3C standards such as DID and Verifiable Credentials have been developed.
However, one can expect more work and development in this direction.

79 http://bio2rdf.org/
80 http://www.gopubmed.org/
81 https://neo4j.com/blog/neo4j-rdf-graph-database-reasoning-engine/
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Finally, we like to point to existing literature discussing the future directions of research on the
Semantic Web [30] and Knowledge Graphs [44]. Breit et al. [25] conducted a survey on the fusion
of Semantic Web and Machine Learning, exploring the opportunities arising from the convergence
of these two paradigms.
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