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Fig. 1. Incrementally generating the LOD structure on-the-fly as the data set is being loaded. Depicted is a
scenario where compressed data loads slowly, but our method scales to up to 580 million points per second.

LOD construction is typically implemented as a preprocessing step that requires users to wait before they are
able to view the results in real time. We propose an incremental LOD generation approach for point clouds
that allows us to simultaneously load points from disk, update an octree-based level-of-detail representation,
and render the intermediate results in real time while additional points are still being loaded from disk. LOD
construction and rendering are both implemented in CUDA and share the GPU’s processing power, but each
incremental update is lightweight enough to leave enough time to maintain real-time frame rates.

Our approach is able to stream points from an SSD and update the octree on the GPU at rates of up to
580 million points per second (~9.3GB/s) on an RTX 4090 and a PCIe 5.0 SSD. Depending on the data set,
our approach spends an average of about 1 to 2 ms to incrementally insert 1 million points into the octree,
allowing us to insert several million points per frame into the LOD structure and render the intermediate
results within the same frame.
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1 INTRODUCTION
Point clouds are an alternative representation of 3D models, comprising colored points without
connectivity, and are typically obtained by scanning the real world via means such as laser scanners
or photogrammetry. Since they are colored on a per-point basis, large amounts of points are required
to represent details that triangle meshes can cheaply simulate with textures. As such, point clouds
are not an efficient representation for games, but they are nevertheless popular and ubiquitously
available due to the need to scan real-world objects, buildings, and even whole countries.
Examples for massive point-cloud data sets include: The 3D Elevation Program (3DEP), which

intends to scan the entire USA [USGS:3DEP 2020], and Entwine[Entwine 2021], which currently
hosts 53.6 trillion points that were collected in various individual scan campaigns within the
3DEP program [USGS:Entwine 2020]. The Actueel Hoogtebestand Nederland (AHN) [AHN 2002]
program repeatedly scans the entire Netherlands, with the second campaign resulting in 640 billion
points [AHN2 2012], and the fourth campaign being underway. Many other countries also run their
own country-wide scanning programs to capture the current state of land and infrastructure. At a
smaller scale, buildings are often scanned as part of construction, planning, and digital heritage.
But even though these are smaller in extent, they still comprise hundreds of millions to several
billion points due to the higher scan density of terrestrial LIDAR and photogrammetry.
One of the main issues when working with large point clouds is the computational effort

that is required to process and render hundreds of millions to billions of points. Level-of-detail
structures are an essential tool to quickly display visible parts of a scene up to a certain amount
of detail, thus reducing load times and improving rendering performance on lower-end devices.
However, generating these structures can also be a time-consuming process. Recent GPU-based
methods [Schütz et al. 2023] improved LOD compute times down to a second per billion points, but
they still require users to wait until the entire data set has been loaded and processed before the
resulting LOD structure can be rendered. Thus, if loading a billion points takes 60 seconds plus 1
second of processing, users still have to wait 61 seconds to inspect the results.

In this paper, we propose an incremental LOD generation approach that allows users to instantly
look at data sets as they are streamed from disk, without the need to wait until LOD structures are
generated in advance. This approach is currently in-core, i.e., data sets must fit into memory, but
we expect that it will serve as a basis for future out-of-core implementations to support arbitrarily
large data sets.

Our contributions to the state-of-the-art are as follows:
• An approach that instantly displays large amounts of points as they are loaded from fast
SSDs, and simultaneously updates an LOD structure directly on the GPU to guarantee high
real-time rendering performance.

• As a smaller, additional contribution, we demonstrate that dynamically growing arrays of
points via unrolled linked lists (linked-lists of arrays) can be rendered efficiently in modern,
compute-based rendering pipelines.

Specifically not a contribution is the development of a new LOD structure. We generate the same
structure as Wand et al. [Wand et al. 2008] or Schütz et al. [Schütz et al. 2023], which are also very
similar to the widely used modifiable nested octrees [Scheiblauer and Wimmer 2011]. We opted for
constructing the former over the latter because the quantized voxels used for inner nodes compress
better than full-precision points (down to 10 bits per colored voxel), which improves the transfer
speed of lower LODs over the network. Furthermore, since that approach does not store original
points in inner nodes (unlike nested octrees), we can compute more representative, color-filtered
values for the inner nodes. However, both compression and color filtering are applied in post-
processing before storing the results on disk and are not covered by this paper. This paper focuses
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on incrementally creating the LOD structure and its geometry as fast as possible for immediate
display and picks a single color value from the first point that falls into a voxel cell.

2 RELATEDWORK
2.1 LOD Structures for Point Clouds
Point-based and hybrid LOD representations were initially proposed as a means to efficiently render
mesh models at lower resolutions [Coconu and Hege 2002; Cohen et al. 2001; Dachsbacher et al.
2003; Rusinkiewicz and Levoy 2000] and possibly switch to the original triangle model at close-up
views. With the rising popularity of 3D scanners that produce point clouds as intermediate and/or
final results, these algorithms also became useful to handle the enormous amounts of geometry
that are generated by scanning the real world. Layered point clouds (LPC) [Gobbetti and Marton
2004] was the first GPU-friendly as well as view-dependent approach, which made it suitable for
visualizing arbitrarily large data sets. LPCs organize points into a multi-resolution binary tree
where each node represents a part of the point cloud at a certain level of detail, with the root node
depicting the whole data set at a coarse resolution, and child nodes adding additional detail in
their respective regions. Since then, further research has improved various aspects of LPCs, such
as utilizing different tree structures [Goswami et al. 2010; Ogayar-Anguita et al. 2023; Wand et al.
2008; Wimmer and Scheiblauer 2006], improving LOD construction times [Bormann and Krämer
2020; Kang et al. 2019; Kocon and Bormann 2021; Martinez-Rubi et al. 2015; Schütz et al. 2020]
and higher-quality sampling strategies instead of selecting random subsets [Schütz et al. 2023; van
Oosterom et al. 2022].

In this paper, we focus on constructing a variation of LPCs proposed by Wand et al. [Wand et al.
2008], which utilizes an octree where each node creates a coarse representation of the point cloud
with a resolution of 1283 cells, and leaf nodes store the original, full-precision point data, as shown
in Figure 3. Wand et al. suggest various primitives as coarse, representative samples (quantized
points, Surfels, ...), but for this work we consider each cell of the 1283 grid to be a voxel. A similar
voxel-based LOD structure by Chajdas et al. [Chajdas et al. 2014] uses 2563 voxel grids in inner
nodes and original triangle data in leaf nodes. Modifiable nested octrees (MNOs) [Scheiblauer and
Wimmer 2011] are also similar to the approach by Wand et al. [Wand et al. 2008], but instead of
storing all points in leaves and representative samples (Surfels, Voxels, ...) in inner nodes, MNOs
fill empty grid cells with points from the original data set.
Since our goal is to display all points the instant they are loaded from disk to GPU memory,

we need LOD construction approaches that are capable of efficiently inserting new points into
the hierarchy, expanding it if necessary, and updating all affected levels of detail. This disqualifies
recent bottom-up or hybrid bottom-up and top-down approaches [Bormann and Krämer 2020;
Martinez-Rubi et al. 2015; Schütz et al. 2023, 2020] that achieve a high construction performance,
but which require preprocessing steps that iterate through all data before they actually start
with the construction of the hierarchy. Wand et al. [Wand et al. 2008] as well as Scheiblauer and
Wimmer [Scheiblauer and Wimmer 2011], on the other hand, propose modifiable LOD structures
with deletion and insertion methods, which make these inherently suitable to our goal since we
can add a batch of points, draw the results, and then add another batch of points. Bormann et
al. [Bormann et al. 2022] were the first to specifically explore this concept for point clouds by
utilizingMNOs, but flushing updated octree nodes to disk that an external rendering engine can then
stream and display. They achieved a throughput of 1.8 million points per second, which is sufficient
to construct an LOD structure as fast as a laser scanner generates point data. A downside of these
CPU-based approaches is that they do not parallelize well, as threads need to avoid processing the
same node or otherwise sync critical operations. In this paper, we propose a GPU-friendly approach
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that allows an arbitrary amount of threads to simultaneously insert points, which allows us to load
points from the SSD and construct and render them on the GPU at rates of up to 580 million points
per second, or up to 1.2 billion points per second if we exclusively count the duration of the LOD
construction kernel.
While we focus on point clouds, there are some notable related works in other fields, espe-

cially voxel editing, that allow simultaneous LOD generation and rendering. In general, any LOD
structure with insertion operations can be assumed to fit these criteria, as long as inserting a mean-
ingful amount of geometry can be done in milliseconds. Keller et al. [Keller et al. 2009] introduce
dynamic volume trees, a KD-tree-like structure that is managed on the GPU and which allows
insertion/removal of voxel data, including the option for volumetric brushing. Careil et al. [Careil
et al. 2020] as well as Molenaar and Eisemann [Molenaar and Eisemann 2023] demonstrate voxel
editing approaches that are backed by a compressed LOD structure. We believe that Dreams – a
popular 3D scene painting and game development tool for the PS4 – also matches the criteria,
as developers reported experiments with LOD structures, and described the current engine as a
“cloud of clouds of point clouds" [Evans 2015]. Zellmann et al. [Zellmann et al. 2022] also provide
interesting related work in which they stream a frame of a massive animated scalar fields to the
GPU, build an accelerating structure, and while one frame is being rendered, the next frame is
already being loaded. The construction process requires each individual frame’s data in full before
it starts building the acceleration structure, however. Of interest is also GigaVoxels, which is based
on similar concepts as layered point clouds or modifiable nested octrees, but targeted towards
volumetric voxel data sets [Crassin et al. 2009]. GigaVoxels uses an 𝑁 3 tree (e.g. octree in case of
𝑁 = 2) where each node either comprises a brick of 𝑀3 voxels or a constant value in case of a
homogeneous volume.

2.2 Linked Lists
Linked lists are awell-known and simple structurewhose constant insertion and deletion complexity,
as well as the possibility to dynamically grow without relocation of existing data, make it useful as
part of more complex data structures and algorithms (e.g., least-recently-used (LRU) Caches [Yoon
et al. 2002]). Regular linked lists are represented by nodes comprising one item and a pointer to
the next node/item in the list. Unrolled linked lists [Shao et al. 1994] are a variation that store
multiple items in each node and a pointer to the next set of items (i.e., they are linked lists of
arrays). A similar data structure – std::hive – is currently being proposed for addition into the C++
standard [STD 2023]. std::hive also uses unrolled linked lists of blocks of data for efficient growth
without reallocation (as opposed to std::vector), but further extends it with skipfields (for efficient
skipping of deleted elements in a block) and growth factors (block sizes grow larger if many blocks
are needed). On GPUs, linked lists can be used to realize order-independent transparency [Yang
et al. 2010] by creating pixel-wise lists of fragments that can then be sorted and drawn front
to back. Another use-case of pixel-wise lists of fragments is the efficient rendering of gaussian
surfaces [Bruckner 2019]. In this case, linked lists support front-to-back ray traversal of dynamically
animated gaussians in the vicinity of the ray, which are therefore contributing candidates for the
ray-isosurface intersection.
In this paper we use unrolled linked lists to efficiently append an unknown amount of points

and voxels to octree nodes during LOD construction, and also efficiently render the coalesced sets
of points in each linked list node.

3 DATA STRUCTURE
3.1 Octree
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(a) Inner node with Voxels. (b) Leaf node with points.

Fig. 3. (a) Close-up of a lower-resolution inner-node comprising 20 698 voxels that were sampled on a 1283
grid. (b) A full-resolution leaf node comprising 22 858 points.

Fig. 2. Octree nodes store 3D data as linked
chunks of points/voxels, which enables ef-
ficient growth as additional points are in-
serted over time.

The LOD data structure we use is an octree-based layered
point cloud [Gobbetti and Marton 2004; Scheiblauer and
Wimmer 2011] with representative voxels in inner nodes
and the original, full-precision point data in leaf nodes,
which makes it essentially identical to the structures of
Wand et al. [Wand et al. 2008] or Schütz et al. [Schütz
et al. 2023]. Leaf nodes store up to 50k points and inner
nodes up to 1283 (2M) voxels, but typically closer to 1282
(16k) voxels due to the surfacic nature of point cloud data
sets. The sparse nature of surface voxels is the reason
why we store them in lists instead of grids – exactly the
same as points.
The difference to the structure of Schütz et al. [Schütz et al. 2023] is that we store points and

voxels in linked lists of chunks of points, which allows us to add additional capacity by allocating
and linking additional chunks, as shown in Figure 2. An additional difference to Wand et al. [Wand
et al. 2008] is that they use hash maps for their 1283 voxel sampling grids, whereas we use a
1283𝑏𝑖𝑡 = 256𝑘𝑏 occupancy grid per inner node to simplify massivelly parallel sampling on the
GPU.
Despite the support for dynamic growth via linked lists, this structure still supports efficient

rendering in compute-based pipelines, where each individual workgroup can process a coalesced set
of points in a chunk in parallel, and then traverse to the next chunk as needed. In our implementation,
each chunk stores up to 1, 000 points or voxels (Discussion in Section 6.5), with the latter being
implemented as points where coordinates are quantized to the center of a voxel cell. This means
that leaf nodes, which are limited to 50k points, hold up to 50 chunks in our implementation. The
upper bound for inner nodes is about 1283𝑣𝑜𝑥𝑒𝑙𝑠

1000 ≈ 2, 100 chunks, but in practice, it is closer to 16
chunks per inner node due to the aforementioned surfacic nature of point-cloud data sets.
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3.2 Persistent Buffer
Since we require large amounts of memory allocations on the device from within the CUDA kernel
throughout the LOD construction over hundreds of frames, we manage our own custom persistent
buffer on device. To that end, we simply pre-allocate 90% of the available GPU memory and use a
custom, CUDA-based memory allocator that manages allocations within this pre-allocated blob.
Since we only add data but (with few exceptions) do not remove it, this allocator only needs to
handle requests to more memory but not free previously allocated memory. Thus, we can simply
use an atomic offset counter to keep note of the next available memory in the blob. An exception
are chunks of points which are freed when a leaf node is turned into an inner node. These freed
chunks are tracked via a chunk pool to make them available for re-allocation (Section 3.4). Note that
sparse buffers via virtual memory management may be an alternative, as discussed in Section 7.

3.3 Voxel Sampling Grid
Voxels are sampled by inscribing a 1283 voxel grid into each inner node, using 1 bit per cell to
indicate whether that cell is still empty or already occupied, amounting to 256kb of memory per
inner node. This occupancy grid is only required during octree creation. The voxel coordinates
and colors are stored in linearized form in linked chunks in order to allow fast rasterization of
non-volumetric data, and therefore largely empty voxel grids. These linearized voxels are similar
to points but with quantized coordinates. Grids are allocated from the persistent buffer whenever a
leaf node is converted into an inner node during octree expansion (see Section 4.1).

3.4 Chunks and the Chunk Pool
We use chunks of points/voxels to dynamically increase the capacity of each node as needed, and a
chunk pool where we return chunks that are freed after splitting a leaf node . Each chunk has a
static capacity of N points/voxels (1, 000 in our implementation), which makes it trivial to manage
chunks as they all have the same size. Initially, the pool is empty and new chunks are allocated
from the persistent buffer. When chunks are freed after splitting a leaf node, we store the pointers
to these chunks inside the chunk pool. Future chunk allocations first attempt to acquire chunk
pointers from the pool, and only allocate new chunks from the persistent buffer if there are none
left in the pool.

4 INCREMENTAL LOD CONSTRUCTION
Our method loads batches of points from disk to GPU memory, updates the LOD structure in one
CUDA kernel, and renders the updated results with another CUDA kernel. Figure 4 shows an
overview of that pipeline. Both kernels utilize persistent threads [Gupta et al. 2012; Kenzel et al.
2018] using the cooperative group API [Harris and Perelygin 2017] in order to merge numerous sub-
passes into a single CUDA kernel. Points are loaded from disk to pinned CPU memory in batches
of 1M points, utilizing multiple load threads. Whenever a batch is fully loaded, it is appended to a
queue. A single uploader thread watches that queue and asynchronously copies any fully loaded
batches to a queue in GPU memory. In each frame, the main thread launches the rasterize kernel
that draws the entire scene, followed by an update kernel that incrementally inserts all batches of
points into the octree that finished uploading to the GPU (while partially uploaded batches are
handled in the subsequent frame).

In each frame, the GPU may receive several batches of 1M points each. The update kernel loops
through the batches and inserts them into the octree as shown in Figure 5. First, the octree is
expanded until the resulting leaf nodes will hold at most 50k points (without inserting them yet). It
then traverses each point of the batch through the octree again to generate voxels for inner nodes.
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Fig. 4. Timeline of our system over several frames.

Afterwards, it allocates sufficient chunks for each node to store all points in leaf-, and voxels in
inner nodes. In the last step, it inserts the points and voxels into the newly allocated chunks of
memory. This process is repeated for each batch received in this frame.
The premise of this approach is that it is cheaper in massively parallel settings to traverse the

octree multiple times for each point and only insert them once at the end, rather than traversing
the tree once per point but with the need for complex synchronization mechanisms whenever a
node needs splitting or additional chunks of memory need to be allocated.

4.1 Expanding the Octree
CPU-based top-down approaches [Scheiblauer and Wimmer 2011; Wand et al. 2008] typically
traverse the hierarchy from root to leaf, update visited nodes along the way, and append points to
leaf nodes. If a leaf node receives more than 50k points (see Section 3.1), it “spills" and is split into 8
child nodes. The points inside the spilling node are then redistributed to its newly generated child
nodes. This approach works well on CPUs, where we can limit the insertion and expansion of a
subtree to a single thread, but it raises issues in a massively parallel setting, where thousands of
threads may want to insert points while we simultaneously need to split that node and redistribute
the points it already contains.
To support massively parallel insertions of all points on the GPU, we propose an iterative

approach that resembles a depth-first-iterative-deepening search [Korf 1985]. Instead of attempting
to fully expand the octree structure in a single step, we repeatedly expand it by one level until
no more expansions are needed. This approach also decouples expansions of the hierarchy and
insertions into a node’s list of points, which is now deferred to a separate pass. Since we already
defer the insertion of points into nodes, we also defer the redistribution of points from spilled
nodes. We maintain a spill buffer, which accumulates points of spilled nodes. Points in the spill
buffer are subsequently treated exactly the same as points inside the batch that we are currently
adding to the octree, i.e., the update kernel reinserts spilled points into the octree from scratch,
along with the newly loaded batch of points.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 17. Publication date: May 2024.



17:8 Markus Schütz, Lukas Herzberger, and Michael Wimmer

In detail, we repeat the following two sub-passes until no more nodes are spilled (see Figure 5):
• Counting: In each iteration, we traverse the octree for each point of the batch and all
spilled points accumulated in previous iterations during the current update, and atomically
increment the point counter of each hit leaf node. We do not count the same point twice in a
leaf, however, so additional count passes will only affect newly generated leaves from the
previous split pass.

• Splitting: All leaf nodes whose point counter exceeds a given threshold, e.g., 50k points, are
split into 8 child nodes, each with a point counter of 0. The points it already contained are
added to the list of spilled points. Note that the spilled points do not need to be associated
with the nodes that they formerly belonged to – they are added to the octree from scratch.
Furthermore, the chunks that stored the spilled points are released back to the chunk pool
and may be acquired again later.

The expansion pass is finished when no more nodes are spilling.

(a) Adding 10 points to the octree. (1) Expanding the octree by repeatedly counting and splitting until leaf
nodes hold at most T points (depicted: 5, in practice: 50k). (2) Leaves that were not split do not count points
again. (3) The voxel sampling pass inserts all points again, creates voxels for empty cells in inner nodes, and
stores new voxels (and the nodes they belong to) in a temporary backlog buffer. (4) Now that we know the
number of new points and voxels, we allocate the necessary chunks (depicted size: 2, in practice: 1000) to
store them. (5) All points are inserted again, traverse to the leaf, and are inserted into the chunks. Voxels
from the backlog are inserted into the respective inner nodes.

(b) For illustrative purposes, we now add a batch of just two points which makes one of the nodes spill. (6)
When splitting, we move all previously inserted points into a spill buffer. (7, 8) for the remainder of the current
batch’s insertion, points in the spill buffer and the batch get identical treatment.

Fig. 5. The CUDA kernel that incrementally updates the octree. (a) First, it inserts a batch with 10 points into
the initially empty octree and (b) then adds another batch with two points that causes a split of a non-empty
leaf node.

4.2 Voxel Sampling
Lower levels of detail are populated with voxel representations of the points that traversed these
nodes. However, for efficiency reasons, we did not assign points to inner nodes during the expansion
pass but defer this to a separate sampling pass. For this, we traverse each point through the octree
again, and whenever a point visits an inner node, we project it into the inscribed 1283 voxel sampling
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grid and check if the respective cell is empty or already occupied by a voxel. If the cell is empty, we
create a voxel, increment the node’s voxel counter, and set the corresponding bit in the sample grid
to mark it as occupied. Note that in this way, the voxel gets the color of the first point that projects
to it.
However, just like the points, we do not store voxels in the nodes right away because we do

not know the amount of memory/chunks that each node requires until all voxels for the current
incremental update are generated. Thus, voxels are first stored in a temporary backlog buffer with
a large capacity. In theory, adding a batch of 1 million points may produce up to (𝑜𝑐𝑡𝑟𝑒𝑒𝐿𝑒𝑣𝑒𝑙𝑠 − 1)
million voxels because each inner node’s sampling grid has the potential to hold 1283 = 2𝑀 voxels,
and adding spatially close points may lead to several new octree levels until they are all separated
into leaf nodes with at most 50k points. However, in practice, none of the test data sets of this paper
produced more than 1M voxels per batch of 1M points, and of our numerous other data sets, the
largest required backlog size was 2.4M voxels. Thus, we suggest using a backlog size of 10M points
to be safe.

4.3 Allocating Chunks
After expansion and voxel sampling, we now know the exact amount of points and voxels that we
need to store in leaf and inner nodes. Using this knowledge, we check whether the chunks of all
affected nodes have sufficient free space to store the new points/voxels, or if we need to allocate
new chunks of memory to raise the nodes’ capacity by 1000 points or voxels per chunk. In total,
we need ⌊ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟+𝑃𝑂𝐼𝑁𝑇𝑆_𝑃𝐸𝑅_𝐶𝐻𝑈𝑁𝐾−1

𝑃𝑂𝐼𝑁𝑇𝑆_𝑃𝐸𝑅_𝐶𝐻𝑈𝑁𝐾 ⌋ linked chunks per node.

4.4 Storing Points and Voxels
To store points inside nodes, we traverse each point from the input batch and the spill buffer again
through the octree to the respective leaf node and atomically update that node’s numPoints variable.
The atomic update returns the point index within the node, from which we can compute the index
of the chunk and the index within the chunk where we store the point.

We then iterate through the voxels in the backlog buffer, which stores voxels and for each voxel
a pointer to the inner node that it belongs to. Insertion is handled the same way as points – we
atomically update each node’s numVoxels variable, which returns an index from which we can
compute the target chunk index and the position within that chunk.

5 RENDERING

Fig. 6. LOD selection.

Points and voxels are both drawn as pixel-sized splats by
a CUDA kernel that utilizes atomic operations to retain
the closest sample in each pixel [Evans 2015; Günther
et al. 2013; Schütz et al. 2022]. Custom compute-based
software-rasterization pipelines are particularly useful
for our method because traditional vertex-shader-based
pipelines are not capable of efficiently traversing linked
lists. A CUDA kernel, however, has no issues looping
through points in a chunk, and then traversing to the
next chunk in the list. The recently introduced mesh and
task shaders could theoretically also deal with linked lists
of chunks of points, but they may benefit from smaller
chunk sizes, and perhaps even finer-grained nodes (smaller sampling grids that lead to fewer voxels
per node, and a lower maximum of points in leaf nodes).
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During rendering, we first assemble a list of visible nodes, comprising all nodes whose bounding
box intersects the view frustum and which have a certain size on screen. Since inner nodes have a
voxel resolution of 1283, we need to draw their half-sized children if they grow larger than 128
pixels. Specifically, we draw nodes that fulfill all of the following conditions:

• They intersect the view frustum.
• Their parents are larger than 128 pixels.
• They are themselves smaller than 128 pixels, or they are a leaf node.

The last two conditions combined mean that we recursively evaluate whether a node is larger
than 128 pixels, and if so we skip it and render all of its children instead. The pixel size of a
node is computed by projecting all 8 vertices of the bounding box to the screen, and taking the
maximum of the width and height. Figure 6 illustrates the resulting selection of rendered octree
nodes within a frustum. Seemingly higher-LOD nodes are rendered towards the edge of the screen
due to perspective distortions that make the screen-space bounding boxes bigger. For performance-
sensitive applications, developers may instead want to do the opposite and reduce the LOD at the
periphery and fill the resulting holes by increasing the point sizes.

To draw points or voxels, we launch one CUDA thread block per visible node whose threads loop
through all samples of the node and jump to the next chunk when needed, as shown in listing 1.
(Note: The assumption of launching one block per visible node is simplified since the amount of
blocks is strongly limited when using the cooperative groups API. Instead, the available blocks
would loop through the list of visible nodes until all of them are drawn. Please refer to render.cu in
the provided source code for implementation details. )

1 auto grid = cooperative_groups :: this_grid ();

2 auto block = cooperative_groups :: this_thread_block ();

3

4 // All threads in a block grab the same node

5 int nodeIndex = grid.block_rank ();

6 Node* node = visibleNodes[nodeIndex ];

7 Chunk* chunk = node ->points;

8 int chunkIndex = 0;

9

10 // Threads [0, blocksize) start to process points [0, blocksize),

11 // then advance by blocksize in each iteration.

12 for(

13 int pointIndex = block.thread_rank ();

14 pointIndex < node ->numPoints;

15 pointIndex += block.num_threads ()

16 ){

17 // if thread is at end of chunk , advance to next

18 int targetChunkIndex = pointIndex / POINTS_PER_CHUNK;

19 if(chunkIndex < targetChunkIndex){

20 chunk = chunk ->next;

21 chunkIndex ++;

22 }

23

24 Point point = chunk ->points[pointIndex % POINTS_PER_CHUNK ];

25 rasterize(point);

26 }

Listing 1. CUDA code showing threads of a block iterating through all points in a node, processing
block.num_threads points at a time in parallel. Threads advance to the next chunk as needed.
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Fig. 7. Overview and close-ups of our test data sets. The second and fourth columns illustrate the rendered
octree nodes.

6 EVALUATION
Our method was implemented in C++ and CUDA, and evaluated on the test data sets shown in
Figure 7. The following systems were used for the evaluation:

OS GPU CPU Disk
Windows 10 RTX 3060 Ryzen 7 2700X Samsung 980 PRO, PCIe 3.0, 3.5GB/s
Windows 11 RTX 4090 Ryzen 9 7950X Crucial T700, PCIe 5.0, 12.4GB/s

Special care was taken to ensure meaningful results for disk IO in our benchmarks:
• On Microsoft Windows, traditional C++ file IO operations such as fread or ifstream are
automatically buffered by the operating system. This leads to two issues – First, it makes
the initial access to a file slower and significantly increases CPU usage, which decreases the
overall performance of the application and caused stutters when streaming a file from SSD
to GPU for the first time. Second, it makes future accesses to the same file faster because the
OS now serves it from RAM instead of reading from disk.

• Since we are mostly interested in first-read performance, we implemented file access on Win-
dows via theWindowsAPI’s ReadFileEx function togetherwith the FILE_FLAG_NO_BUFFERING
flag. It ensures that data is read from disk and also avoids caching it in the first place. As an
added benefit, it also reduces CPU usage and resulting stutters.
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We evaluated the following performance aspects, with respect to our goal of simultaneously
updating the LOD structure and rendering the intermediate results:

(1) Throughput of the incremental LOD construction in isolation.
(2) Throughput of the incremental LOD construction while streaming points from disk and

simultaneously rendering the intermediate results in real time.
(3) Average and maximum duration of all incremental updates.
(4) Performance of rendering nodes up to a certain level of detail.

6.1 Data Sets
We evaluated a total of five data sets shown in Figure 7, three file formats, and Morton-ordering
vs. the original ordering by scan position. Chiller and Meroe are photogrammetry-based data
sets, Morro Bay is captured via aerial LIDAR, Endeavor via terrestrial laser scans, and Retz via a
combination of terrestrial (town center, high-density) and aerial LIDAR (surrounding, low-density).

The LAS and LAZ file formats are industry-standard point cloud formats. Both store XYZ, RGB,
and several other attributes. Due to this, LAS requires either 26 or 34 bytes per point for our data
sets. LAZ provides a good and lossless compression down to around 2-10 bytes/point, which is why
most massive LIDAR data sets are distributed in that format. However, it is quite CPU-intensive
and therefore slow to decode. SIM is a custom file format that stores points in the update kernel’s
expected format – XYZRGBA (3 x float + 4 x uint8, 16 bytes per point).
Endeavor is originally ordered by scan position and the timestamp of the points, but we also

created a Morton-ordered variation to evaluate the impact of the order.

6.2 Construction Performance
Table 1 covers items 1-3 and shows the construction performance of our method on the test systems.
The incremental LOD construction kernel itself achieves throughputs of up to 300M points per
second on an RTX 3060, and up to 1.2 billion points per second on an RTX 4090. The whole system,
including times to stream points from disk and render intermediate results, achieves up to 100
million points per second on an RTX 3060 and up to 580 million points per second on the RTX 4090.
The durations of the incremental updates are indicators for the overall impact on fps (average)
and occasional stutters (maximum). We implemented a time budget of 10ms per frame to reduce
the maximum durations of the update kernel (RTX 3060: 45ms → 16ms; RTX 4090 25ms → 13ms).
After the budget is exceeded, the kernel stops processing additional batches and resumes the next
frame. This budget is especially relevant to deal with bursts where many loader threads finished
loading batches in the same frame. Instead of inserting all batches in the same frame and causing a
stutter, the budget redistributes the workload over the next few frames. Our method benefits from
locality as shown by the Morton-ordered variant of the Endeavor data set, which increases the
construction performance by a factor of x2.5 (497 MP/s → 1221 MP/s).

6.3 Comparison to the state of the art
Table 2 compares our method to state-of-the-art applications with available source/binaries. Entwine
and its successor Untwine are popular open-source applications that create octree-based MNOs.
Arena4D is a proprietary point-cloud engine with a freely available LOD generation component
that creates a KD-tree based MNO. Potree is an open source web-based viewer for point clouds
that creates octree-based MNOs. The construction algorithm behind Potree is published by Schütz
et al. [Schütz et al. 2020]. SSKW23 [Schütz et al. 2023] is, to our knowledge, the first GPU-based
point-cloud indexing approach. As such, it achieves significant speedups over the other methods,
but it is also currently only in-core. SSKW23 and our approach both create the LOD structure
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Table 1. LOD Construction Performance showing average and maximum durations of the update kernel,
total duration of all updates or the whole system, and the throughput in million points per second (MP/s)
or gigabytes per second (GB/s). Total duration includes the time to load points from disk, stream them to
the GPU, and insert them into the octree. Update measures the duration of all incremental per-frame (may
process multiple batches) updates in isolation. Throughput in GB/s refers to the file size, which depends on
the number of points and the storage format (ranging from 10 (LAZ), 16 (SIM) to 26 or 34 (LAS) bytes per
point).

Update Duration Throughput
Data Set points format size avg max updates total updates total total

(M) (GB) (ms) (ms) (sec) (sec) (MP/s) (MP/s) (GB/s)
RTX 3060

Chiller 73.6 LAS 1.9 1.2 13.3 0.2 1.3 297 54 1.4
SIM 1.2 2.0 14.0 0.2 0.8 298 87 1.4

Retz 145.5 LAS 4.9 1.0 14.9 0.6 3.2 260 45 1.5
SIM 2.3 2.8 14.3 0.5 1.6 272 91 1.4

Morro Bay 350.0 LAS 11.9 1.2 15.9 1.4 7.6 242 46 1.6
SIM 5.6 4.1 16.1 1.4 3.5 247 100 1.6

RTX 4090
Chiller 73.6 LAS 1.9 0.6 7.5 0.1 0.3 1,215 291 7.5

SIM 1.2 0.6 8.0 0.1 0.2 1,217 439 7.2
Retz 145.5 LAS 4.9 0.4 8.0 0.1 0.7 1,145 221 7.4

SIM 2.3 1.0 8.6 0.1 0.4 1,187 425 6.7
Morro Bay 350.0 LAS 11.9 0.6 9.2 0.4 1.5 979 234 8.0

SIM 5.6 1.5 10.9 0.3 0.8 1,030 458 7.3
Meroe 684.4 LAS 23.3 0.7 10.4 0.8 2.8 882 241 8.2

SIM 11.4 1.9 12.1 0.7 1.7 945 401 6.4
Endeavor 796.0 LAS 20.7 7.0 12.6 1.6 2.6 497 307 8.0

LAZ 8.0 0.2 7.2 2.4 25.1 328 32 0.3
SIM 12.7 9.1 12.9 1.6 2.3 497 341 5.4

Endeavor (z-order) SIM 12.7 2.2 10.7 0.7 1.4 1,221 581 9.3

Table 2. LOD construction performance comparison to other systems, evaluated on the RTX 4090 system. All
methods include file IO, except for SSKW23 which only optimizes compute and not loading. Since it is also
the only method where loading and processing are done one after the other instead of simultaneously, we
report load and compute durations separately. With optimized IO, it should achieve the same as ours.
zo: Sorted by z-order (Morton Code). nomem: Insufficient memory.

duration(seconds)
non-incremental incremental

out-of-core & CPU-based in-core & GPU-based
Data Set Points Entwine [En-

twine 2021]
Untwine Arena4D Potree [Schütz

et al. 2020]
SSKW23 [Schütz
et al. 2023]

ours

Chiller 73.6 M 85 28 19.4 4.0 2.5 + 0.011 0.3
Retz 145.5 M 161 75 38.4 9.1 3.9 + 0.024 0.7
Morro Bay 350.0 M 523 134 77.3 27.3 8.7 + 0.046 1.5
Meroe 684.4 M 1230 190 185.8 39.4 nomem 2.8
Endeavor 796.0 M 8755 - 161.4 43.5 nomem 2.6
Endeavorzo 796.0 M 996 853 223.7 42.5 nomem 1.4

proposed by Wand et al. [Wand et al. 2008], which is very similar to the octree-based MNOs used
by Entwine, Untwine and Potree.
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Due to varying goals and circumstances, fair comparisons are difficult. For example, out-of-core
methods also include the time to write the results back to disk, but this cannot be separately
measured because reading, processing and writing of different parts of the data set happen simulta-
neously. Since all steps happen in parallel, writing may not increase the total runtime at all, or it
may slightly increase it because it takes away resources from reading and processing. SSKW23 is
particularly special because it only measures CUDA kernel compute times and completely ignores
file IO. Our approach, on the other hand, targets stream-processing data on-the-fly as it is loaded
from disk, and it is specifically optimized for fast loading and simultaneous processing. The full
runtime of our approach can theoretically be slightly better than SSKW23 because we already
processes the data simultaneously during loading, while SSKW23 only starts processing afterwards.
However, because SSKW23’s implementation is not optimized for loading, it is several times slower
in that regard, thus making a full runtime comparison meaningless since they do not attempt to
quickly load point clouds. For that reason, we report their load and compute times separately.

Nevertheless, Table 2 demonstrates that GPU-based processing speeds up the LOD construction
by one to two orders of magnitude. On top of that, our incremental approach instantly provides
visual feedback as data is being loaded, while all other approaches in the list are pre-processing
approaches that require users to wait until the construction is finished. So while the times shown in
Table 2 for our approach are for loading the whole data set, it already shows visual results as soon
as the first batches of points are loaded, copied to GPU, and processed, as illustrated in Figure 8.
The first points appear about 60ms after drag&dropping a point cloud file into our application,
and from there we linearly progress until all points are loaded. Notably missing from the list is
Bormann et al. [Bormann et al. 2022], which also operates incrementally with immediate visual
feedback, but we were not able to make their approach work on our system as it requires special
trajectory data which we do not have, and which also does not exist for photogrammetry data sets.
Compared to their own benchmarks on an unspecified 16-core system, our approach is up to 320
times faster (1.8MP/s→ 580MP/s), or up to 677 times faster if we only account for the construction
kernel times without rendering and loading (1.8MP/s → 1221MP/s).

If we only account for compute times without loading and rendering, our incremental approach
is about 7.7 times slower than the non-incremental SSKW23 approach for the same first-come
sampling method (Morro Bay: 7609 MP/s → 979 MP/s). It is about 15.8 times (Morro Bay; with
rendering: 14.8 MP/s→ 234 MP/s) to 66 times (Morro Bay; without rendering; 14.8 MP/s→ 979
MP/s) faster than the non-incremental, CPU-based Potree [Schütz et al. 2020]. Due to the higher
memory requirements of SSKW23, we are able to support larger data sets.

6.4 Rendering Performance
Regarding rendering performance, we show that linked lists of chunks of points/voxels are suitable
for high-performance real-time rendering by rendering the constructed LOD structure at high
resolutions (pixel-sized voxels). Table 3 shows that we are able to render up to 89.4 million pixel-
sized points and voxels in 2.7 milliseconds, which leaves the majority of a frame’s time for the
construction kernel (or higher-quality shading). Table 4 shows that the size of chunks has negligible
impact on rendering performance (provided they are larger than the workgroup size). In practice,
performance-sensitive rendering engines (targeting browsers [Cesium 2021; Entwine 2021; Schütz
2016; van Oosterom et al. 2022], VR [Schütz et al. 2019], or lower-end devices) will limit the number
of points/voxels of the same or similar structures to a point budget in the single-digit millions, and
then fill resulting gaps by increasing point sizes accordingly.
We implemented the atomic-based point rasterization by Schütz et al. [Schütz et al. 2021],

including the early-depth test. Compared to their brute-force approach that renders all points in
each frame, our on-the-fly LOD approach reduces rendering times on the RTX 4090 by about 5 to
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(a) Incremental LOD construction (Ours) (b) Non-Incremental LOD Construction (SSKW23)

Fig. 8. Incremental LOD generation allows us to immediately display data while it is being loaded. While
the performance benchmarks show that our approach can handle large amounts of quickly loaded points,
it is particularly interesting in scenarios where loading is slow. (a) shows a factual timeline recorded on a
compressed Meroe data set, whose CPU-heavy decoding algorithm increases load times from 1.7 (*.SIM) or
2.8 (*.LAS) seconds to 21 (*.LAZ) seconds. (b) shows an exemplary timeline assuming the same load speed as
ours but with SSKW23’s near-instant non-incremental LOD construction (0.08s, extrapolated from Table 2
for Meroe). Although (b) is faster computation-wise, both finish at roughly the same time since (a) already
processes during loading while (b) needs to wait until all data is loaded. For (b), however, users have to wait
until the entire data is loaded and then processed before being able to see it.

Table 3. Rendering performance from overview and closeup viewpoints shown in Figure 7. Samples
(Points+Voxels) are both rendered as pixel-sized splats.

overview closeup
points voxels nodes duration samples/ms points voxels nodes duration samples/ms

RTX 3060
Chiller 2.6 M 8.4 M 441 3.3 ms 3.3 M 28.0 M 7.9 M 1678 7.4 ms 4.9 M
Retz 5.2 M 12.4 M 644 4.4 ms 4.0 M 18.9 M 7.5 M 1616 6.0 ms 4.4 M
Morro Bay 0.6 M 12.0 M 477 3.5 ms 3.6 M 16.3 M 13.7 M 1346 6.5 ms 4.6 M

RTX 4090
Chiller 2.6 M 8.4 M 441 0.7 ms 15.7 M 28.0 M 7.9 M 1678 1.3 ms 27.6 M
Retz 5.2 M 12.4 M 644 0.8 ms 22.0 M 18.9 M 7.5 M 1616 1.1 ms 24.0 M
Morro Bay 0.6 M 12.0 M 477 0.8 ms 15.8 M 16.3 M 13.7 M 1346 1.1 ms 27.3 M
Meroe 1.9 M 2.0 M 190 0.5 ms 7.8 M 36.4 M 17.5 M 2500 1.9 ms 28.4 M
Endeavor 6.5 M 10.5 M 906 1.1 ms 15.5 M 72.7 M 16.7 M 4956 2.7 ms 33.1 M

12 times, e.g. Morro Bay is rendered about 5 to 9 times faster (overview: 7.1ms→ 0.8ms; closeup:
6.3ms→ 1.1ms) and Endeavor is rendered about 5 to 12 times faster (overview: 13.7ms→ 1.1ms;
closeup: 13.8ms → 2.7ms). If necessary, the generated LOD structures would allow improving
rendering performance further by lowering the detail to less than 1 point per pixel. In terms of
throughput (rendered points/voxels per second), our method is several times slower (Morro Bay
overview: 50MP/s→ 15.8MP/s; Endeavor overview: 58MP/s→ 15.5MP/s). This is likely because
throughput dramatically rises with overdraw, because if thousands of points project to the same
pixel, they share state and can collaboratively update the pixel. At this time, we did not implement
the approach presented in Schütz et al.’s follow-up paper [Schütz et al. 2022] that further improves
rendering performance by compressing points and reducing memory bandwidth.
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6.5 Chunk Sizes
Table 4 shows the impact of chunk sizes on LOD construction and rendering performance. Smaller
chunk sizes reduce memory usage but also increase construction duration. The rendering duration,
on the other hand, is unaffected by the range of tested chunk sizes. As long as chunks are a multiple
or significantly larger than a warp of (32) threads, the warps are able to efficiently fetch a coalesced
set of points from global memory. We opted for a chunk size of 1k for this paper because it makes
our largest data set – Endeavor – fit on the GPU, and because the slightly better construction kernel
performance of larger chunks did not significantly improve the total throughput of the system.

In the Meroe data set for a chunk size of 1 000 elements, we observed on overhead of about 2.3%
(voxels) to 3% (points), i.e., 97% of the allocated capacity is utilized.

Table 4. The Impact of points/voxels per chunk on total construction duration, memory usage for octree data,
and rendering times. (Close-up viewpoint of the Meroe data set on an RTX 4090)

Chunk Size construct (ms) Memory (GB) rendering (ms)
500 933.9 17.1 1.9

1 000 734.9 17.2 1.9
2 000 654.5 17.6 1.9
5 000 618.1 18.9 1.9
10 000 611.0 21.0 1.9

6.6 Memory Consumption
Table 5 shows amounts and memory usage of the data set and LOD structure. Voxels in lower levels
of detail and the occupancy grid for voxel sampling increase memory usage by a factor of up to 1.6
in our implementation. Improved implementations could reduce the memory usage of voxels from
16 byte down to 6 byte per voxel (-62.5%) by storing voxel coordinates as 3x1 byte integers relative
to octree nodes, and by storing colors as 3x1 byte and removing the unused fourth component.
Memory usage for occupancy grids could be reduced by removing them on a least-recently-used
basis. If needed again at a later time, a node’s occupancy grid can be re-created from that node’s
list of voxels.

7 CONCLUSION, DISCUSSION AND POTENTIAL IMPROVEMENTS
In this paper, we have shown that GPU-based computing allows us to incrementally construct an
LOD structure for point clouds close to the rate at which points can be loaded from an SSD, and
immediately display the results to the user in real time. Thus, users are able to quickly inspect
large data sets right away without the need to wait until LOD construction is finished. There are,
however, several limitations and potential improvements that we would like to mention:

Table 5. The change in memory requirements for the unstructured input point cloud (16 bytes per point)
compared to the growable LOD structure including points, voxels (16 byte, each) and occupancy grids (256kb
per inner node). Point and voxel counts are for the actual geometry without unused capacity in chunks, while
memory consumption also includes unused capacity.

LOD Memory Consumption
Data Set points voxels leaf nodes inner nodes points voxels occupancy grid total Increase
Morro Bay 350 M 128 M 18 676 5 086 5.8 GB 2.1 GB 1.3 GB 9.1 GB x1.6
Meroe 684 M 209 M 39 648 9 613 11.3 GB 3.4 GB 2.5 GB 17.2 GB x1.5
Endeavor 796 M 318 M 52 781 11 057 13.2 GB 5.2 GB 2.7 GB 21.1 GB x1.6
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• Out-of-Core: This approach is currently in-core only and thus requires a GPU with sufficient
memory to hold the constructed data structure. For arbitrarily large data sets and/or GPUs
with less memory, out-of-core approaches are necessary that flush least-recently-modified-
and-viewed nodes to disk. Once they are needed again, they will have to be reloaded – either
because the node becomes visible after camera movement, or because newly loaded points
are inserted into previously flushed nodes.

• Compression: In-between “keeping the node’s growable data structure in memory" and
“flushing the entire node to disk" is the potential to keep nodes in memory, but convert least-
recently-used (and potentially finished) nodes into a more efficient structure. For example,
voxel coordinates could be encoded relative to voxels in parent nodes, which requires about
2 bit per voxel, and color values of z-ordered voxels could be encoded with BC texture
compression [Microsoft 2022], which requires about 8 bit per color, for a total of 10 bit per
voxel. Currently, our implementation uses 16 bytes (128 bit) per voxel.

• Color-Filtering: Our implementation currently does a first-come color sampling for voxels,
which leads to aliasing artifacts similar to textured meshes without mipmapping, or in some
cases even bias towards the first scan in a collection of multiple overlapping scans – Same
as the first-come sampling version of Schütz et al. [Schütz et al. 2023]. The implementation
offers a rendering mode that blends overlapping points [Botsch et al. 2005; Schütz et al.
2021], which significantly improves quality, but a sparse amount of overlapping points at
low LODs are not sufficient to reconstruct a perfect representation of all the missing points
from higher LODs. Thus, proper color filtering approaches will need to be implemented to
create representative averages at lower levels of detail. One potential option to do this is the
hash map approach by Wand et al. [Wand et al. 2008].

• Quality: To improve quality, future work in fast and incremental LOD construction may
benefit from fitting higher quality point primitives (Surfels, Gaussian Splats, ... [Kerbl et al.
2023; Pfister et al. 2000; Weyrich et al. 2007; Zwicker et al. 2001]) to represent lower levels of
detail. Considering the throughput of SSDs (up to 580M Points/sec), efficient heuristics to
quickly generate and update splats are required, and load balancing schemes that progressively
refine the splats closer to the user’s current viewpoint.

• Sparse Buffers: An alternative to the linked-list approach for growable arrays of points may
be the use of virtual memory management (VMM) [Perry and Sakharnykh 2020]. VMM allows
allocating large amounts of virtual memory, and only allocates actual physical memory as
needed (similar to OpenGL’s ARB_sparse_buffer extension [Inc. 2014]). Thus, each node
could allocate a massive virtual capacity for its points in advance, progressively back it
with physical memory as the amount of points we add grows, and thereby make linked
lists obsolete. We did not explore this option at this time because our entire update kernel –
including allocation of new nodes, insertion of points and required allocations of additional
memory, etc. – runs on the device, while VMM operations must be called from the host.

• Order dependency: For massive data sets, the usefulness of the method may depend on the
order of input points. For the Netherlands data set, for example, we would have to analyze
the input data to ensure that we focus on loading points that are relevant to the current
camera perspective so that users don’t have to wait a long time for their region of interest.
Right now our approach is limited to in-core where this was less of a concern since the total
load time – even for compressed LAZ files that limit load performance to about 25M points
per second – is seconds to minutes, rather than hours.
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The source code for this paper is available at https://github.com/m-schuetz/SimLOD. The repos-
itory also contains several subsets of the Morro Bay data set (which in turn is a subset of San
Simeon [Pacific Gas & Electric Company 2013]) in different file formats.
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