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Abstract

The current scenario of IoT is witnessing a constant increase on the volume of
data, which is generated in constant stream, calling for novel architectural and
logical solutions for processing it. Moving the data handling towards the edge
of the computing spectrum guarantees better distribution of load and, in prin-
ciple, lower latency and better privacy. However, managing such a structure is
complex, especially when requirements, also referred to Service Level Objectives
(SLOs), specified by applications’ owners and infrastructure managers need to
be ensured. Despite the rich number of proposals of Machine Learning (ML)
based management solutions, researchers and practitioners yet struggle to guar-
antee long-term prediction and control, and accurate troubleshooting. Therefore,
we present a novel ML paradigm based on Active Inference (AIF) – a concept
from neuroscience that describes how the brain constantly predicts and evaluates
sensory information to decrease long-term surprise. We implement it and eval-
uate it in a heterogeneous real stream processing use case, where an AIF-based
agent continuously optimizes the fulfillment of three SLOs for three autonomous
driving services running on multiple devices. The agent used causal knowledge
to gradually develop an understanding of how its actions are related to require-
ments fulfillment, and which configurations to favor. Through this approach,
our agent requires up to thirty iterations to converge to the optimal solution,

1

ar
X

iv
:2

40
9.

17
93

7v
1 

 [
cs

.L
G

] 
 2

6 
Se

p 
20

24



showing the capability of offering accurate results in a short amount of time. Fur-
thermore, thanks to AIF and its causal structures, our method guarantees full
transparency on the decision making, making the interpretation of the results
and the troubleshooting effortless.

Keywords: Active Inference, Machine Learning, Edge Intelligence, Service Level
Objectives, Markov Blanket

1 Introduction

Recent years have reported a constant transition of logic and computation from the
central cloud towards the edge of the network [1], bringing the execution closer to
the Internet of Things (IoT) devices that actually generate data. The reasons behind
migrating the computation to the edge span from saving bandwidth, to improving
privacy, as well as speeding up data processing (i.e., decreasing latency). Furthermore,
this transition, facilitated by improvements in hardware and connectivity, currently
allows the training and deployment of Machine Learning (ML), up to Deep Learning
(DL) models. This step is pivotal in such scenarios, as ML models play an essential role
in interpreting and predicting the behavior of applications and distributed systems,
in order to guarantee Quality of Service (QoS). Indeed, in the last years ML has been
vastly utilized [2] for the management of complex, distributed infrastructures and
applications, with tasks that go from estimating the impact of redeployment [3] to
forecasting potential system failures [4].

However, contrarily to the cloud infrastructure, deploying services on top of
resource-restricted edge devices while guaranteeing their QoS is not trivial. Indeed,
edge devices, which span from commodity servers to dedicated machines, have a con-
strained pool of resources. Typically, a set of common strategies involve letting edge
devices scale their services through local reconfiguration, assisted by ML [5]. Despite
the validity of these strategies, most of them do not consider when the initial con-
ditions changed. This is especially limiting for ML models, which are not retrained
although new observations would be available [3, 4], inevitably leads to a drift in
observing and predicting the system state. Exemplifying it, imagine an elastic com-
puting system, as envisioned in [6], which observes the system through a set of metrics,
evaluates whether QoS requirements – also called Service Level Objectives (SLOs) –
are fulfilled, and dynamically reconfigures the system to ensure SLOs are met. If the
variable distribution changes and the ML model is not adjusted, this makes it impos-
sible to interpret system metrics correctly, and any consequential reconfiguration will
fail to fulfill its purpose. Therefore, a solution to guarantee the precision of ML mod-
els over time involves implementing continuous feedback mechanisms; this could, for
example, be achieved by optimizing a value function, as in reinforcement learning
(RL) [7, 8]. However, approaches like RL are slow to converge and typically compu-
tationally intensive. Furthermore, leveraging ML algorithms means, nowadays, often
relying on DL models. Despite their great performance in various, complex applica-
tions, most of them suffer from a lack of interpretability, which is instead essential in
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core tasks like distributed infrastructure and application management. For these rea-
sons, we believe that this scenario requires a more holistic approach, which starts with
making the SLOs first-class citizens during ML training. Further, any component that
uses ML for inference should actively resolve or report ambiguities. We envision that
such a level of self-determination could be provided by Active Inference (AIF), a con-
cept from neuroscience that describes how the brain constantly predicts and evaluates
sensory information to decrease long-term surprise. In cases where ML training and
inference are carried out in close proximity to the data source, i.e., on edge devices,
AIF can ensure model accuracy whenever the accuracy drops. Equipped with AIF,
edge devices could continuously infer system configurations that ensure QoS. Further-
more, AIF allows to develop causal understanding of a process; this raises the trust
for inferred results [3, 9].

In this paper, we extend our previous contribution [10], where we presented a
design study of an AIF agent optimizing the throughput in a smart factory. To show
the general applicability of our approach, we now apply AIF extensively for dis-
tributed processing systems and provide a novel evaluation with 3 Edge-based stream
services showing how the agents are able to adapt service configuration to match
QoS requirements. Agents operate autonomously and decentralized while ensuring the
SLO compliance on their local edge devices. At its core, the agent follows an action-
perception cycle where it first estimates which parameter assignments would violate
given SLOs, then compares this expectation with new observations, and finally, adjusts
its beliefs (i.e., the ML model) accordingly. While exploring the value space, it favors
solutions that are likely to improve the model precision; this, in turn, provides the
agent with a clear understanding of the causal relations between model variables.
Hence, the contributions of this article are:

• An adaptive stream processing mechanism based on Active Inference that continu-
ously optimizes the QoS of streaming pipelines through local reconfiguration; thus,
processing services scale autonomously according to environmental impacts

• A transparent decision-making process for AIF agents that adjusts processing con-
figurations according to expected SLO fulfillment and model improvement. The
underlying causal structures make results empirically verifiable and increase trust.

• The evaluation of the presented AIF agent under three different stream processing
services and heterogeneous edge device types. This underlines how the presented
methodology is apt to support a wider range of stream processing scenarios.

The remainder of the paper is structured as follows: Section 2 provides background
information on AIF principles in edge computing; Section 3 presents related work; in
Section 4 we outline the design process of an AIF agent, which we implement and
evaluate in Section 5. Finally, Section 6 concludes the paper.

2 Background

To dynamically adjust stream processing, the core mechanism applied in this paper is
AIF; given that AIF is a concept that originates from neuroscience, we use this section
to summarize core concepts of AIF according to Friston et al. [11–14]. This includes
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(1) a high-level picture of how AIF works, (2) an illustrative example of how agents
use AIF, and (3) a formal representation of how AIF agents adjust their beliefs and
choose actions that fulfill their preferences. Following that, we delineate our view of
the intersection between AIF and distributed computing systems, highlighting how
AIF concepts are relevant for stream processing on edge devices.

2.1 Free Energy Principle and Active Inference

The Free Energy Principle (FEP) and its corollary Active Inference (AIF) stem from
neuroscience, aiming at answering the overarching question: how does the brain work?

The high-level picture. Seeking to answer such a fundamental and complex
question, Friston offers a theory [15] of an overarching structure for the brain and cog-
nition. In their understanding, cognitive agents have the capacity to build an internal
model of their observed environment and the underlying generative processes. This
internal model – also called a generative model – is used by agents to predict and adjust
their environment according to their preferences. In the FEP theory, and especially
in AIF, the system revolves around two core elements: the generative process and the
generative model. The first is the underlying causal structure of the environment’s
behavior that produces agent’s observations; the generative model approximates, from
the agent’s perspective, the behavior of the environment.

Using their generative model, agents predict and modify their environment; for this,
they assume that the generative model aligns closely (i.e., in terms of KL divergence)
with the generative process. However, if the generative process and the model differ,
this discrepancy will “surprise” the agent, causing it to adjust its model closer towards
the process [16]. This surprise (after Bayesian surprise [17]) plays a fundamental part in
Friston’s theoretical framework because Free Energy (FE) formally presents an upper
bound on surprise. To minimize FE, and hence surprise, AIF agents constantly engage
in action-perception cycles, where they (1) predict sensory inputs, observe the environ-
ment, and update their beliefs depending on the outcome. Afterward, they (2) actively
adjust the world to their preferences. Internally, agents organize their generative mod-
els in hierarchical structures; each level interprets lower-level causes and, based on
that, provides predictions to higher levels. This process of using existing beliefs (widely
known as priors) to calculate the probability of related events is commonly known as
Bayesian inference [18] and it allows agents to improve their understanding of the envi-
ronment. AIF models are structured by self-contained Bayesian structures, known as
Markov Blankets (MBs), that separate the internal states of a system from its outside
environment, formalizing the action-perception cycle.

An illustrative example. To exemplify this approach, imagine an individual who
believes that it is raining; as a consequence, he will take an umbrella to avoid getting
wet, as this would otherwise be uncomfortable. As defined before, individual agents
interpret observable processes through generative models. In this case, an individual
might reason that it is raining as he observes water drops falling from the sky. Using
its generative model, the individual infers with high probability that it is raining;
the respective action is to take an umbrella to fulfill its preference of staying dry.
However, imagine that the observed water drops were actually caused by a neighbor
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watering their plants. Thus, the generative model and the process diverge, and the
agent is “surprised” once he leaves the house. More generally, individuals can either
take pragmatic action, e.g., picking an umbrella to fulfill their preferences, or otherwise,
improve decision-making by exploring the environment through epistemic actions. For
example, looking at the blue sky and the neighbor’s balcony reveals that drops resulted
from watering the plants, avoiding the later consequence of carrying an umbrella on a
sunny day. The agent thus updates its prior beliefs (i.e., rain → water) according to
new information (i.e., rain → water ← flowers) to form its posterior beliefs.

Formalization. Picking up from the explanations of AIF and FE, it remains to
provide a formal representation of these concepts: given that an agent equipped with
generative model m makes an observation o, the surprise ℑ(o|m), as shown in Eq. (1),
is the negative log-likelihood of the observation [13]. The FE of the model – expressed
as the Kullback-Leibler divergence (KL) between approximate posterior probability
(Q) of hidden states (x) and their exact posterior probability (P ) – is an upper-bound
on surprise. This is formalized in Eq. (2); however, the exact posterior probability (P )
is practically intractable, hence, Q is used as an approximation. The FEP now uses
variational inference [19] as the method to find the best approximation that minimizes
the difference between both distributions.

ℑ(o|m) = − ln

Model Evidence︷ ︸︸ ︷
P (o|m) (1)

F [Q, o] = KL[Q(x)||P (x|o,m)] + ℑ(o|m)︸ ︷︷ ︸
(Variational) Free Energy

≥ ℑ(o|m) (2)

AIF agents use this mathematical framework to select among actions [13, 20];
for this, they condition all terms on the policy (π). However, instead of looking into
the approximate model performance, AIF agents select the best policy according
to possible future states, actions, and observations. More formally, agents minimize
their Expected Free Energy (EFE) by selecting the optimal policy. The EFE can be
expressed as in Eq (3):

EFE = −

pragmatic value︷ ︸︸ ︷
EQ(x|π)[lnP (x|R)] −

information gain︷ ︸︸ ︷
EQ(x,z|π)[lnQ(z|x, π)− lnQ(z|π)] (3)

where the first term, i.e., the pragmatic value (pv), expresses how likely an action will
produce observations that fulfill an agent’s preferences (R). The pv pushes an agent
to take actions that will satisfy its goal; for a computing system, this means fulfilling
its SLOs. Noteworthy, preferred observations can be understood as a reward function
in reinforcement learning [8, 21, 22]. The second term, i.e., the information gain (ig),
pushes an agent towards actions that allow it to learn about its environment; in the
literature, ig is also called “epistemic value”. This expression shows that minimizing
EFE intrinsically deals with the classic exploration-exploitation trade-off.
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2.2 AIF Principles in Distributed Systems

Large-scale distributed computing systems, especially when handling streams of data
and events coming from a wide range of devices and applications, consist of many
interconnected components; therefore, modeling and managing [23, 24] such structures
requires ingenuity. In this regard, we identify three central challenges of distributed
systems and stream processing, which can benefit from AIF concepts. First, (1) how
to model large-scale systems and underlying structures to understand their over-
all functionality, e.g., to find the root cause of a bottleneck in the data processing
pipeline. Second, (2) how to mitigate SLO violations within distributed systems
under unexpected runtime dynamics; this step is essential when we manage real-time,
latency-sensitive scenario like in stream processing. All in all, the main goal boils down
to taking the best actions at a given point in time. Finally, (3) how to maintain long-
term fulfillment of the system’s requirements through effective management; this step
implies taking care of variations in the infrastructure and in the behavior and quality
of data. While there exist several ML-based methods for distributed computing man-
agement [25], most of these approaches leave several of these challenges still open. In
the following, we align these challenges with the main characteristics of AIF, elucidat-
ing how AIF can fundamentally improve the management of distributed computing
systems.

2.2.1 System Modeling through Causal Structures

Understanding the behavior of distributed computing systems and reasoning on the
effects of individual actions is challenging due to the entanglement and complexity
among individual components. For example, finding the root cause of abnormal behav-
iors or backtracing which configuration decision in which part of the system propagated
a certain system state is not trivial and is often computationally intractable. In this
scenario, using causal models in distributed systems [26] is a captivating solution that
can help identify the source of specific behaviors.

In this direction, a tool commonly used is Bayesian Networks [27] (BN). It can be
trained to identify connections and dependencies between components through con-
ditional probability functions. While BNs offer a good understanding of correlation
within a system, as Pearl points out [18, 28], only observational data (i.e., data that
we collect from a system without knowing what is its current state) is not enough
to gain causal knowledge. Here, AIF plays an important role: when AIF agents start
intervening in their environment, the agents gain more valuable insights into the sys-
tem behavior. Repeating this action-perception cycle can enrich BN, gradually adding
information that turns them into actual causal graphs.

In contrast to solely relying on Deep Learning methods, introducing causal struc-
tures to management solutions has the fundamental advantage of guaranteeing an
interpretation of system behavior and the effects of management actions or recommen-
dations, thus improving trustworthiness [29]. Specifically, in distributed computing
systems, a causal structure can explain how metrics (e.g., latency or CPU load) are
related to the system state [9], backtrack which service or device caused a system
failure [3], or predict the impact of redeployment [30].
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2.2.2 Mitigating SLO Violations through Free Energy Minimization

Modeling SLO fulfillment through BN or causal graphs, as explained above, is challeng-
ing. Replicating the probability distribution of events in large-scale systems is, at the
very least, complex. Hence, performing statistical inference is often intractable due to
the distribution’s complexity. Therefore, as shown in Eq (2), AIF leverages variational
inference (VI) [19]: VI uses the evidence lower bound (ELBO) to make the problem
an optimization one. Without entering into details, increasing ELBO minimizes KL
divergence and, therefore, allows to approximate the probability distribution. This
problem can obviously be solved together with gradient methods and mechanisms like
Deep Neural Networks. Indeed, ELBO and its variants are very popular in ML and
DL (a notable example being Variational Auto Encoders [31]).

Minimizing KL-Divergence is crucial in AIF; this means, that agents intervening
in the environment can lead to a better understanding of the environment and, as a
consequence, makes it more likely to achieve agents’ preferences. Naturally, illustrating
this process inevitably draws a parallel with Reinforcement Learning (RL); however,
AIF presents fundamental differences [22]: whereas in RL, agents maximize a reward
function, in AIF the agent intervenes in the environment to minimize EFE. This
difference, albeit subtle, offers essential advantages. Minimizing EFE means not only
performing the action that leads to observing the desired output (pragmatic value)
but also improving the precision of the generative model (information gain).

In distributed computing systems, epistemic actions often suffice to reduce
uncertainties about expected outcomes: distributed systems can resolve contextual
information by identifying a low-utilized agent for tasks offloading [32, 33], or evalu-
ating resource availability before scaling a system [5, 34]. In other cases, taking action
aids to prevent or mitigate SLO violations, e.g., in case of resource allocation or task
offloading [35–38]. This embraces the common tradeoff between seeking either prag-
matic value (exploitation) or epistemic value (exploration). Multi-agent systems [39]
control this through hyperparameters, which foster early exploration of a value space
but decay over time as agents report little improvement.

2.2.3 Long-term System Balance through Homeostasis

The ultimate goal for an AIF agent is to constantly minimize the surprise and thus
persist over time; this requires guaranteeing that certain internal variables remain
within defined ranges. In cybernetic theories of living organisms, this process is called
homeostasis. For example, the human body requires a core temperature of approxi-
mately 37° to ensure internal chemical processes. Hence, modeling the environment
accurately allows agents to make the right decisions that fulfill its requirements, e.g.,
picking an umbrella when it’s raining so that the body does not cool down.

The human body, as a complex system, has distinct mechanisms to ensure inter-
nal requirements, e.g., in case of cooling down, it can raise the core temperature
through shivering. The fact that shivering happens unconsciously underlines how sys-
tems, including distributed processing systems, benefit from autonomous requirements
assurance. While processing systems can also pose requirements in terms of (CPU)
temperature, these and other requirements are specified as Service Level Objectives
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(SLOs) that must be assured during processing. Common instances of SLOs are QoS
requirements, such as response time or availability [6]; in case SLOs are violated,
processing systems can resolve this through elasticity strategies [40, 41], e.g., cloud
computing scales computational resources to limit response time. Complex systems
can have multiple elasticity strategies at their disposal [34], e.g., computing systems
generally scale three elasticity dimensions: resources, quality, and cost. To optimize
SLO fulfillment through local reconfiguration, existing works [9, 42] used the notation
of Markov blankets, which encompass relations between system variables and elasticity
strategies. Thus, the agent can infer how to best ensure its requirements. Simply put,
an agent’s preferred observation is having SLOs fulfilled; in case SLOs are violated,
the agent will take action to correct this by choosing an adequate strategy according
to the Markov blanket model.

3 Related Work

In this section, we delineate the state of the art in adaptive stream processing and
its relation to AIF. First, we depict the current scenario in AIF, where, despite the
praiseworthy efforts to theorize the framework, only a few contributions focus on
implementing it, and still not in interdisciplinary scenarios. Later, we offer a snapshot
of the prevailing approaches for adaptive stream processing and how approaches based
on AIF can improve the QoS during stream processing.

AIF Applications

While, to the best of our knowledge, there exists no off-the-shelf implementation of
AIF in distributed systems; a handful of research works have combined AIF with
computer science:

The authors in [43] discuss AIF as a general computational framework, highlight-
ing how existing research used AIF for (simulating) sensory processing. Touching on
the design of AIF agents, Heins et al. [44] provide a Python simulation that exem-
plifies how to structure action-perception cycles. Heins et al. further remark that
existing AIF research largely focuses on formally constructing models in isolated envi-
ronments [20] such as Matlab SPM rather than putting them into action, e.g., to
improve the precision of ML models. Thus, a more hands-on application of AIF is to
extend reinforcement learning with AIF principles [7, 8]. However, most research to
date either uses only a few AIF principles or is not applied enough to easily transfer
presented concepts to distributed systems.

The work in [39] is, therefore, an exception because it embeds AIF into the IoT
and describes how AIF can improve the behavior of adaptive agents. Thus, individ-
ual agents may dynamically regroup into hierarchical teams, federate knowledge, and
collectively strive after a common goal (i.e., a search task). By emphasizing the infor-
mation exchange between agents, they were able to speed up the convergence of the
distributed task. However, while they focused on FE minimization, they did not treat
the other two principles we identified for AIF in distributed systems: causal infer-
ence and homeostasis. In this paper, we will present an agent that uses all three AIF
principles to infer actions, maintain agents’ internal equilibrium, and persist over time.
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Runtime adaptation of stream services

Runtime adaptation of stream services is an extensive topic in the scientific literature.
We narrow down the related work by leveraging the taxonomy of adaptation mecha-
nisms presented by Cardellini et al. [45]. In that regard, we will focus on works that
perform processing adaptations. The initial driver for that boosted research related
with the adaptation of stream services stems from commercial large-scale video stream-
ing services that emerged more than a decade ago. For instance, Huang et al. [46]
showed how to achieved 10-20% less rebuffering rate while achieving a higher video
rate. Conversely to this research, our work focuses on computing paradigms outside
the Cloud, aiming at adapting services that are at the Edge, next to IoT devices.

Leaning on more recent research, Khani et al. [47] presents a similar use case to
ours, i.e., real-time video inference on Edge devices, but adapts the machine learning
models deployed at the Edge devices by distilling knowledge from a centralized model.
Further, they use a server, which contains the centralized model, to also adapt the
frame sampling rate for each device. In contrast, our work aims toward a completely
decentralized architecture, providing the Edge service the full autonomy to adapt.

Ma et al. [48] develop a system to adapt video bitrate for live video streaming at
the Edge based on Quality-of-Experience (QoE) requirements. They use deep rein-
forcement learning (DRL) to adapt the bitrate and distribute the video traffic to the
clients according to their QoE needs. Similarly, Cao et al. [49] build a DRL-based
system to adjust video streams for Edge computing according to the expected QoE.
Interestingly, they develop a programming model to facilitate the potential adapta-
tions of the streams. Further, as discussed by Cao et al. [49], DRL models require
periodical re-training as the data shifts while AIF includes this re-training within its
normal formulation thanks to the possibility of performing epistemic adaptations.

Similarly, as described by Furst et al. [5], our work consists of achieving elastic
services for stream processing at the Edge. Further we use SLOs to autonomously
adapt each service. In contrast to Furst et al., our approach uses AIF to adapt stream
processing services, which is a more flexible perspective for dynamic and long-lasting
operations because AIF improves its behavior over time.

Takeaways

Despite existing contributions in the field of stream adaptation, we argue that our
approach can offer better control in a more generalizable way. First, conversely, to
previous stream services, we focus on defining ways to map SLOs for the autonomous
control of a distributed computing system. Secondly, we manage that using AIF,
which provides the flexibility for managing services that dynamically change over
time. Finally, with our work, we contribute to the AIF field by both providing an
implementation of AIF strategies and showing its potential in a real use case.

4 AIF Adaptive Streaming Agent

In this Section, we delineate the three main steps for assembling an adaptive AIF agent
for stream processing: (1) setting up tools and methods for observing the behavior of a
continuous stream; (2) based on these outputs, training a generative model to predict
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Fig. 1: Abstract representation of a continuous stream processing scenario; sensors
provide input data that is processed by services located at an edge device; processing
is observable through metrics and respective results are provided to stream consumers

and interpret stream processing behaviors; (3) implement the agent’s algorithm for
executing the AIF cycle, i.e., the application of the generative model for both action
and perception. These three steps form a coherent, generalizable pipeline, applicable
to different streaming use cases.

4.1 Continuous Stream Processing

Modeling a streaming service requires a well-defined architecture; first, there is the
need of a transparent view of its internal processes, including the characteristics of the
in- and out-flow data, e.g., batch size or data type in input, and quality of the processed
output. Additionally, it is essential to have visibility on quantifiable metrics about the
fulfillment of requirements. For example, the capabilities, e.g., embedded CPU or GPU,
of the edge devices that process the data have a strong impact on the performance.
Similarly, the strategy for the service configuration (c) is relevant. Service configuration
allows the node manager to set, or limit, the local computational resources, achieving
elasticity in a constrained setting, but also impacting the SLOs’ fulfillment; e.g., using a
low-processing mode benefits energy efficiency, but limits the performance. Therefore,
we directly monitor the performance on the device, providing a continuous stream of
metrics (D) for an immutable list of variables. Figure 1 summarizes this architecture,
with its main components; in this work we focus on exploring the case of IoT sensors
data stream.

4.2 Generative Model Construction

Interpreting stream processing boils down to one central activity: reasoning about
metrics. For this, we apply generative models, as introduced for AIF. Our implemen-
tation of the generative process follows the design by Parr et al. [13], adapting it for
the stream processing use case. Following [13], we focus on the three main generative
model design aspects:
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(c) Information gain

Fig. 2: Conditional (or causal) variable relations encoded in a Bayesian network;
variable states (i.e., fps and pixel) form a 2D solution space where each parameter
combination features a distinct pragmatic value (pv) and information gain (ig)

A. What are the generative model’s components, and what its interfaces?
B. What is the hierarchical and temporal depth of the generative model?
C. What probabilities are encoded in the model, and how are they updated over time?

A. We envision a generative model consisting of two combined components: a
directed graph that expresses variable relationships, and the precise conditional prob-
abilities of which variable states are likely observed under certain environmental
conditions. We represent the underlying graph as a Directed Acyclic Graph (DAG),
where the edges indicate conditional dependency. For instance, consider Fig. 2a, where
the edge fps → energy shows how the number of frames per second (fps), i.e., a
configuration parameter, has a decisive impact on the energy consumption of the
processing device. If we specify an SLO for minimizing energy consumption, such as
energy ≤ 15W , it is possible to infer the probability of fulfilling it under different
service configurations, i.e., according to the precise assignments of fps and pixel.

While applying the generative model appears straightforward, training it requires
high-quality observations; one method to build it is through Bayesian Network Learn-
ing (BNL), e.g., as applied by [3, 50, 51]. In the absence of training data, it is also
possible to specify a BN through expert knowledge [52]. Given the resulting gener-
ative model, agents can reason how likely it is to observe SLO violations under a
certain service configuration, e.g., exceeding energy with fps = 15. However, if the
generative model does not reflect the generative process accurately, the agent can be
surprised by the actual outcome. As defined by Dustdar et al. [53], improving the
model’s accuracy requires a clear understanding of the interfaces between the agent
and the environment as these will map the observations from the generative process
to internal elements of the generative model.

B. The temporal and hierarchical depth are two more sophisticated properties of
the generative model. For the given use case, the temporal depth is bounded by the
length of the policy π, i.e., how many steps in the future the behavior is predicted.
Given that longer policies have a higher complexity for predicting the outcome, the
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policy length can be chosen in accordance with the evaluation frequency. This means,
that for stream processing, it can be desirable to evaluate the SLO fulfillment with
high frequency (e.g., every 500ms) and conversely keep the policy length low.

The hierarchical depth, on the other hand, is bounded by the number of variables
and states in the generative model; for instance, Figures 2b and 2c show a parameter
space that consists of two variables, i.e., fps and pixel, that can take 5 and respectively
3 variable states. While this solution space and the DAG in Figure 2a appears mini-
malistic, BNs can grow up to thousands of variables [54]; depending on the granularity,
it is possible to split up processes into increasingly smaller substructures, which can
each be constrained and managed by a more specific set of SLOs [55]. Hence, maintain-
ing a desired level of abstraction [12] ensures lower model complexity for inference and
training. In that regard, extracting the MB around SLO variables [42] helps reduce
the number of variables that must be considered.

C. When an agent’s observation presents a discrepancy with the expected out-
come, e.g., an SLO is violated despite the previous agent intervention to have a
proper configuration, it generate a “surprise,” calling the agent to adjust its generative
model. Here, the priors are both the variable relations and the conditional probabil-
ities encoded in the generative model. This means, that upon observing something
that goes contrary to its expectation, the agent updates its model to form its posterior
beliefs. While variable relations and conditional probabilities are subject to retrain-
ing, we assume the list of monitored variables to be immutable. Nevertheless, given
that feature-evolving streams are gaining popularity [56], extending this to mutable
lists of variables promises a valuable asset.

For the generative model presented in this paper, we distinguish two types of vari-
ables: (1) the configuration parameters (i.e., parents in Figure 2a), which decide how
streaming data is processed, and (2) the SLOs (i.e., child nodes), which constrain
whether the stream processing behavior fulfills the agent’s preferences. The classifi-
cation into parameters stems from the system definition, hence, it is immutable and
determined depending on which variables the agent can adjust locally. However, for
remaining variables, the decision to turn them into SLOs, can also be taken at a later
stage. Thus, it is possible to adjust the list of SLOs and, more importantly, also their
desired thresholds. For instance, depending on the type of processing device, we can
decide to cap energy either by 10W or 15W. Thereby, we described the characteris-
tics and boundaries of the generative model as required to interpret continuous stream
processing.

4.3 Active Inference Cycle

To continuously ensure model accuracy during stream processing, and consequently
high SLO fulfillment, we embed the generative model into the action-perception loop
executed by an AIF agent. Figure 3 gives a high-level overview of this action-perception
loop: a stream processing service (red) is executed on an edge device; during this exe-
cution, the monitored metrics are provided to the AIF agent. Application stakeholders
(e.g., DevOps engineers) can specify SLOs that should be ensured during processing;
these SLOs constitute the agent’s preferences of what it would like to observe. As the
AIF agent receives a batch of metrics (i.e., observations), it evaluates the degree to
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Fig. 3: High-level action-perception cycle in AIF; stream processing metrics are inter-
preted using a generative model; the agent updates the model according to prediction
errors and makes adjustments by balancing pragmatic value with information gain

which SLOs were fulfilled according to Eq. (4):

ϕ(Q) =

∑|Q|
i=1 ϕ(qi)

|Q|
(4a)

ϕ(qi) = ϕ(qi, d | ∀d ∈ Dqi) =

|Dqi
|∑

j=1

ϕ(dj , qi)

|D|
(4b)

where ϕ(qi, dj) =

{
1, if dqijmin

≤ dj ≤ dqijmax

0, otherwise
(4c)

where Q represents a set of SLOs, D the list metrics, and ϕ the resulting SLO fulfill-
ment. As shown in Eq. (4c), the overall SLO fulfillment is determined by the ratio of
samples that are found in the desired range, delimited by the thresholds. The actual
SLO fulfillment is then compared to the agent’s prediction according to its generative
model; when the two diverge, the agent adjusts the generative model, which means
retraining the causal graph and the variables’ conditional probabilities.

To minimize EFE through optimal action, agents consider the known concepts of
either (1) changing the environment toward its preferences to maximize pragmatic
value (pv) or (2) improving decision-making by resolving contextual information to
maximize information gain (ig). In the following, we introduce how we calculate a
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simplified version of the information gain as shown below in Eq. (5):

ℑ(D | m) =

|D|∑
i=1

− logP (di | m) (5a)

ig(c) =

(
ℑ̃c

ℑ̃ω

)
× 100 (5b)

where the ig of a configuration c is calculated based on the surprise that this config-
uration caused in the past. If a configuration repeatedly shows surprising results, this
indicates that the agent cannot yet predict its pv accurately; consequently, this assigns
a high ig to it. While Eq. (1) provided the idea of how to calculate the surprise (ℑ) for
a single observation, Eq. (5a) shows how the surprise for a batch of metrics equals the
sum of the individual metrics. Hence, when calculating the ig for a configuration, e.g.,
fps = 15 and pixel = 480 in Figure 2c, the agent considers how the median surprise
(ℑ̃c) for the configuration relates to the global median surprise (ℑ̃ω). The weights that
the agent assigns to pv and ig are subject to hyperparameter optimization; to speed
up convergence, we assign pv double the weight of ig, i.e., wpv = 2× wig.

Up to this point, explanations of pv and ig were built on the assumption that
the generative model can always provide an approximate probability for any possible
state. However, the generative model might not be able to provide this approximation
without having observations for a certain parameter configuration. Further, recall
that we are dealing with discrete states, thus, even though an agent infers based on
observations how likely it is to fulfill SLOs with fps = {10, 20}, this lacks understanding
of what will happen if fps = 15. Hence, we interpolate between the pv and ig of the
closest neighbors, or for the first initial values, choose the closest neighboring value.
Notice, how the interpolation took place in Figures 2b and 2c; this becomes particularly
important because the agent in its simplest form minimizes EFE (i.e., pv and ig) by
comparing a potentially exponential number of parameter combinations. While the
combinatorial complexity requires dedicated optimization, the interpolation between
configurations provides a workaround in cases when no observations are available.

As soon as the agent has come to a decision, it has to orchestrate the action, i.e.,
by adjusting the local processing configuration. Thus, the action-perception cycle is
closed; whenever the agent receives a new batch of observations, it repeats this cycle
by evaluating the actual SLO fulfillment, adjusting its generative model according to
the new observations, and using its generative model to infer a service adaptation.

5 Evaluation

In the following section, we present the implementation and evaluation of our method-
ology over a heterogenous set of actual services and real edge devices. To underline
the generality of our approach, we showcase how our stream processing framework
fits multiple use cases; the overarching goal is to evaluate whether AIF agents can
dynamically find a satisfying stream processing configuration. For each use case, we
document the experimental setup, including the service implementations and applied
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processing hardware. Finally, we present the experimental results and conclude with
a critical discussion.

5.1 Implementation

To embed the designed AIF agent into actual processing devices, we provide a Python-
based prototype that comprises both the generative model construction as well as the
continuous action-perception cycle. The prototype of the AIF agent, the implemen-
tation of the processing services, and the experimental results are all shared in one
publicly accessible repository1. Thus, we aim to make our results reproducible and
allow others to interact with our methodology.

To isolate resource consumption, we execute each processing service in a Python
thread. During that time, each service observes its own SLO fulfillment as part of its
action-perception cycle; in the present state, this is done every 2000ms, though it can
be customized for different service types. To avoid interfering with the stream process-
ing task, the training of the generative model is detached from the processing thread.
To train and update its generative model, AIF agents use pgmpy [57], a Python library
for Bayesian Network Learning (BNL). As shown in previous work [9, 42], pgmpy is
very effective for providing both the structure and the conditional dependencies of
BNs, making it apt for the continuous action-perception cycle.

5.2 Experimental Setup

To evaluate our prototype we provide three use cases for stream processing, showing
for each of them how our framework can ensure its processing requirements. Table 1
provides essential information on the three processing services, such as the number
of configuration parameters and SLOs. In the following, we describe each of them in
more detail, including their practical relevance and application:

CV. Videos rank among the most commonly streamed data types; hence, Computer
Vision (CV) gained increasing popularity for detecting objects in videos [58] or
ensuring privacy [59] by transforming the video content. Hence, the first processing
service is a video inference task based on Yolov8 [60] that detects vehicles, traffic
lights, and pedestrians in a traffic junction.

LI. Sticking to road traffic and transportation, autonomous driving is empowered by
multitudes of sensors embedded in Autonomous Vehicles (AVs). As such, Lidar is
commonly used to scan AVs’ surroundings through point cloud processing [61]; AVs
use this to react in real-time to dynamic traffic conditions. Hence, the second service
processes point clouds through Lidar (LI) using the SFA3D [62] library.

QR. Within recent years, QR codes have quickly found their way into our everyday lives,
e.g., to share contact information or hyperlinks. However, QR codes are also applied
to track objects [63], i.e., by attaching the code to an object and continuously
inferring its position. Hence, the third service uses OpenCV [64] to track the position
of a vehicle according to a QR code attached to its rear.

1The prototype of the stream processing framework is available at GitHub, accessed on July 31st 2024
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Table 1: List of all stream processing services covered by the framework

ID Service Description CUDA Parameters SLOs

CV Object Detection with Yolov8 [60] Yes pixel, fps time, energy, rate
LI LiDAR Point Cloud Processing [62] Yes mode, fps time, energy
QR Detect QR Code w/ OpenCV [64] No pixel, fps time, energy

(a) CV (Yolov8) (b) QR (OpenCV) (c) LI (SFA3D)

Fig. 4: Demo output for each service according to prerecorded input data; all three
services are iteratively processing video streams (CV and QR) or binary input (LI)

Figure 4 shows a demo output for each service to make more tangible what contents
are processed and produced by the three services. Notice, that to ensure a stable
evaluation environment, the service processed either prerecorded videos (CV & QR)
or binary-encoded point clouds (LI). For adjusting the outcome, each service has
specific configuration parameters available, such as the resolution (pixel) and fps for
CV and QR; LI accepts an additional parameter mode to define the point cloud
radius. While pixel and fps are common properties of video streams, we assume that
the AIF agent can still change these during processing, i.e., by shrinking the maximum
video resolution or sampling the video to a lower frame rate.

We empirically map each service’s expected QoS level to a list of SLOs, based on
our expert knowledge. After several experiments, which are out of the scope of this
work, the following values proved especially useful: we constrain the processing time
to ≤ 1000/fps (i.e., frames must be processed faster than they come in). To ensure
efficient stream processing, the maximum energy consumption is capped at ≤ 15W .
For what concerns the video resolution (pixel) provided to CV, the service uses the
respective Yolov8 model size (i.e., v8n, v8s, v8m). However, this affects the number
of objects that are detected, which is ensured through the rate SLO. The presented
configuration parameters and SLOs describe the list of variables that will be included
in the generative model; nevertheless, only through BNL it is possible to extract their
relations and dependencies.

We evaluate on two different instances of Nvidia Jetson boards, namely Jetson
Orin NX and Orin AGX, which are described in more detail in Tab. 2. Since these
devices have different processing capabilities, local AIF agents cannot infer parameter
configurations using one global model because the mismatch between generative model
and device will likely cause the agent to be surprised. Hence, this device heterogeneity
requires AIF agents to train their generative models separately. Further, to decrease
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Table 2: List of edge devices involved in the evaluation; depending on the Jetson
power mode, devices have different numbers of CPU and GPU cores available

ID Full Device Name Mode Price2 CPU RAM GPU CUDA

AGX+ Jetson Orin AGX MAX 800 € ARM 12C 64 GB Volta 8k 12.2
AGX− Jetson Orin AGX LIM 800 € ARM 8C 64 GB Volta 4k 12.2
NX+ Jetson Orin NX MAX 450 € ARM 8C 8 GB Volta 4k 11.4
NX− Jetson Orin NX LIM 450 € ARM 4C 8 GB Volta 2k 11.4

Table 3: Preferred configuration per service x device combination

CV QR LI

AGX+ ⟨1080p, 5 fps⟩ = 0.94 ⟨720p, 15 fps⟩ = 1.0 ⟨single, 5 fps⟩ = 0.98
AGX− ⟨720p, 15 fps⟩ = 0.62 ⟨720p, 5 fps⟩ = 1.0 ⟨single, 5 fps⟩ = 0.93
NX+ ⟨720p, 10 fps⟩ = 0.83 ⟨720p, 5 fps⟩ = 1.0 ⟨single, 5 fps⟩ = 0.92
NX− ⟨480p, 5 fps⟩ = 0.73 ⟨480p, 10 fps⟩ = 1.0 ⟨single, 5 fps⟩ = 0.90

energy consumption, Jetson boards offer the feature of operating in different device
modes, which limits the available device resources. However, this introduces further
heterogeneity, even between identical devices operating in different modes; hence, the
list of devices contains for both devices two entries: AGX+ indicates that the device
operated without constraints, and AGX− indicates that the local resources were lim-
ited. Notice, how switching between device modes reduces the number of CPU and
GPU cores for both device types.

While the Jetsons’ specific version of Nvidia CUDA has only minor importance,
CUDA itself is crucial to speed up video or point cloud processing through GPU
acceleration. However, to the best of our knowledge, there are no off-the-shelf solutions
to use CUDA for scanning QR codes with OpenCV; hence, CUDA was only used to
accelerate CV and LI, while QR was processed entirely on the CPU.

5.3 Results & Discussion

Given the experimental setup, we evaluate the prototype based on: (1) how long does
the AIF agent to find a satisfying parameter configuration; (2) is the behavior of the
AIF agent explainable during its action-perception cycle; (3) how does the service and
device heterogeneity impact agents’ decisions. For this, we conduct a total number of
12 experiments, which stems from the fact that we evaluate each services on each device
type. During the experiments, we capture the current SLO fulfillment, the preferred
configuration, and the pv and ig values that the AIF agent assigns to each parameter
combination. Additionally, we collect the structure of the generative model.

Figure 5 shows the SLO fulfillment that the AIF agents reported during each of
its iterations. For each of the services, the tendency is that the agent initially reports
low SLO fulfillment while it is still exploring the solution space; however, after 20-
30 iterations the agent converges to a clear preference. Table 3 shows the respective

2Prices adopted from sparkfun, accessed Jul 31st 2024
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Fig. 5: Empirical SLO fulfillment measured during service execution; initial training
rounds show unstable behavior, while later rounds converge to a clear preference

parameter configurations to which the agents converged. For 11 out of 12 cases, we
could verify through exhaustive comparison that the chosen parameter configuration
was optimal, or showed only minor divergence. For the CV service on AGX− (grey
line in Figure 5a), however, the exploration did not provide the desired results, and
so it converged to a sub-optimal configuration.

Given this, we conclude that the AIF agent is not guaranteed to find the optimal
solution; however, the results showed that in most of the cases it was still possible
to find the optimal solution. Hence, using the AIF agent to supervise the processing
service showed promising results. Combined with its low processing overhead [42], this
makes it a great fit for for resource-constrained edge devices.

To analyze whether the behavior of the AIF agent is explainable, we retrace its
steps and verify how it selects its preferred parameter combinations. In Figures 6 and
7, we provide the final matrices for the pv and ig values that the agent assigned to
each parameter configuration at the end of the experiment. Recall, that in case a
configuration was not empirically evaluated yet, the agent interpolates its pv and ig
according to neighboring configurations. Given the figures, we notice that the matrices
are coherent with the preferred configurations in Table 3: the chosen configuration
showed both a high pv due to the expected SLO fulfillment, but also a low ig due to
the increasing exploitation, i.e., the configuration promise little model improvement.
Additionally, Figure 8 shows the structure of the generative models for each of the
processing services, that is, how the AIF agent linked the configuration parameters
and SLO variables during BNL. It is according to this variable relations, that the
agent reasons how it must adjust pixel and fps to fulfill the SLOs.

Given that, we conclude that the agents’ behavior is rationally explainable because
the edges in the DAG are logical and match our expert knowledge. Using this graph, it
is possible to explain why the agent converged to a certain configuration, e.g., CV at
NX+ to pixel = 5 and fps = 5, because this configuration showed clearly the highest
pv value in Figure 6a. Still, although its ig value in Figure 7a was lower, the agent
decided that no further exploration was needed. Notice how in both Figures 6a and
6b, there are multiple parameter configurations that promise equal pv values; however,
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Fig. 6: PV Matrices for the three services executed at NX+; individual cells in the
heatmap show the expected SLO fulfillment for each combination of config parameters
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Fig. 7: IG Matrices for the three services executed at NX+; individual cells in the
heatmap indicate expected model improvement when using the specific configuration

the agent randomly selects one of them because they all fulfill its preferences equally.
Given that we would specify an SLO that minimizes energy, not just cap it, this would
lead to a more specific preference here. Together, these rules form coherent patterns
that can be empirically verified, thus increasing the trust in agents’ results.

To answer the third research question, we use the existing results. Given those, we
conclude that the presented framework for adaptive stream processing showed promis-
ing results for all combinations of heterogeneous devices and services. In particular,
Table 3 underlines how the agents adjusted their local generative model to find con-
figurations that match their device capabilities, e.g., AGX+ chose pixel = 1080p for
CV and hence optimized the rate SLO, whereas NX−’s capabilities only sufficed to
choose pixel = 480p. Given all that, we see strong potential for using the agent to
optimize the QoS of other stream processing use cases; the requirements for this are
known from Section 4: observable stream processing and clear variable specifications,
i.e., parameters and SLOs. However, to make this framework apt for more complex
scenarios, further evaluations are needed that operate with larger solution spaces.
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Fig. 8: Directed Acyclic Graphs (DAGs) reflecting the variable relations in the gen-
erative models; relations were extracted through BNL and are empirically verifiable

6 Conclusion

This paper presented a novel framework for adaptive stream processing that continu-
ously ensures QoS during processing on resource-constrained edge devices. Processing
services were supervised through Active Inference, a behavioral framework from neu-
roscience, which allows agents to develop and maintain a logical model of how to
ensure processing requirements, also called SLOs. Thus, edge devices can ensure that
stream processing complies with requirements. By executing AIF agents directly on
edge devices, it is possible to observe with low latency how different service configu-
rations impact SLO fulfillment. Depending on the outcome, AIF agents continuously
adjust their generative model and use it to infer service configurations that promise
high SLO fulfillment or further model improvement. To that extent, the AIF agents
make use of causal variable relations that determine how their actions affect SLO
fulfillment; this increases the trustworthiness of inferred configurations.

To evaluate the framework, we implemented a Python-based AIF agent for moni-
toring and guaranteeing SLO fulfillment, by adapting local processing configurations.
In this way, we implemented an elasticity strategy on constrained edge devices, that
are otherwise unable to scale resources as in cloud computing scenarios. We evaluated
our framework on three different scenarios for stream processing, two for video pro-
cessing and one for Lidar sensors, which were executed on heterogeneous edge devices.
Not only did the devices, i.e., two instances of Nvidia Jetson, have different process-
ing capabilities, but they could also operate in different hardware modes. Given this
setup, the problem was to find service configurations that fulfill SLOs on processing
time, energy consumption, and detection rate. Our results showed that the AIF agents
required roughly 20 to 30 iterations in the action-perception cycle to converge to the
optimal solution; further, the inferred results were empirically verifiable and followed
logical patterns. Based on that, we see strong potential for AIF agents to support
elastic stream processing in further, real time scenarios. We plan to extend the evalua-
tion of our contribution to more complex scenarios, where the solution space is larger.
Furthermore, we plan to have an in depth comparison of how AIF performs when
compared to other ML methods.
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