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A B S T R A C T

The solution to a job scheduling problem that involves humans as well some other shared resource has to
consider the humans’ availability times. For practical acceptance of a scheduling tool, it is crucial that the
interaction with the humans is kept simple and to a minimum. It is rarely practical to ask users to fully
specify their availability times or to let them enumerate all possible starting times for their jobs. In the
scenario we are considering, users initially only propose a single starting time for each of their jobs and a
feasible and optimized schedule shall then be found within a small number of interaction rounds. In each
such interaction round, our scheduling approach may propose each user a small number of alternative time
intervals for scheduling the user’s jobs, and then the user may accept or reject these. To make the best out
of these limited interaction possibilities, we propose an approach that utilizes integer linear programming
and an exact and computationally efficient probability calculation for the users’ availabilities assuming two
different stochastic models. In this way, educated proposals of alternative time intervals for performing the jobs
are determined based on the computed availability probabilities and the improvements these time intervals
would enable. The approach is experimentally evaluated on a variety of artificial benchmark scenarios, and
different variants are compared with each other and to diverse baselines. Results show that an initial schedule
can usually be quickly improved over few interaction rounds even when assuming a quite simple stochastic
model, and the final schedule may come close to the solution of the full-knowledge case despite the strongly
limited interaction.
1. Introduction

We consider a class of job scheduling problems in which human
users, e.g., the personnel of a company, is involved as a bottleneck
resource. Jobs of these users have to be scheduled interactively in a
way that is perceived by the humans as simple, stress-free, and with
low cognitive effort, while at the same time a cost function has to
be minimized. In the simplest, and from the users’ perspective most
convenient case, each user just suggests one starting time for each of
their jobs. However, the jobs also require further shared resources,
therefore this directly obtained schedule will rarely be feasible or cost-
efficient. Ideally, we would know all about the times in which each user
is available to perform their jobs. In this case we would be able to di-
rectly and optimally solve the scheduling problem without any further
interaction. Requesting such complete availability information from the
users is, however, in most practical scenarios impossible or far too
troublesome. We therefore start with single starting time suggestions
for the jobs from the respective users and collect more information on
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the users’ availabilities in a small number of simple interaction rounds,
which enhance the flexibility for the scheduling and help to find better
schedules. In each such round, the scheduling approach is allowed to
propose each user a small number of alternative time intervals for
scheduling their jobs. The users are then supposed to indicate their
acceptance or rejection of these time intervals in dependence of their
availabilities. Hereby, we explicitly avoid that users need to specify
larger amounts of additional availability intervals on their own. The
insights gathered are used to improve the schedule from the previous
round.

The main challenge we address in this work is to come up in each
interaction round with meaningful queries for further time intervals to
perform jobs in. These queries are presented to the users and should

(a) have a reasonable chance to be accepted and
(b) allow the optimization to obtain a better schedule.
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Very large time intervals, for example, may improve the schedule the
most due to the large gain of flexibility, but they will most likely be
rejected by the users and cannot be considered meaningful. To consider
(a), the likelihood that users accept queried time intervals in some
reasonable way, we need to exploit at least some stochastic assumptions
on the users’ unknown availabilities. Ideally, we would have detailed
user-specific stochastic models available, for example derived from
historic availability data. Here, we first assume that such information is
not known and instead build upon just a simple stochastic model, where
the probability that the user is available in a timestep only depends on
the availability in the previous timestep. For comparison purposes, we
then also consider a more advanced stochastic model, which actually
reflects the way our benchmark scenarios are generated.

The scheduling problem introduced in this paper will be called the
Interactive Job Scheduling Problem (IJSP). It is inspired by an industrial
setting where a company owns a few expensive motor test stands and
employees use them to measure different characteristics of motors.
We anticipate that this problem setting can be generalized to a class
of problems where availability of employees and some resource of
time-varying cost is needed. In the IJSP we assume that each job is
associated with and requires one specific user and one of a set of
available machines. On each machine, only one job can be performed at
any time in a non-preemptive manner. As planning horizon we consider
several days and time is discretized. Jobs have individual but machine-
independent durations. Scheduling a job induces costs, for example for
used electricity, and we consider these costs to be time-dependent. For
example, when electricity is needed in a substantial way and bought on
the spot market, (expected) electricity costs may change significantly
over time. To avoid having to deal with infeasible schedules, we allow
that jobs remain unscheduled at additional penalty costs. The objective
is to find a feasible schedule of minimum total cost.

The overall scenario can also be seen as an online optimization
problem, because important instance data only is revealed over time,
but also as a kind of active learning, as the solution approach queries
he users to learn more information, which is further exploited in the
ptimization. Our main contributions are

(a) to propose this general interactive scheduling setting and to
narrow it down specifically to the IJSP for making concrete
computational investigations on,

(b) an exact and computationally efficient calculation of the prob-
abilities for users to accept potentially queried time intervals
based on the already known availability information from the
users and the assumption that the availability probability in
a timestep only depends on the availability of the previous
timestep,

(c) a respective probability calculation for a more advanced stochas-
tic model reflecting the way our benchmark scenarios are cre-
ated, and

(d) to propose a heuristic solution approach for the IJSP that utilizes
these probability calculations.

In an experimental evaluation, this solution approach is compared to a
greedy baseline approach as well as to solving the full-knowledge case.
Results show that already with a very moderate amount of interaction
and the assumptions of the simpler model, much better schedules
can be obtained than with just the original user input. Moreover, the
probability-based selection of time intervals to propose the users is
clearly superior to the greedy method, and ultimately, schedules may
be obtained that come close to those of solving the full-knowledge case.

A preliminary version of this work has been published as con-
ference paper (Varga et al., 2023b). The current article extends this
in several ways. Entirely new is the consideration of the advanced
stochastic model, which assumes that a user is available in up to
two time intervals per day, both with known distributions for their
start time and duration. The comparison of the two different methods
2

for calculating probabilities within our approach shows that the more
advanced model leads to better results, although the simpler model still
performs surprisingly well and is more generally applicable. Moreover,
we considerably extended the experimental evaluation. In particular we
now also

(a) vary the number of users while at the same time fixing the
number of jobs,

(b) examine the convergence behavior of our approaches over a
higher number of interaction rounds,

(c) consider different user-communication configurations by vary-
ing the amount of interaction done each round and requiring
users to initially specify additional alternative starting times for
each of their jobs, and

(d) evaluate on instances, where the user availabilities are derived
from real-world data.

The next section puts our work in relation to other work from the
literature. Section 3 formalizes our IJSP and introduces the ILP used
as optimization core. Section 4 presents our solution approaches: a
greedy baseline method and the advanced heuristic that makes use
of estimated acceptance probabilities for time interval suggestions.
The calculation of acceptance probabilities is subsequently detailed
in Section 5 based on the simpler model and in Section 6 based on
the more advanced model. Section 7 shows experimental results, and
Section 8 concludes this work.

2. Related work

The core of this problem, if neglecting the users, can be described
in the common three-field notation for scheduling problems (Graham
et al., 1979) as Q∥TEC. The objective is to minimize Total Energy Costs
(TEC). Usually, uniform machines, which are indicated by Q, differ
in their speed and therefore job processing times between any two
machines differ by a constant factor. In our problem, job processing
times are machine independent, still energy costs are uniformly ma-
chine dependent and thus we consider the machines to be uniform.
The similar problem Q∥𝐶max, TEC, again with machine independent
processing times and machine dependent energy costs, additionally
takes the makespan into account for the objective and has been con-
sidered in the literature. Solving approaches for it include applying a
solver to a Mixed Integer Linear Program (MILP) (Wang et al., 2018;
Anghinolfi et al., 2021), a problem specific heuristic and a genetic
algorithm (Wang et al., 2018), as well as a greedy heuristic and
local search (Anghinolfi et al., 2021). Also similar is the scheduling
problem R∥TEC where jobs have in general different processing times
on different machines. For this problem, Ding et al. (2016) proposed a
MILP and a Dantzig–Wolfe decomposition. The MILP formulation was
further improved by Cheng et al. (2018) and by Saberi-Aliabad et al.
(2020).

The overall scenario can be seen as a Markov-decision process. User
availabilities are only partially known and revealed over time based
on the algorithm’s actions. The algorithm’s current knowledge about
user availabilities is the state, the query is the action and the cost
reduction after user replies is the reward. Markov-decision processes
serve as underlying environment in reinforcement learning, which has
been used in numerous works to solve scheduling problems. Kayhan
and Yildiz (2021) review 80 papers on solving scheduling problems via
reinforcement learning, published between 1995 and 2020, and iden-
tify characteristics such as the learning algorithm, the problem type and
whether the system is modeled as single- or as multi-agent. Zhang et al.
(2012) used reinforcement learning to solve another parallel machine
scheduling problem. More recently, Monaci et al. (2024) solved the job
shop scheduling problem using deep reinforcement learning, Uzunoglu
et al. (2023) incorporated supervised learning to solve a scheduling
problem with batching, and Varga et al. (2023a) introduced a Benders
decomposition framework for scheduling problems in which the addi-

tion of cuts is effectively guided by a machine learning model. Note that
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these approaches apply supervised learning and reinforcement learning
to learn a model that is part of the optimization algorithm and thus they
cannot be used for our scenario.

In interactive optimization approaches, most works only consider
a single user who guides the optimization process. For instance, Saha
et al. (2021) develop approaches based on evolutionary algorithms
that cooperate with human designers to find aesthetic, aerodynamic,
and structurally efficient designs for automotives. Furthermore, Aghaei-
Pour et al. (2022) consider a multiobjective optimization problem
where the human interactively specifies preferences on the solution,
and those preferences are considered within an evolutionary algo-
rithm. Interactive optimization with multiple users is less common.
For instance, Jatschka et al. (2021) consider a MILP-based cooperative
optimization approach that interacts with many users to learn an objec-
tive function for distributing service points in mobility applications. As
optimization core they solve a MILP. In contrast to our problem setting
they do not distinguish between different users and only learn about
the collective preferences of all users.

Active learning on the availability times of the users has already
been done in the domain of calendar scheduling. There, a calendar
scheduling agent assists the user in arranging meetings with others and
to do so it learns the user’s preferences over time. Existing approaches
use decision trees (Mitchell et al., 1994), the weighted-majority algo-
rithm or the Winnow algorithm (Blum, 1997) for the learning task. In
particular they learn to suggest a duration, location, day-of-the-week
and time for a meeting, given the event type and the attendees. Since
these approaches fundamentally rely on the event type and attendees,
and do not consider a cost function, they cannot be applied in our
setting without substantial modifications.

3. Interactive job scheduling problem

The IJSP is formally introduced as follows. Let the planning period
be given by 𝑡max-day days, each with 𝑡max uniform timesteps, and let
𝑇 = {𝑡 ∣ 𝑡 = (𝑡day , 𝑡time), 𝑡day = 1,… , 𝑡max-day, 𝑡time = 1,… , 𝑡max} be a set
of pairs where each pair refers to a specific timestep at a specific day.
To refer to a time interval within a day and the corresponding set of
timesteps, we use the notation [𝑡1, 𝑡2] = {(𝑡day1 , 𝑡time

1 ),… , (𝑡day2 , 𝑡time
2 )} for

1, 𝑡2 ∈ 𝑇 ∣ 𝑡day1 = 𝑡day2 , 𝑡time
1 ≤ 𝑡time

2 , and adding a scalar 𝛥 to a tuple 𝑡 ∈ 𝑇
is defined as 𝑡 + 𝛥 = (𝑡day , 𝑡time + 𝛥).

Denote the set of users by 𝑈 and let the set of jobs of user 𝑢 ∈ 𝑈
be 𝐽𝑢. Let each job 𝑗 ∈ 𝐽𝑢 have a duration 𝑑𝑗 ∈ {1,… , 𝑡max} and use
he notation 𝑇𝑗 [𝑡] = [𝑡, 𝑡 + 𝑑𝑗 − 1] to refer to the subset of timesteps
here job 𝑗 is performed if started at timestep 𝑡. Furthermore, the

andidate starting times of job 𝑗 ∈ 𝐽 are restricted to the set 𝑇 job
𝑗 =

𝑡max-day

𝑡day=1 {(𝑡day , 1),… , (𝑡day , 𝑡max − 𝑑𝑗 +1)}, since a job has to finish on the
same day it started. Denote the set of all jobs by 𝐽 =

⋃

𝑢∈𝑈 𝐽𝑢, and let
𝑛 = |𝐽 |. To perform a job, two resources are needed: the user associated
with the job and a machine. Denote the set of machines by 𝑀 .

Using machine 𝑖 ∈ 𝑀 in timestep 𝑡 ∈ 𝑇 induces a time-dependent
cost 𝑐𝑖𝑡 ≥ 0, e.g., for electricity depending on expected spot market
prices. For a job to be feasibly scheduled, it needs to be given non-
preemptive access to a machine and its user must have time for the
complete duration of the job. If a job 𝑗 ∈ 𝐽 cannot be feasibly sched-
uled, this induces a cost 𝑞𝑗 ≥ 0, e.g., for over-time or extra personnel.
We assume that the cost for leaving a job unscheduled is always higher
than the highest cost of scheduling it, i.e., 𝑞𝑗 ≥ 𝑑𝑗 max𝑖∈𝑀, 𝑡∈𝑇 𝑐𝑖𝑡, 𝑗 ∈ 𝐽 .

The dynamic and interactive aspect of our problem is represented
by  = (𝑗 )𝑗∈𝐽 where 𝑗 ⊆ 𝑇 job

𝑗 are the timesteps in which job 𝑗
may start in when considering the respective user’s currently known
availabilities. More details on  are addressed later.

Assuming for now  is given and fixed, we aim at finding a feasible
schedule of minimum cost. The problem is strongly NP-hard and cannot
be approximated, as it is a generalization of the basic STOUC, intro-
duced by Chen and Zhang (2019), which is also NP-hard and cannot
3

be approximated. We model the IJSP with the following ILP, in which f
the binary decision variables 𝑥𝑗𝑖𝑡 indicate if job 𝑗 ∈ 𝐽 is scheduled on
machine 𝑖 ∈ 𝑀 to start with timestep 𝑡 ∈ 𝑗 , or not.

ILP( ) min
∑

𝑗∈𝐽

∑

𝑖∈𝑀

∑

𝑡∈𝑗

∑

𝑡′∈𝑇𝑗 [𝑡]
𝑐𝑖𝑡′𝑥𝑗𝑖𝑡 +

∑

𝑗∈𝐽
𝑞𝑗

⎛

⎜

⎜

⎝

1 −
∑

𝑖∈𝑀

∑

𝑡∈𝑗

𝑥𝑗𝑖𝑡
⎞

⎟

⎟

⎠

(1)

s.t.
∑

𝑖∈𝑀

∑

𝑡∈𝑗

𝑥𝑗𝑖𝑡 ≤ 1 𝑗 ∈ 𝐽 (2)

∑

𝑗∈𝐽

∑

𝑡∈𝑗 ∣𝑡′∈𝑇𝑗 [𝑡]
𝑥𝑗𝑖𝑡 ≤ 1 𝑖 ∈ 𝑀, 𝑡′ ∈ 𝑇 (3)

∑

𝑗∈𝐽𝑢

∑

𝑖∈𝑀

∑

𝑡∈𝑗 ∣𝑡′∈𝑇𝑗 [𝑡]
𝑥𝑗𝑖𝑡 ≤ 1 𝑢 ∈ 𝑈, 𝑡′ ∈ 𝑇 (4)

𝑥𝑗𝑖𝑡 ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀, 𝑡 ∈ 𝑗 (5)

The first and second term of the objective function (1) correspond
to the total cost for machine usage and unscheduled jobs, respec-
tively. Constraints (2) ensure that each job is scheduled at most once,
constraints (3) limit the number of scheduled jobs per machine and
timestep to one, and constraints (4) limit the number of jobs per user
and timestep to one.

As indicated, this model can be solved for different sets  that
reflect the user availability information in the current stage of the
decision-making. As an important characteristic of the problem is that
the user availability is not assumed to be fully known, we introduce the
following notation for the currently available information. Let 𝑇 avail

𝑢 ⊆ 𝑇
be a subset of timesteps where user 𝑢 ∈ 𝑈 has confirmed to be available.
Feasible start times for each job 𝑗 ∈ 𝐽𝑢 can then be derived as 𝑇 feas

𝑗 =
{𝑡 ∈ 𝑇 job

𝑗 ∣ 𝑇𝑗 [𝑡] ⊆ 𝑇 avail
𝑢 }. Further, let 𝑇 infeas

𝑗 ⊆ 𝑇 refer to time steps
where job 𝑗 ∈ 𝐽 is not allowed to start since the user is known to be
unavailable in at least one time step in 𝑇𝑗 [𝑡], 𝑡 ∈ 𝑇 infeas

𝑗 .
Based on these confirmed availabilities and unavailabilities, it is

possible to solve the model ILP( ) for two extreme cases. For  =
(𝑇 feas

𝑗 )𝑗∈𝐽 , only the timesteps that the respective users have so far
confirmed to be available are included, and thus the solution to
ILP((𝑇 feas

𝑗 )𝑗∈𝐽 ) is feasible for the IJSP and in general provides a pes-
simistic bound. For  = (𝑇 job

𝑗 ⧵ 𝑇 infeas
𝑗 )𝑗∈𝐽 , all timesteps except those

where the users are already known to be not available are included,
and the solution to ILP((𝑇 job

𝑗 ⧵𝑇 infeas
𝑗 )𝑗∈𝐽 ) provides an optimistic bound;

but the corresponding schedule may not be feasible with respect to user
availability.

The interactive aspect of the problem is that users can be queried
concerning their availabilities. A query is represented by a pair (𝑢, [𝑡, 𝑡′])
specifying a user 𝑢 ∈ 𝑈 and a time interval from 𝑡 ∈ 𝑇 to 𝑡′ ∈ 𝑇 . If the
user is available in the full interval of the query, this information is
directly included in the sets 𝑇 avail

𝑢 and 𝑇 feas
𝑗 . If the user is unavailable

in at least one timestep of the interval, the interval is rejected and
included in the set 𝐼 rej𝑢 . In such update, 𝐼 rej𝑢 is made sure not to
contain any interval that is a superinterval of another interval, as such
superintervals are redundant. The interaction with the users is made in
a number of rounds, and before each new round an updated ILP( ) can
e solved. Let the number of rounds be 𝐵 ∈ N>0, and let the allowed
umber of queries in each round be 𝑏 ∈ N>0. In each round, one user
ay receive multiple queries, i.e., suggestions for alternative starting

imes for their jobs. The choice of queries to make in a round is critical
or the outcome of the scheduling, and our strategy for this is described
n the next section.

. Solving approaches

The challenge in each round is to find a set of queries that are likely
o be accepted and reduce the objective value as much as possible if
ccepted. We consider only queries that are reasonable in the following
ense. They concern the scheduling of jobs outside the users’ already
nown availabilities, and we do not want to have more than one query

query job infeas feas
or a user for the same day. Denote with 𝑇𝑗 = 𝑇𝑗 ⧵𝑇𝑗 ⧵𝑇𝑗 all
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Fig. 1. Visualization of the solution approach for a single round.

tarting times of job 𝑗 that would require a confirmed user query. Most
eneficial queries – if accepted – can then be determined by solving the
odel ILP((𝑇 query

𝑗 ∪ 𝑇 feas
𝑗 )𝑗∈𝐽 ) with the additional constraints

∑

𝑗∈𝐽

∑

𝑖∈𝑀

∑

𝑡∈𝑇 query
𝑗

𝑥𝑗𝑖𝑡 ≤ 𝑏 (6)

∑

𝑗∈𝐽𝑢

∑

𝑖∈𝑀

∑

𝑡∈𝑇 query
𝑗 ∣𝑡day=𝑡day

𝑥𝑗𝑖𝑡 ≤ 1 𝑢 ∈ 𝑈, 𝑡day ∈ {1,… , 𝑡max-day} (7)

where the former limits the total number of user queries to 𝑏 and the
latter prevents multiple queries for the same user on the same day.
Having obtained a solution 𝑥, each value of one of a variable 𝑥𝑗𝑖𝑡 for
𝑢 ∈ 𝑈 , 𝑗 ∈ 𝐽𝑢, 𝑖 ∈ 𝑀 and 𝑡 ∈ 𝑇 job

𝑗 ⧵ 𝑇 infeas
𝑗 ⧵ 𝑇 feas

𝑗 results in a
query [𝑡, 𝑡 + 𝑑𝑗 − 1] for user 𝑢. We refer to this approach to determine
user queries by Greedy. In particular, Greedy selects those queries that
improve the objective value the most, if accepted.

This approach can possibly be improved by assuming that the user
availabilities behave according to some model that yields an acceptance
probability for each query. To exploit such probabilities, we remove the
starting times from 𝑇 query

𝑗 whose associated queries have probabilities
below a given threshold 0 ≤ 𝑝lim ≤ 1, i.e., which we do not consider
promising. Queries are again obtained by solving ILP((𝑇 query

𝑗 ∪𝑇 feas
𝑗 )𝑗∈𝐽 )

with constraints (6) and (7), but now with these reduced sets 𝑇 query
𝑗 .

As model for the acceptance probabilities, the next section proposes
a rather generic one based on the assumption that the availability
probability of a user only depends on the availability in the previ-
ous timestep. This can also be seen as a two-state Markov process,
and consequently, we refer to this model-based solution approach by
Markov(𝑝lim). Later, in Section 6, we will further consider a more
specialized model for the probability calculation, which corresponds to
the actual way our benchmark scenarios were randomly generated. We
will refer to this as Advanced(𝑝lim).

The whole procedure in each round is shown in Fig. 1. First the set
of possible queries is determined and for each of these query candidates
the acceptance probability of the user is estimated. Only queries with
estimated probability above the threshold 𝑝lim are considered further
and an ILP is used to select the 𝑏 most promising ones, in the sense that
they improve the objective value most if accepted. The corresponding
user either accepts or rejects each of these queries and this feedback
is used to update the knowledge about the users’ availabilities and to
compute an improved schedule based on the gained freedom.

5. Probability calculation for the two-state Markov process

Consider a single user 𝑢 ∈ 𝑈 and a single day 𝑡day ∈ {1,… , 𝑡max-day}.
4

For better readability we refer to the timesteps of this day in the o
following by 𝑇𝑡day = {1,… , 𝑡max}. Assume that the average duration
of the periods when a user is available, and the average duration
of the unavailable-periods are known. When we want to exploit just
this minimal information, it is natural to model a user’s availabilities
by a simple two-state Markov process. The two states of this process
are 0 and 1, representing that the user either is unavailable in the
current timestep or available, respectively. Moreover, let us introduce
the additional artificial timesteps 0 and 𝑡max + 1 before the start of the
day and after the end of the day. In both of these timesteps, the user
is not available and therefore the corresponding state is 0. Proceeding
from one timestep to the next, we associate probabilities 𝜌00, 𝜌01, 𝜌10,
and 𝜌11 for staying in state 0, transitioning from 0 to 1, transitioning
from 1 to 0, and staying in state 1, respectively. Naturally, 𝜌00 = 1−𝜌01
and 𝜌11 = 1−𝜌10 must hold. This Markov process is depicted in Fig. 2a.
The transition probabilities are computed based on the fact that the
expected number of steps the Markov process stays in state 1 is 1∕𝜌10
and 1∕𝜌01 for state 0. In this section we only consider one user, and for
the sake of simplicity we omit the index regarding this user.

Given the current set of known availability times 𝑇 avail and the set
of so far rejected time intervals 𝐼 rej, we now want to determine the
probability that the user is available in some given time interval [𝜏, 𝜏′],
1 ≤ 𝜏 ≤ 𝜏′ ≤ 𝑡max. For this purpose we unroll the Markov process into a
state graph over all timesteps from 0 to 𝑡max+1 as follows and illustrated
n Fig. 2b.

As the user is supposed to be not available outside of 𝑇𝑡day , the
nitial state at the beginning of the day is represented by the single
ode 00. Then, we have nodes 0𝑡 and 1𝑡 for each timestep 𝑡 ∈ 𝑇𝑡day ,
ndicating the availability or non-availability of the user in timestep
. We also add node 0𝑡max+1 and for now 1𝑡max+1 to allow a correct
odeling of the transition to the time after the considered time horizon

y the two-state Markov process. All nodes of two successive timesteps
re connected with arcs corresponding to the state transitions of the
arkov process, and they are weighted with the respective transition

robabilities 𝜌00, 𝜌01, 𝜌10, and 𝜌11.
Ignoring known user availabilities 𝑇 avail and rejected time intervals

rej for now, this state graph has been constructed in such a way that
ach path from node 00 to either node 0𝑡max+1 or 1𝑡max+1, which we
all terminal nodes, corresponds to exactly one outcome of the Markov
rocess over 𝑡max + 1 timesteps, and each possible outcome of the
arkov process has an individual corresponding path. We refer by the
robability of a path to the product of the path’s arc weights, and with
he probability of a set of paths to the sum of the paths’ probabilities.
he probability of all paths from node 00 to any of the terminal nodes

s then one as this covers all possible outcomes of the Markov process.
Next, we consider the already known availability times 𝑇 avail of

he user by removing all nodes 0𝑡 for 𝑇 avail with their incident arcs.
his effectively reduces the set of possible paths, and thus represented
arkov process outcomes, to those where state 1 is achieved in all

imesteps from 𝑇 avail. Moreover, we also remove node 1𝑡max+1 with its
ngoing arcs in order to model that the user is unavailable after the last
ctual timestep 𝑡max.

To modify the graph w.r.t. the intervals in which the user is known
o be available was straightforward since all timesteps of such intervals
ust have state 1. A time interval rejected by the user requires more

are since it implies only that for at least one timestep in the interval –
ut not necessary all – the Markov process is in state 0. Only a rejected
ime interval [𝑡, 𝑡] ∈ 𝐼 rej of length one can thus be handled directly by
emoving node 1𝑡 with its incident arcs as the Markov process has to be
n state 0 in this timestep. For a longer rejected interval [𝑡1, 𝑡2] ∈ 𝐼 rej we
nsure that only paths are kept in the graph where the Markov process
chieves state 0 at least once within this interval. More specifically,
bserve that if the Markov process is in timestep 𝑡 ∈ [𝑡1, 𝑡2] and state 0
as not been obtained in timesteps [𝑡1, 𝑡] yet, then there has to follow at
east one timestep 𝑡′ ∈ [𝑡+ 1, 𝑡2] in which state 0 is achieved. To model
his aspect, we add further nodes 1𝑡2𝑡 for 𝑡 ∈ [𝑡1, 𝑡2 − 1], [𝑡1, 𝑡2] ∈ 𝐼 rej to

ur graph. Former arcs (0𝑡, 1𝑡+1) and (1𝑡, 1𝑡+1), 𝑡 ∈ 𝑇𝑡day ∪ {0}, are now
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Fig. 3. The state graph for 𝑡max = 4, 𝑇 avail = {2}, and 𝐼 rej
𝑢 = {(1, 3), (2, 4)}.
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replaced by arcs (0𝑡, 1
𝑡2
𝑡+1) and (1𝑡, 1

𝑡2
𝑡+1), respectively if there is a rejected

time interval [𝑡1, 𝑡2] ∈ 𝐼 rej starting in the next timestep 𝑡1 = 𝑡 + 1 and
nding in timestep 𝑡2. Note that there can be at most one interval in
𝑡1, 𝑡2] ∈ 𝐼 rej that starts at timestep 𝑡1 since 𝐼 rej has been guaranteed not
o contain a proper subinterval of [𝑡1, 𝑡2]. Each new node 1𝑡2𝑡 further has
n outgoing arc to node 0𝑡+1 if this node still exists, corresponding to
he transition to state 0. Moreover, there is an outgoing arc from each
ode 1𝑡2𝑡 to node 1𝑡2𝑡+1 as long as 𝑡+1 < 𝑡2 for the case of staying in state
. Due to the absence of an arc from node 1𝑡2𝑡2−1 to some successor node

in which state 1 is kept, it is effectively enforced that state 0 is reached
at least once within the rejected time interval [𝑡1, 𝑡2]. Remaining nodes
without ingoing arcs except 00 and their outgoing arcs are pruned as
they do not play an active further role. An example of such a final state
graph is shown in Fig. 3.

Now, we want to utilize this graph to derive the probability that
the considered user is available in a given time interval [𝜏, 𝜏′]. The key
observation to do this efficiently is that each path from node 00 to a
node 𝑣 passes through exactly one predecessor of 𝑣. Therefore the total
probability 𝑝path00 ,𝑣

of all paths from 00 to 𝑣, denoted by Paths(00, 𝑣), can
be computed recursively as

𝑝path00 ,𝑣
=

∑

𝑃∈Paths(00 ,𝑣)

∏

(𝑢,𝑢′)∈𝑃
𝜌(𝑢, 𝑢′)

=
∑

𝑢∈𝑁−(𝑣)

∑

𝑃∈Paths(00 ,𝑢)

(

∏

(𝑢,𝑢′)∈𝑃
𝜌(𝑢, 𝑢′)

)

⋅ 𝜌(𝑢, 𝑣) =
∑

𝑢∈𝑁−(𝑣)
𝑝path00 ,𝑢

𝜌(𝑢, 𝑣),

(8)

where 𝑃 denotes one specific 00–𝑣 path represented by the correspond-
ing set of arcs and 𝑁−(𝑣) is the set of predecessors of node 𝑣. Denoting
the set of successors of node 𝑣 by 𝑁+(𝑣), the probabilities 𝑝path𝑣,0𝑡max+1

of all
paths from a node 𝑣 to node 0𝑡max+1 can be correspondingly computed
recursively by

𝑝path𝑣,0𝑡max+1
=

∑

𝑤∈𝑁+(𝑣)
𝑝path𝑤,0𝑡max+1

𝜌(𝑣,𝑤). (9)

We are now interested in all those paths from 00 to 0𝑡max+1 that stay
for the timesteps 𝜏 to 𝜏′ in state 1 nodes, indicating the availability of
the user. Each of these paths is composed of a path from 00 to 1𝑡2𝜏 , a
path 𝑃 from 1𝑡2𝜏 to 1𝑡2𝜏′ that only uses state 1 nodes, and a path from 1𝑡2𝜏′
to 0𝑡max+1 for some 𝑡2 ≥ 𝜏′ + 1. As a special case the middle segment 𝑃
can also start in 1𝜏 and then it either ends in 1𝜏′ if no rejected interval
starts within [𝜏, 𝜏′] or otherwise in 1𝑡2𝜏′ for an appropriate 𝑡2 ≥ 𝜏′ + 1.
There are only a few possibilities for the middle segment 𝑃 and the
probability of all paths that stay in state 1 nodes for the timesteps from
𝜏 to 𝜏′ can be computed with a sum over these possibilities. For us, the
conditional probability in respect to all paths in the graph, i.e., those
respecting 𝑇 avail and 𝐼 rej and ending in 0 , is of main interest, which
5

𝑡max+1
is

𝑝avail([𝜏, 𝜏′] ∣ 𝑇 avail, 𝐼 rej, 0𝑡max+1) =

∑

𝑃∈1-Paths(𝜏,𝜏′) 𝑝
path
00 ,𝑃𝜏

⋅ 𝜌𝜏′−𝜏11 ⋅ 𝑝path𝑃𝜏′ ,0𝑡max+1

𝑝path0,𝑡max+1

, (10)

where the sum is taken over all middle segments 1-Paths(𝜏, 𝜏′), and 𝑃𝜏
and 𝑃𝜏′ are the first and last nodes of a middle segment 𝑃 , respectively.

he denominator is the probability of all paths from 00 to 0𝑡max+1, and
he nominator the probability of only those paths that stay in state 1
odes in timesteps 𝜏 to 𝜏′.

ime complexity. The unrolled state graph, considering rejected time
ntervals, can have for each timestep 𝜏 a 0-state 0𝜏 , a 1-state 1𝜏 and 1-
tates 1𝑡2𝜏 with 𝑡2 being the final timestep of each rejected time interval
ontaining timestep 𝜏, i.e., 𝑡2 ∈ 𝐼 rej𝜏 = {𝑡2 ∈ 𝑇 ∣ ∃[𝑡1, 𝑡2] ∈ 𝐼 rej, 𝑡1 ≤
≤ 𝑡2}. Let 𝑛rej,max = max𝜏∈𝑇 |𝐼 rej𝜏 | be the maximum number of rejected

ime intervals containing the same time step 𝜏. As the timesteps range
rom 0 to 𝑡max+1, the graph has at most (𝑛rej,max+2)(𝑡max+2) nodes and
ince no node can have more than two outgoing arcs, the number of
rcs is limited by 2(𝑛rej,max + 2)(𝑡max + 2). Computing 𝑝path is performed
(|𝑈 |𝑡max-day) times and its time complexity is linear in the number of
odes and arcs and therefore in (𝑛rej,max𝑡max). The number of 1-Paths
n (10) is limited by the number of nodes in timestep 𝜏, since each
-node can only have one succeeding 1-node. Therefore computing
avail([𝜏, 𝜏′] ∣ 𝑇 avail, 𝐼 rej, 0𝑡max+1) takes time (𝑛rej,max) and is performed
or each user, each day and each way to fit an interval of job length
nto the time horizon, in other words for (|𝑈 |𝑡max-day𝑡max max𝑗∈𝐽 𝑑𝑗 )
ueries in each round. This results in an overall time complexity of
(|𝑈 |𝑡max-day𝑡max𝑛rej,max max𝑗∈𝐽 𝑑𝑗 ) for computing the probabilities of all
ueries in one round.

. Probability calculation for the advanced model

The two-state Markov process is a quite general but crude simplifica-
ion of the users’ behavior. To evaluate the impact of this simplification
nd to demonstrate how the approach can be extended to a more
ealistic scenario, we now consider a more advanced model. In fact,
he benchmark instances we will use in the computational experiments
ere also generated according to this model.

Users are assumed to have up to two independent availability
ntervals each day, each happening with probability 𝑞 ∈ [0, 1]. The
tarting time and duration of each interval 𝑖 ∈ {1, 2} are assumed to
e distributed according to some (discrete) distributions with proba-
ility mass functions 𝑓 start

𝑖 and 𝑓 dur
𝑖 , and cumulative distribution func-

ions 𝐹 start
𝑖 and 𝐹 dur

𝑖 , respectively. For more details on the distribu-
ion functions we use in our experimental evaluation, we refer to
ection 7.1.

We derive a Markov chain to model this behavior and use the same
deas as in the previous section to calculate probabilities for queries
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Fig. 4. Markov chain that models the random creation of an interval using given
distributions for starting time and duration.

to be accepted. A single availability interval can be represented by the
(time-dependent) Markov chain shown in Fig. 4. Here, 1𝑡start represents
multiple states, one for each timestep 𝑡start in which the interval may
tart. In timestep 0, the Markov chain starts in node 0before. It then
ransitions with probability 1− 𝑞 to state 0no, corresponding to the case
hat there is no availability interval, and consequently no 1-node will
e reached. This is represented by

no(𝑡) =

{

1 − 𝑞 if 𝑡 = 0
0 otherwise.

(11)

lse, each timestep 𝑡, 0before transitions into state 1𝑡+1 with probability

01(𝑡) =

{

𝑞 ⋅ 𝑓 start (1) if 𝑡 = 0
𝑓 start (𝑡)

1−𝐹 start (𝑡−1) otherwise,
(12)

hich represents the beginning of the availability interval realizing
he distribution 𝐹 start . Note that in the second case the probability is
aken under the condition that the chain stayed in state 0before until
imestep 𝑡. From state 1𝑡start , the chain transitions into state 0af ter , which
orresponds to ending the availability interval, with probabilities

10(𝑡, 𝑡dur ) =

{

1 if 𝑡 = 𝑡max

𝑓dur (𝑡dur )
1−𝐹 dur (𝑡dur−1) otherwise,

(13)

here 𝑡dur = 𝑡 − 𝑡start + 1.
Let 𝐺1 = (𝑉1, 𝐸1, 𝜌1) be the state graph for the first interval and

2 = (𝑉2, 𝐸2, 𝜌2) be the corresponding one for the second interval. The
ombined state graph, which represents the union of both intervals, is
he direct product 𝐺1 × 𝐺2 = (𝑉1 × 𝑉2, 𝐸12, 𝜌12) (Hammack et al., 2011,
hapter I.5), where each pair of arcs (𝑣1, 𝑤1) ∈ 𝐸1 and (𝑣2, 𝑤2) ∈ 𝐸2
esults in one arc of 𝐸12 with weight 𝜌1(𝑣1, 𝑤1) ⋅ 𝜌2(𝑣2, 𝑤2). The user is

considered to be available in a node (𝑣1, 𝑣2) ∈ 𝐺1 ×𝐺2, or equivalently
(𝑣1, 𝑣2) is a 1-node, iff at least one of 𝑣1 and 𝑣2 is a 1-node. All other
nodes are 0-nodes.

The former knowledge about the user, 𝑇 avail and 𝐼 rej, respectively, is
considered in a similar way as in the previous section. First the product
graph is unrolled, replicating each state in each timestep, with a single
0-node 00 for timestep 0 and a single 0-node 0𝑡max+1 for timestep 𝑡max+1.
Then in the timesteps 𝑡 ∈ 𝑇 avail, in which the user is available, all 0-
nodes are removed. Intervals in 𝐼 rej are taken into account in a similar
way as discussed in the previous section. In particular, for each 1-node
𝑣 and each interval end 𝑡2 ∈ 𝑇 ∶ [𝑡1, 𝑡2] ∈ 𝐼 rej, we add a node 𝑣𝑡2 . Arcs
(𝑢, 𝑣) with 𝑢 being a node of timestep 𝑡 are replaced with arcs (𝑢, 𝑣𝑡2 ),
if 𝑡1 = 𝑡 + 1 for some interval [𝑡1, 𝑡2] ∈ 𝐼 rej that starts in 𝑡1 and ends in
𝑡2. For each outgoing arc from a node 𝑣 to a 0-node 𝑤 we add to each
node 𝑣𝑡2 an outgoing arc to node 𝑤. Similarly, we add an outgoing arc
to node 𝑤𝑡2 from each node 𝑣𝑡2 for each outgoing arc from a node 𝑣 to
a 1-node 𝑤, but only if 𝑡 < 𝑡2 − 1, where 𝑡 is the timestep of node 𝑣.
Finally we recursively prune all nodes with no incoming or no outgoing
6

arcs except for 00 and 0𝑡max+1.
To get the probability that the user accepts an interval [𝜏, 𝜏′], we
again use 𝑝path from (8) and (9), computed for the constructed graph.
As 1-states can have multiple 1-state successors, we cannot use Eq. (10).
Instead, for the nominator, we repeat the computation of 𝑝path00 ,𝑣

from (8),
but ignore 0-nodes in the interval [𝜏, 𝜏′]. The denominator is kept the
same. To speed up the process, we start from the precomputed values
𝑝path00 ,𝑣

for each node 𝑣 of timestep 𝜏, only make the computations up to
the nodes of timestep 𝜏′, account for the remaining parts of the paths
by multiplying the so far computed values with 𝑝path𝑣′ ,0𝑡max+1

for each node
𝑣′ of timestep 𝜏′, and finally take the sum over those products.

Time complexity. The state graph in Fig. 4 has up to 3 + 𝑡max, and
its product graph up to (3 + 𝑡max)2 nodes. To consider 𝐼 rej, at most
𝑛rej,max ⋅ (3 + 𝑡max)2 nodes are added for each timestep, where 𝑛rej,max =
max𝜏∈𝑇 |{𝑡2 ∈ 𝑇 ∣ ∃[𝑡1, 𝑡2] ∈ 𝐼 rej, 𝑡1 ≤ 𝜏 ≤ 𝑡2}| is again the maximal num-
ber of overlapping rejected time intervals. Therefore the graph has
(𝑛rej,max ⋅ (𝑡max)3) nodes and computing 𝑝path has the same time com-
plexity (𝑛rej,max ⋅ (𝑡max)3), following the same argumentation as in the
previous section. Computing the acceptance probability of a single
query [𝜏, 𝜏′] takes time ((𝜏′ − 𝜏)𝑛rej,max) and therefore the overall time
complexity for computing the probabilities of all queries in one round
is (|𝑈 |𝑡max-day(𝑡max)3𝑛rej,max(max𝑗∈𝐽 𝑑𝑗 )2).

7. Experimental evaluation

We implemented the approaches in Julia 1.9, using the MILP solver
Gurobi 10.0 (https://www.gurobi.com) and the package JuMP as in-
terface to Gurobi. As real world instances were not available to us we
created artificial benchmark instances and used them to compare the
approaches with each other. Each test run was performed on a single
core of an AMD EPYC 7402 and Gurobi was given a timelimit of 15 min
for each ILP, which led to final gaps below 1% for 99.85% of the ILPs
and final gaps below 7% for the remaining 0.15%.

7.1. Instance generation

We consider a time horizon of 𝑡max = 5 days, each starting at 6 am
and ending at 10 pm, with a time granularity of 15 min per timestep.
Random time intervals are determined by a function rand_interval(𝜇start,
𝜎start, 𝜇dur, 𝜎dur) that first draws a random value from a normal distri-
bution with mean 𝜇start and standard deviation 𝜎start and rounds it to
the closest timestep in 𝑇 , which is then the start of the time interval.
The duration of the interval is then determined by drawing another
random value from a normal distribution with mean 𝜇dur and standard
deviation 𝜎dur, rounding it to the closest positive integer. Should the
interval exceed 𝑡max, it is capped at this last timestep of our time
horizon. This generation process results in discrete probability mass
functions 𝑓 start and 𝑓 dur by condensing the probability of the ranges
that lead to the rounded and capped values into points, and those
functions are used for the calculation described in Section 6.

Each user 𝑢 ∈ 𝑈 is assumed to be available for a set of timesteps
𝑇 avail∗
𝑢 . This set is determined independently for each day as follows.

With a probability of 90%, the user is assumed to be available in
rand_interval(9 am, 1 h, 4 h, 1 h) and, again with a probability of 90%,
the user is assumed to be available in rand_interval(1 pm, 1 h, 5 h, 1 h).
If the two intervals overlap the union is taken.

For each job 𝑗 ∈ 𝐽𝑢 of user 𝑢 ∈ 𝑈 , the duration 𝑑𝑗 is chosen
uniformly at random from 30 min to 4 h. Moreover, a starting time 𝑡𝑗
that allows the complete job to be scheduled within 𝑇 avail∗

𝑢 is selected
uniformly at random. The initially provided set of availabilities for user
𝑢 ∈ 𝑈 is then 𝑇 avail

𝑢 =
⋃

𝑗∈𝐽𝑢 𝑇𝑗 [𝑡𝑗 ].
We generated 30 instances for 𝑚 = 1,… , 5 machines with either
24 or 48 jobs per machine, i.e., 𝑛 ∈ {24𝑚, 48𝑚}, and made them

https://www.gurobi.com
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Fig. 5. Development of the objective value (a, c) and the number of unscheduled jobs (b, d) when applying Greedy and Markov with different acceptance thresholds for two
different instance sizes.
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available online.1 When considering the generated user availabilities,
each machine can thus execute about 30 jobs on average, and for
𝑛 = 24𝑚 usually it is possible to schedule all jobs, while for 𝑛 = 48𝑚
this is not the case. We study different cases where each user has 2, 4
and 6 jobs. This results in either 4𝑚, 6𝑚, 8𝑚, 12𝑚, or 24𝑚 users for an
instance. We allow |𝑈 | user queries in each round, for a total of five
rounds.

Costs for machine usage are based on real-world spot market prices
𝑐kWh
𝑡 for electricity in Germany for week 26 in 2022 taken from https:

//energy-charts.info. We use as cost 𝑐𝑖,𝑡 = 15min ⋅ 𝑃𝑖𝑐kWh
𝑡 , where the

electric power 𝑃𝑖 is assumed to differ among the machines 𝑖 ∈ 𝑀 and
is thus chosen uniformly at random from [50 kW,150 kW]. The cost 𝑞𝑗
for not scheduling a job 𝑗 ∈ 𝐽 is set to 40 Euro ⋅ 𝑑𝑗 , which is roughly
twice the cost of scheduling the job in the most expensive timesteps.

7.2. Comparison of the approaches

We performed simulations for Greedy as well as Markov(𝑝lim) and
Advanced(𝑝lim) with acceptance probability thresholds 𝑝lim ∈ {0.25, 0.4,
0.5, 0.75, 0.85} on all benchmark instances. Note that with the advanced
model, more queries 𝑡start ∈ 𝑇 infeas will in general be rejected. This
knowledge can be used in Greedy and we will refer to this version with
Greedy(Advanced). After each round we determine the best schedule
that is feasible for the information collected up to this round. Fig. 5
shows the development of the mean objective value and the mean
number of unscheduled jobs, respectively, over the rounds for Greedy
and Markov on two different instance sizes. Values are aggregated over
the 30 instances with 𝑚 = 5 machines and 𝑛 = 120 respectively
𝑛 = 240 jobs. Furthermore, we determine the best feasible schedule
with the information that is available before the first round (‘‘No Inter-
action’’), the best schedule when assuming that all users are available
all the time (‘‘Full Availabilities’’), and the best schedule with full
knowledge about the users’ availabilities (‘‘Full Knowledge’’) and show
these as horizontal lines in the figures. Table 1 additionally shows the
mean optimality gaps of the objective values from Greedy, Markov(𝑝lim)

1 https://www.ac.tuwien.ac.at/research/problem-instances/#ijsp
7

0

and Advanced(𝑝lim) in respect to ‘‘Full Knowledge’’ after five rounds
in percent. Naturally, the objective value of the ‘‘Full Availabilities’’
scenario has to be less than (or equal to) the objective value of ‘‘Full
Knowledge’’, which has to be less than (or equal to) the objective
value of ‘‘No Interaction’’. The objective values of Greedy, Markov(𝑝lim)
nd Advanced(𝑝lim) have to be between the objective values of ‘‘Full
nowledge’’ and ‘‘No Interaction’’. Note that the plots 5(a) and 5(b)
re also representative for the general trends with (𝑛, |𝑈 |) = (48𝑚, 12𝑚),
nd the same applies for plots 5(c) and 5(d) and (𝑛, |𝑈 |) = (24𝑚, 6𝑚).

We observe that Markov(0.5) and Markov(0.75) quickly converge
owards the best possible schedule. For 𝑛 = 120, the original objective
alues without interaction could almost be halved after five rounds,
hile for 𝑛 = 240, 16% and 15% of the original costs could be saved
fter five rounds. Moreover, for 𝑛 = 120, the final optimality gaps of
hese two approaches are by a factor of more than four better than
he final gap of Greedy. In contrast, 𝑝lim = 0.25 leads to much slower
onvergence with an improvement over Greedy of only roughly 17%.
he objectives for 𝑝lim = 0.4 and 𝑝lim = 0.85 lie inbetween, being by a
actor of more than two better than the final gap of Greedy. Remarkably,
arkov(0.75) performs best in the first rounds, while Markov(0.5)

atches up later on and performs best in the end. The reason is that
he two-state Markov process has the steady state between 0.5 and 0.75
nd therefore Markov(0.75) does not query days it knows nothing about
hile Markov(0.5) does; while it takes more iterations to get enough

nformation about these days, this information provides more flexibility
n scheduling the jobs. The table confirms our observations that Greedy

consistently performs worse than Markov and that the values 0.5 and
0.75 are better suited for 𝑝lim than 0.25, 0.4 and 0.85.

Considering Advanced, Fig. 6 shows the objective value and the
number of unscheduled jobs over the rounds, respectively, and Fig. 7
compares Markov to Advanced for 𝑝lim ∈ {0.25, 0.5}. The objectives for
Advanced(𝑝lim) with different 𝑝lim are closer together than those for
Markov, and thus the advanced model is less sensitive to the choice of
𝑝lim. A value of 𝑝lim = 0.5 performs best for instances with (𝑚, 𝑛, |𝑈 |) =
(5, 120, 30) and Table 1 shows that values for 𝑝lim from {0.25, 0.4, 0.5}
erform best for other instance sizes. Unsurprisingly, the advanced
odel leads to better results with a gap that is down to a factor of
.32 smaller after five rounds. However, we emphasize that Markov

https://energy-charts.info/charts/price_spot_market/chart.htm?l=en&c=DE&interval=week&legendItems=000010000000&week=26
https://energy-charts.info/charts/price_spot_market/chart.htm?l=en&c=DE&interval=week&legendItems=000010000000&week=26
https://energy-charts.info/charts/price_spot_market/chart.htm?l=en&c=DE&interval=week&legendItems=000010000000&week=26
https://www.ac.tuwien.ac.at/research/problem-instances/#ijsp
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Table 1
Mean %-gaps of the objective values after five interaction rounds for Markov(𝑝lim) and Advanced(𝑝lim) with different limits 𝑝lim and for Greedy with and without the advanced model.
The median runtime per interaction round is given for each instance size, aggregated over methods and interaction rounds.
𝑚 𝑛 |𝑈 | Markov Advanced Time [s]

Greedy 0.25 0.4 0.5 0.75 0.85 Greedy 0.25 0.4 0.5 0.75 0.85

1 24 12 48.7 39.5 26.3 21.8 31.0 63.2 49.5 21.7 15.1 10.2 13.9 53.7 8.9
1 24 6 75.9 39.0 33.2 34.1 31.9 65.8 69.9 18.5 18.3 12.2 21.2 43.9 5.4
1 24 4 97.6 68.0 45.3 42.0 41.9 70.0 97.3 32.6 30.3 20.9 23.5 46.9 4.0
1 48 24 47.1 43.2 33.8 28.8 36.2 41.5 44.3 27.2 27.8 30.2 40.4 51.2 17.0
1 48 12 37.8 32.1 25.6 19.7 25.7 27.1 37.0 17.0 15.9 19.7 26.8 32.9 10.1
1 48 8 44.0 38.2 28.1 22.4 21.4 24.7 44.1 19.2 16.0 17.1 23.9 31.3 7.6

2 48 24 53.3 42.6 19.4 13.9 16.2 36.1 48.7 10.1 5.5 4.5 10.9 26.1 19.2
2 48 12 77.3 50.6 26.0 13.2 14.6 38.8 70.9 9.8 5.8 4.9 8.4 23.1 22.1
2 48 8 94.3 68.3 39.0 30.7 23.1 47.8 88.5 24.3 16.8 11.6 15.8 29.6 20.5
2 96 48 43.0 41.8 32.6 27.3 33.6 37.5 43.5 25.5 26.9 29.8 41.1 49.8 43.0
2 96 24 36.7 32.7 24.5 18.3 20.8 23.7 36.2 16.0 15.9 18.7 27.1 33.2 25.0
2 96 16 39.8 36.5 27.4 20.1 19.0 21.4 40.0 15.2 14.2 16.2 24.2 30.3 18.0

3 72 36 37.4 34.2 15.4 9.8 10.6 25.3 38.0 6.0 4.4 4.8 9.3 20.0 40.2
3 72 18 71.9 52.9 32.3 14.9 13.6 32.0 68.2 11.6 7.8 6.9 10.3 22.7 177.2
3 72 12 87.4 59.9 41.2 22.8 14.4 35.2 87.5 14.8 8.8 7.5 9.1 20.9 286.9
3 144 72 44.9 41.6 32.6 27.5 34.1 38.4 44.4 25.9 27.5 31.0 43.2 52.5 116.4
3 144 36 37.1 35.2 26.8 19.4 21.8 24.0 37.5 17.0 17.1 20.1 28.9 35.4 51.4
3 144 24 36.8 34.4 26.6 20.5 18.6 20.0 37.2 14.9 14.4 16.0 24.1 30.4 38.8

4 96 48 32.9 22.6 12.5 9.2 11.5 22.0 30.2 4.9 4.8 5.3 11.1 18.5 83.5
4 96 24 65.5 53.3 23.6 11.5 12.2 27.8 67.7 9.9 5.9 5.4 8.5 16.4 901.7
4 96 16 79.1 65.3 37.2 19.1 9.9 29.4 80.4 17.2 10.9 6.9 8.1 15.0 909.8
4 192 96 40.3 37.6 29.5 25.4 31.3 34.7 39.9 23.6 25.7 28.5 39.8 48.2 196.0
4 192 48 35.5 35.0 26.6 19.3 21.7 23.5 35.4 16.3 16.7 19.3 28.8 35.2 101.5
4 192 32 37.5 34.4 26.9 20.6 19.0 20.5 37.3 15.3 14.8 16.9 24.7 30.5 75.1

5 120 60 22.2 20.4 10.1 8.8 10.2 17.4 22.6 4.7 5.0 4.6 10.2 18.1 168.8
5 120 30 56.3 46.5 21.4 9.1 11.8 25.5 60.1 7.2 5.8 4.6 9.3 16.6 914.0
5 120 20 80.3 58.8 34.6 18.9 12.6 30.4 81.6 15.2 9.2 7.0 8.2 16.9 917.7
5 240 120 42.4 39.7 31.7 27.5 33.3 36.7 42.1 25.3 27.2 31.0 42.7 51.9 326.4
5 240 60 37.3 35.3 27.7 20.5 22.3 23.9 37.5 16.9 17.6 20.3 29.4 36.7 206.7
5 240 40 34.4 31.4 24.3 18.4 17.3 18.7 34.4 13.7 13.6 15.4 23.4 29.1 141.4
Fig. 6. Development of the objective value and the number of unscheduled jobs for instances with (𝑚, 𝑛, |𝑈 |) = (5, 120, 30) where the probabilities are calculated with the advanced
model.
Fig. 7. Direct comparison between Markov and Advanced in terms of the objective value and the number of unscheduled jobs for (𝑚, 𝑛, |𝑈 |) = (5, 120, 30).
performs still quite well in comparison, considering that it does assume
almost no knowledge about the users. In particular when looking at
the overbooked case in the table, i.e., instances with 𝑛 = 48𝑚, Markov
is closer to Advanced and in some cases almost matches the gaps of
Advanced.
8

We furthermore give the median runtime per interaction round for
each instance size, aggregated over the different methods and all five
iterations. Note that these times are clearly dominated by, and almost
match the time for solving the MILP to determine queries. Naturally
these times increase with the number of machines with a median time
between four and 17 s for one machine and a significant number of
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Fig. 8. The availabilities derived from the first 30 persons in the filtered Dutch Time-Use-Survey. Days are split by blue vertical lines.
instances hitting the time limit of 15 min for five machines. Note that
the instances consistently require more time to solve for more users
when 𝑛 = 24𝑚 and less time to solve for more users when 𝑛 = 48𝑚.

7.3. Real-world availabilities

To evaluate the generalization abilities of our models to real-world
data in the following, we further generated an instance set with 𝑚 = 5
machines, 𝑛 = 120 jobs and |𝑈 | = 30 users the same way as above,
but where the availabilities are derived from the Dutch time-use-survey
from 2005 (Sociaal en Cultureel Planbureau, 2005). The reason for
using this survey is that it records a full week of the respondents, as
opposed to single days for most other time-use-surveys, and that it is
publicly available. For each respondent and each 15-minutes timeslot
in a week from Sunday to Saturday the survey records the persons
activity in categories such as sleeping, work at home, work outside
of home, traveling (with a bunch of subcategories), personal care, and
so forth. We assume that the user is using the machine at work for
some work-related tasks. Thus we assume users to be available when
they are present at the workplace, i.e. for the categories ‘‘work away
from home’’, ‘‘overtime’’ and ‘‘coffee/tea breaks’’. To make the data fit
to our assumptions, we do not consider persons that are unemployed
or work less than two hours on at least three days, and persons that
work on the weekend or on any day before 6am or after 10pm. This
results in a dataset of 490 different sets of availabilities, 30 of them
exemplarily visualized in Fig. 8, and they are chosen randomly to
generate instances.

Fig. 9 shows the development of the objective value when applying
our approaches to these instances. Acceptance probabilities of 0.75 and
0.85 seem to perform best and for those values the objective value
quickly converges to the Full Knowledge case, reducing the gap from
127% to 32.3% for Markov(0.75) and to 27.6% for Advanced(0.75)
within five rounds. Considering the very different structure of the
availability data, the loss of efficiency compared to our completely
randomly generated instances apparently is quite small.

7.4. Acceptance rate

The percentage of queries that have been accepted is of high practi-
cal relevance. If users have to reject a majority of queries, they will
get frustrated with the system. Fig. 10 shows the mean acceptance
rate for Markov and Advanced with different values for 𝑝lim plotted
over the rounds for one instance size. As expected, the acceptance
rate is higher for higher values of 𝑝lim. For Advanced it is a bit higher
9

than 𝑝lim, since Advanced incorporates a probability computation that
is based on the generation process of the instances, so the MILP only
selects from queries that have a probability higher than 𝑝lim to be
accepted. In contrast, Markov(𝑝lim) has a lower acceptance rate than
𝑝lim, as the probabilities are an approximation. Furthermore, there are
no significant changes over the individual rounds.

7.5. Convergence

Although significantly higher numbers of rounds are in most prac-
tical applications not very reasonable, we now study the convergence
behaviors of the different approaches over 50 rounds to evaluate the
approaches potential capabilities. It will give an insight into how
long each approach needs to gather sufficient relevant information for
(almost) closing the remaining optimality gap. Instances with 𝑛 = 48𝑚
need longer to converge, thus we show the evolution of the objective
values for (𝑚, 𝑛, |𝑈 |) = (5, 240, 60) in Fig. 11. As Advanced performs
better for lower thresholds 𝑝lim, we additionally show the evolution for
𝑝lim = 0.15 and 𝑝lim = 0.05. Surprisingly, Markov performs slightly better
when looking at the round by which a gap of less than 5% is reached:
With 𝑝lim = 0.4, it only requires 14 rounds, while Advanced requires 16
rounds with its best threshold of 𝑝lim = 0.15. Both,Markov and Advanced,
stagnate with a high 𝑝lim of 0.75 and 0.85. The reason seems to be that
after the first rounds they do not gather much new information but
mostly just confirm their presumptions when using such a high value
for 𝑝lim.

7.6. Influence of the number of users

We now investigate the impact of varying the number of jobs per
user, and thus the number of users. Fig. 12 compares obtained objective
values after five rounds for instances with different numbers of users.
A higher number of jobs per user (or lower number of users) make the
selection of user queries more challenging—for two jobs per user even
Greedy performs reasonably well with a mean gap of 22.2% to the Full
Knowledge case after five rounds, opposed to a gap of 80.3% for six
jobs per user. In contrast Markov(0.75) has similar gaps of 10.2% and
12.6% for two and six jobs per user. The same behavior is also apparent
for Advanced with gaps of 4.63% and 7.01% for two and six jobs per
user and 𝑝lim = 0.5. We explain these differences with the higher total

amount of interaction that comes with a higher number of users.
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Fig. 9. Development of the objective value when applying (a) Markov and (b) Advanced with different acceptance thresholds for the instances based on the Dutch Time-Use-Survey,
(𝑚, 𝑛, |𝑈 |) = (5, 120, 30).
Fig. 10. Mean acceptance rate of the users over the rounds for instances with (𝑚, 𝑛, |𝑈 |) = (5, 120, 30) and the two models to calculate probabilities.
Fig. 11. Convergence behavior of Markov and Advanced for (𝑚, 𝑛, |𝑈 |) = (5, 240, 60).
Fig. 12. Impact of the number of users to the objective value after five rounds of user interaction for Markov and Advanced and instances with (𝑚, 𝑛) = (5, 120) and 2, 4 and 6
obs per user, respectively.
c
d
a

.7. Comparison of different interaction configurations

We further investigate the impact of different levels of user interac-
ion by varying 𝑏 and letting users suggest more than one starting time
or each job; denote with 𝑛prop the number of initially suggested starting
imes per job. For this purpose we iteratively add two additionally
roposed starting times for each job to the instances with 𝑚 = 5,
∈ {120, 240} and |𝑈 | = 𝑛∕4, leading to instances with 𝑛prop ∈ {1, 2, 3}.
10

p

We perform simulations on these instances with an interaction budget
𝑏 of 0.5|𝑈 |, |𝑈 | and 2|𝑈 |. The results are summarized in Table 2.

Fig. 13 compares the results for different interaction budgets 𝑏 ∈
{0.5|𝑈 |, |𝑈 |, 2|𝑈 |} per round. Naturally a higher budget results in faster
onvergence. However, differences are relatively small, and 𝑏 = 0.5|𝑈 |

oes not lead to significantly worse results. When comparing gaps after
fixed amount of user interactions, a lower number of interactions

er round performs better. For example, the mean gap for Markov(0.5)
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Table 2
Mean %-gaps of the objective values after five interaction rounds for Markov(𝑝lim) and Advanced(𝑝lim) with different limits 𝑝lim and for Greedy and Greedy(Advanced) for varying
values of 𝑏 and 𝑛prop. The median runtime per interaction round is given for each instance size, aggregated over methods and iterations rounds.
𝑚 𝑛 |𝑈 | 𝑏 𝑛prop Markov Advanced Time [s]

Greedy 0.25 0.4 0.5 0.75 0.85 Greedy 0.25 0.4 0.5 0.75 0.85

5 120 30 15 1 83.2 65.4 34.3 21.4 20.5 39.5 81.7 16.0 10.4 8.2 12.4 21.9 903.6
5 120 30 15 2 8.5 7.4 5.3 4.3 3.4 4.2 8.4 3.2 2.9 2.7 4.9 6.1 904.8
5 120 30 15 3 4.1 3.7 3.1 2.4 1.6 1.9 4.1 1.4 1.3 1.5 3.1 3.6 137.1

5 120 30 30 1 56.7 47.1 21.9 8.9 12.3 25.6 58.8 7.5 5.5 5.1 9.4 16.0 912.9
5 120 30 30 2 6.6 6.2 3.9 2.5 2.9 3.4 6.3 1.8 2.0 2.3 4.6 6.0 271.6
5 120 30 30 3 3.5 3.1 2.1 1.4 1.4 1.7 3.6 1.0 1.1 1.3 3.0 3.5 135.6

5 120 30 60 1 16.7 15.7 6.6 4.8 6.8 13.7 16.5 3.5 2.8 3.2 6.8 12.5 174.6
5 120 30 60 2 5.0 3.9 2.4 1.8 2.4 2.9 4.8 1.2 1.5 2.0 4.5 5.8 124.4
5 120 30 60 3 3.0 2.7 1.7 1.1 1.4 1.6 3.1 0.8 0.9 1.2 2.9 3.5 117.6

5 240 60 30 1 43.2 40.8 34.6 29.0 24.1 26.8 43.1 22.3 21.9 23.0 30.5 37.2 162.6
5 240 60 30 2 29.2 27.4 23.9 20.2 14.5 16.5 29.1 13.2 13.2 14.2 22.6 26.8 106.6
5 240 60 30 3 22.6 21.4 19.1 15.6 10.8 12.7 22.7 9.3 9.7 10.9 18.8 21.3 127.2

5 240 60 60 1 37.2 35.3 27.7 20.5 22.3 23.9 37.4 16.9 17.6 20.3 29.4 36.7 199.2
5 240 60 60 2 26.5 25.7 20.2 13.5 13.5 15.2 26.7 10.8 11.3 13.0 22.1 26.5 158.2
5 240 60 60 3 21.3 19.9 15.5 10.8 9.8 11.8 21.3 7.4 8.1 9.8 18.4 21.1 146.6

5 240 60 120 1 29.3 27.1 18.1 15.3 21.1 23.3 29.4 14.0 15.6 18.6 28.9 36.3 141.1
5 240 60 120 2 22.8 20.4 14.6 10.9 12.7 14.9 22.4 9.0 10.2 11.8 21.8 26.3 136.3
5 240 60 120 3 18.7 16.9 12.2 8.8 9.5 11.5 18.7 6.5 7.5 9.2 18.0 21.1 126.9
Fig. 13. Comparison between different interaction budgets 𝑏 ∈ {0.5|𝑈 |, |𝑈 |, 2|𝑈 |} for instances with (𝑚, 𝑛, |𝑈 |) = (5, 120, 30).
Fig. 14. Comparison between different values of 𝑛prop ∈ {1, 2, 3} with interaction budget 𝑏 = 0.5|𝑈 | for two different instance sizes.
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ith 𝑏 = 0.5|𝑈 | after four rounds is 29.2%, with 𝑏 = |𝑈 | after two
ounds 42.5%, and with 𝑏 = 2|𝑈 | after one round 58.6%, while in
ach case 2|𝑈 | replies were requested from the users. This indicates
hat our approach is indeed capable to learn from and react to the
ser’s replies—successively produced queries are more cleverly chosen.
hen just considering the number of user interactions, it would thus be
ore user-friendly to make more interaction rounds with in total less

ueries, asking only a small subset of users in each round, and the final
esult can still be of similar quality. However, note that depending on
he specific application and the form by which the user interactions are
ctually implemented, also the number of performed interaction rounds
ay substantially impact the perceived user-friendliness.
11
A comparison for different values of 𝑛prop for 𝑏 = 0.5|𝑈 | is shown
n Fig. 14. It becomes apparent that, for 𝑛 = 48𝑚, 𝑛prop = 2 without
ny interaction leads to a mean gap of 29.4%, which is worse than for
prop = 1 with five rounds of interaction, which leads to a mean gap
f 24.1% with Markov(0.75). Specifying an additional starting time for
ach of their four jobs is clearly more bothersome for the users than
nswering two to three queries, still the interactive approach gives a
etter result. A value of 𝑛prop = 3 leads to a better gap of 22.8%, at
he cost of bothering the users even more. The situation is different
or 𝑛 = 24𝑚. No interaction with 𝑛prop = 2 then leads to a gap of
.08%, which is clearly better than the gap with 𝑛prop = 1 after five
ounds of interaction, which is 20.5%. One more starting time for
ach job (𝑛prop = 3) or, alternatively, five rounds of interaction with
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Markov(0.75) further more than halves the gap to 4.14% and 3.35%,
espectively.

. Conclusions

We considered the problem of scheduling jobs involving humans,
hose availabilities can only be partially revealed with few time in-

erval queries, made in a small number of interaction rounds. The
roposed solution approach calculates probabilities for users to accept
uggested time intervals based on a two-state Markov process or,
lternatively, a more advanced Markov process that is based on more
pecific assumptions of user behavior. An ILP is used as optimization
ore and to select time intervals for the next round of queries, aiming
or sufficiently high probabilities of acceptance and a maximum cost
eduction. Experiments on artificial test instances show that an initial
olution quickly improves over the interaction rounds and may soon
et close to a solution of the full-knowledge case despite the very
estricted interaction. With the variant of our approach that utilizes the
dvanced Markov process, we demonstrated how the general approach
an be specialized when a more specific stochastic model for the
ser availabilities is available. While this advanced variant performs
ignificantly better on our benchmark instances, also the simpler and
ore generally applicable approach based on the two-state Markov
rocess compares surprisingly well. Still, the results suggest that more
nowledge about the users is beneficial, and in future work it would be
nteresting to include and utilize historic user availability data, which
eflects the users’ general preferences. Moreover, alternative ways to
onsider the estimated acceptance probabilities of user queries in the
ptimization core should be investigated.
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