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ABSTRACT Joint probabilistic data association (JPDA) filter methods and multiple hypothesis tracking
(MHT) methods are widely used for multitarget tracking (MTT). However, they are known to exhibit
undesirable behavior in tracking scenarios with targets in close proximity: JPDA filter methods suffer from
the track coalescence effect, i.e., the estimated tracks of targets in close proximity tend to merge and can
become indistinguishable, while MHT methods suffer from an opposite effect known as track repulsion, i.e.,
the estimated tracks of targets in close proximity tend to repel each other in the sense that their separation
is larger than the actual distance between the targets. In this paper, we review the JPDA filter and MHT
methods and discuss the track coalescence and track repulsion effects. We also consider a more recent
methodology for MTT that is based on the belief propagation (BP) algorithm. We argue that BP-based MTT
does not exhibit track repulsion because it is not based on maximum a posteriori estimation, and that it
exhibits significantly reduced track coalescence because certain properties of the BP messages related to
data association encourage separation of target state estimates. Our theoretical arguments are confirmed by
numerical results for four representative simulation scenarios.

INDEX TERMS Multitarget tracking, joint probabilistic data association, JPDA, multiple hypothesis track-
ing, MHT, belief propagation, track coalescence, track repulsion.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The goal of multitarget tracking (MTT) is to recursively
estimate the time-dependent number and states of multiple
objects (“targets”) based on noisy sensor measurements [1],
[2], [3], [4], [5], [6]. This enables situational awareness
in a wide variety of applications, including aerospace and
maritime surveillance [2], [7], [8], [9], [10], [11], [12] and
robotics [13], [14], [15]. However, MTT is a challenging
task due to clutter, missed detections, and measurement-
origin uncertainty [1], [3], [4], [5], [6]. MTT methods are

typically placed in the framework of Bayesian inference and
can be broadly classified as vector-type and set-type methods.
Vector-type methods [1], [2], [7], [8], [9], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28] model
the multitarget state by a random vector, whereas set-type
methods [4], [29], [30], [31], [32], [33], [34], [35], [36], [37]
model it by a random finite set.

Two classical and popular instances of vector-type MTT
methods are the joint probabilistic data association (JPDA)
filter [1], [7], [9] and multiple hypothesis tracking (MHT)
methods [2], [16], [21], [22], [23], [24], [25]. The JPDA filter
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is a single-scan method that seeks to calculate minimum mean
square error (MMSE) state estimates for a known number
of targets at each time step. An unknown number of targets
can be addressed using heuristics [1] or a probabilistic model
for target existence as used for the development of the joint
integrated probabilistic data association (JIPDA) filter [17].
Data association (DA) hypotheses are incorporated in a soft
(probabilistic) manner by calculating weighted sums over all
possible associations at each time step. This is equivalent to
“marginalizing out” the unknown DA vector in the posterior
probability density function (pdf) of the target states, which
can also be seen as an exhaustive averaging over DA vectors.
In contrast, MHT methods are multiscan methods that achieve
hard DA by performing approximate maximum a posteriori
(MAP) detection of an entire sequence of DA vectors using
optimization techniques such as the Auction algorithm or mul-
tiple frame assignment [38]. Subsequently, the target states are
estimated individually, e.g., using Kalman smoothing. Both
MHT and JPDA methods are capable of maintaining track
continuity, i.e., target identification over consecutive time
steps. Besides the aspect of performing exhaustive averaging
as in JPDA filter methods or approximate maximization as in
MHT methods, an additional aspect is the representation of a
single potential target or “track”. Typical representations are
by a single Gaussian [2], [7], a Gaussian mixture [39], [40],
or a set of particles [41], [42]. We note that certain set-type
filters, e.g., [32] and [37], also use exhaustive averaging or
approximate maximization as their DA strategy.

Experimental evidence has demonstrated undesirable be-
havior of JPDA and MHT type methods in tracking scenarios
with targets in close proximity [43], [44]. More specifically,
JPDA filter methods suffer from the track coalescence ef-
fect [43], which means that the estimated tracks of closely
spaced targets that move in parallel tend to come together and
merge, thereby becoming indistinguishable. In MHT methods,
on the other hand, an opposite effect called track repulsion
can be observed [44]: the estimated tracks of closely spaced
targets that move in parallel repel each other in the sense
that their separation is larger than the actual distance between
the targets. Methodological modifications intended to mitigate
these detrimental effects were proposed in [45], [46], [47],
[48], [49], [50]. In particular, track coalescence can be mit-
igated by using a specific hypothesis pruning strategy [45],
[46] or filter designs based on the optimal sub-pattern assign-
ment (OSPA) metric [48], [49] or on variational methods [50],
and track repulsion by choosing a DA hypothesis from a MAP
equivalence class rather than the single MAP solution [47].
However, these modifications are unsuitable for large-scale
tracking scenarios with an unknown and time-varying number
of targets.

Among the set-type MTT methods, some avoid DA at the
cost of using a suboptimal postprocessing step for track for-
mation and, possibly, exhibiting a reduced target detection
and tracking performance [29], [30], [31], [33]. Others rely
on DA strategies similar to those used by the JPDA filter and

hence also suffer from track coalescence [32], [51]. Inspired
by the concept of set-type MTT, track coalescence has also
been investigated in the context of permutation-invariant esti-
mation [48], [52], [53].

A recently developed methodology for vector-type MTT
describes filtering and DA by a factor graph that provides
a blueprint for applying belief propagation (BP) [6], [12],
[15], [42], [54], [55]. BP, also known as the sum-product
algorithm [56], [57], is based on a factor graph [56], [57] and
aims at computing the marginal posterior pdfs or probability
mass functions (pmfs) in an efficient way. For each node of the
factor graph, certain messages are calculated, each of which
is passed to some of the adjacent nodes. If the factor graph
is a tree, i.e., without loops, then the solutions provided by
BP—referred to as beliefs—are equal to the marginal pos-
terior pdfs or pmfs. For factor graphs with loops, BP has
to be performed iteratively, and the beliefs are only approx-
imations of the respective marginal posterior pdfs or pmfs;
these approximations have been observed to be very accurate
in many applications [56], [57]. BP can be applied for the
inference of discrete or continuous random variables. If the
belief represents a marginal pmf, its values can be interpreted
as probabilities. In the context of probabilistic DA in MTT,
BP is guaranteed to converge [54].

By performing efficient approximate marginalization op-
erations within the overall MMSE estimation framework of
the JPDA filter, the BP algorithm provides scalable solutions
to both probabilistic DA—accounting for measurement-origin
uncertainty, clutter, and missed detections—and nonlinear
state estimation for randomly appearing and disappearing tar-
gets. BP-based MTT methods exhibit excellent scalability in
the number of targets and in the number of measurements
because the BP algorithm systematically exploits conditional
independence properties of the underlying statistical model
for a reduction of computational complexity. BP-based meth-
ods are also capable of maintaining track continuity. Since
the nodes of the graph corresponding to the target states are
ordered, BP-based methods are quite different from the set-
type approach that aims at performing permutation-invariant
or unordered estimation. BP methods rely on efficient ap-
proximations to exhaustive averaging and are thus related
to J(I)PDA filters. However, contrary to J(I)PDA filters, BP
methods employ an improved birth model that, together with
the efficient DA solution, allows the detection and tracking of
a potentially very large number of targets even if the targets
are in close vicinity in space and time.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
In this paper, we review the track coalescence and track re-
pulsion effects and investigate them in the context of the
JPDA filter and MHT methods as well as the BP-based
MTT methods. Our analysis suggests that BP-based MTT
methods do not suffer from the track repulsion effect, while
the track coalescence effect is significantly smaller than
in JPDA filter methods. These findings are confirmed by

1090 VOLUME 5, 2024



simulation results for four different MTT scenarios, which
demonstrate a significant reduction of track coalescence and
the absence of track repulsion in BP-based methods relative
to JPDA filter methods and MHT methods, respectively. In
contrast to permutation-invariant estimation [48], [52], [53],
where track coalesence is avoided by an alternative formu-
lation of the estimation problem, in BP-based MTT, track
coalescence is reduced because certain properties of the DA-
related BP messages encourage separation of target state
estimates.

The main contributions of the paper are as follows:
� We discuss and analyze the track coalescence effect and

the track repulsion effect in the context of the JPDA filter
and MHT methods, respectively.

� We demonstrate numerically that BP-based MTT does
not suffer from the track repulsion effect, while the track
coalescence effect is much smaller than in the JPDA
filter.

� We provide evidence that the reduced coalescence in BP-
based MTT is due to the nature of the DA solution and
not due to the choice of track representation.

The remainder of this paper is organized as follows. The
basic notation is described in the next subsection. In Sec-
tion II, we present the MTT system model used in this paper
as well as a statistical formulation. Section III describes the
resulting joint posterior distribution and the corresponding
factor graph. The track repulsion effect in MHT methods
and the track coalescence effect in JPDA filter methods are
considered in Sections IV and V, respectively. In Section VI,
we describe the BP approach to MTT. The reduction of the
track coalescence effect achieved by particle-based BP meth-
ods is analyzed in Section VII. Finally, simulation results are
presented in Section VIII. We note that this paper advances be-
yond our earlier conference publication [58] in that it contains
an improved introduction to MHT and JPDA filter methods; it
presents a simple illustration of the track repulsion effect due
to MHT-like hard DA; it provides a detailed analysis of the
track coalescence effect and an explanation why BP methods
are less susceptible to it; and it presents a more extensive
simulation analysis.

C. NOTATION
Random variables are displayed by sans serif, upright print
(e.g., x) and their realizations by serif, italic print (e.g., x).
Vectors are denoted by bold lowercase letters (e.g., x or x)
and matrices by bold uppercase letters (e.g., A). Furthermore,
xT denotes the transpose of vector x, ∝ indicates equality up
to a normalization factor, and f (x) denotes the pdf and p(x)
the pmf of the, respectively, continuous and discrete random
vector x. We also use f (x) to denote the hybrid pdf/pmf of
a mixed continuous-discrete random vector x. Finally, 1(a) is
defined to be 1 if a = 0 and 0 otherwise, and δ(x) denotes the
Dirac delta function.

II. SYSTEM MODEL
We consider the MTT system model from [1], [3], [6], [24].
This model and the corresponding statistical formulation will
be briefly described for completeness.

A. POTENTIAL TARGET STATES AND STATE EVOLUTION
The number of targets is time-varying and unknown, which
is accounted for by using the concept of potential targets
(PTs) [6], [42]. At discrete time k = 0, 1, . . ., the number of
PTs Jk is the maximum possible number of targets, which is
determined as described in Section II-B. The state [x( j)T

k r( j)
k ]T

of PT j ∈ {1, . . . , Jk} at time k consists of a kinematic state
x( j)

k ∈ Rn, which comprises the PT’s position and possibly
further motion-related parameters, and a binary existence in-
dicator variable r( j)

k ∈ {0, 1} that is 1 if PT j exists at time k
and 0 otherwise. This existence indicator variable was first in-
troduced in the context of the JIPDA filter [17]. The kinematic
state x( j)

k of a nonexisting PT—i.e., of a PT with r( j)
k = 0—is

undefined; its distribution will therefore be described by an
arbitrary “dummy pdf” fD(x( j)

k ).Accordingly, all pdfs of PT

states, f (x( j)
k , r( j)

k ), have the property that f (x( j)
k , r( j)

k = 0) =
f ( j)
k fD(x( j)

k ), where f ( j)
k ∈ [0, 1] is the probability of nonexis-

tence. Only targets that exist can generate measurements.
For each PT state [x( j)T

k−1 r( j)
k−1]T, j ∈ {1, . . . , Jk−1} at time

k − 1, there is one “legacy” PT state [x( j)T
k r( j)

k ]T at time k.
The motion and potential disappearance of PT j are mod-
eled statistically by the single-target state-transition pdf/pmf
f (x( j)

k , r( j)
k

∣∣x( j)
k−1, r( j)

k−1), which involves the kinematic state-

transition pdf f (x( j)
k

∣∣x( j)
k−1) and the probability of target sur-

vival ps as described in, e.g., [6, Section VIII-C]. All PT states
evolve independently, and they are independent at time k = 0.
In the absence of any information about the number of PTs at
time k = 0, we set J0 = 0.

B. MEASUREMENTS, NEW PTS, AND DATA ASSOCIATION
At each time (or “scan”) k ≥ 1, a sensor produces Mk mea-
surements z(m)

k , m ∈ {1, . . . ,Mk}. Here, Mk is modeled as
a random variable whose value (realization) Mk is known
once the measurements have been observed. We define
the joint vector of all measurements at time k as zk �
[z(1)T

k · · · z(Mk )T
k ]T. Each measurement z(m)

k has one of three
possible origins: (i) a new PT representing a target that gen-
erates a measurement for the first time, or (ii) a legacy PT
representing a target that generated at least one measurement
before, or (iii) clutter.

The birth of new targets is modeled by a Poisson point
process with mean parameter μb (which is the mean num-
ber of newborn targets) and spatial pdf fb(xk ). To account
for the birth of new targets, at time time k, Mk new PT
states [x(m)T

k r(m)
k ]T, m ∈ {1, . . . ,Mk} are introduced, where

r(m)
k = 1 means that measurement z(m)

k has origin (i) and

r(m)
k = 0 means that it has origin (ii) or (iii).

We define the joint vector of all kinematic states at time k
as xk � [x(1)

k · · · x(Jk )
k ]T = [x(1)T

k · · · x(Jk−1)T
k x(1)T

k · · · x(Mk )T
k ]T,
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and the joint vector of all existence indicators at time k as rk �
[r(1)

k · · · r(Jk )
k ]T = [r(1)

k · · · r(Jk−1)
k r(1)

k · · · r(Mk )
k ]T. It follows that

once the measurements have been observed and, thus, Mk is
known, the total number of PTs—both legacy PTs and new
PTs—is Jk = Jk−1 + Mk .

The target represented by PT j is detected by the sensor,
in the sense that it generates a measurement z(m)

k , with proba-
bility pd. The dependence of a target-generated measurement
z(m)

k on the kinematic state x( j)
k of the corresponding detected

PT is modeled statistically by the conditional pdf f (z(m)
k |x( j)

k ),
which can be derived from the measurement model of the
sensor. Clutter measurements are modeled by a Poisson point
process with mean parameter μc (which is the mean number
of clutter measurements) and spatial pdf fc(z(m)

k ). Note that

if fc(z(m)
k ) is uniform, then the Poisson point process has a

constant spatial density.
The origin of each measurement is unknown, i.e., it is

not known if the measurement is generated by a PT, and by
which PT, or if it is clutter. We use the conventional DA
assumption, which postulates that a target can generate at
most one measurement, and a measurement can be generated
by at most one target [1], [4], [6]. The association between
the Mk measurements and the Jk−1 legacy PTs can be mod-
eled by the “target-oriented” DA vector ak = [a(1)

k · · · a(Jk−1)
k ]T

whose jth entry a( j)
k is m ∈ {1, . . . , Mk} if legacy PT j gen-

erated measurement m and zero if it did not generate any
measurement [1], [6]. Since only targets that exist can gen-
erate measurements, a( j)

k ∈ {1, . . . , Mk} implies that r( j)
k = 1.

However, since there can be a missed detection, we can have
a( j)

k = 0 for r( j)
k = 1. Note that a( j)

k = m ∈ {1, . . . , Mk} im-

plies that measurement z(m)
k has origin (ii). A DA vector ak

is considered “valid” if it satisfies the DA assumption men-
tioned above. Due to the DA assumption, a DA vector ak is
valid if and only if at most one entry is equal to any specific
m ∈ {1, . . . , Mk}. Also note that due to the DA assumption,
a( j)

k = m implies r(m)
k = 0, because if measurement m was

generated by a legacy PT, the corresponding new PT cannot
correspond to an actual target.

We also introduce the “measurement-oriented” DA vec-
tor bk = [b(1)

k · · · b(Mk )
k ]T whose mth entry b(m)

k is j ∈
{1, . . . , Jk−1} if measurement m was generated by legacy PT
j and zero if it was generated by a new PT or by clutter.
Together, ak and bk constitute a redundant DA representation
because for any given valid ak , there is exactly one valid
bk and for any given valid bk , there is exactly one valid ak .
However, this redundant representation makes it possible to
develop scalable MTT methods that exploit the structure of
the DA problem for a substantial reduction of computational
complexity [6], [54] (see Section VI).

III. JOINT POSTERIOR DISTRIBUTION AND FACTOR
GRAPH
Let x0:k denote the vector obtained by stacking the vectors x0

through xk , and similarly for r0:k , a1:k , b1:k , and z1:k as well

as their random counterparts. Using common assumptions, it
has been shown in [6], [32], [42], [54] that the joint posterior
pdf/pmf of x0:k , r0:k , a1:k , and b1:k conditioned on the observed
(and thus fixed) measurements z1:k is given by

f (x0:k, r0:k, a1:k, b1:k|z1:k )

∝
( J0∏

j=1

f
(

x( j)
0 , r( j)

0

)) k∏
k′=1

g(xk′, rk′, ak′, bk′ , xk′−1,rk′−1; zk′ ),

(1)

with

g(xk, rk, ak, bk, xk−1, rk−1; zk )

�
( Jk−1∏

j′=1

f
(

x( j′ )
k , r( j′ )

k

∣∣x( j′ )
k−1, r( j′ )

k−1

) )

×
( Jk−1∏

j=1

q
(

x( j)
k , r( j)

k , a( j)
k ; zk

) Mk∏
m′=1

� j,m′
(

a( j)
k , b(m′ )

k

) )

×
Mk∏

m=1

v
(

x(m)
k , r(m)

k , b(m)
k ; z(m)

k

)
. (2)

Here, the factor q(x( j)
k , r( j)

k , a( j)
k ; zk ) is given by

q
(

x( j)
k , 1, a( j)

k ; zk

)

=
⎧⎨
⎩

pd

μc fc(z(m)
k )

f
(

z(m)
k

∣∣x( j)
k

)
, a( j)

k = m ∈ {1, . . . , Mk}
1 − pd, a( j)

k = 0
(3)

and q(x( j)
k , 0, a( j)

k ; zk ) = 1(a( j)
k ), and the factor

v(x(m)
k , r(m)

k , b(m)
k ; z(m)

k ) is given by

v
(

x(m)
k , 1, b(m)

k ; z(m)
k

)

=
⎧⎨
⎩

0, b(m)
k ∈ {1, . . . , Jk−1}

pdμb fb(x(m)
k )

μc fc(z(m)
k )

f
(

z(m)
k

∣∣x(m)
k

)
, b(m)

k = 0
(4)

and v(x(m)
k , 0, b(m)

k ; z(m)
k ) = fD(x(m)

k ). Furthermore,

� j,m(a( j)
k , b(m)

k ) is a binary indicator function that checks

the consistency of the target-oriented DA variable a( j)
k and the

measurement-oriented DA variable b(m)
k : it is zero if a( j)

k = m,

b(m)
k �= j or b(m)

k = j, a( j)
k �= m and one otherwise (see [6],

[54] for details). This consistency of the DA variables a( j)
k

and b(m)
k guarantees that the DA assumption is not violated.

The ∝ sign in (1) has to be interpreted in the sense that the
right-hand side, when multiplied by a normalization constant
that does not depend on x0:k , r0:k , a1:k , or b1:k , is equal to
the joint posterior pdf/pmf f (x0:k, r0:k, a1:k, b1:k|z1:k ). We
note that the factor g(xk, rk, ak, bk, xk−1, rk−1; zk ) in (1)
groups all factors corresponding to a single time step; this
representation will support future discussions in Section VI.
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FIGURE 1. Factor graph representing the joint posterior pdf/pmf f (x0:k , r0:k ,

a1:k , b1:k |z1:k ) in (1), (2) for one time step k. The time index k is omitted, and
the following short notations are used: M � Mk , J � Jk−1, y j � [x( j)T

k r ( j)
k ]T ,

ym � [x(m)T
k r (m)

k ]T , a j � a( j)
k , bm � b(m)

k , f j � f (x( j)
k , r ( j)

k

∣∣x( j)
k−1, r( j)

k−1 ), q j � q(x( j)
k ,

r ( j)
k , a( j)

k ; zk ), vm � v(x(m)
k , r(m)

k , b(m)
k ; z(m)

k ), � j,m � � j,m (a( j)
k , b(m)

k ).

A detailed derivation of expressions (1)–(4) is provided in [6,
Sec. VIII-G].

The factorization in (1) presupposes that the measurements
z1:k are observed; accordingly, we use the semicolumn “;”
in (2)–(4) to indicate that the argument to the right of “;”
is fixed. The observed measurements z1:k reveal additional
factorization structures unavailable in the statistical model
with z1:k random. Since for Bayesian estimation we are either
interested in marginal posterior pdfs/pmfs or in values of x0:k ,
r0:k , a1:k , and b1:k that maximize the joint posterior pdf/pmf,
we do not need to compute the normalization constant. In case
we want to obtain marginal posterior pdfs/pmfs, we can first
marginalize the unnormalized version of the joint posterior
pdf/pmf on the right-hand side of (1) and then normalize the
result after marginalization. Since the marginalization step
reduces the dimensionality, computing a normalization con-
stant after marginalization always has a lower computational
complexity.

The factorization of the joint posterior pdf/pmf
f (x0:k, r0:k, a1:k, b1:k|z1:k ) as given by (1), (2) is represented
graphically by the factor graph [56], [57] shown in Fig. 1.
In this factor graph, the random variables and pdfs/pmfs
involved in f (x0:k, r0:k, a1:k, b1:k|z1:k ) are represented by
circles and squares, respectively [56]. A circle is connected
with a square if the random variable represented by the circle
is involved in the pdf/pmf represented by the square [56].
Note that in the factor graph, we combine the kinematic state
of a single target and the corresponding existence indicator
variable into a single state variable y j � [x( j)T

k r( j)
k ]T or

ym � [x(m)T
k r(m)

k ]T, which is represented by a single variable
node.

Marginalizing out the redundant measurement-oriented DA
vector b1:k from f (x0:k, r0:k, a1:k, b1:k|z1:k ) yields the poste-
rior pdf/pmf

f (x0:k, r0:k, a1:k|z1:k ) =
∑
b1:k

f (x0:k, r0:k, a1:k, b1:k|z1:k ). (5)

This marginalization is in fact trivial since for a given a1:k
there is exactly one b1:k for which (1) is nonzero. The posterior
pdf/pmf f (x0:k, r0:k, a1:k|z1:k ) in (5) together with expression
(1), (2) represents a system model that is identical to the one
used by MHT methods1 and also is a generalization of the one
used by JPDA filter methods.

IV. MHT METHODS AND TRACK REPULSION EFFECT
MHT methods aim at calculating the MAP sequence estimate
of x0:k , r0:k , and a1:k from z1:k . This is done in two steps. First,
the joint MAP sequence estimate of r0:k and a1:k is calculated,
i.e.,(

r̂MAP
0:k , âMAP

1:k

)
= argmax

r0:k ,a1:k

∫
f (x0:k, r0:k, a1:k|z1:k ) dx0:k . (6)

This is equivalent to searching for the PT-measurement asso-
ciation (r0:k, a1:k ) that is most probable given the measure-
ments z1:k [2]. The marginalization operation

∫ · dx0:k can be
performed sequentially and, assuming linear-Gaussian state-
transition and measurement models, also in closed form. On
the other hand, the number of PT-measurement associations
(r0:k, a1:k ) that must be searched to perform the maximization
(6) grows exponentially with k.

In the second step, the MAP estimate of x0:k given r0:k =
r̂MAP

0:k and a1:k = âMAP
1:k is calculated, i.e.,

x̂MAP
0:k = argmax

x0:k

f
(

x0:k
∣∣r̂MAP

0:k , âMAP
1:k , z1:k

)

= argmax
x0:k

f
(

x0:k, r̂MAP
0:k , âMAP

1:k

∣∣z1:k

)
. (7)

Here, for (r0:k, a1:k ) = (r̂MAP
0:k , âMAP

1:k ) fixed, the joint posterior
f (x0:k, r̂MAP

0:k , âMAP
1:k

∣∣z1:k ) in (5) factorizes into the posterior

pdfs/pmfs f (x( j)
0:k, r̂( j)MAP

0:k , â( j)MAP
1:k

∣∣z1:k ), one for each PT
j. The maximization (7) is then equivalent to a Bayesian
smoothing operation—carried out by using, e.g., the Kalman
smoother—for each PT j in parallel with, and independently
of, all the other PTs.

In a practical implementation, to reduce the computational
complexity, the MAP estimates of the PT-measurement asso-
ciation sequence in (6) and of the kinematic PT state sequence
in (7) are computed only over a sliding window of N con-
secutive times steps. A hard decision on the PT-measurement
association is made only at the oldest step within the window.

1In the MHT literature, the two vectors r0:k and a1:k are typically repre-
sented by a single equivalent vector q0:k referred to as a global hypothesis.
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The maximization in (6) is performed using the Auction algo-
rithm or multiple frame assignment [38].

MHT can be formulated in a hypothesis-oriented [2] and
a track-oriented [16], [24], [25] manner. The two formula-
tions are equivalent under the assumption that target births
and clutter follow Poisson point processes [59]; however, the
track-oriented MHT formulation offers a more compact repre-
sentation of the DA problem. The computational complexity
of the original hypothesis-oriented MHT formulation is still
problematic due to the high number of hypotheses. However,
it can be reduced by discarding unlikely hypotheses using,
e.g., an efficient m-best assignment algorithm [22], [23]. The
more efficient track-oriented MHT methods [16], [24], [25]
represent the DA hypotheses by a set of tree structures, where
each tree represents the possible DA histories of a single PT.
The most likely hypothesis is then found by choosing a leaf
node from each single-PT tree so that no measurement is used
by more than one PT. A fast hypothesis search is enabled by
combinatorial optimization methods [26], [60], [61], [62].

A limitation of MHT methods known as track repulsion
can arise when targets come in close proximity. The esti-
mated tracks then tend to have a larger distance than the true
tracks. This effect is a consequence of performing hard DA
by considering for PT state estimation (see (7)) only the sin-
gle PT-measurement association (r̂MAP

0:k , âMAP
1:k ) in (6). For an

illustration, consider two targets that move on parallel tracks.
We assume that the states of the targets include the targets’ po-
sitions; furthermore, each target generates one measurement,
which is the target’s position plus Gaussian measurement
noise. The detection probability is assumed to be one and there
are no clutter measurements. The target tracks are supposed to
be in close proximity in the sense that their distance is signifi-
cantly smaller than the standard deviation of the measurement
noise. The MAP decision rule (6) now always assigns to each
measurement the nearest target. However, due to the small
distance between the two targets, this association is incorrect
if the measurement closest to a given target originated from
the respective other target. A number of consecutive incorrect
associations will then cause the position estimates in (7) to
be more distant than the actual targets; this effect is known
as track repulsion. The track repulsion effect is related to the
use of MAP estimation and not to the choice of a specific
optimization method or the number of hypotheses. It gets
worse as the distance between the targets decreases.

The reason why “hard” DA strategies such as those per-
formed by MHT cause repulsion between close targets can
be illustrated in a simple static one-dimensional (1-D) sce-
nario. Consider two static 1-D target states x(1) = d/2 and
x(2) = −d/2, separated by distance d . The targets generate
the measurements z(1) ∼ N (x(1), 1) = N (d/2, 1) and z(2) ∼
N (x(2), 1) = N (−d/2, 1), which are assumed statistically in-
dependent. Fig. 2 visualizes the underlying geometry in an
equivalent 2-D state space representing the 2-D joint target
state x � [x(1) x(2)]T = [d/2 −d/2]T and the distribution
of the 2-D joint measurement [z(1) z(2)]T. We estimate the
joint target state x from the measurements z(1) and z(2) using

FIGURE 2. Equivalent 2-D geometry of the static 1-D example employing
the “hard association” estimator x̂, which is [z(1) z(2)]T for z(1) ≥ z(2) and
[z(2) z(1)]T for z(1) < z(2). The level-curves visualize the distribution of x̂.
The true state x and its mirror image (mirrored on the z1 = z2 line) are
shown as a blue and a white bullet, respectively. When the 2-D joint
measurement [z(1) z(2)]T crosses over the z1 = z2 line, the level-curves are
reflected, indicating the possibility of an incorrect hard association.

FIGURE 3. Same as Fig. 2, but x rotated by 45◦.

a “hard association” estimator x̂ = [x̂(1) x̂(2)]T defined as x̂ =
[z(1) z(2)]T for z(1) ≥ z(2) and x̂ = [z(2) z(1)]T for z(1) < z(2).
This estimator, which is also known as the global nearest
neighbor (GNN) decision rule [1], employs a hard association
strategy similar to MHT.

To demonstrate track repulsion effects in the estimator x̂,
we consider the expected difference between x̂(1) and x̂(2), i.e.,
E{x̂(1) − x̂(2)}. To this end, we first calculate E{x̂}. This calcu-
lation can be simplified by exploiting the rotational symmetry
of the pdf of [z(1) z(2)]T and rotating x = [d/2 −d/2]T and
x̂ by 45◦ to obtain xr � [d/

√
2 0]T and x̂r, respectively. The

result is shown in Fig. 3. The expected value of the rotated
estimate x̂r is given by E{x̂r} = xr + [�r 0]T with

�r = −2
∫ 0

−∞
y

1√
2π

e
−(y− d√

2
)2/2

dy.
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This can be rewritten as �r =
√

2
π

e−d2/4 − √
2d Q( d√

2
),

where Q(α) � 1√
2π

∫ ∞
α

e−ζ 2/2dζ is the probability that a
zero-mean Gaussian random variable with unit variance is
larger than α. After rotating back, we obtain the expecta-
tion of the original estimator as E{x̂} = [E{x̂(1)} E{x̂(2)}]T

with E{x̂(1)} = d
2 + � = x(1) + � and E{x̂(2)} = − d

2 − � =
x(2) − �, where

� = �r

√
2

= 1√
π

e−d2/4 − d Q

(
d√
2

)
.

Thus, the expected distance between x̂(1) and x̂(2) is

E{x̂(1) − x̂(2)} = E{x̂(1)} − E{x̂(2)} = d + 2�,

which is seen to be larger by 2� than the actual distance
between the target states, x(1) − x(2) = d . We note that � is
positive and increases with decreasing d . This analysis indi-
cates that the considered hard association estimator leads to a
repulsion of the target state estimates x̂(1) and x̂(2).

The track repulsion effect can increase the estimation error
and lead to track swaps (or identity switches) [63], [64]. In
particular, in a scenario with crossing tracks, the estimated
tracks tend to “bounce” more often than they cross. A method
for mitigating track repulsion was presented in [47].

V. JPDA FILTER METHODS AND TRACK COALESCENCE
EFFECT
The JPDA filter aims to calculate the MMSE estimates of the
kinematic target states x( j)

k , i.e.,

x̂( j)MMSE
k =

∫
x( j)

k f
(

x( j)
k

∣∣z1:k

)
dx( j)

k , j = 1, . . . , Lk . (8)

Here, Lk denotes the number of actual targets (not PTs) at time
k. The posterior pdf of the joint kinematic target state xk =
[x(1)T

k · · · x(Lk )T
k ]T is given by

f (xk|z1:k ) =
∑
ak

f (xk, ak|z1:k )

=
∑
ak

f (xk|ak, z1:k )p(ak|z1:k ). (9)

This sum over all possible association events ak is also re-
ferred to as exhaustive averaging.

The JPDA filter is based on the approximation of the pos-
terior DA pmf p(ak|z1:k ) involved in (9) by the product of its
marginals, i.e. [1], [6]

p(ak|z1:k ) ≈
Lk∏
j=1

p
(

a( j)
k

∣∣z1:k

)
, (10)

with

p
(

a( j)
k

∣∣z1:k

)
=

∑
a(∼ j)

k

p(ak|z1:k ). (11)

Here, a(∼ j)
k denotes the vector ak with the jth entry a( j)

k re-
moved. The posterior DA pmf p(ak|z1:k ) involved in (9) and

(11) is given as [6]

p(ak|z1:k ) ∝
Lk∏
j=1

w
( j,a( j)

k )
k , (12)

with

w
( j,a( j)

k )
k �

∫
q

(
x( j)

k , 1, a( j)
k ; zk

)
f
(

x( j)
k

∣∣z1:k−1

)
dx( j)

k , (13)

for j = 1, . . . , Lk and a( j)
k = 0, . . . , Mk . Here, the function

q(x( j)
k , 1, a( j)

k ; zk ) is given by (3) with x( j)
k replaced by x( j)

k ,

and f (x( j)
k

∣∣z1:k−1) is the “predicted” posterior pdf of x( j)
k .

Furthermore, based on the assumption that, for a( j)
k = m, the

measurement z(m)
k is conditionally independent given x( j)

k of

all past and future measurements z(m′ )
k′ and states x( j)

k′ with
k′ �= k, it is shown in [6] that the pdf f (xk|ak, z1:k ) involved
in (9) factorizes as

f (xk|ak, z1:k ) =
Lk∏
j=1

f
(

x( j)
k

∣∣a( j)
k , z1:k

)
. (14)

Then, by inserting (10) into (9) and using the factorization
(14), we arrive at the approximate posterior pdf

f (xk|z1:k ) ≈
∑
ak

Lk∏
j=1

f
(

x( j)
k

∣∣a( j)
k , z1:k

)
p
(

a( j)
k

∣∣z1:k

)

=
Lk∏
j=1

Mk∑
a( j)

k =0

f
(

x( j)
k

∣∣a( j)
k , z1:k

)
p
(

a( j)
k

∣∣z1:k

)

=
Lk∏
j=1

f̃
(

x( j)
k

∣∣z1:k

)
, (15)

with

f̃
(

x( j)
k

∣∣z1:k

)
�

Mk∑
a( j)

k =0

f
(

x( j)
k

∣∣a( j)
k , z1:k

)
p
(

a( j)
k

∣∣z1:k

)
. (16)

Here, the conditional pdf f (x( j)
k

∣∣a( j)
k , z1:k ) is given as fol-

lows [6]: for a( j)
k = m ∈ {1, . . . , Mk},

f
(

x( j)
k

∣∣a( j)
k = m, z1:k

)

=
f
(

z(m)
k

∣∣x( j)
k

)
f
(

x( j)
k

∣∣z1:k−1

)
∫

f
(

z(m)
k

∣∣x( j)′
k

)
f
(

x( j)′
k

∣∣z1:k−1

)
dx( j)′

k

, m ∈ {1, . . . , Mk},

(17)

and for a( j)
k = 0,

f
(

x( j)
k

∣∣a( j)
k = 0, z1:k

)
= f

(
x( j)

k

∣∣z1:k−1

)
. (18)

We note that, based on the approximation (10), the pdfs
f̃ (x( j)

k

∣∣z1:k ) in (15) and (16) approximate the marginal poste-

rior pdfs f (x( j)
k

∣∣z1:k ). An important, often overlooked property
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of the JPDA solution in (16) is that if we have two identical
predicted pdfs f (x( j)

k

∣∣z1:k−1)—which enter (16) via (17) and
(18)—for two different targets j �= j′, then we also have iden-
tical approximate marginal posterior pdfs [1], [6], i.e.,

f
(

x( j′ )
k

∣∣z1:k−1

)
= f

(
x( j)

k

∣∣z1:k−1

)

⇒ f̃
(

x( j′ )
k

∣∣z1:k

)
= f̃

(
x( j)

k

∣∣z1:k

)
. (19)

This is due to symmetry in the computation of (11) and (16)
and can easily be verified.

In conventional JPDA filter methods, differently from MHT
methods, the sequence of existence indicators r0:k , and thus
also the number of targets Lk , are assumed known. In practical
implementations, a heuristic for track initialization and termi-
nation provides an estimate of r0:k . For linear and Gaussian
measurement and motion models and a Gaussian prior for the
kinematic states x( j)

k , as assumed in the original formulation
of the JPDA filter [1], [7], [9], the approximate marginal
posterior pdfs f̃ (x( j)

k

∣∣z1:k ) in (16) are Gaussian mixture pdfs,
which are further approximated by Gaussian pdfs.

A deficiency of the JPDA filter is the track coalescence
effect: when targets come close to each other, the estimated
tracks tend to merge and become indistinguishable. This be-
havior is due to the facts that (i) the predicted marginal
posterior pdfs f (x( j)

k

∣∣z1:k−1) involved in (17) and (18) be-
come similar when the targets come close to each other, and
(ii) the approximate marginal posterior pdfs f̃ (x( j)

k

∣∣z1:k ) are
calculated via expression (16). More specifically, perform-
ing “soft DA” by means of the summation over all possible
associations a( j)

k ∈ {0, 1, . . . , Mk}, as done in (16), has the
effect that targets j with similar predicted marginal posterior
pdfs f (x( j)

k

∣∣z1:k−1)—which enter (16) via (17) and (18)—
tend to also have similar approximate marginal posterior pdfs
f̃ (x( j)

k

∣∣z1:k ) (cf. (19)), which is due to symmetry in the com-
putations (11) and (16). This, in turn, results in similar MMSE
state estimates according to (8) (with f (x( j)

k

∣∣z1:k ) replaced

by f̃ (x( j)
k

∣∣z1:k )). A detailed analysis of the track coalescence
effect will be presented in Section VII.

Variants and extensions of the JPDA filter include the
JIPDA filter [3], [17], the JPDA* filter [45], and the set JPDA
(SJPDA) filter [48]. The JIPDA filter extends the JPDA fil-
ter by a binary existence indicator to systematically account
for target existence, but suffers from track coalescence just
as the conventional JPDA filter. The JPDA* filter mitigates
track coalescence by pruning target-measurement associa-
tions. However, this comes at the cost of a reduced tracking
performance in more challenging tracking scenarios with a
high number of clutter measurements and missed detections.
The SJPDA filter is based on the OSPA estimator [48], which
is in turn based on the minimization of the mean OSPA
metric [65]. Similar to the JPDA* filter, the SJPDA filter
exhibits reduced track coalescence effects. Efficient imple-
mentations are based on convex optimization techniques [66].

To maintain track continuity, the SJPDA filter relies on post-
processing techniques [67], which are not required for the
other JPDA filter variants or MHT methods.

A potential limitation of the JPDA filter and its variants is
the fact that their complexity scales exponentially with the
number of targets and the number of measurements, which
is due to the marginalization operation in (11) or equivalent
marginalization operations. Gating and clustering strategies
can significantly reduce the complexity in many cases, but
fail when many objects come in close proximity. A potential
solution in such scenarios is to switch to JPDA-type tracking
methods of lower complexity such as the methods proposed
in [19] and [68]. Other solutions rely on the pruning of target-
measurement associations—which is inherently done in the
JPDA* filter—or exploit the potential independence of target-
measurement associations [20].

VI. BP METHOD
BP-based MTT methods [6], [12], [15], [36], [42], [55],
[69], [70] aim at computing the marginal posterior pdf/pmf
f (x( j)

k , r( j)
k

∣∣z1:k ) for each PT j ∈ {1, . . . , Jk}. This marginal
posterior pdf/pmf is then used to perform target detection and
MMSE state estimation. In what follows, we will consider the
specific BP method introduced in [6]. For target detection, the
marginal posterior pmf p(r( j)

k

∣∣z1:k ) of the existence indicator

r( j)
k is obtained from f (x( j)

k , r( j)
k

∣∣z1:k ) as

p
(

r( j)
k

∣∣z1:k

)
=

∫
f
(

x( j)
k , r( j)

k

∣∣z1:k

)
dx( j)

k .

PT j is then detected—i.e., declared to exist—if p(r( j)
k =

1
∣∣z1:k ) is larger than a predefined threshold Pth. Next, for

all PTs that are declared to exist, MMSE state estimation is
performed according to

x̂( j)MMSE
k =

∫
x( j)

k f
(

x( j)
k

∣∣r( j)
k = 1, z1:k

)
dx( j)

k , (20)

with

f
(

x( j)
k

∣∣r( j)
k = 1, z1:k

)
=

f
(

x( j)
k , r( j)

k = 1
∣∣z1:k

)

p
(

r( j)
k = 1

∣∣z1:k

) . (21)

It remains to calculate f (x( j)
k , r( j)

k

∣∣z1:k ). We have

f
(

x( j)
k , r( j)

k

∣∣z1:k

)
=

∫ ∑
r(∼ j)
k

f (xk, rk|z1:k )dx(∼ j)
k ,

where r(∼ j)
k denotes rk with the entry r( j)

k removed, x(∼ j)
k

denotes xk with the subvector x( j)
k removed, and f (xk, rk|z1:k )

is a marginal pdf/pmf of the joint posterior pdf/pmf
f (x0:k, r0:k, a1:k, b1:k|z1:k ), i.e.,

f (xk, rk|z1:k )

=
∫ ∑

r0:k−1

∑
a1:k

∑
b1:k

f (x0:k, r0:k, a1:k, b1:k|z1:k ) dx0:k−1. (22)
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By inserting the factorization (1), (2) of
f (x0:k, r0:k, a1:k, b1:k|z1:k ) and carrying out the marginal-
izations with respect to x0:k−2, r0:k−2, a1:k−1, and b1:k−1, it
can be shown that [6]

f (xk, rk|z1:k ) =
∫ ∑

rk−1

∑
ak

∑
bk

f (xk−1, rk−1|z1:k−1)

× g(xk, rk, ak, bk, xk−1, rk−1; zk )dxk−1,

(23)

where g(xk, rk, ak, bk, xk−1, rk−1; zk ) was defined in (2).
Two observations can be made at this point. First, it can be

concluded from (20)–(23) that the MMSE estimator x̂( j)MMSE
k

in (20) is a “single-scan solution” in the sense that, as shown
by (23), the marginal posterior pdf/pmf f (xk, rk|z1:k ) at time k
can be directly obtained from the marginal posterior pdf/pmf
at time k − 1, f (xk−1, rk−1|z1:k−1), and the current measure-
ment zk (which enters via g(xk, rk, ak, bk, xk−1, rk−1; zk )). In
other words, f (xk−1, rk−1|z1:k−1) subsumes and provides all
the relevant information from past time steps. We note that
a single-scan method based on MMSE estimation does not
necessarily perform worse than a multiscan method based on
MAP estimation (such as an MHT method).

Second, the computational complexity of evaluating the
expressions (23) and (2) is much smaller than that of directly
performing the marginalization in (22). Indeed, the sum-

mation over r0:k−1 in (22) involves 2J0 · · · 2Jk−1 = 2
∑k−1

k′=0
Jk′

terms, whereas the repeated application of (23) from 0 to
k − 1 only involves

∑k−1
k′=0 2Jk′ terms. This complexity reduc-

tion is a consequence of the temporal factorization structure
of the MTT problem. However, we still have to perform the
marginalizations in (23), whose complexity scales exponen-
tially in the number of PTs and the number of measurements.
These marginalizations can be computed in an efficient
(though approximate) manner using the BP approach de-
scribed in the following, which has only a linear complexity
scaling.

The BP method operates on a factor graph representing the
statistical model of the considered estimation problem [56],
[57]. The factor graph for our statistical model is shown
in Fig. 1. The marginal pdfs/pmfs f (x( j)

k , r( j)
k

∣∣z1:k ), j =
1, . . . , Jk needed for target detection and state estimation as
discussed above are calculated efficiently by performing lo-
cal operations corresponding to the individual graph nodes
and exchanging the results of these local operations—called
“messages”—along the graph edges [6], [42]. In the fol-
lowing, we outline the calculation of these messages and
the resulting beliefs (see also Fig. 1). More details are pro-
vided in [6], and a particle-based implementation is described
in [42].

1) Prediction: First, state prediction is performed
separately for each legacy PT j ∈ {1, . . . , Jk−1}
by sending a message α

( j)
k (x( j)

k , r( j)
k ) from factor

node “ f (x( j)
k , r( j)

k

∣∣x( j)
k−1, r( j)

k−1)” to variable node

“[x( j)T
k r( j)

k ]T”. This message is calculated according to

α
( j)
k

(
x( j)

k , r( j)
k

)
=

∑
r( j)
k−1∈{0,1}

∫
f
(

x( j)
k , r( j)

k

∣∣x( j)
k−1, r( j)

k−1

)

× f
(

x( j)
k−1, r( j)

k−1

∣∣z1:k−1

)
dx( j)

k−1.

Here, f (x( j)
k−1, r( j)

k−1

∣∣z1:k−1) is the marginal posterior
pdf/pmf of legacy PT j ∈ {1, . . . , Jk−1} at time k − 1.

2) Measurement Evaluation: Next, for each legacy PT
j ∈ {1, . . . , Jk−1}, the following message is passed
from factor node “q(x( j)

k , r( j)
k , a( j)

k ; zk )” to variable node

“a( j)
k ”:

β
( j)
k

(
a( j)

k

)

=
∑

r( j)
k ∈{0,1}

∫
q

(
x( j)

k , r( j)
k , a( j)

k ; zk

)
α

( j)
k

(
x( j)

k , r( j)
k

)
dx( j)

k .

Similarly, for each new PT m ∈ {1, . . . , Mk}, the
following message is passed from factor node
“v(x(m)

k , r(m)
k , b(m)

k ; z(m)
k )” to variable node “b(m)

k ”:

ξ
(m)
k

(
b(m)

k

)

=
∑

r(m)
k ∈{0,1}

∫
v

(
x(m)

k , r(m)
k , b(m)

k ; z(m)
k

)
dx(m)

k .

3) Probabilistic DA: Probabilistic DA is now performed
iteratively by sending, at message passing iteration p ∈
{1, . . . , P}, a message ϕ

[p]( j→m)
k from variable node

“a( j)
k ” via factor node “� j,m(a( j)

k , b(m)
k )” to variable

node “b(m)
k ” and a message ν

[p](m→ j)
k from variable node

“b(m)
k ” via factor node “� j,m(a( j)

k , b(m)
k )” to variable

node “a( j)
k ”. These messages are calculated according

to

ϕ
[p]( j→m)
k = β

( j)
k (m)

β
( j)
k (0) + ∑Mk

m′=1
m′ �=m

β
( j)
k (m′)ν[p](m′→ j)

k

ν
[p](m→ j)
k = ξ

(m)
k ( j)

ξ
(m)
k (0) + ∑Jk−1

j′=1
j′ �= j

ξ
(m)
k ( j′)ϕ[p−1]( j′→m)

k

,

for j = 1, . . . , Jk−1 and m = 1, . . . , Mk . This itera-
tive procedure is initialized with ϕ

[0]( j→m)
k = 1. Af-

ter the last iteration p = P, a message κ
( j)
k (a( j)

k )

is passed from variable node “a( j)
k ” to factor node

“q(x( j)
k , r( j)

k , a( j)
k ; zk )”. This message is given for a( j)

k =
m ∈ {0, 1, . . . , Mk} by

κ
( j)
k (m) = β

( j)
k (m)ν[P](m→ j)

k

β
( j)
k (0) + ∑Mk

m′=1 β
( j)
k (m′)ν[P](m′→ j)

k

.
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Similarly, a message ι
(m)
k (b(m)

k ) is passed from variable

node “b(m)
k ” to factor node “v(x(m)

k , r(m)
k , b(m)

k ; z(m)
k )”. It

is given for b(m)
k = j ∈ {0, 1, . . . , Jk−1} by

ι
(m)
k ( j) = ξ

(m)
k ( j)ϕ[P]( j→m)

k

ξ
(m)
k (0) + ∑Jk−1

j′=1 ξ
(m)
k ( j′)ϕ[P]( j′→m)

k

.

4) Measurement Update: Measurement update steps are
next applied for the legacy PTs and the new PTs. For
each legacy PT j ∈ {1, . . . , Jk−1}, the message

γ
( j)
k

(
x( j)

k , r( j)
k

)
=

Mk∑
a( j)

k =0

q
(

x( j)
k , r( j)

k , a( j)
k ; zk

)
κ

( j)
k

(
a( j)

k

)

is passed from factor node “q(x( j)
k , r( j)

k , a( j)
k ; zk )” to

variable node “[x( j)T
k r( j)

k ]T”. Furthermore, for each new
PT m ∈ {1, . . . , Mk}, the message

ς
(m)
k

(
x(m)

k , r(m)
k

)
= v

(
x(m)

k , r(m)
k , b(m)

k ; z(m)
k

)
ι
(m)
k (0)

is passed from factor node “v(x(m)
k , r(m)

k , b(m)
k ; z(m)

k )” to

variable node “[x(m)T
k r(m)

k ]T”.
5) Belief calculation: Finally, for each legacy PT j ∈

{1, . . . , Jk−1}, a belief f̃ (x( j)
k , r( j)

k ) approximating the

marginal posterior pdf/pmf f (x( j)
k , r( j)

k

∣∣z1:k ) is obtained
as

f̃
(

x( j)
k , r( j)

k

)
= 1

C( j)
k

α
( j)
k

(
x( j)

k , r( j)
k

)
γ

( j)
k

(
x( j)

k , r( j)
k

)
,

with C( j)
k �

∑
r( j)

k ∈{0,1}
∫

α
( j)
k (x( j)

k , r( j)
k )γ ( j)

k (x( j)
k , r( j)

k ) ×
dx( j)

k . Analogously, for each new PT m ∈ {1, . . . , Mk},
a belief f̃ (x(m)

k , r(m)
k ) approximating the marginal

posterior pdf/pmf f (x(m)
k , r(m)

k

∣∣z1:k ) is obtained as

f̃
(

x(m)
k , r(m)

k

)
= 1

C
(m)
k

ς
(m)
k

(
x(m)

k , r(m)
k

)
,

with C
(m)
k �

∑
r( j)

k ∈{0,1}
∫

ς
(m)
k (x(m)

k , r( j)
k )dx(m)

k .

This BP method systematically exploits the conditional
independence structure of the involved random variables,
as expressed by the factorization structure of (1), (2) and
represented by the factor graph of Fig. 1, for a large re-
duction of computational complexity. Here, in particular, the
spatial factorization structure across PTs expressed by (1)
and (2) is exploited in addition to the temporal factorization
structure. Since the factor graph in Fig. 1 has loops, the
beliefs f̃ (x( j)

k , r( j)
k ) and f̃ (x(m)

k , r(m)
k ) only provide approxi-

mations to the marginal posterior pdfs/pmfs f (x( j)
k , r( j)

k

∣∣z1:k )

and f (x(m)
k , r(m)

k

∣∣z1:k ), respectively [56]. In the case of our
factor graph, these approximations are sufficiently accurate
to yield excellent tracking performance. However, the loops
in the factor graph also lead to overconfident beliefs [71],
i.e., the spread of the beliefs underestimates the true posterior
uncertainty of the respective random variables.

Since the BP method performs a marginalization similar to
JPDA filter methods, one may suspect that it suffers from track
coalescence to a similar extent. Surprisingly, this is not the
case: as analyzed in the next section and further evidenced
by our simulation results in Section VIII, the BP method
exhibits track coalescence to a lesser extent than traditional
JPDA filtering methods. Moreover, it does not suffer from
track repulsion effects.

VII. A CLOSER LOOK AT THE TRACK COALESCENCE
EFFECT
In this section, we take a closer look at the track coalescence
effect and investigate why BP methods exhibit this effect to a
lesser extent than JPDA filter methods.

A. JPDA FILTER
Let us first reconsider the JPDA filter from Section V for the
case where the number of targets is fixed and known, i.e., Lk =
L for all times k. Here, using (12) and (13), the posterior DA
pmf p(ak|z1:k ) in (10) can be expressed as

p(ak|z1:k ) ∝
L∏

j=1

∫
q

(
x( j)

k , 1, a( j)
k ; zk

)
f
(

x( j)
k

∣∣z1:k−1

)
dx( j)

k .

(24)

If f (x( j)
k

∣∣z1:k−1), i.e., the “prior information” about x( j)
k at

time k, is equal for all j = 1, . . . , L, then f (x( j)
k

∣∣a( j)
k , z1:k )

in (17), (18) is equal for all a( j)
k = 0, . . . , Mk . Furthermore,

p(ak|z1:k ) is invariant to a permutation of the entries a( j)
k

of ak . This, in turn, implies that the marginal posterior DA
pmfs p(a( j)

k

∣∣z1:k ), j = 1, . . . , L calculated from p(ak|z1:k )
according to (11) are equal and, further, the approximate
marginal state pdfs f̃ (x( j)

k

∣∣z1:k ), j = 1, . . . , L calculated from

p(a( j)
k

∣∣z1:k ) and f (x( j)
k

∣∣a( j)
k , z1:k ) according to (16) are equal

as well. Therefore, the target state estimates x( j)MMSE
k cal-

culated from f̃ (x( j)
k

∣∣z1:k ) according to (8) (with f (x( j)
k

∣∣z1:k )

replaced by f̃ (x( j)
k

∣∣z1:k )) become equal, which means that the
estimated tracks merge and, thus, the track coalescence effect
is observed. An inspection of (16) and (24) shows that this
indistinguishability of targets with the same prior information
f (x( j)

k

∣∣z1:k−1) is a direct consequence of the measurement
model with measurement-origin uncertainty. We will illustrate
this fact by considering two simple scenarios.

The first scenario demonstrates the track coalescence ef-
fect without using the Gaussian assumption underlying the
JPDA filter. We consider a 1-D state space and two targets
that are close to each other. The target states are the tar-
gets’ 1-D positions x( j)

k ∈ {−1, 1} for j = 1, 2. The targets
are observed by a sensor that generates the measurements
z(1)

k = 1 and z(2)
k = −1. Thus, we have Lk = L = 2 and Mk =

2. There are no clutter measurements and no measurement
noise, and the detection probability is assumed to be one.
We further assume that each measurement equals either
one of the true target positions x( j)

k with equal probability,
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i.e., z(1)
k = 1 equals x(1)

k or x(2)
k with equal probability 1/2,

and similarly for z(2)
k = −1. From these assumptions, it fol-

lows that p(a(1)
k = m

∣∣z1:k ) = p(a(2)
k = m

∣∣z1:k ) = 1/2 for m =
1, 2 and f (x( j)

k

∣∣a( j)
k = 1, z1:k ) = δ(x( j)

k − 1) and f (x( j)
k

∣∣a( j)
k =

2, z1:k ) = δ(x( j)
k + 1) for j = 1, 2. Inserting these expres-

sions into (16) yields f̃ (x( j)
k

∣∣z1:k ) = 1
2δ(x( j)

k − 1) + 1
2δ(x( j)

k +
1) for j = 1, 2. Finally, using (8), the MMSE state estimates
are obtained as x̂( j)MMSE

k = 0 for j = 1, 2. This means that
the tracks are merged and, thus, the track coalescence effect is
observed.

For the second scenario, we reconsider the simple tracking
scenario previously considered in the context of MHT meth-
ods in Section IV. We recall this scenario for convenience.
There are two targets, whose states include the targets’ posi-
tions. Each target generates one measurement, which is the
target’s position plus Gaussian measurement noise, and there
are no clutter measurements. Thus, we again have Lk = L = 2
and Mk = 2. The targets move on parallel tracks and in close
proximity, in the sense that the distance between them is
significantly smaller than the standard deviation of the mea-
surement noise. If the two targets move in this way for a
sufficiently long time, it can be expected that the predicted
posterior pdfs f (x(1)

k

∣∣z1:k−1) and f (x(2)
k

∣∣z1:k−1), i.e., the “prior
information,” are approximately equal and that each of the
two measurements is approximately equally likely to have
originated from either one of the two targets. This assumption
results in f (x(1)

k

∣∣a(1)
k = m, z1:k ) and f (x(2)

k

∣∣a(2)
k = m, z1:k ) in

(17) being approximately equal for m = 1, 2 and p(a(1)
k =

m
∣∣z1:k ) and p(a(2)

k = m
∣∣z1:k ) being also approximately equal

for m = 1, 2. As a consequence, it can be expected that, ac-
cording to (16), f̃ (x(1)

k

∣∣z1:k ) and f̃ (x(2)
k

∣∣z1:k ) are almost equal.
As explained above, this implies that the target state estimates
x(1)MMSE

k and x(2)MMSE
k become approximately equal, which

means that the track coalescence effect is observed. The track
coalescence effect also occurs when one of the two targets is
missed, i.e., Mk = 1, or there is clutter, i.e., Mk > 2, as long
as the distance between the targets is smaller than the standard
deviation of the measurement noise. In both cases, again, each
of the measurements is approximately equally likely to have
originated from either one of the two targets. If the measure-
ments follow a more complicated, possibly nonlinear or non-
Gaussian measurement model, the track coalescence effect
can still be observed, but a characterization of the case where
the targets are “in close proximity” may be more difficult.

B. BP METHOD
Although the BP method considered in Section VI is partly
related to the JPDA filtering paradigm, it exhibits significantly
reduced track coalescence effects. There are two reasons for
this fact: (i) the BP method typically uses a particle represen-
tation of the marginal posterior pdfs f (x( j)

k

∣∣r( j)
k = 1, z1:k ) in

(21) [42], which preserves the multimodality of these pdfs,
and (ii) the overconfident nature of the DA solution provided

by the BP method favors the most likely PT-measurement
association and thus a separation of target state estimates.

Reason (i) can be explained as follows. In the original
JPDA filter, the pdfs f (x( j)

k

∣∣a( j)
k , z1:k ) in (17) and (18) are

Gaussian pdfs. As a consequence, the approximate marginal
posterior pdfs f̃ (x( j)

k

∣∣z1:k ) calculated according to (16) are
Gaussian mixture pdfs. The JPDA filter approximates these
multimodal Gaussian mixture pdfs by Gaussian pdfs. This
additional approximation exacerbates the track coalescence
effect since pdfs f̃ (x( j)

k

∣∣z1:k ) that are well distinguishable may
become indistinguishable after the Gaussian approximation.
By contrast, the particle representation of the marginal poste-
rior pdfs f (x( j)

k

∣∣r( j)
k = 1, z1:k ) that is used in the BP method is

able to capture the multimodality of f (x( j)
k

∣∣r( j)
k = 1, z1:k ). We

note that the role of f (x( j)
k

∣∣r( j)
k = 1, z1:k ) in the BP method is

similar to that of f (x( j)
k

∣∣z1:k ) in JPDA filter methods.
Reason (ii) is the overconfident nature of the BP method

for a factor graph with loops (“loopy BP”) [72]. To illus-
trate this aspect, we consider modified marginal posterior DA
pmfs pρ (a( j)

k

∣∣z1:k ) � (p(a( j)
k

∣∣z1:k ))ρ/C( j)
k with exponent ρ ∈

(0,∞), where C( j)
k �

∑Mk

a( j)
k =0

(p(a( j)
k

∣∣z1:k ))ρ and p(a( j)
k

∣∣z1:k )

is calculated according to (11). For 0 < ρ < 1, pρ (a( j)
k

∣∣z1:k ) is

underconfident relative to p(a( j)
k

∣∣z1:k ), in the sense that likely
PT-measurement associations (corresponding to large values
of p(a( j)

k

∣∣z1:k )) are deemphasized and unlikely ones (cor-

responding to small values of p(a( j)
k

∣∣z1:k )) are emphasized,

resulting in a larger spread of the modified pmf pρ (a( j)
k

∣∣z1:k ).

In particular, for ρ → 0, pρ (a( j)
k

∣∣z1:k ) is the uniform pmf,
i.e., all PT-measurement associations are equally likely. For
ρ > 1, on the other hand, pρ (a( j)

k

∣∣z1:k ) is overconfident rel-

ative to p(a( j)
k

∣∣z1:k ), in the sense that likely associations are
emphasized and unlikely ones are deemphasized, resulting in
a smaller spread of pρ (a( j)

k

∣∣z1:k ). In particular, for ρ → ∞,

pρ (a( j)
k

∣∣z1:k ) is one for the value of a( j)
k where p(a( j)

k

∣∣z1:k ) is

largest—i.e., the MAP estimate of a( j)
k —and zero otherwise.

The JPDA filter performs soft DA with ρ = 1, which leads to
track coalescence as discussed in Section VII-A. By contrast,
MHT methods perform hard DA, in that they use only the
MAP estimate of a( j)

k instead of the entire posterior distribu-

tion of a( j)
k , corresponding to pρ (a( j)

k

∣∣z1:k ) with ρ → ∞; this
leads to track repulsion as explained in Section IV.

The BP method, just as JPDA filtering methods, performs
soft DA in the sense that it calculates approximate marginal
posterior state pdfs f̃ (x( j)

k

∣∣z1:k ) via a weighted summation
over all possible associations, thereby taking into account
the entire DA distribution (see (16)). However, in contrast to
JPDA filter methods, it relies on loopy BP and thus computes
overconfident approximations p̃(a( j)

k

∣∣z1:k ) of the marginal

posterior DA pmfs p(a( j)
k

∣∣z1:k ). These approximations resem-

ble pρ (a( j)
k

∣∣z1:k ) for some ρ > 1, which means that the BP
method emphasizes likely PT-measurement associations and
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FIGURE 4. Target trajectories of scenarios (a) S1, (b) S2, (c) S3, and (d) S4. The initial target positions are indicated by circles.

deemphasizes unlikely ones. Thus, the soft DA performed by
the BP method is somewhat closer, in regard to the tracking
results, to the hard DA performed by MHT methods (which
do not exhibit the track coalescence effect). This explains why
the BP method exhibits a reduced track coalescence effect.
However, the BP solution is still less confident than the so-
lution provided by MHT, which does not reflect association
ambiguity by setting ρ = ∞. The price paid for the reduced
track coalescence is that the BP solution tends to be overcon-
fident.

VIII. SIMULATION STUDY
Next, we present simulation results assessing and comparing
the performance of the considered MTT methods in four dif-
ferent scenarios where targets come in close proximity. In
particular, we will demonstrate experimentally that the BP
method exhibits no track repulsion effect and a significantly
reduced track coalescence effect compared to JPDA filter
methods.

A. SIMULATION SETUP
We consider the four simulation scenarios S1 through S4 de-
picted in Fig. 4. In S1 through S3, there are two targets with
deterministically chosen trajectories: in S1, the two targets
approach each other, move in parallel close to each other,
and separate again; in S2, they move in parallel close to
each other from the beginning and then separate; and in S3,
they cross each other. In S4, on the other hand, six targets
are born with uniform spacing on a circle of radius 150m
and evolve randomly according to a nearly constant-velocity
motion (NCVM) model [73]; they come in close proximity
near the origin and then separate again [42]. Each scenario
comprises 300 time steps. The minimum distance between the
two targets in S1 and S2 is equal to the standard deviation
of the measurement noise, σv (defined below). The targets
remain close to each other for 100 time steps in S1 and for
150 time steps in S2. In S3 and S4, the two and six targets
are in a “2σv-neighborhood” for about 50 time steps and
30 time steps, respectively. The region of interest (ROI) is
[−750m, 750m] × [−750m, 750m] for all scenarios.

The target states consist of 2-D position and velocity, i.e.,
x( j)

k = [x( j)
1,k x( j)

2,k ẋ( j)
1,k ẋ( j)

2,k]T. The various MTT methods, for all

scenarios S1 through S4, use the NCVM model [73]

x( j)
k = Ax( j)

k−1 + u( j)
k , (25)

where u( j)
k ∼ N (0,�u) is a sequence of independent and

identically distributed (iid) 4-D Gaussian random vectors and
A and �u are given by

A =

⎛
⎜⎜⎜⎝

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠, �u =

⎛
⎜⎜⎜⎜⎝

T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T

⎞
⎟⎟⎟⎟⎠σ 2

u .

Here, T = 1s and σ 2
u = 0.1m2/s4 for S1, S2, and S3 and

σ 2
u = 0.0001m2/s4 for S4. We note that the changes in di-

rection occurring in the target trajectories in S1 and S2 are
not explicitly modeled by the NCVM model in (25); however,
this model mismatch is compensated by the relatively high
driving noise variance σ 2

u used by the MTT methods in S1 and
S2. The survival probability is set to ps = 0.995. Furthermore,
μb = 0.01 and fb(xk ) is uniform over the ROI.

The sensor produces noisy measurements of the target po-
sitions. More specifically, the target-generated measurements
are givenby

z(m)
k = [x1,k x2,k]T + v(m)

k ,

where v(m)
k ∼ N (0, σ 2

v I2) with σv = 10 m is an iid sequence
of 2-D Gaussian random vectors. The detection probability is
set to pd = 0.5. We assume a sensor with perfect resolution,
i.e., independently of their distance, the targets can always be
resolved in the sense that two different targets do not lead
to the same measurement. In addition to the target-generated
measurements, there are also clutter measurements. The mean
number of clutter measurements is μc = 10, and the clutter
pdf fc(z(m)

k ) is uniform on the ROI. These measurement pa-
rameters and state evolution parameters are used in the various
MTT methods; furthermore, the same measurement param-
eters and, in scenario S4, also the NCVM state evolution
parameters are used to generate the measurements. We note
that if larger values of σ 2

u , σ 2
v , and μc and smaller values

of ps and pd are used to generate the measurements, then a
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poorer tracking accuracy of the various MTT methods can be
expected.

For each of our four scenarios, we performed 1000 simu-
lation runs, each comprising 300 time steps. For performance
evaluation, we use the generalized optimal subpattern assign-
ment (GOSPA) metric [74] based on the L2-norm, averaged
over all simulation runs, with parameters p = 1, c = 50, and
β = 2. The GOSPA metric accounts for both cardinality and
state estimation errors, similar to the OSPA metric [65] and
the complete OSPA metric [75]. For S1, we compute two ad-
ditional performance metrics. The first, termed “D-Tracks,” is
the distance between the two tracks, i.e., |x̂(1)

2,k − x̂(2)
2,k|, for each

time step k. The second, termed “D-Center,” is the average of
the distances of the estimated y-coordinates of the two tracks
from the y-center (origin), i.e., (|x̂(1)

2,k| + |x̂(2)
2,k |)/2, again for

each time step k. A small D-Tracks metric can indicate track
coalescence, while the D-Center metric assesses the accuracy
of the tracks’ centroid (which is high if the D-Center metric
is small). For example, if D-Tracks and D-Center are both
small, the estimated tracks may have coalesced, but at least
the estimated “joint track” is quite accurate. On the other
hand, if D-Center is large, then also the estimated joint track
is inaccurate.

B. REDUCED TRACK COALESCENCE IN THE BP METHOD
We first demonstrate and analyze experimentally the reduction
of track coalescence exhibited by the BP method of Sec-
tion VI. In Section VII-B, we argued that this reduction is
due to the particle representation of the marginal posterior
state pdfs—which, differently from a Gaussian representa-
tion, preserves multimodality—and the overconfident nature
of the DA-related messages. We now investigate this nu-
merically by combining two choices of track representation
(single Gaussian and set of particles) with the DA strategies
employed by the BP method and the JPDA filter. In particular,
to demonstrate the influence of the particle representation
of the marginal posterior state pdfs, we compare a particle
implementation of the BP method with a Gaussian implemen-
tation; these implementations will be designated as PART-BP
and GAUSS-BP, respectively. Furthermore, to demonstrate
the influence of the overconfident nature of the DA-related
messages in the BP method, we consider modified versions
of the particle and Gaussian implementations in which the
BP-based approximate marginalization of the association pmf
is replaced by an exact marginalization. These latter methods
will be designated as PART-EX and GAUSS-EX. To exclude
the influence of target detection errors, we temporarily as-
sume that the birth times and birth positions of the targets
are perfectly known by the various tracking algorithms. We
note that in this case GAUSS-EX coincides with the JPDA
filter of Section V, and thus the corresponding implementation
equations of GAUSS-EX can be found, e.g., in [1]. Further-
more, we recall that in GAUSS-BP, the exact marginalization
of GAUSS-EX is replaced by the BP-based approximate
marginalization. PART-BP and PART-EX use 5000 particles
to represent the PT states. The implementation equations of

PART-BP are equal to those in [42] for the case of a single
sensor and known birth times and locations. We recall that
in PART-EX, the BP-based marginalization of PART-BP is
replaced by the exact marginalization. The threshold for target
confirmation is Pth = 0.5.

Fig. 5 presents the results for scenario S1. The D-Tracks
curves in Fig. 5(a) show that the tracks of GAUSS-BP and
PART-BP are close to the ground truth, whereas those of
GAUSS-EX and PART-EX tend to merge and exhibit a delay
in separating again. This behavior is also reflected by the
GOSPA curves in Fig. 5(c): the track coalescence effect causes
an increase of the GOSPA error of GAUSS-EX and PART-EX
for k = 200, . . . , 250. This increase is smaller for PART-
EX than for GAUSS-EX. Regarding the D-Center curves in
Fig. 5(b), all four methods exhibit a similar behavior. In sum-
mary, the results in Fig. 5(a) and (c) demonstrate that both
particle representation and BP-based marginalization tend to
lead to reduced track coalescence effects, thereby confirming
our reasoning of Section VII.

Finally, we demonstrate that the particle representation
preserves multimodality of the marginal posterior pdfs. For
scenario S1, we plot in Fig. 6 example realizations of the two
particle sets employed by PART-EX to represent the marginal
posterior pdfs f (x(1)

k |z1:k ) and f (x(2)
k |z1:k ) at time k = 220,

as well as the corresponding state estimates x̂(1)
220 and x̂(2)

220.
It can be seen that the particle sets express a bimodality of
the marginal posterior pdfs. Furthermore, a comparison of the
spatial separation between the state estimates x̂(1)

220 and x̂(2)
220

with the true separation of the targets (which is 10m) suggests
that the track coalescence effect is not significant. We note that
for a reduction of track coalescence, the particle representa-
tion of the marginal posterior pdfs is especially beneficial in
PART-EX, whereas in PART-BP, the overconfident nature of
the BP messages is predominant.

C. ANALYSIS OF TRACK COALESCENCE AND REPULSION
FOR THE JPDA, JPDA*, SJPDA, MHT, AND BP METHODS
Next, we analyze the track coalescence and repulsion effects
potentially exhibited by the JPDA, JPDA*, SJPDA, (track-
oriented) MHT, and BP methods for our four scenarios S1
through S4. The number of targets and the target birth times
and positions are now unknown to all methods. JPDA, JPDA*,
and SJPDA use gating with a gate validation threshold of
13.82, corresponding to an in-gate probability (i.e., the proba-
bility that a target-generated measurement is within the gate)
of 0.999. We remark that a gate validation threshold of 9.21,
corresponding to an in-gate probability of 0.99, led to simi-
lar results. MHT is a reference implementation provided by
Systems & Technology Research, Woburn, MA, USA; this im-
plementation uses a Gaussian representation of the individual
tracks [52] and a hypothesis depth of five scans. The track
confirmation logics [1] of JPDA, JPDA*, and SJPDA are set
to 12/24, those of MHT to 8/16 (these values were chosen
such that each method achieves its best performance across
all scenarios). Finally, BP generates a new track for each
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FIGURE 5. Performance of PART-BP, GAUSS-BP, PART-EX, and GAUSS-EX for scenario S1: (a) D-Tracks, (b) D-Center, and (c) GOSPA.

FIGURE 6. Example realizations of particle sets representing the marginal
posterior pdfs (a) f (x(1)

k |z1:k ) and (b) f (x(2)
k |z1:k ) in PART-EX at time k = 220,

for scenario S1. The black dots indicate the corresponding state estimates
x̂(1)

220 and x̂(2)
220 . The dashed straight line corresponds to x2 = (x̂(1)

2,220 + x̂(2)
2,220 )/2 .

measurement, sets the corresponding existence probability to
10−4, and prunes existing tracks with existence probabilities
below 10−4.

Fig. 7 shows the D-Tracks, D-Center, and GOSPA curves
for scenario S1. One can see in Fig. 7(a) that when the two tar-
gets move in close proximity, D-Tracks is increased for MHT
and decreased for JPDA compared to the ground truth tracks;
this indicates track repulsion and track coalescence, respec-
tively. The low D-Tracks curve of JPDA for k = 200, . . . , 240
demonstrates that, after they coalesced, the tracks estimated
by JPDA separate again only with a delay. In JPDA*, SJPDA,
and BP, track coalescence is strongly reduced. In the case of
JPDA* and SJPDA, this is due to the special design of these
methods; in the case of BP, it is due to the particle representa-
tion of the marginal posterior state pdfs and the overconfident
nature of the DA-related messages in BP as argued in Sec-
tion VII-B and verified experimentally in Section VIII-B. We
note that JPDA*, as BP, performs approximate averaging of
the DA vectors, which leads to overconfident marginal poste-
rior DA pmfs [45].

Furthermore, in Fig. 7(b), the D-Center curves of JPDA,
JPDA*, SJPDA, and BP are generally close to the true curves.
An exception is JPDA for k = 200, . . . , 240, which again
reflects the fact that, after coalescence, the tracks estimated by

JPDA separate again only with a delay. The GOSPA curves
shown in Fig. 7(c) confirm the results of Figs. 7(a) and (b).
In particular, the increased GOSPA error of MHT for k =
100, . . . , 200 is due to track repulsion, and that of JPDA for
k = 200, . . . , 240 to track coalescence. JPDA*, SJPDA, and
BP perform similarly well, with a slight performance advan-
tage for BP.

Still for scenario S1, Fig. 8(b)–(d) show the individual
GOSPA error components, i.e., the localization error, the error
due to missed targets (“missed error”), and the error due to
false targets (“false error”) [74]. In addition, the total GOSPA
curves from Fig. 7(c) are replicated in Fig. 8(a) for easy
reference. The localization error curves in Fig. 8(b) are seen
to be similar to the total GOSPA curves; this reflects the fact
that missed and false targets contribute only little to the total
GOSPA error.

Fig. 9 shows the GOSPA error and its components for
scenario S2. In S2, differently from S1, the two targets are in
close proximity right from the beginning (see Fig. 4(b)). This
poses a challenge for the track initiation stage of the JPDA fil-
ter methods. Indeed, JPDA, JPDA*, and SJPDA generate only
one track as long as the targets remain in close proximity. This
means that one of the targets is missed, resulting in a large
missed error component of JPDA, JPDA*, and SJPDA in the
time range k = 1, . . . , 200, as shown in Fig. 9(c). By contrast,
as also shown in Fig. 9(c), MHT and BP initialize both tracks
correctly. Fig. 9(b) indicates an increased localization error of
MHT for k = 1, . . . , 150; this is due to track repulsion as in
S1. It is furthermore seen that the localization error of JPDA,
JPDA*, and SJPDA is reduced; this can be explained by the
fact that these methods estimate just a single track whereas
the other methods estimate both tracks, combined with the
fact that GOSPA is an “unnormalized” error metric, which
implies that tracking fewer targets generally results in a lower
localization error. Note, however, that the total GOSPA error
is lowest for BP. Finally, Fig. 9(d) shows that the false error
component is small for all methods.

Fig. 10 presents the GOSPA error and its components for
scenario S3. Similarly to scenarios S1 and S2, it can be seen
that when the two targets are close to each other, i.e., for
k = 125, . . . , 175, MHT suffers from track repulsion, and
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FIGURE 7. Performance of JPDA, JPDA*, SJPDA, MHT, and BP for scenario S1: (a) D-Tracks, (b) D-Center, and (c) GOSPA.

FIGURE 8. GOSPA error decomposition for scenario S1: (a) Total GOSPA
error (same as Fig. 7(c)), (b) localization error component, (c) missed error
component, and (d) false error component.

after the targets separate again, i.e., for k = 175, . . . , 225,
JPDA suffers from track coalescence. By contrast, track re-
pulsion and track coalescence are nonexistent or significantly
reduced in JPDA*, SJPDA, and BP.

D. FURTHER ANALYSIS OF TRACK COALESCENCE FOR THE
JPDA, JPDA*, SJPDA, AND BP METHODS
The results reported so far for scenarios S1 through S3 demon-
strate that JPDA, JPDA*, SJPDA, and BP do not exhibit
track repulsion and MHT does not exhibit track coalescence.
In addition, JPDA*, SJPDA, and BP exhibit reduced track
coalescence compared to conventional JPDA. Since JPDA*,
SJPDA, and BP performed equally well, we now further an-
alyze the track coalescence behavior of these methods and,
for comparison, of conventional JPDA in the even more
challenging scenario S4. Since MHT is not susceptible to

FIGURE 9. Total GOSPA error (a) and its components (b)–(d) for
scenario S2.

track coalescence, it is not considered in this analysis. S4 fea-
tures six targets, which come in close proximity around time
k = 150 (see Fig. 4(d)). We also consider more challenging
variants of S4 with seven, eight, and nine targets. The GOSPA
error for these scenarios is shown in Fig. 11. It can be seen that
all four methods exhibit only small track coalescence effects
for the cases of six, seven, and eight targets. For the case of
nine targets, JPDA and JPDA* exhibit an increased GOSPA
error compared to BP. In particular, the GOSPA error of JPDA
remains high for a long time after the targets separate again.

Still considering scenario S4 and its variants, we report in
Table 1 the minimum, median, mean, and maximum total (for
all 300 time steps) filter runtimes of Matlab implementations
of JPDA, JPDA*, SJPDA, and BP on an Intel Xeon Gold 5222
CPU averaged over 1000 simulation runs. Our JPDA, JPDA*,
SJPDA, and BP implementations use gating and clustering to
reduce computational complexity. However, in Scenario S4
and its variants, this has only a limited effect during the time
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FIGURE 10. Total GOSPA error (a) and its components (b)–(d) for scenario
S3.

FIGURE 11. GOSPA error for scenario S4 (a) and for three variants of S4
with seven, eight, and nine targets (b)–(d).

the targets are in close proximity because the targets are within
the same gate and thus clustered together. As Table 1 shows,
the runtimes of JPDA, JPDA*, and SJPDA increase rapidly
with the number of targets. This is consistent with the expo-
nential scaling of the complexity of these filters in the number
of tracks; note that the number of tracks may be higher than
the number of targets because of false tracks generated due
to clutter measurements. Because of the exponential scaling,
JPDA and JDPA* are infeasible for more than nine targets
and SJPDA is infeasible for more than eight targets. Table 1

TABLE 1. Minimum, Median, Mean, and Maximum Runtimes of JPDA,
JPDA*, SJPDA, and BP for Scenario S4 (Six Targets) and its Variants With
Seven, Eight, and Nine Targets

also shows that for JPDA, JPDA*, and SJPDA, there is a
large difference between the minimum and maximum filter
runtimes. The high filter runtimes in large scenarios are due
to simulation runs where the number of tracks is consider-
ably higher than the actual number of targets. Furthermore,
because there are significantly more simulation runs with a
low filter runtime than with a high filter runtime, the median
runtimes differ significantly from the mean runtimes. On the
other hand, the runtime of BP increases only slowly with the
number of targets. This is consistent with the fact that the
complexity of BP scales only linearly in the number of targets.

IX. CONCLUSION
We reviewed and analyzed three major methodologies for
multitarget tracking: the classical joint probabilistic data asso-
ciation (JPDA) filter and multiple hypothesis tracking (MHT)
methodologies and the recently introduced belief propagation
(BP) methodology. The focus of our study was on track co-
alescence and track repulsion effects, which are well known
to compromise the performance of, respectively, JPDA filter
and MHT methods when targets are in close proximity. In
particular, we investigated the potential occurrence of track
coalescence and track repulsion effects in the BP method.
We argued that the BP method does not suffer from track
repulsion because it performs soft data association similarly
to the JPDA filter. Moreover, track coalescence effects in
the BP method are significantly smaller than in the JPDA
filter, because certain properties of the BP messages re-
lated to data association encourage separation of target state
estimates. These theoretical arguments were confirmed by
simulation experiments. Our numerical results demonstrated
excellent performance of the BP method compared to the
JPDA, JPDA*, SJPDA, and MHT methods in scenarios with
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targets in close proximity. Future work will include an anal-
ysis of the quality of the BP state estimates in terms of the
normalized estimation error squared (NEES) [76].
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