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The convergence analysis for least-squares finite element methods led to various adaptive mesh-refinement 
strategies: Collective marking algorithms driven by the built-in a posteriori error estimator or an alternative 
explicit residual-based error estimator as well as a separate marking strategy based on the alternative error 
estimator and an optimal data approximation algorithm. This paper reviews and discusses available convergence 
results. In addition, all three strategies are investigated empirically for a set of benchmarks examples of second-

order elliptic partial differential equations in two spatial dimensions. Particular interest is on the choice of the 
marking and refinement parameters and the approximation of the given data. The numerical experiments are 
reproducible using the author’s software package octAFEM available on the platform Code Ocean.
1. Introduction

Least-squares finite element methods (LSFEMs) are highly popular 
discretisation schemes for partial differential equations. One key feature 
is their built-in a posteriori error estimation which renders this class of 
methods well-suited for adaptive mesh-refining algorithms. One of the 
first adaptive algorithms for LSFEMs has been proposed by Jiang and 
Carey [1]. The theoretical basis relies on the equivalence of the least-

squares functional with the error in the standard Sobolev norm [2] resp. 
the equality with the error in the norm induced by the least-squares 
functional [3]. This property transfers to LSFEMs for regularised 𝐻−1

loads up to an oscillation term [4]. A particular scaling of the residu-

als enables the estimation of the contributions to the underlying norm 
separately [5]. Further algorithmic contributions deal with the iterative 
solution by algebraic multigrid [6] and parallelisation [7].

The built-in a posteriori error estimation and adaptive mesh refine-

ment for standard LSFEMs have been established and investigated for 
a multitude of problems. The following non-exhaustive list illustrates 
the variety of applications. Adaptive LSFEMs in computational fluid 
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mechanics deal with the shallow water equations [8,9], coupled Stokes-

Darcy flow [10,11], viscoelastic fluids [12], interface problems [13], 
and fluid-structure interaction [14]. In computational solid mechanics, 
adaptive LSFEMs have been investigated for linear elasticity [15,16], 
elasto-plasticity [17], and the Signorini contact problem [18,19]. Fur-

ther applications include convection-diffusion problems [20], parabolic 
problems [21–24], hyperbolic problems [25], the transport equation 
[26,27], the Poisson-Boltzmann equation [28], Maxwell and Helmholtz 
equation [29], convex energy minimisation [30], elliptic equations in 
nondivergence form [31], and the obstacle problem [32].

However, the advances in the convergence analysis with rates for 
adaptive FEMs in the past 15 years seem not to be applicable to this 
class of methods. This is because the built-in estimator lacks prefac-

tors in terms of the mesh size inhibiting all known arguments for the 
proof of a local reduction of this estimator. In order to overcome this, 
an alternative explicit residual-based error estimator for an adaptive 
mesh-refining algorithm with optimal convergence rates is developed 
for the Poisson model problem in [33] and for further linear model 
problems in [34–36]. The known convergence results for ℎ-adaptive LS-
https://doi.org/10.1016/j.camwa.2024.07.022
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Fig. 1. Possible refinement of a triangle in 2D newest-vertex bisection.
FEMs are summarised and extended in the thesis [37] for the Poisson 
model problem, the Stokes equations, and the linear elasticity equations 
with discretisation of arbitrary polynomial degree and mixed boundary 
conditions in three spatial dimensions. All these algorithms employ a 
separate marking strategy with a quasi-optimal data approximation al-

gorithm [38].

The negligence of the divergence contribution to the flux error allows 
for a collective marking strategy driven by the (slightly) modified al-

ternative error estimator [39,40]. This guarantees optimal convergence 
rates in terms of the energy error plus the 𝐿2 error of the flux variable.

The analysis of the alternative error estimator in [37] and in [39,40]

requires the exact solution of the linear system of the FEM. However, a 
modified adaptive algorithm with collective marking in [41] allows for 
an iterative solver leading to optimal convergence rates with respect to 
the overall computational costs for a standard adaptive FEM.

While the plain convergence of adaptive LSFEM driven by the built-

in estimator has recently been shown in [42,24] for any bulk parameter 
0 < 𝜃 ≤ 1, the only Q-linear convergence result in [43] requires a suf-

ficiently large bulk parameter 0 ≪ 𝜃 ≤ 1. This contrasts the established 
convergence analysis in [44,38] asserting optimal rates for sufficiently 
small bulk parameters. The investigation of the bulk parameter is one 
goal of this paper.

Most but not all of the convergence results in Section 4 below hold for 
discretisations with arbitrary fixed polynomial degree. For the sake of 
concise statements, the presentation in this paper restricts to the lowest-

order case.

Besides the theoretical review, this paper provides an experimen-

tal investigation of the performance of three adaptive LSFEM based 
on different error estimates applied to multiple benchmark problems. 
The influence of the chosen marking and refinement parameters is ex-

amined. A benchmark problem with a scalable microstructure in the 
right-hand side with exact integration allows the investigation of the 
data approximation employed in the adaptive algorithm with separate 
marking. Another focus is put on the performance of the implementa-

tion.

Beforehand, Section 2 introduces the notation for the triangulations 
and their adaptive refinement and Section 3 presents the least-squares 
discretisation of the Poisson model problem. The subsequent Section 4

presents the three investigated adaptive LSFEM algorithms and recalls 
the theoretical convergence results. The first subsection of Section 5

discusses some aspects of the implementation such as the employed nu-

merical quadrature. The Subsections 5.2–5.5 present the results of the 
experiments. This paper ends with a conclusion in Section 6.

2. Triangulations and refinement

Given a bounded polygonal Lipschitz domain Ω ⊂ℝ2, finite element 
discretisations typically base on shape-regular triangulations of Ω into 
closed triangles [45]. Let 0 be an initial triangulation of Ω. Note that 
the initial condition on 0 from [45, Sect. 4] is not required in 2D [46]. 
Given a set 0 ⊆ 0 of marked triangles, the refinement algorithm from 
[45, Sect. 6] creates the smallest regular refinement 1 of 0 such that 
all triangles in 0 ⊆ 0 ⧵ 1 are refined. The algorithm employs the 
newest-vertex bisection (NVB) from [47–49]. This defines the concept 
of a one-level refinement [45, Sect. 2] leading to the set of admissible 
triangulations

𝕋 ∶= {𝓁 regular triangulation of Ω into closed triangles ∶
2

∃𝓁 ∈ℕ0∃0,1,… ,𝓁 successive one-level refinements

in the sense that 𝑗+1 is a one-level refinement of 𝑗 for

𝑗 = 0,1,… ,𝓁 − 1}.

It contains the finite subsets of triangulations with at most 𝑁 ∈ℕ addi-

tional triangles

𝕋 (𝑁) ∶= { ∈ 𝕋 ∶ | |− |0| ≤𝑁}.

In 2D, the one-level refinements result in one of the five possible 
refinements as displayed in Fig. 1 for each triangle in  . For a sequence 
of successively refined meshes 𝓁 for 𝓁 ∈ ℕ0, the mesh-closure estimate 
bounds the number of newly created triangles [47,49]

|𝓁|− |0| ≤ 𝐶NVB

𝓁−1∑
𝑗=0

|𝑗 |.
The process of marking triangles for bisection employs an error in-

dicator 𝜂( , 𝑇 ) ∈ ℝ for each 𝑇 ∈  . For any subset  ⊆  , abbrevi-

ate the corresponding contributions 𝜂2( , ) ∶=
∑

𝑇∈ 𝜂2( , 𝑇 ) and 
𝜂2( ) ∶= 𝜂2( ,  ). Given a bulk parameter 0 < 𝜃 ≤ 1, the Dörfler mark-

ing from [50] selects a subset  ⊆  with minimal cardinality [51]

according to the criterion

𝜃 𝜂2( ) ≤ 𝜂2( ,). (1)

For a triangulation  ∈ 𝕋 , let (𝑇 ) denote the set of all edges of 
a triangle 𝑇 ∈  . Let  denote the set of edges and (𝜕Ω) the edges 
on the boundary 𝜕Ω. Each triangle 𝑇 has an outer unit normal vec-

tor 𝜈𝑇 and the orientation of each edge 𝐸 ∈  is fixed by one of the 
two possible orientations of the unit normal vector 𝜈𝐸 (and unit tan-

gential 𝜏𝐸 ). For an interior edge 𝐸 = 𝜕𝑇+ ∩ 𝜕𝑇− ∈ (Ω) shared by 
two triangles 𝑇+, 𝑇− ∈  ensuring that 𝜈𝐸 = 𝜈𝑇+ = −𝜈𝑇− . Accordingly 
[𝑤ℎ]𝐸 ∶= (𝑤ℎ|𝑇+ −𝑤ℎ|𝑇− )|𝐸 defines the jump of any piecewise 𝐻1 func-

tion 𝑤ℎ. Let 𝜔𝐸 ∶= int(𝑇+ ∪𝑇−) denote the patch of the interior edge 𝐸. 
Along the boundary 𝐸 ⊂ 𝜕Ω, the jump [𝑤ℎ]𝐸 ∶=𝑤ℎ|𝐸 is the trace of 𝑤ℎ

on the unique triangle 𝑇+ ∈  with 𝐸 ∈ (𝑇+) and set 𝜔𝐸 ∶= int(𝑇+).
Throughout the paper, 𝐴 ≲ 𝐵 abbreviates the relation 𝐴 ≤ 𝐶 𝐵 with 

a positive generic constant 0 < 𝐶 which solely depends on the initial 
triangulation 0, but is independent of the underlying piecewise con-

stant mesh-size function ℎ ∈ 𝑃0( ) with ℎ |𝑇 ∶= ℎ𝑇 ∶= |𝑇 |1∕2 for 
𝑇 ∈  ∈ 𝕋 . The context-sensitive measure | ∙ | denotes not only the 
Lebesgue measure of Lebesgue sets in ℝ2, but also the modulus of real 
numbers, the cardinality of finite sets, and the Euclidian norm of vectors 
in ℝ2.

3. LSFEM for the Poisson model problem

For a right-hand side 𝑓 ∈ 𝐿2(Ω) on the polygonal Lipschitz domain 
Ω ⊂ℝ2, the first-order system formulation of the Poisson model problem 
seeks (𝑝, 𝑢) ∈𝐻(div, Ω) ×𝐻1

0 (Ω) with

𝑓 + div𝑝 = 0 and 𝑝−∇𝑢 = 0 in Ω. (2)

This paper employs standard notation for Sobolev and Lebesgue spaces 
𝐻1(Ω), 𝐻(div, Ω), and 𝐿2(Ω). Appropriate subscripts designate their 
usual norms ‖ ∙ ‖𝐻1(Ω), ‖ ∙ ‖𝐻(div,Ω), and ‖ ∙ ‖𝐿2(Ω).

Let  ∈ 𝕋 denote a regular triangulation of Ω into closed triangles. 
The lowest-order Raviart-Thomas function space 𝑅𝑇0( ) ⊂ 𝐻(div, Ω)
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and the conforming piecewise polynomials of first order 𝑆1
0 ( ) ⊂𝐻1

0 (Ω)
allow for a unique discrete minimiser (𝑝LS, 𝑢LS) ∈𝑅𝑇0( ) ×𝑆1

0 ( ) of the 
least-squares functional

𝐿𝑆(𝑓 ; 𝑞LS, 𝑣LS) ∶= ‖𝑓 + div 𝑞LS‖2𝐿2(Ω) + ‖𝑞LS −∇𝑣LS‖2𝐿2(Ω)

over all (𝑞LS, 𝑣LS) ∈ 𝑅𝑇0( ) × 𝑆1
0 ( ). The fundamental equivalence of 

the homogeneous least-squares functional [52, Lem. 4.3]

𝐿𝑆(0;𝑞, 𝑣) ≈ ‖𝑞‖2
𝐻(div,Ω)+‖∇𝑣‖2

𝐿2(Ω) for all (𝑞, 𝑣) ∈𝐻(div,Ω)×𝐻1
0 (Ω)

(3)

provides well-posedness of the LSFEM. This ensures convergence to-

wards the solution (𝑝, 𝑢) of (2) in the case of (quasi-)uniform mesh 
refinement

‖𝑝− 𝑝LS‖2𝐻(div,Ω) + ‖∇(𝑢− 𝑢LS)‖2𝐿2(Ω)

≲ inf
𝑞LS∈𝑅𝑇0( )
𝑣LS∈𝑆1

0 ( )

(‖𝑝− 𝑞LS‖2𝐻(div,Ω) + ‖∇(𝑢− 𝑣LS)‖2𝐿2(Ω)

)
.

Let 𝑃𝑘( ) denote the space of piecewise polynomials with respect 
to the triangulation  and Π ∶ 𝐿2(Ω) → 𝑃0( ) the 𝐿2-orthogonal pro-

jection onto 𝑃0( ). The piecewise constant approximation of some 
𝑓 ∈𝐿2(Ω) leads to the data oscillations

osc2(𝑓, ) ∶=
∑
𝑇∈

ℎ2
𝑇
‖(1 − Π)𝑓‖2

𝐿2(𝑇 ). (4)

4. Three adaptive algorithms

The following subsections introduce each of the adaptive LSFEMs, 
including the employed error estimators and the adaptive algorithm. 
They recall the theoretical convergence results.

4.1. Natural adaptive LSFEM

The contributions to the built-in a posteriori error estimator

𝜂2
N
( , 𝑇 ) ∶= ‖𝑓 + div𝑝LS‖2𝐿2(𝑇 ) + ‖𝑝LS −∇𝑢LS‖2𝐿2(𝑇 ) (5)

sum up to the least-squares functional

𝜂2
N
( ) ∶=

∑
𝑇∈

𝜂2
N
( , 𝑇 ) =𝐿𝑆(𝑓 ;𝑝LS, 𝑢LS).

The fundamental equivalence (3) ensures that this estimator is reliable 
and efficient even in the case of the inexact solution of the discrete prob-

lem

𝐿𝑆(𝑓 ; 𝑞LS, 𝑣LS) ≈ ‖𝑝− 𝑞LS‖2𝐻(div,Ω) + ‖∇(𝑢− 𝑣LS)‖2𝐿2(Ω).

Moreover, the built-in error estimator is even asymptotically exact with 
respect to the norm on 𝐻(div, Ω) ×𝐻1

0 (Ω) abbreviated by

|||(𝑞, 𝑣)|||2 ∶= ‖𝑞‖2
𝐻(div,Ω) + ‖∇𝑣‖2

𝐿2(Ω) for (𝑞, 𝑣) ∈𝐻(div,Ω) ×𝐻1
0 (Ω).

Theorem 4.1 ([29, Thm. 3.1]). For all 𝜀 > 0, there exists 𝛿 > 0 such that 
every  ∈ 𝕋 with max𝑇∈ diam(𝑇 ) ≤ 𝛿 satisfies

(1 − 𝜀)|||(𝑝− 𝑝LS, 𝑢− 𝑢LS)|||2 ≤𝐿𝑆(𝑓 ;𝑝LS, 𝑢LS)

≤ (1 + 𝜀)|||(𝑝− 𝑝LS, 𝑢− 𝑢LS)|||2.
Theorem 4.1 applies to standard conforming discretisations of any 

order and various applications [29]. However, an earlier asymptotic ex-

actness result in [53,54] relies on an unbalanced discretisation of the 
two variables 𝑝LS and 𝑢LS.

The collective marking for the natural estimator 𝜂N from (5) results 
in the adaptive Algorithm 1 (NALSFEM). Independently of the choice 
3

Algorithm 1 NALSFEM (natural adaptive LSFEM).

Input: regular triangulation 0 and bulk parameter 0 < 𝜃 ≤ 1.

for 𝓁 = 0, 1, 2, … do

Solve LSFEM with respect to triangulation 𝓁 for solution (𝑝𝓁 , 𝑢𝓁).
Compute 𝜂N(𝓁 , 𝑇 ) from (5) for all 𝑇 ∈ 𝓁 .

Mark minimal subset 𝓁 ⊆ 𝓁 by the Dörfler criterion (1) for 𝜂 ≡ 𝜂N.

Refine 𝓁 to 𝓁+1 by NVB such that 𝓁 ⊆ 𝓁 ⧵ 𝓁+1.
end for

Output: sequence of triangulations 𝓁 with (𝑝𝓁 , 𝑢𝓁)𝓁 and 𝜂N(𝓁) for 𝓁 ∈ℕ0.

of the bulk parameter 𝜃, NALSFEM creates a convergent sequence of 
discrete solutions (𝑝𝓁 , 𝑢𝓁)𝓁 for 𝓁 ∈ ℕ0.

Theorem 4.2 ([42, Thm. 2], [24, Thm. 3.3]). For all 0 < 𝜃 ≤ 1, the output 
(𝑝𝓁 , 𝑢𝓁)𝓁 of NALSFEM satisfies

‖𝑝− 𝑝𝓁‖2𝐻(div,Ω) + ‖∇(𝑢− 𝑢𝓁)‖2𝐿2(Ω) → 0 as 𝓁→∞.

The proofs in [42,24] employ the plain convergence framework from 
[55] under mild assumptions on the partial differential equation, the 
marking strategy, and the mesh refinement. It applies to higher-order 
discretisations as well as to more general marking criteria, e.g., the 
maximum marking strategy or the equilibrium marking strategy [42, 
Sect. 2.6].

If the NVB in the step Refine ensures the bisection of each edge of 
the marked triangles in 𝓁 , then NALSFEM converges Q-linearly in the 
following sense.

Theorem 4.3 ([43, Thm. 4.1]). Assume that the initial triangulation is suf-

ficiently fine in that 𝑓 =Π𝐿+1𝑓 is resolved exactly on the level 𝐿+1. There 
exist a minimal bulk parameter 0 < Θ0 < 1, a reduction factor 0 < 𝜚 < 1, 
and a constant 0 < Λ <∞ such that, for all Θ0 ≤ 𝜃 ≤ 1, the modified esti-
mator

𝜂2
N
(𝓁) ∶=𝐿𝑆(𝑓 ;𝑝𝓁 , 𝑢𝓁) + Λ‖(1 − Π𝓁)𝑝𝓁‖2𝐿2(Ω)

with the output (𝑝𝓁 , 𝑢𝓁)𝓁 of NALSFEM satisfies

𝜂2
N
(𝓁+1) ≤ 𝜚𝜂2

N
(𝓁) for all 𝓁 =𝐿,𝐿+ 1,…

The key difficulty in the proof of convergence with rates as in Theo-

rem 4.3 consists of the reduction of the natural estimator 𝜂N on refined 
triangles. Within the frameworks [44,38], this relates to axiom (A2) for 
0 < 𝜚 < 1 and 0 <Λ such that

𝜂N(𝓁+1,𝓁+1 ⧵ 𝓁) ≤ 𝜌𝜂N(𝓁 ,𝓁 ⧵ 𝓁+1)
+ Λ(𝐿𝑆(0;𝑝𝓁+1 − 𝑝𝓁 , 𝑢𝓁+1 − 𝑢𝓁))1∕2. (6)

The lack of prefactors in terms of the mesh size prevent the usual argu-

ments for the proof of (6) for 𝜂N, cf. [56,57,44]. The earlier contributions 
[2] and [58] to the convergence analysis of adaptive LSFEMs prove the 
strict reduction, for 0 < 𝜚 < 1,

𝜂2
N
(𝓁+1) ≤ 𝜚𝜂2

N
(𝓁)

in each refinement step under the explicit assumption of a reduction 
property as (6) (called local saturation in [58]). Note that both works 
[2,58] employ a nonstandard marking routine and include severe re-

strictions on the refinement region (resp. on the shape of the domain 
Ω).

It turns out that the linear convergence (for small bulk parameter 𝜃) 
already implies the optimal convergence rate.

Theorem 4.4 ([42, Prop. 15]). There exists a maximal bulk parameter 0 <
𝜃0 < 1 such that, for every 0 < 𝜃 ≤ 𝜃0, the following implication holds. If 
the output (𝑝𝓁 , 𝑢𝓁)𝓁 of NALSFEM satisfies linear convergence with reduction 
factor 0 < 𝜚 < 1, for all 𝓁, 𝑚 ∈ℕ0,
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Algorithm 2 CALSFEM (collective marking adaptive LSFEM).

Input: regular triangulation 0 and bulk parameter 0 < 𝜃 ≤ 1.

for 𝓁 = 0, 1, 2, … do

Solve LSFEM with respect to triangulation 𝓁 for solution (𝑝𝓁 , 𝑢𝓁).
Compute 𝜂C(𝓁 , 𝑇 ) from (9) for all 𝑇 ∈ 𝓁 .

Mark minimal subset 𝓁 ⊆ 𝓁 by the Dörfler criterion (1) for 𝜂 ≡ 𝜂C.

Refine 𝓁 to 𝓁+1 by NVB such that 𝓁 ⊆ 𝓁 ⧵ 𝓁+1.
end for

Output: sequence of triangulations 𝓁 with (𝑝𝓁 , 𝑢𝓁)𝓁 and 𝜂C(𝓁) for 𝓁 ∈ℕ0.

𝜂N(𝓁+𝑚) ≲ 𝜚𝑚 𝜂N(𝓁), (7)

then (𝑝𝓁 , 𝑢𝓁)𝓁 even converges with the optimal rate, i.e.,

sup
𝓁∈ℕ0

(1 + |𝓁|− |0|)𝑠𝜂N(𝓁) ≈ sup
𝑁∈ℕ0

(1 +𝑁)𝑠 min ∈𝕋 (𝑁)
𝜂N( ).

This result solely provides a sufficient condition for optimal conver-

gence rates. However, the linear convergence (7) in the case of a small 
bulk parameter 0 < 𝜃 < 𝜃0 ≪ 1 remains an open question. In particular, 
the assumptions of a sufficiently large 0 ≪ Θ0 ≤ 𝜃 in Theorem 4.3 and 
of a sufficiently small 𝜃 ≤ 𝜃0 in Theorem 4.4 appear incompatible.

4.2. Alternative adaptive least-squares FEM with collective marking

In order to enable the reduction property of the form (6), the con-

vergence analysis with rates for least-squares FEMs in [33,37,39,40]

introduces alternative explicit a posteriori error estimators in terms of 
the constitutive residual

𝜂2
S
( , 𝑇 ) ∶= ℎ2

𝑇
‖div(𝑝LS −∇𝑢LS)‖2𝐿2(𝑇 ) + ℎ2

𝑇
‖ curl(𝑝LS −∇𝑢LS)‖2𝐿2(𝑇 )

+ ℎ𝑇

∑
𝐸∈(𝑇 )⧵(𝜕Ω)

‖[𝑝LS −∇𝑢LS]𝐸 ⋅ 𝜈𝐸‖2𝐿2(𝐸)

+ ℎ𝑇

∑
𝐸∈(𝑇 )

‖[𝑝LS −∇𝑢LS]𝐸 ⋅ 𝜏𝐸‖2𝐿2(𝐸)

(8)

The second term ‖ curl(𝑝LS − ∇𝑢LS)‖2𝐿2(𝑇 )
vanishes in the lowest-order 

case with (𝑝LS, 𝑢LS) ∈𝑅𝑇0( ) × 𝑆1
0 ( ). The discretisation of eigenvalue 

problems in [59], based on first-order system least-squares formulations, 
loses the built-in error estimation property (3). As a remedy, an alterna-

tive error estimator similar to 𝜂S enables a posteriori error estimates in 
[59, Sect. 5].

If the error in the flux variable is solely measured in the 𝐿2 norm 
(and not the full 𝐻(div) norm) the data oscillation term (4) has to be 
included in the alternative error estimator [39,40]

𝜂2
C
( ) ∶=

∑
𝑇∈

𝜂2
C
( , 𝑇 ) with

𝜂2
C
( , 𝑇 ) ∶= 𝜂2

S
( , 𝑇 ) + ℎ2

𝑇
‖(1 − Π)𝑓‖2

𝐿2(𝑇 ). (9)

This provides a reliable and efficient error estimator in the correspond-

ing reduced norm [39, Eqn. (5)]

𝐿𝑆(Π𝑓 ;𝑝LS, 𝑢LS) ≲ ‖𝑝− 𝑝LS‖2𝐿2(Ω)
+ ‖∇(𝑢− 𝑢LS)‖2𝐿2(Ω)

≲ 𝜂2
C
( )

≲ 𝐿𝑆(Π𝑓 ;𝑝LS, 𝑢LS) + osc2(𝑓, ).

Replacing the built-in error estimator 𝜂N in Algorithm 1 by 𝜂C leads 
to an alternative adaptive Algorithm 2 with collective marking (CALS-

FEM). The estimator 𝜂C guarantees optimal convergence rates of CALS-

FEM with respect to the reduced norm.

Theorem 4.5 ([39, Sect. 2.5]). For all 0 < 𝜃 ≤ 1, there exists 0 < 𝜚 <
1 such that the output (𝑝𝓁 , 𝑢𝓁)𝓁 of CALSFEM converges R-linearly, for all 
𝓁, 𝑚 ∈ℕ0,
4

Algorithm 3 SALSFEM (separate marking adaptive LSFEM).

Input: regular triangulation 0, bulk parameter 0 < 𝜃 ≤ 1, reduction parameter 
0 < 𝜌 < 1, and separation parameter 0 < 𝜅.

for 𝓁 = 0, 1, 2, … do

Solve LSFEM with respect to triangulation 𝓁 for solution (𝑝𝓁 , 𝑢𝓁).
Compute 𝜂S(𝓁 , 𝑇 ) from (8) for all 𝑇 ∈ 𝓁 .

if Case A 𝜇2( ) ≤ 𝜅 𝜂2
S
( ) then

Mark minimal subset 𝓁 ⊆ 𝓁 by Dörfler criterion (1) for 𝜂 ≡ 𝜂S.

Refine 𝓁 to 𝓁+1 by NVB such that 𝓁 ⊆ 𝓁 ⧵ 𝓁+1.
else (Case B 𝜅 𝜂2

S
( ) < 𝜇2( ))

Compute a refinement 𝓁+1 of 𝓁 of (almost) minimal cardinality with 
𝜇(𝓁+1) ≤ 𝜌 𝜇(𝓁).

end if

end for

Output: sequence of triangulations 𝓁 with (𝑝𝓁 , 𝑢𝓁)𝓁 , 𝜂S(𝓁), and 𝜇(𝓁) for 𝓁 ∈
ℕ0.

𝜂C(𝓁+𝑚) ≲ 𝜌𝑚 𝜂C(𝓁).
Moreover, there exists a maximal bulk parameter 0 < 𝜃0 < 1 such that, for 
every 0 < 𝜃 ≤ 𝜃0, the sequence (𝑝𝓁 , 𝑢𝓁)𝓁 converges with the optimal rate, 
i.e., for every 0 < 𝑠 < 1,

sup
𝓁∈ℕ0

(1 + |𝓁|− |0|)𝑠𝜂C(𝓁) ≈ sup
𝑁∈ℕ0

(1 +𝑁)𝑠 min ∈𝕋 (𝑁)
𝜂C( ).

Theorem 4.5 generalises to higher-order discretisations in three spa-

tial dimensions [40, Sect. 2.8].

4.3. Alternative adaptive least-squares FEM with separate marking

The optimal convergence rate of an adaptive algorithm in the full 
𝐻(div) norm for the flux variable requires the reduction of the data 
approximation error

𝜇2( ) ∶=
∑
𝑇∈

𝜇2(𝑇 ) with 𝜇2(𝑇 ) ∶= ‖(1 − Π)𝑓‖2
𝐿2(Ω). (10)

The sum of this data error with the residual error estimator from (8)

provides a reliable and efficient error estimator [33, Thm. 3.1]

𝜇2( ) + 𝜂2
S
( ) ≈𝐿𝑆(𝑓 ;𝑝LS, 𝑢LS).

Since the data error term 𝜇2(𝑇 ) lacks any prefactor in terms of the 
mesh size, its strict reduction in the sense of the axioms of adaptivity 
remains unclear. In order to achieve optimal convergence rates, Algo-

rithm 3 (SALSFEM) employs a separate marking strategy [60,38]. If the 
residual error estimator 𝜂2

S
( ) dominates the data error 𝜇2( ), the for-

mer is refined by the standard Dörfler marking and NVB. Otherwise, 
the latter is reduced by a suitable data approximation algorithm. The 
data approximation in Case B of SALSFEM employs the approximation 
algorithm (AA) from [61]. It consists of a slight modification of the 
Thresholding Second Algorithm (TSA) from [62] and utilises binary bins 
to guarantee linear computational complexity [62, Rem. 5.3]. The algo-

rithm considers the refinement indicator 𝜇(𝑇𝑗 ) for the two children 𝑇1
and 𝑇2 of a bisected parent triangle 𝑇 defined, for 𝑗 = 1, 2, by

𝜇(𝑇𝑗 ) ∶= (𝜇(𝑇1) + 𝜇(𝑇2))𝜇(𝑇 )∕(𝜇(𝑇 ) + 𝜇(𝑇 )) (11)

with 𝜇(𝑇 ) ∶= 𝜇(𝑇 ) for all initial triangles 𝑇 ∈ 0. The TSA is followed 
by a completion step in order to ensure the output triangulation to be 
shape-regular. The resulting Algorithm 4 (AA) is instance optimal [62,

63]. Then Algorithm 3 SALSFEM converges with the optimal rate.

Theorem 4.6 ([33, Thm. 6.1]). For all 0 < 𝜃 ≤ 1, 0 < 𝜅, and 0 < 𝜌 < 1, 
there exists 0 < 𝜚 < 1 such that the output (𝑝𝓁 , 𝑢𝓁)𝓁 of SALSFEM converges 
R-linearly, for all 𝓁, 𝑚 ∈ℕ0,

𝜇2(𝓁+𝑚) + 𝜂2(𝓁+𝑚) ≲ 𝜚𝑚
(
𝜇2(𝓁) + 𝜂2(𝓁)).
S S
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Algorithm 4 Approximation Algorithm (AA).

Input: initial regular triangulation 0, error tolerance Tol > 0
Compute 𝜇(𝑇 ) = 𝜇(𝑇 ) for all 𝑇 ∈ 0 and set ̂ ∶= 0.
while 𝜇(̂ ) > Tol do

Select the minimal 𝑘 ∈ℤ such that 𝜇(𝑇 ) < 2𝑘+1 for all 𝑇 ∈ ̂ .

Mark the set  ∶= {𝑇 ∈ ̂ ∶ 2𝑘 ≤ 𝜇(𝑇 ) < 2𝑘+1}.

Bisect all triangles in  to obtain a new ̂ .

Compute 𝜇(𝑇 ) and 𝜇(𝑇 ) from (11) for all newly created 𝑇 ∈ ̂
end while

Apply completion on ̂ to obtain a regular refinement Tol of 0.
Output: Tol

Moreover, there exists a maximal bulk parameter 0 < 𝜃0 < 1 and a maximal 
separation parameter 0 < 𝜅0 such that for all 0 < 𝜃 ≤ 𝜃0, 0 < 𝜅 ≤ 𝜅0, and 
0 < 𝜌 < 1, the sequence (𝑝𝓁 , 𝑢𝓁)𝓁 converges with the optimal rate, i.e., for 
all 0 < 𝑠 < 1,

sup
𝓁∈ℕ0

(1 + |𝓁|− |0|)𝑠(𝜇(𝓁) + 𝜂S(𝓁))
≈ sup

𝑁∈ℕ0

(1 +𝑁)𝑠 min ∈𝕋 (𝑁)
(𝜇( ) + 𝜂S( )).

For the generalisation to higher-order polynomial degrees and inho-

mogeneous mixed boundary conditions in three spatial dimensions, the 
reader is referred to [37,64].

5. Numerical experiments

This section presents and compares the numerical results of NALS-

FEM, CALSFEM, and SALSFEM for three benchmark examples of the 
Poisson model problem and one of an elliptic problem with piecewise 
constant scalar diffusion constant. A primary focus consists of investigat-

ing the data approximation in Subsection 5.3 below. The lowest-order 
discretisation prevents any additional quadrature error for this bench-

mark problem.

5.1. Implementation and time measurement

The empirical investigation was carried out using the author’s Mat-

lab software package octAFEM [65]. All experiments in this paper are 
reproducible with the compute capsule on the Code Ocean platform. The 
octAFEM package bases on the in-house Matlab software package [66]. 
It was developed and tested under Matlab version 9.14.0.2206163 
(R2023a), but should be executable in older versions as well. More-

over, the code is completely compatible with the open-source software 
Octave (tested with version 8.1.0). The realisation differs from [37] be-

cause the object-oriented implementation therein employs a Simplex
class for the representation of every simplex separately resulting in a 
huge computational overhead. Instead, the ApproxTriangulation
in the implementation at hand includes an array of indices containing 
the complete history of simplices. The data approximation Algorithm 4

(AA) ensures linear complexity using binary bins as described in [62, 
Rem. 5.3]. It is incorporated into the Triangulation class from [37]. 
This allows the separate marking strategy in one triangulation object 
containing the complete refinement history of all simplices and thereby 
avoiding the computation of the overlay of Tol and 𝓁 . The data error 
𝜇(𝑇 ) of each simplex 𝑇 ∈  is stored in the array of ApproxTrian-
gulation as well. It is computed when creating the simplex 𝑇 . This 
causes some general overhead to the refinement process but may lead 
to some reduction of the runtime of AA because it can reuse informa-

tion already created during a previous step of the NVB in a Case A of 
the separate marking algorithm.

The transformation formula allows to reduce the integral over any 
triangle to the reference triangle 𝑇ref ∶= conv{0, (1, 0), (0, 1)}. The trans-

formation Φ ∶ [0, 1]2 → 𝑇ref, 𝑦 ↦ (𝑦1, (1 − 𝑦1)𝑦2)⊤ from the unit square 
to the reference triangle shows
5

∫
𝑇ref

𝑓 d𝑥 =

1

∫
0

1

∫
0

(1 − 𝑦1)𝑓 (𝑦1, (1 − 𝑦1)𝑦2) d𝑦2 d𝑦1.

The first integral with respect to 𝑦2 is approximated by the Gauss–

Legendre quadrature. The second integral with respect to 𝑦1 employs 
the Gauss–Jacobi quadrature on the interval [0, 1] with weight function 
𝑤(𝜉) = (1 − 𝜉). Both one-dimensional quadrature nodes and weights are 
computed using the Golub–Welsch algorithm [67] with recursion coef-

ficients from [68]. The resulting conical product rules with 𝑘2 function 
evaluations, 𝑘 ∈ ℕ, are exact for the integration of polynomials up to 
partial degree 2𝑘 −1. For the evaluation of bilinear forms or integration 
of polynomial input data, the number of quadrature points is chosen 
such that the quadrature is exact.

The experiments investigating the performance of the algorithms in 
terms of the runtime are carried out with Matlab version 9.9.0.1467703 
(R2020b) on a compute server using 16 out of 128 Intel(R) Xeon(R) 
E7-8867 CPUs of 2.50 GHz and 2 TiB RAM. The code employs parallel 
computing for local quantities such as local stiffness matrices and the in-

tegration of the right-hand side. Since the Matlab command cputime

adds up the time for all parallel threads, the documentation recom-

mends the measurement of real time. Additionally this exemplifies the 
practical performance as experienced by the user. To this end, time is 
measured on carefully selected parts of the program to distinguish the 
performance for the solution, estimation, and refinement. This allows to 
neglect possible overhead due to printing information to the command 
line or saving the results to disk. The time is measured in ten sepa-

rate runs and averaged for improved reliability. The graphs below also 
indicate the maximal and the minimal measured time by vertical error 
bars to visualise possible inaccuracies of the measurement. The only sig-

nificant differences occur for the very first iterations of each adaptive 
computation.

5.2. L-shaped domain

The Poisson model problem on the L-shaped domain Ω = (−1, 1)2 ⧵
[0, 1)2 with constant right-hand side 𝑓 ≡ 1 is a standard benchmark for 
adaptive mesh refinement. The reentrant corner leads to reduced ellip-

tic regularity of the unknown exact solution 𝑢 ∈𝐻1+𝑠−𝜀(Ω) with 𝑠 = 2∕3
for all 𝜀 > 0. This is why uniform refinement exhibits a suboptimal con-

vergence rate of 1∕3 with respect to the number of degrees of freedom 
(ndof) for the natural estimator 𝜂N and the alternative estimator 𝜂C in 
Fig. 2.

The convergence result in Theorem 4.5 asserts optimal rates for 
CALSFEM for sufficiently small bulk parameters 𝜃 < 𝜃0. The upper 
bound 𝜃0 = (1 + 𝐶2

stab
𝐶drel)−1 from [44, Prop. 4.2 (ii)] includes the 

generic constants of the stability and discrete reliability axiom. These 
constants are bounded in [69, Sect. 6] in the case of the Courant FEM 
on a mesh with right-isosceles triangles for the Poisson model problem 
by

𝐶2
stab

≤ 40.36 and 𝐶drel ≤ 9201. (12)

This leads to the small theoretical lower bound of 𝜃0 ≥ 2.6 ×10−6. Never-

theless, Fig. 2b shows the optimal convergence rate already for moderate 
bulk parameters 𝜃 ≤ 0.8 in practice.

The algorithm NALSFEM converges with the optimal rate for even 
larger bulk parameters 𝜃 ≤ 0.9. The alternative estimator 𝜂C focuses 
on the constitutive residual while the natural estimator 𝜂N includes 
the equilibrium residual as well. This may explain the better perfor-

mance of the natural refinement strategy for large bulk parameters. The 
difference is small and the coarse adaptively generated meshes look es-

sentially identical for both refinement strategies as displayed in Fig. 3. 
A closer investigation of the fine triangulations with one million tri-
angles and more exhibit an increased adaptive refinement towards the 
reentrant corner while at the same time allowing coarser triangles in 
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Fig. 2. Comparison of various choices for the bulk parameter 0 < 𝜃 ≤ 1 in the adaptive mesh-refinement strategies (uniform refinement for 𝜃 = 1) for the benchmark 
problem on the L-shaped domain from Subsection 5.2.

Fig. 3. Adaptively refined meshes from two different adaptive algorithms with bulk parameter 𝜃 = 0.9 for the benchmark problem from Subsection 5.2. The Subfig-

ures (c) and (d) display the mesh size ℎ𝓁|𝑇 ≡ |𝑇 |1∕2 for the triangles 𝑇 ∈ 𝓁 in a very fine triangulation. The same colour scale enables the comparison of the mesh 
size in the two algorithms.
the remaining parts of the domain for the NALSFEM compared to the 
CALSFEM.
6

Since the data 𝑓 is resolved exactly on every triangulation  ∈ 𝕋 , 
the data error and oscillation terms vanish 𝜇( ) = osc(𝑓,  ) = 0. Hence, 
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Fig. 4. Illustration of the microstructure in the benchmark problem from Subsection 5.3.

Fig. 5. Comparison of the three adaptive refinement strategies with parameters 𝜃 = 0.3, 𝜅 = 1, and 𝜌 = 0.8 for the solution of the benchmark problem from Subsec-

tion 5.3.
the case B in the separate marking does never hold and the SALSFEM 
algorithm provides exactly the same results as CALSFEM.

5.3. L-shaped domain with microstructure

The second benchmark considers the L-shaped domain Ω = (−1, 1)2 ⧵
[0, 1)2 from the Section 5.2 with a right-hand side 𝑓𝜖 ∈𝐿2(Ω) for some 
parameter 0 < 𝜖 < 1∕2, given in [61, Sect. 3.4] by

𝑓𝜖(𝑥) ∶=

{
1, if |𝑥1 + 1

2 | ≤ 𝜖 and |𝑥2 − 1
2 | ≤ 𝜖,

0, otherwise.
7

Fig. 4 illustrates the definition of 𝑓𝜖 and shows an example solution for 
𝜖 = 2−5.

Due to the small support of the right-hand side 𝑓𝜖 , the quadrature 
described in Section 5.1 may be inaccurate, in particular for coarse tri-
angulations. This is why the integration of the right-hand side for this 
benchmark is computed directly as the area of the convex intersection 
polygon of the support supp(𝑓𝜖) = (−1∕2 −𝜖, −1∕2 +𝜖) ×(1∕2 −𝜖, 1∕2 +𝜖)
and any triangle 𝑇 ∈  . First, the vertices of the intersection polygon 
𝑥1, … , 𝑥𝐽 are determined by the Sutherland-Hodgman algorithm [70]. 
Second, the area of the intersection polygon is computed by the formula
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Fig. 6. Adaptively generated meshes by the three refinement strategies with parameters 𝜃 = 0.3, 𝜅 = 1, and 𝜌 = 0.8 for the benchmark problem from Subsection 5.3

with 𝜖 = 3−3. The same colour scale enables the comparison of the mesh size ℎ𝓁|𝑇 ≡ |𝑇 |1∕2 for 𝑇 ∈ 𝓁 in the Subfigures (b), (d), and (f).
| supp(𝑓𝜖) ∩ 𝑇 | = 1
2
||| 𝐽∑
𝑗=1

(𝑥𝑗,1𝑥𝑗+1,2 − 𝑥𝑗,2𝑥𝑗+1,1)
||| with 𝑥𝐽+1 ≡ 𝑥1.

This procedure allows for the exact computation of the piecewise con-

stant approximation Π𝑓𝜖 and the data error 𝜇( ).
If the microstructure can be resolved exactly for 𝜖 = 2−𝑚 with 𝑚 ∈ ℕ, 

all three algorithms reach the point of exact data resolution and con-

verge with the best possible rate from then on as displayed in Fig. 5a for 
𝜖 = 2−5. Otherwise the data approximation plays a crucial role through-

out the whole computation as for 𝜖 = 3−3 in Fig. 5b. For the algorithms 
NALSFEM and SALSFEM the least-squares functional converges with the 
8

optimal rate of 0.5. The indication of the cases at the top of the plot 
shows that the data approximation dominates in the first eight iterations 
of SALSFEM. The convergence behaviour of NALSFEM turns out to be 
very close to the separate marking algorithm but with significantly more 
intermediate solution steps. The alternative estimator 𝜂C in CALSFEM 
converges with the optimal rate as well, as asserted by Theorem 4.5. 
However, it does not allow to control the data approximation as part of 
the divergence contribution to the error of the flux variable. This results 
in a suboptimal rate of 0.25 at the beginning of the computation when 
the data oscillation is presumably large enough. Once the dominance of 
the data approximation ends at about 5 × 104 degrees of freedom, the 
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Fig. 7. Comparison of various choices for the separation parameter 0 < 𝜅 in adaptive mesh refinement with SALSFEM for the benchmark problem from Subsection 5.3

with 𝜖 = 3−3.
Fig. 8. Comparison of estimator (𝜂2
S
(𝓁) + 𝜇2(𝓁))1∕2 in SALSFEM for various 

parameters 0 < 𝜌 < 1 with 𝜃 = 0.3 and 𝜅 = 1 for the benchmark problem from 
Subsection 5.3 with 𝜖 = 3−3.

CALSFEM algorithm is not able to considerably reduce the least-squares 
estimator any more.

The mesh plots in Fig. 6 demonstrate the different behaviour of the 
adaptive algorithms. The Figs. 6a, 6c, and 6e present the first level with 
an observable refinement towards the reentrant corner. While NALS-

FEM and SALSFEM focus on the microstructure up to more than 105
triangles, the CALSFEM already increases the refinement at the origin 
at about 7.4 × 103 triangles. The consideration of the very fine levels of 
more than 5.5 × 105 triangles exhibits a highly adaptive refinement at 
the boundary of the microstructure and the singularity at the reentrant 
corner. However, the mesh of the CALSFEM appears more uniformly 
with a larger minimal mesh size leading to the suboptimal convergence 
behaviour of the overall error as seen in the convergence history plot in 
Fig. 5b.

The convergence result in Theorem 4.6 requires the separation pa-

rameter 0 < 𝜅 < 𝜅0 to be sufficiently small. The theoretical upper bound 
9

Fig. 9. Investigation of AA algorithm with 𝜌 = 0.9 for the given data 𝑓𝜖 with 
varying microstructure parameter 0 < 𝜖 < 1∕2 from Subsection 5.3.

𝜅0 = min{𝜅, 𝐶−2
stab

𝐶−1
drel

} from [38, Thm. 2.1] incorporates two condi-

tions. If the data error 𝜇( ) is monotonically decreasing under mesh re-

finement (i.e., Λ6 = 1 in [38]), the estimator reduction in [38, Thm. 4.1]

and thus the plain convergence in [38, Thm. 4.2] hold for arbitrary 
0 < 𝜅 < ∞. Hence, 𝜅 = ∞. The proof of optimal convergence rates in 
[38, Sect. 4.3] requires 𝜅 < 𝐶−2

stab
𝐶−1

drel
. The estimates (12) for the Courant 

FEM with right-isosceles triangles lead to 𝜅0 ≥ 2.6 × 10−6. Despite this 
pessimistic theoretical bound, the convergence rate of SALSFEM is op-

timal for the large range of 10−2 ≤ 𝜅 ≤ 102 in practice as displayed in 
Fig. 7a. This suggests that the algorithm is fairly robust to the choice 
of the parameter 𝜅. Solely very large values exhibit suboptimal conver-

gence rates. For 𝜅 = 104, every iteration carries out Case A with Dörfler 
marking for the alternative estimator. Hence, every larger value 𝜅 ≥ 104
leads to exactly the same behaviour.

Fig. 7b displays the quotient 𝑞2𝓁 ∶= 𝜇2(𝓁)∕𝜂2S (𝓁) used for the deci-

sion of the refinement strategy in the separate marking. If this value is 
above the threshold 𝜅, Case B holds and the data approximation algo-
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Fig. 10. Comparison of the three adaptive strategies with parameters 𝜃 = 0.3, 𝜅 = 1, and 𝜌 = 0.8 for the benchmark problem from Subsection 5.3 with 𝜖 = 3−3. 
Vertical error bars in Subfigure (a) indicate the maximal and minimal measured time. Both figures employ the markers and line styles as introduced by the legend 
in Fig. 5c.

Fig. 11. Solution and right-hand side for the benchmark problem from Subsection 5.4.
rithm is carried out, otherwise in Case A, the Dörfler marking for the 
alternative estimator 𝜂S and NVB apply. The reduction of 𝜂S has rather 
no influence on the data error 𝜇 and, thus, leads to an increase of the 
quotient up to the threshold. This reveals that, throughout the compu-

tation, the SALSFEM algorithm ensures some balance of error estimator 
and data error specified by the parameter 𝜅. For large quotients in the 
regime of the uniform refinement, solely Case A refinement is carried 
out leading to the highly suboptimal convergence rate of about 0.1 in 
Fig. 7a. This suggests a choice of 𝜅 considerably smaller than the values 
of the quotient 𝑞2𝓁 for uniform refinement.

As expected from the theoretical convergence result in Theorem 4.6, 
Fig. 8 approves that the choice of the parameter 0 < 𝜌 < 1 has no in-

fluence on the optimal convergence rate. However, the reduction of 
the parameter 𝜌 decreases the number of solution steps significantly. 
While [71] suggests a relatively small 𝜌 of about 0.1 for best overall 
performance, a value close to one allows a more sensitive behaviour in 
the distinction of the two refinement cases. Accordingly, the choice of 
𝜌 = 0.8 in the remaining experiments is preferable for an informative 
numerical comparison.

In order to investigate the performance of the three algorithms, 
Fig. 10a displays the mean total runtime in each iteration from 10 in-

dependent runs of the adaptive loop. All three refinement algorithms 
10
exhibit almost linear complexity with respect to the number of degrees 
of freedom. Note that the direct solution of the algebraic linear system 
prevents linear complexity of the overall implementation at hand.

The plot in Fig. 10b displaying the estimator values versus the cumu-

lative mean runtime instead of the number of degrees of freedom better 
represents the practical performance. The adaptive algorithms ran up to 
105 degrees of freedom. In particular for the beginning of the computa-

tion the SALSFEM is superior to the other refinement strategies. This is 
because of the reduced number of solution steps which may be further 
decreased by reducing the parameter 𝜌. Later NALSFEM and SALSFEM 
provide comparable results.

As a reference, Fig. 10b displays the value 𝐿𝑆(𝑓 ; 𝑝𝓁 , 𝑢𝓁)≈1.02110264
×10−2 resulting from a computation of a fine uniform mesh with 786 432
triangles (ndof = 1 572 865). The solution and estimation took an av-

erage runtime of about 21.72 seconds (without considering the time 
for the generation of the fine mesh and the computation of the alter-

native estimators). The SALSFEM algorithm achieves the same accu-

racy already after 3 seconds. NALSFEM and even CALSFEM reach this 
threshold after approximately 10 seconds although the latter does not 
guarantee any control of the data approximation error. This is another 
striking evidence of the superiority of adaptive mesh-refinement algo-

rithms.
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Fig. 12. Convergence history plot and plot of the efficiency indices with respect to the error 𝑒𝓁 ∶= |||(𝑝 − 𝑝𝓁 , 𝑢 − 𝑢𝓁)||| for the waterfall benchmark problem from 
Subsection 5.4. The parameters for the adaptive mesh-refinement strategies read 𝜃 = 0.3, 𝜅 = 1, and 𝜌 = 0.8.
Finally, Fig. 9 confirms the quasi-optimality of the AA algorithm [38, 
axiom (B1) in Sect. 2.4] with respect to the number of degrees of free-

dom.

5.4. Waterfall benchmark

This benchmark considers the exact solution 𝑢 ∈𝐻1
0 (Ω) on the unit 

square Ω ∶= (0, 1)2 given in [72, Sect. 4.2] by

𝑢(𝑥) ∶= 𝑥1(𝑥1 − 1)𝑥2(𝑥2 − 1) exp
(
− 100(𝑥1−1∕2)2−(𝑥2−117)2∕10000

)
.

The right-hand side is determined by 𝑓 ∶= −Δ𝑢. Both functions are dis-

played in Fig. 11.

For this benchmark with a smooth solution, all adaptive algorithms 
exhibit optimal convergence rates with a relatively small pre-asymptotic 
range. Exemplarily, Fig. 12a presents the convergence graphs for the 
CALSFEM. It confirms the equivalence of the estimator with the ex-

act error terms. It is remarkable that even the data error 𝜇2(𝓁) ≤‖𝑓 + div𝑝𝓁‖2𝐿2(Ω)
converges with the optimal rate, although this is not 

guaranteed by the theoretical convergence result. Fig. 12b displays the 
efficiency indices of all three mesh-refinement schemes. The results il-
lustrate the exactness of the built-in error estimator 𝐿𝑆(𝑓 ; 𝑝𝓁 , 𝑢𝓁)1∕2
from Theorem 4.1 already on the coarsest triangulations. This is be-

cause the term ‖𝑓 + div𝑝𝓁‖𝐿2(Ω) = ‖ div(𝑝 − 𝑝𝓁)‖𝐿2(Ω) dominates from 
the very beginning in Fig. 12a and belongs to the built-in error estimator 
𝐿𝑆(𝑓 ; 𝑝𝓁 , 𝑢𝓁)1∕2 and the error 𝑒𝓁 ∶= |||(𝑝 −𝑝𝓁 , 𝑢 − 𝑢𝓁)||| as well. The fact 
that this dominating term is not controlled by the alternative estimator 
𝜂C explains why the latter attains low efficiency indices only.

The mesh plots in Fig. 13 illustrate the different behaviour of the 
adaptive algorithms. The NALSFEM in Fig. 13a focusses on the regions 
with large gradients of the right-hand side 𝑓 (see Fig. 11b) in order to 
allow for a proper piecewise constant approximation. The mesh is simi-

lar to the result from the data approximation by AA in Fig. 13d. On the 
contrary, the CALSFEM in Fig. 13b increases the refinement in regions 

w
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ith large absolute values of 𝑓 . The SALSFEM in Fig. 13c seemingly 
mbines both aspects.

5. Discontinuous coefficients

The final benchmark considers the elliptic problem with piecewise 
nstant scalar diffusion coefficient 𝑎 ∈ 𝐿∞(Ω), defined by

𝑥) ∶=

{
𝑎1 if 0 < 𝑥1𝑥2,

𝑎2 if 𝑥1𝑥2 < 0,

d right-hand side 𝑓 ≡ 0 on the square domain Ω ∶= (−1, 1)2. It seeks 
, 𝑢) ∈𝐻(div, Ω) ×𝐻1(Ω) satisfying

+ div𝑝 = 0 and 𝑎−1∕2𝑝− 𝑎1∕2∇𝑢 = 0 in Ω subject to

𝑢D on 𝜕Ω. (13)

e weighting of the second residual in (13) leads to the fundamental 
uivalence of the least-squares functional

𝑆(𝑓, 𝑎;𝑝, 𝑢) ∶= ‖𝑓 + div𝑝‖2
𝐿2(Ω) + ‖𝑎−1∕2𝑝− 𝑎1∕2∇𝑢‖2

𝐿2(Ω) (14)

d the natural weighted 𝐻(div) and energy norm ‖ div 𝑞‖2
𝐿2(Ω)

+
−1∕2𝑞‖2

𝐿2(Ω)
+ ‖𝑎1∕2∇𝑢‖2

𝐿2(Ω)
with equivalence constants solely de-

nding on the uniform lower bound of the diffusion coefficient. Note 
at the inhomogeneous Dirichlet boundary conditions 𝑢D lead to an ad-

tional oscillation term in the estimators 𝜂N, 𝜂C, and 𝜂S [35,37,40] and 
e overall error

(𝑞, 𝑣)|||2𝑎 ∶= ‖div 𝑞‖2
𝐿2(Ω) + ‖𝑎−1∕2𝑞‖2

𝐿2(Ω) + ‖𝑎1∕2∇𝑢‖2
𝐿2(Ω)

+
∑

𝐸∈(𝜕Ω)
|𝜔𝐸 |1∕2‖(1 − Π0,𝐸 )𝜕𝑢D∕𝜕𝑠‖2𝐿2(𝐸).

(15)

r some parameter 0 < 𝛾 < 2, the exact weak solution to (13) in polar 
ordinates from [73] reads 𝑢(𝑟, 𝜙) ∶= 𝑟𝛾𝜇(𝜙) and 𝑝 ∶= 𝑎∇𝑢 with
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Fig. 13. Plots of adaptively refined meshes for the three refinement strategies with parameters 𝜃 = 0.3, 𝜅 = 10, and 𝜌 = 0.8 for the benchmark problem from 
Subsection 5.4.

Fig. 14. Solution plot and plot of mesh size ℎ𝓁|𝑇 ≡ |𝑇 |1∕2 of adaptively refined mesh using CALSFEM with bulk parameter 𝜃 = 0.7 for the benchmark problem from 
Subsection 5.5.
12
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Fig. 15. Comparison of various choices for the bulk parameter 0 < 𝜃 ≤ 1 in the adaptive mesh-refinement strategies for the benchmark problem from Subsection 5.5.

Fig. 16. Convergence history plot of CALSFEM with bulk parameter 𝜃 = 0.7 and efficiency indices with respect to the error 𝑒𝓁 ∶= |||(𝑝 − 𝑝𝓁 , 𝑢 − 𝑢𝓁)|||𝑎 from (15) for 
the diffusion benchmark problem from Subsection 5.5. Fig. 16b employs the graphs as introduced by the legend in Fig. 12c.
𝜇(𝜙) ∶=

⎧⎪⎪⎨⎪⎪⎩
cos((𝜋∕2 − 𝜎)𝛾) cos((𝜙− 𝜋∕2 + 𝜌)𝛾) if 0 ≤ 𝜙 < 𝜋∕2,
cos(𝜌𝛾) cos((𝜙− 𝜋 + 𝜎)𝛾) if 𝜋∕2 ≤ 𝜙 < 𝜋,

cos(𝜎𝛾) cos((𝜙− 𝜋 − 𝜌)𝛾) if 𝜋 ≤ 𝜙 < 3𝜋∕2,
cos((𝜋∕2 − 𝜌)𝛾) cos((𝜙− 3𝜋∕2 − 𝜎)𝛾) if 3𝜋∕2 ≤ 𝜙 ≤ 2𝜋,

and constants 0 < 𝜌 and 𝜎 < 0. The parameter 𝛾 determines the regu-

larity of the solution 𝑢 ∈𝐻1+𝛾−𝜀(Ω) for all 0 < 𝜀. The choice of 𝛾 = 0.1
in [74] leads to the constants 𝜌 = 𝜋∕4, 𝜎 ≈ −14.922 565 104 551 52, the 
coefficients 𝑎1 ≈ 161.447 638 797 588 1, 𝑎2 = 1, and the solution 𝑢 dis-

played in Fig. 14a. The nodal interpolation of the exact solution 𝑢
prescribes the inhomogeneous boundary conditions 𝑢D in the discrete 
minimization of (14).

This benchmark problem models intersecting interfaces with the dif-

ficulty of a strong cross-point singularity at the origin. Fig. 14b exhibits 
the intense adaptive refinement of CALSFEM towards the origin. The 
heavy grading of the mesh leads to ill-conditioned system matrices al-

ready for a relatively small number of degrees of freedom, e.g., from 
about ndof = 4 000 for CALSFEM with 𝜃 = 0.7. For this reason, its un-

reliable results are omitted in the figures. Moreover, due to the lack of 
13
any data approximation error for the right-hand side 𝑓 , the results of 
CALSFEM and SALSFEM coincide.

The plain convergence analysis for NALSFEM from Theorem 4.2

holds under general assumptions. However, the convergence result in 
[42] requires nested discrete spaces which is violated by the nodal in-

terpolation of the boundary data in the implementation at hand. The 
analysis in [24] covers inhomogeneous boundary conditions if they are 
weakly enforced by additional residuals in the least-squares functional. 
Nevertheless, NALSFEM converges for all choices of the bulk parameter 
in Fig. 15a. In contrast to Fig. 2a for the L-shaped domain benchmark, 
the convergence of NALSFEM with the optimal rate seems to require 
much smaller bulk parameters 𝜃 ≤ 0.3 in this benchmark problem. In 
contrast to that, CALSFEM appears to be much more robust with re-

spect to the choice of 0 < 𝜃 ≤ 1 in Fig. 15b.

The case of piecewise constant diffusion coefficient is included in 
the analysis of [37]. Hence, Theorem 4.6 for the optimal convergence 
rates of SALSFEM (and so of CALSFEM) generalises to the elliptic prob-

lem (13) as well. Fig. 16a confirms the optimal convergence rates even 
for a rather large bulk parameter 𝜃 = 0.7. The efficiency indices of the 
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built-in error estimator 𝐿𝑆(𝑓 ; 𝑝𝓁 , 𝑢𝓁)1∕2 range from 1 to 1.25 in Fig. 16b 
providing further empirical evidence for its accurate error estimation 
properties. The slight increase of these indices might result from the ap-

proximation of inhomogeneous Dirichlet boundary conditions which are 
not covered by [29].

6. Conclusion and open questions

The numerical experiments show that the adaptive algorithm with 
separate marking is superior in particular on moderate levels and for 
obtaining an overall high accuracy. However, the realisation of the sep-

arate marking and of the data approximation algorithm is more involved 
and usually not included in standard FEM software packages. Since the 
natural mesh refinement leads to comparable results as the separate 
marking algorithm, it is a good alternative. The investigation of the ef-

ficiency indices confirmed the exactness of the built-in error estimator 
even on coarse meshes.

Choices of moderate bulk parameters of 0.3 ≤ 𝜃 ≤ 0.5 provide opti-

mal convergence rates while still ensuring a tolerable number of solution 
steps. The investigation of the separation parameter 𝜅 in Subsection 5.3

suggests a choice of 𝜅 of one order of magnitude less than the quotient 
𝑞2𝓁 = 𝜇2(𝓁)∕𝜂2S (𝓁) in the case of uniform refinement. The evaluation 
of 𝑞𝓁 for 𝓁 = 0 or small levels 𝓁 > 0 allow for a justified a priori choice 
of 𝜅. The convergence rate is robust with respect to the parameter 𝜌. 
Smaller values of 𝜌 significantly reduce the number of solution steps 
while larger values enable the adaptive algorithm to balance error esti-

mator reduction and data approximation more accurately.

The adaptive LSFEM is well-established and convincing in many ap-

plications. However, important mathematical questions remain open. 
The proof of Theorem 4.3 on Q-linear convergence of the natural adap-

tive LSFEM heavily relies on the lowest-order arguments such that a 
straight-forward generalisation to higher polynomial degrees seems in-

accessible. Additionally, the restriction to sufficiently large bulk param-

eters appears artificial and the case of small 𝜃 is not covered yet. Once 
this has been solved, the linear convergence would imply optimal con-

vergence rates with respect to the number of degrees of freedom by 
Theorem 4.4. Moreover, the study of optimal convergence rates with 
respect to the computational costs in the spirit of [41] represents an im-

portant task for future research. While the collective marking algorithm 
fits into the framework of [41], the application to an adaptive algorithm 
with separate marking and data approximation requires a major modi-

fication as for the axioms of adaptivity in [38].

Data availability

The software package octAFEM for the numerical experiments has 
been published on the Code Ocean platform under the DOI 10 .24433 /
CO .6310426 .v1.

Link to the Reproducible Capsule

https://doi .org /10 .24433 /CO .6310426 .v1
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