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Abstract

Discrete Helmholtz decompositions dissect piecewise polynomial vector fields on sim-
plicial meshes into piecewise gradients and rotations of finite element functions. This
paper concisely reviews established results from the literature which all restrict to the
lowest-order case of piecewise constants. Its main contribution consists of the gener-
alization of these decompositions to 3D and of novel decompositions for piecewise
affine vector fields in terms of Fortin—Soulie functions. While the classical lowest-order
decompositions include one conforming and one nonconforming part, the decompo-
sitions of piecewise affine vector fields require a nonconforming enrichment in both
parts. The presentation covers two and three spatial dimensions as well as generaliza-
tions to deviatoric tensor fields in the context of the Stokes equations and symmetric
tensor fields for the linear elasticity and fourth-order problems. While the proofs focus
on contractible domains, generalizations to multiply connected domains and domains
with non-connected boundary are discussed as well.
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Foundations of Computational Mathematics

1 Introduction

The Helmholtz decomposition describes a vector field on a bounded and contractible
domain 2 C R as the sum of an irrotational and a solenoidal vector field, i.e.,

L*(Q; R?Y) = VHJ () ©rot H (rot, ), (1.1)

where © means that the sum is L2-orthogonal. It is a fundamental tool for the anal-
ysis and visualization of vector fields in various areas including fluid mechanics,
astrophysics, geophysics, and imaging. For a historical overview of the Helmholtz
decomposition on the continuous level, the reader is referred to [53] and [8].

Throughout the paper, let 7" denote a conforming triangulation of a bounded and
polyhedral Lipschitz domain €2 into closed simplices. This paper investigates discrete
versions of the Helmholtz decomposition (1.1) of the form

P (T; RY) = Vne X3 (T) © rotne Yi(T) (1.2)

fork = 0,1 and d = 2, 3. At least one of the discrete spaces X;(7) and Y;,(7) has
to be nonconforming and the differential operators Vnc and rotnc apply piecewise.
Such a decomposition was proved for the first time by Arnold and Falk for k = 0
and d = 2 in [2] with X}, (7) being the Crouzeix—Raviart finite element space and
Y, (7T) being the conforming P; finite element space. Later, Rodriguez, Hiptmair, and
Valli [49] generalized this to k = 0 and d = 3, where Y, (7) is then the Nédélec
finite element space. Discrete Helmholtz decompositions arose also in the context
of the Stokes equations (resp. linear elasticity and the biharmonic equation), where
deviatoric, i.e. trace-free, (resp. symmetric) tensor fields are decomposed.

The first contribution of this paper is an overview of all known discrete Helmholtz
decompositions. Since mixed boundary conditions are not much treated in the litera-
ture, this paper exemplifies the generalization to mixed boundary conditions for the
decompositions of [2, 49].

In 2D, the gradient and the (vector-valued) rot (or Curl) operator are the same
up to a change of coordinates and therefore the spaces X, (7) and Y;(7) can be
interchanged. However, this is not the case in 3D and therefore the decomposition
(1.2) with a conforming space X (7) is new; cf. Theorem 4.1 below.

The third and main contribution of this paper consists of completely new discrete
Helmbholtz decompositions of piecewise affine vector fields in Theorems 5.1, 5.5 and
5.7. While the decompositions for k = 0 are conforming in one of the spaces X, (7)
and Y, (7), the decompositions for k = 1 require nonconforming spaces for both
Xp(7) and Y, (7). In 2D these spaces are the Fortin—Soulie spaces, while in 3D
the rotation space consists of a Nédélec space enriched by nonconforming bubbles.
While in 2D, the decomposition (1.2) follows by the orthogonality of the spaces and a
dimension argument, the decomposition (1.2) fork = 1 and d = 3 requires a thorough
analysis of the kernel of the operator rotyc.

The majority of proofs in this paper focus on the case of contractible domains.
However, the presence of handles (multiple connectedness) and cavities (non-connec-
ted boundary) in the domain as well as the type of boundary conditions may require
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the inclusion of the additional finite-dimensional space of Dirichlet or Neumann fields
into the Helmholtz decomposition (1.1). Several remarks in this work address the
corresponding generalizations of the discrete decompositions to basic non-contractible
domains. The presentation of results for arbitrary geometries and mixed boundary
conditions to its full extent is beyond the scope of this paper.

Sections 6 and 7 show how the discrete Helmholtz decompositions (1.1) can be
generalized to decompositions of tensor fields of deviatoric and symmetric matrices.
Those tensor fields arise in the context of the Stokes equations in the case of devia-
toric matrices and in the context of linear elasticity and the biharmonic equation for
symmetric matrices.

For a comprehensive overview of all discrete Helmholtz decompositions of this
paper, see Table 1. This table refers to the respective theorems of this paper and also
to the literature for previously established results.

Discrete Helmholtz decompositions are applied in many different contexts. The
discrete Helmholtz decomposition provides the basis for the derivation of stable dis-
cretizations for a variety of problems. The first discrete Helmholtz decomposition
arose in the analysis of a nonconforming discretization of the Reissner—Mindlin plate
[2]. While the decomposition (1.1) allows to treat the continuous problem, a discrete
counterpart in [2] mimics the continuous analysis and enables a robust discretization
of the problem. This approach was generalized in [32, 33] to arbitrary polynomial
degrees. The latter works are based on a discrete Helmholtz decomposition of the
form

P(T; RY) = Z), ©rotne Yi(T)

without specifying the space Zj, as a space of piecewise gradients. See also the works
[50-52] for discretizations based on this kind of discrete decompositions and [35]. In
the context of electromagnetic problems, a mixed FEM in [49] employs the Crouzeix—
Raviart finite element space as one of the discretization spaces. The discrete Helmholtz
decomposition allows to prove the uniqueness and existence of discrete solutions. The
analysis of a mixed system arising in fourth-order problems in [38] also requires dis-
crete Helmholtz decompositions to identify the gradient and the rotational part of
piecewise constant and piecewise affine vector fields. Moreover, a discrete Helmholtz
decomposition founded a nonconforming method in the context of the Bingham prob-
lem in [20]. The novel decompositions pave the way for the design and analysis of
new schemes in the context of, e.g., electromagnetic problems or Reissner—Mindlin
plates, e.g., a Fortin—Soulie scheme for the Reissner—Mindlin plate or a nonconforming
Crouzeix—Raviart or enriched Nédélec FEM for Maxwell’s equations.

Another key application of discrete Helmholtz decompositions is the a posteriori
and optimality analysis of adaptive nonconforming FEMs [6, 15, 19] (in particular in
the discrete reliability analysis) and the medius analysis [21]. In this context, the Pois-
son (resp. Stokes or biharmonic) problem is discretized with a nonconforming finite
element space X and the discrete Helmholtz decomposition (1.2) splits the error in
a discrete residual type error in VNc X, and a nonconformity error in rotnc Y, (7).
The convergence analysis of adaptive least-squares FEMs [12, 13, 17, 18] made use
of discrete Helmholtz decompositions as well. Although it was nowadays observed
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that the discrete Helmholtz decomposition can be avoided in the proof of the discrete
reliability for the nonconforming Crouzeix—Raviart FEM [16] and least-squares FEMs
[11, Rem. 5.4], it still seems to be an important tool in the proof of the discrete relia-
bility and helps to understand and characterize the nonconformity error of a method.
Therefore, the new decompositions of this paper open the door for the optimality anal-
ysis of a Fortin—Soulie FEM for the Poisson problem or linear elasticity and of the P3
Morley-type FEM of [54] for fourth-order problems.

This paper focuses on discrete decompositions of the form (1.2). Several related
decompositions are beyond the scope of this paper. This applies to Helmholtz decom-
positions based on finite difference approximations of differential operators as in [47]
and discrete Helmholtz decompositions for surface finite element spaces as in [23].

Another kind of discrete Helmholtz decomposition has been derived from discrete
exact sequences by Brezzi, Fortin, and Stenberg in [10] in the context of Reissner—
Mindlin plates. Decompositions of this type employ a discrete weak differential
operator Curly, : Z, — Y}, defined on some discrete spaces Y, € H(curl, 2) and
Zp C LZ(Q), for vy € Zp, by

(Curly, vp, qh)Lz(Q) = (vp, curlqh)Lz(Q) for all gj, € Yy (1.3)

The space Y;, may be chosen as the Nédélec finite element spaces in 2D, i.e., ¥}, :=
Ry pRT(T) or Yy := Ry, BDM(T) with the rotation operator Ry,» : R2 —
R?, R, 29 = (q2, —q1) " by /2. The choice of ¥}, leads to the following discrete
Helmholtz decompositions from [10, Lem. 3.1] and [44, Thm. 3.2]

Y, = VS* © Curly, Po(T).

This decomposition can be considered as discrete versions of the Helmholtz decom-
position [9, Prop. 2.3]

H~(div, Q) = VH}(RQ) © Curl(L*(Q)/R),

where (Ho(curl, Q))* = H~'(div, Q) := {¢g € HY(Q;R?) : divg € H~(Q)}.
This decomposition is orthogonal with respect to the duality pairing. The Helmholtz
decompositions of this type are applied in the context of Reissner-Mindlin plates [10],
the proof of optimal convergence rates of mixed FEMs [6, 36], and the preconditioning
in H (div) [3]. For details on the methodology of their derivation from discrete exact
sequences, the reader is referred to [10]. For analogous decompositions for various
applications, see [22].

The terminology discrete Helmholtz decomposition also arose for interpolations of
the continuous Helmholtz decomposition (1.1): They employ suitable (quasi-)interpo-
lation operators, e.g., the Fortin interpolation operator Irt : H'($2; R?) — RT(T)
and a quasi-interpolation operator of Clément type J : H'(Q) — S'(Q). Given
T € H(div, Q) with continuous Helmholtz decomposition t = Va + Curl b for
a € H*(Q)and b € H'(RQ), the discrete Helmholtz decomposition from [34, Eqn. 33]
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reads
1), := Igr(Va) + Curl(Jb) € RT(7).

This technique enables the derivation of a myriad of discrete decompositions. Further
details are omitted.

The term discrete Helmholtz decompositions in this paper should not be confused
with numerical methods for the approximation of the continuous irrotational and the
solenoidal field which are often called discrete (Hodge) Helmholtz decomposition as
well. Many of those methods base on the publications [45, 46].

The paper departs with the notation and further preliminaries in Sect. 2. Sections 3
and 4 are devoted to discrete Helmholtz decompositions of the form (1.2) for k = 0.
Section 5 is devoted to the decomposition of piecewise affine vector (or tensor) fields.
To the best of the authors’ knowledge, this is the first result of the form (1.2) for k > 0.
Beyond the Helmholtz decompositions (1.2) of vector fields, further decompositions of
piecewise constant and piecewise affine deviatoric tensor fields are presented in Sect. 6
in the context of the Stokes equations. The paper concludes with decompositions of
discrete symmetric tensor fields in Sect.7 in the context of linear elasticity and the
biharmonic equation.

2 Preliminaries

This section defines notation employed throughout the paper and proves some prelim-
inary results.

2.1 Polyhedral Lipschitz Domains

Let © € R? denote a bounded and connected open domain of dimension d € N with
d > 2. Since (discrete) Helmholtz decompositions critically depend on the topology
of the domain, each theorem in this paper explicitly includes the assumptions on the
topology and on the regularity of the domain and its boundary.

The domain 2 is called a polyhedral Lipschitz domain if 2 lies on exactly one side
of its polyhedral boundary 9€2 that is locally the graph of a Lipschitz function. The
domain 2 is called contractible if it is homotopy equivalent to a point. In 2D, this is
equivalent to simple connectedness of 2 C R? and, in 3D, this means that < R3 is
simply connected and has a connected boundary 0<2. For any non-contractible domain
Q C RY, let [o,..., ' with L € Ny denote the L + 1 connectivity components of
the boundary 92, i.e.,  contains L cavities. Assume the convention that "¢ is the
boundary of the unbounded component of the complement R? \ Q2. Three-dimensional
non-contractible domains  C R3 may feature handles in the case that 2 is multiply
connected, i.e., there is more than one homotopy class of closed curves inside €2.
Following [1, Hypothesis 3.3], the treatment of these handles requires the choice of

two-dimensional cuts X1, ..., Xy C Q of minimal number M € Ny such that each
Y, form =1, ..., M and the remaining set Q\ (X U- - -UX,s) are simply connected.
Elol:;ﬂ
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The investigation of discrete Helmholtz decompositions with mixed boundary con-
ditions requires the dissection of the boundary 92 of 2 into two disjoint parts. Let
I'p € 9€2 be the closed Dirichlet boundary with J € Ny closed and disjoint connec-
tivity components I'p 1, ..., I'p,s. Let the relatively open I'y := 9Q\I'p have the
K € Ny connectivity components I'x 1, ..., I'n k., that are disjoint in the sense that
FN_J' N FN,]{ = () for all j # k. Then

J K
02 = UFD’j U UFN’k'
j=1 k=1

For d > 3, arelatively open boundary part I'y is called polyhedral boundary patch if
the interface I'1 := I'p N T'y between the two boundaries is piecewise affine and I'p
lies locally on exactly one side of the interface (relatively to the (d — 1)-dimensional
manifold 9€2). For two-dimensional sets, the term polygonal replaces polyhedral.

2.2 Differential Operators and Continuous Spaces

Let “-” denote the scalar product, “A” the cross product, and A : B the Frobenius
scalar product of two matrices A, B € R"*¥ definedby A : B = 27:1 thle AjyBjy.

For a scalar valued function v € C'(Q) and a vector field 8 € C'(Q;RY), let
Vv denote the gradient (i.e., the column vector of the first partial derivatives) and
Dg the first derivative (i.e., the matrix that contains the transposed gradients of the
components of 8). The Hessian of v € C?() is denoted by D?v and the divergence
of B € C1(Q: RY) by div B. In two spatial dimensions, the differential operators Curl
and curl appliedtov € C 1(Q) and B € C1(Q; R?) are defined by

_ [(—0v/dx2 _ _
Curlv = < 9v/0x, ) and curl 8 = 9B,/0x1 — 3B1/9x>2.

In order to clearly distinguish the operator in the three-dimensional case, the curl of a
vector field p € C 1(€: R3) is denoted by rot and reads

0B3/0x2 — 0B2/0x3
rot = | 9B1/0x3 — 9B3/dx;
0B2/0x1 — 9B1/0x2

The differential operators div, curl, and rot apply row-wise to matrix-valued func-
tions. In particular, the twofold application of the Curl operator to a scalar function
v € C3(R) reads

2 2 2
2 0°v/0x5 —0907v/(0x10x2)
Curl™v = (—a%/(axlaxz) 2v/ox? )

The corresponding weak (distributional) versions of all previously displayed differ-
ential operators employ the same notation.

FoC
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Throughout the paper, the index “NC” indicates the piecewise application of differ-
ential operators to nonconforming functions with respect to an underlying triangulation
7. Formally, if v € L?(RQ) satisfies v|in(r) € H'(int(T)) for all T € T with interior
int(7T) C L, then Vncv € LQ(Q; Rd) is defined, for all T € 7, by

(VNeW) lint(r) := VWlint(1))-

Analogous definitions apply for Dnc, DIZ\]C, Curlnc, Curllz\lc, curlnc, rotne, and divnc.
The following lemma asserts that the normal component of the rotation can be
represented solely in terms of the derivatives of the tangential components.

Lemma2.1 Let T C R3 be a simplex. For its face F € F(T) with normal vector
v € R3, choose positively oriented unit tangential vectors t1, 72 € R> such that
det[t] o v] = 1. Then, any ¢ € Cl(int(T); R3) satisfies

v-(rote)lp =V(p- 1) 11— V(g 1) 0. 2.1

Proof The representation of ¢ in the basis {t7, 72, v} reads

p=(p-)u+ (¢ - )2+ (¢-v)v.

The application of the rot operator and the product rule rot(cq) = Va A g + arot g
for@ € C'(int(T)) and ¢ € C'(int(T); R?) lead to

ot =V(p-t) AT +V(p-12)) ATa + V(p - V) Av.

The wedge-productidentity v-(aAb) = a-(bAv) fora, b € R3aswellas Ty AV = — 19,
7 AV = T11,and v A v = 0 conclude the proof of (2.1). ]

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper.
The L? inner product is denoted by (v, w) 12 and || - [[z2(q) denotes the L? norm.
For any subspace X C L!(), abbreviate

X/R = [v eX: / v dx =0} and L3(Q) := LA(Q)/R.
Q

Given any finite-dimensional vector space X, let LZ(Q; X)) be the space of functions
v : © — X whose components belong to L?(2). Let v : 92 — R? denote the
outward unit normal vector of 2. Define the Sobolev spaces

H(rot, Q) := {B € L*(: R?) : rot B € L*(S: R},
H(div, Q) == {p € L*(: RY) : divp € L*(Q)}

and the kernels of the differential operators rot and div
Hrot?, Q) := (B € H(rot, Q) : rot g = 0},

FoC'T
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Hdiv’, Q) :={p € H(div, Q) : divp = 0}.

The spaces of Sobolev functions satisfying homogeneous boundary conditions in the
sense of traces read

Hy(Q) :={ve H'(Q) : vlagg =0},
Hy(rot, Q) :={B € H(rot, Q) : (v A B)|aq = 0},
Ho(div, Q) :={p € H(div,2) : (p-V)|se = 0}.

Recall from Sect. 2.1 the dissection of the boundary of €2 into a closed Dirichlet bound-
ary 'p C 92 and arelatively open Neumann boundary 'y = 92\ I'p. Corresponding
subscripts indicate the spaces with partial homogeneous boundary conditions Hﬁ(Q),
HL(Q), Hx(rot, Q), Hy(rot”, Q), Hx(div, ), and Hy(div?, ).

In the framework of exterior calculus, the geometric interpretation of cavities and
handles of the domain €2 from Sect. 2.1 is formalized by the notion of Betti numbers
bj e Ngfor j =0,...,d. They are defined by the dimension of the remaining space
in the continuous Helmholtz decomposition (1.1). For instance, for the differential
operators in the following three-dimensional sequence

Po(Q) =% HY(Q) 5 H(rot, @) 25 H(div, 2) 2% 12@) -5 o),

set by := dim(ker(rot)/ran(V)) = M and b, := dim(ker(div)/ran(rot)) = L. The
reader is referred to [39] for further details.

2.3 Triangulations

Throughout the paper, let 7 be aregular triangulation of the polygonal domain € € R?¢
into at least two closed simplices. Let F denote the set of faces of 7, £ the set of edges
and V the set of nodes. If d = 2, identify F = £. Let furthermore F(£2) (resp. £(£2)
and V(2)) denote the set of interior faces (resp. interior edges and interior nodes) and
let F(9€2) (resp. £(3€2) and V(9£2)) denote the set of boundary faces (resp. boundary
edges and boundary nodes). For any simplex T € 7T, the vector field vy : 97 — R?
denotes the outward unit normal vector of 7. For a face F € F, let vr denote the unit
normal vector with a fixed orientation. In 2D, this induces a unique tangential vector
7 = (VF 2, —vF,l)T of the edge F. For any interior face F € F(Q2),let T, T_ € T
denote the two unique distinct simplices satisfying F' = Ty N T_. The indices follow
the convention that vr - vy, = %1. For any boundary face F € F(0R2), T+ € 7T is the
unique adjacent simplex with F C T... For any face F € F (resp. any edge E € &),
its barycenter reads mid(F) (resp. mid(E)).

Assume that the triangulation 7 reflects the dissection of the boundary in that
the Dirichlet faces F(I'p) = {F € F@OR) : F < Ip} and the Neu-
mann faces F(I'y) = {F € F(@RQ) : F C Ty} partition the set F(9Q) of
boundary faces. Analogously, define the sets of the Dirichlet vertices V(I'p) =
{z € V(0 : z € I'p} and the Neumann vertices V(I'n) := V(OQ)\V('p).

EOE';W
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Let

K
V(IN) = U V(i) with V(Tng) = {z € V(OQ) : z € Tnil-
k=1
denote the set of vertices on the Neumann boundary including the ones at the interface
of the boundary parts.
The following well-known Euler formulas ([26, Lem. 1.57] in a corrected version)
provide an essential tool for computing the dimension of discrete finite element spaces
in the proofs below.

Lemma 2.2 (Euler formulas) Ler Q@ € R? be an arbitrary polyhedral domain. Count-
ing the d + 1 faces of each simplex verifies the following formula

#F +#F(Q) = (d + DH#HT. (2.2)
For d = 2, regular triangulations of any simply connected domain Q C R? satisfy

T —#F +#V —1=0, 2.3)
#F(OQ) — #V(OQ) = 0. (2.4)

For d = 3, regular triangulations of any contractible domain @ C R guarantee

T —#F +#E —#V + 1 =0, 2.5)
BF(AQ) — #EOQ) + #V(0Q) — 2 = 0, (2.6)
3HF(IQ) — 24E(Q) = 0. 2.7)

In the case of non-contractible domains €2, recall the notation for the connectivity
components Iy, ..., 'y of 92 and cuts Xy, ..., X from Sect. 2.1. Let F (') (resp.
E(Ty) and V(T'y)) denote sets of faces (resp. edges and vertices) subordinated to I'y

for £ =0, ..., L. Assume throughout the paper that any triangulation 7 resolves the
cuts X, ..., Xpy. Moreover, the generalized Euler formulas read, for d = 2,
#T —#F+#V+L—-1=0 (2.8)
and, for d = 3,
#T —#F +#E—-#V+1+L - M =0, (2.9)
#F(0Q2) —#E(0Q) + #V(0Q2) —2(1+ L — M) = 0. (2.10)

The remaining equalities (2.4) and (2.7) remain true.
Elol:;ﬂ
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2.4 Conforming Finite Element Spaces

Given a regular triangulation 7, let Px(7) denote the space of piecewise polynomials
of total degree at most k € Ny. As in the continuous setting let Py (7 ; X) denote the
space of functions vy, : 2 — X with components in X. Define the conforming finite
element spaces

ST == Py (T) N CO(Q), 2.11)
NK(T) := {vng € H(rot, Q) @ Jar, by € P(T;R?), vna = a7 + by Aid),
(2.12)
ko . C3at € P(T;RYHIbs € P(T),
RTX(T) := {ﬂm € H(div, Q) : Bt — ar 4+ by id . (2.13)
Abbreviate the subspace with (partial) homogeneous boundary conditions
SeTHT) := ST N H (), S5THT) = ST N HL (),
N&(T) := NK(T) N Hy(rot, ), NK(T) := N*(T) N Hx(rot, ),

RTH(T) := RT*(7T) N Ho(div, Q),  RTK(T) := RT*(7) N Hx(div, Q).
The kernels of the differential operators read as follows

Nf(rot®, 7) := NX(7) N H (rot’, Q), RTK(div?, 7) := RT*(7) N H(diV°, Q),
NK (rot’, ) := N&(T) N H (rot?, ©2), RTX (div®, 7) := RT{(T) N H(div°, Q).

For a (sub-)space of matrices X, let Nk (roto, T; X) etc. denote the set of functions
B : © — X whose rows belong to Nk (rot?, 7).

The barycentric coordinate A, € S'(7) of a vertex z € V is uniquely defined by the
piecewise linear interpolation of the values 1, (z) = 1 and A, (y) = Oforall y € V\{z}.

2.5 Nonconforming Finite Element Spaces

Nonconforming piecewise polynomial functions allow for nontrivial interelement
jumps and averages. For all v € L?(Q) with piecewise traces (v|7)|F € L2(F) for all
F e F(T)and T € T, define the jump [v]F € L%(F) and the average (v)r € L%(F)
by

1 .
[vlF = (wlr)lF — Wiz )IF, (V) F = E((U|T+)|F + (lr)|F) if F € F(R),
[vlF = (v)F = (vlr)IF if F € F(9).
A straightforward calculation reveals the product rule of the jump

[uvlp = [ulp(v)F + (u)FlV]F. (2.14)
EOE';W
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For d = 2 and d = 3, discrete Helmholtz decompositions typically employ non-
conforming discrete spaces such as the Crouzeix—Raviart finite element space from
[25] and the Fortin—Soulie finite element space from [30]

CRY(T) := {UCR € Pi(T) : VF € F(Q), fF[UCR]F ds = o}, (2.15)

FS(7) = {UFS € Py(T) : YF € F(Q)Vp € P\(F), /[st]Fp ds = 0}.
F
(2.16)

The subspaces with homogeneous boundary conditions read
CRY(T) = {UCR e CRY(T) : VF e F(3Q), [ cr ds = 0},
F

FSo(T) := {UFS eFS(7) : VF € F(0Q2)Vp € P|(F), / vpsp ds = O}
F

and analogously the spaces CR]]) (7") and FSp (7') with partial homogeneous boundary
conditions on I'p.

Recall that in 2D the jump [bl}IC] g of the nonconforming bubble function bI}IC
defined in (2.17) below vanishes at the two Gaul} points of the edge £ € £(R2), but
is not the zero function. Therefore, the function evaluation in these Gauf3 points do
not provide degrees of freedom for a finite element in the classical sense of Ciarlet.
A characterization of the Fortin—Soulie space for d = 2, 3 employs the barycentric
coordinate A, of z € V in the nonconforming quadratic volume bubble function
bI}IC € P>(T) with, for atriangle T € 7,

PYClr =2~ (d+1) Z A2 (2.17)
zeV(T)

and bl}IC| x = 0 on any other K € 7\{T'}. These bubble functions span the space
BNC(T) := span{b}© : T e T} (2.18)
and their sum defines the continuous function

by =Yy _ byC e SHT). (2.19)
TeT

The definition (2.17) of bI}IC ensures that BNC(T) is a subspace of FS(7). For the 2D
case, Fortin and Soulie proved the representations [30, Prop. 1]

FS(T) = S*(T) + BNC(T) and S*(T) N BNS(T) = span{by}, (2.20)
FSo(T) = S3(T) + BN(T) and S3(7) N BNC(T) = {0}. (2.21)

FoC'T
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The 3D analogue additionally requires a nonconforming face bubble function bI;IC €
Py(T).Forany T € T with F € F(T),letthe index set {j, k, ¢, m} = {1, ..., 4} sat-
isfy that F lies opposite to the vertex of index m € {1, ..., 4}. The indices {j, k, £, m}
of the vertices also specify the associated barycentric coordinates A j, Ax, A¢, Ay,. The
function bl;fc € P,(7) is defined by

brClr =201 = Am)> = 303 + A7 + A7) (2.22)

onall such T € 7 and bﬁcm = Oonany K € 7 with F ¢ K. The face bubble
functions span the spaces

BY(T) := span{by : F € F} and BY(T) := span{by" : F € F(Q)}.
This leads to the following decomposition of the Fortin—Soulie space in 3D [29]
FSo(T) = S§(T) + BY(T) + BY,(T). (2.23)

Note that the sums are not direct sums.
The space of Morley finite element functions for d = 2 is defined by

Vz € V, vy is continuous in z and
M(T) = {vM ePT): © M ¢ } .

VE € £(2), dvnm/0vE is continuous in mid(E)

Abbreviate the subspace with partial homogeneous boundary conditions on 'y € 92
by

Vz € V(Tn), vm(z) = 0 and }

MN(T) = [UM (S M(T) . VE ¢ E(FN), BUM/BVE(mId(E)) =0

The generalization to d = 3 from [42] reads

MT) {UM T YF € F(Q), [(dvm/dve)(mid(F))]F = 0 and } |

VE € £(Q), [ vm ds is continuous

VF € F(3R), (dum/dvE)(mid(F)) = 0 and }

MO(T) = {UM (S M(T) : VE ¢ 5(89), fE UM ds =0

For d = 2, the Morley finite element space was generalized to piecewise cubic func-
tions [54] as

Vz € V, vy is continuous in z,
M3 (T) = {fom € P3(T) : VE € (), [plomlg ds =0, and
VE € E(Q)VpEg € PI1(E), fE[VNCUM V]l ppds =0
FoL g
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The corresponding cubic Morley finite element space with homogeneous boundary
conditions on 02 reads [54]

Vz € V(0R2), vm(z) =0,
MH(T) = YoM e M} (7) : VE € £, [z umds =0and
VE € £(BQ) VpE € PI(E), [ VNCUM -V pE ds =0

2.6 Discrete Exact Sequences

The relations between the conforming spaces from Sect. 2.4 are formalized in the
framework of finite element exterior calculus [4] via exact sequences of discrete spaces.
A sequence of spaces

dj_p dj—i d; djti
xS xS xS

is called exact, if the kernel of the differential operator d; equals the range of the
previous differential operator d;_1. Under suitable assumptions on the domain and
the boundary I'y, the following sequences of finite element spaces are exact

Po(Q) l sk 7y Y NET) 2 RTET) 2% Py -5 o), (2.24)

10y 2% sk ) L NE(T) 2 RTE(T) S T N L2(9@) - {0},

(2.25)
)N sk“(T) N (T) =5 RT’I;(T) 2 po1y % qo). (2.26)

Although these results are well-known for the cases I'p = 92 and I'p = ¢, the
results for mixed boundary conditions seem to be known to the experts in the field
only. The remaining part of this subsection presents rigorous proofs of the relations
used in this paper. This fosters the ease of reading and highlights the role of the par-
ticular assumptions on the domain. A key ingredient consists of commuting smoothed
projections from [40, Thm. 1.1] that preserve homogeneous boundary conditions on
a part of the boundary.

Lemma 2.3 (quasi-interpolation operators [40, Thm. 1.1]). Let Q@ C R¢ denote a
bounded polyhedral Lipschitz domain with polyhedral boundary patch ' for any
d > 2. There exist operators Jrr : Hn(div, Q) — RT%(T), and Jo : LE(Q) —
Po(T) such that, for t € Hx(div, Q), div Jrrt = Jo div t. For d = 3, the exists an
operator Jng @ Hn(rot, Q) — NON(T ) for the Nédélec functions in 3D satisfying, for
B € Hn(rot, 2), rot JngB = JrT 1Ot .

All operators are pointwise invariant in that JNaBNd = BNd for all Bng € N% D),
JRTTRT = TRT for all trT € RTIQI(T), and Jogn = qp, for all g, € Py(T).

Lemma 2.4 (surjectivity of divergence operator). Let Q@ C R? denote a bounded

polyhedral Lipschitz domain with polyhedral boundary patch I'N for any d € N and
Fol:'ﬂ
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W # F(I'n) € F(OQ). It holds that

divRT(T) = Py(T), divRT(7) = Py(T) N L3(Q), (2.27)
divnc CRL(T3 RY) = Py(T),  divnc CRY(T; RY) = Po(T) N L3(R).  (2.28)

Proof The inclusions div RT(7) € Py(7) and divnc CR!(7) C Py(7) are obvious.
For wrt € RT8 (7) and vcRr € CR(I) (T: R%), the (piecewise) integration by parts

/diVTRTdXZf ‘L'RT-UdSZO
Q Q2

/diVNCvCRdXZ Z /[UCR]F~UFdS+ Z /UCR-vdSZO
Q F F

FeF(Q) FeF(98)

shows that divRT)(7) € Po(7) N L3(R) and divne CRY(T) € Po(T) N LE(Q).
For the opposite inclusion, recall the surjectivity of the divergence div : H'(Q) —
Lz(Q) on the continuous level [27, Lem. 53.9]

div H} (2; RY) = L3(Q) and div H)(Q) = L*(Q) = div Hy(Q).  (2.29)

The transfer of the equalities (2.29) to the discrete Crouzeix—Raviart space employs the
nonconforming interpolation operator Inc : Hé () — CR]1) (7) defined by piecewise
affine interpolation of the values

(Inc v)(mid(F)) := i/ vds forve HY(Q).
[F| JF

For vector fields v € HI%(Q; R9), it applies componentwise. The operator Inc com-
mutes with the divergence and the L?-orthogonal projection ITy : L2(Q2) — Py(7)
in the sense that divyc Inc v = o divv for all v € H'(Q; RY) (the proof in [25,
Example 4] for d € {2, 3} applies verbatim to the case d > 3). Given g, € Py(7),
letv e Hﬁ(Q) with divv = ¢;, according to (2.29), the interpolation vnc := INc v
satisfies div vnc = TTg div v = gp. This verifies the inclusion Py(7) C div CRII)(T)
and Py(7)/R C div CR(l)(T ) follows analogously.

The transfer of the equalities (2.29) to the discrete Raviart-Thomas space employs
the quasi-interpolation operators Jrr and Jy from Lemma 2.3. Given ¢g;, € Py(7), let
T € HI\II(SZ) satisfy divt = ¢, according to (2.29). The commutation and pointwise

invariance property prove, for trt := JrTT, that divtrr = Jodivt = gj. This
verifies the inclusions divRT%(7) € Py(7) and Po(7)/R C div RT8(T ) follows
analogously. O

Lemma 2.5 (discrete vector potential) Let @ C R3 denote a bounded polyhedral Lip-
schitz domain with connected boundary 02. Assume that the connectivity components
I'N.1, ..., I'N k of the polyhedral boundary patch I'y are simply connected and, thus,
I'p is connected. Then it holds that

RTY (div?, T) = rot N (7).
Eo oy
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Proof Given fing € NON('T), Lemma 2.1 shows that vr - (rot Sng) consists of tangential
derivatives of tangential components for any F € F. This proves that the jumps
of the normal components of rot 8ng vanish and also (rot Bng - v)|ry = O for all
Bna € N (T). This and divrot fxg = 0 verify rot N} (7) € RT{(div’, 7). For the
opposite inclusion, the simple connectedness of the Neumann boundary components
I'n.1s .-+, I'N x ensures [5, Thm. 3.8 and Rem. 3.9]

Hx(div®, Q) = rot Hy(rot, Q). (2.30)

Given gy € RTQ(div%, 7) € Hn(div0, Q), let B € Hn(rot, Q) satisfy rot g =
trT. The commutation and pointwise invariance property of the quasi-interpolation
operators from Lemma 2.3 show, for Bng := JnaB, that rot Bng = JrT Ot B = TRT.
This verifies the inclusions RT?(div?, 7") C rot NI% (7)) and concludes the proof. O

Remark 2.6 (generalization of the domain) The assumption on the simple connected-
ness of the Neumann boundary patches may be relaxed. The representation (2.30) has
been established in [1, p. 848] under the assumption that I'p is connected and that the
cuts ¥, ..., Xy from Sect. 2.1 satisfy SaNIn=@form=1,..., M in the case
of multiple connectedness.

Remark 2.7 (discrete vector potential in 2D) An analogue of Lemma 2.5 in two spatial
dimensions is proved explicitly in Theorem 3.3 below.

3 Decompositions for Piecewise Constant Vector Fields in 2D

This section is devoted to a generalization of a discrete Helmholtz decomposition by
Arnold and Falk from [2] to mixed boundary conditions. The presentation departs
with the proof of Theorem 3.1, which states a decomposition of Py(7; Rz) into a
gradient part and a divergence-free part. Theorem 3.3 below will then characterize the
divergence-free part as Curls of appropriate discrete functions. Theorem 3.1 will be
applied for d = 3 as well and even holds in arbitrary space dimensions.

Theorem 3.1 (basic discrete decomposition for Py (7 ; RYY)) Let Q € R be a bounded
polyhedral Lipschitz domain with polyhedral boundary patch T'x. The following L*-
orthogonal decompositions hold

Po(T; RY) = VncCRY(T) © RT(div®, 7) = VncCRY(T) © RT)(div?, 7)
= VncCRL (T) © RTY(div0, 7). (3.1

Remark 3.2 Independently of our research, the recent publication [43, Lem. 4.9] pre-
sented an alternative proof of the decomposition (3.1). However, Theorem 3.1 is
slightly more general as the proof of [43, Lem. 4.9] does not apply to the case 'y = 9€2.

Proof of Theorem 3.1 The proof is divided into four steps.
Step 1 (orthogonality). For any ack € CRL(7) and Brr € RTY(div’, 7), the
continuity of Srt - vr implies [ccr BrT - VF1F = [acr]F Brr - vF forall F e F. Since
FoCT
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acr vanishes in the midpoints of interior and Dirichlet faces and Sgr - v vanishes
on the Neumann faces F € F(I"y), it follows

/ [ecr BrT - VF]F ds =0 forall F e F. (3.2)
F

This and a piecewise integration by parts prove the orthogonality

[ VNcacr - Br dx = Z /[OICR BrT - VFlF ds = 0.
2 FeF F

Step 2 (dimensions in the case 'y = 09). If 'y = 9%, the operator div :

RT8(T) — Po(7) is surjective onto Py(7)/R according to Lemma 2.4 and the
operator VN : CRY(T) — Py(T;R") has a one-dimensional kernel. This implies

dim(RT)(div, 7)) = dim(RT(7)) — dim(Po(T)/R) = #F(Q) — #T — 1),

(3.3)

dim(VncCRY(T)) = dim(CRY (7)) — 1 = #F — 1. (3.4)
Hence, (2.2) proves

dim(VncCR (7)) + dim(RTY(div?, 7)) = #F + #F(Q) — #T 35)

= d#T = dim(Py(T; RY)).

Step 3 (dimensions in the case 'y € 0K2). If F(I'n) € F(9€2), then the operator
div : RTON(T ) — Py(7) is surjective onto Py(7) according to Lemma 2.4 and the
kernel of the operator V¢ : CR]ID (T) — Po(T; R™) is trivial. Therefore,

dim(RTx(div®, 7)) = dim(RTY (7)) — dim(Py(7))
= #F(Q) + #F(Ip) — #T, (3.6)
dim(VncCRL (7)) = dim(CRL (7)) = #F(RQ) 4+ #F(I'x). (3.7

Since #F (I'p) + #F (I'n) = #F (0L2), the equality (3.5) follows as in Step 2.
Step 4 (conclusion of the proof). It is obvious that

VncCRL(T) © RTY(div0, 7) € Po(T; RY).
The equality therefore follows from the Steps 2-3. O

In 2D, the characterization of divergence-free Raviart—Thomas functions leads to
Curls of Courant functions and proves a discrete Helmholtz decomposition for mixed
boundary conditions.

EOE';W
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Theorem 3.3 Assume that Q@ C R? is a bounded and simply connected polygonal
Lipschitz domain. Let ' 1, . . ., I'N, k denote the connectivity components of the Neu-
mann boundary from Sect. 2.1. The Courant finite element space with partial constant
boundary conditions

Vke{l,...,K}3c, e R

~1 1
SN(T):=3BreS(T): . (3.8)
N VF € F('ni), Bulr = ck
satisfies
RTY (div°, 7) = Curl Sy (7). (3.9)
In particular, the following L*-orthogonal decomposition holds
Po(T;R?) = VNCCRIID(T) o) CurI/S\Il\I(T). (3.10)

Remark 3.4 Note that global constants lie in the kernel of Curl and therefore
Curl§II\I(T ) = Curl(S'(7)/R) if 'y = #. In this case, the decomposition (3.10)
coincides with the first discrete Helmholtz decomposition in the literature that has
been invented by Arnold and Falk in [2, Thm. 4.1].

Remark 3.5 In 2D, the gradient and the Curl are the same up to a change of coordinates
and, therefore, the discrete Helmholtz decomposition (3.10) also proves the discrete
Helmbholtz decomposition

Po(T; R?) = VSN (T) © Curlne CRA (7).
Analogously, it follows that

Po(T; R?) = VSL(T) © Curlne CRN(T)
with

Vke{l,...,K}3c, e R

CR\(7) :=3vcr € CR (7) :
N x @) VF € F(I'nk)s / vcr ds = ¢
F

Proof of Theorem 3.3 The proof of (3.9) in the case 'y = @ follows from a 2D ana-
logue of the discrete exact sequence (2.24) and would also follow from discrete exact
sequences for other boundary conditions. Since it seems that the case of mixed bound-
ary conditions is not considered explicitly in the literature, the proof is carried out here
for the ease of comprehensive reading. It is divided into five steps.

Elol:;ﬂ
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Step 1 (inclusion “27). The definition of the Curl in 2D as the rotated gradient
and the continuity of 8, € /S\II\I(T) verify [Curl By, - vilr = [VBh - tr]lr = 0 for all
F € F(). Hence, Curl 8, € H(div, Q) N Py(7; R?) € RT(7). Since Br)Iry, =
cr € Rforallk € {1, ..., K}, the arc-length derivative vanishes

(Curl By, - V)Iry = (VB - T)lry = 0.

This and div Curl 8, = 0 imply Curl g, € RTY(div’, 7).

Step 2 (dimension of §Il\1(7' )). The boundary conditions of §11\,(T ) imply that
dim(/S\Il\I(T)) = #V — #V(T'y) + K. Since the operator Curl : /S\II\I(T) — Po(T;R?)
has the one-dimensional kernel Py(£2) in 2D,

dim(Curl S (7)) = #V — #V(Tn) + K — 1. 3.11)

Etep 3 (dimension argument in the case I'n = 02). If 'y = 02, then K = 1 and
V(I'n) = V(02). Hence, the combination of the equalities (3.11) and (3.3) and the
Euler formulas (2.3)—(2.4) from Lemma 2.2 result in

dim(RTY (div0, 7)) = #F — #V(3Q) — #T + 1 = #V(Q) = dim(Curl Sy (7).

Step 4 (dimension argument in the case F(I'n) C F(9€2)). Since 2 is simply
connected, every 'y x, k € {1, ..., K}, belongs to the single connectivity component
of 92. This shows that #V(FN,;{) =#F(I'ni)+1forallk € {1,..., K} and the sum
over those k results in #F(I'ny) = #V(I'n) — K. This, the Euler formula (2.3) from
Lemma 2.2, and the equalities (3.6) and (3.11) conclude the dimension argument

dim(RTY (div?, 7)) = #F — #F(I'x) — #T
= #V —#V(Ty) — | + K = dim(Curl SY (7).

Step 5 (discrete Helmholtz decomposition). The decomposition (3.10) follows
from the application of Theorem 3.1. O

4 Decompositions of Piecewise Constant Vector Fields in 3D

In the two-dimensional case, the operators V and Curl are the same up to a rotation
and, therefore, the decompositions in Theorem 3.3 and Remark 3.5 are equivalent. For
d = 3 however, the discrete decompositions need to reflect the different nature of the
differential operators. The following theorem proves a discrete Helmholtz decompo-
sition with a nonconforming space in the rotational part of the decomposition, while
Theorem 4.3 below proves a discrete Helmholtz decomposition with a nonconforming
space in the gradient part.

FolCT
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Theorem 4.1 Let Q € R3 be a bounded and contractible polygonal Lipschitz domain.
The following L*-orthogonal decomposition holds

Py(T; R¥) = VS{(T) ©rotne CRY(T; RY).

Proof Given any g, € Py(T;R?), there exists Bcr € CR!(7; R?) minimizing the
quadratic functional

1
CRU(T; RY) — R, yer > >l rotne yor = dnlljaq)-

The minimizer Bcr satisfies

(rotne BeR, TOINC YCR)12(q) = (qh- TOINC YCR) 12(g for all ycr € CR' (T R?)
4.1)

and is unique only up to elements in the kernel of rotyc : CRUT; R?) — Py(T;RY).
Set pp := gn — rotnc Bcr-

Since the boundary 9€2 is connected, for every y € H (rot, 2) there exists a ¢ €
H! (2; R3) such that rot y = rot¢ [37, Lem. 1]. Recall that the Crouzeix—Raviart
interpolation operator Inc : H'(2) — CR!(7) and the L?-orthogonal projection
My : L2(Q:RY) — Py(T; R3) satisfy the commuting diagram property IV =
Vnc Inc. Since this equality holds componentwise, it follows that [T rot = rotnc Inc-
The combination with (4.1) shows, for all y € H (rot, €2),

(roty, pn)r2) = (t0t ¢, pr)2q) = (rotne Inc @, pr)r2(q) = 0. (4.2)

The continuous Helmholtz decomposition [1, Sect. 3.5] guarantees the existence of
o € HO1 (2) and B € H (rot, 2) such that p, = Va + rot 8. The orthogonalities
(Va, 1ot B)12(q) = 0 and (4.2) imply

Irot Bl172q, = (Tt B, Ph) 20 = 0.

Hence, rot 8 = 0 and the identity p, = Va € Py(7; RY) proves o € Py(7). This
shows « € S(l)(T ) and concludes the proof. O

Remark 4.2 (change of boundary conditions) The discrete Helmholtz decomposition
with boundary conditions on the Crouzeix—Raviart space, i.e.,

Py(T: R?) = VS'(T) © rotxc CRY(T: R?) 4.3)

can be proved along the same lines as for Theorem 4.1. The argument with [37, Lem. 1]
has to be replaced by [41, Prop. A.1], which proves an analogous result with boundary
conditions.
FoC'T
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The decomposition of piecewise constant vector fields of the following theorem
is nonconforming in the gradient part. It covers the case of mixed boundary condi-
tions and is a direct consequence of the basic decomposition from Theorem 3.1 and
Lemma 2.5.

Theorem 4.3 Let @ C R? be a bounded and contractible polygonal Lipschitz domain
andletI'n 1, ..., 'N k denote the connectivity components of the polyhedral bound-
ary patch I'n. Assume that each component ' 1, ..., I'N,kx is simply connected. Then
the following L*-orthogonal decomposition holds

Po(T; R¥) = VncCRL(T) © rot N (7). (4.4)

Remark 4.4 (generalization to non-connected boundary) The discrete Helmholtz
decomposition of Theorem 4.3 was also proved in [49, Lem. 5.4] in the case 'y =
for domains with possibly non-connected boundary 02 = T'gU--- U T for L > 0
as introduced in Sect. 2.1. Using the space

VF € F(I'o), ver(mid(F)) = 0and Ve =1,..., L

CRY (7)) := e CRY(T) :
L(7) = ] ver D)% 3, c RVF € F(T). vep(mid(F)) = c¢

the following L?-orthogonal decomposition holds
Py(T; R¥) = VncCR} (T) © rot NO(T).

An analogous decomposition holds in the 2D case.

Remark 4.5 (multiply connected domains) Assume that € is multiply connected
(M > 0) with connected boundary (L = 0). In the case of full Dirichlet bound-
ary I'p = 0€2, the discrete Helmholtz decomposition (4.4) remains true. This follows
from Theorem 3.1 and the equality RT?(div®, 7) = rot N°(7) for all domains with
Betti number b, = L = 0, see [39, Example 9].

However, in the case of full Neumann boundary I'y = 92, additional nonconform-
ing loop fields VNc@cr,m have to be added in the gradient part for each cut %, for
m=1,..., M as denoted in Sect. 2.1. This results in

Po(T; R¥) = Vnc(CRY(T) + span{ppcrm : m = 1,..., M}) © 1ot N(T), (4.5)

The construction of ¢cr,1 is illustrated on a torus 2 with a single cut X;: Then let
¢cr,1 be a Crouzeix—Raviart finite element function on the cut domain that is one at
the faces’ midpoints on X considered as the boundary at one side, minus one at the
faces’ midpoints on X considered as the boundary from the other side, and arbitrarily
extended by fixed values on all other degrees of freedoms (e.g., by the minimal norm
extension). This function, considered as a function on the (non-cut) torus, does not
belong to CR(I) (7) because of the discontinuity. Moreover, a piecewise integration by
EOE';W
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parts and the Stokes theorem on the closed boundary 3Q N X of the cut prove, for
Bn € No(T),

(VNCHCR. 1. TOUBN) 120y = D f [¢cr 11 (rot By - vE) ds
FeFn’F

=2 (rot BN - vr) ds = 0.
P

This construction can be carried out for each of the cuts X1, ..., X/ and a discrete
Poincaré inequality proves dim(Vnc (CRY(T) + span{¢pcrm : m = 1,..., M})) =
#F + M. In the case of homogeneous boundary conditions, the roles of the Betti
numbers change [39, Example 9] and dim(NJ(rot°, 7)/VS§(T)) = L = 0. This
yields N)(rot®, 7) = VS}(7) and dim(rot N)(7)) = #£(R) — #V(Q). This and the
generalized Euler formulas (2.9)—(2.10) verify (4.5).

5 Decompositions of Piecewise Affine Vector Fields

This section is devoted to novel discrete Helmholtz decompositions of piecewise affine
vector fields. They employ the Fortin—Soulie spaces and the nonconforming element
and face bubble functions from Sect.2.5. While Theorem 5.1 below proves a discrete
Helmbholtz decomposition for d = 2, the subsequent Theorems 5.5 and 5.7 cover the
case of d = 3.

Theorem 5.1 Let Q@ € R? be a bounded and simply connected polygonal Lipschitz
domain. The following L*-orthogonal decomposition holds

Pi(T; R?) = VNCFSo(7) © Curlne(FS(T)).
Proof Step 1 (orthogonality). According to the characterizations (2.20)—(2.21), let
aps = ap+op € FSo(7) and Brs = Br+ By € FS(T) withay, € S3(T), By € S*(7),

and oy, fp € BNC(T). For any edge E € &, the product rule (2.14) of the jump and
the fact that bI}IC vanishes in the two GauB} points of E verify

/ [BbVNcars - TelE ds
E

= / [Bole{VNcars - TE)E ds +/ (Br)ElVNncars - Telg ds = 0.
E E

Analogously
/[ab Curl By, - vglg ds = / [ap VB - TE]lE ds = 0.
E E

The L?-orthogonality VS%(’T) 1 Curl S3(7) ensures

/ Vay, - Curl 8, dx = 0.
Q

Elol:;ﬂ
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A piecewise integration by parts and the three previously displayed formulas conclude
the proof of the L2-orthogonality

/ Vncogs - Curlne Brs dx
Q

= / Vncars - Curlne By dx + / Vncay - Curl By, dx
Q Q

= Z (/E[ﬁbVNCOlFs -TelE ds + /E[Otb Curl B, - vele dS) =0.

Ee&

Step 2 (dimension argument). Since ker( Curl nc|ps(7)) = Po(£2), the representa-
tions (2.20)—(2.21) of the Fortin—Soulie space verify the following formulas

dim(VncFSo(7)) = #V(Q) + #E(Q) + #7,
dim(Curlne (FS(7))) = dim(Curlye (FS(7)/R)) = #V + #€ + #T — 2.

Counting the three degrees of freedom per component on each triangle leads to
dim(P;(7; R?)) = 6#7 . These dimensions and the Euler formulas (2.2)—(2.4) from
Lemma 2.2 conclude the proof

dim(VncFSo(7)) + dim(Curlne (FS(T)/R))
= 24T +#V + #V(Q) + #E + #E(Q) — 2 = 24T + 2HV + 2HE(Q) — 2
= 2#E + 2#E(Q) = 6#7 = dim(P;(T; R?)). O

Remark 5.2 (generalization to non-contractible domain) In order to generalize Theo-
rem 5.1 to domains 2 with non-connected boundary, the gradient part of the discrete
Helmholtz decomposition needs to be enriched by two types of functions for each
connectivity component I'y, ..., 'y inside of €2 as denoted in Sect. 2.1. First, for
every £ = 1,..., L, define ¢y 1 € SZ(T) by the boundary values ¢¢ 1lso\r, = 0
and ¢¢ 1|r, = 1 and by an arbitrary, but fixed extension of ¢, 1 inside the domain 2
(e.g., by the minimal norm extension). This definition relates to the enrichment of the
discrete decomposition for the piecewise constant case (cf. Remark 4.4) as well as
of the continuous decomposition of L2(Q; R?). In the piecewise affine case however,
recall the global conforming bubble function Zh e BNC(T) N %) from (2.19) and
ford =1,..., L, define ¢y € 52 (7)) by an arbitrary, but fixed extension inside of
Q2 of the boundary values ¢¢ 2 |so\r, = 0 and ¢y 2|1, = Zh Ir,. The resulting discrete
Helmholtz decomposition reads

P{(T: R?) = VNc(FSo(T) + span{dy,j : £ =1,..., L, j = 1,2}) © Curlxe (FS(T)).

The orthogonality of the spaces follows analogously to Theorem 5.1 together with
the fact that the tangential derivative of ¢y 1 vanishes and that the first moments of
¢¢.2|F vanish on every F' € F(9€2). The inhomogeneous boundary conditions of ¢y |
imply ¢¢,1 ¢ FSo(7'). Furthermore, the assumption that there exist vrs = vy + vp €

EOE';W
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FSo(7) = S0 (T) 4+ BNC(T) according to (2.20) and « € R with $e,2 = Vrs + oy 1
leads to vy = ¢pp2 — ape1 — Vi € S2(T). Since BNC(T) N S%(T) = span{bh} the
boundary conditions on the outer boundary I'g prove v, = 0. However, the boundary
conditions on I'y then lead to vgs = 0 and « = 0, which shows ¢y 2 ¢ FSo(7) &
span{¢y 1}. Consequently,

dim(VNc(FSo(7) + span{gy, j : € = 1, L,j=12})
= #V(Q) + #E(Q) +#T(Q) +2L.

and the asserted generalized decomposition follows by a dimension argument anal-
ogous to Step 2 in the proof of Theorem 5.1 with the modified Euler formula (2.8)
replacing (2.3).

Remark 5.3 (nonconformity of spaces in affine decompositions) The decomposition of
affine vector fields from Theorem 5.1 consists of nonconforming spaces only. Indeed,
it is impossible that a Helmholtz decomposition of the form

Pi(T; R?) = VncXne © Curl X (5.1)

contains a conforming space X € H'(Q). To prove this, consider the nonconforming
quadratic volume bubble function bl}lc € P(7) from (2.17). A piecewise integration
by parts proves, for any v, € P>(7), that

/ Vncvy - Curlne bI}IC dx = / bl}IC Vnevy - 17 ds = 0.
Q oT

Since VncXne € Pi(7; R?), it holds that Xne € P2(7) and, hence, Curlnc bY¢
is orthogonal to VNcXnc € Vnc P2(7). Moreover, the assumption Curlnc bI}IC €
Curl X would imply Curlnc (b¥c—ﬁh) = Oforsome B, € H 1 (£2). Since only constant
functions belong to the kernel of the Curl operator, this contradicts bI}IC ¢ HY(Q).
Altogether,

0 # Curl 5YC € P1(T;R?*) \ (VncXnc © Curl X).

Consequently, the decomposition (5.1) cannot hold. An analogous argumentation
shows that there also exists no Helmholtz decomposition of P;(7; R?) of the form
VY © Curlnc Yne with a conforming subspace Y C HO1 (2).

Remark 5.4 (higher polynomial degrees) A straightforward extension to higher poly-
nomial degrees of Theorem 5.1 is not possible. For instance for k = 2, let CR} o(T)
(resp. CR? (7)) denote the Crouzeix-Falk finite elements [24] with (resp. Wlthout)
boundary conditions. The Euler formula (2.2) reveals

Fo C 'ﬂ
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dim(VNcCR3(T) 4 Curlye CR* (7)) < dim(VncCR3(T)) + dim(Curlne CR3 (7))
= #T + 3#E(Q) + #T + 345 — 1
= 1147 — 1 < 12#7 = dim(P»(T; R?)).

Therefore, VCR3(T) + Curl CR*(T) C P»(T; R?).

The following result generalizes the discrete Helmholtz decomposition for piece-
wise affine vector fields to 3D. As in 2D, the discrete spaces of both the gradient and
the rotational part have to include the nonconforming element bubbles. However, in
contrast to the two-dimensional situation, one of the spaces has also to include non-
conforming face bubbles (see (2.22) for the definition of the face bubbles). In the first
version in Theorem 5.5 this is the case for the gradient part, while in Theorem 5.7, the
rotational part contains the nonconforming face bubble functions.

Theorem 5.5 Let Q C R3 be a bounded and contractible polyhedral Lipschitz domain.
Abbreviate the space Ync(T) := NY(T) + BNC(T; R?) of Nédélec vector fields
enriched with the nonconforming bubble functions from (2.18). The following L?*-
orthogonal decomposition holds

Pi(T; R?) = VncFSo(T) © rotne Yne (7).

Proof Step 1 (orthogonality). For any vrs € FSo(7) and ang € N'(7), a piecewise
integration by parts and the product rule (2.14) of the jump show

/ VNCUFs - rotne aNg dx
Q

= </ [vrs]F (rotnc aNg - VF) F ds +/ (vrs) F[rotnc and - VFIF dS> :
F F

FeF

Since rotnc ang is piecewise affine, the first term on the right-hand side vanishes.
Lemma 2.1 guarantees that rotnc oeng-VF consists of tangential derivatives of tangential
components of aeng only. This and the tangential continuity of ang lead to [rotnc ong -
vr]r = 0 and, hence, VNcFSo(7T) is L2-orthogonal to rot N (7).

For a7 € BNC(T; R?), the application of another piecewise integration by parts
and the product rule (2.14) of the jump prove

/ VNcVFEs - 1ot ycoT dx
Q

=> (/ lar]F(VNcvrs AvE)F ds +f (ar)F[VNCcvrs AVELF dS> .
Fer M F r

Since a7 is a (multiple of the) nonconforming bubble function on each element, the

first moments of [w7]F and (w7 )F vanish. Since Vncups is piecewise affine, this
proves the remaining orthogonality of VNcFSo(7) and rotnc (BNC(T; R3)).

FoC Tl
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Fig. 1 Tllustration of face
tangentials 71 and 7 in the
direction of the major and minor
semi-axes of the inellipse N in
the triangle F

Step 2 (characterization of rot(N'(T)) N rotne(BNC(T; R?))). Given a discrete
function vy, € BNC(T; R3), there exists 87 € Po(T; R?) such that v, = b B7, where
by € BNC (T) N COQ) is the global _conforming bubble function defined in (2.19).
For vng € NN (T ), assume that roth(bh B7) = rot(vng). A product rule and the exact
sequence (2.24) guarantees

Vbu A Br = rotne (bp 1) = rot vna € RTN(T).

In particular, [(VNCbh A BT) - vr]lrp =0forall F € F(R2). Since Vbh e VSX(T) C
N! (7) and, hence, Vbh A VF is continuous, the wedge-product identity (x A y) -z =
(zAx)-yforallx,y,z € R3 implies

0= [(Vby A BT) - vElF = [(vF A VDY) - BrlF = (vE A VD) - [BT]F
= (Vby ALBTIF) - vF.

For any F € F(2), a straightforward calculation reveals that Ehl F vanishes in the
midpoints of the edges £ € £(F). As a consequence, the zero set N := {x € F
Eh (x) = 0} is the Steiner inellipse of the triangle F. Its center coincides with the
barycenter of F. Let 71 € R3 be a unit vector in the direction of the major semi-axis
of N and 5 € R? a unit vector in the direction of the minor semi-axis such that 7,
7, and vp are positively oriented, i.e., (1 A 72) - vp = 1. In particular, 71 and 7, are
tangential to F and 11 - 720 = 0. Let G denote the line through the midpoint of F that
is parallel to 7, see Fig. 1 for an illustration of this definition. The line G crosses the
level sets of bh| F orthogonally. This ensures that the affine term Vbh 71 vanishes
along G, i.e., (Vbh )| = 0.

Consider the decompositions

Vby = (Vby - 11)T1 + (Vb - 1) 12 + (Vby, - vE)VE,
[B71F = (B7lF - )11 + BT]lF - )12 + ([BT]F - VF)VF.

Since y Ay =0and (x Ay) -y = 0forall x, y € R, the bilinearity and the anti-

commutativity of the cross product and the positive orientation (71 A 72) - vp = 1 lead
Fol:'ﬂ
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to
0= (Vby ALBTIF) - vE = (Vb - t)(BTIF - ) + (Vb - ) (BT]F - T1).

In the restriction to G, the first summand vanishes due to the definition of G (see
above). Hence,

0= (Vb - )l (BT]F - T)lG-

However, (Vby, -12)|¢ is an affine function vanishing solely in the midpoint of F. Since
[B71is constant on F, this implies that [87]F - 71 vanishes. The same arguments show
that [87]F -2 = 0 and, hence, B7 € H (rot, ). Since 2 is contractible, the exactness
of the sequence (2.24) results in

BT € Po(T: R*) N H(rot, Q) € N(rot’, T) = VS (7).

Consequently, rot (N (T)) Nrotnc (BNC(T: R3)) consists (at most) of functions of the
form by, Vvy, for some v, € S!(7). Therefore,

dim(rot(N' (7)) N rotne(BNC (T R?))) < dim(V(S'(T)/R)) = #V — 1. (5.2)

Step 3 (dimension argument). Since €2 is contractible, the exactness of the
sequence (2.24) means that the kernel of rot : N!(7) — RT'(T) equals V(S*(7)/R).
This shows

dim(rot(N' (7)) = 2#E + 2#F — (#V + #E — 1) = 24F +#E — #V + 1.(5.3)
The (piecewise) rot operator has the trivial kernel on BNC(T; R3) [38] and, hence,
dim (rotnc (BNC(T; R?))) = 3#7.

The sum of the two previously displayed formulas and estimate (5.2) from Step 2
result in

dim(rot ye (Yne (7)) = dim(rot (N' (7)) + dim(rot yc (BNC (T; R?)))
— dim(rot yc (NY(T)) N rot ye (BVE(T: R?))) (5.4)
> 3T + 2#F + #E — 24V + 2.

Since the piecewise gradient has the trivial kernel on FSo(7), the dimension formula
from [29, Prop. 3.1] shows

dim(VncFSo(7)) = dim(FSo(7)) = #7 + #F(Q) + #E(Q).
The combination of the two previously displayed formulas leads to
dim(VNncFSo(7)) + dim(rotne Yne (7))

= 4T + T L H#F(Q) HHE T HEQ) 2V +2.
L e
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The consecutive application of the Euler formulas (2.5), (2.2), and (2.7) from Lem-
ma 2.2 proves

AT + 2HF +#F(Q) + #E +H#E(Q) — 24V + 2
= 24T + MF + #F(Q) — #£(IQ)
= 2T + 5HF + #F(Q))/2 + 3#F(0Q)/2 — #£OQ)
= 12#7 = dim(P,(T; RY)).

The obvious inclusion VncFSo(7) Orotne Ync(T) € Pi(T; R?) concludes the proof.
O

Remark 5.6 The work [38] proves a local version of the Helmholtz decomposition of
Theorem 5.5, namely

PiI(T; RY) = Vne Po(T) © rotne BNC(T3 RY).

While in 2D the discrete Helmholtz decomposition of piecewise affine vector fields
consists of the Fortin—Soulie space in both the gradient and the rotation part, the sit-
uation is different for 3D. In Theorem 5.5, the rotational part is conforming up to the
nonconforming element bubbles. The following theorem proves a discrete Helmholtz
decomposition where the gradient part is conforming up to nonconforming element
bubbles. The enrichment by a nonconforming element bubble in both spaces is nec-
essary, see Remark 5.3.

Theorem 5.7 Let Q C R be a bounded and contractible polyhedral Lipschitz domain.
Recall the abbreviation Ync(T) = NY(T) + BNC(T; R3) from Theorem 5.5, The
following L*-orthogonal decomposition holds

PI(T; R?) = Ync(S3(T) + BNC(T)) © rotne (Ve (T) + BYC(T; R?)).

Proof The proof is divided into six steps.

Step 1 (orthogonality). The L’-orthogonality of VNC(S(% (T) + BNC(T)) and
rotne (NY(T) + BNC(T: R?)) follows from Theorem 5.5. Let ar € By_-c(’]'; R?)
and v, € S&(T). A piecewise integration by parts and the facts that the first moments
of [ar]F vanish and Vv, A v is a tangential derivative of the continuous function vy
prove

/ Vo, - rotyc ax dx = Z (ar)F[Vop Avplr ds = 0.
2 FeF F

For vy € BNC(T), the first moments of [v7]F and (v7) F vanish. Hence, a piecewise
integration by parts proves the remaining L>-orthogonality

/ Vur -rotnc ar dx = Z / (vr)Flrotnc ar - vElp ds = 0.
Q@ FeF F
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Step 2 (split of piecewise rotation-free function). Let g, € P;(T;R3) such that
(gn- rotNe Br)2(q) = 0 for all By € Yne(T) + BYC(T: R?). Theorem 5.5 and the

characterization (2.23) guarantee the existence of v, € Sg(’T), vr € BNC(T), and
VE € By_-CO(T) with ¢, = Vnc(vp + v +vF). Let F € F and B, = bI}ICc with
the nonconforming face bubble bﬁc defined in (2.22) and some ¢ € R3. Since the
first moments of b?c vanish on all faces except F' and blgc is continuous along F, a
piecewise integration by parts leads to

0=/Qh'r0th/3h dx = Z/_(;Bh)ﬁ'[cﬂz/\vﬁ]ﬁds
Q SIE

Fe (5.5)

=/F<ﬂh>F-[thvF]F ds =/Fﬁﬁc (c-lgn A vElF) ds.

Abbreviate wy, 1= ¢ - [gn A VF]F € P1(F). Straightforward computations with the
integrals of the barycentric coordinates A, for z € V(F) reveal that

|F| |F| 1
pNC ds = — and /bNde=—= /bNCd —/kd.
/FFS p e | PR =g (FFS)(|F|FZS>

This and the equality (5.5) show

Oz/;ﬂgcwh ds = Z (/;‘ﬂgc)uzdg wp (2)

zeV(F)
= (Lﬁgc ds)(l—;‘/;‘wh ds).

Hence, the second factor must vanish and the affine function wy, satisfies
1 . .
0= m wp ds = wp(mid(F)) = ¢ - [gn(mid(F)) A vrlF.
F

The fact that this holds for arbitrary ¢ € R3 implies that [g, (mid(F))Avr]F = 0. Since
vy, is continuous, [Vvy, (mid(F))Avp]r = 0. Furthermore, the nonconforming element
bubble bI}IC|p attains its maximum at mid(F’), and therefore [Vncv7 (mid(F)) A
vr]r = 0. The combination of the aforementioned identities leads, for all F € F, to

[Vncvrmid(F)) Avelr = [gp(mid(F)) A velr = 0.

_ Step 3 (local representation of vr). Let F € F() be fixed and let T € T with
F C T. Let bNC be the nonconforming face bubble defined in (2.22) with j, k, £, m
as in (2.22). A direct computation reveals

VNcbI;Ch = —4(1 — A) Vi — 6(Aj VA + 1 Vg + 1eVie).

FolCT
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Note that bl;:fc is continuous on F. Let now F € F(T) \ {F}. Without loss of gen-
erality, assume that F' is opposite to the vertex of index £. Note that A¢|r = 0 and
Ap(mid(F)) = 1/3forn € {j, k,m} and (VA; + Vir + VA,)|r A ve = 0. Hence,

. 8 2
(IncDXCr) mid(F)) A v = (— S Vhn = 2Vh; + wk)) AvE = =5V AV

Recall vz from Step 2 and let ¢y € R for F € F such that vy = Y por cpbRC.

For T € 7 and z € V(T) with opposite face F € F(T), define bI}ICZ € P,(7) by

bI}I»CZ|.T = bI}IC and bl}lglK = 0 for K € T\{T}. Using the coefficients c7 ; = cF, the
function vz can be written as

VF = Z Z CT’ZbI}I’CZ.

TeT zeV(T)

Let F € F with adjacent tetrahedra T and 7— (with 7— = @, if F € F(9€2)). Since
bﬁc is continuous along F, the barycentric coordinates A, of z on 7T satisfy

(Vopmid(F) Ave)lr, = Y oz, :VNehYC (mid(F)) A vp
zeV(F)

2
= —= Z CTJF’ZV)LZ N VFE.
zeV(F)

Since VA, A vr coincides on T and 7_, this and Step 2 lead to
. 2
0= [Vur(mid(F) Avelr = =3 > lerzlpVaz Av.
zeV(F)

Since two of the three vectors VA, A vg for z € V(F) are linearly independent and
ZzeV( F) YAz Avp = 0, this implies that the coefficients for the nodes displayed in
Fig.2 coincide, i.e., for y, z € V(F),

ler,:lF = [er y]F. (5.6)

Step 4 (jump of vF). Let F € F(2) and let T, T— € 7 be the two adjacent
tetrahedra. Note that bl}ic Ar= bl}l_c |rforall z € V(F) and

[BYC1F = bl}fz —bf¢. =0

for the remaining nodes z € (V(T+) U V(T-))\V(F) opposite to F. This proves

N N
lvrlr = E cmbr,‘; = E [er :]F be,ZIF'
zeV(T) F o 2€V(F)

FoC'T
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(a) Jump [crz]F (b) Jump [cr y]F (c) Jump [cr,.]F

Fig. 2 Mlustration of jumps. Here, F = T N7_ and [c7 ;]F is the jump of the coefficient of by, , and
br_ 7, i.e., the face bubbles of the red (lined) and the green (dotted) faces. The equation (5.6) states that
the three illustrated jumps coincide (Color figure online)

Fig.3 The equation (5.7) is the
sum of the face bubbles of the
three marked faces. It shows that
this is a nonconforming volume
bubble up to a function only
dependent on Ay

Step 3 shows that [c7 ;]F = [cr,y]F for all y,z € V(F) and, therefore, for some
7 e V(F),

lvrlp = lerzlF Z by IF.
zeV(F)

Let y € V(T') be the vertex opposite to F. The definitions (2.22) of br, , and (2.17)
of the nonconforming volume bubble lead to

doobS.=2 ) (A-2)"=6 Y A-9

zeV(F) zeV(F) zeV(F) (5 7)
=2-4 Y 22—92] +4r, =b)C — 513 + 44y,
zeV(F)

Since Ay vanishes on F, the combination of the previously displayed formulas proves

[vrlp = ler 21F BYCIF.

The same arguments show that this also holds for boundary faces.
Step 5 (volume bubble part of vr). Let T € T and define

1
ar =3 > er: and Bri= ) arbyc e BYT).
zeV(T) TeT

FolCT
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The goal is to prove that vy — B7 € So (7). To this end, let bh e BNC(T) nS*(T)
be the global conforming bubble function from (2.19). Then bh is continuous and,
therefore, [B7]r = [ar] th|F. Since cr, ; = cr_ x forz € V(T ) and x € V(1)
both opposite to F = T N T_, the corresponding coefficients can be omitted in the
jump, i.e.,

[ar]lF = 3 Z [er . ]F.
zeV(F)

Step 3 proves [cr ;]F = [cr,y]F for y, z € V(F) and, hence, the combination with
Step 4 leads to [vy— B7]1r = 0. Since this holds for all F € F(2),vr—B7 € S% (7).

Step 6 (conclusion of the proof). Recall g, = Vnc(vy + v + vr) from Step 2.
Steps 3-5 prove vr € Sg(T) + BNC(T) and, hence, g;, € VNC(S(%(T) + BNC(T)).
Since g, € P1(T;R3) was an arbitrary function in the orthogonal complement of
rotne (Yne (7) + BI]\I__C(T : R3)), this concludes the proof. ]

Remark 5.8 (multiply connected domains) The discrete Helmholtz decompositions of
Theorems 5.5 and 5.7 also hold true on multiply connected domains with connected
boundary. To see this, recall from [48, Thm. 3] that the kernel NO (roto, T) is spanned
by gradients and one additional loop field per cut X1, .. ., Xs. This justifies replacing
the upper bound in (5.2) by

dim(rot(N' (7)) N rotne (BNC(T; R?))) < dim(N°(rot?, 7)) = #V — 1 + M.
The same applies for one polynomial degree higher and the Betti number
dim(N'(rot®, 7)/VS>(T) = by =M

from [39, Example 9] results in dim (rot(N!(7))) = 2#F +#E —#V + 1 — M replacing
(5.3). The proof of Theorem 5.5 then follows with the modified Euler formula (2.9).
The proof of Theorem 5.7 employs the decomposition of Theorem 5.5 in Step 1 of the
proof. All remaining steps are independent of the topology of the domain.

Remark 5.9 (non-connected boundary) As in the 2D case for domains with non-
connected boundary in Remark 5.2, two functions per boundary connectivity com-
ponent I'y, ..., 'y inside of 2 have to be added in the gradient part of the discrete
decomposition. For¢ =1, ..., L,define ¢y | € S2 (7)) by an arbitrary, but fixed exten-
sion (e.g., by the minimal norm extension) of the boundary values ¢ 1]3o\r, = 0 and
¢¢,1lr, = 1. Furthermore, use the nodal basis functions ¢, of S2(T) to define

dro=-2 Z ¢, € SX(T).

zeV(Ty)

As in 2D, these functions satisfy ¢¢ 2[so\r, = 0 and ¢y 2|1, = I;h I, with the global

conforming bubble function by, € BNC(T) N C%) from (2.19). Then the modified
Fol:'ﬂ
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discrete Helmholtz decompositions of Theorems 5.5 and 5.7 read

PiI(T; R%) = Vnc(FSo(T) +spanf j : € =1,..., L, j =1,2})

O rotne Yne(7), (5.8)
PI(T;R?) = Unc(S3(T) + BN(T) +span{gy j : £ =1,...,L, j =1,2})
© rotne (Yne(7) + BYE(T; RY)). (5.9)

The orthogonalities follow analogously to the 2D case. Let ¢ denote the S*(7') basis
functions for the edge E. The identity ¢, = ZTGT,zeT bl}IC - ZFG]—',ZGF b?c +

3—1 Y ke & .zck PE from [29, p. 276] (with corrected sign) then proves

1
—5be2 =Y #VT) VD) B = 3 #OV(F) N VIT) b€
TeT FeF

3
+ 3 D HVE) N V(D) g
EeE

Since the functions b}, BRC, and ¢g form a basis of FS(7) [29, Prop. 3.2], this
representation is unique. But #(V(E) N V(I'y)) # 0 for boundary edges E € £(I'y)
and, therefore, ¢¢ 2 ¢ FSo(7). While the P; moments of ¢ » and functions in FSo(7")
vanish for all boundary faces, the P; moments of ¢, 1 do not vanish for faces on I'y.
This shows ¢¢.1 ¢ FSo(7) Nspan{¢ > : £ = 1,..., L} and, hence,

dim(Vne(S3(7) + BNC(T) +spanfe j : € =1,..., L, j =1,2}))
=#T + #F(Q) +#E(Q) + 2L,

The proof of (5.8) then follows the lines of the proof of Theorem 5.5 with the modified
Euler formula (2.9).

The proof of (5.9) follows analogous to the proof of Theorem 5.7 with the mod-
ification that in Step 2 (multiples of) the functions ¢, ; have to be included in the
representation of g;. However, it turns out that the conclusion [VNcvz(mid(F)) A
vrlF = [gn(mid(F)) A vp]r = 0 holds true in this situation as well. All remaining
steps of that proof are independent of the topology of the domain.

6 Decompositions for Stokes Equations

The stress of the velocity in the context of the Stokes equations leads to devi-
atoric (or trace-free) matrices. Let Ijxq € R*d denote the identity matrix and
tr : R4 5 R the trace operator tr(A) := A1+ - -+ Agq. The space Rgg‘vd ={A e
R?*4 . tr(A) = 0} is the image of the self-adjoint operator dev : R?*¢ — R4*4 with
devM := M — tr(M)/d I;xq called the deviatoric (or trace-free) part of a matrix.
EOE';W
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Recall from Sect. 2.2 that the differential operators rot and rotnc apply row-wise to
matrix-valued functions.

The following theorem shows that a discrete Helmholtz decomposition for devia-
toric matrices follows from the discrete Helmholtz decompositions from Sects. 3-5.

Theorem 6.1 (abstract discrete Helmholtz decomposition for the Stokes equations)
For d = 3 and k € Ny, let the finite-dimensional spaces X, and Yy, satisfy the L>-
orthogonal discrete Helmholtz decomposition

Pi(T; RY) = VncX), © rotne Y. (6.1)

Abbreviate Zj, := {vy, € XZ : divnc vy, = 0} If I'n # O, then let ?h = Yf and else,
ifI'n =0, let

Y= {ﬂ,, evy: /Qtr(roth By) dx = o}.

Then, the following L*-orthogonal discrete Helmholtz decomposition of deviatoric
matrices holds

P (T RdXd) = DncZp, © devrotne ?h-

dev

The same decomposition holds for d = 2 and Curlnc replacing rotnc for a scalar
valued function space Yy.

Proof Since dev is self-adjoint and the tensor fields in DncZ), are trace-free, the
orthogonality follows componentwise from the orthogonality in (6.1).

Letoy, € P (T Rg:\?) and oy, € l?h be a (possibly not unique) solution of

/ dev rotnc oy, @ devrotne Br dx = / oy, - devrotne B, dx forall B, € )N’h.
Q Q

If 'y = @, define
(e1 A x)T
$px):i=[(ann’
(e3 A )c)T

satisfying rot ¢ = I3x3. If I'y # @, let ¢ := 0. Given y;, € Y, f arbitrary, set

1 -
Bh == vn — E(/ tr(rotNc ¥i) dx) ¢ €Y.
Q

Since dev is self-adjoint and the identity matrix belongs to the kernel of the deviatoric
part, it follows that

0= / (o — devrotnc ) @ devrotne By dx
Q
FolCTM
LI o
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= / (op — devrotnc o) @ devrotne y, dx
Q

= f (op — devrotne o) : TotNc Vi dx
Q

The discrete Helmholtz decomposition (6.1) therefore guarantees the existence of
up € X 2 with o3, — dev rotyc «, = Dncuy,. Since the left-hand side is trace-free, so is
the right-hand side, which means that divnc u;, = tr(Dncup,) = 0. This concludes the
proof in the case d = 3. An analogous argumentation proves the assertion for d = 2
with ¢ (x) := (—x2, x1) | in the case 'y = @. m]

The following lemma characterizing the kernel of dev rotnc precedes the formula-
tion of specific discrete Helmholtz decompositions for deviatoric matrices.

Lemma 6.2 (discrete tr-dev-div lemma for rotations) Let the finite-dimensional spaces
Xy, Y, © L*(2) with norm ||Vnc - l22() on X satisfy the L?-orthogonality

Vnc Xy L rotne Y. (6.2)
Let Y C Yhd Sulfill the discrete inf-sup condition

divnc vy, dx
Ipnll2) S sup Jo pn divwc vy

forall py € tr(rotne Y).  (6.3)
UIZGXZ\{O} ”DNCUh ”LZ(Q)

Then any B, € Y satisfies

[[tr(rotne Bl 2(q) S lldev(rotne Bi)ll L2 (q) -

Remark 6.3 Note that the trace-dev-div lemma from the literature [19, Lem. 3.3]
bounds the LZ-norm of the trace by the L?-norm of the deviatoric part plus the H ~!-
norm of the divergence. In the situation from Lemma 6.2, the H~'-norm of Curlnc By,
does not vanish in general due to the possible nonconformity of 8j,.

Proofof Lemma 6.2 Let ), € 17;1 and set o, := rotnc By. The discrete inf-sup condi-
tion (6.3) guarantees the existence of v, € XZ with ||[Dncop |l 2@ = 1 and

o)l 200 < f tr(on) divac vp dx. 6.4)
Q

Since tr(op,) = oy : Iyxq and dev(Dncvy) = Dncvn — (divae vi/d) Lgxa, it follows
/ tr(ah) diVNC Up dx = df op . (DNth — deV(DNth)) dx.
Q Q

The orthogonality (6.2) proves

d/ oy, - (Dncvy — dev(Dnevy)) dx = —d/ oy, : dev(Dncvy) dx.
Q Q
EOE';W
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Since dev is self-adjoint, a Cauchy inequality implies

—d/ op, : dev(Dncvy) dx = —d/ dev oy, : Dncvy dx
Q Q

<d|ldevonllp2@) IIDNCVR N 2(q) = d Ildevonllp2(q) -
This and (6.4) prove the assertion. O

Using the abbreviation Z := {v, € P>(7; Rd) : divne vy = 0}, define the spaces
of solenoidal Crouzeix—Raviart and Fortin—Soulie vector fields

Zer(T) == CRYT; RN Z, Zerp(T) :=CRL(T;RH)NZ,
Zps(T) ;= FSo(T: RH N Z.

Furthermore, let
Yne(T; RY3) i= NU(T; R¥3) 4 BNC(T; R¥?) (6.5)

be the space of row-wise Nédélec tensor fields enriched with the nonconforming bubble
functions from equation (2.18). Recall /S\ll\] (7) from (3.8) for d = 2 and define

Y= {‘L’h € Py(T; R4y . / 7, dx = 0 and / tr(rotne 7)) dx = O}.
Q Q

The following corollary summarizes the resulting discrete Helmholtz decompo-
sitions for deviatoric matrices. The first decomposition has been established in [19,
Thm. 3.2] for the convergence analysis of adaptive Crouzeix—Raviart FEM for the
Stokes equations.

Corollary 6.4 Let @ € R? be a bounded and contractible polyhedral Lipschitz
domain with polyhedral boundary patch I'n. If d = 3, assume that each component

I'nis .- - TNk of TN is simply connected. The following L?-orthogonal decomposi-
tions hold
Po(T; R3X?) = DNeZer(7) © dev Curl(SH(T; RY) N E) ifd =2,Tn =¥,
Po(T; RE?) = DneZer p(T) © dev Curl S\(T; R?) ifd =2,TN £ 9,
Po(T; R3X?) = DneZer p(T) © deviot(NO(T5 R33N x) ifd =3,T'n =0,
Po(T: R3?) = DNeZer,p(T) © devrot N (T R33) ifd =3,TN # 0.
Pi(T; R3X%) = DN Zps(T) © dev Curlye (FS(7: R?) N X) ifd =2,Tn =¥,

PUT; R = DneZes(T) © devroine(Mne (T; RPHNE) - ifd =3,Tn =,

and the operator dev rotnc has the same kernel as rotnc, in particular dev Curlyc is
injective on S'(T;R*) N T and FS(T; R®>) N X.

Elol:;ﬂ
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Proof The decompositions follow from the combination of Theorem 6.1 with Theo-
rems 3.3, 4.3, 5.1, and 5.5. The discrete inf-sup conditions for the Crouzeix—Raviart
FEM [25] and the Fortin—Soulie FEM [29, 30] for the Stokes equations show, together
with Lemma 6.2 and the decomposition

rotnc v, = devrotne vy, + tr(rotne vi)/d Lixa

for vy, € Y; ,f[ in one of the spaces from the Curl/rot part, that dev rotnc v, = 0 implies
rotnc vy = 0. Hence, the kernel of dev rotnc equals the kernel of rotyc. |

7 Two Further Applications: Linear Elasticity and Biharmonic
Equation

This section is devoted to discrete versions of the following two continuous Helmholtz
decompositions.

The first one was proved in the context of linear elasticity. Assume that the polygonal
boundary of the bounded Lipschitz domain Q C R? is partitioned into two disjoint
components €2 = I'p U I'y such that I'p is connected and I'p and 'y have positive

distance. Let 'y 1, . . ., ',z denote the connectivity components of I'y. Using
Curlv|r, , =0and
Y :={ve H (Q)/R : M )
Ve=2,...,L3c, € R%, Curlv|ry, =cy

the following L?-orthogonal decomposition holds [14, Lem. 3.2]

L2 RE2) = e(Hb(Q: R?) © Curl’ Y, (7.1)
where e(v) := (Dv+Dv') /2 denotes the linear Green strain of a displacement field
v e Hl%(Q; R?) and Curl? the second-order Curl operator from Sect. 2.2.

The second Helmholtz decomposition stems from the analysis of the biharmonic

equation and reads, for bounded and simply connected polygonal Lipschitz domains
Q CR%[7,Lem. 1]

L2(2; R¥*?) = Ce(VHE(Q)) 4 Curl(H'(2; R?)/R?) + L3(2; R2X2),

asym

where

L} REZ) = {p € LA R?) : 3g € LX(Q), p = (—Oq g>} ’

L3 RESE) = LA(Q: R0 N LG(Q; RP?)

asym asym

and C is the elasticity tensor acting on matrices A € R>*?asCA = 2uA+itr(A) [y
for positive Lamé parameters p and A. Taking only tensor fields with values in the
FoC Tl
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symmetric matrices, one can see that this is equivalent to the Helmholtz decomposition

L*(Q: RY7) = Ce(VH; (Q)) + sym Curl (H' (Q; R?)/R?). (7.2)
Note that for d = 2, the operators V and Curl are the same up to a change of variables
and therefore the Helmholtz decompositions (7.1) and (7.2) are the same up to the
boundary configuration.

Remark 7.1 (weighted decompositions) For brevity, the following discrete decompo-
sitions are presented without any weighting. However, any L?-orthogonal decomposi-
tion L2(Q2; RY) = X ©Y can be generalized to a weighted decomposition as follows.
Let A € L*®(Q; Rfyfrf) be uniformly elliptic almost everywhere, i.e., there exists
o > 0 such that «|£|> < €T A(x)& for every £ € R? and almost every x € 2. Then,
the tensor field A leads to the weighted decomposition

LXERH=AXOY=XODAY.

These decompositions are orthogonal with respect to the weighted scalar product
G, A7) 12(e)- The elasticity tensor in the above Helmholtz decomposition can be
understood in this way.

The ideas from [14, Lem. 3.2] generalize the discrete Helmholtz decomposi-
tions of Theorems 3.3, 4.1, 5.1, and 5.5 to the situation of linear elasticity and
lead to the following discrete Helmholtz decompositions. The first decomposition
of the following theorem has also been established by Falk and Morley in [28] in
the context of linear elasticity. If d = 3, recall the definition Ync(7; R3*3) :=
N(T: R3*3) 4 BNC(T: R3*3) from (6.5).

Theorem 7.2 Let Q@ C R? be a bounded and contractible polyhedral Lipschitz domain.
Assume that its boundary is partitioned into two disjoint connected components 92 =
I'p U I'N. The following L?-orthogonal decomposition holds

Po(T;: R = e(SH(T: R?)) © Curlye Mn(7) ifd =2, (7.3)
and, if T'n = 0,
P{(T:RY2) = enc(FSo(T: R?) © (Curlyc (FS(T: RH) N P{(T: RYD)  ifd =2,
Po(T; Ry = e(S(T; R?) © (rotne (CRN(T; RPF)) 1 Py(T5 R ifd =3,

PU(T; R = enc(FSo(T: R?)) © (rotne (YNe (T3 RY)) 0 PU(T RYS)  ifd =3.

Proof The first decomposition has been proved in [28, Thm. 3.1] and, therefore, the
proof given here is carried out for the second decomposition following the ideas of
[14, Lem. 3.2]. The proof applies analogously to the remaining two decompositions
with the discrete Helmholtz decompositions from Theorems 4.1 and 5.5 replacing the
one from Theorem 5.1.
FoC'T
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Step 1 (orthogonality). The orthogonality follows from the self-adjointness of sym
and the orthogonality of Theorem 5.1: Given vgs € FSo(7; R?) and Bgs € FS(7; R?)
with Curlnc Brs € Pi(T: R2%2), it follows

sym

[ enc(vgs) : Curlne Brs dx = / Dncvugs : Curlne Brs dx = 0.
Q Q

Step 2 (decomposition). Given p, € Pi(T; R2%2), let ugs € FSo(7; R?) solve

sym

/ enc(urs) : enc(vrs) dx = / pn : enc(vrs) dx  for all vps € FSo(7; R?).
Q Q
(7.4)

For g5, := pn — enc(urs), the discrete Helmholtz decomposition from Theorem 5.1
guarantees the existence of wgs € FSo(7; R?) and ags € FS(7; R?) such that

qi = Dncwrs + Curlnc ofs.

Using vps = wrs as a test function in (7.4) and the symmetry of gy, it follows that

0 2/ gn : enxc(wrs) dx :/ g : DNcwrs dx
Q Q
= ||DNchs||iz(Q) +/ Curlnc ars : Dncwrs dx.
Q

The orthogonality of Theorem 5.1 proves that the last term vanishes and, therefore,
wrs = 0. This proves p;, = exc(urs)+Curlnc aps and the symmetry of Curlnc aps =

pr — enc(urs) € P(T; ngxn%) concludes the proof. O

Remark 7.3 Another discrete decomposition in the context of linear elasticity has been
established by Carstensen and Schedensack in [21, Thm. 3.1] employing the space
of Kouhia-Stenberg functions defined by KS(7) := S!(7) x CR'(7). Analogous
definitions apply to the space including partial homogeneous boundary conditions
KSp(7). Let @ € R? be a bounded polygonal Lipschitz domain with boundary
partitioned into two disjoint components 92 = I'p U I'y such that I'p belongs to the
boundary of the unbounded connectivity component of R?2 \ﬁ, andletI'nyq, ..., Nz
denote the connectivity components of I'y. For

' | Ve=1,...,L3c eR,
CRY ,(T) := {vcr € CRY(T) :

VE e f(FN,g), ver(mid(E)) = ¢y
SII\LL(T) = {up € SYT) : Ve =1,...,L, v, is constant on I'n.e,

set KS{(T) = CRII\LL(’T) X SII\LL(T). Then [21, Thm. 3.1] proves the L>-orthogonal
decomposition
Po(T: RY) = enc(KSp(T)) © (Curlne(KS{(T)) N Po(T: RID)).
EOE';W
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Similar as for the linear elasticity, the discrete Helmholtz decompositions from
Theorems 3.3, 4.1, 5.1, and 5.5 can be generalized to the situation of the biharmonic
equation. Recall the definitions of the Morley finite element spaces My(7") and M(3) (7)
from Sect. 2 and recall Ync(7; R¥3) := NI(7; R3*3) 4+ BNC(T; R3*3). Ford = 2,
define

SHT: IRZ)/IR3 = {vh e SUT;R?) : / vpdx = 0and / divv,dx = O},
Q Q
FS(T;R*)/R? := {ﬂFs € FS(T: R?) : / Brs dx = 0 and / divne Brs dx = 0} )
Q Q

The first decomposition of the following theorem is proved in [15, Thm. 3.1, Cor. 3.4-
—3.5] and [31, Thm. 4.5].

Theorem 7.4 Let Q2 C R? be a bounded and contractible polyhedral Lipschitz domain.
The following L*-orthogonal decompositions hold

Po(T: RE3) = DY cMo(7) © sym Curl(S' (7 R?)/R?) ifd =2,
P (T: REYXH%) = D{cM3(7) © sym Curlye (FS(T; R?)/RY) ifd =2,
Po(T: RY3) = DeMo(7) © symrot(NO(T; R3)) ifd =3,

P{(T; RY3) = (DNCFSo (T RY) N PL(T: RY)) © symrotne (Yne (T3 RYD)) ifd = 3.

Remark 7.5 In 2D, the gradient and the rotation are the same up to a change of coor-
dinates and, therefore, the first decomposition in Theorem 7.4 is the same as (7.3).

Remark7.6 A generalization of the Morley finite element space to cubic polynomi-
als in 3D is not known so far. Therefore, the characterization of DncFSo(7; R?) N
Pi(T; ]ngxn?) as second derivatives of nonconforming functions is left for future
research.

Remark 7.7 Let e, e5 denote the first and second standard basis vectors of R2. Define
the space of rigid body motions

RM(R2) := span{ey, ea, (x, y) ' }.

Then FS(T; R?)/R3 = FS(7; R?)/RM().

Remark 7.8 There are no non-trivial finite element spaces X x < HOZ(Q) N P (7)
with k = 2, 3 and, therefore, there exist no discrete Helmholtz decompositions of the
form

Py(T; Ry = D*X,» © sym Curlnc Yy 2,

sym

Pi(T; RdXd) = D2Xh,3 O sym Curlnc Yi 3

sym

with conforming spaces Xj x < HOZ(Q).
FolCT
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Remark 7.9 The decompositions of Theorem 7.4 can be easily generalized to decom-
positions of matrices without the symmetry condition in the form
Pu(T; RY*¥y = D3 M © symrotnc Yne © Pi(T; Rﬁs_f/i,)
= DI%ICM + rotne Yne + P (T ]Rg;;,i)

for the corresponding spaces M and Ync ford = 2,3 and k = 1, 2 from Theorem 7.4,
see also [15, Thm. 3.1, Cor. 3.4—3.5] and [31, Thm. 4.5] with Pi(T; Rg;;gl) =
P(T; Ry N L2(Q: Rgsf/%). In the latter decomposition, the spaces DI%ICM and
rotnc Yne and the spaces DI%ICM and Py (T; R2X2 ) are pairwise orthogonal.

asym

Remark 7.10 The work [31, Thm. 4.5] generalizes the first decomposition of Theo-
rem 7.4 to the relevant boundary conditions for Kirchhoff plates, i.e., the boundary
can be decomposed into a clamped, a simply supported, and a free boundary. The cor-
responding boundary conditions in the space S!(7; R?)/R3 are quite technical and
we therefore refer to [31, Thm. 4.5] for details.

Proof of Theorem 7.4 The first decomposition is proved in the publications [15,
Thm. 3.1, Cor. 3.4—3.5] and [31, Thm. 4.5]. The following proof focuses on the
other three decompositions. It is divided into four steps.

Step 1 (orthogonality). The proof follows the lines of the proof of the orthogo-
nality in Theorem 7.2 together with VNCMS (7) C FSo(T; R?) [54, Lem. 2.8] and
VNeMo(7) € CRY(T; R?) [42, Lem. 1].

Step 2 (auxiliary decompositions). Interchanging the gradient and the rotational
part, the arguments from Step 2 in the proof of Theorem 7.2 lead to the decompositions

Py(T; R2X2) = (DNcFSo(T: R?) N Py (T R2%2)) © sym Curlne (FS(T; R?)/R?),

sym sym
Po(T: RY) = (DNcCR((T: RY) N Pi(T: RYS)) © symrot(N(T; RY7)),
Pi(T; RYS) = (DNCFSo(T: R?) N P (T RY:)) © symrotne Yae(T: RPP).

Note that the proof of Theorem 7.2 does not require uniqueness of the solution ung €
NO(T; R3*3) (resp. ung € Ync(T; R¥3)) to

f SYym rotNc UNd : Sym rotnc Ung dx = / Ph : symrotnc vng dx (7.5)
Q Q

for all ung € NO(7; R3*3) (resp. ung € Ync(T; R33)).
Step 3 (characterization of DncFSo(7; R?) N Py (T ; R2X2)). The inclusion

sym

D{cMJ(T) € (DncFSo(T; R) N Py (T3 R (7.6)

sym

follows from [54, Lem. 2.8]. Since the asymmetric part of Dyc contains the same
entries as curlync, it holds

DneFSo(7 Rz) N P (T; ]Rg;nz) = Dnc{wgs € FSo(7T; Rz) : curlye wgs = 0}.
EOE';W
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The differential operators curl and div are the same in 2D up to a change of coordinates,
and therefore, curlyc : FSo(7; R?) —> P (7)/R is surjective [30, Eqn. (42)]. The
decomposition (2.21) and the Euler formulas (2.3)—(2.4) therefore prove

dim(DncFSo(T; R?) N Py (T RZ2))

sym
= 2#T + 2#E(Q) + 2#V(Q) — B#T — 1) 7.7
=#E(Q) + 3#V(Q).

Since VNcMJ(T) € FSo(T; R?) [54, Lem. 2.8], the continuity and boundary restric-
tions in the definition of Mg (7)) prove that DIZ\IC has the trivial kernel on MS (7). This
and [54, Lem. 4.9] show that (7.7) equals the dimension of DZMS (7). Hence,

VNCFSo(T: R?) N PI(T: Ryy) = DReMy(T),
which concludes the proof of the second decomposition of Theorem 7.4.
Step 4 (characterization of DNCCR(I)(T : R3) N Py(T; R3%3)). The inclusion

sym

DXMo(T) S (DneCRG(T: RY) N Py(T; RYS) (7.8)
follows from an integration by parts on the faces [42, Lem. 1]. Since the asymmetric
part of Dnc contains the same entries as rotyc, it holds

DNeCRy(T: RY) N Py(T: RY:) = Dnefwer € CRG(T: R?) : rotne wer = 0}
The discrete Helmholtz decomposition of (4.3) shows that the dimension of the range
of rotnc : CR(I)(T; R3) — Py(T;R3) equals 3#7 — (#V — 1). This and the Euler
formulas (2.5), (2.2), and (2.7) from Lemma 2.2 lead to

dim(ker (rotnc |CR(1) (T:R3))
— 3HF(Q) — GHT — #V + 1) = —24T + HF(Q) — #F Q) + #E
— #T(Q) + #E(Q) +HEODRQ) — B/DEF Q) = #F(Q) + #E(RQ) = dim(My(7)).

This and the inclusion (7.8) prove (DncCRY(7; R?)) N Po (T3 R3S) = DEMo(7)

sym
and conclude the proof. O
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