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Abstract
DiscreteHelmholtz decompositions dissect piecewise polynomial vector fields on sim-
plicial meshes into piecewise gradients and rotations of finite element functions. This
paper concisely reviews established results from the literature which all restrict to the
lowest-order case of piecewise constants. Its main contribution consists of the gener-
alization of these decompositions to 3D and of novel decompositions for piecewise
affinevector fields in termsofFortin–Soulie functions.While the classical lowest-order
decompositions include one conforming and one nonconforming part, the decompo-
sitions of piecewise affine vector fields require a nonconforming enrichment in both
parts. The presentation covers two and three spatial dimensions as well as generaliza-
tions to deviatoric tensor fields in the context of the Stokes equations and symmetric
tensor fields for the linear elasticity and fourth-order problems.While the proofs focus
on contractible domains, generalizations to multiply connected domains and domains
with non-connected boundary are discussed as well.
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1 Introduction

The Helmholtz decomposition describes a vector field on a bounded and contractible
domain � ⊆ R

d as the sum of an irrotational and a solenoidal vector field, i.e.,

L2(�; R
d) = ∇H1

0 (�) ⊥© rot H(rot,�), (1.1)

where ⊥© means that the sum is L2-orthogonal. It is a fundamental tool for the anal-
ysis and visualization of vector fields in various areas including fluid mechanics,
astrophysics, geophysics, and imaging. For a historical overview of the Helmholtz
decomposition on the continuous level, the reader is referred to [53] and [8].

Throughout the paper, let T denote a conforming triangulation of a bounded and
polyhedral Lipschitz domain � into closed simplices. This paper investigates discrete
versions of the Helmholtz decomposition (1.1) of the form

Pk(T ; R
d) = ∇NCXh(T ) ⊥© rotNC Yh(T ) (1.2)

for k = 0, 1 and d = 2, 3. At least one of the discrete spaces Xh(T ) and Yh(T ) has
to be nonconforming and the differential operators ∇NC and rotNC apply piecewise.
Such a decomposition was proved for the first time by Arnold and Falk for k = 0
and d = 2 in [2] with Xh(T ) being the Crouzeix–Raviart finite element space and
Yh(T ) being the conforming P1 finite element space. Later, Rodríguez, Hiptmair, and
Valli [49] generalized this to k = 0 and d = 3, where Yh(T ) is then the Nédélec
finite element space. Discrete Helmholtz decompositions arose also in the context
of the Stokes equations (resp. linear elasticity and the biharmonic equation), where
deviatoric, i.e. trace-free, (resp. symmetric) tensor fields are decomposed.

The first contribution of this paper is an overview of all known discrete Helmholtz
decompositions. Since mixed boundary conditions are not much treated in the litera-
ture, this paper exemplifies the generalization to mixed boundary conditions for the
decompositions of [2, 49].

In 2D, the gradient and the (vector-valued) rot (or Curl) operator are the same
up to a change of coordinates and therefore the spaces Xh(T ) and Yh(T ) can be
interchanged. However, this is not the case in 3D and therefore the decomposition
(1.2) with a conforming space Xh(T ) is new; cf. Theorem 4.1 below.

The third and main contribution of this paper consists of completely new discrete
Helmholtz decompositions of piecewise affine vector fields in Theorems 5.1, 5.5 and
5.7. While the decompositions for k = 0 are conforming in one of the spaces Xh(T )

and Yh(T ), the decompositions for k = 1 require nonconforming spaces for both
Xh(T ) and Yh(T ). In 2D these spaces are the Fortin–Soulie spaces, while in 3D
the rotation space consists of a Nédélec space enriched by nonconforming bubbles.
While in 2D, the decomposition (1.2) follows by the orthogonality of the spaces and a
dimension argument, the decomposition (1.2) for k = 1 and d = 3 requires a thorough
analysis of the kernel of the operator rotNC.

The majority of proofs in this paper focus on the case of contractible domains.
However, the presence of handles (multiple connectedness) and cavities (non-connec-
ted boundary) in the domain as well as the type of boundary conditions may require

123



Foundations of Computational Mathematics

the inclusion of the additional finite-dimensional space of Dirichlet or Neumann fields
into the Helmholtz decomposition (1.1). Several remarks in this work address the
corresponding generalizations of the discrete decompositions to basic non-contractible
domains. The presentation of results for arbitrary geometries and mixed boundary
conditions to its full extent is beyond the scope of this paper.

Sections 6 and 7 show how the discrete Helmholtz decompositions (1.1) can be
generalized to decompositions of tensor fields of deviatoric and symmetric matrices.
Those tensor fields arise in the context of the Stokes equations in the case of devia-
toric matrices and in the context of linear elasticity and the biharmonic equation for
symmetric matrices.

For a comprehensive overview of all discrete Helmholtz decompositions of this
paper, see Table 1. This table refers to the respective theorems of this paper and also
to the literature for previously established results.

Discrete Helmholtz decompositions are applied in many different contexts. The
discrete Helmholtz decomposition provides the basis for the derivation of stable dis-
cretizations for a variety of problems. The first discrete Helmholtz decomposition
arose in the analysis of a nonconforming discretization of the Reissner–Mindlin plate
[2]. While the decomposition (1.1) allows to treat the continuous problem, a discrete
counterpart in [2] mimics the continuous analysis and enables a robust discretization
of the problem. This approach was generalized in [32, 33] to arbitrary polynomial
degrees. The latter works are based on a discrete Helmholtz decomposition of the
form

Pk(T ; R
d) = Zh ⊥© rotNC Yh(T )

without specifying the space Zh as a space of piecewise gradients. See also the works
[50–52] for discretizations based on this kind of discrete decompositions and [35]. In
the context of electromagnetic problems, a mixed FEM in [49] employs the Crouzeix–
Raviart finite element space as one of the discretization spaces. The discrete Helmholtz
decomposition allows to prove the uniqueness and existence of discrete solutions. The
analysis of a mixed system arising in fourth-order problems in [38] also requires dis-
crete Helmholtz decompositions to identify the gradient and the rotational part of
piecewise constant and piecewise affine vector fields. Moreover, a discrete Helmholtz
decomposition founded a nonconforming method in the context of the Bingham prob-
lem in [20]. The novel decompositions pave the way for the design and analysis of
new schemes in the context of, e.g., electromagnetic problems or Reissner–Mindlin
plates, e.g., a Fortin–Soulie scheme for theReissner–Mindlin plate or a nonconforming
Crouzeix–Raviart or enriched Nédélec FEM for Maxwell’s equations.

Another key application of discrete Helmholtz decompositions is the a posteriori
and optimality analysis of adaptive nonconforming FEMs [6, 15, 19] (in particular in
the discrete reliability analysis) and the medius analysis [21]. In this context, the Pois-
son (resp. Stokes or biharmonic) problem is discretized with a nonconforming finite
element space Xh and the discrete Helmholtz decomposition (1.2) splits the error in
a discrete residual type error in ∇NCXh and a nonconformity error in rotNC Yh(T ).
The convergence analysis of adaptive least-squares FEMs [12, 13, 17, 18] made use
of discrete Helmholtz decompositions as well. Although it was nowadays observed
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that the discrete Helmholtz decomposition can be avoided in the proof of the discrete
reliability for the nonconforming Crouzeix–Raviart FEM [16] and least-squares FEMs
[11, Rem. 5.4], it still seems to be an important tool in the proof of the discrete relia-
bility and helps to understand and characterize the nonconformity error of a method.
Therefore, the new decompositions of this paper open the door for the optimality anal-
ysis of a Fortin–Soulie FEM for the Poisson problem or linear elasticity and of the P3
Morley-type FEM of [54] for fourth-order problems.

This paper focuses on discrete decompositions of the form (1.2). Several related
decompositions are beyond the scope of this paper. This applies to Helmholtz decom-
positions based on finite difference approximations of differential operators as in [47]
and discrete Helmholtz decompositions for surface finite element spaces as in [23].

Another kind of discrete Helmholtz decomposition has been derived from discrete
exact sequences by Brezzi, Fortin, and Stenberg in [10] in the context of Reissner–
Mindlin plates. Decompositions of this type employ a discrete weak differential
operator CurlYh : Zh → Yh defined on some discrete spaces Yh ⊆ H(curl,�) and
Zh ⊆ L2(�), for vh ∈ Zh , by

(CurlYh vh, qh)L2(�) = (vh, curl qh)L2(�) for all qh ∈ Yh . (1.3)

The space Yh may be chosen as the Nédélec finite element spaces in 2D, i.e., Yh :=
Rπ/2RTk(T ) or Yh := Rπ/2BDMk(T ) with the rotation operator Rπ/2 : R

2 →
R
2, Rπ/2q := (q2,−q1)	 by π/2. The choice of Yh leads to the following discrete

Helmholtz decompositions from [10, Lem. 3.1] and [44, Thm. 3.2]

Yh = ∇Sk+1 ⊥© CurlYh Pk(T ).

This decomposition can be considered as discrete versions of the Helmholtz decom-
position [9, Prop. 2.3]

H−1(div,�) = ∇H1
0 (�) ⊥© Curl(L2(�)/R),

where (H0(curl,�))∗ = H−1(div,�) := {q ∈ H−1(�; R
2) : div q ∈ H−1(�)}.

This decomposition is orthogonal with respect to the duality pairing. The Helmholtz
decompositions of this type are applied in the context of Reissner-Mindlin plates [10],
the proof of optimal convergence rates of mixed FEMs [6, 36], and the preconditioning
in H(div) [3]. For details on the methodology of their derivation from discrete exact
sequences, the reader is referred to [10]. For analogous decompositions for various
applications, see [22].

The terminology discrete Helmholtz decomposition also arose for interpolations of
the continuous Helmholtz decomposition (1.1): They employ suitable (quasi-)interpo-
lation operators, e.g., the Fortin interpolation operator IRT : H1(�; R

2) → RT0(T )

and a quasi-interpolation operator of Clément type J : H1(�) → S1(�). Given
τ ∈ H(div,�) with continuous Helmholtz decomposition τ = ∇a + Curl b for
a ∈ H2(�) and b ∈ H1(�), the discrete Helmholtz decomposition from [34, Eqn. 33]

123



Foundations of Computational Mathematics

reads

τh := IRT(∇a) + Curl(Jb) ∈ RT0(T ).

This technique enables the derivation of a myriad of discrete decompositions. Further
details are omitted.

The term discrete Helmholtz decompositions in this paper should not be confused
with numerical methods for the approximation of the continuous irrotational and the
solenoidal field which are often called discrete (Hodge) Helmholtz decomposition as
well. Many of those methods base on the publications [45, 46].

The paper departs with the notation and further preliminaries in Sect. 2. Sections3
and 4 are devoted to discrete Helmholtz decompositions of the form (1.2) for k = 0.
Section5 is devoted to the decomposition of piecewise affine vector (or tensor) fields.
To the best of the authors’ knowledge, this is the first result of the form (1.2) for k > 0.
Beyond theHelmholtz decompositions (1.2) of vector fields, further decompositions of
piecewise constant and piecewise affine deviatoric tensor fields are presented in Sect. 6
in the context of the Stokes equations. The paper concludes with decompositions of
discrete symmetric tensor fields in Sect. 7 in the context of linear elasticity and the
biharmonic equation.

2 Preliminaries

This section defines notation employed throughout the paper and proves some prelim-
inary results.

2.1 Polyhedral Lipschitz Domains

Let � ⊆ R
d denote a bounded and connected open domain of dimension d ∈ N with

d ≥ 2. Since (discrete) Helmholtz decompositions critically depend on the topology
of the domain, each theorem in this paper explicitly includes the assumptions on the
topology and on the regularity of the domain and its boundary.

The domain � is called a polyhedral Lipschitz domain if � lies on exactly one side
of its polyhedral boundary ∂� that is locally the graph of a Lipschitz function. The
domain � is called contractible if it is homotopy equivalent to a point. In 2D, this is
equivalent to simple connectedness of � ⊆ R

2 and, in 3D, this means that � ⊆ R
3 is

simply connected and has a connected boundary ∂�. For any non-contractible domain
� ⊂ R

d , let �0, . . . , �L with L ∈ N0 denote the L + 1 connectivity components of
the boundary ∂�, i.e., � contains L cavities. Assume the convention that �0 is the
boundary of the unbounded component of the complementRd \�. Three-dimensional
non-contractible domains � ⊂ R

3 may feature handles in the case that � is multiply
connected, i.e., there is more than one homotopy class of closed curves inside �.
Following [1, Hypothesis 3.3], the treatment of these handles requires the choice of
two-dimensional cuts �1, . . . , �M ⊂ � of minimal number M ∈ N0 such that each
�m form = 1, . . . , M and the remaining set�\(�1∪· · ·∪�M ) are simply connected.
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The investigation of discrete Helmholtz decompositions with mixed boundary con-
ditions requires the dissection of the boundary ∂� of � into two disjoint parts. Let
�D ⊆ ∂� be the closed Dirichlet boundary with J ∈ N0 closed and disjoint connec-
tivity components �D,1, . . . , �D,J . Let the relatively open �N := ∂�\�D have the
K ∈ N0 connectivity components �N,1, . . . , �N,K , that are disjoint in the sense that
�N, j ∩ �N,k = ∅ for all j �= k. Then

∂� =
J⋃

j=1

�D, j ∪
K⋃

k=1

�N,k .

For d ≥ 3, a relatively open boundary part �N is called polyhedral boundary patch if
the interface �I := �D ∩ �N between the two boundaries is piecewise affine and �D
lies locally on exactly one side of the interface (relatively to the (d − 1)-dimensional
manifold ∂�). For two-dimensional sets, the term polygonal replaces polyhedral.

2.2 Differential Operators and Continuous Spaces

Let “ · ” denote the scalar product, “∧” the cross product, and A : B the Frobenius
scalar product of twomatrices A, B ∈ R

n×k defined by A : B = ∑n
j=1

∑k
	=1 A j	Bj	.

For a scalar valued function v ∈ C1(�) and a vector field β ∈ C1(�; R
d), let

∇v denote the gradient (i.e., the column vector of the first partial derivatives) and
Dβ the first derivative (i.e., the matrix that contains the transposed gradients of the
components of β). The Hessian of v ∈ C2(�) is denoted by D2v and the divergence
of β ∈ C1(�; R

d) by div β. In two spatial dimensions, the differential operators Curl
and curl applied to v ∈ C1(�) and β ∈ C1(�; R

2) are defined by

Curl v =
(−∂v/∂x2

∂v/∂x1

)

and curl β = ∂β2/∂x1 − ∂β1/∂x2.

In order to clearly distinguish the operator in the three-dimensional case, the curl of a
vector field β ∈ C1(�; R

3) is denoted by rot and reads

rot β =
⎛

⎝
∂β3/∂x2 − ∂β2/∂x3
∂β1/∂x3 − ∂β3/∂x1
∂β2/∂x1 − ∂β1/∂x2

⎞

⎠ .

The differential operators div, curl, and rot apply row-wise to matrix-valued func-
tions. In particular, the twofold application of the Curl operator to a scalar function
v ∈ C2(�) reads

Curl2 v =
(

∂2v/∂x22 −∂2v/(∂x1∂x2)
−∂2v/(∂x1∂x2) ∂2v/∂x21

)

.

The corresponding weak (distributional) versions of all previously displayed differ-
ential operators employ the same notation.
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Throughout the paper, the index “NC” indicates the piecewise application of differ-
ential operators to nonconforming functionswith respect to an underlying triangulation
T . Formally, if v ∈ L2(�) satisfies v|int(T ) ∈ H1(int(T )) for all T ∈ T with interior
int(T ) ⊆ �, then ∇NCv ∈ L2(�; R

d) is defined, for all T ∈ T , by

(∇NCv)|int(T ) := ∇(v|int(T )).

Analogous definitions apply for DNC, D2
NC, CurlNC, Curl

2
NC, curlNC, rotNC, and divNC.

The following lemma asserts that the normal component of the rotation can be
represented solely in terms of the derivatives of the tangential components.

Lemma 2.1 Let T ⊆ R
3 be a simplex. For its face F ∈ F(T ) with normal vector

ν ∈ R
3, choose positively oriented unit tangential vectors τ1, τ2 ∈ R

3 such that
det[τ1 τ2 ν] = 1. Then, any ϕ ∈ C1(int(T ); R

3) satisfies

ν · (rot ϕ)|F = ∇(ϕ · τ2) · τ1 − ∇(ϕ · τ1) · τ2. (2.1)

Proof The representation of ϕ in the basis {τ1, τ2, ν} reads

ϕ = (ϕ · τ1)τ1 + (ϕ · τ2)τ2 + (ϕ · ν)ν.

The application of the rot operator and the product rule rot(αq) = ∇α ∧ q + α rot q
for α ∈ C1(int(T )) and q ∈ C1(int(T ); R

3) lead to

rot ϕ = ∇(ϕ · τ1) ∧ τ1 + ∇(ϕ · τ2) ∧ τ2 + ∇(ϕ · ν) ∧ ν.

Thewedge-product identity ν·(a∧b) = a·(b∧ν) fora, b ∈ R
3 aswell as τ1∧ν = −τ2,

τ2 ∧ ν = τ1, and ν ∧ ν = 0 conclude the proof of (2.1). ��
Standard notation on Lebesgue and Sobolev spaces applies throughout this paper.

The L2 inner product is denoted by (v,w)L2(�) and ‖ · ‖L2(�) denotes the L2 norm.
For any subspace X ⊆ L1(�), abbreviate

X/R :=
{
v ∈ X :

∫

�

v dx = 0
}

and L2
0(�) := L2(�)/R.

Given any finite-dimensional vector space X , let L2(�; X) be the space of functions
v : � → X whose components belong to L2(�). Let ν : ∂� → R

d denote the
outward unit normal vector of �. Define the Sobolev spaces

H(rot,�) := {β ∈ L2(�; R
3) : rot β ∈ L2(�; R

3)},
H(div,�) := {p ∈ L2(�; R

d) : div p ∈ L2(�)}

and the kernels of the differential operators rot and div

H(rot0,�) := {β ∈ H(rot,�) : rot β = 0},
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H(div0,�) := {p ∈ H(div,�) : div p = 0}.

The spaces of Sobolev functions satisfying homogeneous boundary conditions in the
sense of traces read

H1
0 (�) := {v ∈ H1(�) : v|∂� = 0},

H0(rot,�) := {β ∈ H(rot,�) : (ν ∧ β)|∂� = 0},
H0(div,�) := {p ∈ H(div,�) : (p · ν)|∂� = 0}.

Recall fromSect. 2.1 the dissection of the boundary of� into a closedDirichlet bound-
ary�D ⊆ ∂� and a relatively openNeumann boundary�N = ∂�\�D. Corresponding
subscripts indicate the spaces with partial homogeneous boundary conditions H1

D(�),
H1
N(�), HN(rot,�), HN(rot0,�), HN(div,�), and HN(div0,�).
In the framework of exterior calculus, the geometric interpretation of cavities and

handles of the domain � from Sect. 2.1 is formalized by the notion of Betti numbers
b j ∈ N0 for j = 0, . . . , d. They are defined by the dimension of the remaining space
in the continuous Helmholtz decomposition (1.1). For instance, for the differential
operators in the following three-dimensional sequence

P0(�)
id−→ H1(�)

∇−→ H(rot,�)
rot−→ H(div,�)

div−→ L2(�)
0−→ {0},

set b1 := dim(ker(rot)/ ran(∇)) = M and b2 := dim(ker(div)/ ran(rot)) = L . The
reader is referred to [39] for further details.

2.3 Triangulations

Throughout the paper, letT be a regular triangulation of the polygonal domain� ⊆ R
d

into at least two closed simplices. LetF denote the set of faces of T , E the set of edges
and V the set of nodes. If d = 2, identify F = E . Let furthermore F(�) (resp. E(�)

and V(�)) denote the set of interior faces (resp. interior edges and interior nodes) and
let F(∂�) (resp. E(∂�) and V(∂�)) denote the set of boundary faces (resp. boundary
edges and boundary nodes). For any simplex T ∈ T , the vector field νT : ∂T → R

d

denotes the outward unit normal vector of T . For a face F ∈ F , let νF denote the unit
normal vector with a fixed orientation. In 2D, this induces a unique tangential vector
τF = (νF,2,−νF,1)

	 of the edge F . For any interior face F ∈ F(�), let T+, T− ∈ T
denote the two unique distinct simplices satisfying F = T+ ∩ T−. The indices follow
the convention that νF · νT± = ±1. For any boundary face F ∈ F(∂�), T+ ∈ T is the
unique adjacent simplex with F ⊆ T+. For any face F ∈ F (resp. any edge E ∈ E),
its barycenter reads mid(F) (resp. mid(E)).

Assume that the triangulation T reflects the dissection of the boundary in that
the Dirichlet faces F(�D) := {F ∈ F(∂�) : F ⊆ �D} and the Neu-
mann faces F(�N) := {F ∈ F(∂�) : F ⊆ �N} partition the set F(∂�) of
boundary faces. Analogously, define the sets of the Dirichlet vertices V(�D) :=
{z ∈ V(∂�) : z ∈ �D} and the Neumann vertices V(�N) := V(∂�)\V(�D).
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Let

V(�N) :=
K⋃

k=1

V(�N,k) with V(�N,k) := {z ∈ V(∂�) : z ∈ �N,k}.

denote the set of vertices on the Neumann boundary including the ones at the interface
of the boundary parts.

The following well-known Euler formulas ([26, Lem. 1.57] in a corrected version)
provide an essential tool for computing the dimension of discrete finite element spaces
in the proofs below.

Lemma 2.2 (Euler formulas) Let � ⊆ R
d be an arbitrary polyhedral domain. Count-

ing the d + 1 faces of each simplex verifies the following formula

#F + #F(�) = (d + 1)#T . (2.2)

For d = 2, regular triangulations of any simply connected domain � ⊆ R
2 satisfy

#T − #F + #V − 1 = 0, (2.3)

#F(∂�) − #V(∂�) = 0. (2.4)

For d = 3, regular triangulations of any contractible domain � ⊆ R
3 guarantee

#T − #F + #E − #V + 1 = 0, (2.5)

#F(∂�) − #E(∂�) + #V(∂�) − 2 = 0, (2.6)

3#F(∂�) − 2#E(∂�) = 0. (2.7)

In the case of non-contractible domains �, recall the notation for the connectivity
components �0, . . . , �L of ∂� and cuts �1, . . . , �M from Sect. 2.1. LetF(�	) (resp.
E(�	) and V(�	)) denote sets of faces (resp. edges and vertices) subordinated to �	

for 	 = 0, . . . , L . Assume throughout the paper that any triangulation T resolves the
cuts �1, . . . , �M . Moreover, the generalized Euler formulas read, for d = 2,

#T − #F + #V + L − 1 = 0 (2.8)

and, for d = 3,

#T − #F + #E − #V + 1 + L − M = 0, (2.9)

#F(∂�) − #E(∂�) + #V(∂�) − 2(1 + L − M) = 0. (2.10)

The remaining equalities (2.4) and (2.7) remain true.
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2.4 Conforming Finite Element Spaces

Given a regular triangulation T , let Pk(T ) denote the space of piecewise polynomials
of total degree at most k ∈ N0. As in the continuous setting let Pk(T ; X) denote the
space of functions vh : � → X with components in X . Define the conforming finite
element spaces

Sk+1(T ) := Pk+1(T ) ∩ C0(�), (2.11)

Nk(T ) := {vNd ∈ H(rot,�) : ∃aT , bT ∈ Pk(T ; R
3), vNd = aT + bT ∧ id},

(2.12)

RTk(T ) :=
{

βRT ∈ H(div,�) : ∃aT ∈ Pk(T ; R
d)∃bT ∈ Pk(T ),

βRT = aT + bT id

}

. (2.13)

Abbreviate the subspace with (partial) homogeneous boundary conditions

Sk+1
0 (T ) := Sk+1(T ) ∩ H1

0 (�), Sk+1
D (T ) := Sk+1(T ) ∩ H1

D(�),

Nk
0(T ) := Nk(T ) ∩ H0(rot,�), Nk

N(T ) := Nk(T ) ∩ HN(rot,�),

RTk
0(T ) := RTk(T ) ∩ H0(div,�), RTk

N(T ) := RTk(T ) ∩ HN(div,�).

The kernels of the differential operators read as follows

Nk(rot0, T ) := Nk(T ) ∩ H(rot0,�), RTk(div0, T ) := RTk(T ) ∩ H(div0,�),

Nk
N(rot0, T ) := Nk

N(T ) ∩ H(rot0,�), RTk
N(div0, T ) := RTk

N(T ) ∩ H(div0,�).

For a (sub-)space of matrices X , let Nk(rot0, T ; X) etc. denote the set of functions
β : � → X whose rows belong to Nk(rot0, T ).

The barycentric coordinate λz ∈ S1(T ) of a vertex z ∈ V is uniquely defined by the
piecewise linear interpolation of the values λz(z) = 1 and λz(y) = 0 for all y ∈ V\{z}.

2.5 Nonconforming Finite Element Spaces

Nonconforming piecewise polynomial functions allow for nontrivial interelement
jumps and averages. For all v ∈ L2(�) with piecewise traces (v|T )|F ∈ L2(F) for all
F ∈ F(T ) and T ∈ T , define the jump [v]F ∈ L2(F) and the average 〈v〉F ∈ L2(F)

by

[v]F := (v|T+)|F − (v|T−)|F , 〈v〉F := 1

2

(
(v|T+)|F + (v|T−)|F

)
if F ∈ F(�),

[v]F := 〈v〉F := (v|T+)|F if F ∈ F(∂�).

A straightforward calculation reveals the product rule of the jump

[uv]F = [u]F 〈v〉F + 〈u〉F [v]F . (2.14)
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For d = 2 and d = 3, discrete Helmholtz decompositions typically employ non-
conforming discrete spaces such as the Crouzeix–Raviart finite element space from
[25] and the Fortin–Soulie finite element space from [30]

CR1(T ) :=
{

vCR ∈ P1(T ) : ∀F ∈ F(�),

∫

F
[vCR]F ds = 0

}

, (2.15)

FS(T ) :=
{

vFS ∈ P2(T ) : ∀F ∈ F(�)∀p ∈ P1(F),

∫

F
[vFS]F p ds = 0

}

.

(2.16)

The subspaces with homogeneous boundary conditions read

CR1
0(T ) :=

{

vCR ∈ CR1(T ) : ∀F ∈ F(∂�),

∫

F
vCR ds = 0

}

,

FS0(T ) :=
{

vFS ∈ FS(T ) : ∀F ∈ F(∂�)∀p ∈ P1(F),

∫

F
vFS p ds = 0

}

and analogously the spaces CR1
D(T ) and FSD(T )with partial homogeneous boundary

conditions on �D.
Recall that in 2D the jump [bNCT ]E of the nonconforming bubble function bNCT

defined in (2.17) below vanishes at the two Gauß points of the edge E ∈ E(�), but
is not the zero function. Therefore, the function evaluation in these Gauß points do
not provide degrees of freedom for a finite element in the classical sense of Ciarlet.
A characterization of the Fortin–Soulie space for d = 2, 3 employs the barycentric
coordinate λz of z ∈ V in the nonconforming quadratic volume bubble function
bNCT ∈ P2(T ) with, for a triangle T ∈ T ,

bNCT |T := 2 − (d + 1)
∑

z∈V(T )

λ2z (2.17)

and bNCT |K ≡ 0 on any other K ∈ T \{T }. These bubble functions span the space

BNC(T ) := span{bNCT : T ∈ T } (2.18)

and their sum defines the continuous function

b̃h :=
∑

T∈T
bNCT ∈ S2(T ). (2.19)

The definition (2.17) of bNCT ensures that BNC(T ) is a subspace of FS(T ). For the 2D
case, Fortin and Soulie proved the representations [30, Prop. 1]

FS(T ) = S2(T ) + BNC(T ) and S2(T ) ∩ BNC(T ) = span{̃bh}, (2.20)

FS0(T ) = S20(T ) + BNC(T ) and S20(T ) ∩ BNC(T ) = {0}. (2.21)
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The3Danalogue additionally requires a nonconforming face bubble functionbNCF ∈
P2(T ). For any T ∈ T with F ∈ F(T ), let the index set { j, k, 	,m} = {1, . . . , 4} sat-
isfy that F lies opposite to the vertex of indexm ∈ {1, . . . , 4}. The indices { j, k, 	,m}
of the vertices also specify the associated barycentric coordinates λ j , λk, λ	, λm . The
function bNCF ∈ P2(T ) is defined by

bNCF |T := 2(1 − λm)2 − 3(λ2j + λ2k + λ2	) (2.22)

on all such T ∈ T and bNCF |K = 0 on any K ∈ T with F � K . The face bubble
functions span the spaces

BNC
F (T ) := span{bNCF : F ∈ F} and BNC

F ,0(T ) := span{bNCF : F ∈ F(�)}.

This leads to the following decomposition of the Fortin–Soulie space in 3D [29]

FS0(T ) = S20(T ) + BNC(T ) + BNC
F ,0(T ). (2.23)

Note that the sums are not direct sums.
The space of Morley finite element functions for d = 2 is defined by

M(T ) :=
{

vM ∈ P2(T ) : ∀z ∈ V, vM is continuous in z and

∀E ∈ E(�), ∂vM/∂νE is continuous in mid(E)

}

.

Abbreviate the subspace with partial homogeneous boundary conditions on �N ⊆ ∂�

by

MN(T ) :=
{

vM ∈ M(T ) : ∀z ∈ V(�N), vM(z) = 0 and

∀E ∈ E(�N), ∂vM/∂νE (mid(E)) = 0

}

.

The generalization to d = 3 from [42] reads

M(T ) :=
{

vM ∈ P2(T ) : ∀F ∈ F(�), [(∂vM/∂νE )(mid(F))]F = 0 and

∀E ∈ E(�),
∫
E vM ds is continuous

}

,

M0(T ) :=
{

vM ∈ M(T ) : ∀F ∈ F(∂�), (∂vM/∂νE )(mid(F)) = 0 and

∀E ∈ E(∂�),
∫
E vM ds = 0

}

.

For d = 2, the Morley finite element space was generalized to piecewise cubic func-
tions [54] as

M3(T ) :=

⎧
⎪⎨

⎪⎩
vM ∈ P3(T ) :

∀z ∈ V, vM is continuous in z,

∀E ∈ E(�),
∫
E [vM]E ds = 0, and

∀E ∈ E(�) ∀pE ∈ P1(E),
∫
E [∇NCvM · ν]E pE ds = 0

⎫
⎪⎬

⎪⎭
.
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The corresponding cubic Morley finite element space with homogeneous boundary
conditions on ∂� reads [54]

M3
0(T ) :=

⎧
⎪⎨

⎪⎩
vM ∈ M3(T ) :

∀z ∈ V(∂�), vM(z) = 0,

∀E ∈ E(∂�),
∫
E vM ds = 0 and

∀E ∈ E(∂�) ∀pE ∈ P1(E),
∫
E ∇NCvM · ν pE ds = 0

⎫
⎪⎬

⎪⎭
.

2.6 Discrete Exact Sequences

The relations between the conforming spaces from Sect. 2.4 are formalized in the
frameworkof finite element exterior calculus [4] via exact sequences of discrete spaces.
A sequence of spaces

· · · d j−2−→ X j−1
d j−1−→ X j

d j−→ X j+1
d j+1−→ . . .

is called exact, if the kernel of the differential operator d j equals the range of the
previous differential operator d j−1. Under suitable assumptions on the domain and
the boundary �N, the following sequences of finite element spaces are exact

P0(�)
id−→ Sk+1(T )

∇−→ Nk(T )
rot−→ RTk(T )

div−→ Pk(T )
0−→ {0}, (2.24)

{0} id−→ Sk+1
0 (T )

∇−→ Nk
0(T )

rot−→ RTk
0(T )

div−→ Pk(T ) ∩ L2
0(�)

0−→ {0},
(2.25)

{0} id−→ Sk+1
N (T )

∇−→ Nk
N(T )

rot−→ RTk
N(T )

div−→ Pk(T )
0−→ {0}. (2.26)

Although these results are well-known for the cases �D = ∂� and �D = ∅, the
results for mixed boundary conditions seem to be known to the experts in the field
only. The remaining part of this subsection presents rigorous proofs of the relations
used in this paper. This fosters the ease of reading and highlights the role of the par-
ticular assumptions on the domain. A key ingredient consists of commuting smoothed
projections from [40, Thm. 1.1] that preserve homogeneous boundary conditions on
a part of the boundary.

Lemma 2.3 (quasi-interpolation operators [40, Thm. 1.1]). Let � ⊆ R
d denote a

bounded polyhedral Lipschitz domain with polyhedral boundary patch �N for any
d ≥ 2. There exist operators JRT : HN(div,�) → RT0

N(T ), and J0 : L2(�) →
P0(T ) such that, for τ ∈ HN(div,�), div JRTτ = J0 div τ . For d = 3, the exists an
operator JNd : HN(rot,�) → N0

N(T ) for the Nédélec functions in 3D satisfying, for
β ∈ HN(rot,�), rot JNdβ = JRT rot β.

All operators are pointwise invariant in that JNdβNd = βNd for all βNd ∈ N0
N(T ),

JRTτRT = τRT for all τRT ∈ RT0
N(T ), and J0qh = qh for all qh ∈ P0(T ).

Lemma 2.4 (surjectivity of divergence operator). Let � ⊆ R
d denote a bounded

polyhedral Lipschitz domain with polyhedral boundary patch �N for any d ∈ N and
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∅ �= F(�N) � F(∂�). It holds that

div RT0
N(T ) = P0(T ), div RT0

0(T ) = P0(T ) ∩ L2
0(�), (2.27)

divNC CR1
D(T ; R

d) = P0(T ), divNC CR1
0(T ; R

d) = P0(T ) ∩ L2
0(�). (2.28)

Proof The inclusions div RT0(T ) ⊆ P0(T ) and divNC CR1(T ) ⊆ P0(T ) are obvious.
For τRT ∈ RT0

0(T ) and vCR ∈ CR1
0(T ; R

d), the (piecewise) integration by parts

∫

�

div τRT dx =
∫

∂�

τRT · ν ds = 0
∫

�

divNC vCR dx =
∑

F∈F(�)

∫

F
[vCR]F · νF ds +

∑

F∈F(∂�)

∫

F
vCR · ν ds = 0

shows that div RT0
0(T ) ⊆ P0(T ) ∩ L2

0(�) and divNC CR1
0(T ) ⊆ P0(T ) ∩ L2

0(�).
For the opposite inclusion, recall the surjectivity of the divergence div : H1(�) →

L2(�) on the continuous level [27, Lem. 53.9]

div H1
0 (�; R

d) = L2
0(�) and div H1

D(�) = L2(�) = div H1
N(�). (2.29)

The transfer of the equalities (2.29) to the discrete Crouzeix–Raviart space employs the
nonconforming interpolation operator INC : H1

D(�) → CR1
D(T ) defined by piecewise

affine interpolation of the values

(INC v)(mid(F)) := 1

|F |
∫

F
v ds for v ∈ H1(�).

For vector fields v ∈ H1
D(�; R

d), it applies componentwise. The operator INC com-
mutes with the divergence and the L2-orthogonal projection �0 : L2(�) → P0(T )

in the sense that divNC INC v = �0 div v for all v ∈ H1(�; R
d) (the proof in [25,

Example 4] for d ∈ {2, 3} applies verbatim to the case d > 3). Given qh ∈ P0(T ),
let v ∈ H1

D(�) with div v = qh according to (2.29), the interpolation vNC := INC v

satisfies div vNC = �0 div v = qh . This verifies the inclusion P0(T ) ⊆ div CR1
D(T )

and P0(T )/R ⊆ div CR1
0(T ) follows analogously.

The transfer of the equalities (2.29) to the discrete Raviart–Thomas space employs
the quasi-interpolation operators JRT and J0 from Lemma 2.3. Given qh ∈ P0(T ), let
τ ∈ H1

N(�) satisfy div τ = qh according to (2.29). The commutation and pointwise
invariance property prove, for τRT := JRTτ , that div τRT = J0 div τ = qh . This
verifies the inclusions div RT0(T ) ⊆ P0(T ) and P0(T )/R ⊆ div RT0

0(T ) follows
analogously. ��
Lemma 2.5 (discrete vector potential) Let� ⊆ R

3 denote a bounded polyhedral Lip-
schitz domain with connected boundary ∂�. Assume that the connectivity components
�N,1, . . . , �N,K of the polyhedral boundary patch �N are simply connected and, thus,
�D is connected. Then it holds that

RT0
N(div0, T ) = rot N0

N(T ).
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Proof Given βNd ∈ N0
N(T ), Lemma 2.1 shows that νF ·(rot βNd) consists of tangential

derivatives of tangential components for any F ∈ F . This proves that the jumps
of the normal components of rot βNd vanish and also (rot βNd · ν)|�N = 0 for all
βNd ∈ N0

N(T ). This and div rot βNd = 0 verify rot N0
N(T ) ⊆ RT0

N(div0, T ). For the
opposite inclusion, the simple connectedness of the Neumann boundary components
�N,1, . . . , �N,K ensures [5, Thm. 3.8 and Rem. 3.9]

HN(div0,�) = rot HN(rot,�). (2.30)

Given τRT ∈ RT0
N(div0, T ) ⊆ HN(div0,�), let β ∈ HN(rot,�) satisfy rot β =

τRT. The commutation and pointwise invariance property of the quasi-interpolation
operators from Lemma 2.3 show, for βNd := JNdβ, that rot βNd = JRT rot β = τRT.

This verifies the inclusions RT0(div0, T ) ⊆ rot N0
N(T ) and concludes the proof. ��

Remark 2.6 (generalization of the domain) The assumption on the simple connected-
ness of the Neumann boundary patches may be relaxed. The representation (2.30) has
been established in [1, p. 848] under the assumption that �D is connected and that the
cuts �1, . . . , �M from Sect. 2.1 satisfy �m ∩ �N = ∅ for m = 1, . . . , M in the case
of multiple connectedness.

Remark 2.7 (discrete vector potential in 2D) An analogue of Lemma 2.5 in two spatial
dimensions is proved explicitly in Theorem 3.3 below.

3 Decompositions for Piecewise Constant Vector Fields in 2D

This section is devoted to a generalization of a discrete Helmholtz decomposition by
Arnold and Falk from [2] to mixed boundary conditions. The presentation departs
with the proof of Theorem 3.1, which states a decomposition of P0(T ; R

2) into a
gradient part and a divergence-free part. Theorem 3.3 below will then characterize the
divergence-free part as Curls of appropriate discrete functions. Theorem 3.1 will be
applied for d = 3 as well and even holds in arbitrary space dimensions.

Theorem 3.1 (basic discrete decomposition for P0(T ; R
d)) Let� ⊆ R

d be a bounded
polyhedral Lipschitz domain with polyhedral boundary patch �N. The following L2-
orthogonal decompositions hold

P0(T ; R
d) = ∇NCCR

1
0(T ) ⊥© RT0(div0, T ) = ∇NCCR

1(T ) ⊥© RT0
0(div

0, T )

= ∇NCCR
1
D(T ) ⊥© RT0

N(div0, T ). (3.1)

Remark 3.2 Independently of our research, the recent publication [43, Lem. 4.9] pre-
sented an alternative proof of the decomposition (3.1). However, Theorem 3.1 is
slightlymore general as the proof of [43, Lem. 4.9] does not apply to the case�N = ∂�.

Proof of Theorem 3.1 The proof is divided into four steps.
Step 1 (orthogonality). For any αCR ∈ CR1

D(T ) and βRT ∈ RT0
N(div0, T ), the

continuity of βRT ·νF implies [αCR βRT ·νF ]F = [αCR]F βRT ·νF for all F ∈ F . Since
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αCR vanishes in the midpoints of interior and Dirichlet faces and βRT · νF vanishes
on the Neumann faces F ∈ F(�N ), it follows

∫

F
[αCR βRT · νF ]F ds = 0 for all F ∈ F . (3.2)

This and a piecewise integration by parts prove the orthogonality

∫

�

∇NCαCR · βh dx =
∑

F∈F

∫

F
[αCR βRT · νF ]F ds = 0.

Step 2 (dimensions in the case �N = ∂�). If �N = ∂�, the operator div :
RT0

0(T ) → P0(T ) is surjective onto P0(T )/R according to Lemma 2.4 and the
operator ∇NC : CR1(T ) → P0(T ; R

n) has a one-dimensional kernel. This implies

dim(RT0
0(div

0, T )) = dim(RT0
0(T )) − dim(P0(T )/R) = #F(�) − (#T − 1),

(3.3)

dim(∇NCCR
1(T )) = dim(CR1(T )) − 1 = #F − 1. (3.4)

Hence, (2.2) proves

dim(∇NCCR
1(T )) + dim(RT0

0(div
0, T )) = #F + #F(�) − #T

= d #T = dim(P0(T ; R
d)).

(3.5)

Step 3 (dimensions in the case �N � ∂�). If F(�N) � F(∂�), then the operator
div : RT0

N(T ) → P0(T ) is surjective onto P0(T ) according to Lemma 2.4 and the
kernel of the operator ∇NC : CR1

D(T ) → P0(T ; R
n) is trivial. Therefore,

dim(RTN(div0, T )) = dim(RT0
N(T )) − dim(P0(T ))

= #F(�) + #F(�D) − #T , (3.6)

dim(∇NCCR
1
D(T )) = dim(CR1

D(T )) = #F(�) + #F(�N). (3.7)

Since #F(�D) + #F(�N) = #F(∂�), the equality (3.5) follows as in Step 2.
Step 4 (conclusion of the proof). It is obvious that

∇NCCR
1
D(T ) ⊥© RT0

N(div0, T ) ⊆ P0(T ; R
d).

The equality therefore follows from the Steps 2–3. ��

In 2D, the characterization of divergence-free Raviart–Thomas functions leads to
Curls of Courant functions and proves a discrete Helmholtz decomposition for mixed
boundary conditions.
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Theorem 3.3 Assume that � ⊆ R
2 is a bounded and simply connected polygonal

Lipschitz domain. Let �N,1, . . . , �N,K denote the connectivity components of the Neu-
mann boundary from Sect. 2.1. The Courant finite element space with partial constant
boundary conditions

Ŝ
1
N(T ) :=

{

βh ∈ S1(T ) : ∀k ∈ {1, . . . , K } ∃ck ∈ R

∀F ∈ F(�N,k), βh |F ≡ ck

}

. (3.8)

satisfies

RT0
N(div0, T ) = Curl Ŝ

1
N(T ). (3.9)

In particular, the following L2-orthogonal decomposition holds

P0(T ; R
2) = ∇NCCR

1
D(T ) ⊥© Curl Ŝ

1
N(T ). (3.10)

Remark 3.4 Note that global constants lie in the kernel of Curl and therefore
Curl Ŝ

1
N(T ) = Curl(S1(T )/R) if �N = ∅. In this case, the decomposition (3.10)

coincides with the first discrete Helmholtz decomposition in the literature that has
been invented by Arnold and Falk in [2, Thm. 4.1].

Remark 3.5 In 2D, the gradient and the Curl are the same up to a change of coordinates
and, therefore, the discrete Helmholtz decomposition (3.10) also proves the discrete
Helmholtz decomposition

P0(T ; R
2) = ∇Ŝ

1
N(T ) ⊥© CurlNC CR1

D(T ).

Analogously, it follows that

P0(T ; R
2) = ∇S1D(T ) ⊥© CurlNC ĈR

1
N(T )

with

ĈR
1
N(T ) :=

⎧
⎨

⎩
vCR ∈ CR1(T ) :

∀k ∈ {1, . . . , K } ∃ck ∈ R

∀F ∈ F(�N,k),

∫

F
vCR ds ≡ ck

⎫
⎬

⎭
.

Proof of Theorem 3.3 The proof of (3.9) in the case �N = ∅ follows from a 2D ana-
logue of the discrete exact sequence (2.24) and would also follow from discrete exact
sequences for other boundary conditions. Since it seems that the case of mixed bound-
ary conditions is not considered explicitly in the literature, the proof is carried out here
for the ease of comprehensive reading. It is divided into five steps.
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Step 1 (inclusion “⊇”). The definition of the Curl in 2D as the rotated gradient
and the continuity of βh ∈ Ŝ

1
N(T ) verify [Curl βh · νF ]F = [∇βh · τF ]F = 0 for all

F ∈ F(�). Hence, Curl βh ∈ H(div,�) ∩ P0(T ; R
2) ⊆ RT0(T ). Since (βh)|�N,k ≡

ck ∈ R for all k ∈ {1, . . . , K }, the arc-length derivative vanishes

(Curl βh · ν)|�N = (∇βh · τ)|�N = 0.

This and div Curl βh = 0 imply Curl βh ∈ RT0
N(div0, T ).

Step 2 (dimension of Ŝ
1
N(T )). The boundary conditions of Ŝ

1
N(T ) imply that

dim(̂S
1
N(T )) = #V − #V(�N) + K . Since the operator Curl : Ŝ1N(T ) → P0(T ; R

2)

has the one-dimensional kernel P0(�) in 2D,

dim(Curl Ŝ
1
N(T )) = #V − #V(�N) + K − 1. (3.11)

Step 3 (dimension argument in the case �N = ∂�). If �N = ∂�, then K = 1 and
V(�N) = V(∂�). Hence, the combination of the equalities (3.11) and (3.3) and the
Euler formulas (2.3)–(2.4) from Lemma 2.2 result in

dim(RT0
N(div0, T )) = #F − #V(∂�) − #T + 1 = #V(�) = dim(Curl Ŝ

1
N(T )).

Step 4 (dimension argument in the case F(�N) � F(∂�)). Since � is simply
connected, every �N,k , k ∈ {1, . . . , K }, belongs to the single connectivity component
of ∂�. This shows that #V(�N,k) = #F(�N,k)+1 for all k ∈ {1, . . . , K } and the sum
over those k results in #F(�N) = #V(�N) − K . This, the Euler formula (2.3) from
Lemma 2.2, and the equalities (3.6) and (3.11) conclude the dimension argument

dim(RT0
N(div0, T )) = #F − #F(�N) − #T

= #V − #V(�N) − 1 + K = dim(Curl Ŝ
1
N(T )).

Step 5 (discrete Helmholtz decomposition). The decomposition (3.10) follows
from the application of Theorem 3.1. ��

4 Decompositions of Piecewise Constant Vector Fields in 3D

In the two-dimensional case, the operators ∇ and Curl are the same up to a rotation
and, therefore, the decompositions in Theorem 3.3 and Remark 3.5 are equivalent. For
d = 3 however, the discrete decompositions need to reflect the different nature of the
differential operators. The following theorem proves a discrete Helmholtz decompo-
sition with a nonconforming space in the rotational part of the decomposition, while
Theorem 4.3 below proves a discrete Helmholtz decomposition with a nonconforming
space in the gradient part.
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Theorem 4.1 Let� ⊆ R
3 be a bounded and contractible polygonal Lipschitz domain.

The following L2-orthogonal decomposition holds

P0(T ; R
3) = ∇S10(T ) ⊥© rotNC CR1(T ; R

3).

Proof Given any qh ∈ P0(T ; R
3), there exists βCR ∈ CR1(T ; R

3) minimizing the
quadratic functional

CR1(T ; R
3) → R, γCR �→ 1

2
‖ rotNC γCR − qh‖2L2(�)

.

The minimizer βCR satisfies

(rotNC βCR, rotNC γCR)L2(�) = (qh, rotNC γCR)L2(�) for all γCR ∈ CR1(T ; R
3)

(4.1)

and is unique only up to elements in the kernel of rotNC : CR1(T ; R
3) → P0(T ; R

3).
Set ph := qh − rotNC βCR.

Since the boundary ∂� is connected, for every γ ∈ H(rot,�) there exists a φ ∈
H1(�; R

3) such that rot γ = rot φ [37, Lem. 1]. Recall that the Crouzeix–Raviart
interpolation operator INC : H1(�) → CR1(T ) and the L2-orthogonal projection
�0 : L2(�; R

3) → P0(T ; R
3) satisfy the commuting diagram property �0∇ =

∇NC INC. Since this equality holds componentwise, it follows that�0 rot = rotNC INC.
The combination with (4.1) shows, for all γ ∈ H(rot,�),

(rot γ, ph)L2(�) = (rot φ, ph)L2(�) = (rotNC INC φ, ph)L2(�) = 0. (4.2)

The continuous Helmholtz decomposition [1, Sect. 3.5] guarantees the existence of
α ∈ H1

0 (�) and β ∈ H(rot,�) such that ph = ∇α + rot β. The orthogonalities
(∇α, rot β)L2(�) = 0 and (4.2) imply

‖rot β‖2L2(�)
= (rot β, ph)L2(�) = 0.

Hence, rot β = 0 and the identity ph = ∇α ∈ P0(T ; R
3) proves α ∈ P1(T ). This

shows α ∈ S10(T ) and concludes the proof. ��
Remark 4.2 (change of boundary conditions) The discrete Helmholtz decomposition
with boundary conditions on the Crouzeix–Raviart space, i.e.,

P0(T ; R
3) = ∇S1(T ) ⊥© rotNC CR1

0(T ; R
3) (4.3)

can be proved along the same lines as for Theorem 4.1. The argument with [37, Lem. 1]
has to be replaced by [41, Prop. A.1], which proves an analogous result with boundary
conditions.
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The decomposition of piecewise constant vector fields of the following theorem
is nonconforming in the gradient part. It covers the case of mixed boundary condi-
tions and is a direct consequence of the basic decomposition from Theorem 3.1 and
Lemma 2.5.

Theorem 4.3 Let � ⊆ R
3 be a bounded and contractible polygonal Lipschitz domain

and let �N,1, . . . , �N,K denote the connectivity components of the polyhedral bound-
ary patch�N. Assume that each component�N,1, . . . , �N,K is simply connected. Then
the following L2-orthogonal decomposition holds

P0(T ; R
3) = ∇NCCR

1
D(T ) ⊥© rot N0

N(T ). (4.4)

Remark 4.4 (generalization to non-connected boundary) The discrete Helmholtz
decomposition of Theorem 4.3 was also proved in [49, Lem. 5.4] in the case �N = ∅
for domains with possibly non-connected boundary ∂� = �0 ∪ · · · ∪ �L for L > 0
as introduced in Sect. 2.1. Using the space

CR1
L(T ) :=

{

vCR ∈ CR1(T ) : ∀F ∈ F(�0), vCR(mid(F)) = 0 and ∀	 = 1, . . . , L

∃c	 ∈ R ∀F ∈ F(�	), vCR(mid(F)) = c	

}

,

the following L2-orthogonal decomposition holds

P0(T ; R
3) = ∇NCCR

1
L(T ) ⊥© rot N0(T ).

An analogous decomposition holds in the 2D case.

Remark 4.5 (multiply connected domains) Assume that � is multiply connected
(M > 0) with connected boundary (L = 0). In the case of full Dirichlet bound-
ary �D = ∂�, the discrete Helmholtz decomposition (4.4) remains true. This follows
from Theorem 3.1 and the equality RT0(div0, T ) = rot N0(T ) for all domains with
Betti number b2 = L = 0, see [39, Example 9].

However, in the case of full Neumann boundary �N = ∂�, additional nonconform-
ing loop fields ∇NCφCR,m have to be added in the gradient part for each cut �m for
m = 1, . . . , M as denoted in Sect. 2.1. This results in

P0(T ; R
3) = ∇NC(CR1(T ) + span{φCR,m : m = 1, . . . , M}) ⊥© rot N0

0(T ),(4.5)

The construction of φCR,1 is illustrated on a torus � with a single cut �1: Then let
φCR,1 be a Crouzeix–Raviart finite element function on the cut domain that is one at
the faces’ midpoints on � considered as the boundary at one side, minus one at the
faces’ midpoints on � considered as the boundary from the other side, and arbitrarily
extended by fixed values on all other degrees of freedoms (e.g., by the minimal norm
extension). This function, considered as a function on the (non-cut) torus, does not
belong to CR1

0(T ) because of the discontinuity. Moreover, a piecewise integration by
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parts and the Stokes theorem on the closed boundary ∂� ∩ �1 of the cut prove, for
βN ∈ N0

0(T ),

(∇NCφCR,1, rot βN)L2(�) =
∑

F∈F(�1)

∫

F
[φCR,1]F (rot βN · νF ) ds

= 2
∫

�1

(rot βN · νF ) ds = 0.

This construction can be carried out for each of the cuts �1, . . . , �M and a discrete
Poincaré inequality proves dim(∇NC(CR1(T ) + span{φCR,m : m = 1, . . . , M})) =
#F + M . In the case of homogeneous boundary conditions, the roles of the Betti
numbers change [39, Example 9] and dim(N0

0(rot
0, T )/∇S10(T )) = L = 0. This

yields N0
0(rot

0, T ) = ∇S10(T ) and dim(rot N0
0(T )) = #E(�) − #V(�). This and the

generalized Euler formulas (2.9)–(2.10) verify (4.5).

5 Decompositions of Piecewise Affine Vector Fields

This section is devoted to novel discrete Helmholtz decompositions of piecewise affine
vector fields. They employ the Fortin–Soulie spaces and the nonconforming element
and face bubble functions from Sect. 2.5. While Theorem 5.1 below proves a discrete
Helmholtz decomposition for d = 2, the subsequent Theorems 5.5 and 5.7 cover the
case of d = 3.

Theorem 5.1 Let � ⊆ R
2 be a bounded and simply connected polygonal Lipschitz

domain. The following L2-orthogonal decomposition holds

P1(T ; R
2) = ∇NCFS0(T ) ⊥© CurlNC(FS(T )).

Proof Step 1 (orthogonality). According to the characterizations (2.20)–(2.21), let
αFS = αh+αb ∈ FS0(T ) and βFS = βh+βb ∈ FS(T )with αh ∈ S20(T ), βh ∈ S2(T ),
and αb, βb ∈ BNC(T ). For any edge E ∈ E , the product rule (2.14) of the jump and
the fact that bNCT vanishes in the two Gauß points of E verify

∫

E
[βb∇NCαFS · τE ]E ds

=
∫

E
[βb]E 〈∇NCαFS · τE 〉E ds +

∫

E
〈βb〉E [∇NCαFS · τE ]E ds = 0.

Analogously ∫

E
[αb Curl βh · νE ]E ds =

∫

E
[αb∇βh · τE ]E ds = 0.

The L2-orthogonality ∇S20(T ) ⊥ Curl S2(T ) ensures
∫

�

∇αh · Curl βh dx = 0.
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A piecewise integration by parts and the three previously displayed formulas conclude
the proof of the L2-orthogonality

∫

�

∇NCαFS · CurlNC βFS dx

=
∫

�

∇NCαFS · CurlNC βb dx +
∫

�

∇NCαb · Curl βh dx

=
∑

E∈E

(∫

E
[βb∇NCαFS · τE ]E ds +

∫

E
[αb Curl βh · νE ]E ds

)

= 0.

Step 2 (dimension argument). Since ker(Curl NC|FS(T )) = P0(�), the representa-
tions (2.20)–(2.21) of the Fortin–Soulie space verify the following formulas

dim(∇NCFS0(T )) = #V(�) + #E(�) + #T ,

dim(CurlNC(FS(T ))) = dim(CurlNC(FS(T )/R)) = #V + #E + #T − 2.

Counting the three degrees of freedom per component on each triangle leads to
dim(P1(T ; R

2)) = 6#T . These dimensions and the Euler formulas (2.2)–(2.4) from
Lemma 2.2 conclude the proof

dim(∇NCFS0(T )) + dim(CurlNC(FS(T )/R))

= 2#T + #V + #V(�) + #E + #E(�) − 2 = 2#T + 2#V + 2#E(�) − 2

= 2#E + 2#E(�) = 6#T = dim(P1(T ; R
2)). ��

Remark 5.2 (generalization to non-contractible domain) In order to generalize Theo-
rem 5.1 to domains � with non-connected boundary, the gradient part of the discrete
Helmholtz decomposition needs to be enriched by two types of functions for each
connectivity component �1, . . . , �L inside of � as denoted in Sect. 2.1. First, for
every 	 = 1, . . . , L , define φ	,1 ∈ S2(T ) by the boundary values φ	,1|∂�\�	

= 0
and φ	,1|�	

= 1 and by an arbitrary, but fixed extension of φ	,1 inside the domain �

(e.g., by the minimal norm extension). This definition relates to the enrichment of the
discrete decomposition for the piecewise constant case (cf. Remark 4.4) as well as
of the continuous decomposition of L2(�; R

2). In the piecewise affine case however,
recall the global conforming bubble function b̃h ∈ BNC(T ) ∩C0(�) from (2.19) and
for 	 = 1, . . . , L , define φ	,2 ∈ S2(T ) by an arbitrary, but fixed extension inside of
� of the boundary values φ	,2|∂�\�	

= 0 and φ	,2|�	
= b̃h |�	

. The resulting discrete
Helmholtz decomposition reads

P1(T ; R
2) = ∇NC(FS0(T ) + span{φ	, j : 	 = 1, . . . , L, j = 1, 2}) ⊥© CurlNC(FS(T )).

The orthogonality of the spaces follows analogously to Theorem 5.1 together with
the fact that the tangential derivative of φ	,1 vanishes and that the first moments of
φ	,2|F vanish on every F ∈ F(∂�). The inhomogeneous boundary conditions of φ	,1
imply φ	,1 /∈ FS0(T ). Furthermore, the assumption that there exist vFS = vh + vb ∈
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FS0(T ) = S20 (T ) + BNC(T ) according to (2.20) and α ∈ R with φ	,2 = vFS + αφ	,1
leads to vb = φ	,2 − αφ	,1 − vh ∈ S2(T ). Since BNC(T ) ∩ S2(T ) = span{̃bh}, the
boundary conditions on the outer boundary �0 prove vb = 0. However, the boundary
conditions on �	 then lead to vFS = 0 and α = 0, which shows φ	,2 /∈ FS0(T ) ⊕
span{φ	,1}. Consequently,

dim(∇NC(FS0(T ) + span{φ	, j : 	 = 1, . . . , L, j = 1, 2}))
= #V(�) + #E(�) + #T (�) + 2L.

and the asserted generalized decomposition follows by a dimension argument anal-
ogous to Step 2 in the proof of Theorem 5.1 with the modified Euler formula (2.8)
replacing (2.3).

Remark 5.3 (nonconformity of spaces in affine decompositions) The decomposition of
affine vector fields from Theorem 5.1 consists of nonconforming spaces only. Indeed,
it is impossible that a Helmholtz decomposition of the form

P1(T ; R
2) = ∇NCXNC ⊥© Curl X (5.1)

contains a conforming space X ⊆ H1(�). To prove this, consider the nonconforming
quadratic volume bubble function bNCT ∈ P2(T ) from (2.17). A piecewise integration
by parts proves, for any vh ∈ P2(T ), that

∫

�

∇NCvh · CurlNC bNCT dx =
∫

∂T
bNCT ∇NCvh · τT ds = 0.

Since ∇NCXNC ⊆ P1(T ; R
2), it holds that XNC ⊆ P2(T ) and, hence, CurlNC bNCT

is orthogonal to ∇NCXNC ⊆ ∇NCP2(T ). Moreover, the assumption CurlNC bNCT ∈
Curl X would implyCurlNC(bNCT −βh) = 0 for someβh ∈ H1(�). Since only constant
functions belong to the kernel of the Curl operator, this contradicts bNCT /∈ H1(�).
Altogether,

0 �= Curl bNCT ∈ P1(T ; R
2) \ (∇NCXNC ⊥© Curl X

)
.

Consequently, the decomposition (5.1) cannot hold. An analogous argumentation
shows that there also exists no Helmholtz decomposition of P1(T ; R

2) of the form
∇Y ⊥© CurlNC YNC with a conforming subspace Y ⊆ H1

0 (�).

Remark 5.4 (higher polynomial degrees) A straightforward extension to higher poly-
nomial degrees of Theorem 5.1 is not possible. For instance for k = 2, let CR3

0(T )

(resp. CR3(T )) denote the Crouzeix-Falk finite elements [24] with (resp. without)
boundary conditions. The Euler formula (2.2) reveals
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dim(∇NCCR
3
0(T ) + CurlNC CR3(T )) ≤ dim(∇NCCR

3
0(T )) + dim(CurlNC CR3(T ))

= #T + 3#E(�) + #T + 3#E − 1

= 11#T − 1 < 12#T = dim(P2(T ; R
2)).

Therefore, ∇CR3
0(T ) + Curl CR3(T ) � P2(T ; R

2).

The following result generalizes the discrete Helmholtz decomposition for piece-
wise affine vector fields to 3D. As in 2D, the discrete spaces of both the gradient and
the rotational part have to include the nonconforming element bubbles. However, in
contrast to the two-dimensional situation, one of the spaces has also to include non-
conforming face bubbles (see (2.22) for the definition of the face bubbles). In the first
version in Theorem 5.5 this is the case for the gradient part, while in Theorem 5.7, the
rotational part contains the nonconforming face bubble functions.

Theorem 5.5 Let� ⊆ R
3 be a bounded and contractible polyhedral Lipschitz domain.

Abbreviate the space YNC(T ) := N1(T ) + BNC(T ; R
3) of Nédélec vector fields

enriched with the nonconforming bubble functions from (2.18). The following L2-
orthogonal decomposition holds

P1(T ; R
3) = ∇NCFS0(T ) ⊥© rotNC YNC(T ).

Proof Step 1 (orthogonality). For any vFS ∈ FS0(T ) and αNd ∈ N1(T ), a piecewise
integration by parts and the product rule (2.14) of the jump show

∫

�

∇NCvFS · rotNC αNd dx

=
∑

F∈F

(∫

F
[vFS]F 〈rotNC αNd · νF 〉F ds +

∫

F
〈vFS〉F [rotNC αNd · νF ]F ds

)

.

Since rotNC αNd is piecewise affine, the first term on the right-hand side vanishes.
Lemma2.1guarantees that rotNC αNd·νF consists of tangential derivatives of tangential
components of αNd only. This and the tangential continuity of αNd lead to [rotNC αNd ·
νF ]F = 0 and, hence, ∇NCFS0(T ) is L2-orthogonal to rot N1(T ).

For αT ∈ BNC(T ; R
3), the application of another piecewise integration by parts

and the product rule (2.14) of the jump prove

∫

�

∇NCvFS · rot NCαT dx

=
∑

F∈F

(∫

F
[αT ]F 〈∇NCvFS ∧ νF 〉F ds +

∫

F
〈αT 〉F [∇NCvFS ∧ νF ]F ds

)

.

Since αT is a (multiple of the) nonconforming bubble function on each element, the
first moments of [αT ]F and 〈αT 〉F vanish. Since ∇NCvFS is piecewise affine, this
proves the remaining orthogonality of ∇NCFS0(T ) and rotNC(BNC(T ; R

3)).
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Fig. 1 Illustration of face
tangentials τ1 and τ2 in the
direction of the major and minor
semi-axes of the inellipse N in
the triangle F

Step 2 (characterization of rot(N1(T )) ∩ rotNC(BNC(T ; R
3))). Given a discrete

function vb ∈ BNC(T ; R
3), there exists βT ∈ P0(T ; R

3) such that vb = b̃hβT , where
b̃h ∈ BNC(T ) ∩ C0(�) is the global conforming bubble function defined in (2.19).
For vNd ∈ N1(T ), assume that rotNC(̃bhβT ) = rot(vNd). A product rule and the exact
sequence (2.24) guarantees

∇b̃h ∧ βT = rotNC(̃bhβT ) = rot vNd ∈ RT1(T ).

In particular, [(∇NCb̃h ∧ βT ) · νF ]F = 0 for all F ∈ F(�). Since ∇b̃h ∈ ∇S2(T ) ⊆
N1(T ) and, hence, ∇b̃h ∧ νF is continuous, the wedge-product identity (x ∧ y) · z =
(z ∧ x) · y for all x, y, z ∈ R

3 implies

0 = [(∇b̃h ∧ βT ) · νF ]F = [(νF ∧ ∇b̃h) · βT ]F = (νF ∧ ∇b̃h) · [βT ]F
= (∇b̃h ∧ [βT ]F ) · νF .

For any F ∈ F(�), a straightforward calculation reveals that b̃h |F vanishes in the
midpoints of the edges E ∈ E(F). As a consequence, the zero set N := {x ∈ F :
b̃h(x) = 0} is the Steiner inellipse of the triangle F . Its center coincides with the
barycenter of F . Let τ1 ∈ R

3 be a unit vector in the direction of the major semi-axis
of N and τ2 ∈ R

3 a unit vector in the direction of the minor semi-axis such that τ1,
τ2 and νF are positively oriented, i.e., (τ1 ∧ τ2) · νF = 1. In particular, τ1 and τ2 are
tangential to F and τ1 · τ2 = 0. Let G denote the line through the midpoint of F that
is parallel to τ2, see Fig. 1 for an illustration of this definition. The line G crosses the
level sets of b̃h |F orthogonally. This ensures that the affine term ∇b̃h · τ1 vanishes
along G, i.e., (∇b̃h · τ1)|G ≡ 0.

Consider the decompositions

∇b̃h = (∇b̃h · τ1)τ1 + (∇b̃h · τ2)τ2 + (∇b̃h · νF )νF ,

[βT ]F = ([βT ]F · τ1)τ1 + ([βT ]F · τ2)τ2 + ([βT ]F · νF )νF .

Since y ∧ y = 0 and (x ∧ y) · y = 0 for all x, y ∈ R
3, the bilinearity and the anti-

commutativity of the cross product and the positive orientation (τ1 ∧ τ2) · νF = 1 lead
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to

0 = (∇b̃h ∧ [βT ]F ) · νF = (∇b̃h · τ1)([βT ]F · τ2) + (∇b̃h · τ2)([βT ]F · τ1).

In the restriction to G, the first summand vanishes due to the definition of G (see
above). Hence,

0 = (∇b̃h · τ2)|G ([βT ]F · τ1)|G .

However, (∇b̃h ·τ2)|G is an affine function vanishing solely in themidpoint of F . Since
[βT ] is constant on F , this implies that [βT ]F ·τ1 vanishes. The same arguments show
that [βT ]F ·τ2 = 0 and, hence, βT ∈ H(rot,�). Since� is contractible, the exactness
of the sequence (2.24) results in

βT ∈ P0(T ; R
3) ∩ H(rot,�) ⊆ N0(rot0, T ) = ∇S1(T ).

Consequently, rot(N1(T ))∩ rotNC(BNC(T ; R
3)) consists (at most) of functions of the

form b̃h∇vh for some vh ∈ S1(T ). Therefore,

dim(rot(N1(T )) ∩ rotNC(BNC(T ; R
3))) ≤ dim(∇(S1(T )/R)) = #V − 1. (5.2)

Step 3 (dimension argument). Since � is contractible, the exactness of the
sequence (2.24) means that the kernel of rot : N1(T ) → RT1(T ) equals∇(S2(T )/R).
This shows

dim(rot(N1(T ))) = 2#E + 2#F − (#V + #E − 1) = 2#F + #E − #V + 1. (5.3)

The (piecewise) rot operator has the trivial kernel on BNC(T ; R
3) [38] and, hence,

dim(rotNC(BNC(T ; R
3))) = 3#T .

The sum of the two previously displayed formulas and estimate (5.2) from Step 2
result in

dim( rot NC (YNC (T ))) = dim( rot (N 1(T ))) + dim( rot NC (BNC (T ; R
3)))

− dim( rot NC (N 1(T )) ∩ rot NC (BNC (T ; R
3)))

≥ 3#T + 2#F + #E − 2#V + 2.

(5.4)

Since the piecewise gradient has the trivial kernel on FS0(T ), the dimension formula
from [29, Prop. 3.1] shows

dim(∇NCFS0(T )) = dim(FS0(T )) = #T + #F(�) + #E(�).

The combination of the two previously displayed formulas leads to

dim(∇NCFS0(T )) + dim(rotNC YNC(T ))

≥ 4#T + 2#F + #F(�) + #E + #E(�) − 2#V + 2.
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The consecutive application of the Euler formulas (2.5), (2.2), and (2.7) from Lem-
ma 2.2 proves

4#T + 2#F + #F(�) + #E + #E(�) − 2#V + 2

= 2#T + 4#F + #F(�) − #E(∂�)

= 2#T + 5(#F + #F(�))/2 + 3#F(∂�)/2 − #E(∂�)

= 12#T = dim(P1(T ; R
3)).

Theobvious inclusion∇NCFS0(T )⊥©rotNC YNC(T ) ⊆ P1(T ; R
3) concludes the proof.

��
Remark 5.6 The work [38] proves a local version of the Helmholtz decomposition of
Theorem 5.5, namely

P1(T ; R
3) = ∇NCP2(T ) ⊥© rotNC BNC(T ; R

3).

While in 2D the discrete Helmholtz decomposition of piecewise affine vector fields
consists of the Fortin–Soulie space in both the gradient and the rotation part, the sit-
uation is different for 3D. In Theorem 5.5, the rotational part is conforming up to the
nonconforming element bubbles. The following theorem proves a discrete Helmholtz
decomposition where the gradient part is conforming up to nonconforming element
bubbles. The enrichment by a nonconforming element bubble in both spaces is nec-
essary, see Remark 5.3.

Theorem 5.7 Let� ⊆ R
3 be a bounded and contractible polyhedral Lipschitz domain.

Recall the abbreviation YNC(T ) = N1(T ) + BNC(T ; R
3) from Theorem 5.5, The

following L2-orthogonal decomposition holds

P1(T ; R
3) = ∇NC(S20 (T ) + BNC(T )) ⊥© rotNC(YNC(T ) + BNC

F (T ; R
3)).

Proof The proof is divided into six steps.
Step 1 (orthogonality). The L2-orthogonality of ∇NC(S20 (T ) + BNC(T )) and

rotNC(N1(T ) + BNC(T ; R
3)) follows from Theorem 5.5. Let αF ∈ BNC

F (T ; R
3)

and vh ∈ S20 (T ). A piecewise integration by parts and the facts that the first moments
of [αF ]F vanish and ∇vh ∧ νF is a tangential derivative of the continuous function vh
prove

∫

�

∇vh · rotNC αF dx =
∑

F∈F

∫

F
〈αF 〉F [∇vh ∧ νF ]F ds = 0.

For vT ∈ BNC(T ), the first moments of [vT ]F and 〈vT 〉F vanish. Hence, a piecewise
integration by parts proves the remaining L2-orthogonality

∫

�

∇vT · rotNC αF dx =
∑

F∈F

∫

F
〈vT 〉F [rotNC αF · νF ]F ds = 0.
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Step 2 (split of piecewise rotation-free function). Let qh ∈ P1(T ; R
3) such that

(qh, rotNC βh)L2(�) = 0 for all βh ∈ YNC(T ) + BNC
F (T ; R

3). Theorem 5.5 and the
characterization (2.23) guarantee the existence of vh ∈ S20 (T ), vT ∈ BNC(T ), and
vF ∈ BNC

F ,0(T ) with qh = ∇NC(vh + vT + vF ). Let F ∈ F and βh = bNCF c with

the nonconforming face bubble bNCF defined in (2.22) and some c ∈ R
3. Since the

first moments of bNCF vanish on all faces except F and bNCF is continuous along F , a
piecewise integration by parts leads to

0 =
∫

�

qh · rotNC βh dx =
∑

F̃∈F

∫

F̃
〈βh〉F̃ · [qh ∧ νF̃ ]F̃ ds

=
∫

F
〈βh〉F · [qh ∧ νF ]F ds =

∫

F
βNC
F (c · [qh ∧ νF ]F ) ds.

(5.5)

Abbreviate wh := c · [qh ∧ νF ]F ∈ P1(F). Straightforward computations with the
integrals of the barycentric coordinates λz for z ∈ V(F) reveal that

∫

F
bNCF ds = |F |

2
and

∫

F
bNCF λz ds = |F |

6
=
( ∫

F
bNCF ds

)( 1

|F |
∫

F
λz ds

)
.

This and the equality (5.5) show

0 =
∫

F
βNC
F wh ds =

∑

z∈V(F)

( ∫

F
βNC
F λz ds

)
wh(z)

=
( ∫

F
βNC
F ds

)( 1

|F |
∫

F
wh ds

)
.

Hence, the second factor must vanish and the affine function wh satisfies

0 = 1

|F |
∫

F
wh ds = wh(mid(F)) = c · [qh(mid(F)) ∧ νF ]F .

The fact that this holds for arbitrary c ∈ R
3 implies that [qh(mid(F))∧νF ]F = 0. Since

vh is continuous, [∇vh(mid(F))∧νF ]F = 0. Furthermore, the nonconforming element
bubble bNCT |F attains its maximum at mid(F), and therefore [∇NCvT (mid(F)) ∧
νF ]F = 0. The combination of the aforementioned identities leads, for all F ∈ F , to

[∇NCvF (mid(F)) ∧ νF ]F = [qh(mid(F)) ∧ νF ]F = 0.

Step 3 (local representation of vF ). Let F̃ ∈ F(�) be fixed and let T ∈ T with
F̃ ⊆ T . Let bNC

F̃
be the nonconforming face bubble defined in (2.22) with j, k, 	,m

as in (2.22). A direct computation reveals

∇NCb
NC
F̃

|T = −4(1 − λm)∇λm − 6(λ j∇λ j + λk∇λk + λ	∇λ	).
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Note that bNC
F̃

is continuous on F̃ . Let now F ∈ F(T ) \ {F̃}. Without loss of gen-
erality, assume that F is opposite to the vertex of index 	. Note that λ	|F = 0 and
λn(mid(F)) = 1/3 for n ∈ { j, k,m} and (∇λ j + ∇λk + ∇λm)|F ∧ νF = 0. Hence,

(∇NCb
NC
F̃

|T )(mid(F)) ∧ νF =
(

− 8

3
∇λm − 2(∇λ j + ∇λk)

)
∧ νF = −2

3
∇λm ∧ νF .

Recall vF from Step 2 and let cF ∈ R for F ∈ F such that vF = ∑
F∈F cFbNCF .

For T ∈ T and z ∈ V(T ) with opposite face F ∈ F(T ), define bNCT ,z ∈ P2(T ) by

bNCT ,z |T = bNCF and bNCT ,z |K = 0 for K ∈ T \{T }. Using the coefficients cT ,z = cF , the
function vF can be written as

vF =
∑

T∈T

∑

z∈V(T )

cT ,zb
NC
T ,z .

Let F ∈ F with adjacent tetrahedra T+ and T− (with T− = ∅, if F ∈ F(∂�)). Since
bNCF is continuous along F , the barycentric coordinates λz of z on T+ satisfy

(∇vF (mid(F)) ∧ νF )|T+ =
∑

z∈V(F)

cT+,z∇NCb
NC
T+,z(mid(F)) ∧ νF

= −2

3

∑

z∈V(F)

cT+,z∇λz ∧ νF .

Since ∇λz ∧ νF coincides on T+ and T−, this and Step 2 lead to

0 = [∇vF (mid(F)) ∧ νF ]F = −2

3

∑

z∈V(F)

[cT ,z]F∇λz ∧ νF .

Since two of the three vectors ∇λz ∧ νF for z ∈ V(F) are linearly independent and∑
z∈V(F) ∇λz ∧ νF = 0, this implies that the coefficients for the nodes displayed in

Fig. 2 coincide, i.e., for y, z ∈ V(F),

[cT ,z]F = [cT ,y]F . (5.6)

Step 4 (jump of vF ). Let F ∈ F(�) and let T+, T− ∈ T be the two adjacent
tetrahedra. Note that bNCT+,z |F = bNCT−,z |F for all z ∈ V(F) and

[bNCT ,z]F := bNCT+,z − bNCT−,z = 0

for the remaining nodes z ∈ (V(T+) ∪ V(T−))\V(F) opposite to F . This proves

[vF ]F =
⎡

⎣
∑

z∈V(T )

cT ,zb
NC
T ,z

⎤

⎦

F

=
∑

z∈V(F)

[cT ,z]F bNCT+,z |F .
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Fig. 2 Illustration of jumps. Here, F = T+ ∩ T− and [cT ,z ]F is the jump of the coefficient of bT+,z and
bT−,z , i.e., the face bubbles of the red (lined) and the green (dotted) faces. The equation (5.6) states that
the three illustrated jumps coincide (Color figure online)

Fig. 3 The equation (5.7) is the
sum of the face bubbles of the
three marked faces. It shows that
this is a nonconforming volume
bubble up to a function only
dependent on λy

Step 3 shows that [cT ,z]F = [cT ,y]F for all y, z ∈ V(F) and, therefore, for some
z̃ ∈ V(F),

[vF ]F = [cT ,̃z]F
∑

z∈V(F)

bNCT+,z |F .

Let y ∈ V(T ) be the vertex opposite to F . The definitions (2.22) of bT+,z and (2.17)
of the nonconforming volume bubble lead to

∑

z∈V(F)

bNCT+,z = 2
∑

z∈V(F)

(1 − λz)
2 − 6

∑

z∈V(F)

λ2z − 9λ2y

= 2 − 4
∑

z∈V(F)

λ2z − 9λ2y + 4λy = bNCT+ − 5λ2y + 4λy .
(5.7)

Since λy vanishes on F , the combination of the previously displayed formulas proves

[vF ]F = [cT ,̃z]F bNCT+ |F .

The same arguments show that this also holds for boundary faces.
Step 5 (volume bubble part of vF ). Let T ∈ T and define

αT := 1

3

∑

z∈V(T )

cT ,z and βT :=
∑

T∈T
αT b

NC
T ∈ BNC(T ).
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The goal is to prove that vF − βT ∈ S20 (T ). To this end, let b̃h ∈ BNC(T ) ∩ S2(T )

be the global conforming bubble function from (2.19). Then b̃h is continuous and,
therefore, [βT ]F = [αT ]F b̃h |F . Since cT+,z = cT−,x for z ∈ V(T+) and x ∈ V(T−)

both opposite to F = T+ ∩ T−, the corresponding coefficients can be omitted in the
jump, i.e.,

[αT ]F = 1

3

∑

z∈V(F)

[cT ,z]F .

Step 3 proves [cT ,z]F = [cT ,y]F for y, z ∈ V(F) and, hence, the combination with
Step 4 leads to [vF −βT ]F = 0. Since this holds for all F ∈ F(�), vF −βT ∈ S20 (T ).

Step 6 (conclusion of the proof). Recall qh = ∇NC(vh + vT + vF ) from Step 2.
Steps 3–5 prove vF ∈ S20 (T ) + BNC(T ) and, hence, qh ∈ ∇NC(S20 (T ) + BNC(T )).
Since qh ∈ P1(T ; R

3) was an arbitrary function in the orthogonal complement of
rotNC(YNC(T ) + BNC

F (T ; R
3)), this concludes the proof. ��

Remark 5.8 (multiply connected domains) The discrete Helmholtz decompositions of
Theorems 5.5 and 5.7 also hold true on multiply connected domains with connected
boundary. To see this, recall from [48, Thm. 3] that the kernel N0(rot0, T ) is spanned
by gradients and one additional loop field per cut�1, . . . , �M . This justifies replacing
the upper bound in (5.2) by

dim(rot(N1(T )) ∩ rotNC(BNC(T ; R
3))) ≤ dim(N0(rot0, T )) = #V − 1 + M .

The same applies for one polynomial degree higher and the Betti number

dim(N1(rot0, T )/∇S2(T )) = b1 = M

from [39, Example 9] results in dim(rot(N1(T ))) = 2#F+#E−#V+1−M replacing
(5.3). The proof of Theorem 5.5 then follows with the modified Euler formula (2.9).
The proof of Theorem 5.7 employs the decomposition of Theorem 5.5 in Step 1 of the
proof. All remaining steps are independent of the topology of the domain.

Remark 5.9 (non-connected boundary) As in the 2D case for domains with non-
connected boundary in Remark 5.2, two functions per boundary connectivity com-
ponent �1, . . . , �L inside of � have to be added in the gradient part of the discrete
decomposition. For 	 = 1, . . . , L , defineφ	,1 ∈ S2(T ) by an arbitrary, but fixed exten-
sion (e.g., by the minimal norm extension) of the boundary values φ	,1|∂�\�	

= 0 and
φ	,1|�	

= 1. Furthermore, use the nodal basis functions ϕz of S2(T ) to define

φ	,2 = −2
∑

z∈V(�	)

ϕz ∈ S2(T ).

As in 2D, these functions satisfy φ	,2|∂�\�	
= 0 and φ	,2|�	

= b̃h |�	
with the global

conforming bubble function b̃h ∈ BNC(T ) ∩ C0(�) from (2.19). Then the modified
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discrete Helmholtz decompositions of Theorems 5.5 and 5.7 read

P1(T ; R
3) = ∇NC(FS0(T ) + span{φ	, j : 	 = 1, . . . , L, j = 1, 2})

⊥© rotNC YNC(T ), (5.8)

P1(T ; R
3) = ∇NC(S20 (T ) + BNC(T ) + span{φ	, j : 	 = 1, . . . , L, j = 1, 2})

⊥© rotNC(YNC(T ) + BNC
F (T ; R

3)). (5.9)

The orthogonalities follow analogously to the 2D case. Let ϕE denote the S2(T ) basis
functions for the edge E . The identity ϕz = ∑

T∈T ,z∈T bNCT − ∑
F∈F ,z∈F bNCF +

3
4

∑
E∈E,z∈E ϕE from [29, p. 276] (with corrected sign) then proves

−1

2
φ	,2 =

∑

T∈T
#(V(T ) ∩ V(�	)) b

NC
T −

∑

F∈F
#(V(F) ∩ V(�	)) b

NC
F

+ 3

4

∑

E∈E
#(V(E) ∩ V(�	)) ϕE .

Since the functions bNCT , bNCF , and ϕE form a basis of FS(T ) [29, Prop. 3.2], this
representation is unique. But #(V(E) ∩ V(�	)) �= 0 for boundary edges E ∈ E(�	)

and, therefore, φ	,2 /∈ FS0(T ). While the P1 moments of φ	,2 and functions in FS0(T )

vanish for all boundary faces, the P1 moments of φ	,1 do not vanish for faces on �	.
This shows φ	,1 /∈ FS0(T ) ∩ span{φ	,2 : 	 = 1, . . . , L} and, hence,

dim(∇NC(S20 (T ) + BNC(T ) + span{φ	, j : 	 = 1, . . . , L, j = 1, 2}))
= #T + #F(�) + #E(�) + 2L,

The proof of (5.8) then follows the lines of the proof of Theorem 5.5 with the modified
Euler formula (2.9).

The proof of (5.9) follows analogous to the proof of Theorem 5.7 with the mod-
ification that in Step 2 (multiples of) the functions φ	, j have to be included in the
representation of qh . However, it turns out that the conclusion [∇NCvF (mid(F)) ∧
νF ]F = [qh(mid(F)) ∧ νF ]F = 0 holds true in this situation as well. All remaining
steps of that proof are independent of the topology of the domain.

6 Decompositions for Stokes Equations

The stress of the velocity in the context of the Stokes equations leads to devi-
atoric (or trace-free) matrices. Let Id×d ∈ R

d×d denote the identity matrix and
tr : R

d×d → R the trace operator tr(A) := A11+· · ·+ Add . The spaceR
d×d
dev := {A ∈

R
d×d : tr(A) = 0} is the image of the self-adjoint operator dev : R

d×d → R
d×d with

devM := M − tr(M)/d Id×d called the deviatoric (or trace-free) part of a matrix.
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Recall from Sect. 2.2 that the differential operators rot and rotNC apply row-wise to
matrix-valued functions.

The following theorem shows that a discrete Helmholtz decomposition for devia-
toric matrices follows from the discrete Helmholtz decompositions from Sects. 3–5.

Theorem 6.1 (abstract discrete Helmholtz decomposition for the Stokes equations)
For d = 3 and k ∈ N0, let the finite-dimensional spaces Xh and Yh satisfy the L2-
orthogonal discrete Helmholtz decomposition

Pk(T ; R
d) = ∇NCXh ⊥© rotNC Yh . (6.1)

Abbreviate Zh := {vh ∈ Xd
h : divNC vh = 0}. If �N �= ∅, then let Ỹh := Yd

h and else,
if �N = ∅, let

Ỹh :=
{

βh ∈ Yd
h :

∫

�

tr(rotNC βh) dx = 0

}

.

Then, the following L2-orthogonal discrete Helmholtz decomposition of deviatoric
matrices holds

Pk(T ; R
d×d
dev ) = DNCZh ⊥© dev rotNC Ỹh .

The same decomposition holds for d = 2 and CurlNC replacing rotNC for a scalar
valued function space Yh.

Proof Since dev is self-adjoint and the tensor fields in DNCZh are trace-free, the
orthogonality follows componentwise from the orthogonality in (6.1).

Let σh ∈ Pk(T ; R
3×3
dev ) and αh ∈ Ỹh be a (possibly not unique) solution of

∫

�

dev rotNC αh : dev rotNC βh dx =
∫

�

σh : dev rotNC βh dx for all βh ∈ Ỹh .

If �N = ∅, define

φ(x) :=
⎛

⎝
(e1 ∧ x)	
(e2 ∧ x)	
(e3 ∧ x)	

⎞

⎠

satisfying rot φ = I3×3. If �N �= ∅, let φ := 0. Given γh ∈ Yd
h arbitrary, set

βh := γh − 1

d

(∫

�

tr(rotNC γh) dx

)

φ ∈ Ỹh .

Since dev is self-adjoint and the identity matrix belongs to the kernel of the deviatoric
part, it follows that

0 =
∫

�

(σh − dev rotNC αh) : dev rotNC βh dx
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=
∫

�

(σh − dev rotNC αh) : dev rotNC γh dx

=
∫

�

(σh − dev rotNC αh) : rotNC γh dx

The discrete Helmholtz decomposition (6.1) therefore guarantees the existence of
uh ∈ X3

h with σh −dev rotNC αh = DNCuh . Since the left-hand side is trace-free, so is
the right-hand side, which means that divNC uh = tr(DNCuh) = 0. This concludes the
proof in the case d = 3. An analogous argumentation proves the assertion for d = 2
with φ(x) := (−x2, x1)	 in the case �N = ∅. ��

The following lemma characterizing the kernel of dev rotNC precedes the formula-
tion of specific discrete Helmholtz decompositions for deviatoric matrices.

Lemma 6.2 (discrete tr-dev-div lemma for rotations) Let the finite-dimensional spaces
Xh,Yh ⊆ L2(�) with norm ‖∇NC · ‖L2(�) on Xh satisfy the L2-orthogonality

∇NCXh ⊥ rotNC Yh . (6.2)

Let Ỹh ⊆ Yd
h fulfill the discrete inf-sup condition

‖ph‖L2(�) � sup
vh∈Xd

h \{0}

∫
�
ph divNC vh dx

‖DNCvh‖L2(�)

for all ph ∈ tr(rotNC Ỹh). (6.3)

Then any βh ∈ Ỹh satisfies

‖tr(rotNC βh)‖L2(�) � ‖dev(rotNC βh)‖L2(�) .

Remark 6.3 Note that the trace-dev-div lemma from the literature [19, Lem. 3.3]
bounds the L2-norm of the trace by the L2-norm of the deviatoric part plus the H−1-
norm of the divergence. In the situation from Lemma 6.2, the H−1-norm of CurlNC βh

does not vanish in general due to the possible nonconformity of βh .

Proof of Lemma 6.2 Let βh ∈ Ỹh and set σh := rotNC βh . The discrete inf-sup condi-
tion (6.3) guarantees the existence of vh ∈ Xd

h with ‖DNCvh‖L2(�) = 1 and

‖tr(σh)‖L2(�) �
∫

�

tr(σh) divNC vh dx . (6.4)

Since tr(σh) = σh : Id×d and dev(DNCvh) = DNCvh − (divNC vh/d)Id×d , it follows

∫

�

tr(σh) divNC vh dx = d
∫

�

σh : (DNCvh − dev(DNCvh)) dx .

The orthogonality (6.2) proves

d
∫

�

σh : (DNCvh − dev(DNCvh)) dx = −d
∫

�

σh : dev(DNCvh) dx .
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Since dev is self-adjoint, a Cauchy inequality implies

−d
∫

�

σh : dev(DNCvh) dx = −d
∫

�

dev σh : DNCvh dx

≤ d ‖dev σh‖L2(�) ‖DNCvh‖L2(�) = d ‖dev σh‖L2(�) .

This and (6.4) prove the assertion. ��
Using the abbreviation Z := {vh ∈ P2(T ; R

d) : divNC vh = 0}, define the spaces
of solenoidal Crouzeix–Raviart and Fortin–Soulie vector fields

ZCR(T ) := CR1
0(T ; R

d) ∩ Z , ZCR,D(T ) := CR1
D(T ; R

d) ∩ Z ,

ZFS(T ) := FS0(T ; R
d) ∩ Z .

Furthermore, let

YNC(T ; R
3×3) := N1(T ; R

3×3) + BNC(T ; R
3×3) (6.5)

be the space of row-wiseNédélec tensor fields enrichedwith the nonconformingbubble
functions from equation (2.18). Recall Ŝ

1
N(T ) from (3.8) for d = 2 and define

� :=
{

τh ∈ P2(T ; R
d×d) :

∫

�

τh dx = 0 and
∫

�

tr(rotNC τh) dx = 0

}

.

The following corollary summarizes the resulting discrete Helmholtz decompo-
sitions for deviatoric matrices. The first decomposition has been established in [19,
Thm. 3.2] for the convergence analysis of adaptive Crouzeix–Raviart FEM for the
Stokes equations.

Corollary 6.4 Let � ⊆ R
d be a bounded and contractible polyhedral Lipschitz

domain with polyhedral boundary patch �N. If d = 3, assume that each component
�N,1, . . . , �N,K of �N is simply connected. The following L2-orthogonal decomposi-
tions hold

P0(T ; R
2×2
dev ) = DNCZCR(T ) ⊥© dev Curl(S1(T ; R

2) ∩ �) if d = 2, �N = ∅,

P0(T ; R
2×2
dev ) = DNCZCR,D(T ) ⊥© dev Curl Ŝ1N(T ; R

2) if d = 2, �N �= ∅,

P0(T ; R
3×3
dev ) = DNCZCR,D(T ) ⊥© dev rot(N0(T ; R

3×3) ∩ �) if d = 3, �N = ∅,

P0(T ; R
3×3
dev ) = DNCZCR,D(T ) ⊥© dev rot N0

N(T ; R
3×3) if d = 3, �N �= ∅,

P1(T ; R
2×2
dev ) = DNCZFS(T ) ⊥© dev CurlNC(FS(T ; R

2) ∩ �) if d = 2, �N = ∅,

P1(T ; R
3×3
dev ) = DNCZFS(T ) ⊥© dev rotNC(YNC(T ; R

3×3) ∩ �) if d = 3, �N = ∅,

and the operator dev rotNC has the same kernel as rotNC, in particular dev CurlNC is
injective on S1(T ; R

2) ∩ � and FS(T ; R
2) ∩ �.
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Proof The decompositions follow from the combination of Theorem 6.1 with Theo-
rems 3.3, 4.3, 5.1, and 5.5. The discrete inf-sup conditions for the Crouzeix–Raviart
FEM [25] and the Fortin–Soulie FEM [29, 30] for the Stokes equations show, together
with Lemma 6.2 and the decomposition

rotNC vh = dev rotNC vh + tr(rotNC vh)/d Id×d

for vh ∈ Ỹ d
h in one of the spaces from the Curl/rot part, that dev rotNC vh = 0 implies

rotNC vh = 0. Hence, the kernel of dev rotNC equals the kernel of rotNC. ��

7 Two Further Applications: Linear Elasticity and Biharmonic
Equation

This section is devoted to discrete versions of the following two continuous Helmholtz
decompositions.

Thefirst onewas proved in the context of linear elasticity.Assume that the polygonal
boundary of the bounded Lipschitz domain � ⊆ R

2 is partitioned into two disjoint
components ∂� = �D ∪ �N such that �D is connected and �D and �N have positive
distance. Let �N,1, . . . , �N,L denote the connectivity components of �N. Using

Y :=
{

v ∈ H2(�)/R : Curl v|�N ,1 = 0 and

∀	 = 2, . . . , L ∃c	 ∈ R
2, Curl v|�N ,	

= c	

}

,

the following L2-orthogonal decomposition holds [14, Lem. 3.2]

L2(�; R
2×2
sym ) = ε(H1

D(�; R
2)) ⊥© Curl2 Y , (7.1)

where ε(v) := (Dv + Dv	)/2 denotes the linear Green strain of a displacement field
v ∈ H1

D(�; R
2) and Curl2 the second-order Curl operator from Sect. 2.2.

The second Helmholtz decomposition stems from the analysis of the biharmonic
equation and reads, for bounded and simply connected polygonal Lipschitz domains
� ⊆ R

2, [7, Lem. 1]

L2(�; R
2×2) = Cε(∇H2

0 (�)) + Curl(H1(�; R
2)/R

2) + L2
0(�; R

2×2
asym),

where

L2(�; R
2×2
asym) =

{

ρ ∈ L2(�; R
2×2) : ∃q ∈ L2(�), ρ =

(
0 q

−q 0

)}

,

L2
0(�; R

2×2
asym) = L2(�; R

2×2
asym) ∩ L2

0(�; R
2×2)

andC is the elasticity tensor acting onmatrices A ∈ R
2×2 asCA = 2μA+λ tr(A)I2×2

for positive Lamé parameters μ and λ. Taking only tensor fields with values in the
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symmetricmatrices, one can see that this is equivalent to theHelmholtz decomposition

L2(�; R
2×2
sym ) = Cε(∇H2

0 (�)) + sym Curl(H1(�; R
2)/R

2). (7.2)

Note that for d = 2, the operators ∇ and Curl are the same up to a change of variables
and therefore the Helmholtz decompositions (7.1) and (7.2) are the same up to the
boundary configuration.

Remark 7.1 (weighted decompositions) For brevity, the following discrete decompo-
sitions are presented without any weighting. However, any L2-orthogonal decomposi-
tion L2(�; R

d) = X ⊥©Y can be generalized to a weighted decomposition as follows.
Let A ∈ L∞(�; R

d×d
sym ) be uniformly elliptic almost everywhere, i.e., there exists

α > 0 such that α|ξ |2 ≤ ξ	A(x)ξ for every ξ ∈ R
d and almost every x ∈ �. Then,

the tensor field A leads to the weighted decomposition

L2(�; R
d) = A X ⊥© Y = X ⊥© A Y .

These decompositions are orthogonal with respect to the weighted scalar product
(·, A−1 · )L2(�). The elasticity tensor in the above Helmholtz decomposition can be
understood in this way.

The ideas from [14, Lem. 3.2] generalize the discrete Helmholtz decomposi-
tions of Theorems 3.3, 4.1, 5.1, and 5.5 to the situation of linear elasticity and
lead to the following discrete Helmholtz decompositions. The first decomposition
of the following theorem has also been established by Falk and Morley in [28] in
the context of linear elasticity. If d = 3, recall the definition YNC(T ; R

3×3) :=
N1(T ; R

3×3) + BNC(T ; R
3×3) from (6.5).

Theorem 7.2 Let� ⊆ R
d be a bounded and contractible polyhedral Lipschitz domain.

Assume that its boundary is partitioned into two disjoint connected components ∂� =
�D ∪ �N. The following L2-orthogonal decomposition holds

P0(T ; R
2×2
sym ) = ε(S1D(T ; R

2)) ⊥© Curl2NC MN(T ) if d = 2, (7.3)

and, if �N = ∅,

P1(T ; R
2×2
sym ) = εNC(FS0(T ; R

2)) ⊥© (CurlNC(FS(T ; R
2)) ∩ P1(T ; R

2×2
sym )) if d = 2,

P0(T ; R
3×3
sym ) = ε(S10(T ; R

3)) ⊥© (rotNC(CR1(T ; R
3×3)) ∩ P0(T ; R

3×3
sym )) if d = 3,

P1(T ; R
3×3
sym ) = εNC(FS0(T ; R

3)) ⊥© (rotNC(YNC(T ; R
3×3)) ∩ P1(T ; R

3×3
sym )) if d = 3.

Proof The first decomposition has been proved in [28, Thm. 3.1] and, therefore, the
proof given here is carried out for the second decomposition following the ideas of
[14, Lem. 3.2]. The proof applies analogously to the remaining two decompositions
with the discrete Helmholtz decompositions from Theorems 4.1 and 5.5 replacing the
one from Theorem 5.1.
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Step 1 (orthogonality). The orthogonality follows from the self-adjointness of sym
and the orthogonality of Theorem 5.1: Given vFS ∈ FS0(T ; R

2) and βFS ∈ FS(T ; R
2)

with CurlNC βFS ∈ P1(T ; R
2×2
sym ), it follows

∫

�

εNC(vFS) : CurlNC βFS dx =
∫

�

DNCvFS : CurlNC βFS dx = 0.

Step 2 (decomposition). Given ph ∈ P1(T ; R
2×2
sym ), let uFS ∈ FS0(T ; R

2) solve

∫

�

εNC(uFS) : εNC(vFS) dx =
∫

�

ph : εNC(vFS) dx for all vFS ∈ FS0(T ; R
2).

(7.4)

For qh := ph − εNC(uFS), the discrete Helmholtz decomposition from Theorem 5.1
guarantees the existence of wFS ∈ FS0(T ; R

2) and αFS ∈ FS(T ; R
2) such that

qh = DNCwFS + CurlNC αFS.

Using vFS = wFS as a test function in (7.4) and the symmetry of qh , it follows that

0 =
∫

�

qh : εNC(wFS) dx =
∫

�

qh : DNCwFS dx

= ‖DNCwFS‖2L2(�)
+
∫

�

CurlNC αFS : DNCwFS dx .

The orthogonality of Theorem 5.1 proves that the last term vanishes and, therefore,
wFS = 0.This proves ph = εNC(uFS)+CurlNC αFS and the symmetry ofCurlNC αFS =
ph − εNC(uFS) ∈ P1(T ; R

2×2
sym ) concludes the proof. ��

Remark 7.3 Another discrete decomposition in the context of linear elasticity has been
established by Carstensen and Schedensack in [21, Thm. 3.1] employing the space
of Kouhia-Stenberg functions defined by KS(T ) := S1(T ) × CR1(T ). Analogous
definitions apply to the space including partial homogeneous boundary conditions
KSD(T ). Let � ⊆ R

2 be a bounded polygonal Lipschitz domain with boundary
partitioned into two disjoint components ∂� = �D ∪ �N such that �D belongs to the
boundary of the unbounded connectivity component ofR

2 \�, and let�N,1, . . . , �N,L

denote the connectivity components of �N. For

CR1
N,L(T ) :=

{

vCR ∈ CR1(T ) : ∀	 = 1, . . . , L ∃c	 ∈ R,

∀E ∈ F(�N,	), vCR(mid(E)) = c	

}

S1N,L(T ) := {
vh ∈ S1(T ) : ∀	 = 1, . . . , L, vh is constant on �N,	

}
,

set KS∗
N(T ) := CR1

N,L(T )×S1N,L(T ). Then [21, Thm. 3.1] proves the L2-orthogonal
decomposition

P0(T ; R
2×2
sym ) = εNC(KSD(T )) ⊥© (CurlNC(KS∗

N(T )) ∩ P0(T ; R
2×2
sym )).
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Similar as for the linear elasticity, the discrete Helmholtz decompositions from
Theorems 3.3, 4.1, 5.1, and 5.5 can be generalized to the situation of the biharmonic
equation. Recall the definitions of theMorley finite element spacesM0(T ) andM3

0(T )

from Sect. 2 and recall YNC(T ; R
3×3) := N1(T ; R

3×3) +BNC(T ; R
3×3). For d = 2,

define

S1(T ; R
2)/R

3 :=
{

vh ∈ S1(T ; R
2) :

∫

�

vh dx = 0 and
∫

�

div vh dx = 0

}

,

FS(T ; R
2)/R

3 :=
{

βFS ∈ FS(T ; R
2) :

∫

�

βFS dx = 0 and
∫

�

divNC βFS dx = 0

}

.

The first decomposition of the following theorem is proved in [15, Thm. 3.1, Cor. 3.4-
−3.5] and [31, Thm. 4.5].

Theorem 7.4 Let� ⊆ R
d be a bounded and contractible polyhedral Lipschitz domain.

The following L2-orthogonal decompositions hold

P0(T ; R
2×2
sym ) = D2

NCM0(T ) ⊥© sym Curl(S1(T ; R
2)/R

3) if d = 2,

P1(T ; R
2×2
sym ) = D2

NCM
3
0(T ) ⊥© sym CurlNC(FS(T ; R

2)/R
3) if d = 2,

P0(T ; R
3×3
sym ) = D2

NCM0(T ) ⊥© sym rot(N0(T ; R
3×3)) if d = 3,

P1(T ; R
3×3
sym ) = (DNCFS0(T ; R

3) ∩ P1(T ; R
3×3
sym )) ⊥© sym rotNC(YNC(T ; R

3×3)) if d = 3.

Remark 7.5 In 2D, the gradient and the rotation are the same up to a change of coor-
dinates and, therefore, the first decomposition in Theorem 7.4 is the same as (7.3).

Remark 7.6 A generalization of the Morley finite element space to cubic polynomi-
als in 3D is not known so far. Therefore, the characterization of DNCFS0(T ; R

3) ∩
P1(T ; R

3×3
sym ) as second derivatives of nonconforming functions is left for future

research.

Remark 7.7 Let e1, e2 denote the first and second standard basis vectors of R
2. Define

the space of rigid body motions

RM(�) := span{e1, e2, (x, y)	}.

Then FS(T ; R
2)/R

3 = FS(T ; R
2)/RM(�).

Remark 7.8 There are no non-trivial finite element spaces Xh,k ⊆ H2
0 (�) ∩ Pk(T )

with k = 2, 3 and, therefore, there exist no discrete Helmholtz decompositions of the
form

P0(T ; R
d×d
sym ) = D2Xh,2 ⊥© sym CurlNC Yh,2,

P1(T ; R
d×d
sym ) = D2Xh,3 ⊥© sym CurlNC Yh,3

with conforming spaces Xh,k ⊆ H2
0 (�).
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Remark 7.9 The decompositions of Theorem 7.4 can be easily generalized to decom-
positions of matrices without the symmetry condition in the form

Pk(T ; R
d×d) = D2

NCM ⊥© sym rotNC YNC ⊥© Pk(T ; R
d×d
asym)

= D2
NCM + rotNC YNC + Pk(T ; R

d×d
asym)

for the corresponding spaces M and YNC for d = 2, 3 and k = 1, 2 from Theorem 7.4,
see also [15, Thm. 3.1, Cor. 3.4−3.5] and [31, Thm. 4.5] with Pk(T ; R

d×d
asym) =

Pk(T ; R
d×d) ∩ L2(�; R

d×d
asym). In the latter decomposition, the spaces D2

NCM and

rotNC YNC and the spaces D2
NCM and Pk(T ; R

2×2
asym) are pairwise orthogonal.

Remark 7.10 The work [31, Thm. 4.5] generalizes the first decomposition of Theo-
rem 7.4 to the relevant boundary conditions for Kirchhoff plates, i.e., the boundary
can be decomposed into a clamped, a simply supported, and a free boundary. The cor-
responding boundary conditions in the space S1(T ; R

2)/R
3 are quite technical and

we therefore refer to [31, Thm. 4.5] for details.

Proof of Theorem 7.4 The first decomposition is proved in the publications [15,
Thm. 3.1, Cor. 3.4−3.5] and [31, Thm. 4.5]. The following proof focuses on the
other three decompositions. It is divided into four steps.

Step 1 (orthogonality). The proof follows the lines of the proof of the orthogo-
nality in Theorem 7.2 together with ∇NCM3

0(T ) ⊆ FS0(T ; R
2) [54, Lem. 2.8] and

∇NCM0(T ) ⊆ CR1
0(T ; R

3) [42, Lem. 1].
Step 2 (auxiliary decompositions). Interchanging the gradient and the rotational

part, the arguments from Step 2 in the proof of Theorem 7.2 lead to the decompositions

P1(T ; R
2×2
sym ) = (DNCFS0(T ; R

2) ∩ P1(T ; R
2×2
sym )) ⊥© sym CurlNC(FS(T ; R

2)/R
3),

P0(T ; R
3×3
sym ) = (DNCCR

1
0(T ; R

3) ∩ P1(T ; R
3×3
sym )) ⊥© sym rot(N0(T ; R

3×3)),

P1(T ; R
3×3
sym ) = (DNCFS0(T ; R

3) ∩ P1(T ; R
3×3
sym )) ⊥© sym rotNC YNC(T ; R

3×3).

Note that the proof of Theorem 7.2 does not require uniqueness of the solution uNd ∈
N0(T ; R

3×3) (resp. uNd ∈ YNC(T ; R
3×3)) to

∫

�

sym rotNC uNd : sym rotNC vNd dx =
∫

�

ph : sym rotNC vNd dx (7.5)

for all vNd ∈ N0(T ; R
3×3) (resp. uNd ∈ YNC(T ; R

3×3)).
Step 3 (characterization of DNCFS0(T ; R

2) ∩ P1(T ; R
2×2
sym )). The inclusion

D2
NCM

3
0(T ) ⊆ (DNCFS0(T ; R

2)) ∩ P1(T ; R
2×2
sym ) (7.6)

follows from [54, Lem. 2.8]. Since the asymmetric part of DNC contains the same
entries as curlNC, it holds

DNCFS0(T ; R
2) ∩ P1(T ; R

2×2
sym ) = DNC{wFS ∈ FS0(T ; R

2) : curlNC wFS = 0}.
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The differential operators curl and div are the same in 2D up to a change of coordinates,
and therefore, curlNC : FS0(T ; R

2) → P1(T )/R is surjective [30, Eqn. (42)]. The
decomposition (2.21) and the Euler formulas (2.3)–(2.4) therefore prove

dim(DNCFS0(T ; R
2) ∩ P1(T ; R

2×2
sym ))

= 2#T + 2#E(�) + 2#V(�) − (3#T − 1)

= #E(�) + 3#V(�).

(7.7)

Since ∇NCM3
0(T ) ⊆ FS0(T ; R

2) [54, Lem. 2.8], the continuity and boundary restric-
tions in the definition of M3

0(T ) prove that D2
NC has the trivial kernel on M3

0(T ). This
and [54, Lem. 4.9] show that (7.7) equals the dimension of D2M3

0(T ). Hence,

∇NCFS0(T ; R
2) ∩ P1(T ; R

2×2
sym ) = D2

NCM
3
0(T ),

which concludes the proof of the second decomposition of Theorem 7.4.
Step 4 (characterization of DNCCR1

0(T ; R
3) ∩ P0(T ; R

3×3
sym )). The inclusion

D2
NCM0(T ) ⊆ (DNCCR

1
0(T ; R

3)) ∩ P0(T ; R
3×3
sym ) (7.8)

follows from an integration by parts on the faces [42, Lem. 1]. Since the asymmetric
part of DNC contains the same entries as rotNC, it holds

DNCCR
1
0(T ; R

3) ∩ P0(T ; R
3×3
sym ) = DNC{wCR ∈ CR1

0(T ; R
3) : rotNC wCR = 0}.

The discrete Helmholtz decomposition of (4.3) shows that the dimension of the range
of rotNC : CR1

0(T ; R
3) → P0(T ; R

3) equals 3#T − (#V − 1). This and the Euler
formulas (2.5), (2.2), and (2.7) from Lemma 2.2 lead to

dim(ker(rotNC |CR1
0(T ;R3)))

= 3#F(�) − (3#T − #V + 1) = −2#T + 2#F(�) − #F(∂�) + #E
= #F(�) + #E(�) + #E(∂�) − (3/2)#F(∂�) = #F(�) + #E(�) = dim(M0(T )).

This and the inclusion (7.8) prove (DNCCR1
0(T ; R

3)) ∩ P0(T ; R
3×3
sym ) = D2

NCM0(T )

and conclude the proof. ��
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