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Kurzfassung

Das konzeptuelle Modellieren erstreckt sich über ein breites Spektrum an Disziplinen in der
Welt der Informatik. Eine große Zahl an Anwendungen macht konzeptuelles Modellieren
zu einem allgegenwärtigen Werkzeug für Designer, Entwickler, Projektmanager und andere
Gruppen. Zuletzt wurde Machine Learning in mehreren Anwendungsfällen eingeführt,
wofür jedoch Modell-Kodierungen benötigt werden. Während ein beträchtlicher Aufwand
in die Entwicklung und Verbesserung dieser Kodierungen fließt, fehlt es an Effizienz-
Vergleichen für konkrete Anwendungen. Zudem werden Implementierung von Kodierern
häufig an eine spezifische Modellierungssprache gekoppelt. Das Auswählen der besten
Kodierung für eine Aufgabe ist für Laien daher schwer.

Wir implementieren Conceptual Models to Machine Learning (CM2ML), ein Framework
zum Kodieren der Struktur von konzeptuellen Modellen, auf Basis der Design Science
Research Methodik. Eine Entkopplung von Modellierungssprachen und Kodierungen
durch Einführen einer Zwischenrepräsentation macht es generisch. CM2ML ist modular
und erweiterbar, womit ein flexibler Einsatz sowie eine Erweiterung durch Parser für
neue Modellierungssprachen und Kodierern möglich ist. Experimentieren wird durch
seine komponierbaren Plugins und deren deklarative Parameter, welche eine strukturierte
Schnittstelle für die Konfiguration von Parser- und Kodiererverhalten bieten, erlaubt.
CM2ML inkludiert Adapter für Kommandozeilen und REST Server, während seine
Software Bibliothek Scripting und eine Implementierung neuer Adapter erlaubt. CM2ML
inkludiert einen Parser für UML sowie drei konfigurierbare Kodierer. Neben graphen-
und baumbasierten Kodierern verfügt es über ein Bag-of-Paths (BoP) Framework zum
Kodieren von Modellelementen und deren Kontext in einer anpassbaren Textform. Eine
Webanwendung stellt zudem Visualisierungen für die Zwischenrepräsentation und Kodierer
bereit, womit Nachvollziehbarkeit zwischen Modellen und Kodierungen gegeben ist.

In einer experimentellen Evaluation wird die Effizienz von CM2MLs graphen- und
baumbasierten Kodierern bei der Klassifizierung von Elementen verglichen. Dafür wer-
den verschiedene Konfiguration für den UML Parser und beide Kodierer evaluiert. Die
Ergebnisse zeigen einen deutlichen Vorteil für die graphenbasierte Kodierung sowie
Verbesserungen der Effizienz mit bestimmten Konfigurationen. In einem zweiten Experi-
ment wird der BoP Kodierer so konfiguriert, dass er ein modernes Framework für die
Graph-Sprachmodellierung erfolgreich emuliert. CM2ML kann also zum Vergleichen von
Kodierungen und zum Experimentieren mit Parsern und Kodierern verwendet werden.
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Abstract

Conceptual modeling spans a broad range of disciplines in the areas of software engineering
and computer science. A large number of use cases for conceptual modeling render it an
omnipresent tool for designers, engineers, project managers, and other groups of users.
Recently, researchers started introducing machine learning to certain use cases, which
requires some form of model encoding. While considerable effort is put into developing
and improving those encodings, a lack of comparisons regarding their efficiency for a given
task makes it difficult for non-experts to choose the one best suited. This is reinforced
by implementations of encoders often being tied to specific modeling languages.

We implement Conceptual Models to Machine Learning (CM2ML), a framework for
encoding the structure of conceptual models, following the Design Science Research
methodology. It’s generic in the sense of decoupling modeling languages from encoder
implementations through an intermediate representation (IR). CM2ML is modular and
extensible, allowing it to be used flexibly and extended with support for new languages and
encodings. Its composable plugins and their declarative parameters provide a structured
interface for configuring the behavior of parsers and encoders, enabling experimentation.
CM2ML includes adapters for a command-line interface and a REST server, while its
software library may be used to implement custom adapters or scripts. CM2ML has
a built-in parser for UML and three configurable encoders. Besides a raw graph and
a tree-based encoder, it features a Bag-of-Paths (BoP) framework for encoding model
elements and their context in a customizable textual representation. A web application
that provides visualizations for the IR and each encoder provides traceability between a
model and a resulting model encoding.

In an experimental evaluation, the efficiency of CM2ML’s raw graph and tree-based
encoders for the task of node classification is compared, including different configurations
for the UML parser and both encoders. The results show a clear advantage for the
raw graph encoding and efficiency improvements for certain configurations. In a second
experiment, CM2ML’s BoP encoder is configured to successfully emulate the output of a
state-of-the-art graph language modeling framework. As such, CM2ML may be used to
compare encodings effectively and experiment with parameters for parsers and encoders.
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CHAPTER 1
Introduction

Conceptual modeling is an ever-present aspect of several disciplines in the world of
computer science and software engineering. For example, the latter leverages conceptual
modeling for tasks such as architectural design, business process modeling, documentation,
and code generation [BAD23; SR17]. At the center of conceptual modeling, modeling
languages such as the Unified Modeling Language (UML), ArchiMate, and Ecore enable
the definition of models that represent abstract concepts.
Recently, the conceptual modeling community has started introducing machine learning
(ML) to different stages of modeling workflows [BAR23]. For the definition stage, this
includes model creation itself, as well as the completion of partial models [Di +21; WSS22].
In the later stages, ML may be used to transform models, e.g., by generating model
transformations or analyzing models to gain insights into concepts such as model domain
or model similarity [Bur+22; Lóp+22; Ngu+19]. These tasks, or at the very least their
respective ML training stages, use conceptual models as their input.
As an abstract representation, conceptual models may be encoded in various formats.
Each encoding can capture structural and semantic information about a model to varying
degrees and levels of detail. Currently, there are many different approaches for encoding
the structure of conceptual models, including raw graphs, graph kernels, tree-based
encodings, and Bag-of-Paths (BoP) frameworks [Bur+22; Kha+22; Lóp+22; WSS22].
Research on these encodings often does not compare their efficiency with other approaches
but focuses on a single encoding for a given use case. Few comparisons of encodings are
conducted, resulting in a lack of understanding which encoding may be best suited for
a given task [Lóp+22]. This is reinforced by implementations of encoders being most
commonly tied to a specific modeling language [AB24; BAD23; WSS22]. Further, research
into encodings for conceptual models often proposes configurable parameters [AB24;
BC17; FSG22]. However, manually adapting existing implementations of encoders to
reflect these parameters is a time consuming task, as no common interface for parameter
configurations exists. Encoders are often implemented with different means for configuring
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1. Introduction

said parameters, e.g., code or implementation changes, interactive prompts, and command-
line interface (CLI) arguments with different formats are commonly used [AB24; Bur+22;
FSG22]. Given these circumstances, testing different encodings and comparing their
efficiency for a specific ML task can be challenging.

1.1 Methodology
This thesis follows the Design Science Research (DSR) methodology [Hev+04; Off+09],
because its focus on iterative development and creating artifacts for evaluation enables
a continuous evaluation and validation of an implementation. In the context of this
thesis, the artifacts to evaluate are a modular software framework as a whole but also its
individual modules. We follow the phases of the DSR methodology as described below.

1.1.1 Problem Identification and Motivation
Through a literature review and an expert interview with the thesis’ supervisors, two
senior researchers with backgrounds in the area of conceptual modeling, a gap in the
research around encoding conceptual models was identified. In particular, research
is often focused on implementing a certain encoding for a specific modeling language.
These encodings are often not configurable and not compared with different encodings
for a specific task [Bur+22; WSS22; Kha+22]. Further, evaluative comparisons are
focused on specific ML tasks and different ML models and do not include variations
of a specific encoding [Lóp+22]. As a result, we identify the need for a framework for
encoding conceptual models. The framework should be generic to decouple encodings
from concrete modeling languages. It should also be modular to support an extension
with additional encodings and support for new modeling languages. Finally, it should
be configurable in the way conceptual models are represented and encodings created to
facilitate experimentation.

1.1.2 Objective Definition
Based on the results of the problem identification, we define a list of measurable require-
ments for the framework. Further, the thesis’ supervisors experience in university-level
teaching revealed additional requirements beyond technical aspects. In particular, vi-
sualizing the inner workings of encodings in order to provide traceability for relating
model to model encoding is an important criteria in teaching. Thus, the goal of the
thesis is to implement a framework, called Conceptual Models to Machine Learning
(CM2ML), for encoding the structure of conceptual models. This framework should meet
the requirements defined in section 1.2.

1.1.3 Design and Development
Based on the defined objectives, the CM2ML framework is implemented iteratively. In
addition, modular design is used to guide the development of the framework’s architecture.

2



1.2. Goal of the Thesis

In each iteration, a functional framework is created as an artifact. As some implementation
requirements or limitations only materialize during development, continuous design
readjustments of the frameworks and its modules are made as required.

1.1.4 Demonstration
The framework’s functionality is validated by conducting a comparison of two encodings
for the ML task of node classification. Further, its third built-in encoding is validated by
configuring it to resemble a state-of-the-art encoding. Finally, the runtime performance
of the framework is demonstrated in an experiment. All three demonstrations simulate
real-world applications to highlight how the CM2ML framework is usable for such
scenarios.

1.1.5 Evaluation
The CM2ML framework is evaluated using test-driven development (TDD) [Ast03] to
validate its artifacts during and after each iteration. This approach enables an early
detection of issues and limitations, supporting iterative development. Further, the three
demonstrations described above form an assessment of the requirements defined as part
of the objective definitions.

1.2 Goal of the Thesis
Based on the problem identification and objective definition phases of the DSR method-
ology, we define the following requirements for the CM2ML framework.

[REQ1] Genericity: The framework should be generic. An intermediate represen-
tation (IR) should decouple encoders from concrete modeling languages.
A parser for UML models using the Eclipse Papyrus serialization format
should be implemented.

[REQ2] Modularity: The framework should be modular. Its individual modules,
i.e., parsers and encoders, should be available as standalone components
for developers.

[REQ3] Portability: To enable various use cases, the framework should be
portable across different environments. This includes a software library, a
CLI, a representational state transfer (REST) server, and a web applica-
tion.

[REQ4] Extensibility: The framework should be extensible. The software library
should support an extension of the CLI and REST environments with
custom parsers and encoders.

3



1. Introduction

[REQ5] Configurability: The framework should be configurable. Parameters
of parsers and encoders should be configurable without modifying the
framework’s implementation.

[REQ6] Traceability: A dedicated web application should provide visualizations
for the IR and outputs of all built-in encodings. These visualization should
show how different parts of an encoding output correspond to specific
elements of the IR.

[REQ7] Performance: The framework and encoders should be performant enough
to encode batches of at least 1,000 conceptual models in reasonable time,
i.e., one minute, on consumer hardware.

1.3 Research Questions
The thesis aims to answer the following research questions:

[RQ1] Can a framework fulfilling the requirements of genericity, modularity,
portability, extensibility, configurability, traceability, and performance be
realized?

[RQ2] Can such a framework be used to effectively compare the efficiency of
different encodings?

1.4 Structure of the Thesis
Chapter 2 describes the thesis’ background and related work. Afterward, chapter 3 details
the implementation of the CM2ML framework, followed by a presentation of its visualizer
in chapter 4. Next, chapter 5 presents the built-in encoders and configurable parameters
of CM2ML, which are then evaluated in chapter 6. Finally, chapter 7 summarizes the
thesis’ results and presents opportunities for future work.
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CHAPTER 2
Background and Related Work

This chapter first describes the background of conceptual modeling with UML. Afterward,
a dataset of UML models used throughout the thesis is presented. Finally, work related
to the thesis is detailed.

2.1 Conceptual Modeling with UML
This section provides an overview of conceptual modeling, using UML as an example.
Given the size of the conceptual modeling field, it is not exhaustive and instead presents
topics relevant for the scope of the thesis. Since UML is complex by itself, we only present
key concepts of the UML modeling language. For further reading, the UML specification
describes all inherent elements of the modeling language [Obj17].

2.1.1 Classes
UML has hierarchically organized classes, also referred to as types in this thesis. Each
class may have zero, one, or multiple generalizations. Generalizations are a form of
inheritance, i.e., a class inherits associations, attributes, and transitive generalizations
from each of its generalized classes. A number of categories of UML classes exist. For
example, structural classes like Interface or Property describe the structure of
their instances. Behavioral classes such as Event and Activity can be used to define
behavior, while others like ActivityGroup or Package may be used to group their
contained elements. Finally, the Comment class is only concerned with adding textual
annotations to UML models.

2.1.2 Elements
Elements are the foundational building blocks of UML models. Each element has an
assigned type, i.e., a UML class. In essence, elements are instances of classes with
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2. Background and Related Work

attributes and associations. In UML modeling software, elements are usually depicted as
nodes of different shapes and sizes.

2.1.3 Associations
Associations are connections between two or more elements, with many associations
having defined types for their connected elements. They can represent relationships,
references, or containment and are commonly depicted as lines connecting the nodes
of elements. Classes may redefine associations from their generalizations and, e.g., add
semantic information.

2.1.4 Attributes
Both associations and elements may have attributes in UML. Attributes have a name, a
type, and a value. Classes of the UML metamodel have attributes with primitive types
and optional default values. In particular boolean, numeric, string, and enumeration
literals are used as values in the UML metamodel.

2.2 Dataset
The development of the UML parser and the evaluation of CM2ML’s encoders is guided
by a dataset containing 46,731 UML models. This dataset is a subset of the MAR
dataset [LC20], a collection of UML models crawled by the MAR model search platform
from sources such as public GitHub repositories. Similar to the ModelSet dataset [LCC22],
this dataset is curated by removing any identical duplicates. The curation and manage-
ment of the dataset was conducted by the thesis’ assistant advisor. For reproducibility,
the dataset is published online1. This dataset is chosen over the popular ModelSet for its
wider coverage of UML classes, an important factor for implementing a UML parser with
TDD.

2.3 Related Work
As the usage of ML applications for conceptual models increases, researchers have
continued developing and improving encodings of conceptual models. This section will
first present seven state-of-the-art structural encodings, followed by existing research that
deals with comparing different encodings. Further, it will analyze existing evaluation
approaches for structural encodings.

2.3.1 State-of-the-Art Structural Encodings
Based on a systematic review of encodings for conceptual models by Ali et al. [Ali+23], a
number of structural encodings relevant to the thesis are identified and presented below.

1https://owncloud.tuwien.ac.at/index.php/s/QiHnZEOaWPyxzrW, password “cm2ml”.
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2.3. Related Work

MODEL

...ASSOCk

assock.targetassock.sourceassock.name

OBJi

ATTS

...eli.attrj .name

eli.attrj .type

eli.identifier

eli.type

Figure 2.1: Tree-based encoding for models using globally enumerated associations.

Recently, Smajevic [Sma22] implemented a generic transformation process for creating
graphs based on conceptual models. The proposed process is generic and able to
transform different modeling languages into a common graph structure. In particular, the
implementation is able to transform the three modeling languages Ecore, ArchiMate, and
UML2. This work is of relevance to the thesis, because it shows that graphs are capable
of representing models from different modeling languages. Further, it demonstrates that
a graph structure that extends simple labeled nodes and edges with attributes is able to
capture both structural and semantic information of conceptual models.

While not targeting a generic end-to-end process, some research into encodings of
conceptual models considers support for multiple modeling languages. For example,
Burgueño et al. [Bur+22] detail a generic transformation process for a tree-based encoding.
Their process includes several steps that are modeling language-independent. The
proposed encoding is a tree, with a structure as shown in Figure 2.1, that captures
the structural information of conceptual models. While not explicitly mentioned, their
transformation process can be adapted to support a generic graph-based IR, as long
as identifiers and types of elements are accessible. To evaluate their encoding, a tree
long short-term memory network (Tree-LSTM) is trained to transform class models to
relational models. In a second experimental evaluation, Burgueño et al. [Bur+22] train a
Tree-LSTM to generate Java code from UML models.

Weyssow et al. [WSS22] also propose a tree-based encoding. While their use case is
different from that of Burgueño et al., their tree structure is similar and exhibits only
few differences. Namely, association nodes are children of the node corresponding to the
association’s source element, as depicted in Figure 2.2. In addition, only the identifier
of an element, and not also its type, has a distinct node separate from other attributes.
Finally, the attributes are encoded differently. Instead of attribute name and value, types
and names of attributes are included in their tree structure.

Fumagalli et al. [FSG22] present a pattern-discovery workflow for conceptual models.
2The serialization format used by the Eclipse Papyrus UML tool is supported.

7



2. Background and Related Work

METAMODEL

...CLASSi

ASSOCIATIONS

...eli.assock.target

eli.assock.name

ATTRIBUTES

...eli.attrj .type

eli.attrj .name

NAME

eli.name

Figure 2.2: Tree-based encoding with locally enumerated associations.

Their proposed workflow consists of several tasks, the first being a language-dependent
import of conceptual models. This first task creates a graph for each imported conceptual
model. The next tasks of the workflow, i.e., discretization, normalization, embedding,
and mining, are all language-independent. Their goal is to support different modeling
languages. They realize this goal by making all tasks, except the model import, language-
independent.

López et al. [Lóp+22] implement a range of different semantic and structural encodings.
Among the latter, they include a raw graph encoding for graph neural network (GNN)
models. They transform conceptual models to graphs and create adjacency lists from the
resulting edges. To encode elements as feature vectors, they enumerate attribute values
and replace each value with its corresponding index.

Khalilipour et al. [Kha+22] also propose a graph-based IR. Their encoding leverages
graph kernels to compare the structure of graphs and extract features. While only
implemented for Ecore, their method also considers compatibility with other modeling
languages such as UML, hence the usage of a language-independent IR.

Ali and Bork [AB24] present a BoP approach with their Graph Language Modeling
framework for Conceptual Models (GLaM4CM) that operates on conceptual models
from a graph-based perspective. It enriches data from individual nodes with contextual
information of neighboring nodes by connecting them through paths. Afterward, these
paths are encoded in a textual representation.

2.3.2 Encoding Comparisons
López et al. [Lóp+22] conduct a comparative study evaluating the efficiency of different
encodings for the task of model classification. They implement a framework that enables
a comparison of various structural and semantic encodings and their performance for
this tasks. As required by the structure of the encodings at hand, they use different
ML models for their evaluation. Their framework differs from the goal of the thesis,
because it is focused on a singular task, i.e., model classification. It is not concerned
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2.3. Related Work

with encoding configurability and experimentation. Further, it does not meet some of
CM2ML’s requirements, e.g., traceability or portability. For structural encodings, their
framework uses graphs as an IR. Their mapping approach from conceptual models to
graphs transforms each model element to a graph node, each association to an edge, and
assigns each node a name and class, i.e., type.
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CHAPTER 3
Framework

This chapter describes the CM2ML framework and its modularity concept. CM2ML is
published as a monorepo on GitHub1. The framework is split into a number of separate
modules, also referred to as packages or components. This architectural choice enables
a usage of individual components in environments that may not support other parts of
the framework. In particular, the CLI and REST packages are not supported by, and
thus redundant for, browser environments, in which the software library may be used.
One core concept of the CM2ML framework is the separation of parsers and encoders.
Parsers turn a serialized conceptual model into an instance of the framework’s IR, which
is then consumable by any encoder, as they transform IR instances into encoder-specific
data structures.

First, the core concepts of the framework, plugins and adapters, and their underlying
technology are detailed. Next, the IR enabling arbitrary combinations of parsers with
encoders is presented. Afterward, the implemented UML parser and built-in deduplication
approach are outlined. Finally, an overview of the framework’s architecture is given.

3.1 Technology
The technology behind CM2ML is determined by its requirements presented in section 1.2.
In the following subsections, the individual technologies are presented.

3.1.1 TypeScript
To meet the portability requirement, we implement the framework using the TypeScript
programming language [Micb]. As Typescript transpiles to JavaScript, the CM2ML
framework may be used in browser applications. In addition, JavaScript runtimes such as

1https://github.com/borkdominik/CM2ML
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3. Framework

Node.js [Dah] and Bun [Sum] enable a usage of the framework in a number of scenarios,
including CLIs, desktop apps, or servers. Another strong point of TypeScript is the
ease-of-distribution for the CM2ML framework, as users may simply install the framework
using a package manager of their choice, like npm, pnpm, or Bun.

We choose TypeScript over JavaScript for three reasons. First, we leverage its type
checking for static code analysis [BAT14]. Each component and plugin of CM2ML has
typed inputs, parameters, and outputs. With type checking, we are able to, e.g., ensure
that composing two components is only possible if their outputs and inputs match. Next,
TypeScript code is usually of higher quality, indicated by a lower number of code smells
per line of code [BM22]. Finally, the inclusion of type declarations in code artifacts may
provide auto completion to users of CM2ML’s software library, even if they are not using
TypeScript themselves.

3.1.2 Turborepo

We use the monorepo development strategy, i.e., the usage of a single, shared git repository
for all individual components, to organize the development of the CM2ML framework.
Turborepo [Ver], a build system for TypeScript and JavaScript projects, allows the
definition of tasks with dependencies, inputs, and outputs. Using Turborepo allows us
to orchestrate code analysis, testing, and building of all components that constitute the
entirety of the CM2ML framework. Beyond that, the task orchestration also enables a
semi-automated execution of the evaluations performed in chapter 6. Turborepo ensures
that all components are built and up-to-date, then executes the framework for a selected
encoder and finally starts the evaluating ML Python application by executing a respective
script.

3.1.3 Libraries

A number of software libraries, i.e., packages in JavaScript terminology, are used across
every component of the CM2ML framework. These are presented below, while packages
only used in specific components of CM2ML are detailed in the respective sections.

Vite

While Vite [Voi] is foremost a development server for web applications, it may also be
used to bundle, i.e., build TypeScript packages from source code. We also implement
vite-plugin-lib [Mül], a Vite plugin that automatically configures a range of settings for
bundling TypeScript packages without requiring additional configuration. vite-plugin-lib
also creates type declarations for bundled packages. These are required to maintain type
information, as the bundled code is transpiled JavaScript. vite-plugin-lib is published on
npm and used to build every component of the framework. Vite also enables a usage of
Vitest [Vit], a modern unit testing library used extensively across CM2ML to validate
implementations.
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Zod

Zod is a library for declaring data schemas and validating input [McD]. As CM2ML
deals with user provided input for parameter configuration, we employ Zod across the
framework to define schemas for parameters. User-provided input is then automatically
validated by the framework using Zod. Should input not adhere to a parameter’s schema,
a human-readable error message is generated by Zod and presented to users.

3.1.4 Continuous Integration
A continuous integration pipeline based on GitHub Actions ensures that each Turborepo
task can be successfully executed in a clean environment for every commit. These tasks
include building packages, running static analysis with ESLint [Ope], executing unit and
End-to-End (E2E) tests, and performing type checking. It is also configured to publish
packages with npm’s provenance statements. These statements allow users to validate
how, when, and where a published package was built. As a result, supply-chain security
is increased [npm].

3.2 Plugins
Plugins are the building blocks of any workflow within the framework and implemented
in the package @cm2ml/plugin. In simple terms, a plugin is a named execution step
of a workflow with a list of input parameters. Each plugin has typed input and output
with optional parameters, similar to a regular TypeScript function. The main goal of
plugins is not to prevent code duplication and enable reuse, but to establish a well defined
interface for plugin adapters and encapsulate parameter definitions.

3.2.1 Parameters
A parameter is defined by a name, datatype, description, default value, and an optional
group. Depending on the datatype, it may also have a list of allowed values. Plugins
have a validation schema for input parameters that is automatically derived from their
parameter declaration. These validation schemas may be used by adapters that deal with
user-provided input to ensure the validity of parameter configurations. The following
parameter types are available and used across the framework.

boolean

A simple boolean value, that can either be false or true.

number

Any integer or floating point number. The allowed values may be restricted and validated
by plugins at runtime.
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string

Any string, or an enumeration value if a list of allowed values is defined. If such a list
is given, the parameter type is treated as an enumeration and user-provided values are
validated by the parameter’s schema.

list<string>

A list of strings, or a list of enumeration values if a list of allowed values is defined.
Validation behavior for enumeration values is analogous to that of string parameters.
Beyond that, list parameters can be flagged as unique and ordered. Uniqueness treats the
list as a set without duplicates, while an ordered list is never sorted by the framework.

3.2.2 Composition
Plugins can be combined and modified in a number of ways using helper functions. Most
importantly, two plugins can be chained. This is simply referred to as composition and
results in a new plugin that invokes the second plugin with the output of the first plugin.
To propagate the type-safe nature of plugins, the input type of a plugin created through
composition matches that of its first plugin, while the output type matches that of its
second. The parameters of such a plugin equal the merged parameters of its composed
inputs. The composition mechanism ensures that there are no parameter naming conflicts
at runtime.

Next, plugins can be modified to accept batch input by wrapping them using the batch
function. These batch plugins invoke their underlying plugin for every item of an input
batch and return the corresponding list of outputs. Of course, a plugin implementation
may also work on batches directly, but this utility enables a more streamlined definition
of plugins that do not have to process batch metadata.

In order to support per-item error handling for batch plugins, the trying and catching
primitives are implemented. The former is a modifier that wraps a plugin with try-catch
logic. When invoked, it either returns the underlying plugins output or, should an error
be thrown, an ExecutionError. The latter is a standalone plugin that accepts input
of a given type as well as instances of ExecutionError. When invoked, it acts as
a passthrough for non-ExecutionError inputs. Every caught ExecutionError is
thrown again, unless its continueOnError parameter is enabled. This enables batch
workflow executions that can ignore invalid input and continue with valid items.

3.2.3 Structured Output
To provide a common output structure for the framework, we define the Structured-
Output interface. It is a generic record with two fields, data and metadata. For each
field the interface has a generic type, so that it may be used for different data structures.
By convention, the data field is used to store output for a single batch entry, or in the
case of batch plugins, store an output array matching the size of an input batch. The
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metadata field on the other hand is only used for data that is shared for every entry
of a batch. This metadata should be identical by reference for every item, to reduce
memory usage for large batches by preventing duplication. If this is not possible, the
metadata field must be equal by value for all items of a batch.

3.3 Adapters
The @cm2ml/plugin-adapter package exports the PluginAdapter class, which
includes utility methods for applying, i.e., registering, plugins in an execution environment.
Plugin adapters have a typed input and output, which all of their applied plugins must
adhere to. The following two plugin adapters are implemented as part of the framework.
Both receive a list of strings, i.e., serialized conceptual models, as input and emit
StructuredOutput. The data of this structured output is typed as an array with
elements of the type unknown, while metadata is also typed as unknown. Since plugin
adapters are only responsible for serializing output as JSON, they do not need to know
the actual output datastructures of applied plugins.

3.3.1 CLI adapter
The CLI adapter, found in the @cm2ml/cli-adapter package, can be used to define
and instantiate a CLI that exposes each applied plugin as a separate subcommand. An
executable CLI configured to include all of the built-in parsers and encoders is provided in
the @cm2ml/cli package. It is implemented with CAC [EGO], a lightweight framework
for creating CLIs. For each plugin, the adapter creates two subcommands, one for
processing a single conceptual model and the other for processing an entire batch at once.
Subcommand names are equal to a plugin’s name, with the batch version being prefixed
with “batch-”.

Conceptual models are provided via a path for the single-model subcommand. For batch
subcommands, the path of the directory containing the input models must be provided
instead. The CLI adapter then resolves the files and reads their content, which is, in turn,
provided to plugins as input. Output is either written to an output file, also referenced
by its target path, or to the console. For batch subcommands, the output will be written
as a JSON dictionary with the names of input files as keys and their corresponding
encodings as values.

Plugin parameters are exposed as options, i.e., arguments, for each respective sub-
command. The adapter automatically configures the subcommand options for each
loaded plugin based on its respective parameter schema. Should a plugin have the
continueOnError parameter, it is ignored for the single-input variant. Batch subcom-
mands have two additional options on the other hand. start allows users to define an
offset from the beginning of the list of files in a directory. Further, limit enables the
configuration of an upper limit for the number of files to process. Both have no default
values, thus all files in a directory are processed by default for batch subcommands.
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3.3.2 REST adapter
Located in the @cm2ml/rest-adapter package, the REST adapter configures an
HTTP server that exposes a route for every applied plugin. Powered by the low-overhead
Fastify [The] web framework, it enables the remote encoding of models. Analogous to the
CLI, a pre-configured executable of a REST server with all built-in parsers and encoders
is available through the @cm2m/rest package.

Only two endpoints are static. The first, /health, is a GET endpoint and returns the
number of applied plugins. This minimal endpoint may be used to validate uptime and
check server status. Next, /plugins is a GET endpoint returning the metadata of all
applied plugins. This metadata included each plugin’s name and parameter data, i.e,
parameter name, type, default value, and description.

Each applied plugin has a dynamically generated POST endpoint /plugins/{name},
where {name} is the plugin’s name. When invoked, these dynamic endpoints first validate
the request body, which must be valid JSON. The body must also contain the key input,
with its value being a non-empty array containing the serialized input models. Further,
values for each parameter of a plugin may be configured by providing them under the
respective parameter’s name in the body. Unlike the CLI, the REST adapter has no
special endpoint for processing a single input model. The response of a plugin-specific
endpoint is JSON-serialized StructuredOutput. Encodings are contained in the data
array and may be positionally matched to each provided entry in the input array of the
request body.

3.4 Software Library
Each module of the framework is installable as a standalone package. For convenience, we
provide two additional packages, @cm2ml/builtin and @cm2ml/cm2ml. The former
exports all individual parser and encoder plugins of the framework, as well as utility
functions for composing a list of parsers and encoders to create ready-to-use plugins
for adapters. In addition, it exports a list of pre-composed plugins that combine every
built-in parser and with every built-in encoder. We refer to these pre-composed plugins as
prepared plugins. The second package, @cm2ml/cm2ml, includes all individual modules
of the framework as well as the two pre-configured CLI and REST adapters and their
executable binaries.

3.5 Intermediate Representation
An IR for conceptual models is the key enabler for being able to use one encoder
implementation for different modeling languages. It is particularly important that an IR
is expressive enough to capture the structural and semantic information from models of
different modeling languages, while also providing the data required for various encodings.
Of course, it is not possible to foresee every possible modeling language and encoding,
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thus potentially limiting future usage of the IR. As such, CM2ML’s IR implementation is
based on the related work presented in section 2.3. The implemented IR is a composite
data structures that captures two distinct perspectives on conceptual models, which
are presented below. Each instance of an IR model can also be marked as strict by its
instantiating parser. Strict models will have additional validations performed across the
framework to ensure that input models are valid.

3.5.1 Metamodel Information
It is necessary for some encoders to have access to certain metamodel information. Thus,
for each model of the IR, we include a reference to metamodel information based on a
concrete modeling language. Available information includes a list of available attribute
names, a list of possible types for elements, as well as the names of the attributes used
for storing identifiers, types, and element names. With this static configuration data,
accessor functions for these special attributes are automatically generated. As a result, it
is possible to use those accessor functions for, e.g., accessing a model element’s type or
identifier in an encoder, without knowing which modeling language is used or having to
differentiate between languages.

3.5.2 Models as Graphs
The IR’s first view on models treats them as graphs to capture connections, e.g., UML
associations, between model elements. Elements are treated as nodes, while associations,
i.e., references between elements, are treated as edges. Both nodes and edges can have
attributes, with certain attributes, i.e., identifiers, types, and names, receiving special
treatment. Attributes can be typed to support type-sensitive use cases like, e.g., encoding
attribute values. The available types are unknown, string, category, integer,
float, and boolean. It should be highlighted that all values are stored as strings to
prevent the need for type casting at runtime. With this approach, the types of attributes
only have to be used when necessary, e.g., during the above mentioned encoding of
attribute values. Nodes and edges can also have tags, which may be initialized by a
parser as desired but are designed to match a keyword used for a node or edge in a
modeling language’s serialization.

3.5.3 Models as Trees
Second, any hierarchical relations between model elements are captured by also presenting
the nodes of IR models as a tree structure. For example, UML models have the concept
of containment. The tree structure captures that concept by exposing contained elements
as children of their container. As a limitation, all models must have exactly one root
element. For modeling languages with no concept of a single root element, a possible
workaround might be the inclusion of a virtual root element, that has the actual root
elements as children. Since the creation of the tree structure is parser-specific, such a
workaround would require no changes to the framework.
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3.5.4 IR Post-Processor
The framework includes a plugin designed for modeling language-independent processing
of IR models. This plugin may be used by parser authors as desired. It validates a number
of postconditions for an IR instance, like ensuring each node has a unique identifier. For
non-strict IR models, the post-processor plugin will remove any invalid nodes. These
include non-root nodes without any edges or identifiers.

In addition it implements a number of optional transformations that are configurable
through parameters. In particular, the plugin offers the two boolean parameters
nodeTagAsAttribute and edgeTagAsAttribute. If enabled, the post-processor
will add an attribute to nodes or edges that contains the respective tag. Finally, the
unifyTypes boolean parameter may be enabled to, if applicable, merge type attributes
for all nodes and edges. Since some modeling languages can use different attributes for
type information, e.g., xmi:type and xsi:type in UML, this flag may be required to
ensure a predictable categorical encoding of their values.

3.6 Parsers
In the CM2ML framework, parsers are plugins that transform serialized conceptual
models, i.e., strings, into instances of the IR. Through composition with encoder plugins,
which are detailed in chapter 5, parsers enable a usage of their modeling language with
every implemented encoding. This thesis implements a parser for UML models using the
serialization format of the Eclipse Papyrus modeling software. As a reusable foundation,
an Extensible Markup Language (XML) parser is implemented. Both are described
below.

3.6.1 XML Parser
The framework’s reusable XML parser is implemented using the htmlparser2 [Win] library.
It should be highlighted that the XML parser is not usable standalone and requires
configuration from parser authors. In particular, a metamodel configuration as described
in subsection 3.5.1 and a handler for text XML nodes are required.

The parser itself is a plugin that consumes an XML string and emits an instance of the
IR. However, this IR instance does not yet match a modeling language’s metamodel.
The XML parser only performs a number of modeling language-independent tasks. First,
it creates an IR node for every XML element in its input. Next, it registers the node
of each element as a child of the element’s parent’s node. In addition, it parses the
XML attributes of each element and creates a corresponding attribute for the element’s
IR node. By default, the parser ignores text XML nodes and delegates the handling
of such nodes to concrete parsers through a configurable callback. The output of the
XML parser are instances of IR models without any edges. The XML parser has two
boolean parameters, debug and strict, that default to false. The values of both
parameters are stored in IR models to be checked by other plugins that are invoked after
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the XML parser. If debug is enabled, plugins may print debugging information useful
for plugin development. strict is more important, as it signals plugins to perform
input validation, as described for the IR post-processor in subsection 3.5.4.

3.6.2 UML Parser

The framework includes a parser for UML models in the serialization format used by
the Eclipse Papyrus modeling software. It is a composition of the XML parser, a plugin
referred to as a metamodel refiner for UML models, and the IR post-processor described
in subsection 3.5.4. The concepts of the UML parser are presented below.

Pre-processing

In a first step, the parser removes a number of explicitly unsupported elements. These
include certain XML extensions and legacy UML types that are not present in version
2.5.1 of the UML specification. Further, it generates an identifier for each IR node that
does not yet have one. The reason for this is that some encodings require identifiers for
all IR nodes to be present.

Refinement

Since the XML parser already creates IR instances with nodes, the task of the metamodel
refiner is to create edges for UML associations. In addition, the UML parser is responsible
for inferring the UML types of elements. To complete both tasks, it leverages a hierarchical
execution of handlers for UML types. To refine an IR node, the refiner first determines
which handler is applicable by searching a handler registry for a node’s type or tag. If
no handler is found, the element is removed in non-strict mode and an error is thrown
in strict mode. Next, the handler for the node’s UML type is invoked. Handler’s are
implemented on a type-basis and thus know which attributes and associations an element
of their type should and can have. Handlers set default values for attributes that are not
yet present on an IR node.

Further, handlers resolve all corresponding IR nodes for associations their respective type
might have according to the UML metamodel. Associations may be resolved through XML
attributes or tags of child elements. For example, the importedElement association
of an ElementImport instance may be referenced through an XML attribute of the
same name or by one of its child elements having a tag of the same name. Refiners
resolve elements using both approaches at the same time. In the case of references via
XML attributes, the refiner removes the XML attributes as they are not valid UML
attributes according to the specification. While resolving a given association, a handler
has knowledge about the expected type of resolved elements according to the metamodel.
At this point it attempts to infer or narrow types for resolved elements. If a resolved
element has no type information attached, the expected type of the resolved association
is assigned. On the other hand, if a resolved element has a type but it is a generalization
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of the resolved association’s type, it will be overwritten with the inferred type because
the inferred type is more specific.

Once a handler has resolved all associations and inserted default values for missing UML
attributes, it invokes the handlers of UML generalizations of its own type. E.g., the
handler for the Namespace type invokes the NamedElement handler, which invokes
the root handler for the Element type.

A number of UML associations can only be resolved after all IR nodes have been refined.
These include inheritedMember and importedMember due to their transitive nature.
These are resolved iteratively until no further UML associations are created. Since UML
package merges are mostly used by metamodel builders, not recommended for regular
modeling, and the matching, i.e., merging, rules for elements are often ambiguous, package
merges are not resolved by the parser [DDZ08].

Filters

The UML parser offers customizable whitelists and blacklists for allowed UML classes,
attributes, and associations. By default, all six of these lists are empty and, thus, ignored.
A node, an attribute, or an edge is allowed by a blacklist if its type, name, or tag is not
present in the list. Similarly, a node, an attribute, or an edge is allowed by a whitelist if
the whitelist is empty or contains the type, name, or tag respectively. A node, attribute,
or edge will only be included in the parser’s output if it passes both the applicable
blacklist and whitelist.

External References

UML models may contain external references to, e.g., other UML files. We ignore and
remove such references, e.g., by deleting href attributes from elements. This is most
relevant for UML profiles, a mechanism used to customize the UML modeling language.
Profiles and the diagram-visualization UML classes presented in Annex B of the UML
specification [Obj17] are not supported by the framework. However, the parser is able to
handle all other UML classes listed in the core specification, totaling 193 classes and 49
abstract classes.

Validations

In its strict mode, the parser does not accept invalid or unknown input data. In addition,
some validation checks are executed to ensure that input models are well defined. While
not guaranteed, in non-strict mode the parser can also handle invalid models or ones
using a different serialization format that is similar to that of Eclipse Papyrus. In such
cases, the invalid data is ignored and removed from the IR.
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Parameters

A summary of the UML parser’s configurable parameters is given in Table 3.1. Through
composition, it also inherits the parameters of the IR post-processor described in subsec-
tion 3.5.4.

Parameter Type Default Value Description

debug boolean false If enabled, log debugging information.

strict boolean false
If enabled, perform validations

and do not accept invalid models.

onlyContainment-
Associations

boolean false
If enabled, do not create

IR edges for non-containment associations.

relationships-
AsEdges

boolean false
If enabled, transform IR nodes
of UML relationships to edges.

nodeWhitelist list<string> []
Whitelist of UML element types to include.

Root nodes will never be removed.
Ignored if empty.

nodeBlacklist list<string> [] Blacklist of UML element types to exclude.

edgeWhitelist list<string> []
Whitelist of association tags to include.

Ignored if empty.

edgeBlacklist list<string> [] Blacklist of association tags to exclude.

attributeWhitelist list<string> []
Whitelist of attribute names to include.

Ignored if empty.

attributeBlacklist list<string> [] Blacklist of attribute names to exclude.

randomizedIdPrefix boolean false
Use a randomized prefix for generated ids,

instead of “eu.yeger”.

Table 3.1: Configurable parameters of the UML parser.

Test-Driven Development

In an automated unit test suite, the parser is invoked for every model of the dataset
described in section 2.2, facilitating TDD. First limited to a batch of 100 models, increasing
the number of included models step-by-step enables an iterative implementation of the
UML parser. By failing tests for models who have elements with no assigned type, the
TDD approach highlights handlers with missing type inference. With the additional
validations performed by the UML parser, this approach also identifies unresolved
associations. If an association remains unresolved, either an unknown attribute used for
this association or child XML elements with a respective tag are present. This knowledge
may then be used to identify and extend the handler responsible for such an unresolved
association.

In this test suite, all 46,731 UML models are parsed four times with different parser
configurations. We test all combinations of values for the two boolean parameters
onlyContainmentAssociations and relationshipsAsEdges and save all four
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encodings for each model as a snapshot. Through these snapshot, the unit tests ensure
no unexpected changes to the parser are introduced by accident.

During the TDD, we also identified 78 invalid models in the dataset. The two most
common reasons for a model being invalid are an identifier being used twice or an element
having two generalization associations to the same target element. We are able to use
these invalid models to also test the strict mode’s validations.

3.7 Deduplication
López et al. [Lóp+22] describe the occurrence of duplicate conceptual models in datasets
as a threat to the accuracy of results of ML evaluations. In particular, the presence
of duplicates may result in an increased accuracy for ML architectures that resemble
memorization approaches. This may skew results in favor of such architectures. As
such, the thesis’ literature review identified deduplication as an important feature for
the CM2ML framework. We thus provide a composable plugin deduplicate that is
automatically applied to all built-in encoders. While disabled by default, the boolean
configuration parameter deduplicate may be activated to filter all duplicate output
entries. Only the first occurrence for each group of duplicated entries remains in the
output. For the built-in encoders, the deduplication is the last step of the encoding
process.

Again, taking separate executions of encoding processes for different datasets into account,
the deduplicate plugin can also be configured to deduplicate batch data based on one
or multiple previously processed batches. For this, the deduplicationData parameter
accepts a list of strings, which must be serializations of framework output in batch mode.
For the current batch, the plugin will then also remove duplicates of any those previously
generated output values.

3.8 Architecture
The CM2ML framework’s architecture is shown in Figure 3.1. In this context, a workflow
is a prepared plugin, i.e., a composition of a parser plugin, an encoder plugin, and the
deduplication plugin.

In a typical usage flow, a user first submits input, i.e., a batch of conceptual models and
parameters for configuration to an adapter. After reading user input, an adapter will
start the workflow execution by invoking a prepared plugin associated with the user’s
input. For example, the CLI adapter invokes the plugin whose name is associated with a
command entered by a user and the REST adapter selects the correct plugin according
to which endpoint which is called. The invocation of a prepared plugin automatically
validates parameters provided by users. Regardless of which parser is contained within
the invoked plugin, it emits instances of the IR. These IR models are then passed on to
the encoder of the prepared plugin, which consumes them to create an encoding. As the
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Figure 3.1: Architecture of the CM2ML framework. Components with dashed borders
(gray) are not implemented and represent possible extensions.
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second to last step, the deduplication plugin will, if enabled, remove any duplicates in the
encoding batch. Finally, an adapter will handle plugin output, e.g., perform serialization
or report errors.
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CHAPTER 4
Visualizer

In order to aid the understandability of the implemented encoders and to fulfill the
traceability requirement [REQ6], we implement a visualization frontend in form of a
local-first web application1. After detailing the technology and state management used
for implementing the visualizer, this chapter presents its user interface. Finally, the
testing approach of the visualizer is briefly described.

4.1 Technology
To enable a fast development, we use React [Met] as our frontend framework and
shadcn/ui [sha] as a library for customizable and accessible user interface components.
The visualizer is built as a progressive web application (PWA) with client-side rendering
and no backend connectivity. Because the visualizer uses the CM2ML framework as a
software library, both the parsers and encoders can be executed client-side in the browser.
This allows the visualizer to be installed as a desktop or mobile app using browsers such
as Google Chrome or Safari. Once installed, the visualizer works without an internet
connection.

4.2 State Management
The visualizer’s entire state is stored on-device using the localStorage application
programming interface (API). It uses zustand [Hen] for state management, as this complex
part of the application is shared in a number of places. The application has four different
categories of state. First, it stores user settings such as the theme, i.e., light or dark
mode, the selected view for the IR and the active layout. Next, the model state includes,
if available, a selected parser, the serialized input model, and the parameter configuration

1https://jan-mueller.at/external/cm2ml
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Figure 4.1: Input methods for conceptual models in the visualizer.

provided by users. Analogously, the encoder state contains a selected encoder and its
parameter configuration. Finally, the selection state, which is not persisted across sessions,
contains information about any active selection of model elements, i.e., nodes or edges.
This information is used to synchronize selections between IR and encoder views.

4.3 User Input
The visualizer enables users to configure both input models as well as parameters of
parsers and encoders interactively. In the following subsections, both areas are detailed.

4.3.1 Model Inputs

The visualizer offers three choices for configuring models. First, a syntax-aware editor,
depicted in Figure 4.1, may be used to either enter or paste serialized models. While
the syntax highlighting may depend on the selected modeling language, the visualizer
currently supports XML as it’s used by Eclipse Papyrus’ UML format. XML is also used
by default if no language parser is selected.

Below the textual input, users may alternatively choose a model file using their browser’s
built-in file selection or specify a remote URL from which a model should be retrieved.
For both of these options, the serialized models will be shown in the text editor after
reading an input file or retrieving it from the given URL.
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4.3.2 Parameter Inputs
An input form for parameters of both parsers and encoders is derived automatically from
their parameter declarations. Within these forms, parameters are grouped and ordered
alphabetically. The user interface for boolean, string, and numeric parameters are simple
checkboxes and HTML inputs. For string parameters with a list of allowed values, a
dropdown with the available choices is shown instead.

The user interface for list parameters is more complex, depending on whether such a
parameter has a list of allowed values or is configured as ordered. For the former, users
are shown a dropdown for adding new values from the available choices to their selected
list, as indicated in Figure 4.2a. This dropdown also supports filtering the set of allowed
values. Further, values of ordered list parameters may be reordered with drag-and-drop
gestures, as shown in Figure 4.2b. If a list is not restricted to a list of allowed values,
users may also edit list items inline. Each value may be removed individually or the
entire list can be cleared at once. The buttons for both removal options as well as the
highlighted inline editing are shown in Figure 4.2c.

4.4 IR Visualizations
Because the IR supports two different perspectives on conceptual models, i.e., graph and
tree views, the visualizer also offers two visualizations for IR instances. Beyond that,
it shows metadata about conceptual models and detailed information for any selected
nodes or edges in its details panel.

4.4.1 Graphs
The graph visualization of IR models is shown in Figure 4.3. It is built using the vis-
network [Alm] library and, thus, fully interactive with support for panning, zooming,
and moving nodes. Nodes and edges of the IR correspond to nodes and edges in the
visualization respectively. In this view, all edges between two IR nodes are represented
as a single, undirected connection. This decision is based on readability issues caused by
a large numbers of edges between two nodes. The labels of nodes consist of, if available,
a node’s name followed by its tag, i.e., its type in the case of UML models. The shape
of nodes is determined by their number of connections. If a node has four or more
neighboring nodes, it is displayed with a circular shape. Otherwise, a more compact
rectangular shape is used. Clicking on nodes or edges selects them, while dragging a
node moves it around the view.

4.4.2 Trees
The tree visualization of IR models, shown in Figure 4.4, does not include IR edges.
Instead, it depicts IR nodes in a hierarchy that is based on the tree structure of an
IR instance. Implemented with React Flow [web] its does not allow for nodes to be
rearranged as an optimized hierarchical layout is calculated by the visualizer instead.
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(a) Dropdown for selecting list parameter
values from a list of allowed values.

(b) Reordering values of ordered list parame-
ters with drag-and-drop.

(c) Inline editing of list parameter values with-
out a restriction to allowed values.

Figure 4.2: User interface for list parameters.
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Figure 4.3: Graph visualization for IR models.

The labels of nodes in the tree view are identical to those of the graph view, and clicking
on a node selects its corresponding IR node analogously.

4.4.3 Details Panel
The details panel can either show selected nodes, selected edges, or metadata about
the current IR model if no selection is made. The last case is depicted in Figure 4.5a.
For all modeling languages, the metadata includes the number of nodes, edges, and
attributes across the entire IR instance. The right-hand-side column of metadata is
parser-dependent and customizable by parser authors. For the UML parser, a model’s
name as well as the versions of the UML and XMI specification are displayed.

An example for detailed information about a selected node is displayed in Figure 4.5b.
This view lists all attributes of a node alongside their values. Below that, it lists a node’s
parent and children, followed by its two groups of outgoing and incoming edges. Both
edges and all references to nodes, i.e., parents, children, and nodes connected through
edges, are highlighted in blue. Clicking on such a reference discards the current selection
and selects the node or edge corresponding to the reference instead. This enables a fast
exploration of model elements and their detailed information.

An example of the edge details view is shown in Figure 4.5c. This view groups edges
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Figure 4.4: Tree visualization for IR models.

by their source and target, hence both edges between the two nodes of the example are
included there. Below the clickable references to source and target nodes with the same
functionality as the references of the node details view, attributes and their values are
listed.

4.5 Layout
To accommodate as many client devices as possible, the entire visualizer is implemented
using a responsive and resizable layout. Users may select between compact and extended
layouts. Both layouts consist of panels that are split horizontally and vertically. Each
panel is independently resizable to allow for customization of the user interface.

The extended layout has three columns, as shown in Figure 4.6a. The left column contains
the model input and parser configuration, followed by two vertical panels for the IR
visualization and details panel in the middle column. The right-most column contains the
encoder configuration and visualization, again distributed across two panels. This layout
enables experimentation with parser and encoder parameters with immediate feedback
through updated visualizations.

On the other hand, the compact layout, visible in Figure 4.6b, is optimized for smaller
screens. It only uses two columns and requires users to switch between input forms and
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(a) Metadata about the current IR model. (b) Detailed information about a selected node.

(c) Detailed information about selected edges.

Figure 4.5: Details panel for IR metadata, selected nodes, and selected edges.
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visualizations. The left column either shows the model input and parser configuration
form or the IR visualization and details view in two vertical panels. Analogously, the
right column shows the encoder configuration or the visualization for the encoding. As a
downside, users are not able to see changes to parameter configurations immediately and
must submit their input first.

4.6 Encoding Visualizations
Each built-in encoding of the framework has its own visualization. Inspired by the usage of
interactive visualization by Sanchez-Lengeling et al. [San+21], the encoding visualizations
each show to which element of an IR instance a part of an encoding corresponds to, i.e.,
they provide traceability between a model and a model encoding. This is achieved by
encoders emitting additional mapping data where required. This mapping data in turn
is used to bidirectionally translate selections of IR elements to selections in an encoding
visualization and vice versa. E.g., users are able to select a node or edge in the IR
graph view and, if it exists, a corresponding part of an encoding will be selected and
highlighted as well. The same holds for the other direction. If an encoding has multiple
representations for an element of an IR model, this mechanism will select all matching
elements. The concrete visualizations for each encoder are detailed in the encoder’s
respective section. Visualizations for adjacency matrices and lists of the raw graph
encoding are presented in subsection 5.2.1 and subsection 5.2.2 respectively. The tree’s of
the tree-based encoder are detailed in subsection 5.3.1. Finally, the BoP encoder’s paths
are shown in subsection 5.4.3. The output of encoders without a dedicated visualization
is presented in a readonly JSON text view that offers syntax highlighting analogous to
the model input form’s editor.

4.7 End-to-End Testing
We implement E2E tests for the visualizer using Playwright [Mica], a framework for
automated user interface testing. Playwright interacts with the user interface like a human
user would. Because the visualizer’s core functionality is providing traceability [REQ6],
the E2E tests ensure that the synchronization between selections in the two IR views
and all three encoder visualizations works bidirectionally. Since each E2E test includes
a configuration of both parser and encoder parameters, the dynamically generated
parameter forms and their input components are covered by the tests. Twenty-two tests
are executed with Chromium, Firefox, and Webkit rendering engines, totaling 66 test
executions. As a result, the visualizer’s cross-browser compatibility is validated.
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(a) Extended layout with three columns.

(b) Compact layout with two columns.

Figure 4.6: Details panel for IR metadata, selected nodes, and selected edges.
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CHAPTER 5
Encoders

This chapter details the implementation of the raw graph, tree-based, and BoP encoders.
They are implemented as plugins that operate on batches of the framework’s IR format.
Further, this chapter presents a dedicated plugin for encoding features, i.e., attributes.

5.1 Feature Encoder
To facilitate the framework’s modularity, a dedicated plugin for feature encoding is
implemented. It operates in a two-stage process. The first stage collects all values of
each attribute in all models of a batch. Based on this information, the feature encoder
determines how categorical attributes should be encoded. The second stage happens in
subsequent plugins that use functions provided in the feature encoder’s output. These
functions support the creation of feature vectors for IR nodes and edges, as well as
encoding the values of individual attributes.

5.1.1 Encoding Types
Each of the IR’s six types for attribute values can be encoded as described below.

integer and float

Integer and float attribute values are not encoded, as they are immediately usable as
input for ML models.

boolean

Boolean values use the common encoding of mapping true to 1 and false to 0. This
approach is aligned with programming languages such as C, JavaScript, and Python.
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category

Categorical attributes have textual values with a finite domain, e.g., behave like an
enumeration. The encoding process for categorical values leverages the two-stage encoding
process. During the collection stage, all values for each categorical attribute in a batch
of IR models are enumerated and an index is assigned. Then, the encoding functions
output by the feature encoding plugin can encode categorical values by replacing them
with their respective index. This method of encoding categorical values is also known as
label encoding. Since the domain of categorical attributes is finite, the maximum index
for any categorical value does not increase with batch size.

string

While string values are similar to categorical values, their infinite domain poses a problem
for label encoding. Namely, the unlimited vocabulary problem may occur with increasing
batch sizes [Bur+22]. As a workaround, semantic embeddings of text may be used.
However, these reach into the realm of semantic encodings for conceptual models, which
are not within the scope of the thesis. To keep the structural encodings simple, the
framework offers the option to treat values of string attributes as categorical values and
use a label encoding, ignoring the unlimited vocabulary problem. However, configuration
parameters of the feature encoder plugin also allow users to either output string values
in their raw, un-encoded form, or omit them entirely.

unknown

Some attributes, and thus also their types, may not be known to a modeling language’s
parser implementation. Since values of such attributes cannot be sensibly encoded, the
feature encoding plugin throws an error if any are encountered. This approach also has
the benefit of guiding the development of parsers for additional modeling languages by
highlighting missing metamodel information.

5.1.2 Encoding Alignment
One issue of this approach for feature encoding is a possible misalignment of feature
vector size, layout, and attribute value encoding. For example, consider two batches, with
the first batch containing model elements with attributes as well as categorical attributes
with values that both do not occur in the second batch. Then, feature vectors for elements
of the second batch will not match those of the first batch, due to an attribute not being
present at all. If the second batch also has attributes not occurring in the first batch, it
may match the feature vector shape but have entirely different attributes for some given
indices. Further, the presence of different categorical values in the second batch will
result in a different value enumeration and thus an encodig mismatch for those values.

To circumvent this issue, the feature encoding plugin offers two parameters for injecting
feature encoding metadata generated by previous executions of the plugin. One parameter
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is for attributes of IR nodes, the second for attributes of edges. This metadata is a
serialized JSON object that contains a list of attributes for feature vectors, as well as
known values for categorical features. If one of those parameters is configured, features
will be encoded with two restrictions. First, only attributes also present in the metadata
will be included. Additional attributes will be ignored to maintain feature vector shape.
Attributes that are part of the metadata, but not present in a model element will be
encoded as 0. Next, the known values for categorical attributes are included during the
collection stage and prepended to the enumeration. This ensures that no mismatch can
occur for categorical values.

5.1.3 Standalone Usage
The feature encoder may also be used as a standalone encoder. Its output is functionally
identical to that of the raw graph encoder, without any adjacency information related
to edges being present. No dedicated visualization is implemented for this standalone
encoder.

5.1.4 Parameters
The configuration parameters of the feature encoder are listed in Table 5.1. Beyond the
two parameters for alignment, the encoder’s parameters are designed to enable filtering
attributes by their type. A possible strategy is enabling onlyEncodedFeatures and
any of the raw parameters to exclude an entire group of parameters.

5.2 Raw Graph Encoder
The implementation of the raw graph encoder is based on the concept of the raw graph
encoding presented by López et al. [Lóp+22]. Its output consists of two parts. First,
feature vectors for nodes and attributes of IR instances are created using the feature
encoder detailed in section 5.1. To match feature vectors to their corresponding IR
nodes, the latter are first enumerated and sorted by their identifiers. While this does
not fix the problem of permutation invariance [San+21], it ensures a stable order and
thus deterministic output. Feature vectors may then be matched to their nodes by
their indices. In addition, adjacency information is captured in a user-selectable format.
The encoder offers two formats, which are based on the work of Sanchez-Lengeling et
al. [San+21]. The raw graph encoder supports optional weighting for both formats. An
edge’s weight is in the range (0, 1] and anti-proportional to the number of incoming edges
of its target node. In other terms, the higher the number of edges sharing a single target,
the lower each edge’s weight is.

5.2.1 Adjacency Matrix
An adjacency matrix of an IR model with n nodes has n × n cells. The nodes of an IR
model are enumerated and their indices correspond to rows and columns of an adjacency
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Parameter Type Default Value Description

rawFeatures boolean false
If enabled, no attribute

will be encoded.

rawBooleans boolean false
If enabled, boolean attributes

will not be encoded.

rawCategories boolean false
If enabled, category attributes

will not be encoded.

rawNumerics boolean false
If enabled, integer and float
attributes will not be encoded.

rawStrings boolean false
If enabled, string attributes

will not be encoded.
onlyEncoded-
Features

boolean false
If enabled, un-encoded attributes

will be ignored.

nodeFeatures string — Serialized feature metadata as
described in subsection 5.1.2.

edgeFeatures string — Serialized feature metadata as
described in subsection 5.1.2.

Table 5.1: Configurable parameters of the feature encoder.

matrix. Each cell is a numeric value that indicates if the node associated with its row
has an outgoing edge to the node associated with the cell’s column. A cell value of 0
represents no connection between two nodes, while a value of 1 indicates a connection.
If weighting is enabled, connection weights will be used instead of the fixed value of 1.
The adjacency matrix format has a number of drawbacks. First, the matrices are not
memory efficient for graphs with few connections [San+21]. E.g., a graph with n nodes
and just n − 1 edges still has an n × n adjacency matrix. In addition, each cell of a
matrix may only represent one edge between two nodes. Since the IR supports multiple
edges between nodes, adjacency matrices suffer from a loss of information. Because of
this loss of edge information and no inherent order of edges, the raw graph encoder does
not emit edge feature vectors if this format is selected.

The visualization for weighted adjacency matrices is depicted in Figure 5.1. The saturation
of a cell’s color indicates the weight of its corresponding edge, with a less saturated cell
having a lower weight. Figure 5.1a shows how an edge selection in the matrix is reflected
in the IR view by highlighting the matrix cell associated with an edge. Analogously,
Figure 5.1b presents how a selected node results in all matrix cells corresponding to its
outgoing and incoming edges being highlighted.
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(a) Edge selection in adjacency matrix (right) and IR view (left).

(b) Node selection in adjacency matrix (right) and IR view (left).

Figure 5.1: Adjacency matrix visualization with selections.
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Parameter Type Default Value Description

format string list
The format of adjacency data.

Either list or matrix.

weighted boolean false
If enabled, the adjacency data will

include connection weights.

Table 5.2: Configurable parameters of the raw graph encoder.

5.2.2 Adjacency Lists

To circumvent the disadvantages of adjacency matrices, adjacency lists are used as the
encoder’s default format. These lists contain an entry for every edge of an IR model.
Each entry is a tuple with two integer values that correspond to the indices of an edge’s
source and target nodes in an enumeration of a model’s nodes. If weighting is enabled, an
edge’s weight is added as an entry’s third value. One immediate advantage of adjacency
lists is space efficiency [San+21]. A graph with n nodes and e edges has e list entries.
Further, the concept of having one entry for each edge allows adjacency lists to contain
separate entries for multiple edges between two nodes. This also allows edge feature
vectors to be emitted. These can be matched to their corresponding edge through their
indices within their respective lists, analogous to feature vectors of nodes.

Figure 5.2 shows an example for the visualization of adjacency lists. The top panel
contains an enumeration of an IR instance’s nodes, while the bottom panel shows an
adjacency list. The list’s entries contain the above described indices of its source and
target nodes within the enumeration. If enabled, weighting is represented through opacity
of list entries, with a higher opacity indicating a higher weight. Clicking on a list
entry selects its corresponding edge in the IR. The reverse direction, i.e., clicking on a
connection in the IR view, highlights all edges represented by the bidirectional connection,
as shown in Figure 5.2a. Node selections are shown both in the node enumeration and
by highlighting all entries for a selected node’s outgoing and incoming edges, as visible in
Figure 5.2b.

Further, the visualization includes feature metadata like the attribute names and types
of features as well as concrete feature vectors as shown in Figure 5.3a. Finally, exact
edge weights are also provided through tooltips as visible in Figure 5.3b.

5.2.3 Parameters

The raw graph encoder offers the two parameters detailed in Table 5.2 as well as all of
the feature encoder’s parameters described in subsection 5.1.4.
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(a) Edge selection in adjacency list (right) and IR view (left).

(b) Node selection in adjacency list (right) and IR view (left).

Figure 5.2: Adjacency list visualization with selections.

41



5. Encoders

(a) Tooltips showing node features (left) and feature metadata (right).

(b) Tooltip showing edge weight information.

Figure 5.3: Feature and weight tooltips.

42



5.3. Tree-based Encoder

5.3 Tree-based Encoder
The tree-based encoder, as the name implies, encodes models as trees. Each tree node has
a string or numeric value and a variable number of children. The set of all values found in
a tree’s nodes is referred to as a vocabulary. Depending on the user-provided configuration,
attribute values may be encoded by the feature encoder detailed in section 5.1. Encoded
trees have a well-defined structure dictated by different formats, which are described
below.

5.3.1 Formats
The tree-based encoder offers two encoding formats, global and local. The name of
a format refers to the location of association nodes in trees. The visualization of the
tree-based encoding is format-agnostic and implemented with reactflow, similar to the
IR’s tree view.

global Format

The global format creates trees in accordance with the work of Burgueño et al. [Bur+22].
Also described by the pseudocode in algorithm 5.1, the global tree format is generated
as follows. First, a single root node with value MODEL is created. For each IR node of a
model, a tree node with the value OBJ is added to the root. Next, a tree node containing
the IR node’s identifier is added to the OBJ node. This identifier node in turn receives
a child node containing the IR node’s type. Then, an ATTS node is added to the OBJ
node. For each attribute of an IR node, excluding its type attribute, two tree nodes with
the attribute’s name and encoded value are created. The node containing the value is
added to the tree node containing the attribute’s name, which is added to the OBJ node
of the IR node. Now, for each edge of an IR model, a node with value ASSOC is added
to the root node. These ASSOC nodes have three child nodes, containing the identifiers
of the edge’s source IR node, target IR node, and tag respectively.

An example of the global tree format’s visualization is given in Figure 5.4. First,
Figure 5.4a shows how a selected node is highlighted by marking the identifier node in
its corresponding subtree. Next, Figure 5.4b depicts a selected edge, which is highlighted
by marking source and target nodes of its corresponding subtree. To aid navigation in
large models, selecting a node or edge in an IR view automatically centers the marked
elements in the tree-based encoding view.

local Format

The tree structure suggested by Weyssow et al. [WSS22] is made available, with slight
modifications, as the local format. Instead of the combination of attribute type and
name they use for their their tree format, CM2ML’s local format uses attribute name
and value analogous to the global format. This change is necessary because the work
of Weyssow et al. is only concerned with trees representing metamodels.
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(a) Node selection in global tree (right) and IR view (left).

(b) Edge selection in global tree (right) and IR view (left).

Figure 5.4: Visualization of a global tree with selections.
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Algorithm 5.1: Pseudocode of the global tree format encoding.
Input: IR instance model
Output: Root node of encoded tree

1 define function createNode(value, parent)
2
3 rootNode ← createNode(“MODEL”, null)
4
5 foreach node ∈ model.nodes do
6 objNode ← createNode(“OBJ”, rootNode)
7
8 idNode ← createNode(node.id, objNode)
9 createNode(node.type, idNode)

10
11 attributesNode ← createNode(“ATTS”, objNode)
12 foreach attribute ∈ node.attributes do
13 if isIdentifier(attribute) or isType(attribute) then
14 continue
15 end
16 attributeNode ← createNode(attribute.name, attributesNode)
17 encodedValue ← encodeAttribute(attribute)
18 createNode(encodedValue, attributeNode)
19 end
20 end
21
22 foreach edge ∈ model.edges do
23 associationNode ← createNode(“ASSOC”, rootNode)
24 createNode(edge.source.id, associationNode)
25 createNode(edge.target.id, associationNode)
26 createNode(edge.tag, associationNode)
27 end
28
29 return rootNode

Trees of the local format are created according to the following steps, which match the
pseudocode of algorithm 5.2. First, a root node with the value MODEL is created. For
each IR node of a model, a tree node with value CLS is added to the root node. Three
nodes, NAME, ATTRS, and ASSOCS are added to each CLS node. A tree node containing
an IR node’s identifier is added to the corresponding NAME node. For each attribute of
an IR node, a tree node with the attribute’s name is added to the IR node’s ATTRS node.
Further, a tree node containing the attribute’s encoded value is added as the child to the
above described node. For each outgoing edge of an IR node, a tree node with the edge’s
target identifier is added to the IR node’s ASSOCS node. In addition, a node containing
the edge’s tag is added to the above detailed node.

The visualization of the local tree format is analogous to that of the global format.
Both node and edge selections are shown in Figure 5.5a and Figure 5.5b respectively.
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(a) Node selection in local tree (right) and IR view (left).

(b) Edge selection in local tree (right) and IR view (left).

Figure 5.5: Visualization of a local tree with selections.
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Algorithm 5.2: Pseudocode of the local tree format encoding.
Input: IR instance model
Output: Root node of encoded tree

1 define function createNode(value, parent)
2
3 rootNode ← createNode(“MODEL”, null)
4
5 foreach node ∈ model.nodes do
6 clsNode ← createNode(“CLS”, rootNode)
7
8 nameNode ← createNode(“NAME”, clsNode)
9 createNode(node.id, nameNode)

10
11 attributesNode ← createNode(“ATTRS”, clsNode)
12 foreach attribute ∈ node.attributes do
13 if isIdentifier(attribute) then
14 continue
15 end
16 attributeNode ← createNode(attribute.name, attributesNode)
17 encodedValue ← encodeAttribute(attribute)
18 createNode(encodedValue, attributeNode)
19 end
20
21 asssociationsNode ← createNode(“ASSOCS”, clsNode)
22 foreach edge ∈ node.outgoingEdges do
23 targetNode ← createNode(edge.target.id, asssociationsNode)
24 createNode(edge.tag, targetNode)
25 end
26 end
27
28 return rootNode

5.3.2 Attribute Encoding

Analogous to the raw graph encoder, the tree-based encoder leverages the framework’s
feature encoder to encode attribute values. Unlike the feature vectors of the raw graph
encoding however, encoded trees have variable numbers of attribute nodes for each
IR node. As a result, values can no longer be matched to attributes by their in-
dex but only by traversing a tree toward its root node. To improve the verbosity of
encoded attribute values, the encoder offers the verboseFeatureValues parame-
ter. If enabled, all attribute values are prefixed with their attribute’s name and type,
e.g., isAggregation_boolean_true or isComposite_boolean_true instead of
a plain true for both attributes.

Because the identifiers of IR nodes are always included in either tree format, regardless
of feature encoder configuration, the parameter replaceNodeIds is made available.
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Parameter Type Default Value Description

format string local
The tree format to use.

Either local or global.

replaceNodeIds boolean false
If enabled, replace identifiers of nodes

with enumerated identifiers.
verboseFeature-
Values

boolean false
If enabled, prefix attribute values

with attribute name and type.

wordsToIds boolean false
If enabled, convert values of tree nodes

to vocabulary tokens.

idStartIndex number 0 Starting value for tokens
if wordsToIds is enabled.

Table 5.3: Configurable parameters of the tree-based encoder.

While the number of unique identifiers in one model is limited by its number of elements,
increasing the number of models in batches could result in vocabulary size increasing as
well. With the replaceNodeIds parameter enabled, the nodes of each IR model are
enumerated and assigned a unique index within the model, that is however shared across
models. In particular, the nth node of each IR instance is assigned the identifier id_n.

As a last step, the tree-based encoder is able to replace each tree node’s string value
with a numeric token. These tokens start at zero by default and are continuously
incremented, although the start value is configurable by users. Enabled via the parameter
wordsToIds, this enables an immediate usage of the encoded trees for ML models that
require numeric input.

5.3.3 Parameters
The tree-based encoder offers a parameter for format selection, two parameters for at-
tribute encoding, and two parameters for tokenization, as listed in Table 5.3. Through
composition, it also inherits all parameters of the feature encoder detailed in subsec-
tion 5.1.4.

5.4 Bag-of-Paths Encoder
The implemented BoP encoding is based on the graph language modeling framework
GLaM4CM described by Ali and Bork [AB24]. Its concept is encoding a conceptual
model as a collection of paths, which are derived from traversing model elements via
their connections. The notion of a step refers to an edge and its target node in a path,
while a segment is either a node or an edge, which occur alternating in paths. The
only node of a path not also part of a step is the starting node. Each segment of a
path, i.e., both its visited nodes and their connecting edges, are encoded with a textual
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representation. While this representation is fixed in the work of Ali and Bork, CM2ML’s
BoP encoder uses a custom expression and templating language for highly customizable
textual representations. In the following, we first present this custom language, followed
by the BoP encoder’s encoding process and configurable parameters.

5.4.1 Expression and Templating Language
We implement a parser for the encoder’s custom expression and templating language
using the JavaScript library Ohm [War]. The language’s grammar is made available to
users of the framework through help text attached to parameters that use the language.
Ohm is able to generate parsers from a parsing expression grammar, which can then
be enriched with semantic operations in JavaScript. The BoP encoder uses Ohm to
implement its custom expression and templating language with three entry points. These
are templates for assigning a numeric weight to a step, as well as encoding nodes and
edges of steps to a textual representation. Thus, we implement the following concepts
and validate each through an extensive suite of unit tests.

Selectors

The language offers selectors for both nodes and edges. Shared selectors for nodes and
edges are attribute, keyword, and path selectors. The former is able to select the value of
a node’s or edge’s attribute by its name, e.g., attr.isAggregation selects the value
of the isAggregation attribute. Keyword selectors can target the identifier, type,
name, and tag of both nodes and edges through the keywords id, type, name, and tag
respectively. These are language-agnostic access methods for attributes corresponding to
each respective keyword. Path selectors can select metadata about a current path, e.g.,
its length and current step index. The two available path selectors are path.length
and path.step.

A source or target selector can be applied as an edge selector. These select an edge’s source
or target node and must be followed by a node selector. An example is source.type,
which selects the type of an edge’s source node.

For nodes, the language allows a selection of both incoming and outgoing edges that
match a user-defined condition. On these edges, an edge selector must then be applied.
For example, the node selector edges.out[tag = owner].target.name selects
the name of the target node of a node’s first outgoing edge with the tag owner. In other
words, this example selector yields the name of a node’s owner in UML models.

Conditions

Conditions can be used to select a specific edge of a node as described above, or to apply
expressions conditionally. A node or edge condition is a node or edge selector followed by
a comparison operator and a literal value. Alternatively, a selector may be combined with
an existence or non-existence check. For example, attr.isAggregation.exists
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is satisfied for nodes and edges that have an attribute named isAggregation. Available
comparison operators are =, �=, ≤, ≥, <, and >. Literal values may include digits,
letters, as well as the special characters :, ., ,, =, -, (, ), and $. An example for a
node condition with a comparison operator is name = MyModel, which is only satisfied
by nodes named MyModel.

Replacements

Replacements are segments of a template expression that are replaced with information
about a node or edge. Alternatively, a replacement can also be a simple literal value that
remains in template output as-is. For both nodes and edges, the language offers regular
replacements and conditional replacements. Regular replacements are wrapped in double
curly brackets and contain a node or edge selector respectively. When a template is
applied to a node or edge, each replacement will be substituted with its selector’s result.
E.g., the replacement {{node.id}} will be replaced by a node’s identifier.

Limited by double square brackets, conditional replacements contain a condition followed
by >> as a separator and one or more regular replacements. When a template containing a
conditional replacement is applied to a node or edge, one of two cases holds. First, a node
or edge does not satisfy the conditional replacement’s condition and the replacement is
removed from the template’s output. Second, its condition is satisfied and the conditional
replacement is substituted with the result of its contained regular replacements. For exam-
ple, the conditional replacement [[type = Package >> Package: {{name}}]]
is replaced with Package: followed by the name of Package elements, while it is removed
entirely for elements of a different type.

Templates

A node or edge template is a sequence of replacements, optionally preceded by a node
or edge condition. Templates without conditions are considered universally applica-
ble, while templates with conditions can only be applied to nodes or edges that sat-
isfy their conditions. When a condition-less template or a template with a satisfied
condition is applied to a node or edge, a textual representation is generated by exe-
cuting each replacement as detailed above. E.g., a template with a condition such as
@type = Package >>> {{name}} is only applicable to elements of type Package.

Step Weighting

A step weighting expression is either a number, or an edge-condition followed by a number.
Similar to templates, step weighting expressions without conditions are considered
universally applicable and a step weighting expression with a condition is only applicable
to steps with edges that fulfill this condition. For example, the step weighting expression
@path.step >= 3 >>> 42 assigns a weight of 42 only to the third step and onward
of a path.
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5.4. Bag-of-Paths Encoder

5.4.2 Encoding Process

The BoP encoding is created in a four-step process. These steps are detailed below.

Paths

In the first step, all paths in an IR model that match user-provided criteria are enumerated
and sorted. Configurable parameters for paths include minimum and maximum path
length, and the option to allow paths containing cycles.

Weighting

Each step in a path is assigned a numeric weight. This weighting of steps uses the
encoder’s custom expression language. Users may configure a list of expressions, which
are checked for applicability in their provided order. The first weighting expression that
is universally applicable or has its condition satisfied by a step is used to calculate this
step’s weight. To optimize performance, step weights are cached and only computed as
required. After the weights of all steps have been evaluated, the weights of paths are
calculated. Depending on the encoder’s configuration, a path’s weight is either equivalent
to its number of steps, the sum of individual step weights, or the product of individual
step weights. In combination with configurable minimum and maximum weight limits as
well as a sort order and an optional upper limit for the number of paths, this approach
enables a fine-grained prioritization and filtering mechanism for paths.

Encoding

The third step is the crucial step of deriving textual representations for each path. For this,
the implemented custom template grammar is leveraged to provide a highly customizable
encoding of path nodes and edges. Analogous to step weighting expressions, templates
are checked for applicability in their provided order. The first applicable template is
used to derive a textual representation for a node or edge. Again, the results of template
applications are cached to avoid redundant evaluations.

Pruning

Depending on configured templates, distinct paths with different nodes may be trans-
formed to identical encoded textual representations during the encoding step. In addition,
the list of paths may contain sub-paths of other paths starting at the same node, i.e.,
prefixes when viewing the paths as concatenated textual representations. If the cus-
tomized encoding is identical for nodes and edges of prefixes and their subsuming path,
the prefixes contain no additional information. Through the customizable pruneMethod
parameter, users may choose to either keep or remove such paths. Removal can also be
limited to paths that do not only have an identical encoding, but also contain identical
nodes.
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5.4.3 Visualization
An example of the BoP encoding’s visualization is shown in Figure 5.6. It includes a
vis-network graph view for each path of an encoding, sorted by their weight according to
the configured sort order. Nodes of these path views correspond to encoded IR nodes
and edges to encoded IR edges. Nodes and edges in path views use their encoded textual
representations as labels. Figure 5.6a shows how every occurrence of a selected node is
highlighted in the path views. Similarly, Figure 5.6b depicts a selected edge having each
occurrence in path views highlighted as well.

In the example of Figure 5.7a, the encoder has been configured to allow cycles and use
the node template {{name}}. As a result, the output path also contains a cycle and
exactly one node for each IR node of its path. However, configuring the encoder to
encode each occurrence of a node in a path differently results in a special situation. As
visible in Figure 5.7b, changing the node template to {{name}}.{{path.step}} can
result in a path containing multiple encoded nodes corresponding to a single node of the
IR. In such cases, a selection highlights every node in a path view corresponding to the
selected node.

It is also possible to select all edges of a path at once by pressing the globe icon on the
left side of a path view. Figure 5.8 shows how this is reflected both in the views of other
paths and the IR graph view.

5.4.4 Parameters
All parameters of the BoP encoder are listed in Table 5.4. Every list<string>
parameter is declared as unique and ordered. The order in particular is of importance
since it determines which step weighting expressions and templates are used. It should
also be highlighted that removing the limit for the maximum number of paths by setting
maxPaths to a valuer smaller than 1 may result in very large outputs depending on the
degree of connectivity a model exhibits.
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(a) Node selection in path (right) and IR view (left).

(b) Edge selection in path (right) and IR view (left).

Figure 5.6: BoP visualization with selections.
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(a) Path with cycles (right) and IR view (left).

(b) Path with cycles and unique representations (right) and IR view (left).

Figure 5.7: BoP visualization with cycles.
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5.4. Bag-of-Paths Encoder

Figure 5.8: BoP visualization with entire path selected (top right) and IR view (left).

Parameter Type Default Value Description

allowCycles boolean false If enabled, paths may include cycles.

minPathLength number 2 Minimum path length.

maxPathLength number 3 Maximum path length.

stepWeighting list<string> [’1’]
Ordered list of step

weighting expressions.

pathWeight string step-sum
Path weighting strategy.

Either step-sum, step-product,
or length.

minPathWeight number 0 Minimum weight of paths.

maxPathWeight number MAX_SAFE_INTEGER Maximum weight of paths.

order string desc
Path sort order based on path weight.

Either asc or desc.

maxPaths number 10 Maximum number of paths.
Values smaller than 1 disable the limit.

nodeTemplates list<string> [’{{name}}.{{type}}’]
Ordered list of node

template expressions.

edgeTemplates list<string> [’{{tag}}’]
Ordered list of edge

template expressions.

pruneMethod string none
Prune method for encoded paths.
Either none, node, or encoding.

Table 5.4: Configurable parameters of the BoP encoder.
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CHAPTER 6
Experimental Evaluation

In this chapter, we present experimental evaluations of the three implemented encodings.
For the raw graph and tree-based encodings, the evaluation trains and tests machine
learning models to perform a node classification task using the dataset described in
subsection 6.2.1. The goal of this first evaluation is to validate that the framework
may be used to compare encodings effectively. The BoP encoding is evaluated using a
unit-testing approach validating that its configurability enables the generation of output
that is similar to that of the GLaM4CM framework of Ali and Bork [AB24]. This second
evaluation also aims to validate that the framework facilitates experimentation through
configurability. Afterward, an evaluation of CM2ML’s encoding time performance is
conducted. Finally, we describe threats to validity that have been identified during the
evaluation.

6.1 Reproduction Package
The evaluations are not part of the CM2ML framework and instead implemented using
industry-standard Python libraries for ML. However, they are included in the framework’s
monorepo and may be viewed as an additional testing layer of the framework’s components
in addition to their individual unit tests. The main Python libraries used for this
evaluation are NumPy [Har+20], scikit-learn [Ped+11], PyTorch [Pas+19], and PyTorch
Geometric (PYG) [FL19]. We use Anaconda [Ana] to create isolated environments
with versioned libraries. The dataset of the experimental evaluations is described in
subsection 6.2.1.

As reproducibility is an important factor, all evaluations are implemented with executable
scripts and Turborepo tasks. Users may easily replicate an evaluation by first downloading
the dataset and copying its files to the dataset folder, followed by installing the framework’s
dependencies and starting the Turborepo task corresponding to the desired encoding. In
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6. Experimental Evaluation

addition, all evaluations use fixed seeds for random number sources to ensure repeated
runs have identical results.

6.2 Methodology
The focus of the evaluation is to answer the research questions and validate that the
framework’s configurability enables an experimentation with encodings and their pa-
rameters. As such, our aim is not to train optimized models and emphasize the tuning
of ML-related hyperparameters. Instead, we aim to produce observable classification
performance differences with various encodings and their customizable configurations.
Thus, certain ML techniques such as optimizing dataset splitting are not performed, as
their effects are not of interest. All evaluations are performed using a 2020 MacBook Pro
with an Apple M1 processor and 16GB of unified memory.

6.2.1 Dataset
The same datasets of UML models are used for each of the evaluated encodings. We
employ a three-way split and create a train, validation, and test dataset for each encoding.
The train datasets are used during model training to optimize weights. Validation
datasets are also used during training, but only to optimize hyperparameters and perform
early-stopping. Finally, test datasets are used to evaluate the models after training. They
are also referred to as hold-out datasets, as models do not get to see their data until
their training is finished.

Due to extensive training time, we use a subset of 1,000 UML models from the dataset
described in section 2.2. Because of this smaller number of models, we employ a three-way
split with 600 models for the training dataset. Our validation and test datasets contain
200 UML models each. For this evaluation, the framework’s encoders are configured to
adhere to these dataset sizes by settings the start and limit parameters respectively.
The former is also adapted for the validation and test datasets to prevent any overlapping
between them or with the training dataset.

Ad-hoc experiments with larger datasets for the models with shorter training time show
either none or only slightly improved metrics. A possible reason for this may be that
additional UML models mostly contain the same, more common elements as the UML
models we do include. The less common elements still occur rarely enough to result in
comparable metrics.

Deduplication

We enable the framework’s built-in deduplication for all encoders used during the
evaluation. Since the evaluations of the raw graph and tree-based encodings consist of
three separately created datasets, we also use the deduplicationData parameter to
ensure no duplicates exist between those datasets.
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Creation Method

All datasets are created through separate invocations of the framework’s encoders using
the built-in CLI. The parameters for each invocation are identical, with the exception
being start, limit, deduplicationData, nodeFeatures, and edgeFeatures.
The reasons behind the usage of the latter two parameters are described in detail for
each encoding below.

6.2.2 Evaluated Metrics
As described by Géron [Gér19], using accuracy as a metric for classification problems
may result in misleading values. In particular, an uneven distribution of classes in the
datasets at hand may result in a large number of false positive predictions. An analysis
of the 1,000 UML models from our dataset reveals that it is indeed skewed. Each label,
i.e., class, has an average of 557.8, but just a median of 32 occurrences. Further, the
maximum number of occurrences is 12,260 for the class PrimitiveType. The reason
for this is the structure of UML models, where some classes such as PrimitiveType,
or Property are usually more common in a model than, e.g., Class. Elements of
type Class may each contain multiple elements of type Property, which in turn often
contain a PrimitiveType. This natural hierarchy skews the distribution of classes in
UML models.

To circumvent the issue of a skewed dataset, we use a confusion matrix approach as
suggested by Géron [Gér19]. The scikit-learn library provides a utility function for
generating classification reports, including precision, recall, and F1 score. We use these
metrics instead for the evaluation, while the accuracy is used for short-circuiting during
training. They are defined as follows, with TP, FP, TN, and FN representing the true
positives, false positives, true negatives, and false negatives respectively:

Precision = TP
TP + FP (6.1)

Recall = TP
TP + FN (6.2)

F1 = 2 × Precision × Recall
Precision + Recall (6.3)

It should be highlighted that the F1 score in the evaluation’s results will not match this
formula, as it is averaged across all classes, while the formula applies to a single class. In
particular, we measure both the macro average and weighted average. Macro-averaging
uses the arithmetic mean of the individual metrics for each class. In contrast, weighted-
averaging considers the number of occurrences in the datasets for each class to calculate
a weighted arithmetic mean.
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According to Géron, which of these three metrics is most relevant for the evaluation of an
ML model depends on its application and requirements. For example, a high precision is
preferable for applications where a false positive can result in negative consequences. As
an example for this category, Géron uses a classifier for child-safe videos that whitelists,
i.e., detects, safe videos. On the other hand, a higher recall may be preferred for
applications that benefit from most if not all positives being classified as such and are
not strongly negatively impacted by a number of false positives. An example for this
second category are ML applications that classify medical scans, where false positives
are not immediately harmful but false negatives lead to untreated conditions. Lastly, the
F1 score prefers balanced precision and recall values. Since our evaluative application
does not fall in either of the first two categories mentioned above, we use the accuracy
and F1 score to compare the encodings and models.

It should be highlighted that under certain circumstances the classification report may
encounter a division by zero. In particular, if a class is never predicted by the ML model,
both the true and false positives will be zero. Since precision is defined as in Equation 6.1,
a division by zero may occur. To prevent this issue, we exclude all never-predicted classes
from the precision calculation.

6.2.3 Evaluation Process
The evaluation process, depicted in Figure 6.1, is similar for all encodings and models.
The goal of the models is to classify model elements, with their UML types being used
as the classes. We use this approach because the CM2ML framework infers those types
from embedded metamodel information, thus generating valid data without the need for
manual labeling. From the emitted encodings, we are thus able to derive two things. First,
the input for the ML models, which has been stripped of the relevant type information,
is extracted. This step is encoding-specific. Second, we use the removed type information
to create labels for each entry in the dataset. Again, this process is encoding-specific
and described in detail in the respective sections for each encoding. After each model is
trained, the test dataset is then used to evaluate it.

For each raw graph encoder configuration, we evaluate two ML models ten times each
with different seeds for random number initialization. After all evaluations are completed,
we calculate the average of the metrics for each ML model and configuration respectively.
The same process applies to the tree-based encoding, but with three different seeds for
each encoder configuration. The reason behind this reduced number of runs is the longer
training time for each run of the Tree-LSTM model.

6.3 Raw Graph Encoding
In related work, various GNN implementations are often used in combination with raw
graph encodings for node classification [Lóp+22; Vel+18]. In this section, we evaluate
two different GNNs in combination with CM2ML’s raw graph encoder. After presenting
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Encoding

Input

Label

Model Classification

Confusion Matrix

RecallPrecisionAccuracy F1 Score

Figure 6.1: Process of generating evaluation metrics.

the raw graph encoder configurations, we describe the process of input masking and
label creation. Afterward, the architecture of both ML models and their respective
hyperparameters are detailed. Finally, we present and analyze the results.

6.3.1 Encoder Configuration
To treat both xmi:type and xsi:type attributes identically, as a difference exists only
in the serialization, we enable the unifyTypes parameter. The encodings created by the
framework now only contain the former attribute. This also has the benefit of preventing
mismatches in the encoding of the type attributes. Without this parameter enabled, the
UML type of an element could have two different numeric encodings depending on which
attribute is used.

We leverage the implemented feature encoder to emit node encodings, i.e., feature vectors,
that are usable by GNNs without further processing, as all values are numeric. However,
we omit all string attributes by enabling both configurable parameters rawStrings and
onlyEncodedFeatures. The reason for this is the unlimited vocabulary problem that
arises if no text embedding is used. For all other attribute types, the numeric encodings
are enabled. To prevent mismatches during feature encoding between the datasets, we
use the nodeFeatures and edgeFeatures parameters of the encoder to match the
vector shape and feature indices.

An advantage of GNNs is the ability to include neighboring nodes through edge connections
in calculations and operate on irregular data [FL19; Luo+17; Vel+18]. While the
implemented encoder is able to output both adjacency matrices and lists, we choose to
use the latter for the evaluation due to their size efficiency.

Finally, by enabling both strict and continueOnError, we ensure that no invalid
model is used for the evaluation.

Table 6.1 shows the different configurations we use for obtaining the datasets, excluding
the parameters that are identical for each configuration. With each configuration we
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Configuration relationshipsAsEdges
onlyContainment-
Associations

edgeTagAsAttribute

A true true true
B true true false
C true false true
D true false false

E false true true
F false true false
G false false true
H false false false

Table 6.1: Configurations of raw graph encoder parameters.

Metric A B C D E F G H

Node features 57 57 57 57 60 60 60 60
Edge features 12 11 12 11 1 0 1 0
Classes 123 123 123 123 145 145 145 145

Table 6.2: Analysis of raw graph encodings by configuration.

remove 48, 18, and 30 duplicate encodings from the train, validation, and test datasets
respectively using the built-in deduplication. Further, the models of the test dataset
contain one invalid model, which is removed due to the enabled strict mode. As a
result, each configuration yields 552, 182, and 169 encoded models for the train, validation,
and test datasets respectively.

Further, we analyze the datasets created with each configuration and calculate the
following metrics shown in Table 6.2. The size of node and edge feature vectors determines
the correct sizes for the embedding layer, while the number of classes directs the size of
the classification layer. This is presented in more detail in subsection 6.3.4.

6.3.2 Input Masking and Label Creation
Figure 6.2 visualizes the input masking and label creation for the graph-based encod-
ing. The feature vectors of nodes contain their classification, i.e., their UML type, as
highlighted in Figure 6.2a. We prepare the feature vectors for usage in the ML model
evaluation by setting all type values to zero, as shown in Figure 6.2b. In parallel, we
generate matching labels from the framework’s output as shown in Figure 6.2c. A node’s
type value is used as the classification label.

Besides the masking of classification data in the node feature vectors, no preprocessing
is required. The adjacency list generated by the CM2ML framework is immediately
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Attribute Node1 Node2 Node3

isAbstract 0 1 0
visibility 2 0 1
xmi:type 1 3 2
(a) Raw graph encoding feature vectors.

Attribute Node1 Node2 Node3

isAbstract 0 1 0
visibility 2 0 1
xmi:type 0 0 0

(b) GNN input feature vectors.

Node1 Node2 Node3

1 3 2
(c) Label for expected output.

Figure 6.2: Example of input masking and label creation for raw graph encoding.

usable as input for both graph convolutional network (GCN) and graph attention network
(GAT) models. Further, feature vectors of edges do not require any masking, as the
evaluation only performs node classification.

6.3.3 Model Architecture

The implemented raw graph encoding is evaluated using two GNNs, namely a GCN
and a GAT. Both are designed to operate on graph structures, but only the latter can
optionally use edge feature vectors as well. Either GNN emits a vector of probabilities
for each corresponding input node. These probabilities indicate how likely it is that an
input node belongs to any given class, according to an ML model’s prediction. To get
the final classification, we apply the argmax operator to both ML models’ outputs. This
operator picks the class with the highest predicted probability for each node. While
GNNs may contain multiple convolutional layers, our models use a fixed number of two
layers, matching the model of López et al. [Lóp+22]. The two architectures and their
differences are detailed below.

GCN

For the GCN model, an implementation of Kipf and Welling’s [KW17] graph convolutional
layer from the PYG library is used. PYG contains an extensive range of different models
and individual layers for graph-based learning that are based on their respective papers.
The GCN model consists of a graph convolutional embedding layer, followed by a rectified
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GCN Model
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Figure 6.3: Architecture of the GCN model.

linear unit (ReLU) [Aga19] for activation, and a dropout layer. The dropout layer lessens
the effect of overfitting [Luo+17]. Finally, a second convolutional layer is used as a
classifier for the output layer. The GCN’s architecture is shown in Figure 6.3.

GAT

The architecture of the GAT model is similar to the GCN model’s and depicted in
Figure 6.4. The major difference is the replacement of graph convolutional layers with
graph attention convolutional layers as introduced by Veličković et al. [Vel+18]. Again,
these are implemented by PYG. Analogous to the GCN model, a ReLU for activation and
a dropout layer form a hidden layer between the two graph attention convolutional layers.
A GAT may use multiple attention heads in each convolutional layer. The number of
heads is a hyperparameter and independent for each layer. It should also be highlighted
that the graph attention convolutions can optionally use the feature vectors of edges,
which are also computed by the framework.

6.3.4 Hyperparameters
As ML model architecture and hyperparameter optimization is not the goal of this
evaluation, we perform ad-hoc experiments using encoder configuration C to determine
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Figure 6.4: Architecture of the GAT model.

hyperparameters. For both models, we limit training to a maximum of 100 epochs.
Additionally, early stopping with a patience of 10 is enabled for the training stage of
the GAT and GCN models. This means that training will be terminated after epoch n,
if all epochs n − i with i ∈ [0, 9] have a lower accuracy than epoch n − 10. Model-specific
hyperparameters are discussed below. All hyperparameters are either selected based on
related work or empiric experiments conducted with encoder configuration C.

GCN

Table 6.3 provides a summary of the GCN model’s hyperparameters. The embedding
layer’s size is determined by the number of features each node possesses and is thus
dynamically set, depending on the encoder configuration. Analogously, the size of the
classifier layer is determined by the number of classes and also derived from the dataset
of a concrete configuration. The size of the hidden layer may be selected independently
of those variables. Based on empiric experiments, we use twice the number of classes
as the hidden layer’s size. A dropout of 0.2 and a learning rate of 0.01 are chosen
analogous to Kipf and Welling [KW17].
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Hyperparameter Value

Maximum epochs 100
Patience 10
Layers 2

Embedding size 57 (A, B, C, D),
60 (E, F, G, H )

Hidden size 246 (A, B, C, D),
190 (E, F, G, H )

Classifier size 123 (A, B, C, D),
145 (E, F, G, H )

Dropout 0.2
Learning rate 0.01

Table 6.3: Hyperparameters for the GCN model.

GAT

An overview over all hyperparameter used for the GAT model is given in Table 6.4.
We evaluated the usage of either eight attention heads or a single head for both the
embedding and classification layers, based on Veličković et al. [Vel+18]. Results of ad-hoc
experiments show that the configuration of eight heads for both layers performs best in
our case. Also based on their findings, we choose a dropout of 0.6. Regarding layer sizes,
the GAT model follows the GCN configuration and uses the number of node features
and number of classes for the embedding and classification layers respectively. Since
the usage of attention heads increases memory consumption, we only use the number
of classes as the hidden layer’s size, not its doubled value. Additionally, we use the
number of edge features as the optional edge embedding size.

6.3.5 Results

In the following, the results of each ML model are first presented independently, followed
by a comparison of the two models’ best results. For each ML model, we view the two
groups of configurations A, B, C, and D as well as E, F, G, and H separately. The
reason for this is that the datasets of configurations belonging to each group share the
same number of classes. Finally, we provide an explanation for the results based on their
respective encoding configuration.

GCN

The GCN’s results are shown in Table 6.5. We omit the results of the configurations B,
D, F, and H. The reason is that those configurations only differ from their respective
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Hyperparameter Value

Maximum epochs 100
Patience 10
Layers 2

Embedding size (nodes) 57 (A, B, C, D),
60 (E, F, G, H )

Embedding size (edges)

12 (A, C ),
11 (B, C ),
1 (E, G),
0 (F, G)

Hidden size 123 (A, B, C, D),
145 (E, F, G, H )

Classifier size 123 (A, B, C, D),
145 (E, F, G, H )

Dropout 0.6
Learning rate 0.01
Attention heads 8

Table 6.4: Hyperparameters for the GAT model.

Configuration Accuracy Weighted-averaged F1 Macro-averaged F1

A 81.583 ± 0.623 79.206 ± 0.532 36.274 ± 1.580
C 82.316 ± 2.045 80.578 ± 2.294 40.324 ± 2.595
E 85.206 ± 0.497 83.222 ± 0.837 40.569 ± 1.628
G 84.262 ± 1.491 82.449 ± 1.822 44.633 ± 1.878

Table 6.5: Results of the GCN model by configuration. All values are percentages with
standard deviation.

immediate predecessor configuration in the edgeTagAsAttribute parameter. Since
this parameter only affects edge attributes and those are not used by the GCN model,
these four configurations provide no additional insight.

Configuration C is the best performing configuration with relationshipsAsEdges
enabled. While accuracy and weighted-average F1 score of configuration A only exhibit a
small decrease, the macro-avergage F1 score is over 4% worse. As we can see an almost
identical difference in the F1 scores of the configurations E and G, it stands to reason that
enabling onlyContainmentAssociations and thus omitting all non-containment
associations from the graphs is detrimental to the prediction performance concerning
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less often occurring classes. On the other hand, the configurations C and G, i.e., the
configurations with all associations of the UML models being present in the output,
exhibit a larger standard deviation.

Finally, disabling onlyContainmentAssociations in configuration G decreases the
accuracy and weighted F1 score compared to configuration E. This result may imply that
when relationship UML elements are not treated as edges in the IR and thus the output
graphs, a better prediction performance for commonly occurring classes may be achieved
by omitting all non-containment UML associations from the encoding.

GAT

The evaluated metrics of the GAT model are displayed in Table 6.6. First, we can
see that the configurations B, D, F, and G perform worse than their immediate pre-
decessor configuration. The reason behind this is that those configurations disable the
edgeTagAsAttributes parameter. As a result, the implemented UML parser creates
edges from associations that do not have any attributes. Even though the GAT model
uses edge feature vectors as input, they are void of any information unless the feature
vector is created for an edge that represents an UML relationship. Hence, we see an even
larger drop in performance for the configurations F and H, compared to B and D, as the
latter two still contain some edge feature information through their relationship edges.

The two configurations D and H show the worst performance. Both can be characterized
by including a large number of edges that do not have a single attribute associated to
them.

In contrast to the GCN’s results, we see the configurations A and E performing best
in their respective groups, with the latter outperforming the former in all metrics. A
conclusion may be that excluding all non-containment UML associations is beneficial to
the GAT in particular, whether UML relationships are represented as nodes or edges.

Similar to the GCN, we see an increase in standard deviation when including non-
containment UML associations.

Conclusion

The GCN model shows only small differences when including or excluding non-containment
UML associations, except in the macro-average F1 score. Treating UML relationships
as nodes in the IR has a larger positive impact on the evaluated metrics, although the
scenarios are not immediately comparable because of the different number of classes.

The GAT model performs better than its GCN counterpart across every configuration
and metric, including each respective standard deviation. While the GAT performs
best when omitting non-containment UML associations, it is mostly indifferent to the
representation of UML relationships. However, it is sensitive to edges without attributes.
Configurations that include such edges exhibit the worst performance across both models.
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Configuration Accuracy Weighted-averaged F1 Macro-averaged F1

A 85.030 ± 0.517 82.444 ± 0.419 41.835 ± 1.511
B 76.833 ± 0.732 75.183 ± 0.739 38.802 ± 1.891
C 83.919 ± 0.795 81.640 ± 0.955 41.717 ± 2.425
D 59.131 ± 4.030 54.603 ± 5.131 33.585 ± 3.043
E 86.222 ± 0.363 83.968 ± 0.240 46.501 ± 1.571
F 77.481 ± 0.545 75.625 ± 0.468 36.253 ± 1.539
G 84.370 ± 0.941 82.515 ± 1.198 45.932 ± 3.152
H 60.086 ± 4.771 53.895 ± 6.068 29.296 ± 1.634

Table 6.6: Results of the GAT model by configuration. All values are percentages with
standard deviation.

Using the framework’s configurable whitelist for UML associations may enable fine-tuning
for the configurations C and G, where including certain additional associations beyond
containment may improve performance, but allowing all associations results in a negative
change.

In addition to the differences in metrics, both ML models show a large gap in training
time. Training the GCN model requires 33.5 seconds on average. In contrast, to
complete training the GAT model requires 296.9 seconds on average, depending on
which configuration is used. For both models, training time is increased in general by
including the additional non-containment UML associations. However, due to the usage
of early-stopping, training time may also differ based on the number of epochs and the
randomized weight initialization.

6.4 Tree-based Encoding
While the goal of Burgueño et al. [Bur+22] is automating model transformations, it is
essentially a matter of generating tree structures from input trees with different data and
structures. As such, the problem of node classification can be reduced to generating a tree
that contains a classification for each node of the input, as visualized in Figure 6.5. We
build upon their Tree-LSTM implementation and adapt it to perform node classification.
The following subsections describe the encoder configurations used for the evaluation,
followed by the ML model’s architecture and hyperparameters. Finally, the results are
presented.

6.4.1 Encoder Configuration
Because the implemented Tree-LSTM requires a non-trivial amount of memory de-
pending on the size of input trees, we enable the onlyContainmentAssociations
parameter. The removal of all non-containment UML associations reduces the size of
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Configuration format relationshipsAsEdges verboseFeatureValues

A global true true
B global true false
C global false true
D global false false

E local true true
F local true false
G local false true
H local false false

Table 6.7: Configurations of tree-based encoder parameters.

the encoded trees by around 49.16% for our dataset. For example, with configuration
A and onlyContainmentAssociations disabled, the dataset’s encoded trees have
3,437.89 nodes on average. In contrast, enabling onlyContainmentAssociations
reduces this number to 1,747.69. Analogous to the evaluation of the raw-graph en-
coding, the framework is configured to omit string-based attributes by enabling both
rawStrings and onlyEncodedFeatures. By configuring the nodeFeatures and
edgeFeatures parameters for each dataset we ensure that the indices of encoded
feature values are consistent. In contrast to the raw graph encoding, the identifiers of
nodes are not treated as attributes by the encoder and, thus, not covered by the removal
of string-based attributes. Thus, the parameter replaceNodeIds is enabled as well.
In combination with the omitted attributes, this keeps the vocabulary sizes in check
and prevents the unlimited vocabulary problem. Next, the unifyTypes parameter
is enabled once again for the same reasons described in subsection 6.3.1. Since the
tree-based encoder supports two different formats for trees, we perform the evaluation
for both. Table 6.7 shows the different encoder parameter configurations we consider,
excluding parameters that are identical for each configuration.

Because of restrictions regarding memory consumption and training time, we also omit
and ignore all tree encodings with more than 1,000 nodes. This includes a large share of
the models in our datasets. As shown in Table 6.8, the number of nodes in encoded trees
and, thus also, the amount of omitted tree encodings depends on the chosen tree format.
The listed vocabulary sizes are relevant to determine layer sizes for the Tree-LSTM model
and only represent the vocabulary of the filtered and masked trees. The table also shows
that the datasets of configurations using the more compact local format include more
UML models than those created with the global format. A similar approach is also
used by Weyssow et al. [WSS22], who encode metamodels and omit any metamodel with
more than fifteen elements.
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Metric A B C D E F G H

Train size 553 553 553 553 553 553 553 553
Train size (filtered) 187 187 179 179 201 201 191 191
Validation size 182 182 182 182 182 182 182 182
Validation size (filtered) 54 54 49 49 56 56 52 52
Test size 170 170 170 170 170 170 170 170
Test size (filtered) 41 41 38 38 45 45 44 44
Input vocabulary size 240 158 221 138 251 169 237 153
Classes 86 86 105 105 86 86 105 105

Table 6.8: Analysis of tree-based encodings by configuration.

6.4.2 Input Masking and Label Creation
Figure 6.5a shows an example output of the framework for the global tree format and
Figure 6.5c the corresponding label for the Tree-LSTM model. Figure 6.5b shows the
input of the Tree-LSTM, where all classification data has been removed to facilitate
learning based on model structure. The input masking and label extraction for the
local format is analogous, but since it treats the type as a regular attribute, we remove
the corresponding attribute node instead. It should be highlighted that no identifiers are
present in labels. Instead, a model element and its classification are matched by their
positional index within their respective trees.

Not represented in the figure is the process of replacing each tree node’s textual value
with a numeric token. While the framework’s encoder is able to handle this step internally,
we instead perform it in the evaluation’s code. This allows us to create separate sets
of tokens, i.e., vocabularies in the context of the Tree-LSTM, for the input and output
trees. A separation like this ensures that output trees may only contain tokens that
represent the class of an element, in addition to a special token for the required root
node. Unrelated tokens, e.g., tokens representing names or values of attributes, will thus
never be included in the output. In addition, the Tree-LSTM implementation reserves a
range of tokens for internal usage. These special tokens allow the model to represent a
tree’s structure in a serialized form, i.e., a one dimensional array.

6.4.3 Model Architecture
For the evaluation of the tree-based encoding, the neural network architecture of Burgueño
et al. [Bur+22] is used. The implemented evaluation reuses their custom Tree-LSTM
model, but recent changes to PyTorch require modifications to tensor instantiation and
usage. In addition, we move from a pure accuracy-based evaluation of the test dataset to
the classification report described in subsection 6.2.2. The Tree-LSTM’s architecture is
visualized in Figure 6.6. As a recurrent neural network, the model iteratively emits a

71



6. Experimental Evaluation

MODEL

ASSOC

cbattribute

ASSOC

baelementImport

OBJ

ATTS

visibility

protected

c

Property

OBJ

ATTS

isAbstract

true

b

Class

OBJ

ATTS

visibility

public

a

Package

(a) Tree-based encoding.

MODEL

ASSOC

cbattribute

ASSOC

baelementImport

OBJ

ATTS

visibility

protected

c

OBJ

ATTS

isAbstract

true

b

OBJ

ATTS

visibility

public

a

(b) Tree-LSTM input.

MODEL

PropertyClassPackage

(c) Label for expected output.

Figure 6.5: Example of input masking and label creation for tree-based encoding.

complete tree one node at a time. The completion of a full tree is then marked with a
special token. In the following, we talk about entire trees and not individual nodes when
referring to the Tree-LSTM’s output.

The output of the Tree-LSTM is a tree and not immediately usable for classification
without knowledge of its structure. Thus, we derive a classification vector, matching
the shape to the GCN and GAT models’ output. For any given output and label pair,
one of three cases holds. First, the number of nodes in the output matches that of the
label. This case is shown in Figure 6.7a, where the left side represents both an output
and a label. We derive the classification for the model by removing the root node and
enumerating its children. However, the Tree-LSTM output may also have more or fewer
nodes than its assigned label. If an output tree contains additional tree nodes, they do
not correspond to the classification for any element of its input model. We ignore any
such superfluous tree nodes from output trees by limiting their serialized length to that
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Figure 6.6: Architecture of the Tree-LSTM model.

of the corresponding label, as shown in Figure 6.7b. On the other hand, trees generated
by the Tree-LSTM may also contain fewer nodes than the corresponding label. For such
cases, we pad the output with a reserved marker token to match its corresponding label’s
length, as displayed in Figure 6.7c. Since this reserved token is not part of the output
vocabulary, this cannot result in random correct guesses.

6.4.4 Hyperparameters

A summary of the Tree-LSTM’s hyperparameters is given in Table 6.9. Analogous to the
evaluation of the raw graph encodings, we determine hyperparameters based on ad-hoc
experiments with encoder configuration E. As the foundation and starting point, our
initial hyperparameters are based on the empirical findings of Burgueño et al. [Bur+22],
with slight modifications to fit the different dataset. Again, early stopping is employed
to determine the number of training epochs, with an upper limit of 30 epochs. For the
Tree-LSTM model, we use a patience of 20, but with the validation dataset’s loss instead
of accuracy as the fundamental metric. Because embedding and hidden size strongly
drive memory consumption, we set both dynamically to each configuration’s respective
input vocabulary size. According to Burgueño et al., this is the required minimum value.
Next, a learning rate of 0.005 ensures that overshooting is reduced and small weight
adjustments are possible. Burgueño et al. recommend using a single layer with a
dropout of 0.75 to reduce overfitting. Ad-hoc experiments show a performance overhead
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Figure 6.7: Deriving classification from Tree-LSTM output and labels, using the label
from Figure 6.5c as an example.

Hyperparameter Value

Maximum epochs 30
Patience 20
Layers 1
Batch size 32
Dropout 0.75

Embedding &
hidden size

240 (A), 158 (B), 221 (C ),
138 (D), 251 (E), 169 (F),

237 (G), 153 (H )
Learning rate 0.005
Learning rate decay 10% every third epoch

Table 6.9: Hyperparameters for the Tree-LSTM model.

of up to 20% when using two layers. Since training time is already much higher than
that of the GNN models, we keep the single layer approach. As our dataset is smaller
than that of Burgueño et al., we also adjust the decay of the learning rate to 10% every
third epoch. Lastly, we use a reduced batch size of 32 instead of 64 to alleviate memory
consumption.
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Configuration Accuracy Weighted-averaged F1 Macro-averaged F1

A 37.961 ± 2.064 28.956 ± 2.016 13.191 ± 0.592
B 32.208 ± 1.618 23.739 ± 0.957 9.469 ± 0.622
C 34.995 ± 0.504 24.547 ± 0.372 9.681 ± 0.140
D 32.926 ± 2.113 23.253 ± 2.006 8.344 ± 1.361
E 38.080 ± 1.987 29.482 ± 1.138 13.201 ± 0.409
F 35.895 ± 0.713 26.016 ± 0.987 11.477 ± 0.686
G 33.508 ± 0.397 23.794 ± 1.261 8.875 ± 1.184
H 31.315 ± 2.643 23.010 ± 2.125 8.720 ± 0.794

Table 6.10: Results of the Tree-LSTM model by configuration. All values are percentages
with standard deviation.

6.4.5 Results

The results of the Tree-LSTM model are shown in Table 6.10. We identify the best
performing configuration for each format. For both formats, treating relationships as
edges and using verbose feature values achieves the highest accuracies and F1 scores.
The local format has a small advantage, though the difference between both formats is
smaller than the standard deviations. Also similar for both formats, we see that using
non-verbose feature values strongly reduces all observed metrics.

Compared to the results of both GNN models, we observe considerably lower scores for all
three metrics across all eight configurations. In addition, on average only 284.25 of the 905
encoded trees per dataset could be included in the evaluation due to memory consumption
limits. Finally, an average training time of 37.2 minutes for each configuration significantly
limits the usability of our Tree-LSTM for the task of node classification, especially with
regard to the reduced dataset sizes.

6.5 Bag-of-Paths Encoding

We evaluate the BoP encoder’s ability to be fine-tuned by configuring it to emulate the
first two steps of the graph language modeling framework GLaM4CM proposed by Ali
and Bork [AB24]. The first step, a transformation of conceptual models to conceptual
knowledge graphs, is analogous to CM2ML’s UML parser and IR. Then, their context
generation is handled by the BoP encoder through a particular configuration. Since
stereotypes serve different use cases in UML and the modeling language used by Ali and
Bork, OntoUML, we adapt the target slightly. Instead of including element name, type,
and stereotype, we only include the former two and mask types instead of stereotypes.
In theory, this encoding would then also be usable for the node classification task of
predicting UML types we presented above.
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6.5.1 Encoder Configuration
The configuration of the encoder is more complex than the previous ones. First,
we once again enable strict mode and deduplication with deduplicate. With
continueOnError, and a limit of 1,000 we include all valid models in the batch of
the first 1,000 models.

Since we are only interested in UML relationships being considered as edges, we
first enable relationshipsAsEdges and onlyContainmentAssociations. Then,
we add owner, ownedElement, association, and associationClass to the
edgeBlacklist parameter. The first two cover the containment associations, which
we do not want to include. The latter two are two forms of relationships that we also
exclude.

Regarding the BoP encoder, we first configure the included paths. Using a minPath-
Length of 1 and a maxPathLength of 3 ensures that we are able to include all paths
also covered by the context length analyzed by Ali and Bork. The defaults are used for
all parameters related to step and path weighting, i.e., each step has the same weight and
each path is thus weighted by its length. No minimum or maximum weights are defined
and the sort order is descending. With a maxPaths value of 0, we do not impose a limit
on the number of paths, thus including all paths matching the path criteria from above.

Using the nodeTemplates parameter, we encode each UML element with its name
and type. Elements without names are only encoded with their type and prefixed
with “unnamed”. In addition, we surround types in node encodings with the string
$eu.yeger$, which we previously identified as not being present anywhere in the
dataset. We will use this special string later to apply masking in our stubbed ML
application.

Edges are encoded with a fixed name for each type, creating a format more readable to hu-
mans. Finally, we prune the encoding for each UML model by setting the pruneMethod
parameter to encoding. This prevents any paths with identical encodings from being
present in the output. A complete overview of all parameters is given in Table 6.11.

For our dataset, we see one invalid and 359 duplicate models with this specific configura-
tion. Across 10 CLI invocations of the encoder, we achieve an average runtime of 2.94
seconds.

6.5.2 Input Masking and Label Creation
Since input masking and the creation of labels is part of a specific ML application,
neither are implemented within the CM2ML framework’s BoP encoder. Instead, we use
a Python script to handle this final step of the evaluation. Analogous to Ali and Bork,
we create two groups of nodes across all BoP encodings from the dataset. The first group
contains 80% of all nodes and does not mask node types. For this group, we remove the
$eu.yeger$ marker from all encoded node segments. In contrast, the second group has
both the markers and their framed types replaced with <MASKED>. The removed type is
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6.5. Bag-of-Paths Encoding

Parameter Value

strict true
deduplicate true
continueOnError true
relationshipsAsEdges true
onlyContainment-
Associations

true

edgeBlacklist
owner, ownedElement,
association, associationClass

minPathLength 1
maxPathLength 3
maxPaths 0

nodeTemplates
@name.exists >>> {{name}} $eu.yeger${{type}}$eu.yeger$,
unnamed $eu.yeger${{type}}$eu.yeger$

edgeTemplates

@tag = abstraction >>> abstracts,
@tag = communicationPath >>> communicates with,
@tag = componentRealization >>> realizes,
@tag = dependency >>> depends on,
@tag = deployment >>> deploys,
@tag = elementImport >>> imports,
@tag = extend >>> extends,
@tag = extension >>> extends,
@tag = generalization >>> generalizes,
@tag = include >>> includes,
@tag = informationFlow >>> informs,
@tag = interfaceRealization >>> realizes,
@tag = manifestation >>> manifests,
@tag = packageImport >>> imports,
@tag = packageMerge >>> merges,
@tag = profileApplication >>> applies,
@tag = protocolConformance >>> conforms to,
@tag = protocolTransition >>> transitions to,
@tag = realization >>> realizes,
@tag = substitution >>> substitutes,
@tag = templateBinding >>> binds,
@tag = transition >>> transitions to,
@tag = usage >>> uses

pruneMethod encoding

Table 6.11: Configurations of BoP encoder parameters.
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Encoded Path Labels

Package_16 Package depends on unnamed Operation -

Package_16 Package depends on unnamed <MASKED> PrimitiveType

FinalState <MASKED> transitions to State_3 State
transitions to InitialState <MASKED>

FinalState, Pseudostate

SizeVisitor <MASKED> realizes Visitor <MASKED> Class, Interface

Table 6.12: Masking and label creation for the BoP encoding.

then considered the label for this node. Table 6.12 shows the final result for a number of
examples from our dataset.

6.5.3 Comparison and Conclusion

The masked paths and labels of our BoP evaluation closely match those of Ali and Bork.
Due to the difference in modeling languages, we omit the stereotype and instead focus
on UML types, but match format of their context strings. This result validates the
configurability of the encoder.

6.6 Encoder Performance

We measure the execution times of the framework’s encoders with varying batch sizes
using the Unix time command. The runtimes are measured for the configurations A for
the raw graph encoder and tree-based encoder, and the configuration of the BoP encoder
described in subsection 6.5.1. With the framework’s CLI and the Bun runtime, each
encoder is executed five times for 100, 1,000, and 10,000 models of the dataset described
in section 2.2 respectively. For the raw graph and tree-based encoders, the dataset split
ratios are maintained for each of the different total sizes. To achieve comparable results,
we normalize execution times to a per-model average. It should be highlighted that the
execution times of encoders can vary strongly depending on the configuration of parser
and encoder parameters. The resulting execution wall clock times are averaged and
displayed in Figure 6.8. To fulfill [REQ7], per-model execution times may not exceed 60
milliseconds. The results show that none of the three encoders exceeds 30 milliseconds
on average, regardless of the batch size. Further, the raw graph and BoP encoders’
averages remain below 20 milliseconds. The reduction of per-model execution times for
larger batch sizes may be explained by the overhead of reading input files and validating
configuration parameters being distributed across a larger number of models. For the
tree-based encoding, we hypothesize that its relatively large serialized output results in
its unique increase in per-model execution time for a batch size of 10,000 models.
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Figure 6.8: Per-model encoder execution times for 100, 1,000, and 10,000 models.

6.7 Threats to Validity
We identify a number of threats to this evaluation’s validity. First, the size of the dataset
used for the ML evaluations in section 6.3 and section 6.4 only consists of 1,000 elements.
For the latter evaluation, additional filtering reduces the number of models in the dataset
further. This may skew results for the tree-based encoding in particular, as the dataset
may not be large enough to train the ML model properly. Further, CM2ML’s parsers and
encoders offer a wide range of configurable parameters, while the parameter configurations
used for the evaluations only have three varying parameters each. This limited number of
experiments, restricted by time, may not suffice to evaluate each parser and encoder and
their high configurability. Further, the results of the two ML evaluations may also be
affected by hyperparameters more than encoder configurations. However, an optimization
of hyperparameter for each encoding configuration would result in a very large search
space.
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CHAPTER 7
Conclusion

In this chapter, we first summarize the implemented framework, its capabilities, and the
resulting implications for the requirements and research questions. Afterward, possible
extensions of the framework and opportunities for future work are presented.

7.1 Summary
This section addresses the requirements of section 1.2 and research questions presented
in section 1.3 by summarizing the CM2ML framework’s capabilities.

7.1.1 Requirements
The evaluation process detailed above allows us to validate that all requirements for
the CM2ML framework are indeed met. In the following, we address each requirement
individually.

Genericity

While we only evaluate our framework with UML models, the implemented ML node
classifiers are entirely independent of any concrete modeling language. Neither the GNNs
nor the Tree-LSTM model contain any references to UML in particular. Instead, any
information about the concrete modeling language at hand is emitted by the framework as
part of the encoding output. Further, the IR used by CM2ML is able to hander common
concepts of modeling languages and is also used successfully in related work [FSG22;
Kha+22; Lóp+22; SB21]. Associations and references between elements, attributes with
types for both nodes and edges, and containment are all representable in the IR. Further,
we implement a parser for UML models in the Eclipse Papyrus serialization format and
validate that it can successfully parse the 46,731 models from our dataset. We conclude
that [REQ1] is fulfilled.
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Modularity

The UML parser and all encoders are implemented as separate packages, which are
usable standalone through our software library. Further, the reusability of CM2ML’s
composable modules like the feature encoder is displayed within the framework itself.
Beyond that, the visualizer uses the framework’s modules through their software libraries.
Thus, the implemented CM2ML framework is modular and [REQ2] is met.

Portability

We ensure the usability of CM2ML’s software library and REST server through unit tests
and its CLI is enabling the evaluations of chapter 6. Since CM2ML is implemented with
TypeScript, it may be used on any platform supporting a JavaScript runtime, including
web browsers. Hence, [REQ3] is fulfilled.

Extensibility

Both built-in adapters of the framework support a user-configurable extension with
custom parsers and encoders in a declarative manner. The provided software library
allows users to specify a list of parsers and encoders to be applied to any given adapter.
Both the preconfigured CLI and REST use the same software library API to load the
built-in parsers and encoders. As a result, the CM2ML framework meets [REQ4].

Configurability

With the above evaluations we show that the UML parser and both encoders allow
configuration through parameter. The different configurations exhibit both small and
large differences in performance for our evaluated task of node classification. This enables
experimentation with and fine-tuning of encodings, and guarantees that [REQ5] is
fulfilled.

Traceability

The visualizer, presented in detail in chapter 4, supports all built-in encoders. Its
synchronization between IR and encoder views show how elements within an input model
correspond to an output encoding. An extensive suite of E2E tests validates that this
synchronization is working as required. Thus, the CM2ML framework’s visualizer fulfills
[REQ6].

Performance

The framework shows a good performance for large batches. Execution times depend
on batch size, model complexity, as well as each concrete encoder and its configuration.
We consider [REQ7] as successfully met based on the execution times measured in
section 6.6.
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7.1.2 Research Questions
The information presented above answers [RQ1]. It is indeed possible to realize a
framework fulfilling all requirements of section 1.2.

Further, our evaluation of the raw graph and tree-based encodings for the task of node
classification answer [RQ2]. The CM2ML framework enables the evaluation of different
encodings for this concrete task. CM2ML does not include the final ML applications
and their models, unlike the work of López et al. [Lóp+22]. Instead, the framework is
focused on rapid iterations during experimentation with encodings and achieves this
goal. Through the three supported environments, i.e., CM2ML’s two adapters and
software library, users are able to customize any built-in encoding to meet their needs in
a declarative manner.

7.2 Future Work
During CM2ML’s development, a number of possible extensions for future work have
been identified. These are presented below in no particular order.

First, an extension of the framework with parsers for additional modeling languages,
such as Ecore or OntoUML, would immediately grant access to CM2ML’s three built-
in encodings to more members of the conceptual modeling community. Beyond that,
implementing further structural encodings, e.g., graph kernels or n-grams, may facilitate
more extensive comparisons of different encodings.

Next, the visualizer is limited to parsing and encoding a single model at a time. A possible
extension could be a batch mode, where users may encode a number of conceptual models
at once. Because batch executions are the expected modus operandi for the CLI and
REST adapters, users would be able to visualize the encoding for those batch executions
as well.

While usually treated as nodes in an IR model, UML relationships are often presented as
edges in UML modeling software. The UML parser already offers a sort of interpretation
of UML elements through the relationshipsAsEdges parameter. A future extension
of the UML parser could, e.g., introduce an option to interpret UML properties in a
similar manner by removing their IR nodes and adding them as IR attributes to their
owner’s IR node.

The expression and templating language of the BoP encoder offers highly customiz-
able, modeling language-independent expressions. A possible extension of the CM2ML
framework could leverage the conditional expression of this language in a number of
places. For example, conditional expressions could be used in the IR post-processor for
user-customizable filters that further refine an IR instance by removing nodes, edges, or
attributes not satisfying any provided condition. Of course, an extension of the language
is also possible. In particular, introducing logical operators to conditions and allowing
selectors on the right-hand-side of comparison operators would allow for a number of
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interesting expression, e.g., a condition edge.source.id = edge.target.id that
is only satisfied by reflective edges.
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