
Extending a refinement λ-calculus with
polymorphism and data types

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing
UE 066 937

eingereicht von

Jakob Hoffmann
Matrikelnummer 12044470

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.sc. Jürgen Cito
Mitwirkung: Univ.Ass. Dipl.-Ing. Michael Schröder

Wien, 2. Dezember 2024
Jakob Hoffmann Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Extending a refinement λ-calculus with
polymorphism and data types

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing
UE 066 937

by

Jakob Hoffmann
Registration Number 12044470

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.sc. Jürgen Cito
Assistance: Univ.Ass. Dipl.-Ing. Michael Schröder

Vienna, December 2, 2024
Jakob Hoffmann Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jakob Hoffmann

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 2. Dezember 2024
Jakob Hoffmann

v

Acknowledgements

I would like to express my heartfelt gratitude to several individuals who made the
completion of this thesis possible.

First and foremost, my supervisor Michael Schröder, who has been instrumental through-
out the research process for this work. His willingness to take the time to discuss ideas,
provide feedback and help was invaluable to the progress and success of this work. I am
also grateful to Prof. Jürgen Cito, for his insightful advice and for being available to
assist me at key stages of my research. His expertise and direction greatly enriched this
thesis and also my presentation skills.

A warm thank you also goes to my flatmates, who fostered a joyful and supportive home
environment throughout this journey. Their companionship and positivity helped me
stay motivated and balanced during the writing process.

I would also like to acknowledge my employer, for their flexibility and understanding
that enabled me to focus on my studies, as well as the Republic of Austria for enabling
me to go on educational leave, which provided me with the necessary time and financial
stability to finish this thesis.

To everyone mentioned, and to those who have supported me in ways large and small,
thank you.

vii

Kurzfassung

Das Parsen von Stringeingaben ist eine häufige Programmieraufgabe, die oft ad hoc ohne
Spezifikation einer formalen Grammatik implementiert wird. Die automatische Inferenz
solcher Grammatiken bietet viele Vorteile und das existierende Panini-System verwendet
Refinement Typen, um Eingabegrammatiken für ad hoc Parser automatisch zu generieren.
Dieser Ansatz ist jedoch durch den zugrunde liegenden λΣ-Kalkül eingeschränkt, dem Po-
lymorphismus und algebraische Datentypen fehlen. Das Fehlen dieser häufig verwendeten
Konzepte verhindert die Inferenzfähigkeit vieler Grammatiken.

Um diese Einschränkungen zu beheben, erweitern wir den λΣ-Kalkül um die fehlenden
Konzepte. Der resultierende λ+

Σ-Kalkül führt außerdem eine neue Inferenzregel für die
Zerlegung von Datentypen ein. Wir kategorisieren verschachtelte Grammatikstrukturen,
die häufig in ad hoc Parsern auftreten, und konzentrieren uns auf Grammatiken, die
durch split-Operationen und die dadurch erzeugten Listen und Tupel erzeugt werden. Für
die Synthese solcher Grammatiken stellen wir einen Ansatz vor, der die verschachtelten
Grammatiken innerhalb einer Datenstruktur zu einer Gesamtgrammatik zusammenführt.

Diese Erweiterungen integrieren wir in das Panini-System und evaluieren sie anhand
realer ad hoc Parser. Dabei zeigen wir, dass wir viele der betrachteten Parser lösen und
komplexe geschachtelte Grammatiken durch Inferenz automatisch erkennen können. Die
vorliegende Arbeit erweitert nicht nur die Möglichkeiten eines Refinement Typsystems,
sondern verbessert auch das Panini-System erheblich, sodass es eine größere Anzahl von
Grammatiken generieren kann.

ix

Abstract

Parsing strings is a common programming task often performed in an ad hoc manner
without formally defining an input grammar. Inferring such grammars provides numerous
benefits, and the existing Panini system leverages refinement types to automatically
synthesize input grammars for ad hoc parsers. However, its current approach is limited
by the underlying λΣ calculus, which lacks polymorphism and algebraic data types,
restricting its ability to infer many useful grammars.

To address these limitations, we extend the λΣ calculus with these missing features,
resulting in the λ+

Σ calculus, and introduce a novel inference rule for data type destruction.
We categorize the nested grammar structures common in ad hoc parsers, focusing on
those arising from split operations and the resulting list and tuple algebraic data types.
To synthesize such grammars, we introduce an approach to combine the nested grammars
within a data structure to an overall grammar.

We integrate these enhancements into the Panini system and evaluate them on real-world
ad hoc parsers, demonstrating the ability to synthesize complex nested grammars in
many cases. This work not only extends the capabilities of a refinement type system in
the context of grammar synthesis, but also significantly improves the Panini system,
enabling it to synthesize a broader range of grammars.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Panini . 2
1.2 Problem Statement . 3
1.3 Research Questions . 4

2 Background 7
2.1 Refinement Types . 7
2.2 Grammar Solving . 10
2.3 The λΣ-calculus . 11
2.4 Related Work . 16

3 The λ+
Σ-calculus 19

3.1 Syntax of λ+
Σ . 20

3.2 Synthesis Rules . 22
3.3 Subtyping Rules . 26
3.4 Inference in Depth . 27
3.5 Grammar Solving . 35

4 Implementation and Evaluation 41
4.1 Implementation . 41
4.2 Evaluation . 43
4.3 Threats to Validity . 52

5 Future Work and Conclusions 55
5.1 Future Work and Limitiations . 55
5.2 Conclusions . 57

List of Figures 59

xiii

List of Tables 61

Acronyms 63

Bibliography 65

CHAPTER 1
Introduction

Refinement types extend type systems with logical constraints. These constraints are
used to describe precise subsets of values of some base type as well as model relationships
between values. For example, we can define the type of positive numbers as a subset of
the integers,

PosInt : {v : Z | v > 0}.

Additionally, refinement types allow us to specify relations for dependent function types,
where an uninterpreted function in the refinement logic is used to model that relationship,
as for example in the length function for strings:

length : (s : S) → {v : Z | v = length(s)}
Suitable practical use cases for those types are avoiding division by zero errors by
restricting the input of a division operation to nonzero numbers, utilizing for example
the introduced PosInt type, or avoiding array out-of-bounds errors by restricting the
input to integer values less than the array length.

First proposed by Freeman and Pfenning [12] to statically detect more kinds of runtime
errors, refinement type systems have been used to ensure data validity (e.g., ensuring
a list is non-empty or an integer is positive [46]), verify security properties [3], and
automatically proving certain correctness properties at compile-time [8]. A well known
example of a refinement type system integrated into a general-purpose programming
language is the Liquid Haskell program verifier [42] which has been successfully used
to, e.g., verify security policies [31] or discover bugs in data type implementations [41].

By integrating these constraints within the type system, refinement types can also improve
code documentation and understanding, as the types themselves convey more information
about the expected behavior of functions and data structures.

Furthermore, refinement types have been used for theorem proving [17] or to synthesize
source code from just type definitions [30].

1

1. Introduction

Additionally, they can be used in the background without exposing the additional
complexity to the programmer. This enables advanced correctness checks or gathering
more information about a program, while still allowing a programmer to write code in a
general purpose programming language without an integrated refinement type system.
For example, they can be used to verify database access checks, where only the access
policies need to be defined according to the refinement type system [22].

One recent novel use of refinement types, that falls in this category, has been in the
synthesis of string grammars, particularly as part of the Panini system [34, 35], which is
the context for the present thesis.

1.1 Panini
The Panini system uses refinement types to infer input grammars for ad hoc parsers [35].
A grammar is a formal definition of the values an input string can assume. This definition
can be achieved by using formalized parsing techniques, like combinator frameworks [23]
or parser generators [28, 44], or by manually writing down the input grammar, e.g., as a
regular expression. However, in real-world programs, even though parsing is a common
occurrence in software engineering, this formal definition is mostly omitted. Most parsing
is done in an ad hoc manner, utilizing common string operations like split, trim, and
many others [36].

Having a formal grammar for a string parser offers several benefits over ad hoc parsing. A
formal grammar provides a clear, structured, and well-defined set of rules. This approach
reduces ambiguity, making the parser more robust and easier to debug, as the rules
are explicitly stated rather than improvised. Additionally, grammars can increase code
understanding as they provide an additional representation of the current functionality
[13]. A formal grammar has benefits for test generation and debugging, as examples of
valid inputs can be generated automatically. This approach is used in grammar-based
fuzzing [47]. In contrast, ad hoc parsing, which relies on informal rules, can lead to
errors, harder-to-maintain code and unpredictable behavior as the complexity of the input
increases [24]. Being able to statically infer such a formal grammar is therefore helpful in
multiple ways. Not only does it give more information to the programmer writing an
ad hoc parser, but it can also be used to, for example, track changes to the input grammar
over multiple versions of the source code, as well as notify the programmer of possible
unforeseen changes in the grammar due to a change in the source code. Furthermore,
inferred grammars can be used in software testing for white box fuzzing and generating
useful example inputs. The general idea of the Panini approach is visualized in Figure 1.1
and is as follows:

1. The relevant program parts concerning the manipulation of strings are extracted
and translated to an intermediate programming language called λΣ. This language
is a small λ-calculus in A-normal form (ANF) and is only used to synthesize the
(incomplete) refinement type information of the input string.

2

1.2. Problem Statement

Σ
Grammar

∀
String Constraints

Ad Hoc Parser
Source Code

SSA/ANF transform refinement inference grammar inferenceλΣ
Intermediate

Representation

program slicing

Full Source Code
Abstract Domains

String Function
Specifications

Figure 1.1: The complete process of the Panini system [34].

2. The refinement type system delivers a verification condition, which is a logical
constraint generated from the λΣ program. If this constraint is valid, it follows
that the program is well-typed [27].

3. The VC ranging over an input string is technically already a grammar for that string.
To transform it into a useful grammar, the system uses abstract interpretation over
the logical constraint (cf. section 2.2).

The Panini system can automatically infer regular grammars representing the input
constraints for many real-world ad hoc parsers. However, the current implementation of
the Panini system has several shortcomings, which we aim to address. Our work mainly
concerns the intermediate representation λΣ (cf. section 2.3).

1.2 Problem Statement
One current shortcoming of the Panini approach is that the intermediate λΣ-calculus is
not powerful enough to handle type and refinement polymorphism, nor does it support
algebraic data types (ADTs) like tuples or lists. Type polymorphism refers to the classic
parametric polymorphism known in many programming languages, i.e., allowing for
parameterized types in functions or data types, whereas refinement polymorphism means
the parameterization of the refinements by additional predicates. For example, a function
that returns the maximum of two values should preserve any refinement of its input
values in its output:

max : ∀α.∀p(α).{x : α | p(x)} → {y : α | p(y)} → {z : α | p(z)}

In this example, the type parameter is α and the refinement parameter is p : α → B.
Both of those parameters can be unknown when the function max is defined, and are
either inferred or manually declared at any call-site of max.

Polymorphism together with support for ADTs would enable us to infer more types for
more kinds of parsing programs. For example, the Python code snippet in Figure 1.2

3

1. Introduction

1 xs = map(int, s.split(’,’)) 1 s ∈[0−9]+(.[0−9]+)*

Figure 1.2: String Parser with polymorphism and algebraic data types, and a simplified
input grammar.

has a given input grammar where the input string can only be integers, separated by a
comma. Currently, the Panini system cannot infer this grammar.

In this example (see Figure 1.2), we have type polymorphism in the form of the map
function and algebraic data types in the form of lists; neither can yet be expressed in
λΣ. As these are common operations, especially the split function [36], extending
λΣ to support those cases would enable Panini to synthesize grammars for many more
real-world parsers.

Given that we already know that those extensions are vital to increase the utility of λΣ
[35], an additional challenge arises: We need to evaluate how the extended λΣ interacts
with real-world ad hoc parsers. The challenge is to determine the kinds of ad hoc parsers
that the extension can successfully synthesize grammars from, given the many possible
variations in these parsers’ design. Critical factors also include the specific programming
constructs ad hoc parsers may employ, such as recursion, conditionals, polymorphism,
or custom data structures, and how these constructs interact within our new additions.
The aim is to identify limitations imposed by the calculus on these features, as certain
combinations may lead to failure or inefficiency in grammar synthesis, or may require
additional type annotations by the user.

1.3 Research Questions
The aim of this work is to extend the λΣ-calculus of the Panini system with type and
refinement polymorphism and ADTs while preserving full refinement type inference with
minimal annotations and enabling grammar inference for strictly more programs. We will
call this extended language λ+

Σ . As shown in Figure 1.2, those additions are a necessary
requirement to represent many common ad hoc parsers. We also aim to identify the
types of parsers for which the extended λ+

Σ can synthesize an input string grammar.

To this end, we propose the following research questions:

RQ1 How can the λΣ calculus be extended to support polymorphic operations over alge-
braic data types, while preserving its ability to synthesize input string grammars?

RQ2 For what kind of programs can we synthesize input string grammars with λ+
Σ?

To be able to synthesize input string grammars, the refinement λ-calculus needs to be able
to infer types completely. As the Panini system is supposed to automatically translate
unrefined (and possibly untyped) source code into λΣ, we cannot assume that any type

4

1.3. Research Questions

annotations are present. This is a major difference to regular applications of refinement
types, where usually at least top level type annotations are required for the type system
to be relatively complete [6].

Therefore, apart from the polymorphic operations that we need to add to λΣ, we also
need to find suitable inference rules for ADTs in a refinement setting, without requiring
type annotations, which to our knowledge has not been done before. Additionally, other
concerns specific to grammar solving need to be discussed. Considering the example in
Figure 1.2, every element of the list holding the result of split must conform to the
same grammar constraint, i.e., each element needs to be a string of digits. This grammar
is homogenous, as every element of the ADT has the same constraint. However, this does
not need to be the general case. A list of strings could require different grammars for
each of its elements. Those heterogeneous grammars need to be handled differently, and
we expect them to be more complex.

Overall, the research questions dictate the following steps:

1. We will identify typing rules for polymorphism according to relevant literature.

2. We will construct suitable inference rules for algebraic data types without any
pre-existing type annotations. Specifically, type deconstruction, i.e., accessing the
values of an ADT, as construction is simply a polymorphic function returning the
data type.

3. We will then add those rules into the source code of the Panini system, where we
also need to check if those rules do not alter the current functionality. However, as
for our changes, we only add new constructs in λ+

Σ ; we do not expect there to be
any regressions regarding the current capabilities of Panini.

4. We also need to investigate out how the solving for a grammar could work for
homogenous and heterogeneous grammars in ADTs. If this is possible, it will only
be done exemplary, as handling this issue in a general case would be out of scope
for this work. However, we still want to be able to show how a grammar can be
constructed from an ADT.

5. Finally, we evaluate λ+
Σ with a suitable set of real-world parsers, so that we can

identify common patterns and how they affect the ability of Panini with λ+
Σ to

synthesize the string grammars.

5

CHAPTER 2
Background

To give the necessary background for this work, we will first give a deeper introduction to
refinement types, liquid types and the Fusion algorithm. We explain the Panini approach
to grammar solving and go into detail about the current state of the intermediate
representation λΣ. Lastly, we give an overview of related work.

2.1 Refinement Types
As shown in chapter 1, refinement types restrict the values of a type by combining a basic
type with a logical predicate. Every member of that type needs to satisfy this predicate.
Refinement types are a restricted case of dependent types, where the logical predicates
cannot be arbitrary expressions, making refinement types a subset of dependent types
[38].

Refinement type checking will produce verification condition (VC) constraints [11, 15].
An example for those constraints would be those in Figure 2.2. In general, those are
constructed to be in a decidable subset of SMT-solvable logic [17]. In our case, the
refinement predicates are drawn from the quantifier-free theory of linear arithmetic and
uninterpreted functions (QF_UFLIA), extended with a theory of string operations [34].

For simple examples, this approach is comparable to the classical Floyd-Hoare logic,
where pre- and path-conditions are assumed, and the post conditions asserted [6]. The

1 abs : int → { v : int | 0 ≤ v }
2 abs = λ(x:int).
3 let p = 0 ≤ x in
4 if p then x else −x

Figure 2.1: Simple refinement example in λΣ syntax.

7

2. Background

∀n. (0 ≤ n) ⇒ ∀v. v = n ⇒ 0 ≤ v ∧
(0 ≰ n) ⇒ ∀v. v = 0 − n ⇒ 0 ≤ v

Figure 2.2: VC for the example in Figure 2.1

validity of those verification conditions can then be checked by an SMT-solver and if the
verification condition is valid, this implies the correctness of the checked or inferred types
[27].

A simplified example of checking a refinement type can be seen in Figure 2.1. According
to the type annotation, the resulting type of integer values grater or equal than zero
is our post condition, which needs to be implied by all pre and path conditions. The
resulting VC of a hypothetical type checking algorithm can be seen in Figure 2.2 and
can be trivially checked by an SMT-solver.

SMT-solvers have become quite feasible in practice [2] and this enables refinement types to
verify properties of polymorphic, higher order programs. Examples are Liquid Haskell
[42], Typescript [43] or Rust [21]. Many examples specifically use the concept of liquid
types, and is explained next.

2.1.1 Liquid Types and Predicate Abstraction
To be able to solve refinement types efficiently, and to be able to encode unknown
relationships in not yet known refinements, a concept called liquid types (Logically
Qualified Data Types) is oftentimes used [32].

This concept has been introduced to solve a fundamental issue that refinement types have,
namely to enable inference, and therefore reduce the number of possibly complicated
type annotations needed for a type checker to verify a program.

To the number of needed type annotations, so-called “liquid type variables” [32] are used
to encode unknown refinements over a set of variables. Additional names for this concept
are “Horn variables” [17] or “κ variables” [6], which is the term we use in our work.

As the typing rules for liquid type systems produce verification conditions containing
κ variables, those VCs now cannot be sent directly to an SMT-solver. Those variables
need to be replaced with concrete predicates. To find these predicates, an approach called
predicate abstraction is used. To this end, a set of qualifiers is assumed, or in practice
extracted from the given program. Those qualifiers are a set of boolean predicates over
the variables defined by a κ variable, as well as fixed values. For example, κ(x, y) can
have the qualifiers x ≥ 0 or x = y. A fixpoint computation is then used to identify the
strongest conjunction of qualifiers that satisfy the given VC for each κ [16]. In general,
there are many techniques to solve those Horn constraints [4], but for our specific case
this is an implementation detail of the Panini system. And we can just assume an oracle
giving us concrete refinements to try for those κ variables.

8

2.1. Refinement Types

1 abs : {x: int} −> { v : int | κ(x,v) }

∀n. (0 ≤ n) ⇒ ∀v. v = n ⇒ κ(n, v)∧
(0 ≰ n) ⇒ ∀v. v = 0 − n ⇒ κ(n, v)

Figure 2.3: Liquid type and resulting VC for the example in Figure 2.1 without a given
type signature.

If we go back to the abs example in Figure 2.1 but remove the give type signature and
we therefore want to infer the concrete refinement, the instantiated liquid type with a
κ variable and the therefore resulting VC can be seen in Figure 2.3. For this simple
example, we can give multiple valid assignments for κ, e.g., just a simple true would be
enough in this case. Also, n ≤ v would be valid. And of course the previous annotation
given in Figure 2.1, i.e., 0 ≤ v is still a valid assignment.

However, to get to a more meaningful instantiation of this refinement, i.e., not just refined
to true, the return value needs to be used in some way. For type systems in general,
function inputs need to be covariant, i.e., the actual input needs to be a subtype of the
expected input. For example, if the return of abs is used in a function that only takes
non-negative integers as an input, the type {v : int | κ(n, v)} needs to be a subtype of
the non-negative integers. Subtyping for refinement types means, apart from underlying
unrefined type, that the predicate of the subtype needs to imply the predicate of the
supertype. In this example, this implication is κ(n, v) =⇒ 0 ≤ v. For the previously
given valid assignments for κ(n, v), this new overall constraint can only be valid for the
assignment 0 ≤ v.

Those placeholder κ variables and the constraints they need to satisfy due to the
application of subtyping rules allow the automated inference of valid concrete refinements.

The general approach of predicate abstraction is already useful in practice. However,
there is an additional approach, the Fusion algorithm, which further reduces the number
of needed type annotations.

2.1.2 Fusion
Another important enabler of the Panini system is the Fusion algorithm, introduced by
Cosman and Jhala [6].

The idea is to be able to eliminate κ variables that can be replaced with concrete
refinements, constructed using the scoped structure of the verification condition, which is
otherwise lost during the predicate abstraction. Additionally, as those refinements form
the “strongest” refinements, Fusion allows for type inference with less type annotations,
and requires only top-level annotations or annotations for cyclic (recursive) dependencies.

This is indispensable for our case, as we want to be able to synthesize a string grammar
automatically. As the idea of the Panini system is to generate code in the intermediate

9

2. Background

assert s[0] == "a" λ(s : S). ∀s. κ(s) ⇒
let x = charAt s 0 in 0 < |s| ∧ ∀x. x = s[0] ⇒
let p = eqChar x ‘a’ in ∀p. (p ⇔ x = ‘a’) ⇒
assert p p

Figure 2.4: A simple Python expression (left) and the equivalent λΣ program (middle)
with an incomplete verification condition (right) for its inferred type {s : S | κ(s)} → 1[34].

λΣ language from an un-typed source language, no type annotations but the top level
annotation with a hole for the string input can be assumed.

Additionally, the approach is relatively complete, meaning that without recursion, if there
exist type annotations for intermediate binders, that would allow a program to be type
checked, Fusion will be able to find them. As predicate abstraction is computationally
expensive, being able to eliminate some κ variables significantly speeds up the VC solving.
Solving those verification constraints is still in ExpTime, but Fusion is able to avoid the
exponential blowup that is usually introduced by let chains.

2.2 Grammar Solving
Without loss of generality, every parsing program can be assumed to have a top-level type
signature of {s : string | κ(s)} → 1 where 1 is the unit type and κ(s) is the unknown
refinement for the parser’s input string. Unfortunately, the standard approaches to find a
solution for κ(s) (see above) are insufficient if it is desired that the refinement accurately
reflect the parser’s input grammar.

An example of such a parser can be seen in Figure 2.4, where a simple parser is translated
into λΣ and the resulting VC is shown. This parser expects a string of at least one
character and that the first character is always “a”. The constraints of this grammar
’a’.* are clearly observable in the resulting VC

The key insight for the Panini system is that the resulting VC of such a parser will always
be of the form ∀s.κ(s) =⇒ ϕ and that ϕ is technically already a complete grammar
for s. Assigning κ(s) ↦→ ϕ also trivially validates the VC. But, impractically, ϕ is in
size and complexity similar to the original program. To have a human-readable form,
Panini uses abstract interpretation on ϕ to extract a quantifier-free predicate that is
semantically equivalent to ϕ. The domain of this abstract interpretation for strings are
regular expressions, and the resulting grammar is given as a POSIX Extended Regular
Expression.

Once this grammar is extracted, we can use it to verify the VC and if it is valid, the
grammar has been successfully synthesized. This approach allows Panini to practically

10

2.3. The λΣ-calculus

infer refinement types without any type annotations (except for recursive functions).

2.3 The λΣ-calculus
2.3.1 Syntax
The syntax of λΣ in Figure 2.5 is relatively straightforward and it is comparable to
similar languages [32, 6, 17]. It is a λ-calculus in A-normal form (ANF). This restriction
is necessary for liquid types, as intermediate expressions must be bound to variables, so
that their inferred type information can be used [32].

However, notably missing from λΣ are polymorphic operations, a feature oftentimes
included in the other previously mentioned examples.

In general, λΣ is not intended to be written and run, but used as a practical tool for static
analysis. Therefore, convenience features, that might be common in other languages, are
missing.

The Terms in Figure 2.5 contain only common operations, i.e., branching, recursion,
function abstraction and application, as well as a let binding, to allow λΣ to be in ANF.

As there is no polymorphism in λΣ, the Types are only composed of refined base types
and function types.

Figure 2.5 also shows the Predicates which describe the expressiveness of the refinements.
As mentioned, those logical constraints on a type need to be in QF_UFLIA. Those
Predicates are then used by the Typing Rules below, to generate the Constraints, which
results in a verification condition for the overall inference result.

2.3.2 Typing Rules
The type/constraint synthesis rules are given as classical inference rules, with premises
that need to be fulfilled and a resulting conclusion for those premises. In generall,
inference in the λΣ context is signified by Γ ⊢ e ↗ t ⊨c, where Γ is the current context
that holds existing variables and can also be filled by some rules, e.g., Syn/Lam. The
term e together with the premises of a rule help to determine the resulting type t and
constraint c. This constraint is oftentimes generated by an application of a subtyping
rule (Figure 2.6), signified by t1 ⩽ t2 ⊨c, where the constraint c represents that t1 is a
subtype of t2. The rules for template generation (Figure 2.6), which introduce κ variables
for unknown refinements, are signified by Γ ⊢ t ▷ t̂, where the refinements of the type t
are replaced with κ variables in t̂.

Compared to other approaches based on liquid types, where only type checking rules
or a bidirectional typing approach [9] with some synthesis rules [30] are used, the λΣ
typing rules only utilize synthesis rules. This is due to the requirements of the Panini
system, as we cannot rely on type annotation and the in section 2.2 explained approach
to solving for a string grammar. The type checking step can be handled by the subtyping

11

2. Background

Values v ::= x, y, z, . . . variables
| . . . varies . . . constants

Terms e ::= v value
| e v application
| λ(x : b). e abstraction
| let x = e1 in e2 binding
| rec x : t = e1 e2 recursion
| if v then e1 else e2 branch

Base Types b ::= 1 | B | Z | Ch | S

Types t ::= {x : b | p} refined base
| (x : t1) → t2 dependent function

Predicates p ::= true | false Boolean constants
| p1 ∧ p2 | p1 ∨ p2 connectives
| p1 ⇒ p2 | p1 ⇔ p2 implications
| ¬p negation
| w1 = w2 | w1 ̸= w2 (in)equality
| w1 < w2 | w1 ≤ w2 arithmetic comparison
| w ∈ RE regular language membership
| κ(v) κ application
| ∃(x : b). p existential quantification

Expressions w ::= v value
| f(w) function

Constraints c ::= p predicate
| c1 ∧ c2 conjunction
| ∀(x : b). p ⇒ c universal implication

Figure 2.5: Syntax of λΣ terms, types, and refinements [34].

12

2.3. The λΣ-calculus

t1 ⩽ t2 ⊨c Subtyping

{ν1 : b | p1} ⩽ {ν2 : b | p2} ⊨∀(ν1 : b). p1 ⇒ p2[ν2 := ν1]
Sub/Base

s2 ⩽ s1 ⊨ci t1[x1 := x2] ⩽ t2 ⊨co

(x1 : s1) → t1 ⩽ (x2 : s2) → t2 ⊨ci ∧ ((x2 :: s2) ⇒ co)
Sub/Fun

(x :: t) ⇒ c
def=

{︄
∀(x : b). p[ν := x] ⇒ c if t ≡ {ν : b | p},
c otherwise.

Γ ⊢ t ▷ t̂ Template Generation

t ▷ t̂
def= ∅ ⊢ t ▷ t̂

κ is a fresh variable of sort b × t

x : t ⊢ {ν : b | p} ▷ {ν : b | κ(ν, x)} Kap/Base

Γ ⊢ t1 ▷ t̂1 Γ[x ↦→ t1] ⊢ t2 ▷ t̂2

Γ ⊢ (x : t1) → t2 ▷ (x : t̂1) → t̂2
Kap/Fun

Figure 2.6: Subtyping and template generation rules for λΣ.

rules. I.e., if we want to check type t for a term, we infer a type t̂ with a constraint c for
that term. This constraint in conjunction with the subtyping constraint t̂ ⩽ t ⊨ĉ is then
the overall constraint of a type checking step.

We refer the interested reader to Schröder and Cito [35] for a detailed explanation of
each typing rule. To showcase their application, we now give a simple example, similar
to Figure 2.4. In this previous example, we can see the resulting simplified VC of the
application of the rules Syn/Lam, Syn/Let and Syn/App.

However, due to the iterative application of the typing rules, those constraints become
convoluted fast. To be able to better show the interplay of the typing rules, the reduced
example can be seen in Figure 2.8. Note that compared to the first example, the shown
VC is actually the one produced by the λΣ typing rules. For this example two rules are
relevant, Syn/Lam, as the overall expression is a lambda expression, and Syn/App, as
charAt is a function that s and 0 are applied to. To discuss this example, we need the

13

2. Background

Γ ⊢ e ↗ t ⊨c Type/Constraint Synthesis

Γ(x) = t

Γ ⊢ x ↗ self(x, t) ⊨true
Syn/Var

prim(c) = t

Γ ⊢ c ↗ t ⊨true
Syn/Con

Γ ⊢ e ↗ (y : t1) → t2 ⊨ce Γ ⊢ x ↗ tx tx ⩽ t1 ⊨cx

Γ ⊢ e x ↗ t2[y := x] ⊨ce ∧ cx
Syn/App

t̃1 ▷ t̂1 Γ[x ↦→ t̂1] ⊢ e ↗ t2 ⊨c2

Γ ⊢ λ(x : t̃1). e ↗ (x : t̂1) → t2 ⊨(x :: t̂1) ⇒ c2
Syn/Lam

Γ ⊢ e1 ↗ t1 ⊨c1
Γ[x ↦→ t1] ⊢ e2 ↗ t2 ⊨c2 t2 ▷ t̂2 t2 ⩽ t̂2 ⊨ĉ2

Γ ⊢ let x = e1 in e2 ↗ t̂2 ⊨c1 ∧ ((x :: t1) ⇒ c2 ∧ ĉ2)
Syn/Let

t̃1 ▷ t̂1 Γ[x ↦→ t̂1] ⊢ e1 ↗ t1 ⊨c1 t1 ⩽ t̂1 ⊨ĉ1
Γ[x ↦→ t1] ⊢ e2 ↗ t2 ⊨c2 t2 ▷ t̂2 t2 ⩽ t̂2 ⊨ĉ2

Γ ⊢ rec x : t̃1 = e1 e2 ↗ t̂2 ⊨((x :: t̂1) ⇒ c1 ∧ ĉ1) ∧ ((x :: t1) ⇒ c2 ∧ ĉ2)
Syn/Rec

Γ ⊢ x ↗ B Γ ⊢ e1 ↗ t1 ⊨c1 t1 ▷ t̂ t1 ⩽ t̂ ⊨ĉ1
Γ ⊢ e2 ↗ t2 ⊨c2 t2 ⩽ t̂ ⊨ĉ2

Γ ⊢ if x then e1 else e2 ↗ t̂ ⊨(x = true ⇒ c1 ∧ ĉ1) ∧ (x = false ⇒ c2 ∧ ĉ2)
Syn/If

Figure 2.7: Type synthesis rules for λΣ.

charAt : (s : S) → {z : Z | z ≥ 0 ∧ z < |s|} → {t : Ch | t = s[z]}
λ(s : S). ∀s. κ(s) ⇒

charAt s 0 (∀s1. κ(s1) ∧ s = s1 =⇒ true) ∧
(∀z. (z = 0) ⇒ z ≥ 0 ∧ z < |s|)

Figure 2.8: Definition of charAt and reduced version of Figure 2.4, with a complete VC
generated by λΣ

14

2.3. The λΣ-calculus

context
tcharAt := (s : S) → {z : Z | z ≥ 0 ∧ z < |s|} → {t : Ch | t = s[z]} (2.1)

Γ := [charAt ↦→ tcharAt] (2.2)
Γλ := Γ[s ↦→ {s : S | κ(s)}] (2.3)

as defined by charAt and initialized by Syn/Lam. As the rules are recursive, we will
discuss the deepest nested rule Syn/App first. The value s is applied to charAt and
according to Syn/App, s needs to be a subtype of the first parameter of charAt. This
results in the constraint

cs := ∀(s1 : S).κ(s1) ∧ s = s1 =⇒ true

for the subtyping relation between s and the (renamed) input parameter s1. As the
constraints generated by gathering the variables s and charAt using the rule Syn/Var
are all present in the context (and resulting in a true VC), the resulting derivation tree is

Γλ ⊢ charAt ↗ tcharAt ⊨true Γλ ⊢ s ↗ {s : S | κ(s)}
{s : S | κ(s)} ⩽ {s : S | true} ⊨cs

Γλ ⊢ charAt s ↗ {z : Z | z ≥ 0 ∧ z < |s|} → {t : Ch | t = s[z]} ⊨cs
Syn/App

and the resulting VC is simply cs. In the next step, the value 0 gets applied to the
remaining type of charAt, and the Syn/App is used again, with a similar derivation tree.
By the definition of Syn/App, the resulting VC of the nested Syn/App rule cs is used
in conjunction with the subtyping constraint

cz := ∀z. (z = 0) ⇒ z ≥ 0 ∧ z < |s| ,
for the input parameter z as the overall VC. And the overall inference for the expression
charAt s 0, without giving the complete derivation tree, is:

Γλ ⊢ charAt s 0 ↗ {t : Ch | t = s[0]} ⊨cs ∧ cz

Note that the resulting type already has the value 0 replaced, as defined in Syn/App.
The Syn/Lam rule uses the hole instantiation rules to generate a with a κ variable
refined type of its input parameter s. This type is then used to prepare the previously
introduce context Γλ and is used to infer the nested function applications. Overall, we
have the following derivation tree:

(s : S) ▷ {s : S | κ(s)} Γλ := Γ[s ↦→ {s : S | κ(s)}]
Γλ ⊢ charAt s 0 ↗ {t : Ch | t = s[z]} ⊨cs ∧ cz

Γ ⊢ λ(s : S).charAt s 0 ↗ {s : S | κ(s)} → {t : Ch | t = s[z]} ⊨∀s. κ(s) ⇒ cs ∧ cz
Syn/Lam

The Syn/Lam rule returns the implication
∀s. κ(s) ⇒ cs ∧ cz

as its VC, which can also be seen fully in Figure 2.8. This VC relates the κ variable with
the input refinement of charAt, therefore, to validate this VC a predicate with at least
|s| > 0 needs to be chosen for κ. In the Panini system, this grammar can be extracted
from this result as explained in section 2.2.

15

2. Background

2.4 Related Work
In this section, we give an overview of the related work, highlighting not only the
previously mentioned fundamental work, but also different applications of refinement
types as well as more directly related work. Refinement types in general have been
introduced by Freeman and Pfenning [12].

Xi and Pfenning [46] use refinement types to show the absence of array out-of-bounds
errors in higher order programs. Dunfield [8] and Bengtson et al. [3] respectively show that
refinement types can be used to validate the correctness of data structure implementations
and the correctness of cryptographic protocol implementations.

However, those approaches required a high number of annotations, upwards of 10% of all
source code lines [32]. Liquid types (cf. subsection 2.1.1) aimed to partially remedy this
issue [32]. Due to the reduced annotation burden, liquid types are used extensively, and
most of our related work builds on this concept.

Liquid types have been implemented for many programming languages, the most ex-
tensively documented approach being Liquid Haskell [42].1 Compared to previous
implementations in OCaml[32], Liquid Haskell needed to adapt liquid types to the
lazy evaluation nature of the Haskell language. This lazy nature can lead to unsoundness
in the refinement type system, as diverging values can lead to valid VCs for unsound
implementations. This problem is solved by labeling types as either divergent or finite,
meaning that those values reduce. Additionally, a termination analysis is used to assign
a finite label to terms, as the authors note, in practice most terms don’t diverge. In
their evaluation, they showed that for recursive functions, Liquid Haskell could prove
termination in 96% of cases. With this extension, the authors provide a sound, precise
and automated verification of the functional properties of real world Haskell code.

Different implementations of liquid types also exist for Rust[21], TypeScript[43] and
C [33]. Those implementations also need to handle different language specific issues like
mutability or function overloading.

Apart from those concrete adaptations to specific programming languages, the concept of
liquid types has also been extended since its initial inception. Some of those extensions
to liquid types have been summarized by Jhala and Vazou [17], which contains an
introduction and exhaustive overview of liquid types.

Kawaguchi, Rondon, and Jhala [18] propose a mechanism to extend liquid types to handle
complex invariants of data types. They introduce recursive and polymorphic refinements,
two ideas to add refinements to either recursive data structures or to finite maps, allowing
for example the refinement of the value of a map to depend on its key. This avoids using
universally quantified formulas, and thus remains decidable.

A generalization of this approach is the introduction of abstract refinements by Vazou,
Rondon, and Jhala [40]. This idea is also called refinement polymorphism and allows

1https://ucsd-progsys.github.io/liquidhaskell/

16

https://ucsd-progsys.github.io/liquidhaskell/

2.4. Related Work

having abstract refinement parameters on types. This refinement parameter is a function
of base types to a boolean value, and is interpreted as an uninterpreted function by the
SMT solver. This allows for decidable SMT checking. Similar to the idea of recursive
refinements, this parameter can be passed recursively into a data structure, enabling,
e.g., a sorted list where every appended element needs to be larger than every other
element in the list. Those abstract parameters can not only be explicitly defined, but
also implicitly instantiated. This instantiation is again handled by the κ variables, where
the implication constraints force a valid instantiation of those variables.

Another continuation to this concept of abstract refinements are bounded refinement
types by Vazou, Bakst, and Jhala [39]. This allows the refinement parameters to be
restricted by certain criteria, e.g., ∀p.p(x) ⇒ p(x + 1) for a parameter p : Z → B similar
to typeclasses in Haskell. Those bounds, as they are also translated to κ variables, still
are decidable by SMT solvers, and enable the specification and verification of diverse
higher order abstractions.

Those extensions, while they greatly increase the capabilities of liquid types and are
useful in general, seem to have limited application in our case. Complex higher order
functions or data structures with non-trivial guarantees are not a relevant factor in real
world ad hoc parsers. The code we observed in section 4.2 is not impacted by those
features, especially as the source is mostly untyped.

Another related extension is the work by Montenegro et al. [25], and their previous work
[26], where they aim to handle quantified properties on arrays. This is similar to the
concept of abstract refinements, however, by allowing quantification that is restricted
to a decidable subset of the theory of arrays, the values of an array can also relate to
one another. This extension enables the static verification of programs that manipulate
arrays by allowing type refinements to express complex invariants involving array indices,
such as sortedness or uniqueness of elements. The primary contribution of their work
lies in extending the expressiveness of liquid types to capture these quantified properties
while still maintaining decidability. Those array properties could be useful in the context
of string grammar synthesis. E.g., if the first few elements of an array need to be of some
grammar g and all elements afterward need to be of another grammar g′. However, we
do not jet know if this would be a common case.

This approach, similar to the original idea of liquid types, relies on a set of qualifiers,
that would need to be extracted or defined beforehand. From those qualifiers suitable
refinements are created, that, compared to the work by Rondon, Kawaguci, and Jhala
[32], may contain some qualified assertions over arrays, while still remaining in a decidable
subset of the theory of arrays. As the Fusion algorithm is used in our work to eliminate
as many κ variables as possible beforehand, and we do not entirely rely on predicate
abstraction with extracted qualifiers, and it is unclear if those array predicates can be
combined with our approach or if it would increase the necessary annotation burden.

Independently of the verification capabilities of liquid types, there are also several concrete
applications using those refinement types to achieve multiple different use cases. As our

17

2. Background

work falls mainly into this category, i.e., using liquid types for a specific application,
those works are also relevant for our context.

One application of liquid types is Lifty (liquid information flow control) by Polikarpova
et al. [31], a domain specific language λL to enforce information flow control policies
at compile time using liquid types. This calculus is significantly more limited than
λΣ, but additionally includes specific properties to handle information flow control. A
continuation of this approach, is the STORM (Security Typed Object Relation Mapper)
web framework by Lehmann et al. [22]. The idea is to enrich the data model of a web
application with security policies, regulating the information flow control, and then using
those policies to generate a refined ORM layer. STORM verifies using Liquid Haskell,
e.g., necessary access checks are made before allowing database operations according to
those generated refinements. This approach is somewhat similar to our context, as the
refinement typing is opaque to the user, meaning that in the regular application code
those refinements are not used. For the Panini system, we also know the shape of ad
hoc parsers and use this information to generate the refinements.

Another application of liquid types by Knoth et al. [20] is the idea to encode the resource
consumption into liquid types, and use the refinement type checking to automatically
verify bounds on the resource consumption of a program. As the refinements are
additionally annotated with a resource potential, the proposed typing rules also need
to handle this specific detail. This work is also related to the work by Polikarpova,
Kuraj, and Solar-Lezama [30], with the aim to synthesize programs from refinement
type specifications, as those resource constraints are used to try to find implementations
satisfying those constraints in the program synthesis search space [19]. Those works are
only partially related to our approach, as even though the presented typing rules are
in the context of liquid types, they are highly specific to this context. Nonetheless, it
is still relevant to convey the different applications of refinement types in general and
specifically liquid types.

Overall, refinement types have proven to be useful in practice, especially due to the
reduced annotation burden enabled by the concept of liquid types. The Panini system as
explained in section 2.2 and section 2.3 also builds heavily on the concept of liquid types
and in the next chapter, we will introduce the proposed extensions to λΣ to increase the
capabilities of Panini.

18

CHAPTER 3
The λ+

Σ-calculus

In this chapter, we extend the λΣ-calculus with new syntactic constructs to support
Polymorphism and algebraic data types. We call this extended calculus λ+

Σ , and we
formalize additional inference rules and explore the new semantics of λ+

Σ , illustrate the
rules with examples, and discuss their implications for grammar inference. By the end
of this chapter, the reader will understand how these extensions enhance the Panini
system’s ability to synthesize string grammars, and will gain insight into the mechanics
of refinement type inference for polymorphism and algebraic data types.

To identify and create suitable rules, we have been inspired by the work of Jhala and
Vazou [17], which introduces the Sprite tutorial language.1 This language has already
influenced the implementation of λΣ, and also guides our extension.

Type polymorphism is a standard extension of the regular typed lambda calculus [29]
and commonly part of liquid type systems [32, 42, 17]. Polymorphic type inference rules
for liquid type systems are often based on the original work by Rondon, Kawaguci, and
Jhala [32] and this is also the case for λ+

Σ .

In the literature we surveyed (cf. section 2.4), we could not identify many inference rules
directly related to algebraic data types. This seems to have multiple reasons. Firstly,
ADTs are often not relevant to the core idea of a particular system or application, and
therefore omitted. Also, due to the fact that ADTs can be implemented directly into any
λ calculus using the Church or Scott encoding [1], omitting ADTs is not necessarily a
restriction, at least theoretically.

Overall, we have only observed specific rules for ADTs in the Sprite tutorial language.
For the destruction of ADTs, those rules were checking rules and we did not identify rules
to infer the destruction of ADTs. In general, the destruction of an ADT is a common
part in many programming languages, e.g., Haskell uses the case keyword or pattern

1https://github.com/ranjitjhala/sprite-lang

19

3. The λ+
Σ-calculus

matching. For this statement, different alternative expressions are evaluated, depending
on the concrete value of a data type. For example, if a list is empty or not, and each
constructor has a corresponding alternative.

As we specifically aim to add ADTs to λ+
Σ , we also need inference rules for their destruction.

As mentioned in section 2.2, Panini relies on inference, so we could not use the identified
checking rules. We have therefore also identified new inference rules for those cases.
This also allows to potentially alter the generated VCs and have fine-grained control
over how the nested values of an ADT are accessed, which is useful in the context of
grammar synthesis. Those novel rules are a combination of previous work [17] as well as
the existing rules in Panini, allowing refinement inference for ADT deconstruction.

To be able to explain those new additions, we start with a high level description of our
extension to the λΣ calculus.

3.1 Syntax of λ+
Σ

The syntax of λΣ has been extended in multiple places to implement our changes.
Figure 3.1 contains the existing syntax of the Panini system as well as the new additions.

Terms

In total, there are four new terms that are added to the syntax. Type application and
type abstraction are new terms needed for type polymorphism. Type application e[t]v
is applying a concrete type t to a polymorphic term e. This term can be automatically
created by annotating a λΣ program with classical Hindley-Milner type inference[14, 7].
Type abstraction is similar to the λ-abstraction already present in the original syntax,
and allows a term to be parameterized by an abstract type.

There are no terms for data constructors of a defined data type. In our implementation,
this term is interpreted as a variable value, that is resolved to the concrete type of the data
constructor, i.e., there is no difference between a (global) variable or a data constructor,
as both are types that exist in the inference context. The data constructors are added to
the context once a new data type is defined. This simplifies our implementation, and we
can define polymorphic types as a data constructor for an ADT.

The switch statement branches a value v that needs to resolve to a data type over multiple
alternatives. As ADTs are composed of alternatives, each data constructor of v has a
corresponding alternative in the switch statement. Our switch statement is therefore the
approach to destruct a data type and in conjunction with the data constructors allows
us to create and access the added data types. This term allows us to specifically define
inference rules for the ADT destruction case.

20

3.1. Syntax of λ+
Σ

Terms e ::= v value
| e v application
| λ(x : b). e abstraction
| let x = e1 in e2 binding
| rec x : t = e1 e2 recursion
| if v then e1 else e2 branch
| e[t] v type application
| Λα.e type abstraction
| switch(v) | a switch statement

Base Types b ::= 1 | B | Z | Ch | S | D(t)

Types t ::= {x : b | p} refined base
| (x : t1) → t2 dependent function
| α type variable
| ∀α.t type polymorphism

Alternative a ::= C(z): e switch alternative

Data Type δ ::= D, α, C : t

Figure 3.1: Extended Syntax for λ+
Σ .

Base Types
The base types are extended by data types. This base type also includes the concrete
instantiation of the data type, i.e., what the concrete types of the current data type
instance are. For example, for a data type list, a concrete instance would be if it is a list
of integers or a list of strings.

Types
The types are extended by type variables as well as type polymorphism. This is exactly
the same as in a regular polymorphic lambda calculus without refinements.

Alternatives
An alternative sets up the context for a term within a switch statement. It is composed
of a data constructor, a list of variable names and a nested term. The variable names are
used together with the constructor type to construct the inference context for the term

21

3. The λ+
Σ-calculus

1 type list(#a) =
2 | Nil: ∀#a.{v:list(#a) | len(v) = 0}
3 | Cons: ∀#a.(x:#a) → {xs:list(#a)|true} →
4 {v:list(#a) | len(v) = 1 + len(xs)}
5
6 measure len = list(#a) → int

Figure 3.2: A definition of a list data type and corresponding length measure in λ+
Σ .

of the alternative, i.e., each variable corresponds to an input of the data constructor and
can then be used in the nested alternative term.

Data Types
A data type is composed of a name D, a list of type variables α, as well as a list of data
constructor names with their corresponding types.

Figure 3.2 shows the definition of a list data type. The data type name is D := list, we
have a single polymorphic type parameter, and two constructors Nil and Cons. To allow
for uninterpreted functions in refinements, the type for that function must be explicitly
declared as a measure. This measure can then be used in the refinements of the returned
lists. It also defines the corresponding function in the SMT solver’s logic, so that the
VCs can be solved.

As mentioned, the constructors Nil and Cons are variables in the inference context, and
handled the same way as any other defined function. To construct a new ADT value,
those constructors are then simply used like any other function. The alternative term
also needs those variables, to set up the inference context for a specific constructor.

3.2 Synthesis Rules
In this section, we explain the new synthesis rules in detail. Those rules, shown in
Figure 3.3, together with the subtyping rules in section 3.3 enable type synthesis for our
extended λΣ calculus. As mentioned, the rules for polymorphism are typical and have
not been altered for this work. This is not the case for the synthesis rules handling the
new switch and alternative syntax for ADTs, and their inception is explained in detail.

Type Abstraction
This is the simplest new synthesis rule. If we have a term e that is wrapped in a type
abstraction, and the term e synthesizes to a type t, we know that the overall type of the
term synthesizes to ∀α.t under the constraint c that has been given by the term e.

22

3.2. Synthesis Rules

Γ ⊢ e ↗ t ⊨c Type/Constraint Synthesis

Γ ⊢ e ↗ t ⊨c t̂ = ∀α.t

Γ ⊢ Λα.e ↗ t̂ ⊨c
Syn/TypeAbs

Γ ⊢ e ↗ ∀α.te ⊨c z ▷ tz

Γ ⊢ e[z] ↗ te[α := tz] ⊨c
Syn/TypeApp

Γ ⊢ ai ↗ ti ⊨(zi :: tz) ⇒ ci for each i
t1 ▷ t̂ ti ⩽ t̂ ⊨ĉi for each i

Γ ⊢ switch(y) | a ↗ t̂ ⊨
⋀︂

(zi :: tzi) ⇒ ci ∧ ĉi for each i
Syn/Switch

s = ctor(Γ, C(z), y) Γ′ = unapply(Γ, y, z, s)
tz = Γ′(z) Γ′ ⊢ e ↗ t ⊨c

Γ[y ↦→ D(t)] ⊢ C(z): e ↗ t̂ ⊨(z :: tz) ⇒ c
Syn/Alt

Figure 3.3: Extended Type Synthesis rules for λΣ.

Due to the nature of type abstraction, no other constraints need to be generated.
Depending on how the term is consecutively used, the new rule Syn/TypeApp in
combination with the existing Syn/App and Syn/Lam rules handles the correct inference
of specific refinements. This interplay is explained in section 3.4.

Type Application

The Syn/TypeApp rule is the “reverse” rule of Syn/TypeAbs, as the type abstraction
gets removed from the resulting type of e. Similar to Syn/TypeAbs, the constraint does
not need to be changed, as the concrete refinement inference comes into effect due to the
existing Syn/App and Syn/Lam rules.

However, one additional step needs to be taken to construct the concrete type of e[z].
The abstract type value α bound by the type abstraction needs to be substituted in the
inferred type te of e. This substitution is not simply a replacement with the unrefined
base type z, but with a newly generated template. This is what enables the inference
of concrete refinements, and is similar to the original Syn/Lam in Figure 2.7, with the
difference that the instantiated template type is not added to the context, but directly
added to the resulting type.

23

3. The λ+
Σ-calculus

ctor : (Γ × C × X) → T

ctor(Γ, C, y) = s[α := t]
where

D(t) = Γ(y)
∀α.s = Γ(C)

Figure 3.4: Method to create a monomorphic constructor function, using the current
data type instance [17].

Switch and Alternative
The synthesis rules for switch and alternative will be explained together, as those rules
work in a tandem to be able to synthesize the deconstruction of a data type. Those rules
are arguably more complex than the other additions. We have observed checking rules
for similar syntax [17], which gave us inspiration on how to handle the necessary internal
details for possible inference rules. However, as inference is required, we had to adapt
the premises and inner workings of those checking rules.

Considering its syntactic meaning, a switch statement, with its alternatives, is a combi-
nation and generalization of the if and let statements. For a switch statement, we have
both, a branching into the different alternatives and, for those alternatives, variables
that are added to the context. Compared to the rule Syn/If, the possible amount of
branches is unrestricted, and compared to the rule Syn/Let, there can also be multiple
variables depending on the concrete data constructor.

We therefore decided to utilize and combine those similarities into those two new rules.
Specifically, splitting a switch term into two different rules is already given by the syntax
and the implied semantics, as clearly the nested alternative statements are somewhat
(but not entirely) independent of the overall switch statement.

We will start with a description of the Syn/Alt rule, as the Syn/Switch rule is
composed of iterative applications of that rule. This rule generates VCs similarly to
Syn/Let, as all variables defined by an alternative need to imply the nested VC. To be
able to infer an alternative and specifically prepare the necessary context, two necessary
preconditions need to be handled.

First, the concrete instance of the data type constructor under this alternative needs
to be constructed. This is done using the ctor method (cf. Figure 3.4). This concrete
instance is created using the data constructor of the alternative and the type variables of
the data type that the switch statement is referring to. The ctor helper method fetches
the concrete instance of the data type as well as the type of the constructor method
of the current constructor from the context. The returned type is then the constructor
type with the type variables applied, so that all quantified variables of the data type are
removed.

Secondly, we need to identify all variables that the data constructor defines and add their

24

3.2. Synthesis Rules

unapply : (Γ × X × X × T) → Γ
unapply(Γ, y, z : zs, (x : s) → t) = unapply(Γ[z ↦→ s], y, zs, t[x := z])
unapply(Γ, y,∅, t) = Γ[y ↦→ meet(Γ(y), t)]
meet : (T × T) → T

meet ({x : b | p1}, {y : b | p2}) = {x : b | p1 ∧ p2[y := x]}
meet ((x : s1) → t1, (y : s2) → t2) = (x : meet(s1, s2)) → meet(t1, t2[y := x])
meet (∀α.t1, ∀β.t2) = ∀α.meet(t1, t2[β := α])

Figure 3.5: Methods to assign (monomorphic) constructor function parameters and
result to variables in an alternative [17].

type into a modified context. This is done with the unapply method (cf. Figure 3.5).
This method “unrolls” the concrete constructor function created by ctor, so that every z
value of the constructor is matched to an input of the type of that constructor. Those
variables are then used in the synthesis of the term e. In general, this behavior is simply
the semantic meaning of a switch statement, i.e. the term of the alternative needs to be
inferred with a context containing the variables of the alternative.

Additionally, the meet function unifies the type of y with the type returned by s after
all variables are removed of the concrete constructor function. This allows refinements
that are inherent to a constructor method to then be also in the current context. For
example, if the constructor Cons returns a list {x : list(α) | len(x) > 0}, the variable y
then also has this additional refinement.

As the context is extended by new variables, the resulting constraint is similar to the
Syn/Let rule, as the new variables and their types need to imply the synthesized
constraints of e.

The Syn/Switch rule now needs to combine the types and constraints of each alternative.
Similarly to the Syn/If rule, the constraints need to be valid in conjunction, and we
need to add a subtyping constraint. In the Syn/If case, the types of the nested terms of
the branches are synthesized. Then a subtyping constraint is generated for both branches,
using the instantiated template type of the second branch. This enforces that types of
those branches match and consequently this template type is the overall type of the if
term. And for the Syn/Switch rule this is equivalent, as we simply use the first branch
to create the template t̂ and the synthesized types of each branch need to be a subtype
of this template.

The type of an alternative expression can rely on the variables that have been added into
the context during Syn/Alt, and the subtyping constraint does as well. The implication
generated by Syn/Alt handles this extension of the context. Therefore, this implication
needs to include the subtyping constrain ĉi generated in Syn/Switch in its consequent.
Those added variables are similar to the branching condition in Syn/If in the sense that
the branching condition of an if statement also implies the nested VC for each branch.

25

3. The λ+
Σ-calculus

t1 ⩽ t2 ⊨c Subtyping

α ⩽ α ⊨true
Sub/Abs

s ⩽ t ⊨c
∀α.s ⩽ ∀α.t ⊨c

Sub/Poly

c0 = ∀(ν1 : b). p1 ⇒ p2[ν2 := ν1]
si ⩽ ti ⊨csi for each i cs =

⋀︂
csi

{ν1 : D(s) | p1} ⩽ {ν2 : D(t) | p2} ⊨c0 ∧ cs
Sub/Data

Figure 3.6: Extended Subtyping rules for λΣ.

3.3 Subtyping Rules
For the new subtyping rules, the main concern is the Sub/Data rule, which is now the
most involved subtyping rule. For abstract types and polymorphic types, subtyping
constraints are straightforward and, as mentioned, those rules are present in most liquid
type systems. The less common Sub/Data rule is specifically taken from Jhala and
Vazou [17].

Abstract Types and Polymorphic Types
The generation of subtyping constraint for abstract types is trivially true. For polymorphic
types, the subtyping constraint is the constraint without the bounded quantification of
the polytype. This is in accordance with the meaning of a subtype and also not specific
to refinement type systems.

Data Types
This is a more complicated subtyping rule compared to the previous rules in λΣ. For
a data type to be a subtype of another, the Sub/Base rule needs to be extended.
Therefore, the refinement of the subtype also needs to imply the refinement of the
supertype. This implication is the same as in the rule Sub/Base. Additionally, for the
subtyping relationship to be valid, each type parameter needs to be in a valid subtyping
relationship. Therefore, those constraints in conjunction with the refinement implication
compose the overall subtyping constraint for Sub/Data.

To complement this brief overview of the extension in λ+
Σ , in the next section we will

go into detail for some of these rules, give examples of their application and show the

26

3.4. Inference in Depth

1 listAdd1 = λ(x:list(int)). Cons[int] 1 x

Figure 3.7: Instantiating a list data type in λ+
Σ .

interplay of subtyping and synthesis rules.

3.4 Inference in Depth
As we have seen an overview of the changes to the λΣ type system, we will now give an
in depth explanation of how those rules work as well as illustrate those rules with a few
examples.

Figure 3.2 shows the definition of a list data type in λ+
Σ . Notably, the constructor methods

are simply polymorphic functions that return a value of the datatype. For our concrete
implementation, this means that a constructor is handled exactly like a variable in the
current context.

We will give two examples where we will manually apply the defined rules of λ+
Σ . With

those examples, we will show the construction as well as the deconstruction of the given
data type in Figure 3.2. As polymorphism is a prerequisite for those ADTs, this is
sufficient to explain all our newly added rules in depth.

Data Type Creation

To show both, polymorphism in general and subtyping for data types, we will use the
example in Figure 3.7. This example is a function that takes an integer list as a value and
returns a list with the value 1 appended. As already mentioned, we assume that general
type inference with Hindley-Milner has already annotated the usage sites of polymorphic
functions, as is shown with Cons[int]. This example can also be given as the following
sub expressions:

e0 := Cons[int] (3.1)
e1 := e0 1 (3.2)
e2 := e1 x (3.3)
e3 := λ(x : list(int)).e2 (3.4)

We need the following context for type synthesis.

tCons := ∀α.x : α → xs : list(α) → {v : list(α) | len(v) = 1 + len(xs)} (3.5)
Γ := [Cons → tCons] (3.6)

Γλ := Γ[x ↦→ {x : list({v : int | κ1(v)}) | κ0(x)}] (3.7)

27

3. The λ+
Σ-calculus

Note that the context Γλ has already been inferred, as generally, those rules are executed
recursively on the program, and the outermost rule Syn/Lam modifies this context.

We will explain the applied rules from the innermost expression first, starting with e0,
which is synthesized using the newly added rule Syn/TypeApp. In this expression, a
nested application of Syn/Var is used to extract the polymorphic type tCons from the
context for the list constructor variable Cons. The with Hindley-Milner annotated type
int is instantiated with a new κ variable and replaces the type parameter α in tCons,
resulting in the now monomorphic type

tConsint := {x : int | κ2(x)} → xs : list({v1 : int | κ2(v1)}) →
{v : list({v1 : int | κ2(v1)}) | len(v) = 1 + len(xs)}

leading to the overall derivation tree

Γλ ⊢ Cons ↗ tCons ⊨true int ▷ {v1 : int | κ2(v1)}
Γλ ⊢ Cons[int] ↗ tConsint ⊨true

Syn/TypeApp

for the Syn/TypeApp rule. With the rule Syn/App, the type tConsint is then used to
synthesize e1, where the value 1 is applied to this resulting function type. To construct
the resulting VC the applied value needs to be a subtype of the first function parameter:

{v : int | v = 1} ⩽ {x : int | κ2(x)} ⊨∀(v : int).v = 1 =⇒ κ2(v)

As the VC of the previous Syn/TypeApp is just true, this subtyping constraint is the
resulting VC for the first Syn/App, together with the remaining part of the function
type:

tApp1 := xs : list({v1 : int | κ2(v1)}) → {v : list({v1 : int | κ2(v1)}) | len(v) = 1+len(xs)}
Γλ ⊢ Cons[int] ↗ tConsint ⊨true Γλ ⊢ 1 ↗ {v : int | v = 1} ⊨true

{v : int | v = 1} ⩽ {x : int | κ2(x)} ⊨∀(v : int).v = 1 =⇒ κ2(v)
Γλ ⊢ Cons[int] 1 ↗ tApp1 ⊨∀(v : int).v = 1 =⇒ κ2(v)

Syn/App

As in this program, two values get applied, the rule Syn/App is used again, to synthesize
e2. The value x then needs to be a subtype of the second function parameter of tConsint ,
which has the type

tlistxs := {xs : list({v1 : int | κ2(v1)}) | true}
as seen in tApp1 . As x is the parameter of the overall λ function, it is in the current
context Γλ and its type is

tlistx := {x : list({v : int | κ1(v)}) | κ0(x)}
resulting in the subtyping constraint:

tlistx ⩽ tlistx ⊨∀(v : list) κ0(v) =⇒ true ∧ ∀(v : int) κ1(v) =⇒ κ2(v)

28

3.4. Inference in Depth

This subtyping is an application of the new rule Sub/Data, where now not only the
subtype itself needs to imply the refinement of the supertype, but also the nested type
parameters. This constraint in conjunction with the subtyping constraint of the first
function parameter forms the overall VC of the synthesis of e2. The last remaining part
of tConsint

{v : list({v1 : int | κ2(v1)}) | len(v) = 1 + len(x)},

is the resulting type of Syn/App. The Syn/Lam rule is executed on e3, the outermost
expression. Here, the parameter x is added to the context, resulting in Γλ. This context
is used for the previous synthesize rule applications. The inserted type is the parameter
of the λ function instantiated with a hole (κ variable). This new type is used to construct
the overall type of listAdd1, as well as to create the overall VC, as the for all quantified
refinement of this type needs to imply the previous VC. This overall result can be seen
in Figure 3.8, where the consequent of this first implication are the subtyping constraints
generated by the successive application of the rule Syn/App.

Γ ⊢ listAdd1↗
{x : list({v : int | κ1(v)}) | κ0(x)} → {v : list({v1 : int | κ2(v1)}) | len(v) = 1 + len(x)}

⊨
∀(x : list) κ0(x) =⇒

(∀(v : int) v = 1 =⇒ κ2(v)) ∧
(∀(v : list) κ0(v) =⇒ true ∧ ∀(v1 : int) κ2(v1) =⇒ κ1(v1))

Figure 3.8: Inference result of Figure 3.7

This type and its VC is similar to the example in Figure 2.3 in the sense that the resulting
VC only becomes interesting once this type is used. In this case, the Horn constraints
could once again simply be replaced by true, which would verify this type.
The relevant constraints are usually given due to a top level type annotation, or by an
application of a value to this λ function. Assume that we have a type annotation

{x : list({v : int | {v : int | v > 0}}) | true} →
{v : list({v1 : int | {v1 : int | v1 > 0}}) | len(v) = 1 + len(x)}

for this function, with a list of positive integers, to a list still with positive integers. We
now need to check the type for listAdd1 and, as previously explained, in λ+

Σ this is
handled as a subtyping case. The inferred type needs to be a subtype of the annotated
type. For the nested values of the list, this now means, that v > 0 needs to imply κ1(v)
and κ2(v) needs to imply v > 0. Those implications, in conjunction with the VC in
Figure 3.8 can only be satisfied by κ1(v) := v > 0 and κ2(v) := v > 0.
This behavior is similar if listAdd1 is used in a type application, meaning that the
resulting type is inferred by Syn/App. The given input then also needs to be a subtype

29

3. The λ+
Σ-calculus

1 toInt : {s: string | s ∈[0−9]+ } → int
2 assert : { b:bool | b = true } → unit
3
4 listHeadToInt = \x:list(string).
5 switch(x)
6 | Nil: assert false
7 | Cons(z,zs):
8 let r = toInt z in
9 assert true

Figure 3.9: Example of list destruction, with definitions for toInt and assert

of the first input of the inferred function. And this subtyping constraint gives similiar
implications as a type checking step.

Again, this example also practically explains the usefulness of those κ variables used in
liquid type systems. As those subtyping constraints build such implication chains, no
type annotations are needed in many cases, if those κ variables can be solved.

Data Type Destruction

For our destruction example, we also want to include a bit of grammar solving. The
program in Figure 3.9, takes a list, accesses the first element and applies it to the toInt
function. In this example, to illustrate the necessity of the unapply method from Figure 3.5,
we fail the computation if the Nil branch is used. The program listHeadToInt can
then only be verified if it is called with nonempty lists, as this information is constructed
by the unapply method.

Furthermore, we show how the constraint imposed by toInt is propagated through the
refinements, and how Panini is then able to synthesize a grammar for the elements of a
list.

The overall top level overview is similar to the first example in Figure 3.7. We first apply
the Syn/Lam rule, which again instantiates our list of strings to a type with holes. Then
our newly added Syn/Switch rule is used, followed by two applications of the Syn/Alt
rule. To focus this example onto the relevant parts in this example, we ignore the deeper
nested Syn/Let and Syn/App rules in the alternatives and the types and VCs are
asumed to be allready infered. Those given types and VCs are also simplified. The assert
statement is ignored completely, and we just assume a true or false VC to be returned.

In general, in the Panini system, the assert statement returns a unit type that signifies
a successful program exit. The type system should be able to infer conditions so that
assert false is never called. For synthesizing a string grammar, this step then enforces the
grammar to be constructed in a way so that it does not lead to a negative assertion. For
example, if a parser checks that a string contains only lowercase characters and aborts
otherwise, this check is translated into an assert call by the Panini frontend.

30

3.4. Inference in Depth

We again have a similiar context as in the first example:

tNil := ∀α.{v : list(α) | len(v) = 0} (3.8)
tCons := ∀α.x : α → xs : list(α) → {v : list(α) | len(v) = 1 + len(xs)} (3.9)

Γ := [Cons → tCons,Nil → tNil] (3.10)
Γλ := Γ[x ↦→ {x : list({v : int | κ1(v)}) | κ0(x)}] (3.11)

And we also can give the expressions in a similar nested manner:

eNil := Nil: assert false (3.12)
eCons := Cons(z, zs): let r = toInt z in assert true (3.13)

eSwitch := switch(x) | eNil | eCons (3.14)
eλ := λ(x : list(string).eSwitch) (3.15)

We once again explain those rule application in a bottom up approach, starting with
the Syn/Alt rule for the Nil case. As we do not explain the nested assert and let
statements, this is the deepest nested rule.

To be able to infer the type of the nested expression, the functions introduced in Figure 3.4
and Figure 3.5 are used.

As mentioned, ctor takes a constructor method and fills the potential type parameters
from the current context. For Nil, given the polymorphic constructor type, the string
parameter refined with κ1, is extracted from the context value of the list x. The resulting
monomorphic type is therefore

tNilCtor
:= {v : list({v1 : string | κ1(v1)}) | len(v) = 0}

and now contains the string parameter type from the context. Unapply now uses this
monomorphic constructor, to extract the new context variables given by the alternative.
For the Nil case, there is no additional context variable, as it is a constructor without
any additional inputs. However, the meet helper, called in unapply, combines the known
refinement for the variable x, which is κ0, with the refinement len(x) = 0 of the Nil
constructor, to the type

tNilx := {v : list({v1 : string | κ1(v1)}) | κ0(v) ∧ len(v) = 0}
which replaces the previous x variable in the context for the inference of the nested
expression of the alternative.

For this example, we assume that inferring assert false with this context returns a VC
of false and the unit type. This VC needs to be implied by the all types and their
refinements added to the context in unapply. Only x has been replaced by the alternative,
and its universally quantified refinement needs to imply false, resulting in the overall VC

cAltNil
:= ∀(x : list) κ0(x) ∧ len(x) = 0 =⇒ false

31

3. The λ+
Σ-calculus

and the complete derivation tree

ctor(Γ, Nil, x) = tNilCtor
unapply(Γ, x,∅, tNilCtor

) = Γ[x ↦→ tNilx]
Γ[x ↦→ tNilx] ⊢ assert false ↗ unit ⊨false

Γ ⊢ Nil: assert false ↗ unit ⊨cAltNil

Syn/Alt (Nil)

for the application of Syn/Alt in the Nil case.

The second alternative, the Cons constructor, is a bit more interesting, as we have two
additional variables in the context generated by unapply. The ctor helper now returns
the monomorphic function type for this constructor:

tConsCtor
:= {x : string | κ1(x)} → xs : list({v1 : string | κ1(v1)}) →

{v : list({v1 : string | κ1(v1)}) | len(v) = 1 + len(xs)} (3.16)

The variables z and zs are assigned the first and second parameter of this function type
tConsCtor

using the unapply helper. The new type of the variable x is once again a result
of the meet helper, and unifies the refinements κ0 and len(x) = len(zs) + 1 to the type

tConsx := {v : list({v1 : string | κ1(v1)}) | κ0(v) ∧ len(v) = 1 + len(zs)}

and the overall extended context in this Syn/Alt case is therefore:

ΓCons := Γλ[z ↦→ {z : string | κ1(z)}, zs ↦→ list({v1 : string | κ1(v1)}), x ↦→ tConsx]

This context is then used to synthesize the nested expression containing the toInt
function application, which we will not explain for this example, but results in the
following VC:

ctoInt := ∀(s : string) κ1(s) ∧ s = z =⇒
s ∈ [0−9]+ ∧ ∀(r : int) r = strToInt(s) =⇒ true

This VC now restricts the string variable z, according to the toInt function. As the
input string s needs to be a number value and z needs to be a subtype of s, the refinement
κ1 needs to imply this constraint. This property allows us to later construct a grammar.

Additionally, the newly added or altered variables z, zs and x are used to create the
resulting VC

cAltCons
:= ∀(z : string) κ1(z) =⇒ ∀(zs : list) true =⇒

∀(x : list) κ0(x) ∧ len(x) = len(zs) + 1 =⇒ ctoInt

as the variables need to imply the nested VC ctoInt. Note that the ordering of those
variables is important. As the refinements of x can relate to the values of z or zs, the

32

3.4. Inference in Depth

ordering is according to the scopes of the constructor Cons. The resulting nested type
for this alternative is also unit, resulting in the derivation tree

ctor(Γ, Cons, x) = tConsctor unapply(Γ, x, [z, zs], tConsctor) = ΓCons

ΓCons ⊢ let t = toInt z in assert true ↗ unit ⊨ctoInt

Γ ⊢ Cons(z, zs): ... ↗ unit ⊨cAltCons

Syn/Alt (Cons)

for Syn/Alt in the Cons case.

For Syn/Switch, we now simply need to combine the results of the Syn/Alt rules.
The subtyping constraint is the same for both alternatives in this example. The unit
type is instantiated with a new hole, which then needs to be implied by true:

cUnit := ∀(u : unit). true =⇒ κ2(u)

This subtyping constraint is then inserted into the constructed implications. This is
necessary, as these implications contain all variables of an alternative and the refinement
of an inferred alternative type, and consequently the subtyping VC can rely on this
context. Ultimately, for each alternative, the antecedents of the implication chain are
unchanged, but the final consequent now also contains those subtyping constraints. This
overall resulting derivation tree for Syn/Switch is therefore:

unit ▷ {u : unit | κ2(u)}
Γ ⊢ Nil . . . ↗ unit ⊨cAltNil

unit ⩽ {u : unit | κ2(u)} ⊨cUnit

Γ ⊢ Cons(z, zs) . . . ↗ unit ⊨cAltNil
unit ⩽ {u : unit | κ2(u)} ⊨cUnit

Γ ⊢ switch(x) | . . . ↗ unit ⊨

(∀(x : list) κ0(x) ∧ len(x) = 0 =⇒ cUnit ∧ false)∧
(∀(z : string) κ1(z) =⇒ ∀(zs : list) true =⇒
∀(x : list) κ0(x) ∧ len(x) = len(zs) + 1 =⇒
cUnit ∧ ctoInt)

Syn/Switch

The final Syn/Lam application is nearly identical to the first example. This extended
context Γλ is used in the preceding synthesize rules, and the of Syn/Switch resulting unit
type and resulting VC are used to construct the final type and VC of listHeadToInt.

The resulting simplified VC can be seen in Figure 3.10. We ignore the unit subtyping
constraint cUnit given by Syn/Switch, as it can be simplified to true.

To show the grammar synthesis idea, we assume a signature

{x : list({s : string |?}) | len(x) > 0} → unit

We can now use the grammar synthesis approach by the Panini system to solve for the
unknown string refinement of the value of the list. As len(x) > 0 now needs to imply
κ0, this can trivially be replaced by len(x) > 0. This makes the implication of the Nil
alternative valid, as len(x) > 0 ∧ len(x) = 0 is simply false.

33

3. The λ+
Σ-calculus

Γ ⊢ listHeadToInt↗
{x : list({s : string | κ1(s)}) | κ0(x)} → unit

⊨
∀(x : list) κ0(x) =⇒

∀(x : list) κ0(x) ∧ len(x) = 0 =⇒ false

∧
∀(z : string) κ1(z) =⇒

∀(zs : list) true =⇒
∀(x : list) κ0(x) ∧ len(x) = len(zs) + 1 =⇒

∀(s : string) κ1(s) ∧ s = z =⇒ s ∈ [0−9]+ ∧
∀(r : int) r = strToInt(z) =⇒ true

Figure 3.10: Simplified Inference result of Figure 3.9

The remaining κ variables are also eliminated, either by the Fusion algorithm or via
predicate abstraction. As those approaches generally try to eliminate all κ variables,
Panini needs to restore the identified string grammar variable κ1 and uses abstract
interpretation to infer a suitable grammar

s ∈ [0 − 9]+

This inferred grammar is then used instead of κ1 to make the overall VC valid. In this
simple example, the grammar just needs to imply the precondition of the toInt function,
which therefore is exactly this condition.

Note that for this example, even though we have a list of strings, the grammar solving
here is still not nested. How an ADT can be used in nested grammar solving is explained
in section 3.5.

3.4.1 Formal Correctness
Proofs for refinement type systems are inherently complex, due to the interplay between
subtyping rules, verification conditions and type synthesis rules [5]. A formal correctness
proof of our novel data type synthesis rules is out of scope for this thesis.

However, for the type safety of those rules, we can still outline a few arguments. Type
safety requires two properties, progress and preservation [45]. Progress means that if a
term e is well typed, we can reduce e further, i.e., execute a computation step, or e is
already a value. In our case, regarding the Syn/Switch rule, a switch term is not a
value, but is reduced to its alternatives. For Syn/Alt, an alternative is composed of a
nested expression, to which it is reduced to. We assume that the other rules guarantee
progress, therefore progress for those two rules can also be presumed. Preservation means

34

3.5. Grammar Solving

that for each computation step evaluating a term e ↪→ e′, the type of the term e′ does
not change, i.e., if the expression e has some type t, we can guarantee that this same
type t is returned by that expression. From the syntactic meaning of a switch expression,
this means that one of the alternatives will be evaluated. The type of a switch expression
is composed of the type of the first alternative instantiated with a kappa template. As
every alternative needs to be a subtype of that template type, this guarantees firstly that
the unrefined types need to match, and secondly, that the template κ variable is implied
by (for covariance) or implies (for contravariance) the refinement predicates of the type
of an alternative. It guarantees that the refinement of an alternative is a subtype of the
overall switch type. Therefore, the type does not change, only the refinement might be
stronger.

For example, the subtyping constraint for two alternatives, if the alternatives return the
types ta1 := {v : int | v = 1} and ta2 := {v : int | v = 2}, respectively, might lead to a κ
variable solved to κ(v) := v = 1 ∨ v = 2. This fulfills the subtyping constraint for the
first alternative ta1 ⩽ t̂ ⊨v = 1 =⇒ κ(v). If we execute a step into the first alternative,
the concrete type after this step remains unchanged in the idea of a refinement type.
Even though the type of an alternative might have a stronger refinement, the overall
type remains the same.

Furthermore, we have also observed that the generated VCs when using data deconstruc-
tion, compared to using a polymorphic access method (e.g. head for a list type), only
differ marginally. As type safety has been shown for those polymorphic rules in similar
cases [5], this also supports the argument that those new rules for deconstruction are
type safe.

3.5 Grammar Solving
As we now have seen and explained the new additions, the question remains, how can we
utilize nested data structures, to solve complex grammars, and how do those grammars
look like? As seen in the introductory example, we want to handle the case where a
string is translated into an ADT. Those ADTs then contain nested string values, that
can be subject to further parsing operations, which influence the overall grammar of the
original input. One example can be seen in Figure 3.11, where a string is split into a
tuple ADT, and the nested values of that tuple are then itself parsed either by the integer
constructor or string equality. And we want to use those nested grammars of such an
ADT to construct an overall grammar.

1 def parser(self, arg):
2 first, second = arg.split(’/’, 1)
3 firstValue = int(first)
4 assert second == "Test"

Figure 3.11: Example parser for a Tuple ADT.

35

3. The λ+
Σ-calculus

We mainly focus on the observation that split is one of the most common string
operations in ad hoc parsers, and that it is often followed by a tuple assignment [36].

Additionally, relevant ADTs for common ad hoc parsers are mostly lists and tuples. To
directly transform a string to an ADT, split or functions similar to split are common
options. This is the case in the Python standard library2 and for many other languages.

Therefore, we focus on grammars that are created through possibly infinite lists or
n-tuples. A list data type only has a single type parameter and once instantiated, its
refinements describe each element of the list. This also means in the case where the
parameter type of a list is string, we can only have a grammar where the grammar every
nested element is homogeneous. Our motivating example represents such a homogenous
grammar (cf. Figure 1.2). This is not the case for tuples, as we have a type parameter
for each element, which can hold different string type instances. Each string instance can
therefore represent different grammars, and an example would be Figure 3.11. According
to this observation, for those nested grammars, we have identified three possible cases:

1. Homogeneous lists, where all nested elements in a data structure have the same
grammar.

2. Heterogeneous n-tuples, with a fixed number of elements.

3. Heterogeneous lists, with a possibly infinite number of elements and with possibly
dynamically changing grammars.

In theory, we are able to deal with the first two cases straightforward, as we can use
suitable data structures. If we have a list data structure, instantiated with a string, this
string value and its corresponding predicate, can be used to construct the grammar of
the first case. In the second case, we can simply use an n-tuple instantiated with n string
types. Each of those types can have different predicates, capturing the different nested
grammars of those strings, which overall results in a heterogeneous grammar.

The third case, however, is complicated, as it also includes non-regular grammars. It
is possible that the grammar of a list element depends on some other computation,
or relates to other elements of the list. Panini can only synthesize regular grammars,
and even if all nested elements individually are regular grammars, the overall resulting
nested grammar might not be. However, there are still many regular grammars, that
fall into the third category. One simple example, where such a heterogeneous grammar
could in general be synthesized, is if there is a concrete index up to which all elements
are a specific grammar, and all remaining elements are of another grammar. E.g., a
string of comma separated values, where the first element is a keyword and all other
elements numbers. This is still a regular grammar and could be solved by identifying
those indexes, for example in the translation layer, and translating those cases into, e.g.,

2https://docs.python.org/3.12/library/stdtypes.html

36

https://docs.python.org/3.12/library/stdtypes.html#text-sequence-type-str

3.5. Grammar Solving

two separate lists. Another approach would be utilizing qualified predicates over arrays,
as discussed in section 2.4. As the purpose of this work is mainly the extension to λΣ,
identifying relevant solvable cases, as well as implementing additional functionality for
those grammars, is out of scope for this thesis (cf. section 5.1).

Therefore, we focus on the first two cases. Additionally, two other relevant pieces of
information are ignored. Firstly, for homogenous lists, if there is a refinement restricting
the length of a list, e.g., due to access of a specific index or other list operations, this would
change the relevant grammar. We disregard this specific case due to time constraints,
but our proposed solution to handle combine nested grammars should be able to handle
this case as well. And secondly, the separator is excluded from the nested grammar, by
the semantic definition of split. This was also ignored, again due to time constraints
and because we would need to unify potential regular expressions.

The proposed idea on how to combine the grammars of those two cases, which is
subsequently explained, should also just be seen as a first solution sketch. Other
approaches might be superior, or could be necessitated by attempting to solve those
outlined complex cases.

3.5.1 Handling grammars in VCs
We encountered several issues when trying to solve a grammar arising due to application
of the split function. The primary problem is that information cannot flow backward
in the system. Specifically, when an output element of the split function is further
constrained for a nested grammar, the solver fails to leverage this information for grammar
solving of the input s. This deficiency stems from the inability of the solver to recognize
and utilize these additional constraints effectively.

Problem

We initially thought that a (simplified) split function definition might be enough to
gather the necessary constraints for the original input string:

1 split:{s:string|true} → {v:list({s1:string | s∈re_star(s1 ++ ’,’)})|true}

However, this was not the case. The core issue in the VC generation can be summarized
as follows: as the input is unconstrained, the solver defaults to

∀s ∈ S. κ(s) ⇒ true,

allowing it to trivially conclude κ1 = true. Additionally, the output now contains the
specific refinement s ∈ re_star(s1 ++ ′,′). If this output is now constraint further,
e.g., in a toInt function, the derived implication of a subtyping constraint looks as
follows:

∀s ∈ S. s ∈ re_star(s1 ++ ′,′) ⇒ s ∈ [0−9]+

37

3. The λ+
Σ-calculus

The solver is unable to satisfy this constraint. Overall, the resulting string grammar is
either any string, as the input κ variable is set to true, or the solver fails, as the resulting
constraint of split does not imply a further constraint.
As Panini relies on simplifying those verification conditions using the Fusion algorithm
followed by predicate abstraction before trying to solve for string grammars, at least
the output constraint is already handled. The grammar solving approach reevaluates all
κ variables with a string type. However, in this case, there is no direct logical connection
from the input κ to the constraints generated by the output, so those are not considered
at this step. This would be solvable by altering the Fusion algorithm to not discard those
additional constraints, and by extending the abstract interpretation approach to be able
to use those additional constraints. However, another approach is simpler and, as we do
specifically know the concrete structure of a nested grammar, more consistent.

Solution

In general, the problem lies within the information flow through the refinements, which
are scoped from outermost to innermost, e.g., the output refinements of a function can
rely on the input values, but not the other way around. However, for the input string
to be constrained according to a nested grammar, we now need some kind of backward
information flow, the refinements of the output now dictate the input refinement.
The key idea is that grammar solving already does this in a way and proceeds from the
output backwards to the input. At the top level, the system can handle these backward
inferences due to the introduction of a new κ variable, replacing unknown constraints
(denoted by ? in the surface syntax). This unknown constraint in the top level signature
represents a point where the implication chain for a string grammar starts. The new
κ variable implies all constraints which determine the resulting string grammar.
An initial idea was to generalize this mechanism by introducing additional placeholders
(“holes”) in the program, which represent grammars that are yet to be determined. These
placeholders now allow the encoding of multiple grammars that may still be unknown,
which could help bridge the gap between the input and its corresponding constraints.
Previously, this approach was only employed at the top level string input and has now
been generalized.
The challenge we encountered here is constraining the input such that it relates to an
unknown grammar. We can solve this by utilizing variables that are filled by those
unknown grammar holes. Therefore, we now need two new concepts: GrammarHoles
and GrammarLinks. The former represents unknown constraints on the output, therefore
introducing a new unknown grammar, and the latter relates this unknown grammar to
the corresponding input constraints.
This concept extends the original idea of Panini by executing the original grammar
solving process iteratively, with the possibility of utilizing intermediate results. The
κ variables are resolved in a nested fashion, and we can assume that the grammar hole
κ variable is solved before it is required in the link variable.

38

3.5. Grammar Solving

Practical Example

To demonstrate the concept, consider the example parser function:

1 toInt: {s:string | s ∈‘[0−9]+‘} → {v:int | v = strToInt(s)}
2
3 parser: {a:string|?} → int
4 parser = λ(s:string).
5 let tmp = strip s in
6 toInt tmp

We chose strip as the example, as it is much simpler than the split function, while
still having an alteration of a nested grammar. This example of strip is analogous to
data structure constraints, and was previously not considered in the Panini system. The
method outlined above now represents a possible approach to resolving these constraints.
With the approach outlined above and the following function definition

1 strip: {s: string | gl(s)(r)(re_star(’ ’) ++ r ++ re_star(’ ’))}
2 → {r: string | gh(r)}

we can now solve a grammar containing a nested grammar. We need three pieces of
information, for a GrammarLink. First, a name, which is s in this example, relating
the variable name to the GrammarLink. Second, a list of related GrammarLink names
that each represent a nested grammar. In this example, this is only r, as only a single
nested grammar is present. And finally, a definition of a resulting grammar, that now
can contain the related GrammarLinks as variables. We opted to just use parenthesis to
separate each part of a GrammarLink, but it is not a function.

The GrammarHole gh(r) is simply instantiated to a new κ variable once the strip
method is fetched from the context via Syn/Var. And this κ variable is then added
to the GrammarLink, replacing the r variable. The initial solving, using the Fusion
algorithm and predicate abstraction are not influenced by this, as all string-related
κ variables are handled by the grammar solving approach. And the grammar solving
approach first solves the nested κ, which in this simple example is the GrammarHole.
The resulting condition is

∀r ∈ S. κr(r) ⇒ r ∈ [0−9]+,

and κr will be solved to the regular expression [0−9]+. In the next iteration, the
remaining top level κ variable is solved, and we insert the previous solutions into the
GrammarLink. We then translate this into a regular expression, if all variables are filled,
which in turn is then used for further solving. In this example, the resulting regular
expression is: []*([0−9]+)[]*, which is the overall grammar of this ad hoc parser,
as the remaining condition is:

∀s ∈ S. κs(s) ⇒ s ∈ []*([0−9]+)[]*

39

3. The λ+
Σ-calculus

In section 4.1, we also give the concrete implementations for our split function in λ+
Σ .

Outlook and Concerns

This approach consistently works for many examples. Currently, we rely on some
assumptions regarding the correctness of the approach, and there are parts of the
implementation that are not yet fully refined. Those assumptions are: (1) The nested
GrammarHoles always resolve to a valid regular expression, (2) if the GrammarHole is
not constrained, any word in the regular language is allowed and (3) the GrammarHole
variables are always used nested and not in an intertwined manner. In practice, for ad
hoc parsers, we expect those assumptions to always hold.

Another idea would have been to trace those nested grammars and iteratively solve them
as independent top-level parsers with the Panini system. In this case we would not
have needed to extend the predicate logic with the specific handling of nested grammars.
However, as the function definitions for those cases are not intended to be written by
an end user, this is not an issue. Additionally, this would have been significantly more
implementation effort.

Another benefit of this solution is that more information about our nested grammar could
be included. In the split case, we could for example also relate to the refinement of a
resulting list. This refinement could capture length constraints naturally in the refinement
logic and that would allow us to include this information in the overall resulting grammar.
This case would probably be easy to handle as we have fine-grained control over how the
nested grammars and or refinements are combined.

Overall, we have introduced the extended λ+
Σ language as well as explained how those

extensions relate to the grammar synthesis approach of Panini. This allows us to answer
our first research question:

RQ1 How can the λΣ calculus be extended to support polymorphic operations
over algebraic data types, while preserving its ability to synthesize input
string grammars?

We have introduced λ+
Σ which adds polymorphism and algebraic data types to λΣ.

While some of the new inference rules we have added in λ+
Σ are common in many

Liquid type systems, we also have introduced a novel rule to infer the destruction
of algebraic data types.

Furthermore, we have discussed what forms grammars in algebraic data types can
take and how nested grammar constraints can be used to construct an overall
grammar, for common cases. Not only does λ+

Σ preserve the ability of Panini to
synthesize input string grammars, it significantly expands the range of programs
for which grammars can be inferred.

40

CHAPTER 4
Implementation and Evaluation

In this chapter, we explain implementation details as well as outline some challanges that
we encountered during our implementation. Subsequently, to answer RQ2, we need to
evaluate those additions on real-world ad hoc parsers.

4.1 Implementation
Panini is written in Haskell and to this date contains approximately 14000 lines of code.
As introduced in chapter 3 the changes to the syntax and typing rules have been added
to the code base of Panini.1 To this end, some parts of the previous implementation
had to be altered.

We needed to add a representation for the newly introduced syntax. This step also
necessitated adjusting the code responsible for parsing the file input. Once this had been
done, the code handling the inference and subtyping had to be extended. As this code
closely follows the recursive nature of the inference and subtyping rules, we introduced
additional cases, as well as added minor changes to some existing cases. For example, in
the subtyping for ADTs. The relevant rules are implemented according to the definitions
outlined in chapter 3.

To enable nested grammar solving (cf. section 3.5), we also modified the code responsible
for the final constraint solving. To this end, before solving for a specific κ variable, a
sanitizing step inserts previously solved κ variables into any present GrammarLinks.
Once all κ variables of the GrammarLink is solved, it is replaced by the resulting regular
expression, which allows continuing the solving step.

By the definition of our typing rules, polymorphic type application needs explicit type
annotations. We expect the annotation of polymorphic functions usages to happen during

1https://github.com/JakobHoffmann/panini

41

https://github.com/JakobHoffmann/panini

4. Implementation and Evaluation

the automatic translation from parser source code to lambda sigma plus by the Panini
frontend, using standard Hindley-Milner type inference.

We encountered some smaller challenges as some necessary steps were still missing for
this work. We also added basic support for parsing POSIX extended regular expressions
within type signatures, necessary for the previously given toInt function (cf. Figure 3.9).

For ADTs, both the variable name of the data type and measures, which needed to be
defined in the queries sent to the SMT solver. Those additions lead to some changes
regarding the transformation of VCs into SMT-solvable constraints. With this trans-
formation, we encountered a significant challenge in translating VCs into SMT solver
queries, which we will explain in detail in the following section.

4.1.1 SMT Solving with Uninterpreted Functions
The previous implementation of the Panini system simply used the generated VC as
an input into the SMT solver without significant transformations. Those conditions
contain multiple universally quantified implications (∀x.P (x) =⇒ Q(x)) as defined by
the typing rules in Figure 2.7 and Figure 2.6.

When defining ADTs, uninterpreted functions are used as measures for properties of
those data types, e.g., the length of a list. During our implementation, it became evident
that there was an issue when using uninterpreted functions that allowed nonsensical
values for those measures to be type checked. For example, the system would incorrectly
verify that an empty list could be of the type w := {v : list | len(v) = 1}. An empty list
has the type t := {v : list | len(v) = 0}. The empty list can be of type w if t ⩽ w and,
due to the subtyping judgment, this is the case iff

∀(v : list). len(v) = 0 ⇒ len(v) = 1.

The SMT solver verified this implication, if an uninterpreted function was used for len.
The behavior of the SMT solver undermined the verification process in such cases.

The crux of the problem is that Z3, when confronted with implications of the form
p ⇒ q, tended to trivially satisfy the implication by assigning values to the uninterpreted
functions such that p would be false.

To address this issue, we restructured our approach to avoid the trivial satisfaction of
implications by the SMT solver. Instead of directly feeding the implication p ⇒ q to Z3,
we transformed the problem making the solver work towards proving the unsatisfiability
of p ∧ ¬q. By expecting the solver to return unsat for the input p ∧ ¬q, we effectively
force it to evaluate the actual conditions under which the uninterpreted functions in p
hold true and q fails. This change compelled Z3 to thoroughly check the consistency and
correctness of verification conditions containing uninterpreted functions, ensuring that
the original implication p =⇒ q could not be trivially satisfied. Reformulating those
implications preserved the logical relationship between p and q and those implications
were then correctly verified by the solver.

42

4.2. Evaluation

This approach is also mentioned by Jhala and Vazou [17, p. 8], as well as implemented
in liquid-fixpoint,2 the Horn clause solving backend for Liquid Haskell.

4.2 Evaluation
For the evaluation, we have three goals: (1) We want to verify that the refinement inference
for polymorphism and ADTs works in theory. To this end, a set of test programs was
created. This approach should aim to show the new features and give a baseline for the
capabilities of the extended λ+

Σ .

(2) We want to show that the changes in λ+
Σ , have not caused any regressions in the

ability of Panini to synthesize string grammar. There is already a sizable number of
evaluation parsers for Panini, on which we reevaluate our extensions as well.

(3) We show the usefulness of our extensions by testing them on real-world programs. To
this end, we use a dataset, of ad hoc parsers mined from open source repositories [36, 37].

4.2.1 Data Collection and Methodology
Our dataset of real-world ad hoc parsers was provided by Schröder, Olschnögger,
Goritschnig, and Cito [37], and is based on the Boa [10] 2022 February/Python dataset,3
which contains 102,424 GitHub repositories that have Python as their main programming
language. Using program slicing techniques, ad hoc parser cores containing only those
parts of programs that are involved in string parsing were extracted from the original
Python programs. We were given access to a preliminary version of this dataset, which
contains 1574 Python ad hoc parsers.

As the abilities of the Panini system to translate those parsers automatically into λ+
Σ

are still limited, we needed to translate them manually. This manual translation step
necessitated that we restrict the number of evaluated parsers, to 100 randomly selected
from the dataset. This should give enough parsers for our evaluation and restricts the
manual translation effort. We want to avoid translating parsers that can be solved
by the current state of the Panini system, as this evaluation has already been done.
Therefore, the selected set is pruned further to remove any examples that do not contain
polymorphism or ADTs.

Of the 100 randomly selected parsers, we removed 37 as invalid samples. They were either
not a parser or incomplete, where some parts of the extracted code are missing. From
the set of valid parsers, we removed an additional five parsers, as they contain certain
regex operations that are not yet supported by Panini Of the remaining 58 parsers that
are in theory suitable for the Panini system, 40 parsers do not make use of ADTs or
polymorphism. This means 18 parsers are remaining for our evaluation, all of which
require our new additions. The selection process is also visualized in Figure 4.1.

2https://github.com/ucsd-progsys/liquid-fixpoint
3https://boa.cs.iastate.edu/stats/index.php

43

https://github.com/ucsd-progsys/liquid-fixpoint
https://boa.cs.iastate.edu/stats/index.php

4. Implementation and Evaluation

Figure 4.1: Selection of manually translated parsers from the sample set.

1 splitList:
2 {s: string | gl(s)(s1, sep)(s1 ++ re_star(sep ++ s1))} →
3 {sep: string | gh(sep)} →
4 {v: list({s1: string | gh(s1)}) | true}

Figure 4.2: Definition of split for lists with homogenous grammar.

We manually translated the 18 selected Python parsers into λ+
Σ . This translation also

involved defining specific functions found in the Python code. In our observed examples,
the relevant functions were split and the integer constructor toInt. The split
function occurred either as a direct list assignment or as a tuple assignment up to a
3-tuple. As mentioned, those cases are handled differently, and correspond to different
classes of grammars. For our purposes, we decided to implement those functions in a
simple manner. The definition of split for homogenous lists can be seen in Figure 4.2.
The relevant part is the definition of the GrammarLink for the first string input. Apart
from the name s, we define two variables: s1 the nested grammar determined by the
returned list, and the separator input sep. The grammar uses the operators ++ and
re_star, which are string concatenation and Kleene star, respectively. The resulting
grammar is therefore a concatenation of the variable s1 with an optional repetition of
the sep variable concatenated with s1. This grammar is constructed once the solving
process of the nested GrammarHoles is complete.

For the tuple assignment, we give the 2-tuple example in Figure 4.3. This figure also
includes the tuple data type definition. As the 2-tuple has a different grammar for each
value, we have three variables, s1 and s2 representing the tuple grammars and once again
the separator value sep. This GrammarLink uses the same regular expression operators
as the list definition, and the resulting grammar is each tuple element concatenated
with the separator and an optional catch-all grammar at the end. This allows each
element of an n-tuple to have a separate grammar and can thus handle the case of a finite
heterogeneous grammar. For arbitrary n-tuples, the function definition is analogous.

44

4.2. Evaluation

1 type tuple(#a, #b) =
2 | Tuple: ∀#a.∀#b.x:#a → y:#b → {v:tuple(#a, #b) | true}
3
4 splitTuple:
5 {s: string | gl(s)(s_1, s_2, sep)
6 (s_1 ++ sep ++ s_2 ++ re_star(sep ++‘.*‘))
7 } →
8 {sep: string | gh(sep)} →
9 {v: tuple(

10 {s_1: string | gh(s_1)},
11 {s_2: string | gh(s_2)}
12) | true}

Figure 4.3: Data type and split definition for 2-tuples in λ+
Σ .

4.2.2 Results

To discuss our results, we first want to give an overview over all executed tests in Table 4.1.
As mentioned, there already exists a large corpus of test programs for the original Panini
evaluation. For those tests, the new version of Panini with λ+

Σ behaves exactly the same
way, and no regression of its capabilities can be observed. As our additions only concern
new language features, this is as expected. As those test programs can also be quite
complex, there are also failing tests, but this is of no concern for this work.

During our implementation, we also created an additional test corpus for λ+
Σ . Those

unit tests contain only new syntax and were used to validate the correctness of our new
inference rules. Those test are often quite simple, and are, for example, used to validate
that the empty list has a length of zero:

1 y : { v : list(int) | len(v) = 0 }
2 y = Nil[int]

Those tests also contain the examples used in this work and are contained in the Panini
source code, with their expected output.

And the last set of test programs, and the main focus of our evaluation, are the real-world

Test Corpus Number of Successful
Tests λΣ λ+

Σ

Original Panini evaluation 653 452 452
λ+

Σ unit tests 44 - 44
Real-world evaluation 18 - 14

Table 4.1: Results of different evaluation types.

45

4. Implementation and Evaluation

Parser Success Runtime Grammar Employed string operations
Split Tuple Unconstrained
1613_194.py Yes 150ms (#|[^]*).* startsWith, split, strip
6770_1464.py Yes 115ms [^/]*/.* split
26554_733.py Yes 115ms [^/]*/.* split

Split List Unconstrained
6770_1391.py Yes 115ms .* split and list access
6770_1236.py Yes 190ms [^]* .* split, list access, and split
11701_35.py Yes 119ms .* split and foreach
12530_175.py Yes 120ms [^:]*:.* split and list access
23916_453.py Yes 115ms .* split and foreach
24871_516.py Yes 122ms .* split, list access, and foreach
26554_673.py Yes 116ms .* strip, and split
26554_696.py Yes 114ms .* split

Split Tuple Constrained
sanitize_style Yes 470ms cf. Figure 4.6
parse_date_time No ∞ None cf. Figure 4.4.
Split List Constrained
version_to_list Yes 277ms cf. Figure 4.5
not_exclamation Yes 1368ms cf. Figure 4.7
Unsolvable
6770_1339.py No None split, foreach with custom range,

and strip
26554_610.py No None split, list comprehension,

and list length comparison
20996_251.py No None split with dynamic separator,

list length check, list access, strip

Table 4.2: Real-world results grouped by Type.

ad hoc parsers. After a first inspection, we categorized those selected parsers into five
categories, according to the three categories already defined in section 3.5: homogenous
nested grammars, heterogeneous nested grammars with a fixed length and heterogeneous
grammars with a dynamic length. As outlined, the last category is currently unsolvable.
For the two solvable categories, we added another distinction whether the nested grammar
itself imposes constraints on the input strings, or not.

Table 4.2 shows the results of our evaluation. In this evaluation table, we have our 18
samples by category and their inferred grammars. Additionally, the used string operations
and runtime are given. The runtime is the average of 10 runs, and we can clearly see
that for our examples the runtime is always negligible.4 We can solve a large portion of

4We executed Panini on an Apple M1 Pro chip with 32GB of Memory.

46

4.2. Evaluation

1 def parse_date_time(val):
2 ymd, time = val.split("T")
3 hms, tz_str = time[0:8], time[8]
4 year, month, day = ymd.split("−")
5 hour, minute, second = hms.split(":")
6 t = mktime((int(year), int(month), int(day), int(hour), int(minute), int(second), 0, 0, 0))

Python code for parse_date_time.
1 parser : {a:string|?} −> unit
2 parser = λ(s:string). let t = splitTuple s

"T" in
3 switch(t) | Tuple(ymd, time):
4 let triple = splitTriple ymd "−" in
5 let timeTriple = splitTriple time "+" in
6 switch(triple) | Triple(year, month, day):
7 switch(timeTriple) | Triple(hour, minute,

second):
8 let yearInt = toInt year in
9 let monthInt = toInt month in

10 let dayInt = toInt day in
11 let hourInt = toInt hour in
12 let minuteInt = toInt minute in
13 let secondInt = toInt second in
14 assert true

Translation without GrammarLink issue.

1 parser : {a:string|?} −> unit
2 parser = λ(s:string). let t = splitTuple s

"T" in
3 switch(t) | Tuple(ymd, time):
4 let triple = splitTriple ymd "−" in
5 switch(triple) | Triple(year, month, day):
6 let timeTriple = splitTriple time "+" in
7 switch(timeTriple) | Triple(hour, minute,

second):
8 let yearInt = toInt year in
9 let monthInt = toInt month in

10 let dayInt = toInt day in
11 let hourInt = toInt hour in
12 let minuteInt = toInt minute in
13 let secondInt = toInt second in
14 assert true

Translation with GrammarLink issue.
Figure 4.4: Python code and translations for parse_date_time.

the sampled real-world parsers. For the unconstrained cases, we can solve all of them
without any issues. Some of them are still complex parsers, as this category includes
parsers that constraint the input before a split, and we also have observed a chaining of
multiple split applications with a combined list and tuple assignment. Those cases
can easily be identified by the resulting grammar.

By analyzing the code of our sample parsers, we determined that three parsers belong to
the unsolvable category. We will explain those examples and the coding constructs that
lead to this category later. For the unconstrained grammars, 11 parsers fell into this
category. Some of those were quite simple, while others also had additional restrictions.
And 4 parsers had constraints on the nested grammars. Those are the more interesting
cases and they contain both tuple assignments and list of strings. Coincidentally, we
also observed our motivating example nearly identical in this category, where the integer
constructor is applied to each element of a list (cf. Figure 1.2). Those more complex
cases are explained in depth later on. To increase the readablity, we named the complex
parsers according to their function name or functionality. The original filenames are
given in their detailed descriptions.

Apart from the parsers, already known to be unsolvable, we also have some issues with
one of the parsers that has a complex nested grammar. We will firstly discuss this
parser that was unsuccessful, meaning that we could not synthesize a grammar, but the
parser itself could be solvable according to our definition. In the case of the sample
parse_date_time (6770_1425.py), seen in Figure 4.4, we encountered two issues. This
sample manually parses a ISO time string and is therefore somewhat of a textbook

47

4. Implementation and Evaluation

1 def version_to_list(value):
2 for p in value.split(’.’):
3 try:
4 n = int(p)
5 except ValueError:
6 pass

Python code for version_to_list.

1 parser = \(s: string).
2 let p = splitList s "." in
3 rec map : ∀#a.∀#b.f:(#a−>#b) −>

x:list(#a) −> {y:list(#b)| len(y) =
len(x)} =

4 Λ#a.Λ#b.\f:(#a−>#b).\x:list(#a).
5 switch(x)
6 | Nil: Nil[#b]
7 | Cons(z,zs):
8 let zz = f z in
9 let zzs = map[#a,#b] f zs in

10 Cons[#b] zz zzs
11 in
12 let r = map[string,int] toInt p in
13 assert true

λ+
Σ translation.

1 {s:string | s ∈[0−9][0−9]*(.?[0−9][0−9]*)*} → unit

Figure 4.5: Python code, λ+
Σ translation and inferred grammar for version_to_list.

example of an ad hoc parser. Translating those steps into λ+
Σ leads to multiple nested

split applications. Firstly, Panini is not terminating due to a blowup of the resulting
regular expressions during the abstract interpretation step. There is an issue with the
simplification of regular expressions, which leads to this blowup. We tested this example
with an improved regex simplification, that is not yet included in our version of Panini,
and are able to infer this grammar correctly. Unfortunately, this version has some issues
with other tests, so for this work, we are unable to infer this grammar, but we are
confident that this issue does not persist. While this issue is unrelated to our work,
we also encountered another issue, specifically with the introduced GrammarLinks. As
we have multiple nested split applications, their translation order matters. Those
two translations can also be seen in Figure 4.4. The nesting of those various split
operations and the resulting GrammarLinks seem to be a problem. As the various
κ variables all occur in circular dependencies to each other, in one of the shown cases, we
do not encounter the case that Panini is not terminating. If the last split operation
occurs before the switch statement relating to the second split, this does not happen.
Unfortunately, due to time constraints, we were unable to figure out a solution to this
problem. One solution might be to include those GrammarLinks in the ordering of
the κ variables to be solved, or figure out a way to handle those circular dependencies
differently. However, this issue does not affect λ+

Σ , and we are confident that it can be
solved.

To demonstrate the capabilities of Panini with our new extensions, we also show the
successful examples. We start with the parser version_to_list (23916_465.py), in
Figure 4.5, which is very similar to our motivating example, as it maps the integer
constructor over a list. Here we also see that we can infer the grammar successfully for a
higher order function, which is necessary to be able to handle ADTs successfully. In this
case, we specifically wrote out the higher order map function, whereas in the example
parser not_exclamationmark in Figure 4.7, a forEach function is simply defined as a

48

4.2. Evaluation

1 def sanitize_style(self, prop, value):
2 if prop.lower() in

self.acceptable_css_properties:
3 pass
4 elif prop.split(’−’)[0].lower() in

[’background’, ’border’, ’margin’,
’padding’]:

5 for keyword in value.split():
6 if (not keyword in

self.acceptable_css_keywords and
not
self.valid_css_values.match(keyword)):

7 break

Python code for sanitize_style.

1 parser : {prop: string | ?} → unit
2 parser = \(prop: string).
3 let isAcceptableCssProperty =

isAcceptableCssProperty prop in
4 if isAcceptableCssProperty then
5 assert true
6 else
7 let split = splitTuple prop "−" in
8 let first = fstTup[string, string]

split in
9 let isContainedIn = isContainedIn

first in
10 assert true

λ+
Σ translation.

1 parser : {prop:string | prop ∈
2 azimuth|c(lea|(ol|urs)o)r|di(rection|splay)|elevation
3 |f(loat|ont(−(family|s(iz|tyl)e|(varian|weigh)t))?)|height
4 |overflow|p(ause(−(after|before))?|itch(−range)?)|richness
5 |s(pe(ak(−(header|numeral|punctuation))?|ech−rate)|tress)
6 |v(ertical−align|o(ice−family|lume))|w(hite−space|idth)
7 |[^−]*−.*
8 } → unit

Figure 4.6: Python code, λ+
Σ translation and inferred grammar for sanitize_style.

function signature. Both cases work equally and can be inferred. This nested grammar
resulting of the integer constructor is simply inserted into the GrammarLink to generate
a valid grammar. The split operation is the first operation that is executed in this
parser and therefore this result is not further constraint, which is not the case for the
next example.

The second complex example for the parser sanitize_style (36394_1046.py) is seen
in Figure 4.6. This parser combines a nested grammar and a non nested grammar,
depending on an if else branch. This branching is created using a list contains check. In
general, this would concern ADTs, as we have a list of hard-coded values. Solving such
a contains check, while using, e.g., a tuple with containing those hard-coded values, is
not straightforward. The subtyping constraints in combination with the polymorphic
nature of those ADTs leads to a loss of the relevant information. However, there is also
a much simpler solution. If this contains check is hard-coded, we can simply create
a boolean function that gets the input string and returns a boolean value which is
refined by the condition if the input string is one of the given hard-coded values. This
translation step is much simpler as creating an explicit data structure in λ+

Σ . And we
have used this technique for our translation, the isAcceptableCssProperty method
encodes this contains check. This example shows that once a partial nested grammar is
solved, the regular grammar solving idea of Panini can continue regularly and Panini is
able to unify the grammars of those two branches. This is also the case for the parser
1613_194.py, which is one of those parses without nested constraints and shows that
once a GrammarLink is resolved, Panini treats it as any other grammar constraint that

49

4. Implementation and Evaluation

1 def __init__(self, item):
2 chunks = item.split(":")
3 if len(chunks) < 2:
4 raise ValueError("...")
5 for c in chunks:
6 if c == ’!profile’:
7 pass
8 elif c.startswith("!"):
9 raise ValueError("...")

Python code for not_exclamation.

1 parser : {s: string | ?} −> unit
2 parser = \(s: string).
3 let chunks = splitList s ":" in
4 let tmpFun = \x:string.
5 let isProfile = match x "!profile" in
6 if isProfile then
7 assert true
8 else
9 let isStartsWith = startsWithC x

’!’ in
10 if isStartsWith then
11 assert false
12 else
13 assert true
14 in
15 forEach[string] chunks tmpFun

λ+
Σ translation.

1 {s:string | s ∈
2 ([^!].*|!profile(:([^!].*|!profi(le:!profi)*le(:([^!].*)?)?)?)?)?
3 } → unit

Figure 4.7: Python code, λ+
Σ translation and inferred grammar for not_exclamation.

is incorporated into the abstract interpretation. Another translation detail for this parser
is that the first element is directly accessed after a split. This has also been present in
the sample 6770_1236.py, and we interpreted it as a split with direct tuple assignment
(cf. section 4.3).

The parser not_exclamation (26554_645.py), iterates over a list of string, and checks
if the string is either “!profile” or does not start with an exclamation mark. The abstract
interpretation of this grammar results in a small blowup of the generated constraint that
is sent to the SMT solver. Nonetheless, while this grammar is not as readable, it is still
a valid result and the issues encountered for this parser, are not related to λ+

Σ or the
nested grammar solving approach. We have observed similar behavior for other examples
and suspect that there is an issue with the regex simplification during the abstract
interpretation approach, particularly with regular expressions that have quantification,
similar to the example in Figure 4.4. However, for this example, this does not lead to
an infinite runtime. Due to this issue, this parser also has a longer runtime than the
other examples. The branching constraint leads to a more complex nested grammar,
however, this complexity does not impact our approach, as this grammar is solved by
Panini beforehand and simply used by the GrammarLink. Those successful examples
represent typical cases for ad hoc parsers, and with λ+

Σ and our nested grammar solving
approach we are able to infer their grammars.

We also want to outline for the three unsolvable cases what the specific parsing operations
were that led to their classification. This is just to give an idea of what types of parsing
steps are difficult to infer. However, due to the limited sample size, we cannot give any
numbers on how common these cases are, and which case should be investigated further
to identify potential improvements for Panini.

50

4.2. Evaluation

1 def addheader(self, key,
value, prefix = 0,
add_to_http_hdrs = 0):

2 lines = value.split("\r\n")
3 if add_to_http_hdrs:
4 pass
5 else:
6 for i in range(1,

len(lines)):
7 lines[i] = " " +

lines[i].strip()

6770_1339.py

1 def _is_hostmask(self,
ip_str):

2 bits = ip_str.split(’.’)
3 try:
4 parts = [int(x) for x in

bits if int(x) in
self._valid_mask_octets]

5 except ValueError:
6 return False
7 if len(parts) != len(bits):
8 return False

26554_610.py

1 def parse(fromstring):
2 for op in XNSelector.BASIC_OPERATORS:
3 operands = fromstring.split(op)
4 if len(operands) > 1:
5 for field, selector in XNSelector.SPECIAL_SELECTORS.items():
6 if operands[0].strip() == field:
7 return globals()(op, map(str.strip, operands))
8 return XNSelector(op, map(str.strip, operands))

20996_251.py

Figure 4.8: Sample parsers classified as unsolvable.

The parser 6770_1339.py is one of the cases that in theory could be solvable. The nested
grammar is simply a call to strip, so the overall grammar is still unconstrained, but it
was classified as unsolvable, as there is an iteration starting from the second list element.
As mentioned ind section 3.5, those cases where different nested grammars occur at
fixed indices are theoretically solvable, but not by our current implementation. More
challenging is the sample parser 26554_610.py. It is similar to the motivating example, as
a toInt constructor is mapped over a list of strings. However, this list is then filtered by
an integer condition. The parser fails if the resulting filtered list has a smaller length than
the original list. Apart from the fact that the integer conditions do not (yet) influence the
input restriction of the toInt constructor, it is also unclear if the relationship between
the length of those lists, and the filtering can be represented by the refinement logic.
This grammar is still a regular grammar, but we expect the Panini approach to not be
sufficient for such complex cases. The last unsolvable example, 20996_251.py, also has
two issues. Firstly, there is a length check of the list, which could be handled in theory as
previously outlined. Secondly, the input string is split multiple times by a list of different
separators, and we do not know how to handle and or unify this case.

In general, we have shown that we can infer many nested grammars as well as complex
nested grammars using our approach. If those grammars are solvable as defined, only
one case had either a problem with the outlined nested grammar solving approach or

51

4. Implementation and Evaluation

an issue with simplifying the resulting regular expressions. In the other case we had a
correct grammar, but a timeout in the final SMT solver step. Overall, the issues for
complex nested grammars seem to be due to both, simplifying regular expressions and
their handling in the SMT solver.

4.3 Threats to Validity
The most relevant threat to the validity of our findings, is the size of our evaluation
dataset. The amount of parsers we were able to evaluate was limited by the effort imposed
by the manual translation from Python source code to λ+

Σ . Overall, we evaluated 18
real-world ad hoc parsers, which we think is suitable to observe the usability of λ+

Σ
in practice. However, this is a small sample size and only 4 of the examined parsers
utilized a complex grammar with nested constraints, which especially restricts concrete
statements about the behavior of λ+

Σ for those complex cases. However, those examples,
combined with the synthetic examples, show that we are able to infer nested grammars
that arise due to split operations in practice.

Another threat is that the dataset might not be representative. However, the overall
idea is to show λ+

Σ for real-world ad hoc parsers, and we clearly show that we can infer
complex nested grammars for many of those parsers. Determining how those parsers
behave in general, and to give an exact understanding for how many of them we can
infer a grammar, is part of our future work. For this work, we first and foremost wanted
to introduce the underlying λ+

Σ language. This extension is necessary, and based on the
observed real-world parsers, the current state is powerful enough to significantly infer
more grammars than before.

And finally, we also need to discuss the manual translation. We took some liberties
when translating the selected parsers. This entails the definitions of split, and some
additionally limits of the manual translation.

We kept the GrammarLink behavior simple, as we first wanted to show the feasibility of
this approach. Currently, the GrammarLink can only combine simple regular expressions.
However, for the split method, additional information is available based on the length
of the returned list and the separator value. From the semantic of split, we know
that the nested grammar cannot contain the separator, and the length of a resulting list
influences the quantification of the nested grammar. The length information of a list
is sometimes known, such as when a length check is performed or an index is accessed.
Additionally, for each supported programming language in Panini, these definitions
would also need adjustments to handle edge cases specific to that language, which we
have not addressed here. Therefore, the given definitions can be considered as simplified
examples, and necessary, as the current implementation of the nested grammar solving
approach in Panini is still limited. However, once the nested grammars are solved, there
is full control over how the overall grammar is constructed, and adding those features
should be straight forward. Since these restrictions do not affect the solvability of nested
grammars, we chose to ignore them from our evaluation.

52

4.3. Threats to Validity

Parser Issue
6770_1391.py Index access with unknown indices
24871_516.py Unknown function generate_parent_dirs in extra branch

and index access
26554_645.py Length check with exception
36394_1046.py Call to lower function

Table 4.3: Translation steps that have been ignored.

Apart from list length and index checks, we also ignored some additional steps in
our translation effort. Firstly, we encountered one call to the lower function. This
was ignored, as Panini can not yet handle this case, and this is also not related to
our additions. However, as mentioned section 3.5, the GrammarLink approach could
also be applicable for this case. And secondly, we encountered a function call to an
unknown local function in an extra branch of one parser. As this information has not
been extracted from the original data and is not relevant for this evaluation, this was
also ignored. Overall, for the translated parsers, those additional restrictions to the
translation can be seen in Table 4.3.

As a result, some parsers were not translated as fully as they could have been. This aligns
with the goal of our evaluation, which is to demonstrate how real-world ad hoc parsers
and parsing steps could appear in λ+

Σ and to assess grammar inference for these cases,
rather than to achieve complete translation. We mainly care about the employed parsing
constructs, and not (yet) about the concrete definitions for split or the translation step.
This is enough to show the viability of this approach and leads us to the answer for our
second research question:

RQ2 For what kind of programs can we synthesize input string grammars with λ+
Σ?

Based on a dataset of 18 parsers, we have shown that we can infer grammars for
many real-world ad hoc parsers, even in complex cases. Our expectations, outlined
in section 3.5, were correct in the sense that we can categorize the observed ad hoc
parsers into three categories. This is trivially true by design, but we have seen
that it is also relevant in practice.

We categorized parsers into five classes: (1) homogenous lists without constraints,
(2) heterogeneous lists without constraints, (3) homogenous lists with constraints,
(4) heterogeneous lists with constraints, and (5) unsolvable nested grammars.

Of these, we could easily infer grammars for the first two categories. For parsers
with nested constraints, we only encountered one parser for which we could not
synthesize a grammar. However, the encountered issues are not related to the
extended λ+

Σ language. Those issues arise either due to shortcomings in the

53

4. Implementation and Evaluation

abstract interpretation of regular expressions or due to an issue with the introduced
GrammarLinks.

We mostly encountered simple examples for parsers utilizing our extensions, which
limits our ability to be able to identify further shortcomings of the Panini system.
However, this would require an extensive as well as automated analysis of real-world
ad hoc parsers, which we will discuss in our future work.

54

CHAPTER 5
Future Work and Conclusions

Overall, our research has shown that λ+
Σ in combination with the proposed solution for

nested grammars is able to synthesize string grammars not only for synthetic examples,
but also for real-world parsers.

However, our enhancements do not change the fact that Panini remains a prototype
implementation and many necessary steps still need to be taken to enhance its functionality.
We will outline those steps and discuss the limitations of our work here, as this future
work aims to address these shortcomings.

5.1 Future Work and Limitiations
In general, the majority of our future work does not relate to the extended λ+

Σ as we
expect this part of our work to be complete. Considering the introduced inference rules,
it could still be possible that generating equivalent, but different, VCs is necessary for
future extensions. However, we expect the extended λ+

Σ to be suitable as is while further
improvements are necessary to Panini and the nested grammar solving approach. We
are clearly bound by the capabilities of refinement type systems as this is the underlying
restriction by Panini. The changes we have implemented are all in line with similar
refinement type systems, and we have identified no issues specific to the added language
features. We also specifically did not encounter any issues regarding our novel inference
rule for ADT destruction. However, this novel inference rule has not been formally
proven to be correct. Therefore, the next step is a full correctness proof of the underlying
λ+

Σ calculus, to increase the confidence in our theoretical foundations.

Regarding the capabilities of Panini, we need to add the λ+
Σ extensions to the automatic

translation layer, as they are not yet supported. This is definitely an area of Panini
that needs to be implemented, before the expected use case becomes viable. To this end,
multiple steps need to be taken. As explained in section 3.5, we need to automatically

55

5. Future Work and Conclusions

translate split function calls into n-tuples or list data types, depending on the access.
In Python, this is less challenging in the observed cases, but it might be difficult in
other languages. Additionally, as λ+

Σ currently relies on generated Hindley-Miller type
annotation for polymorphism, those also need to be generated automatically during
the translation step. In combination with the currently ongoing work to automatically
extract real-world ad hoc parsers, this allows us to automatically evaluate the current
state of Panini with our new additions. This is an important part of our future work,
as this information is vital to be able to identify further improvements, especially for
the outlined currently unsolvable parsers. Additionally, having more information about
the nature of ad hoc parsers enables us to verify the well-founded assumptions we made
for this work, such as the behavior of the introduced GrammarLinks or the proposed
categorizations.

Our solution to solve nested grammars remains a proof of concept and needs to be
extended. Most importantly, we need to figure out if and how circular dependencies
between κ variables can be handled for nested GrammarLinks. As we have seen in our
evaluation, we observed one case (cf. Figure 4.4) where the ordering of programming
statements made a difference to solvability during the grammar solving step. In order to
identify a solution for highly nested GrammarLinks, this issue needs to be investigated
further.

Apart from this apparent limitation, there are also further necessary improvements to
the nested grammar solving approach, as we need to evaluate how to include additional
constraints into this approach. For this work, we did implement the definitions for split
in a basic manner, as this was enough to show the feasibility of our approach. As future
work, we now need to include further information in the generated regular expressions
like list length and excluding the separator values in the nested grammars. To this end,
the GrammarLinks should be extended to include the length of a list. For simple cases,
like a simple length check, this might not be a problem, but there are also complex cases
that would need to be handled. Additionally, when constructing the resulting grammar in
a GrammarLink, the separator needs to be excluded from the nested regular expression.
We also need to include programming language specific information in those definitions
and for other language features like the integer constructor. As those definitions are
simple type definitions in λ+

Σ , they can easily be adapted.

Finally, we classified a number of parsers as unsolvable due to the outlined nested grammar
solving approach. Due to the underlying refinement type system, there are grammars
we can not infer, and this first classification might be too broad, it is suitable as it
enables us to build upon this work. Further additions to array handling could specifically
aid with more complex heterogeneous nested grammars, as previously mentioned (cf.
section 2.4). For this work, this was not the main objective and this requires extensive
and concrete information about the nature of real-world ad hoc parsers, to identify the
needed necessary capabilities. The specific additions to λ+

Σ are necessary nonetheless, as
this was the step that enables us to regard those complex cases in the first place.

56

5.2. Conclusions

5.2 Conclusions
In this work, we have introduced the extended λ+

Σ and its rules. This lays the foundation
to synthesize more string grammars than previously possible.

We have implemented type inference and subtyping rules for Polymorphism and ADTs,
and introduced inference rules for data type destruction. To our knowledge, those
inference rules for data type destruction are novel, and we have shown their practical
application and how the generated VC can be used for grammar synthesis. To explain our
newly added typing rules, we provided an in-depth explanation of verification condition
generation for liquid type systems for these rules. This also allowed us to explain how
λ+

Σ integrates into Panini in the context of grammar synthesis.

To increase those grammar synthesis capabilities, we have discussed the types of nested
grammars that can arise using these new language features and introduced an approach
to infer those nested grammars. This allowed us to evaluate our work on real-world
ad hoc parsers, and we demonstrated which kind of nested grammars we can synthesize.
We outlined the theoretical limitations of this approach, as well as shown the concrete
limitations that are still present after adding λ+

Σ to Panini. Those limitations include
regular grammars that could in theory be solved by the Panini approach and are also
present in the observed real-world ad hoc parsers. Despite those challenges, we have
shown that we can successfully synthesize either homogenous nested grammars or fixed
length heterogeneous nested grammars, which was not possible before. As this represents
a significant extension, we have discussed multiple useful further improvements to Panini
and this work lays important and necessary groundwork for enabling those changes.

In addition to the fundamental new capabilities of λ+
Σ , we also expect the majority of

parsers with nested grammars to fall into the outlined solvable categories. Therefore,
while potential future work is necessary, our contributions are relevant for the majority
of parsers that previously could not have been handled by Panini, but where the Panini
approach is applicable in general. In sum, our work is a significant extension to the
grammar solving capabilities that were previously implemented into Panini. It enables
us to synthesize many more relevant real-world ad hoc parsers.

57

List of Figures

1.1 The complete process of the Panini system [34]. 3
1.2 String Parser with polymorphism and algebraic data types, and a simplified

input grammar. 4

2.1 Simple refinement example in λΣ syntax. 7
2.2 VC for the example in Figure 2.1 . 8
2.3 Liquid type and resulting VC for the example in Figure 2.1 without a given

type signature. 9
2.4 A simple Python expression (left) and the equivalent λΣ program (middle)

with an incomplete verification condition (right) for its inferred type {s : S |
κ(s)} → 1[34]. 10

2.5 Syntax of λΣ terms, types, and refinements [34]. 12
2.6 Subtyping and template generation rules for λΣ. 13
2.7 Type synthesis rules for λΣ. 14
2.8 Definition of charAt and reduced version of Figure 2.4, with a complete VC

generated by λΣ . 14

3.1 Extended Syntax for λ+
Σ . 21

3.2 A definition of a list data type and corresponding length measure in λ+
Σ . . 22

3.3 Extended Type Synthesis rules for λΣ. 23
3.4 Method to create a monomorphic constructor function, using the current data

type instance [17]. 24
3.5 Methods to assign (monomorphic) constructor function parameters and result

to variables in an alternative [17]. 25
3.6 Extended Subtyping rules for λΣ. 26
3.7 Instantiating a list data type in λ+

Σ . 27
3.8 Inference result of Figure 3.7 . 29
3.9 Example of list destruction, with definitions for toInt and assert . . . 30
3.10 Simplified Inference result of Figure 3.9 34
3.11 Example parser for a Tuple ADT. 35

4.1 Selection of manually translated parsers from the sample set. 44
4.2 Definition of split for lists with homogenous grammar. 44
4.3 Data type and split definition for 2-tuples in λ+

Σ 45

59

4.4 Python code and translations for parse_date_time. 47
4.5 Python code, λ+

Σ translation and inferred grammar for version_to_list. 48
4.6 Python code, λ+

Σ translation and inferred grammar for sanitize_style. 49
4.7 Python code, λ+

Σ translation and inferred grammar for not_exclamation. 50
4.8 Sample parsers classified as unsolvable. 51

60

List of Tables

4.1 Results of different evaluation types. 45
4.2 Real-world results grouped by Type. 46
4.3 Translation steps that have been ignored. 53

61

Acronyms

ADT algebraic data type. xi, 3–5, 19, 20, 22, 27, 34–36, 41–43, 48, 49, 55, 57, 59

ANF A-normal form. 2, 11

QF_UFLIA quantifier-free theory of linear arithmetic and uninterpreted functions. 7,
11

SMT Satisfiability Modulo Theories. 7, 8, 17, 42, 50, 52

VC verification condition. 7–11, 13–16, 20, 22, 24, 25, 28–35, 37, 42, 55, 57, 59

63

Bibliography

[1] Peter Achten and Pieter Koopman, eds. The Beauty of Functional Code: Essays
Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday. en. Vol. 8106.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2013. isbn: 978-
3-642-40354-5 978-3-642-40355-2. doi: 10.1007/978-3-642-40355-2. url:
http://link.springer.com/10.1007/978-3-642-40355-2 (visited on
10/31/2024).

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). Published: \tt www.SMT-LIB.org. 2016.

[3] Jesper Bengtson et al. “Refinement types for secure implementations”. In: ACM
Trans. Program. Lang. Syst. 33.2 (Feb. 2011), 8:1–8:45. issn: 0164-0925. doi:
10.1145/1890028.1890031. url: https://dl.acm.org/doi/10.1145/
1890028.1890031 (visited on 09/17/2024).

[4] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. “Horn
Clause Solvers for Program Verification”. en. In: Fields of Logic and Computation
II: Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. Ed.
by Lev D. Beklemishev et al. Cham: Springer International Publishing, 2015,
pp. 24–51. isbn: 978-3-319-23534-9. doi: 10.1007/978-3-319-23534-9_2.
url: https://doi.org/10.1007/978-3-319-23534-9_2 (visited on
09/19/2024).

[5] Michael H. Borkowski, Niki Vazou, and Ranjit Jhala. “Mechanizing Refinement
Types”. In: Artifact for "Mechanizing Refinement Types" 8.POPL (Jan. 2024),
70:2099–70:2128. doi: 10.1145/3632912. url: https://dl.acm.org/doi/
10.1145/3632912 (visited on 08/14/2024).

[6] Benjamin Cosman and Ranjit Jhala. “Local refinement typing”. In: Proceedings
of the ACM on Programming Languages 1.ICFP (Aug. 2017), 26:1–26:27. doi:
10.1145/3110270. url: https://dl.acm.org/doi/10.1145/3110270
(visited on 12/05/2023).

65

https://doi.org/10.1007/978-3-642-40355-2
http://link.springer.com/10.1007/978-3-642-40355-2
https://doi.org/10.1145/1890028.1890031
https://dl.acm.org/doi/10.1145/1890028.1890031
https://dl.acm.org/doi/10.1145/1890028.1890031
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/3632912
https://dl.acm.org/doi/10.1145/3632912
https://dl.acm.org/doi/10.1145/3632912
https://doi.org/10.1145/3110270
https://dl.acm.org/doi/10.1145/3110270

[7] Luis Damas and Robin Milner. “Principal type-schemes for functional programs”.
In: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. POPL ’82. New York, NY, USA: Association for Computing
Machinery, Jan. 1982, pp. 207–212. isbn: 978-0-89791-065-1. doi: 10.1145/
582153.582176. url: https://dl.acm.org/doi/10.1145/582153.
582176 (visited on 10/15/2024).

[8] Jana Dunfield. “Refined typechecking with Stardust”. In: Proceedings of the 2007
workshop on Programming languages meets program verification. PLPV ’07. New
York, NY, USA: Association for Computing Machinery, Oct. 2007, pp. 21–32. isbn:
978-1-59593-677-6. doi: 10.1145/1292597.1292602. url: https://dl.acm.
org/doi/10.1145/1292597.1292602 (visited on 09/17/2024).

[9] Jana Dunfield and Neel Krishnaswami. “Bidirectional Typing”. In: ACM Computing
Surveys 54.5 (May 2021), 98:1–98:38. issn: 0360-0300. doi: 10.1145/3450952.
url: https://dl.acm.org/doi/10.1145/3450952 (visited on 02/01/2024).

[10] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. “Boa: a
language and infrastructure for analyzing ultra-large-scale software repositories”.
In: Proceedings of the 2013 International Conference on Software Engineering.
ICSE ’13. San Francisco, CA, USA: IEEE Press, May 2013, pp. 422–431. isbn:
978-1-4673-3076-3. (Visited on 11/21/2024).

[11] Robert W. Floyd. “Assigning Meanings to Programs”. en. In: Program Verification:
Fundamental Issues in Computer Science. Ed. by Timothy R. Colburn, James H.
Fetzer, and Terry L. Rankin. Dordrecht: Springer Netherlands, 1993, pp. 65–81.
isbn: 978-94-011-1793-7. doi: 10.1007/978-94-011-1793-7_4. url: https:
//doi.org/10.1007/978-94-011-1793-7_4 (visited on 09/10/2024).

[12] Tim Freeman and Frank Pfenning. “Refinement types for ML”. en. In: ACM
SIGPLAN Notices 26.6 (June 1991), pp. 268–277. issn: 0362-1340, 1558-1160. doi:
10.1145/113446.113468. url: https://dl.acm.org/doi/10.1145/
113446.113468 (visited on 11/23/2023).

[13] D. J. Gilmore and T. R. G. Green. “Comprehension and recall of miniature pro-
grams”. In: International Journal of Man-Machine Studies 21.1 (July 1984), pp. 31–
48. issn: 0020-7373. doi: 10.1016/S0020-7373(84)80037-1. url: https://
www.sciencedirect.com/science/article/pii/S0020737384800371
(visited on 09/13/2024).

[14] R. Hindley. “The principle type-scheme of an object in combinatory logic”. en.
In: Transactions of the American Mathematical Society 146 (1969), pp. 29–60.
issn: 0002-9947, 1088-6850. doi: 10.1090/S0002-9947-1969-0253905-6.
url: https://www.ams.org/tran/1969-146-00/S0002-9947-1969-
0253905-6/ (visited on 10/15/2024).

66

https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://dl.acm.org/doi/10.1145/582153.582176
https://dl.acm.org/doi/10.1145/582153.582176
https://doi.org/10.1145/1292597.1292602
https://dl.acm.org/doi/10.1145/1292597.1292602
https://dl.acm.org/doi/10.1145/1292597.1292602
https://doi.org/10.1145/3450952
https://dl.acm.org/doi/10.1145/3450952
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/113446.113468
https://dl.acm.org/doi/10.1145/113446.113468
https://dl.acm.org/doi/10.1145/113446.113468
https://doi.org/10.1016/S0020-7373(84)80037-1
https://www.sciencedirect.com/science/article/pii/S0020737384800371
https://www.sciencedirect.com/science/article/pii/S0020737384800371
https://doi.org/10.1090/S0002-9947-1969-0253905-6
https://www.ams.org/tran/1969-146-00/S0002-9947-1969-0253905-6/
https://www.ams.org/tran/1969-146-00/S0002-9947-1969-0253905-6/

[15] C. A. R. Hoare. “Procedures and parameters: An axiomatic approach”. en. In:
Symposium on Semantics of Algorithmic Languages. Ed. by E. Engeler. Berlin,
Heidelberg: Springer, 1971, pp. 102–116. isbn: 978-3-540-36499-3. doi: 10.1007/
BFb0059696.

[16] Ranjit Jhala, Andreas Podelski, and Andrey Rybalchenko. “Predicate Abstraction
for Program Verification”. en. In: Handbook of Model Checking. Ed. by Edmund
M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Cham:
Springer International Publishing, 2018, pp. 447–491. isbn: 978-3-319-10575-8. doi:
10.1007/978-3-319-10575-8_15. url: https://doi.org/10.1007/
978-3-319-10575-8_15 (visited on 09/19/2024).

[17] Ranjit Jhala and Niki Vazou. Refinement Types: A Tutorial. en. arXiv:2010.07763
[cs]. Oct. 2020. url: http://arxiv.org/abs/2010.07763 (visited on
11/07/2023).

[18] Ming Kawaguchi, Patrick Rondon, and Ranjit Jhala. “Type-based data structure
verification”. In: Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’09. New York, NY, USA:
Association for Computing Machinery, June 2009, pp. 304–315. isbn: 978-1-60558-
392-1. doi: 10.1145/1542476.1542510. url: https://dl.acm.org/doi/
10.1145/1542476.1542510 (visited on 08/14/2024).

[19] Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. “Resource-guided
program synthesis”. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2019. New York, NY,
USA: Association for Computing Machinery, June 2019, pp. 253–268. isbn: 978-1-
4503-6712-7. doi: 10.1145/3314221.3314602. url: https://dl.acm.org/
doi/10.1145/3314221.3314602 (visited on 09/18/2024).

[20] Tristan Knoth et al. “Liquid resource types”. In: Artifact for Liquid Resource
Types 4.ICFP (Aug. 2020), 106:1–106:29. doi: 10.1145/3408988. url: https:
//dl.acm.org/doi/10.1145/3408988 (visited on 08/30/2024).

[21] Nico Lehmann, Adam Geller, Niki Vazou, and Ranjit Jhala. Flux: Liquid Types for
Rust. arXiv:2207.04034 [cs]. Nov. 2022. doi: 10.48550/arXiv.2207.04034.
url: http://arxiv.org/abs/2207.04034 (visited on 11/28/2023).

[22] Nico Lehmann et al. “{STORM}: Refinement Types for Secure Web Applica-
tions”. en. In: 2021, pp. 441–459. isbn: 978-1-939133-22-9. url: https://www.
usenix.org/conference/osdi21/presentation/lehmann (visited on
08/30/2024).

[23] Daan Leijen and Erik Meijer. “Parsec: Direct Style Monadic Parser Combinators
For The Real World”. In: (Dec. 2001).

67

https://doi.org/10.1007/BFb0059696
https://doi.org/10.1007/BFb0059696
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-319-10575-8_15
http://arxiv.org/abs/2010.07763
https://doi.org/10.1145/1542476.1542510
https://dl.acm.org/doi/10.1145/1542476.1542510
https://dl.acm.org/doi/10.1145/1542476.1542510
https://doi.org/10.1145/3314221.3314602
https://dl.acm.org/doi/10.1145/3314221.3314602
https://dl.acm.org/doi/10.1145/3314221.3314602
https://doi.org/10.1145/3408988
https://dl.acm.org/doi/10.1145/3408988
https://dl.acm.org/doi/10.1145/3408988
https://doi.org/10.48550/arXiv.2207.04034
http://arxiv.org/abs/2207.04034
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann

[24] Falcon Momot, Sergey Bratus, Sven M. Hallberg, and Meredith L. Patterson. “The
Seven Turrets of Babel: A Taxonomy of LangSec Errors and How to Expunge
Them”. In: 2016 IEEE Cybersecurity Development (SecDev). Nov. 2016, pp. 45–52.
doi: 10.1109/SecDev.2016.019. url: https://ieeexplore.ieee.org/
document/7839788 (visited on 09/27/2024).

[25] Manuel Montenegro, Susana Nieva, Ricardo Peña, and Clara Segura. “Extending
Liquid Types to Arrays”. In: ACM Transactions on Computational Logic 21.2
(Jan. 2020), 13:1–13:41. issn: 1529-3785. doi: 10.1145/3362740. url: https:
//dl.acm.org/doi/10.1145/3362740 (visited on 02/01/2024).

[26] Manuel Montenegro, Susana Nieva, Ricardo Peña, and Clara Segura. “Liquid
Types for Array Invariant Synthesis”. en. In: Automated Technology for Verification
and Analysis. Ed. by Deepak D’Souza and K. Narayan Kumar. Cham: Springer
International Publishing, 2017, pp. 289–306. isbn: 978-3-319-68167-2. doi: 10.
1007/978-3-319-68167-2_20.

[27] Charles Gregory Nelson. “Techniques for Program Verification”. PhD Thesis. Stan-
ford University, 1980.

[28] T. J. Parr and R. W. Quong. “ANTLR: A predicated-LL(k) parser generator”. en. In:
Software: Practice and Experience 25.7 (1995). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705,
pp. 789–810. issn: 1097-024X. doi: 10.1002/spe.4380250705. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
(visited on 09/13/2024).

[29] Benjamin C. Pierce. Types and programming languages. en. Cambridge, Mas-
sachusetts London, England: The MIT Press, 2002. isbn: 978-0-262-16209-8.

[30] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program Synthesis
from Polymorphic Refinement Types. arXiv:1510.08419 [cs]. Apr. 2016. doi: 10.
48550/arXiv.1510.08419. url: http://arxiv.org/abs/1510.08419
(visited on 08/26/2024).

[31] Nadia Polikarpova et al. “Liquid information flow control”. In: Proceedings of
the ACM on Programming Languages 4.ICFP (Aug. 2020), 105:1–105:30. doi:
10.1145/3408987. url: https://dl.acm.org/doi/10.1145/3408987
(visited on 01/16/2024).

[32] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. “Liquid types”. In: Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’08. New York, NY, USA: Association for Computing Machin-
ery, June 2008, pp. 159–169. isbn: 978-1-59593-860-2. doi: 10.1145/1375581.
1375602. url: https://dl.acm.org/doi/10.1145/1375581.1375602
(visited on 11/07/2023).

[33] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. “Low-level liquid
types”. In: SIGPLAN Not. 45.1 (Jan. 2010), pp. 131–144. issn: 0362-1340. doi:
10.1145/1707801.1706316. url: https://dl.acm.org/doi/10.1145/
1707801.1706316 (visited on 09/17/2024).

68

https://doi.org/10.1109/SecDev.2016.019
https://ieeexplore.ieee.org/document/7839788
https://ieeexplore.ieee.org/document/7839788
https://doi.org/10.1145/3362740
https://dl.acm.org/doi/10.1145/3362740
https://dl.acm.org/doi/10.1145/3362740
https://doi.org/10.1007/978-3-319-68167-2_20
https://doi.org/10.1007/978-3-319-68167-2_20
https://doi.org/10.1002/spe.4380250705
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
https://doi.org/10.48550/arXiv.1510.08419
https://doi.org/10.48550/arXiv.1510.08419
http://arxiv.org/abs/1510.08419
https://doi.org/10.1145/3408987
https://dl.acm.org/doi/10.1145/3408987
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://dl.acm.org/doi/10.1145/1375581.1375602
https://doi.org/10.1145/1707801.1706316
https://dl.acm.org/doi/10.1145/1707801.1706316
https://dl.acm.org/doi/10.1145/1707801.1706316

[34] Michael Schröder. “Grammar Inference for Ad Hoc Parsers”. In: Companion Pro-
ceedings of the 2022 ACM SIGPLAN International Conference on Systems, Pro-
gramming, Languages, and Applications: Software for Humanity. SPLASH Com-
panion 2022. New York, NY, USA: Association for Computing Machinery, Dec.
2022, pp. 38–42. isbn: 978-1-4503-9901-2. doi: 10.1145/3563768.3565550.
url: https://dl.acm.org/doi/10.1145/3563768.3565550 (visited on
01/01/2024).

[35] Michael Schröder and Jürgen Cito. Static Inference of Regular Grammars for Ad
Hoc Parsers. Under submission. 2024. url: https://mcschroeder.github.
io/files/panini_preprint.pdf.

[36] Michael Schröder, Marc Goritschnig, and Jürgen Cito. An Exploratory Study of
Ad Hoc Parsers in Python. Registered Report. arXiv:2304.09733 [cs]. Apr. 2023.
doi: 10.48550/arXiv.2304.09733. url: http://arxiv.org/abs/2304.
09733 (visited on 12/10/2023).

[37] Michael Schröder, Andreas Olschnögger, Marc Goritschnig, and Jürgen Cito. An
Exploratory Study of Ad Hoc Parsers in Python. In progress.

[38] Niki Vazou. A Gentle Introduction to Liquid Types. Sept. 2015. url: https:
//goto.ucsd.edu/~ucsdpl-blog/liquidtypes/2015/09/19/liquid-
types/ (visited on 08/29/2024).

[39] Niki Vazou, Alexander Bakst, and Ranjit Jhala. Bounded Refinement Types.
arXiv:1507.00385 [cs]. July 2015. doi: 10.48550/arXiv.1507.00385. url:
http://arxiv.org/abs/1507.00385 (visited on 09/03/2024).

[40] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. “Abstract Refinement Types”. en.
In: Programming Languages and Systems. Ed. by Matthias Felleisen and Philippa
Gardner. Berlin, Heidelberg: Springer, 2013, pp. 209–228. isbn: 978-3-642-37036-6.
doi: 10.1007/978-3-642-37036-6_13.

[41] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. “LiquidHaskell: experience with
refinement types in the real world”. In: SIGPLAN Not. 49.12 (Sept. 2014), pp. 39–
51. issn: 0362-1340. doi: 10.1145/2775050.2633366. url: https://dl.
acm.org/doi/10.1145/2775050.2633366 (visited on 09/27/2024).

[42] Niki Vazou et al. “Refinement types for Haskell”. en. In: Proceedings of the 19th
ACM SIGPLAN international conference on Functional programming. Gothenburg
Sweden: ACM, Aug. 2014, pp. 269–282. isbn: 978-1-4503-2873-9. doi: 10.1145/
2628136.2628161. url: https://dl.acm.org/doi/10.1145/2628136.
2628161 (visited on 11/28/2023).

[43] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement Types for
TypeScript. arXiv:1604.02480 [cs]. Apr. 2016. doi: 10.48550/arXiv.1604.
02480. url: http://arxiv.org/abs/1604.02480 (visited on 09/17/2024).

69

https://doi.org/10.1145/3563768.3565550
https://dl.acm.org/doi/10.1145/3563768.3565550
https://mcschroeder.github.io/files/panini_preprint.pdf
https://mcschroeder.github.io/files/panini_preprint.pdf
https://doi.org/10.48550/arXiv.2304.09733
http://arxiv.org/abs/2304.09733
http://arxiv.org/abs/2304.09733
https://goto.ucsd.edu/~ucsdpl-blog/liquidtypes/2015/09/19/liquid-types/
https://goto.ucsd.edu/~ucsdpl-blog/liquidtypes/2015/09/19/liquid-types/
https://goto.ucsd.edu/~ucsdpl-blog/liquidtypes/2015/09/19/liquid-types/
https://doi.org/10.48550/arXiv.1507.00385
http://arxiv.org/abs/1507.00385
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2775050.2633366
https://dl.acm.org/doi/10.1145/2775050.2633366
https://dl.acm.org/doi/10.1145/2775050.2633366
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://dl.acm.org/doi/10.1145/2628136.2628161
https://dl.acm.org/doi/10.1145/2628136.2628161
https://doi.org/10.48550/arXiv.1604.02480
https://doi.org/10.48550/arXiv.1604.02480
http://arxiv.org/abs/1604.02480

[44] Alessandro Warth and Ian Piumarta. “OMeta: an object-oriented language for
pattern matching”. In: Proceedings of the 2007 symposium on Dynamic languages.
DLS ’07. New York, NY, USA: Association for Computing Machinery, Oct. 2007,
pp. 11–19. isbn: 978-1-59593-868-8. doi: 10.1145/1297081.1297086. url:
https://dl.acm.org/doi/10.1145/1297081.1297086 (visited on
09/13/2024).

[45] A. K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”. In:
Information and Computation 115.1 (Nov. 1994), pp. 38–94. issn: 0890-5401. doi:
10.1006/inco.1994.1093. url: https://www.sciencedirect.com/
science/article/pii/S0890540184710935 (visited on 10/11/2024).

[46] Hongwei Xi and Frank Pfenning. “Eliminating array bound checking through
dependent types”. In: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation. PLDI ’98. New York, NY, USA:
Association for Computing Machinery, May 1998, pp. 249–257. isbn: 978-0-89791-
987-6. doi: 10.1145/277650.277732. url: https://dl.acm.org/doi/10.
1145/277650.277732 (visited on 09/17/2024).

[47] Andreas Zeller et al. “Fuzzing with Grammars”. In: The Fuzzing Book. CISPA
Helmholtz Center for Information Security, 2024. url: https://www.fuzzingbook.
org/html/Grammars.html (visited on 09/10/2024).

70

https://doi.org/10.1145/1297081.1297086
https://dl.acm.org/doi/10.1145/1297081.1297086
https://doi.org/10.1006/inco.1994.1093
https://www.sciencedirect.com/science/article/pii/S0890540184710935
https://www.sciencedirect.com/science/article/pii/S0890540184710935
https://doi.org/10.1145/277650.277732
https://dl.acm.org/doi/10.1145/277650.277732
https://dl.acm.org/doi/10.1145/277650.277732
https://www.fuzzingbook.org/html/Grammars.html
https://www.fuzzingbook.org/html/Grammars.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Panini
	Problem Statement
	Research Questions

	Background
	Refinement Types
	Grammar Solving
	The λΣ-calculus
	Related Work

	The λΣ+-calculus
	Syntax of λΣ+
	Synthesis Rules
	Subtyping Rules
	Inference in Depth
	Grammar Solving

	Implementation and Evaluation
	Implementation
	Evaluation
	Threats to Validity

	Future Work and Conclusions
	Future Work and Limitiations
	Conclusions

	List of Figures
	List of Tables
	Acronyms
	Bibliography

