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Kurzfassung

In [Sho58] und [She63] wurde gezeigt, dass es einfache, manchmal endliche, alternative
Axiomatisierungen von offener Induktion in verschiedenen Kontexten der Arithmetik
gibt. Dies eröffnet zwei Fragen: Benötigt man die gesamte offene Induktion, um diese
alternativen Axiomatisierungen zu beweisen oder genügt eine echte Teilmenge? Gibt
es solche alternativen Axiomatisierungen von offener Induktion nur im arithmetischen
Kontext oder auch für andere induktive Datentypen?

Wir zeigen in dieser Arbeit, dass unterschiedliche Teilsysteme der offenen Induktion
oftmals gleich stark sind, in dem Sinne, dass sie die gleichen Formeln beweisen. Als
Spezialfall sehen wir, dass die gesamte offene Induktion in verschiedene interessanten
Fällen gleich viel beweist, wie Induktion über eine echte Teilmenge der Menge aller
offenen Formeln (z.B. Literale). Darüber hinaus gibt es in Analogie zu den Resultaten
von Shoenfield und Shepherdson in vielen der von uns betrachteten Fälle eine alternative
einfache Axiomatisierung von offener Induktion.
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Abstract

In [Sho58] and [She63] it was shown that there are simple, sometimes finite, alternative
axiomatizations of open induction in the context of various arithmetical theories. This
begs two questions: Does one need all open instances of the induction axiom to prove
these alternative axiomatizations or do certain subsets suffice? Does this only work in
the context of arithmetics or for other inductive data types as well?

In this thesis, we show that various subsystems of open induction are equally strong in the
sense that they prove the same theorems. In particular, in multiple interesting cases, open
induction collapses to induction over a proper subset of the set of all open formulas (e.g.
literals). Moreover, in many of the cases, we considered, there are simple axiomatizations
of open induction in analogy to the results of Shoenfield and Shepherdson.
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CHAPTER 1
Introduction

Induction is an important tool in mathematics and computer science. Additionally to
using it in semantic proofs, we can also use it to axiomatize data types syntactically. For
example, it is a rather important property of the natural numbers that every subset,
which is closed under 0 and successor is the whole set of natural numbers. Switching
from subsets to formulas, we can rephrase the axiom and say, that any formula ϕpxq
with ϕp0q and ϕpxq Ñ ϕpspxqq satisfies @xϕpxq. In PA, this leads to the axiom-scheme

ϕp0q ^ @xpϕpxq Ñ ϕpspxqqq Ñ @xϕpxq, for all formulas ϕ.

As stated above this is not an axiom, but an axiom-scheme since we cannot quantify over
formulas in FOL. This type of scheme can be adapted to fit different kinds of inductive
data types - that is, data types, whose instances can be constructed inductively, such as
k-ary trees or lists. Having axiom-schemes as described above, begs the question, what
happens if we replace for all formulas with for some formulas. Of particular interest
is the question, what happens, if we only allow open (i.e. quantifier-free) formulas or
even smaller subsets of formulas (e.g. clauses). The interest in this question is due to
the fact that modern automated theorem provers often can only deal with induction
of quantifier-free formulas (if any) (cf. [Vie24]). For sufficiently strong arithmetical
theories, it is well understood how different levels of induction relate to each other. If
some non-arithmetical theory is strong enough to allow encoding of numbers, then there
is not much of a difference to arithmetics.

However, there is a gap in the literature, when it comes to weak theories of inductive
data types. Thus, in Chapter 3, we consider general inductive data types. We show that
if the language is sufficiently uncomplicated, there are simple alternative axiomatizations
of open induction.

In Chapter 4, we refine the results of [Sho58] and [She63]: Shoenfield and Shepherdson
gave alternative axiomatizations for open induction in various arithmetical contexts. We
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1. Introduction

consider the same theories and analyze, how the different subsystems of open induction
relate to each other.

In Chapter 5, we combine the two previous chapters by adding a size function to
some arbitrary inductive data type. Again, we give alternative axiomatizations of open
induction. Moreover, we show that in this case, induction over all open formulas does
not prove more than induction over literals regardless of the inductive data type at hand.

In Chapter 6 and Chapter 7, we consider lists and k-ary trees as special cases of inductive
data types and apply our findings from the previous chapters.
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CHAPTER 2
Preliminaries

In this whole thesis, we work in classical predicate logic with the usual connectives
^, _, ␣ and the quantifiers D, @. On the meta-level, we use ” for syntactic equality of
any kind of objects such as terms, formulas or variables. We use Ñ and Ø defined as
ϕ Ñ ψ ” ␣ϕ _ ψ and ϕ Ø ψ ” pϕ Ñ ψq ^ pψ Ñ ϕq. Moreover, sometimes we may omit
parentheses in order to increase the legibility. For this, we use the usual conventions
that ␣, @ and D all take precedence over ^, which again takes precedence over _. The
semantics are defined in the usual way. We will write WFF for the set of well-formed
formulas.

All of our languages will contain the relational symbol “, which is always interpreted as
the equality with the usual axiomatization. If the logic in which we work is many sorted,
there is an “ symbol for each sort, and the axiomatization is done accordingly. We will
refrain from writing it down, each time we encounter a new language.

If the logic we work in has the sorts S1, . . . , Sn, then there are n different versions of @
and D. Formally, we should write something like pDx : Snqpϕpxqq to denote that there is
some x of the sort Sn, for which ϕ holds. In our cases, it will usually be clear from the
context, over which sort we quantify and thus, we only write Dx : ϕpxq. In particular, we
will write formulas of the form Dx1, . . . , xn, y1, . . . , ym : fpx1, . . . , xnq “ gpy1, . . . , ymq or
even Dx, y : fpxq “ gpyq since n, m and the sort of every xi and yj can be inferred from
the signatures of f and g.

We will analyze subsystems of open induction over various languages and theories. With
this we mean the following: Let Ipϕq1 be the scheme of induction over some language
L with some base theory B. We explicitly allow that ϕ contains parameters. Since we
work in FOL, we have to add an instance of Ipϕq for any formula ϕ, we want to be able
to use in the scheme. Now we can add all instances or just some. Depending on which
instances we add, we have different names for the resulting sets:

1Note that we do not care how Ipϕq is defined yet, we just accept that it is a formula scheme
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2. Preliminaries

• IAtom “ tIpϕq | ϕ is an atomu
• ILiteral “ tIpϕq | ϕ is a literalu
• IClause “ tIpϕq | ϕ is a clauseu
• IDClause “ tIpϕq | ϕ is a dual clauseu
• IOpen “ tIpϕq | ϕ is an open formulau

These systems will be the main focus of our analysis. Note that these names are ambiguous
and different schemes of induction I will yield different sets. However, the induction
scheme is always clear from the context and we will therefore stick with these names.

A more subtle thing to note is that we use axiom-schemata and not rules as in in parts of
[She63]. Consider the following axiom-schema of induction in the context of arithmetics

ϕp0q ^ @x : pϕpxq Ñ ϕpsxqq Ñ @x : ϕpxq

and compare it to the rule of induction in the same context

ϕp0q ϕpxq Ñ ϕpsxq
@x : ϕpxq .

Note that the axiom of induction is stronger in the sense that @x : ϕpxq holds in every
model, where the preconditions are met, while the rule only gives us that @x : ϕpxq holds
in all models if the antecedent holds in every model.

Since we want to talk about the expressivity of theories and axiomatizations, we need
some notion to compare them. Given some set of formulas Γ, we write ThpΓq for the
deductive closure of Γ given by ThpΓq “ tϕ P WFF | Γ $ ϕu. Given two sets of formulas
Γ, Δ, we define the relation ĺ by Γ ĺ Δ if ThpΓq Ď ThpΔq. We define Γ « Δ if Γ ĺ Δ
and Δ ĺ Γ. The respective strict relation is defined in the usual way: Γ ň Δ if Γ ĺ Δ
and Γ ff Δ.

From the definitions above, it follows trivially that for any base theory B it holds
that B ` IAtom ĺ B ` ILiteral ĺ B ` IClause ĺ B ` IOpen and B ` ILiteral ĺ
B ` IDClause ĺ B ` IOpen. Graphically, this can be represented in the following way:

4



B ` IOpen

B ` IClauseB ` IDClause

B ` ILiteral

B ` IAtom

B

In the diagram above, dashed lines represent ĺ and solid lines represent ň. Clearly, we
cannot draw any solid lines yet, but we will need the distinction in later chapters. Note
that depending on the base theories this diagram can collapse as induction over different
sets of formulas might yield the same theorems and some base theories may even satisfy
some form of induction.

5





CHAPTER 3
General Inductive Data Types

The following chapter contains, in some sense, the strongest results about open induction
in this thesis. Although it is the first chapter, it was written as one of the last ones.
This is due to the fact that it generalizes some results from later chapters. We will deal
with inductive data types with constructors and selectors. Including arbitrary function
symbols becomes so complicated that they lie outside of the scope of this thesis. Some
function symbols that have common defining axioms are dealt with in the subsequent
chapters.

One of the most interesting results is that some of the results fundamentally depend on
the structure of the language, meaning that e.g. the arity or number of constructors has
substantial influence on whether open induction can be axiomatized naturally and if the
levels of induction actually differ.

3.1 General Frame
For defining an inductive data type D, we consider a (possibly) many-sorted logic with
the sorts D, T1, . . . , Tn. Our language is defined in the following way: We have some
constructors c1, . . . , ck, where each of the ci has arity mi and is a function symbol of type
τ1

i ˆ ¨ ¨ ¨ ˆ τmi
i Ñ D with τ l

i P tD, T1, . . . , Tnu. For each constructor ci with mi ě 1, we
add the selectors d1

i , . . . , dmi
i to the language. Each selector dj

i has the type D Ñ τ j
i .

If a constructur does not take input of sort D, then we call it static. If it does take
input of sort D, then we call it dynamic. In order to define induction, we need some
well-founded order relation on the elements of the standard-model. This translates to
the restriction that there is at least one static constructor ci.

Without loss of generality, we assume that for every constructor ci the first n (possibly 0)
input-sorts are D. The other sorts Tl are ordered by their index i. This is an assumption,

7



3. General Inductive Data Types

to simplify notation, but of course, all the results are independent on the ordering of the
inputs of the ci.

The following will be our base axioms:

cipxq ‰ cjpyq for all i ‰ j, 1 ď i, j ď k DisjointnessDi,j

cipxq “ cipyq Ñ x “ y for all 1 ď i ď k InjectivityINJi

dn
j pcjpx1, . . . , xmj qq “ xn for all 1 ď i ď k, 1 ď n ď mi InverseINVn

j

For the scheme of induction, we first define a shorthand:

kľ
i“1

¨̊
˚̋@x1, . . . , xmi

¨̊
˚̋ ľ

lPt1,...,miu
τl

i
“D

ϕpxl, zq Ñ ϕpcipx1, . . . , xmiq, zq‹̨‹‚‹̨‹‚LHSpϕpxqq

The scheme of induction now has the following form:

LHSpϕpx, zqq Ñ @x : ϕpx, zqIpϕq
The formula ϕ potentially contains parameters z, which we will not explicitly mention in
the following as from now on every formula contains parameters if not stated otherwise.

Now, we need to define two basic languages and theories:

Definition 3.1.1. We define L0 “ tci | i ď ku and L1 “ L0 Y tdj
i | mi ě 1, j ď miu

Definition 3.1.2. We define T0 “ tDi,j | i, j ď k, i ‰ ju Y tINJi | i ď ku and
T1 “ T0 Y tINV n

j | j ď k, mj ě n ě 1u

Having these defined these basic things, it makes sense to talk about standard models of
T0 and T1. Usually, there is not one standard model of T0, but rather infinitely many,
each being parameterized by the interpretation of the parameter sorts Ti.

Definition 3.1.3. Let M1, . . . , Mn, Y be sets. Then, the set TpM1, . . . , Mn, Y q of all
ground terms is defined inductively:

• S0 “ tcipm1, . . . , mmiq | ci is static, ml P τ l
i u Y Y

• Sn`1 “ tcjps1, . . . , smj q | cj is dynamic, τ l
j ‰ D Ñ sl P Ml, τ l

j “ D Ñ Dk ď n : sl P
Sku

• TpM1, . . . , Mn, Y q “ Ť
nPN Sn

Definition 3.1.4. Let M1, . . . , Mn be sets. The model M˚pM1, . . . , Mn, Y q of T0 over
the language L0, given that T M˚

i “ Mi, is defined in the following way:

• DM˚ “ TpM1, . . . , Mn, Y q

8



3.1. General Frame

• For any constructor ci and any suitable tuple pa1, . . . , amiq: cM˚
i pa1, . . . , amiq “

cipa1, . . . , amiq

If Y “ H, then we write M˚pM1, . . . , Mnq instead of M˚pM1, . . . , Mn, Hq and call it
the standard model w.r.t. M1, . . . , Mn.

Definition 3.1.5. For any set I Ď t1, . . . , nu, we write MI̊ pY q for M˚pM1, . . . , Mn, Y q,
where Mi “ tiu if i R I and Mi “ tai, biu if i P I. Moreover, we define M˚pY q “ MH̊pY q
and MI̊ pHq “ MI̊ .

Note that with the selectors being axiomatized in the way they are, there is a lot of
ambiguity as to what a term of the form dn

j pcip. . . qq is canonically interpreted as. Thus,
if we work with L1, we will often refer to the standard models of T0 over L0 and then
extend the language.

Since, there are non-standard models, it makes sense, to define, what a standard element
inside a non-standard model is:

Definition 3.1.6. Let M be any model over the language tc1, . . . , cku. The standard
part SM of the model M is defined inductively:

• S0 “ tcipm1, . . . , mmiq | ci is static, ml P τ l
i u

• Sn`1 “ tcjps1, . . . , smj q | cj is dynamic, τij
l ‰ D Ñ sl P Ml, τ l

j “ D Ñ Dk ď n :
sl P Sku

• SM “ Ť
nPN Sn

An element A P DM is a standard element if A P SM.

Often, it makes sense to consider the graph induced by the constructors ci

Definition 3.1.7. Let M be any model of H over the language tc1, . . . , cku. The directed
graph G “ pV, Eq induced by M is given by V “ DM and for any A, B P V , EpA, Bq if
there is some constructor ci and elements ml P pτ l

i qM s.t. A “ ml for some of the l and
cipm1, . . . , mmiq “ B. The connected components of the undirected educt of G are called
comparison classes.

Now let us define an additional axiom, we will need in the following sections:
kł

i“1
Dy : X “ cipyq (Surjectivity)SUR

Note that surjectivity above does usually not mean that the interpretations of one of the
constructors is surjective, but rather that DM “ Ťk

i“1 cM
i ppτ1

i qM, . . . , pτmi
i qMq.

We will often refer to the following lemma:

9



3. General Inductive Data Types

Theorem 3.1.8. Let L be any language extending L0. Then H ` ILiteral $ SUR.

Proof. Take any model M of H ` ILiteral. Assume that there is some element B P DM

s.t. B does not lie in the image of any cM
i . Consider the following literal LpXq ” X ‰ Z

and the interpretation ξ : Z ÞÑ B. Then M, ξ ⊨ LHSpAq, but clearly, M, ξ ⊭ @X : ApXq.
Thus, M, ξ ⊭ ILiteral, which is a contradiction. ■

First, we consider some interesting models:

3.2 Useful Models
We will now consider useful non-standard models for T0 and T1, which we will use in the
following sections to separate theories.

3.2.1 The model M˚pt8uq
The following sums up our results about M˚pt8uq:
Theorem 3.2.1. If there is exactly one constructor, then M˚pt8uq ⊭ IAtom. If there
is more than one constructor, then M˚pt8uq ⊨ IAtom. In any case, M˚pt8uq ⊭ SUR.

This theorem follows from the following lemmas and observations:

Observation 3.2.2. M˚pt8uq ⊭ SUR

Lemma 3.2.3. Let M be a model of T0 or T1 and assume that M contains exactly one
standard element B and at least one non-standard element C. Then M ⊭ IAtom.

Proof. First, note that since there is only one standard element, there can only be
one constructor, which has to be static. Consider the atom ApXq ” X “ Z and the
interpretation ξ : Z ÞÑ B. Then M ⊨ LHSpAq, but M ⊭ @X : ApXq. ■

Lemma 3.2.4. If there is exactly one constructor ci, then M˚pt8uq ⊭ IAtom.

Proof. This follows directly from Lemma 3.2.3. ■

The following Lemma applies to the case of dynamic constructors as well.

Lemma 3.2.5. Take any model M of T0, any comparison class C Ď DM that does not
contain cycles and two distinct standard elements B, C P C. For any term t, it holds that if
there is some term s with M ⊨ tpBq “ spBq ^ tpCq “ spCq, then M ⊨ @X : tpXq “ spXq.

10



3.2. Useful Models

Proof. There are three cases:

1. If X appears in neither t nor s, then M ⊨ pDX : tpXq “ spXqq Ø p@X : tpXq “ spXqq.
Therefore, the claim of the Lemma holds trivially.

2. If, w.l.o.g., X appears in t, but not in s, we claim that M ⊨ tpBq ‰ tpCq and thus, the
conditions of the lemma are never met as sM is constant. We prove the claim inductively:
The base case is that t ” X. Then clearly, M ⊨ tpBq ‰ tpCq. Assume that we have
shown this property for some term t1 that contains X and take some appropriate terms
t2, . . . , tml

. Consider the term t “ clpt1, . . . , tmiq. By INJl and the induction hypothesis,
M ⊨ tpBq ‰ tpCq.
3. Assume that X appears in both s and t. We proceed with induction on the structure
of t. The base case is that t ” X. By assumption, there are no cycles in C. Thus, if
s contains X and M ⊨ tpBq “ spBq, then s ” X and M ⊨ @X : tpXq “ spXq. Now
assume that t has the form clpt1, . . . , tml

q, where we have shown the claim for any term ti.
We can exclude the case that s ” X by symmetry and the base case. We can also exclude
the case that s ” ckpsq with k ‰ l by Dk,l. The only case left is that s ” clps1, . . . , sml

q.
By INJl, we obtain that M ⊨ tipBq “ sipBq ^ tipCq “ sipCq. From the induction
hypothesis, it follows that M ⊨ @X : tipXq “ sipXq. Thus, M ⊨ @X : tpXq “ spXq. ■

Corollary 3.2.6. If some model M of T0 contains no cycles at all, then M ⊨ pY ‰
Z ^ tpY q “ spY q ^ tpZq “ spZqq Ñ p@XqptpXq “ spXqq
Corollary 3.2.7. If there is more than one constructor, then M˚pt8uq ⊨ IAtom.

Proof of Theorem 3.2.1. If there is exactly one constructor, then M˚pt8uq ⊭ IAtom
by Lemma 3.2.4. If there is more than one constructor, then M˚pt8uq ⊨ IAtom by
Corollary 3.2.7. In any case, M˚pt8uq ⊭ SUR by Observation 3.2.2. ■

3.2.2 The model M8̊

Definition 3.2.8. We construct the model M8̊: Take the model M˚pt8uq of T0 over L0
and extend the language with the selectors. The selectors are interpreted in the following
way

• If C “ c
M8̊
i pn1, . . . , nmiq, then define pdl

ipCqqM8̊ “ nl

• If C is not in the image of cM
i and τ l

i ‰ D, then there is only one possible way to
interpret pdl

ipCqqM8̊ since |τ l
i | “ 1

• If C is not in the image of c
M8̊
i and τ l

i “ D, then define pdl
ipCqqM8̊ “ C

The following sums up our findings about M8̊:

11



3. General Inductive Data Types

Theorem 3.2.9. If there is exactly one constructor, then M8̊ ⊭ IAtom. If there is
more than one constructor, then M8̊ ⊨ IAtom. In any case M8̊ ⊭ SUR.

This theorem is a consequence of the following observations and lemmas:

Observation 3.2.10. M8̊ ⊭ SUR and M8̊ ⊨ T1.

Lemma 3.2.11. If there is exactly one constructor, then M8̊ ⊭ IAtom.

Proof. This follows directly from Lemma 3.2.3. ■

Lemma 3.2.12. Assume that there is more than one constructor and that all constructors
are static. Take any atom ApXq. If M8̊ ⊨ ApEq for any standard element E P DM8̊,
then M8̊ ⊨ @X : ApXq.

Proof. Since there are at least two constructors ci and cj , there are, by Di,j , at least two
distinct elements B, C in the standard part of M8̊.

We start by some preprocessing of the terms, we consider: Take any term t. If t contains
some subterm of the form dl

ipt1q, then replace this subterm with the parameter zl
i and

set pzl
iqM8̊ “ a with τ l

i “ tau. Thus, w.l.o.g., we can assume that the symbols dl
i do not

appear in any term, we consider.

Now take any atom ApXq ” t1 “ t2. There are three cases:

1. If X appears on neither side of A, we are done.

2. If X appears on exactly on side of A, say t1, then t1 ” X as no selectors may appear
and all constructors are static and t

M8̊
2 is constant. Then, M8̊ ⊭ ApBq ^ ApCq.

3. If X appears on both sides of A, then t1 ” t2 ” X and A is an identity. Thus,
M8̊ ⊨ @X : ApXq ■

Lemma 3.2.13. Let t be a term of the form dl1
i1p. . . dln

in
pXqq, where all the τ lh

ih
are D.

Then, there is some term st with the following properties:

• M8̊ ⊨ @X : X “ pt ˝ stqpXq
• The interpretation s

M8̊
t maps standard elements to standard elements

• All function symbols in st are dynamic constructors

• For any term t1 of the form dk1
j1 p. . . dkm

jm
pXqq, where all the τkh

jh
are D and M8̊ ⊨

@X : X “ pt ˝ st1q and M8̊ ⊨ @X : X “ pt1 ˝ stq, it holds that M8̊ ⊨ tpXq “ t1pXq

This term st is called right-inverse of t.

12



3.2. Useful Models

Proof. Take any such term t of the form dl1
i1p. . . dln

in
pXqq, where all the τnl

il
are D. We

define the sequence s0, . . . , sn inductively: s0 ” X and sk`1 ” cin´k`1pa1, . . . , amn´k`1q,
where aln´k`1 “ sk and the other al are arbitrary (fixed) parameters of the right sorts
and if that sort is D, we choose it to be a standard element. Then, the term st “ sn

has the property that T1 $ @X : pt ˝ stqpXq “ X. By construction s
M8̊
t maps standard

elements to standard elements.

Now take any t1 “ dk1
j1 p. . . dkm

jm
pXqq and its respective right-inverse st1 . Assume that

M8̊ ⊨ @X : X “ pt1 ˝ stqpXq and M8̊ ⊨ @X : X “ pt ˝ st1qpXq. W.l.o.g., assume
that n ď m and take the biggest h P t1, . . . , nu s.t. dlh

ih
‰ dkh

jh
if such an h exists.

There are two cases: If ih “ jh, then lh ‰ kh and pdih
p. . . dln

in
pst1pXqqqqM8̊ is some fixed

parameter by construction of the right-inverse. In particular, ppt˝st1qpXqqM8̊ is constant,
which contradicts our assumption. If ih ‰ jh, then M8̊ ⊨ @X : dlh

ih
p. . . dln

in
pst1pXqqq “

d
lh`1
ih`1

p. . . dln
in

pst1pXqqq by construction of M8̊. Thus, we can cut dlh
ih

and reduce n by
one for each time, we do this and call the result n1. In summary, we can assume that
such an h does not exist and dlh

ih
“ dlh

jh
for any h ď n. Now assume that n1 ă m. Then,

M8̊ ⊨ pt1 ˝ stqpXq “ dk1
j1 p. . . d

km´n

jm´n
pXqq. However, there are standard elements E s.t.

M8̊ ⊭ E “ dk1
j1 p. . . d

km´n

jm´n
pEqq, which contradicts our assumptions. Thus, n1 “ m. This

can only be the case if we never deleted any dlh
ih

. Thus, n “ m and for any h P t1, . . . , nu
it holds that dlh

ih
“ dkh

jh
. In particular M8̊ ⊨ @X : tpXq “ t1pXq. ■

Lemma 3.2.14. Assume that there is more than one constructor and that there is some
dynamic constructor. Take any atom ApXq. If M8̊ ⊨ ApEq for any standard element
E P DM8̊, then M8̊ ⊨ @X : ApXq.

Proof. We start by some preprocessing of the terms, we consider: Take any term t. If t
contains some subterm of the form dl

ipt1q, there are four cases:

• If X does not appear in t1, then dl
ipt1q has a fixed interpretation and we can replace

it with some new parameter that we interpret as pdl
ipZqqM.

• If τ l
i ‰ D, then there is only one possible interpretation of dl

ipt1q. Thus, replace
dl

ipt1q with some parameter z and interpret z as the only element in τ l
i .

• If τ l
i “ D and t1 is of the form cjps1, . . . , smj q, there are two cases: If j “ i, then

replace dl
ipt1q with sl. If i ‰ j, then dl

i is interpreted as the identity and we can
replace dl

ipt1q with t1.

• If the prior cases are not applicable, i.e. we have some term of the form dl1
i1p. . . dln

in
pXqq,

we leave it as it is.

Thus, w.l.o.g., we can assume that the symbols dl
i appear only stacked directly over X.
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3. General Inductive Data Types

Now note that since there are at least two constructors, there are at least two distinct
standard elements B, C by Di,js, where B lies in the image of c

M8̊
i and C lies in the

image of c
M8̊
j .

Now take any atom ApXq ” t1 “ t2. There are three cases:

1. If X appears on neither side of A, we are done.

2. If X appears on exactly one side, say t1, then tM
2 is constant. We show inductively

that tM
1 is not constant in the standard part of the model and thus it does not hold that

M8̊ ⊨ ApEq for all standard elements E.

2.1. The first base case: If t1 ” X, then t
M8̊
1 pBq ‰ t

M8̊
1 pCq.

2.2. The second base case: If t1 ” dl1
i1p. . . dln

in
pXqq, then consider the right-inverse st1 of

t1 from Lemma 3.2.13. It holds that M ⊭ Apst1pBqq ^ Apst1pCqq
2.3. Assume that we have shown that the interpretations of the terms s1, . . . , smi are
not constant in the standard part. Then, by INJi, the interpretation of the term
cips1, . . . , smiq is not constant as well.

3. Now assume that X appears on both sides of A. We show by induction that for any
term t it holds that if there is some term t1 containing X with M8̊ ⊨ tpEq “ t1pEq for
all standard elements E, then M8̊ ⊨ @X : tpXq “ t1pXq.
3.1. The first base case: Assume that t ” X. If t1 ” clpsq, then M8̊ ⊭ tpBq “
t1pBq ^ tpCq “ t1pCq by Dl,i or Dl,j . If t1 is of the form dl1

i1p. . . dln
in

pXqq, then consider the
right-inverse st1 . Note that the outermost constructor cl of st1 must be dynamic. Thus,
if we take any static constructor cm and define E “ st1pcM8̊

m paqq for some appropriate
tuple a, then t1pEq “ c

M8̊
m pmq and M ⊭ tpEq “ t1pEq. Thus, if the conditions are met,

t2 ” X.

3.2. The second base case: Assume that t is of the form dl1
i1p. . . dln

in
pXqq. By symmetry

and case 3.1, we can exclude the case that t1 ” X. Assume that t2 ” clpsq. Note
that cl has to be dynamic since X must occur in it and no selector that maps into any
sort other than D is allowed. Take the right-inverse st of t and any static constructor
cm. Define E “ c

M8̊
m paq. Then tpEq “ c

M8̊
m paq and M8̊ ⊭ tpEq “ t1pEq. It follows

that t1 has the form dk1
j1 p. . . dkm

jm
pXqq. Consider the right-inverse st of t. By assumption,

M8̊ ⊨ E “ pt1 ˝ stqpEq and M8̊ ⊨ E “ pt ˝ st1qpEq for any standard element E. By the
induction hypothesis, M8̊ ⊨ @X : X “ pt ˝ st1qpXq and M8̊ ⊨ @X : X “ pt1 ˝ stqpXq. By
Lemma 3.2.13, we obtain that M8̊ ⊨ @X : tpXq “ t1pXq.
3.3. Assume that we have shown the claim for the terms s1, . . . , smi . Consider the term
t ” cips1, . . . , smiq. It M8̊ ⊨ tpEq “ t1pEq for some term t1 and all standard elements E,
then from the base cases, we obtain that t1 ” clps1

1, . . . , s1
ml

q. From Di,l, it follows that
l “ i and from INJi, we obtain that M8̊ ⊨ slpEq “ s1

lpEq for any standard element E
and any l. From the induction hypothesis, we obtain that M8̊ ⊨ @X : slpXq “ s1

lpXq
and thus M8̊ ⊨ @X : tpXq “ t1pXq. ■
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Corollary 3.2.15. If there is more than one constructor, then M8̊ ⊨ IAtom.

Proof. This follows from Lemma 3.2.12 and Lemma 3.2.14. ■

Proof of Theorem 3.2.9. If there is exactly one constructor, M8̊ ⊭ IAtom by Lemma
3.2.11. If there is more than one constructor, then M8̊ ⊨ IAtom by Corollary 3.2.15. In
any case M8̊ ⊭ SUR by Observation 3.2.10. ■

3.2.3 Models with cycles
We will later see that IOpen proves acyclicty in the sense that for any term t ı X,
T0 ` IOpen $ X ‰ tpXq. However, it depends on the constructors, which level of
induction we need for this. In the worst case, we need IDClause, while in some cases,
ILiteral suffices. For these cases, where induction over dual clauses is needed, we now
give models with cycles, in which ILiteral holds.

3.2.3.1 The model MC

For the rest of this subsubsection, we assume that there is at least one constructor
c1 : τ1

i ˆ ¨ ¨ ¨ ˆ τmi
i Ñ D, where at least one of the τ l

i is D and mi ě 2. Note that τ2
i is

either D or some Tk. In the second case, assume, w.l.o.g., that k “ 1.

Definition 3.2.16. Now, we make a case distinction based on τ2
i :

1. If τ2
i “ D, then start with the model M “ M˚ptA, Buq. Fix two standard elements

C1, C2 P DM and consider the set M defined as DM factorized by the equations
A “ c1pB, C1, eq and B “ c1pA, C2, eq, where e is some tuple of standard elements
with appropriate sorts.

2. If τ2
i “ T1, then start with the model M “ M˚

t1uptA, Buq, where T M
1 “ ta1, b1u.

Now, consider the set M defined as DM factorized by the equations A “ c1pB, a1, eq
and B “ c1pA, b1, eq, where e is some tuple of elements with appropriate sorts.

Set DMC “ M and T MC
i “ T M

i . In any case, the constructors are interpreted canonically
in the sense that cMC

i prf1s, . . . , rfmisq “ rcM
i pf1, . . . , fmiqs. Note that this is well-defined

and MC ⊨ T0.

Observation 3.2.17. There is some term t ı X, which contains X with MC ⊨ DX :
X “ tpXq.
Lemma 3.2.18. MC ⊨ IClause

Proof. Take any clause C ” L1 _ . . . Ln and assume that MC ⊨ LHSpCq. We start by
preprocessing C:
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3. General Inductive Data Types

Assume that there is some literal Li that does not contain X. Then, MC ⊨ Li Ø J or
MC ⊨ Li Ø K. In the first case, MC ⊨ C Ø J. In the second case, MC ⊨ C Ø C 1,
where C 1 is obtained from C by deleting Li. Thus, we can assume that every literal
contains X.

Assume that there is some negated atom Li ” t1 ‰ t2 and both tl have the outermost
function symbol ci. Then both tl are of the form cipt1

l , . . . , tmi
l q. By INJi, MC ⊨ Li ØŽmi

k“1 tk
1 ‰ tk

2. Thus, we can replace Li in C with the clause
Žmi

k“1 tk
1 ‰ tk

2 and obtain
another equivalent clause.

Assume that all the Li are atoms. Since the standard part of MC is infinite, there is
some Li and distinct standard elements B, C P DMC s.t. MC ⊨ LipBq ^ LipCq. By
Lemma 3.2.5, MC ⊨ @X : LipXq and thus, MC ⊨ @X : CpXq. In this case, we are done.

From now on, we assume that at least one of the Li ” t ‰ s is a negated atom. W.l.o.g.,
assume that t1 contains X.

We make a case distinction:

1. The case that both t and s share the same outermost function symbol is eliminated by
our preprocessing.

2. If the outermost function symbols of t and s are ci and cj respectively with i ‰ j,
then MC ⊨ @X : LipXq by Di,j and thus, M ⊨ @X : CpXq. In this case, we are done.

3. If t ” X and tMC
2 is constant with some fixed interpretation B1, then MC ⊨ LipBq for

any B ‰ B1. There are two cases: If B1 is a standard element, then there has to be some
Lj with MC ⊨ LjpB1q since MC ⊨ LHSpCq. If B1 is a non-standard element, then by
SUR, there is some dynamic constructor ci and elements B1, . . . , Bl, bl`1, . . . , bmi where
all the Bj are of sort D and B1 “ cMC

i pB1, . . . , bmiq. As mentioned, MC ⊨ LipBjq and
thus, MC ⊨ CpBjq for any j. Since MC ⊨ LHSpCq, we conclude that MC ⊨ CpB1q.
Thus, in any case, MC ⊨ @X : CpXq.
4. Assume that t ” X and s contains X. If s ” X, then MC ⊨ @X : ␣LipXq and
MC ⊨ C Ø C 1, where C 1 is obtained from C by deleting Li. In that case, we can start
from the top with C 1. Thus, we assume that s ı X. Assume that there is some E P DMC

with M ⊭ LipEq. Then E “ A or E “ B. W.l.o.g., assume that E “ A. It follows that
t ” cips1, s2, eq with s2pEq “ C1. Since C1 is a standard element and A is not, sMC

2
has to be constant. It follows that MC ⊭ B “ tpBq and thus MC ⊨ LipBq. Since C1
and all the ei are standard elements, MC ⊨ LipEq, and thus MC ⊨ CpEq, for any E in
tB, C1u Y tei | ei is of sort Du. Thus, M ⊨ CpAq since M ⊨ LHSpCq. It follows that
M ⊨ @X : CpXq. ■

3.2.3.2 The model Mu
C

For the rest of this subsubsection, we assume that there are at least two dynamic
constructors c1, c2 and all dynamic constructors are unary1.

1The name Mu
C comes from unary
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Definition 3.2.19. We define the model Mu
C in the following way: Take the model

M “ M˚pA, Bq and define the set M to be DM factorized by the equations A “ c1pBq
and B “ c2pAq. Then set DMu

C “ M and T
Mu

C
i “ T M

i . The constructors are interpreted
canonically in the sense that c

Mu
C

i prf1s, . . . , rfmisq “ rcM
i pf1, . . . , fmiqs. Note that this is

well-defined and MC ⊨ T0.

Observation 3.2.20. There is some term t ı X, which contains X with Mu
C ⊨ DX :

X “ tpXq.
Lemma 3.2.21. Mu

C ⊨ ILiteral.

Proof. From Lemma 3.2.5, it follows that MC ⊨ IAtom. Thus, we only have to deal
with negated atoms. Fix the negated atom LpXq ” t ‰ s. There are three cases:

1. If X appears on neither side of L, then Mu
C ⊨ pDX : LpXqq Ø p@X : LpXqq and we

are done.

2. If X appears on exactly one side of L, say in t1, then t
Mu

C
2 is constant. Assume

that there is some element E P DMu
C s.t. Mu

C ⊭ LpEq. If E lies in the image of the
interpretation of some static constructor cl, then M ⊭ LHSpLq. Assume that E does
not lie in the image of the interpretation of any static constructor. Then, by construction
of Mu

C , E lies in the image of some dynamic constructor cl and there is some F P DM

with E “ clpF q. By repeated application of Di,j and INJk for any i, j, k, we obtain that
t1pEqMu

C ‰ t1pF qMu
C . Thus, ⊨ LpF q and hence, Mu

C ⊭ LHSpLq.
3. Assume that X appears on both sides of L and that Mu

C ⊨ LpEq for any standard
element E. Then ␣L is not an identity. If Mu

C ⊭ @X : LpXq, then, by construction of
Mu

C , the only possible elements E s.t. Mu
C ⊭ LpEq are A or B. W.l.o.g., assume that

Mu
C ⊭ LpAq. We proceed by induction on the structure of t and show that Mu

C ⊨ LpBq.
If t ” X, then, w.l.o.g., then s ” c1ps1q since Mu

C ⊨ A “ spAq. By D1,2, Mu
C ⊭ B “ spBq

and thus, Mu
C ⊨ LpBq.

Assume that t ” cipt1q (by assumption, all dynamic constructors are unary). Since
Mu

C ⊨ tpAq “ spAq, it follows that s ” cips1q. By INJi, we obtain that t1pAq “ s1pAq.
Both t1 and s1 must contain X. From the induction hypothesis, it follows that Mu

C ⊨
t1pBq ‰ s1pBq and consequently, by INJi, Mu

C ⊨ tpBq ‰ spBq. Thus, Mu
C ⊨ LpBq.

Thus, Mu
C ⊨ LpBq if Mu

C ⊭ LpAq. Since A “ c
Mu

C
1 pBq, we conclude that Mu

C ⊭
LHSpLq. ■

3.3 Languages with Static Constructors only
In the following section we assume that our language contains only constructors that do
not take any input of sort D. This is a special case, in which some things are easier.

The following theorem states exactly why this case is that easy:
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Theorem 3.3.1. Let L be any language extending tc1, . . . , cku, where all the ci are static.
Then H ` SUR $ Ipϕq for any (not necessarily open) formula ϕ.

Proof. We work in H ` SUR. Take any formula ϕ. Note that we only have constructors
that do not take input of sort D. Thus, our induction axiom looks like this:

Ipϕq ”
kľ

i“1
p@x1, . . . , xmi pJ Ñ ϕpcipx1, . . . , xmiqqqq Ñ @x : ϕpxq,

which is logically equivalent to˜
kľ

i“1
@x1, . . . , xmi : ϕpcipx1, . . . , xmiqq

¸
Ñ @x : ϕpxq.

Now we only need to note that by SUR every element is some instance of a constructor.
Thus, if LHSpϕq holds, then @X : ϕpXq holds as well. ■

3.3.1 Constructors only
The following theorem will be the main result:

Theorem 3.3.2. There are three cases:

1. There is more than one constructor

2. There is exactly one constructor c and c is not constant

3. There is exactly one constructor c and c is constant

In the case 1, we obtain the following result:

T0 « T0 ` IAtom

ň T0 ` ILiteral

« T0 ` IOpen

« T0 ` SUR

This yields the following Hasse-Diagram:

T0 « T0 ` IAtom

T0 ` ILiteral « T0 ` IOpen

18
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In case 2, we obtain the following result:

T0 ň T0 ` IAtom

ň T0 ` ILiteral

« T0 ` IOpen

« T0 ` SUR

This yields the following Hasse-Diagram:

T0

T0 ` IAtom

T0 ` ILiteral « T0 ` IOpen

In case 3, we obtain the following result:

T0 ň T0 ` IAtom

« T0 ` IOpen

« T0 ` SUR

This yields the following Hasse-Diagram:

T0

T0 ` IAtom « T0 ` IOpen

This theorem is a consequence of the following lemmas.

Lemma 3.3.3. If there are static constructors only and M is a model of T0, where there
are at least two elements B, C P DM, which lie in the image of some (possibly the same)
constructors cM

i , cM
j , then M ⊨ IAtom.
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Proof. Fix some model M with these properties and let B, C P DM be two distinct
elements in the image of some cM

i , cM
j . Take any atom ApXq ” t1 “ t2. We make a case

distinction:

1. If X appears on neither side of A, then tM
1 and tM

2 are both constant and M ⊨
ApBq Ø @X : ApXq. Thus, M ⊨ IpAq.
2. If X appears on both sides of A, then, since there are static constructors only, both t1
and t2 are syntactically identical to X. Thus, A is an identity and M ⊨ @X : ApXq and
consequently M ⊨ IpAq.
3. If X appears on exactly one side of A, say in t1, then t1 ” X and tM

2 is constant.
Thus, M ⊨ t1pBq ‰ t1pCq. Thus, there is some E P tB, Cu with M ⊨ t1pEq ‰ t2 and
consequently M ⊨ ␣ApEq. Therefore, M ⊭ LHSpAq and hence, M ⊨ IpAq. ■

Corollary 3.3.4. If there is more than one constructor, then T0 $ IAtom

Proof. Assume that there are two constructors ci and cj . By Di,j , in any model M of
T0, the images of cM

i and cM
j are disjoint. Moreover, each of them contains at least one

element and thus, Lemma 3.3.3 is applicable for M. This holds for every model of T0
and thus T0 $ IAtom. ■

Lemma 3.3.5. If there is more than one constructor, then T0 ` IAtom ⊬ ILiteral.

Proof. Since T0 ` ILiteral $ SUR, this follows from Theorem 3.2.1. ■

Lemma 3.3.6. If there is exactly one constructor, then T0 ⊬ IAtom.

Proof. This follows from Theorem 3.2.1 ■

Lemma 3.3.7. If there exactly one constructor ci and ci is not constant, then T0 `
IAtom ⊬ ILiteral

Proof. It suffices to give a model of T0 ` IAtom, in which SUR does not hold. W.l.o.g.
assume that ci takes input of the sort T1. Consider the model M “ M˚

t1uptBuq. By
definition, B does not lie in the image of cM

i and thus, M ⊭ SUR.

It remains to be shown that M ⊨ IAtom. Note that, by definition, there are at least two
elements in the image of cM

i . By Lemma 3.3.3, M ⊨ IAtom. ■

Lemma 3.3.8. If there is exactly one constructor c and c is constant, then H`IAtom $
SUR.

Proof. Consider the atom ApXq ” X “ c. Clearly, H $ LHSpAq and thus, H`IAtom $
@X : ApXq. If H ` IAtom $ @X : X “ c, then obviously, H ` IAtom $ SUR. ■
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3.3. Languages with Static Constructors only

Proof of Theorem 3.3.2. The fact that T0 ` SUR $ IOpen is the content of Theorem
3.3.1. Moreover, from Theorem 3.1.8, it follows that T0 ` ILiteral $ SUR in any case.

Case 1 is a consequence of Corollary 3.3.4 and Lemma 3.3.5.

Case 2 is a consequence of Lemma 3.3.6 and Lemma 3.3.7.

Case 3 is a consequence of Lemma 3.3.6 and Lemma 3.3.8. ■

3.3.2 Constructors and Selectors
We now have a similar main result as in the last subsection:

Theorem 3.3.9. There are three cases:

1. There is exactly one constructor

2. There is more than one constructor and at most one constructor is non-constant

3. There is more than one constructor and at least two constructors are non-constant

In case 1, we have the following Hasse-Diagram:

T1

T1 ` IAtom « T1 ` IOpen « T1 ` SUR

In case 2, we have the following Hasse-Diagram:

T1 « T1 ` IAtom

T1 ` ILiteral « T1 ` IOpen « T1 ` SUR

In case 3, we have the following Hasse-Diagram:
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T1

T1 ` IAtom

T1 ` ILiteral « T1 ` IOpen « T1 ` SUR

This theorem will be a direct consequence of the following lemmas.

Now we need to work out, how IAtom behaves depending on the language. We have
slightly different cases than in the last subsection:

Lemma 3.3.10. If there is exactly one constructor c1, then T1 ⊬ IAtom

Proof. This follows from Theorem 3.2.9. ■

Lemma 3.3.11. If there is exactly one constructor c1 and c1 is constant, then T1 `
IAtom $ SUR.

Proof. This follows directly from Lemma 3.3.8 since T0 Ď T1 and L0 Ď L1. ■

Lemma 3.3.12. If there is exactly one constructor c1 and c1 is not constant, then
T1 ` IAtom $ SUR. Consequently, T1 ` IAtom $ ILiteral.

Proof. Take any model M of T1 ` IAtom and assume that there is some element
B P DM, which does not lie in the image of cM

1 . Consider the atom ApXq ” X “
c1pd1

1pXq, d2
1pXq, . . . , dm1

1 pXqq. Since every element C in the standard part of M has
the form cM

1 pa1, . . . , am1q, it holds by INV l
1 that pdl

1pCqqM “ al and thus, M ⊨ ApCq.
We conclude that M ⊨ LHSpAq. However, B P DM does not lie in the image of
cM

1 by assumption and thus M ⊭ @X : ApXq, which contradicts our assumption that
M ⊨ T1 ` IAtom. ■

Lemma 3.3.13. If there is more than one constructor and all constructors are constant,
then T1 $ IAtom.

Proof. Note that in this case that all constructors are constant, it holds that L0 “ L1
and T0 “ T1. Thus, this Lemma is equivalent to Corollary 3.3.4. ■

Lemma 3.3.14. If there is more than one constructor and exactly one constructor is
non-constant, then T1 $ IAtom.
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Proof. Assume that c1 is the only non-constant constructor and c2 is some constant
constructor. Take any model M of T1. Before we deal with atomic induction, a small
observation about the interpretation of terms in this model: Let tpXq be some term that
contains X. If there is some subterm in t of the form dl

1pc1pt1qq, we can identify this
subterm with t1

l by INV l
1 . We assume that every term, we consider has already been

simplified in this manner. Thus, if t contains X and since there is only one non-constant
constructor, it can have the form X, dl

1pXq or c1psq, where each of the si has either
constant interpretation or is of the form dl

1pXq.
Now consider the atom ApXq ” t1 “ t2 and make a case distinction:

1. If X appears on neither side of A, then tM
1 and tM

2 are both constant and there is
nothing to prove.

2. If X appears on exactly one side of A, say in t1, then tM
2 is constant. There are the

three aforementioned possibilities.

2.1. If t1 ” X, then, since tM
2 is constant, either M ⊭ Apc1paqq for some tuple a with

aj P τ j
1 or M ⊭ Apc2q. Thus, M ⊭ LHSpAq.

2.2. If t1 ” dl
1pXq, then there are two cases: If |τ l

1| “ 1, then M ⊨ @X : ApXq trivially. If
τ l

1 has at least two elements b1, b2, then consider the elements Bi “ c1pmq, where mj P τ j
1

and ml “ bi. Then, because tM
2 is constant, M ⊭ ApB1q ^ ApB2q. Thus M ⊭ LHSpAq.

2.3. If t1 ” c1pdl
1pXq, mq, then we make the same case distinction: If there is τ l

1 has exactly
one element, then replace dl

1pXq with some parameter and repeat the procedure from
the top. If τ l

1 has at least two elements b1, b2, then construct the elements Bi “ c1pmq,
where mj P τ j

1 and ml “ bi. From INJ1, it follows that t1pB1q ‰ t1pB2q and thus,
M ⊭ ApB1q ^ ApB2q. Therefore, M ⊭ LHSpAq.
3. Assume that X appears on both sides of A. There are again three cases:

3.1. Assume t1 ” X. If t2 ” dl
1pXq, then the atom A is not well-formed. If t2 ” c1psq,

then M ⊭ Apc2q by D1,2. Thus, if M ⊭ LHSpAq, we have that t2 ” X.

3.2. Assume that t1 ” dl
1pXq. Then, there are two cases: If c1 takes the input τ l

1 exactly
once, then t2 ” dl

1pXq for A to be well-formed. In that case, M ⊨ @X : ApXq. If c1
takes the input τ l

1 more than once, then it is possible that t2 ” dn
1 pXq, where τn

1 “ τ l
1.

There are two options: If |τ l
1| “ 1, then M ⊨ @X : ApXq trivially. If τ l

1 has at least two
elements b1, b2, construct the element B “ c1pmq, where mj P τ j

1 , ml “ b1 and mn “ b2.
Then M ⊭ ApBq and thus, M ⊭ LHSpAq.
3.3. Assume that t1 ” c1psq. From the cases 3.1 and 3.2, we conclude that t2 ” c1prq.
If M ⊨ LHSpAq, then M ⊨ LHSpsi “ riq for any i P t1, . . . , m1u since we have static
constructors only. From the cases 3.1 and 3.2, we obtain that M ⊨ @X : sipXq “ ripXq
and thus, M ⊨ @X : ApXq. ■

Lemma 3.3.15. If there is more than one constructor, at least two constructors are
non-constant and no two constructors take input of the same sort, then T1 ⊬ IAtom
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Proof. Fix the two constructors ci, cj and assume, w.l.o.g., that τ1
i “ T1 and τ1

j “ T2.
Consider the following M “ M˚

t1,2uptBuq of T0 over the language L0. We extend the
language with the selectors and interpret them in the following way:

• For any constructor dn
l , where τn

l R tT1, T2u, there is only one element in τn
l , so

there is only one way to interpret dn
l pAq for any element A P DM

• If A “ cM
i pm1, . . . , mmiq, then pd1

i pAqqM “ m1.

• If A “ cM
j pm1, . . . , mmj q, then pd1

j pAqqM “ m1

• For any standard element A, define pd1
i qM and pd1

j qM s.t. pd1
i pAqqM “ a1 iff

pd1
j pAqqM “ a2, where T1 “ ta1, b1u and T2 “ ta2, b2u.

• For the only non-standard element B, define pd1
i pBqqM “ a1 and pd1

j pBqqM “ b2

Note that no two selectors share any sort of their input and thus, this interpretation
covers any case. Moreover, the axiom INV n

l is satisfied for any l P t1, . . . , ku and
n P t1, . . . , mlu.

Now consider the atom ApXq ” d1
i pXq “ d1

i pcjpd1
j pXq, mqq for some appropriate tuple

m. By the definition above, we have that ApCq holds iff d1
i pCq “ a1 ô d1

j pCq “ a2. By
construction, this holds for the whole standard part of the model and thus, M ⊨ LHSpAq.
However, d1

i pBq “ a1 and d1
j pBq “ b1. Thus, M ⊭ @X : ApXq. ■

Lemma 3.3.16. If there are at least two constructors and two of them share some input
sort, then T1 ⊬ IAtom

Proof. Fix the two constructors c1 and c2 that share some input sort. W.l.o.g., we can
assume that they share the sort T1 and both of them take it as the first input.

Consider the model M “ M˚
t1uptBuq of T0 over the language L0. We extend the language

with the selectors and interpret them in the following way:

• For any selector dl
i that maps into some sort Tj other than T1 there is only one

possible interpretation for terms of the form dl
ipt1q

• If C P DM has the form cM
i pm1, . . . , mmiq with τ l

i “ T1, then pdl
ipCqqM “ ml

• For any standard element C and we interpret d1
1pCq and d1

2pCq to coincide

• For B, we interpret d1
1pBq “ a1 and d1

2pBq “ b1, where T1 “ ta1, b1u
• If some case was not covered above, define dl

ipCq arbitrarily
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Note that M ⊨ T1.

Consider the atom ApXq ” d1
1pXq “ d1

2pXq. Then, M ⊨ LHSpAq, but M ⊭ @X :
ApXq. ■

Lemma 3.3.17. If there is more than one constructor, then T1 ` IAtom ⊬ ILiteral

Proof. Since T1 ` ILiteral $ SUR, this follows from Theorem 3.2.9. ■

Proof of Theorem 3.3.9. The fact that T0 ` SUR $ IOpen is the content of Theorem
3.3.1. Moreover, from Theorem 3.1.8, it follows that T1 ` ILiteral $ SUR in any case.

Case 1 follows from Lemma 3.3.10, Lemma 3.3.11 and Lemma 3.3.12.

Case 2 follows from Lemma 3.3.13, Lemma 3.3.14 and Lemma 3.3.17.

Case 3 follows from Lemma 3.3.15, Lemma 3.3.16 and Lemma 3.3.17. ■

3.4 Languages with Dynamic Constructors
In the following section, we will restrict ourselves to the case, where there is at least one
constructor that does take some input of sort D. This is arguably the more interesting
case as the induction is now more than just the base case.

3.4.1 Constructors only
First we need some definitions:

Definition 3.4.1. The D-depth dptq of a term t is defined inductively: For any static
constructor cj and variables X we define dpcjpyqq “ dpXq “ 0. For any dynamic
constructor cl, we define dpclpt1, . . . , tnqq “ 1 ` maxtdpt1q, . . . , dptnqu.

Definition 3.4.2. Consider the set of all terms of D-depth n ě 1. We define the set Mn

by taking all the terms t with D-depth n that satisfy the following properties:

• One of the variables of sort D is X

• Every variable is used exactly once

• Any subterm that does not contain X is a variable

Now consider the binary relation „ on the set Mn defined by t „ s if t ” s up to renaming
of variables and define the set M 1

n “ pMnq{„. Note that M 1
n is finite. We define the set

Sn by choosing a representative for each class in M 1
n and S “ Ť

ně1 Sn.
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3. General Inductive Data Types

Now we can define a new set of axioms

X ‰ tpXq for all t P S (Acyclicity)Gt

The following will be the main result of this section.

Theorem 3.4.3. We have the following cases:

1. There is only one dynamic constructor and this dynamic constructor is unary

2. There is more than one dynamic constructor or there is exactly one dynamic
constructor and this constructor is not unary

a) For every dynamic constructor ci, there is exactly one l with τ l
i “ D

b) There is some dynamic constructor ci with l1 ‰ l2 and τ l1
i “ τ l2

i “ D

In case 1, we obtain the following Hasse-Diagram:

T0 « T0 ` IAtom

T0 ` ILiteral « T0 ` IOpen « T0 ` SUR ` tGt | t P Su

In case 2a, we obtain the following Hasse Diagram:

T0 « T0 ` IAtom

T0 ` ILiteral « T0 ` IClause

T0 ` IDClause « T0 ` IOpen « T0 ` SUR ` tGt | t P Su

In case 2b, we obtain the following Hasse Diagram:
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3.4. Languages with Dynamic Constructors

T0 « T0 ` IAtom

T0 ` ILiteral

T0 ` IClause

T0 ` IDClause « T0 ` IOpen « T0 ` SUR ` tGt | t P Su

This theorem will a consequence of the following lemmas:

Lemma 3.4.4. T0 $ IAtom

Proof. This follows directly from Lemma 3.2.5 since there are at least two constructors
in our language. ■

Lemma 3.4.5. T0 ` IAtom ⊬ ILiteral

Proof. Since T0 ` ILiteral $ SUR, this follows directly from Theorem 3.2.1. ■

Definition 3.4.6. Let M be any model of T0. A finite sequence pB0, . . . , Bnq P pDMqn`1

is called a cycle if B0 “ Bn and for all l P t1, . . . , nu, there is some term tlpXq ”
cjl

psl
1, . . . , sl

mjl
q s.t. M ⊨ Bl “ tlpBl´1q and at least one of the sl

k is identical to X. A
cycle C can have two types:

1. There is some term tCpXq ” cips1, . . . , smiq where at least one of the sl ” X - X
may appear in other sm as well - s.t. M ⊨ Bi`1 “ tCpBiq for any Bi P C, i ď n´1.

2. There is no such term

Lemma 3.4.7. Let M be any model of T0 ` ILiteral and C “ pB0, . . . , Bnq a cycle in
M. Then C is not of type 1.

Proof. Assume that C is of type 1. Then there is a term tC ” cips1, . . . , smiq s.t. M ⊨
Bi`1 “ tCpBiq. Consider the sequence of terms t1, . . . , tn, where t1 ” tC and ti`1 ” tCptiq.
Then Bi “ tipB0q and B0 “ tnpB0q. Consider the literal LpXq ” X ‰ tnpXq. Clearly,
M ⊨ Lpcjpaqq for any static constructor cj and tuple a. Assume that M ⊭ LpAq for some
element A. Then, A “ cM

i pA1, . . . , Ak, ak`1, . . . , amiq “ cM
i ps1ptn´1, . . . , smiptn´1qq for
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some elements Al, aj . By INJi, Al “ sM
l ptn´1pAqq. By assumption, there is one sl ” X

and thus, there is one Al “ tM
n´1pAq. By construction of tC , A “ tCptn´1pAqq “ tCpAlq.

Thus, Al “ tn´1ptCpAlqq “ tnpAlq. Thus, M ⊨ LHSpLq. By ILiteral, M ⊨ @X : ApXq.
This, however, contradicts the assumption that such a cycle C exists. ■

Lemma 3.4.8. Assume that every dynamic constructor takes the sort D as input exactly
once. Let M be a model of T0 ` ILiteral and C “ pB1, . . . , Bnq a cycle in M. If
M ⊨ Bi “ tpBiq for some term t ı X that contains X, then M ⊭ Bl “ tpBlq for some
Bl.

Proof. By Lemma 3.4.7, C is not of type 1. In particular, there is no term s “ clpX, aq
s.t. M ⊨ Bi “ spBi´1q for all Bi. Now take any term t ı X containing X with
M ⊨ Bi “ tpBiq. t has the form cipX, bq. There is some Bl s.t. Bl “ cjpBl´1, eq, where
either j ‰ i or b ‰ e. From Di,j or INJi, it follows that M ⊭ Bl “ tpBlq. ■

Lemma 3.4.9. If every dynamic constructor takes the sort D as input exactly once, then
T0 ` ILiteral $ IClause.

Proof. Note that by Theorem 3.1.8, we have that T0 ` ILiteral $ SUR.

Now take any model M of T0 ` ILiteral and some clause CpXq ” L1 _ ¨ ¨ ¨ _ Ln and
assume that M ⊨ LHSpCq. We start by preprocessing C:

Assume that there is some literal Li that does not contain X. Then, M ⊨ Li Ø J or
M ⊨ Li Ø K. In the first case, M ⊨ C Ø J. In the second case, M ⊨ C Ø C 1, where C 1
is obtained from C by deleting Li. Thus, we can assume that every literal contains X.

Assume that there is some negated atom Li ” t1 ‰ t2 and both tl have the outermost
function symbol ci. Then both tl are of the form cipt1

l , . . . , tmi
l q. By INJi, M ⊨ Li ØŽmi

k“1 tk
1 ‰ tk

2. Thus, we can replace Li in C with the clause
Žmi

k“1 tk
1 ‰ tk

2 and obtain
another equivalent clause.

Assume that all the Li are atoms. Since the standard part of M is infinite, there is some
Li and distinct standard elements B, C P DM s.t. M ⊨ LipBq ^ LipCq. By Lemma 3.2.5,
M ⊨ @X : LipXq and thus, M ⊨ @X : CpXq. In this case, we are done.

From now on, we assume that at least one of the Li ” t ‰ s is a negated atom. W.l.o.g.,
assume that t1 contains X.

We make a case distinction:

1. The case that both t and s share the same outermost function symbol is eliminated by
our preprocessing.

2. If the outermost function symbols of t and s are ci and cj respectively with i ‰ j,
then M ⊨ @X : LipXq and thus, M ⊨ @X : CpXq. In this case, we are done.

3. If t ” X and tM
2 is constant with some fixed interpretation BY , then M ⊨ LipBq for

any B ‰ BY . There are two cases: If BY is a standard element, then there has to be
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some Lj with M ⊨ LjpBY q by assumption. If BY is a non-standard element, then by
SUR, there is some dynamic constructor ci and elements B1, . . . , Bl, bl`1, . . . , bmi where
all the Bj are of sort D and BY “ cM

i pB1, . . . , bmiq. As mentioned, M ⊨ LipBjq and
thus, M ⊨ CpBjq for any j. Since M ⊨ LHSpCq, we conclude that M ⊨ CpBY q. Thus,
in any case, M ⊨ @X : CpXq.
4. Assume that t ” X and s contains X. If s ” X, then M ⊨ @X : ␣LipXq and
M ⊨ C Ø C 1, where C 1 is obtained from C by deleting Li. In that case, we can start
from the top with C 1. Thus, we assume that s ı X. Assume that there is some B0 P DM

with M ⊭ LpBq. Then B0 lies in a cycle E “ pB0, . . . , Bnq. By Lemma 3.4.8, there is
some Bl with M ⊨ LpBlq and thus, M ⊨ CpBlq. Since every constructor takes the sort D
exactly once as input and M ⊨ LHSpCq, we obtain that M ⊨ LpBl`1q and inductively
for all Bi in E. Thus, M ⊨ @X : CpXq. ■

We have not succeeded in proving that T0 ` ILiteral $ IClause if there is an constructor
that takes the sort D as input twice. This leads to the following open problem:

Open Problem 3.4.10. Assume that there is some dynamic constructor ci s.t. there
are l1 ‰ l2 with τ l1

i “ τ l2
i “ D. Does it hold that T0 ` ILiteral $ IClause?

Building up on the definitions of Sn and S, we need a new definition:

Definition 3.4.11. For this definition, fix D “ T0. Fix some k ě 1. Define Qk
i “ ty |

the variable y is of sort Ti and occurs in some term in Sku for i ě 0. Let Fk
i be the set

of functions f : Qk
i Ñ Qk

i . Note that every Fk
i is finite since Sk is finite. Moreover, for

any variable x, let ipxq be the i s.t. x P Ti. For any term tpx1, . . . , xnq assume that the
variables of t are fully indicated. Define the set Rk “ ttrx1{f1px1q, . . . , xn{fnpxnqs | t P
Sn, fi P F k

ipxiqu. Again, Rk is finite.

Lemma 3.4.12. tGt | t P Su $ X ‰ tpXq for any term t, which contains X, but is not
identical to X.

Proof. Take any model M of tGt | t P Su. Assume that there is some term t, which
contains X, but is not identical to X and some element A P DM s.t. M ⊨ A “ tpAq.
Now define the term s by picking one occurrence of X in t and changing every other
occurrence to a different, unique parameter. Define s1 by changing every subterm of
s, which does not contain X to some new parameter. Modulo renaming s1 P S and by
interpreting the fresh parameters accordingly, we obtain that M ⊨ A “ s1pAq. ■

Lemma 3.4.13. T0 ` IDClause $ Gt for any t P S.

Proof. Take any model M of T0 ` IDClause and any k ě 1. Define the dual clause
DpXq ” Ź

tPRk
X ‰ tpXq. We show that M ⊨ @X : DpXq. By the definition of S, the

claim then follows directly.
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It is clear that M ⊨ Dpcjpaqq for any static constructor cj and tuple of elements a. Now,
assume that there is some element A s.t. M ⊭ DpAq. Then there is a term t P Rk with
M ⊨ A “ tpAq. Since dptq ě 1, t has the form cips1, . . . , smiq and all sl except for one
are parameters. W.l.o.g., assume that s1 is not a parameter and all sl ” ak for l ě 2 are
parameters occurring in the respective Qk

i . It follows that A “ cipA1, a2, . . . , amiq for
some element A1. From INJi, it follows that A1 “ s1pAq “ s1pcipA1, a2, . . . , amiqq. Note
that dptq “ 1 ` maxts1, . . . , smiu “ 1 ` maxts1, 0, . . . , 0u “ 1 ` s1. Thus, and because
any subterm of s1, which does not contain X is a parameter and has D-depth 0, the term
spXq ” s1pc1pX, a2, . . . , amiqq satisfies that dpsq “ 1 ` dps1q “ dptq. Since all the al are
in the respective Qk

i , it follows that s P Rk. Thus, M ⊭ DpA1q and hence, M ⊨ LHSpDq.
Since M ⊨ IDClause, it follows that M ⊨ @X : DpXq. ■

Lemma 3.4.14. If there is only one dynamic constructor c1 and c1 is unary, then
T0 ` ILiteral $ Gt for any t P S.

Proof. Since there is only one dynamic constructor c1 and c1 is unary, any term t of
D-depth k, which contains X has the form ck

1pXq. Define the literal LpXq ” X ‰ cnpXq
and take any model M of T0 `ILiteral. Clearly, M ⊨ Lpcjpaqq for any static constructor
cj and tuple of elements a. Assume that there is some A P DM with M ⊭ LpAq.
Then, A “ pcn

1 pAqqM “ pc1pcn´1
1 pAqqqM “ pc1pBqqM for some B. By INJ1, it follows

that B “ pcn´1
1 pAqqM “ pcn´1

1 pc1pBqqqM “ pcn
1 pBqqM. Thus, M ⊭ LpBq and hence,

M ⊨ LHSpLq. Since M ⊨ ILiteral, M ⊨ @X : LpXq. Since Sk “ Rk “ tcn
1 pXqu, this

proves the claim. ■

Lemma 3.4.15. If there is more than one dynamic constructor or there is one dynamic
constructor, which is not unary, then T0 ` IClause ⊬ IDClause.

Proof. We need to give a model M of T0 ` IClause in which there is some cycle. There
are two mutually exclusive cases:

1. If there is some non-unary dynamic constructor, then by Lemma 3.2.18, the model
MC does exactly what we want.

2. If there is more than one dynamic constructor and every dynamic constructor is unary,
then T0 ` ILitera $ IClause. It suffices to give a model M of T0 ` ILiteral. By Lemma
3.2.21, the model Mu

C does exactly what we want. ■

Lemma 3.4.16. Let ApXq ” t1 “ t2 be an atom. Take any model M of T0 `SUR`tGt |
t P Su, where the sort D is interpreted as the set M . Then the set S “ tX P M | M ⊨
ApXqu is either empty, has cardinality 1 or is equal to M .

Proof. Take any model M of T0 ` SUR ` tGt | t P Su and any atom ApXq ” t1 “ t2.

There are three cases:

1. If neither side contains X, then S is either empty or equal to M .
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2. If only one term, say t1, contains X, then tM
2 is constant. We show inductively that

there is at most one B P DM with M ⊨ ApBq. If t1 ” X, the claim holds trivially.
Assume that t1 ” c1ps1, . . . , smiq. If there is some element B with M ⊨ t1pBq “ t2, then
there are elements A1, . . . , Aj , aj`1, . . . ami with tM

2 “ cM
i pA1, . . . , amiq. At least one of

the sl has to contain X and from the induction hypothesis it follows that there is at
most one B s.t. M ⊨ slpBq “ al. From INJi, it follows that there is at most one B s.t.
M ⊨ t1pBq “ t2.

3. Assume that both t1 and t2 contain X. We proceed by induction on the structure of
t1:

3.1. Assume that t1 ” X. If t2 ı X, then S “ H by Gt2 . If t2 ” X, then S “ M .

3.2. Assume that t1 “ c1ps1, . . . , smiq. If there is some element B with M ⊨ t1pBq “
t2pBq, then t2 has the form cipr1, . . . , rmiq by Di,j , i ‰ j. From INJi, it follows that
S “ Şmi

k“1 Sk with Sk “ tB P DM | M ⊨ skpBq “ rkpBqu. From the induction hypothesis
and the cases 1 and 2, it follows that every Sk is either empty, has cardinality 1 or is
equal to M . Thus, as the intersection of the Sk, S has this property as well. ■

Lemma 3.4.17. Let M, N be two finite or cofinite sets. Then M X N and M Y N are
also finite or co-finite.

Proof. Since a set is finite or cofinite iff its complement is and pM Y Nqc “ M c X N c, it
suffices to deal with one of the two cases.

Consider M Y N and assume that it is infinite. Then at least one of the two sets has to
infinite and, therefore, co-finite, w.l.o.g. assume that M is co-finite. Since pM YNqc Ď M c,
it follows that also M Y N has to be co-finite. ■

Lemma 3.4.18. Let F pXq be an open formula with X P D. In any model M of
T0 ` SUR ` tGt | t P Su, it holds that SF “ tX P DM | M ⊨ F pXqu is finite or co-finite.

Proof. We proceed inductively: The base is that F is an atom. From Lemma 3.4.16 it
follows that S is finite or cofinite in this case. If F ” ␣G, then SF “ Sc

G and thus, SF is
finite or cofinite if SG is. If F ” G1 _ G2 or F ” G1 ^ G2, then it follows from Lemma
3.4.17 that SF is finite or cofinite if both SG1 and SG2 are. ■

Theorem 3.4.19. T0 ` SUR ` tGt | t P Su $ IOpen

Proof. Take any model M of T0 ` SUR ` tGt | t P Su and any open formula F pXq.
Assume that M ⊨ LHSpF q. By Lemma 3.4.18, the set SF is finite or cofinite. Since the
standard part of M is infinite and M ⊨ F pBq for any element B P DM, SF is cofinite
and |Sc

F | “ n P N. Now define a partial function p : DM ãÑ DM on the set Sc
F . Let B

be any element in Sc
F . Since M ⊨ LHSpF q, B cannot be a standard element and, by

SUR, there is some dynamic constructor ci with elements B1, . . . , Bj , bj`1, . . . , bmi s.t.
B “ cM

i pB1, . . . , bmiq. For at least one of the Bl it holds that M ⊭ F pBlq. Define ppBq by
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picking any such Bl with M ⊭ F pBlq. Assume that Sc
F is not empty and that there is some

B with M ⊭ F pBq. Then, M ⊭ F pplpBqq for any l P N. In particular, M ⊭ F ppnpBqq.
Since |Sc

F | “ n, there has to be some E P Sc
F and k ď n with plpEq “ E. By definition

of p, this implies that there is a term t with M ⊨ E “ tpEq, which contradicts the
assumption that M ⊨ tGt | t P Su. Thus, Sc

F “ H and M ⊨ @X : F pXq. ■

Proof of Theorem 3.4.3. In all three cases, it follows from Lemma 3.4.4 that T0 $ IAtom,
from Lemma 3.4.5 that T0 ` IAtom ⊬ ILiteral and from Theorem 3.4.19 that T0 `
SUR ` tGt | t P Snu $ IOpen.

In case 1, it follows from Lemma 3.4.14 that T0 ` ILiteral $ IOpen.

In both cases 2a and 2b, it follows from Lemma 3.4.15 that T0 ` IClause ⊬ IDClause.

In case 2a, it follows from Lemma 3.4.9 that ILiteral $ IClause. ■

3.4.2 Constructors and Selectors
The following will be our main result:

Theorem 3.4.20. The are two cases:

1. There is exactly one dynamic constructor and all other constructors are constants.

2. There is more than one dynamic constructor or some static constructor, which is
not constant.

In the first case, we obtain he following (partial) Hasse-Diagram:

T1 ` IOpen

T1 ` IClauseT1 ` IDClause

T1 ` ILiteral

T1 « T1 ` IAtom

In the second case, we obtained the following (partial) Hasse-Diagram:
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T1 ` IOpen

T1 ` IClauseT1 ` IDClause

T1 ` ILiteral

T1 ` IAtom

T1

This will be a direct consequence of the following lemmas:

Lemma 3.4.21. T1 ` ILiteral $ SUR

Proof. This follows directly from Theorem 3.1.8. ■

Lemma 3.4.22. T1 ` IDClause $ Gt for any term t P S.

Proof. This follows directly from Lemma 3.4.13 since T1 Ě T0. ■

Lemma 3.4.23. If there is only one dynamic constructor c and c is unary, then T1 `
ILiteral $ Gt for any term t in Sn with n ě 1

Proof. This follows directly from Lemma 3.4.14 because T1 Ě T0. ■

Lemma 3.4.24. If there are at least two dynamic constructors, then T1 ⊬ IAtom

Proof. Fix two dynamic constructors c1, c2 and one selector d1
2 : D Ñ D of d1

2. Now
start with the model M “ M˚pt8uq of T0 over language L0. We need to interpret the
selectors. For this, we fix two distinct elements B1, B2 P DM and proceed with a case
distinction:

• If B P DM can be written as cM
i pbq, then define pdk

i pBqqM “ bk

• If B “ cM
1 pbq and B is a standard element, then define pd1

2pBqqM “ B1
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• If B “ cM
1 pbq and B is a non-standard element, then define pd1

2pBqqM “ B2

• If none of the previous cases is applicable and τk
i ‰ D, then there is only one

possible interpretation for dk
i pBq

• If none of the previous cases is applicable and τk
i “ D, then define pdk

i pBqqM “ B

Note that by construction M ⊨ T1.

Consider the atom ApXq ” d1
2pc1pXqq “ Z and the interpretation ξ : Z ÞÑ B1. By

construction M ⊨ ApBq iff B is a standard element. Thus, M ⊨ LHSpAq, but M ⊭ @X :
ApXq. ■

Lemma 3.4.25. If there is exactly one dynamic constructor, but there is some non-
constant static constructor, then T1 ⊬ IAtom.

Proof. Fix the dynamic constructor c1 and the non-constant static constructor c2. W.l.o.g.,
assume that τ1

2 “ T1 and thus, d1
2 : D Ñ T1. Now take the model M “ Mt1upt8uq of T0

over the language L0. We need to interpret the selectors. For this, fix the elements a1, b1
with T M

1 “ ta1, b1u and proceed with a case distinction:

• If B P DM can be written as cM
i pbq, then define pdk

i pBqqM “ bk

• If B “ cM
1 pbq and B is a standard element, then define pd1

2pBqqM “ a1

• If B “ cM
1 pbq and B is a standard element, then define pd1

2pBqqM “ b1

• If none of the previous cases is applicable and τk
i “ T1, then define pdk

i pBqqM “ a1

• If none of the previous cases is applicable and τk
i “ D, then define pdk

i pBqqM “ B

• If none of the previous cases is applicable and τk
i R tD, T1u, then there is only one

possible interpretation for dk
i pBq

Note that by construction M ⊨ T1.

Consider the atom ApXq ” d1
2pc1pXqq “ z and the interpretation ξ : z ÞÑ a1. By

construction M ⊨ ApBq iff B is a standard element. Thus, M ⊨ LHSpAq, but M ⊭ @X :
ApXq. ■

Remark 3.4.26. Prior to this subsection, our standard approach to prove that e.g.
T ` IAtom ⊬ ILiteral, was to find some formula ϕ with T ` ILiteral $ ϕ and show
that T ` IAtom ⊬ ϕ. In the current setting it is much more difficult to use this approach
due to the added complexity of the selectors in combination with dynamic constructors.
However, there is some other approach, we used in two previous Lemmas that we think
could be fruitful if someone decides to try to find solutions to the questions that we did
not manage to answer: If there are at least two constructors c1 and c2 that take some
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input, then the axioms of T1 make no statement about how the selectors of c1 should
be interpreted on elements of the form cM

2 p. . . q in some model M of T1. Using this,
one might be able to define a model with different patterns that prove that some level of
induction is stronger than some other level. Moreover, in this case, it seems very difficult
to give a simple alternative axiomatization of open induction and after spending some
thought on this, we think that it might not even be possible.

This leads to the following conjecture:

Conjecture 3.4.27. If there is at least one dynamic constructor and some other construc-
tor that takes input of some sort, then T1`ILiteral ⊬ IClause, T1`ILiteral ⊬ IDClause,
T1 ` IClause ⊬ IDClause and T1 ` IDClause ⊬ IClause.

Lemma 3.4.28. Assume that there is only one dynamic constructor c1 and that every
other constructor is constant. Let M be any model of T1 and t be a term of the form
dl1

1 p. . . dln
1 pXqq, where all the τ lh

1 are D. Then, there is some term st with the following
properties:

• M ⊨ @X : X “ pt ˝ stqpXq
• dptq “ dpstq
• All function symbols in st are dynamic constructors

• The interpretation sM
t maps standard elements to standard elements

• For any term t1 of the form dk1
j1 p. . . dkm

jm
pXqq, where all the τkh

jh
are D and M ⊨ @X :

X “ pt ˝ st1q and M ⊨ @X : X “ pt1 ˝ stq, it holds that M ⊨ tpXq “ t1pXq

This term st is called right-inverse of t.

Proof. Take any such term t of the form dl1
i1p. . . dln

in
pXqq, where all the τnl

il
are D. We

define the sequence s0, . . . , sn inductively: s0 ” X and sk`1 ” cin´k`1pa1, . . . , amn´k`1q,
where aln´k`1 “ sk and the other al are arbitrary (fixed) parameters of the right sorts
and if that sort is D, we choose it to be a standard element. Then, the term st “ sn

has the property that T1 $ @X : pt ˝ stqpXq “ X. By construction sM
t maps standard

elements to standard elements.

Now take any t1 “ dk1
1 p. . . dkm

1 pXqq and its respective right-inverse st1 . Assume that
M ⊨ @X : X “ pt1 ˝ stqpXq and M ⊨ @X : X “ pt ˝ st1qpXq. W.l.o.g., assume that n ď m
and take the biggest h P t1, . . . , nu s.t. dlh

1 ‰ dkh
1 if such an h exists. It holds that lh ‰ kh

and pdlh
1 p. . . dln

in
pst1pXqqqqM8̊ is some fixed parameter by construction of the right-inverse.

In particular, ppt ˝ st1qpXqqM8̊ is constant, which contradicts our assumption. Thus,
such an h cannot exist and for all h ď n, it holds that dlh

1 “ dkh
1 . Assume that n ă m.

Then define r ” dk1
1 p. . . , d

km´n

1 pXqq. It holds that M ⊨ @X : X “ pt1 ˝ stqpXq and
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M ⊨ @X : pt1 ˝ stqpXq “ rpXq. Thus, M ⊨ @X : X “ rpXq. However, there are
standard elements E s.t. M ⊭ E “ rpEq. Thus, m “ n, t and t1 are identical and
M ⊨ @X : tpXq “ t1pXq. ■

Lemma 3.4.29. Assume that there is only one dynamic constructor and all other
constructors take no input at all. Let M be any model of T0 s.t. T M

i contains at least
two elements ai, bi. If there are two terms t and s of sort Ti, which consist of selectors
only and contain X, then they are either syntactically identical or there is some standard
element B P DM with tpBqM ‰ spBqM.

Proof. It holds that t has the form dl1
1 p. . . , dlm

1 pXqq and s has the form dk1
1 p. . . pdkm

1 pXqq,
where the selectors dl1

1 and dk1
1 map into the sort Ti and all other selectors occurring in

t or s map into the sort D. W.l.o.g., assume that m ě n. First, we fix some constant
constructor c and make a case distinction:

1. If dl1
1 ‰ dk1

1 , then define the following sequence of standard elements B0 “ cM
1 pbq,

where bj “ c if τ j
1 “ D, bl1 “ a1, bk1 “ a2 and bj is some arbitrary parameter otherwise.

Bk`1 “ cM
1 pbq, where bj “ Bk if τ j

1 “ D, bl1 “ a1, bk1 “ a2 and bj is some arbitrary
parameter otherwise. By construction, it follows that tpBmqM “ a1 and spBmqM “ a2
as m ě n.

2. Now assume that dl1
1 “ dk1

1 . We define some auxiliary sequence first: B0 “ cM
1 pbq,

where bj “ c if τ j
1 “ D, bj “ a1 if τ j

1 “ τ l1
1 and bj is some arbitrary parameter otherwise.

Bk`1 “ cM
1 pbq, where bj “ Bk if τ l

j “ D, bj “ a1 if τ j
1 “ τ l1

1 and bj is some arbitrary
parameter otherwise. Fix the element Bm. Note that any term r, which consists of
selectors only, has D-depth ď m has the property and is of sort Ti, that rpBmq “ a1. Now
define the sequence Ek in the following way: E0 “ cM

1 peq, where eln “ a2, ej “ Bm if
τ j

1 “ D and ej is some arbitrary parameter otherwise. Ek`1 “ cM
1 peq, where eln´k

“ Ek,
ej “ Bm if τ j

1 “ D and ej is some parameter otherwise. It holds that tpEnqM “ a2.
If there is some there is some d

lj
1 ‰ d

kj

1 or m ą n, then we can write s ” r ˝ q with
qpEnqM “ Bm and thus rpEnqM “ a1.

In any case, we obtain that there is some standard element B wiht M ⊭ tpBq “ spBq if
they are not syntactically identical. ■

Lemma 3.4.30. Assume that there is only one dynamic constructor and all other
constructors take no input at all. Take any model M of T1 and atom ApXq ” t1 “ t2. If
M ⊨ ApEq for any standard element E in DM, then M ⊨ @X : ApXq.

Proof. Let c1 be the only dynamic constructor. Assume that M ⊨ LHSpAq. First note
that since there is only one dynamic constructor and every other constructor is constant,
we can assume that there are no subterms of the form dk

1pc1p. . . qq.
There are three cases:
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1. If X appears on neither side of A, then M ⊨ pDX : ApXqq Ø p@X : ApXqq and we are
done.

2. If X appears on exactly one side of A, say in t1, then sM is constant. There are two
cases:

2a. Assume t1pXq is of sort Ti. If Ti1M has exactly one element, then tM
1 is constant and

M ⊨ @X : t1pXq “ t2pXq. Assume that T M
i contains the distinct elements a1, a2. Note

that t1 has the form dl1
1 p. . . dln

1 pXqq, where τ l1
1 “ Ti and for i ě 2, τ li

1 “ D. Define t1
1 “

dl2
1 p. . . dln

1 pXqq Then by 3.4.28, there is some term st1
1

with M ⊨ @X : X “ pt1
1 ˝ st1

1
qpXq

and t1 ” dl1
1 ˝ t1. It follows that M ⊨ @X : t1pst1

1
pXqq “ dl1

1 pXq. Now define the
elements Bj “ c1pejq, where ej

l1
“ aj for j P t1, 2u. Thus, M ⊨ t1pst1

1
pB1qq “ a1 and

M ⊨ t1pst1
1
pB2qq “ a2. Thus, it does not hold that M ⊨ t1pEq “ t2pEq for any standard

element E.

2b. Assume that t1pXq is of the sort D. We claim that t1 is not constant in the standard
part and thus, it does not hold that M ⊨ ApEq for any standard element E. We prove
the claim inductively:

2b.i. The first base case: If t1 ” X, the claim is trivially true.

2b.ii. The second base case: If t1 ” dl1
1 p. . . pdln

1 pXqqq, then, by Lemma 3.4.28, there is a
right-inverse term st1 with M ⊨ @X : X “ pt1 ˝ st1qpXq. In particular, t1 is not constant
in the standard part of M.

2b.iii. For the induction step, assume that t1 has the form c1ps1, . . . , sm1q. At least one
of the sl has to contain X and by the induction hypothesis and case 2a, all the terms
sl that contain X have either constant interpretation sM

l in the whole model or there
are elements B, E s.t. M ⊨ slpBq ‰ slpEq. If all the sM

l are constant, then so is tM
1 . If

there is some sl and standard elements B, E with M ⊨ slpBq ‰ slpEq, then, by INJ1,
M ⊨ t1pBq ‰ t1pEq.
3. Assume that X appears on both sides of A. There are two cases:

3a. Assume that t1 and t2 are of the sort Ti ‰ D. There are two cases:

3a.i. If T M
i has exactly one element, then M ⊨ @X : t1pXq “ t2pXq trivially.

3a.ii. If T M
i contains at least two elements, then it follows from Lemma 3.4.29 that

t1 and t2 are either syntactically identical or there is some standard element B with
M ⊨ t1pBq ‰ t2pBq.
3b. Assume that t1 and t2 are of the sort D. We proceed by induction on the structure
of t.

3b.i. The first base case: Assume that t ” X. If the outermost connective of s is some
constructor ci, then it does not hold that M ⊨ ApEq for any standard element E since
we have at least one other constructor cj and M ⊨ Di,j . If the outermost connective of s

is some selector dk1
1 , then s has the form dk1

1 p. . . pdkn
1 pXqqq. By Lemma 3.4.28, there is
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some term r ” ss with M ⊨ @X : spXq “ rpXq. If M ⊨ tpEq “ spEq for any standard
element E, then M ⊨ pt ˝ rqpEq “ ps ˝ rqpEq for any standard element E since rM maps
standard elements to standard elements. Since M ⊨ @X : ps ˝ rqpXq “ X and t ” X,
this implies that M ⊨ rpEq “ E for any standard element E. We are now in the first
case that t ” X and the outermost function symbol of s is a constructor (with switched
sides). Thus, it does not hold that M ⊨ rpEq “ E for any standard element E, which
is a contradiction. We conclude that if t ” X and M ⊨ tpEq “ spEq for any standard
element E, then s ” X and M ⊨ @X : tpXq “ spXq.
3b.ii. The second base case: Assume that t ” dl1

1 p. . . d1lnpXqq and that M ⊨ tpEq “ spEq
for any standard element E. By 3.4.28, there is some term st with M ⊨ @X : X “
pt˝stqpXq. Consequently, M ⊨ E “ ps˝stqpEq for any standard element E. From the case
3b, it follows that M ⊨ @X : X “ ps ˝stqpXq. By Lemma 3.4.28, M ⊨ @X : tpXq “ spXq.
3c.iii. The induction step: Assume that t ” c1ps1, . . . , sm1q. From the cases 3a and
3b, it follows that s ” c1pr1, . . . , rmiq. If M ⊨ tpEq “ spEq for any standard element
E, then, by INJ1, M ⊨ ripEq “ sipEq for any standard element E and from the
induction hypothesis and the cases 1, 2, and 3a, it follows that M ⊨ @X : ripXq “ sipXq.
Consequently, M ⊨ @X : tpXq “ spXq. ■

Corollary 3.4.31. If there is only one dynamic constructor and all other constructors
take no input at all, then T1 $ IAtom.

Lemma 3.4.32. T0 ` IAtom ⊬ ILiteral

Proof. Since there are at least two constructors, a static one and a dynamic one, this
follows directly from Theorem 3.2.9 and the fact that T1 ` ILiteral $ SUR. ■

Proof of Theorem 3.4.20. In either case, it follows from Lemma 3.4.32 that T1 `IAtom ⊬
ILiteral.

In case 1, it follows from Corollary 3.4.31 that T1 $ IAtom.

In case 2, it follows from Lemma 3.4.24 and Lemma 3.4.24 that T1 ⊬ IAtom. ■
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CHAPTER 4
Arithmetics

Open Induction in the context of arithmetics has already been studied in [Sho58] and
[She63]. However, they only considered induction over all open formulas and not over
particular subsets of them. The goal of this chapter is to analyze how much induction is
needed for the known results and prove them in the respective subsystems. The structure
of this chapter closely follows the one of [She63]. We consider systems of arithmetics up
to and including multiplication.

4.1 General Frame
In the following we will consider a one-sorted logic. We work with the language Σ “
t0, s, p, `, ¨u or subsets of it. 0 is 0-ary, s and p are unary and ` and ¨ are binary.
Furthermore, we use “ as a binary predicate with the usual axiomatization. The base
axioms are

spxq ‰ 0A1
pp0q “ 0A2
ppspxqq “ xA3
sx “ sy Ñ x “ yA3a
x ` 0 “ xA4
x ` spyq “ spx ` yq ‰ 0A5
x ¨ 0 “ 0 ‰ 0A6
x ¨ spyq “ x ¨ y ` xA7

For the sake of readability, we will often write sx and px instead of spxq and ppxq
respectively. If it is clear from the context, we might also drop the ¨ and write xy instead
of x ¨ y.
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Lastly, we have the following scheme for induction:

ϕp0, zq ^ @x : ϕpx, zq Ñ ϕpsx, zqLHSpϕpx, zqq
LHSpϕpx, zq Ñ @x : ϕpx, zqIpϕpx, zqq

In the scheme above z is a parameter in the formula ϕ. Again, for the purpose of legibility,
we might sometimes not mention parameters explicitly as all formulas may contain them
if not stated otherwise.

Note that in list of the axioms above, we have the axioms A3 and A3a. The first one,
does not state directly that s is injective, but it follows trivially from it. Thus, whenever,
we have the axiom A3, we can also use A3a freely.

Having established the general context, we can consider various theories over Σ and its
subsets in the following sections. We start by taking the empty theory and expand it
gradually. Also the language will be enriched step-by-step.

4.2 Useful models
In this section, we define two useful non-standard models of arithmetics. We will then
prove some properties of them and refer to them in the later parts of this chapter.

4.2.1 The model N8
In this subsection, we will define a model that is in some sense the least non-standard
model of the natural numbers. We will prove some properties of this model and make
heavy use of this model in course of this chapter.

In this section we consider the language L “ t0, s, p, `, ¨u with the axiomatization
T “ tA1, . . . , A7u.

Definition 4.2.1. The model N8 is constructed in the following way: The domain is
given by N Y t8u. The symbols are interpreted in the following way:

• 0 is interpreted as 0

• All the symbols s, p, `, ¨ are interpreted canonically in the standard part of the model

• sp8q “ pp8q “ 8
• For any x in the domain, 8 ` x “ x ` 8 “ 8
• 8 ¨ 0 “ 0 ¨ 8 “ 0 and for any x ‰ 0, x ¨ 8 “ 8 ¨ x “ 8

Lemma 4.2.2. N8 ⊨ T

Proof. This holds trivially by construction. ■
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Lemma 4.2.3. Let n be the numeral snp0q and Apxq ” t1 “ t2 any atom. If N8 ⊨ Apnq
for all n P N, then N8 ⊨ @x : Apxq.

Proof. 1. If x does not appear in either t1 nor t2, then Ap0q Ø Ap8q.
2. If x appears on exactly one side of A, say t1, then t2 is constant in x and there are
two cases:

2a. If some parameter in t1 is interpreted as 8, then t1pxq “ 8 for any x. Thus,
Ap8q Ø Ap0q.
2b. If no parameter in t1 evaluates to 8, then t1 is evaluated as a polynomial in x almost
everywhere in the standard part of the model. In particular, it cannot be constant there
and the conditions are not met.

3. If x appears on both sides, then, by construction of the model, both terms tip8q
evaluate to 8. Thus, Ap8q holds. ■

Lemma 4.2.4. For any reduct N8̊ of N8 (that still contains 0 and s) it holds that
N8̊ ⊨ IAtom

Proof. W.l.o.g. assume that N8̊ “ N8. The claim follows directly from Lemma 4.2.3 as
N8 ⊨ Apnq for any n P N if N8 ⊨ Ap0q ^ Apxq Ñ Apsxq. ■

Lemma 4.2.5. For any reduct N8̊ of N8 (that still contains 0 and s) it holds that
N8̊ ⊭ ILiteral

Proof. Consider the literal Lpxq ” x ‰ z. where the parameter z is interpreted as 8.
Clearly, N8̊ ⊨ Lp0q ^ Lpxq Ñ Lpsxq, but obviously N8̊ ⊭ @x : Lpxq. Note that this works
regardless of the concrete reduct as L uses no symbols of the language. ■

Theorem 4.2.6. Let T 1 Ď T be some theory over the language L1 Ď L. Then T 1 `
IAtom ⊬ ILiteral

Proof. By Lemma 4.2.2 the appropriate reduct N8̊ of N8 is a model of T 1. By Lemma
4.2.4 N8̊ is a model of IAtom, but by Lemma 4.2.5 N8̊ is not a model of ILiteral. ■

4.2.2 The model Na,b

In this subsection, we will define another very common non-standard model of natural
numbers. We will use this model, to separate atomic induction from the base theory in
some cases.

Although the model below is slightly different, it is very similar to the model in [Het24,
page 38].

Definition 4.2.7. The model Na,b is constructed in the following way: The domain is
given by N Y ta, bu. The symbols are interpreted as follows:
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• 0 is interpreted as 0

• For every standard element n, sNa,bn “ n ` 1, sNa,ba “ a and sNa,bb “ b

• For every standard element n ‰ 0, pNa,bn “ n´1, pNa,b0 “ 0, pNa,ba “ a, pNa,bb “ b

• ` and ¨ are interpreted according to the tables below

+ 0 1 2 . . . a b
0 0 1 2 . . . b a
1 1 2 3 . . . b a
2 2 3 4 . . . b a
...

...
...

... . . . ...
...

a a a a . . . a a
b b b b . . . b b

¨ 0 1 2 . . . a b
0 0 0 0 . . . b a
1 0 1 2 . . . b a
2 0 2 4 . . . b a
...

...
...

... . . . ...
...

0 b b b . . . a a
0 a a a . . . b b

Lemma 4.2.8. Na,b ⊨ tA1, A2, A3, A3a, A4, A5, A6, A7u

Proof. It was shown in [Het24, page 38] that Na,b ⊨ tA1, A3a, A4, A5, A6, A7u. Note that
A2 and A3 hold by construction. ■

Lemma 4.2.9. Na,b ⊭ x ` y “ y ` x

Proof. Consider a ` 0 “ a ‰ b “ 0 ` a. ■

4.3 0 and Successor only
In this section, we fix the language L “ t0, su
Definition 4.3.1. We define two very basic theories:

• T0 “ H
• T1 “ tA1u

Additionally, we define the following auxiliary axioms:

sn0 “ sm`10 Ñ @x
mł

k“0
x “ sk0 for any n, m P N and n ď mBn,m

Theorem 4.3.2. In [She63], it was shown that the following holds:

• T0 ` IOpen « T0 ` tBn,m | n, m P N, n ď mu
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• T1 ` IOpen « T1 ` tBn,m | n, m P N, n ď mu

We can strengthen this by the following theorem:

Theorem 4.3.3. For any i P t1, 2u the following holds:

Ti ň Ti ` IAtom

ň Ti ` ILiteral

ň Ti ` IDClause

« Ti ` IClause

« Ti ` IOpen « Ti ` tBn,m | n, m P N, n ď mu
This yields the following Hasse Diagram:

Ti

Ti ` IAtom

Ti ` ILiteral

Ti ` IDClause « Ti ` IClause « Ti ` IOpen

Proof. This Theorem will follow directly from the following Lemmas. ■

Remark 4.3.4. Note that T1 and T2 are defined over the same language with T0 Ď T1.
Thus, by showing T1 ⊬ ϕ for some formula ϕ, we obtain that T0 ⊬ ϕ for free and vice-versa
for T0 $ ϕ.

Lemma 4.3.5. T0 ` IClause $ Bn,m for any n, m P N with n ď m

Proof. We work in T0 ` IClause. Fix suitable n, m and assume that sn0 “ sm`10.
Consider the clause Cpxq ” Žm

k“0 x “ sk0. Clearly, Cp0q is logically valid. Now, assume
that Cpxq holds. There is some k ď m s.t. x “ sk0. We make a case distinction:

• If k ă m, then k ` 1 ď n and sx “ sk`10 makes the clause true
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• If k “ m, then sn0 “ sk`10 by assumption. Since n ď m, we set k1 “ n ď m and
obtain sx “ sk`10 “ sn0 “ sk10.

Applying the scheme of induction on C, yields that Bn,m holds. ■

Lemma 4.3.6. T1 ⊬ IAtom

Proof. Consider the following model M: The domain is given by t0, 1, 2, a, b, cu and the
symbols are interpreted in the following way:

• 0 is interpreted as 0

• s0 “ 1, s1 “ 2, s2 “ 1

• sa “ b, sb “ c, sc “ a

Since 0 has no predecessor in this model, all axioms of T1 hold. Consider the atom
Apxq ” sx “ s3x. Then A holds for the elements 0, 1, 2, but not for a, b, c. In particular,
M ⊨ LHSpAq, but M ⊭ @x : Apxq. Thus, M ⊭ IpAq. ■

Lemma 4.3.7. T1 ` IAtom ⊬ ILiteral

Proof. This follows directly from Theorem 4.2.6. ■

Lemma 4.3.8. Let M be any model of T0 ` ILiteral. Then, M contains no element
z ‰ 0 s.t. sy “ z Ñ y “ z.

Proof. Assume that there is such an element z and consider the literal Lpxq ” x ‰ z.
Then, clearly, M ⊨ Lp0q ^ Lpxq Ñ Lpsxq. Thus, by induction on L, @x : x ‰ z, which is
a contradiction. Such an element cannot exist. ■

Lemma 4.3.9. Let M be any model of T0 ` IDClause and z P M any element that
is not a successor of 0. Then for every n P N, there is a sequence of distinct elements
y0, . . . , yn s.t. syi “ yi`1 and yn “ z.

Proof. Assume that there is a non-standard element z and some n s.t. such a sequence
does not exist for z. Let m be the biggest number s.t. such a sequence y0, . . . , ym does
exist for z and consider the dual clause Dpxq ” Źm

i“0 x ‰ yi. Since z is non-standard,
M ⊨ Dp0q. If Dpxq holds and Dpsxq does not, then sx “ y0. Then, however, x, y0, . . . , ym

would be the sequence for m, which contradicts our assumption of m being maximal.
Thus, M ⊨ Dpxq Ñ Dpsxq. Induction on D yields M ⊨ @x : Dpxq, which contradicts
M ⊨ z “ z. ■

Lemma 4.3.10. T0 ` IDClause $ IClause.
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Proof. From Theorem 3.1.8, it follows that T0 ` ILiteral $ x “ 0 _ Dy : x “ sy. Now
let us analyse, how models of T0 ` IDClause look like: Let M be any model with the
domain M , G “ pM, Eq be the graph induced by s and C Ď 2M the set of all connected
components of G. We fix C0 to be the component containing 0 and distinguish a few cases:
1. If s0 “ 0, consider the atom Apxq ” sx “ x. Clearly, M ⊨ Ap0q ^ Apxq Ñ Apsxq.
Thus, by applying the induction scheme on A, we obtain that every element is its own
successor. By Lemma 4.3.8, 0 can be the only such element. In particular, the domain of
M is t0u and induction over all formular clearly holds.

2. Assume that sp0q ‰ 0 and there are some n, m with m ‰ 0 s.t. sn0 “ sn`m0.
Consider the atom snx “ sn`mx. Clearly, M ⊨ Ap0q. Assume that M ⊨ Apxq. Then
snpsxq “ spsnxq “ spsn`mxq “ sn`mpsxq and thus Apsxq. By induction, we obtain that
M ⊨ @x : Apxq. W.l.o.g., we assume that n and m are minimal with those properties.
Now assume that there is some element x, which is not a successor of 0. Then there are
three cases:

2a. If x has some predecessor y that does not lie in a cycle. Then, since every element
other than 0 is a successor, there have to be n ` m distinct predecessors of x. Let y be
the predecessor that sn`my “ x. Then, sny ‰ sn`my, which is a contradiction. Thus,
such an x cannot exist.

2b. Assume that x is its own only predecessor. By Lemma 4.3.8 this cannot be.

2c. We are left with the case that every non-standard element lies in a cycle of length k ě 2.
For any k ‰ m, consider the literal Lpxq ” x ‰ skx. Clearly, M ⊨ Lp0q ^ Lpxq Ñ Lpsxq.
Thus, every non-standard element lies in a cycle of length m.

By Lemma 4.3.9 there cannot be any finite non-standard cycle. Thus, every element in
M is a successor of 0 and induction over all formulas holds.

3. Assume that there are no n, m with m ‰ 0 s.t. sn0 “ sn`m0. Then, all of the Bn,m

trivially hold. By Theorem 4.3.2, open induction has to hold in M and in particular,
induction over clauses. ■

Lemma 4.3.11. T1 ` ILiteral ⊬ IClause and T1 ` ILiteral ⊬ IDClause.

Proof. For the first part, it suffices, by Lemma 4.3.5, to give a model of T1 ` ILiteral,
which does not satisfy Bn,m for some suitable n, m. For the second part, we give a dual
clause D, over which induction does not work in the same model.

Consider the following model M: The domain is given by t0, 1, 2, a, bu. The symbols are
interpreted in the following way:

• 0 is interpreted as 0

• s0 “ 1, s1 “ 2, s2 “ 1

• sa “ b, sb “ a
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As 0 is no successor, T1 holds. Moreover, B1,2 does not hold.

Consider the dual clause Dpxq ” x ‰ y1^x ‰ y2, where y1 and y2 are interpreted as a and
b respectively. Clearly, M ⊨ Dp0q and by construction of the model, M ⊨ Dpxq Ñ Dpsxq
as well. However, M ⊭ Dpaq. Thus, induction over dual clauses does not hold.

It remains to be shown that ILiteral holds.

First take any atom Apxq ” t1 “ t2. Note that any term t has the form snpyq, where y is
either x, some parameter, or 0. We make a case distinction:

1. If x appears in neither ti, then A Ø K or A Ø J. Induction over A clearly holds.

2. If x appears in only one term, say t1, then t2 is constant in x. However, t1 is not
constant in the whole standard part of the model. Induction over A holds, as the left-hand
side of the scheme is not satisfied.

3. If x appears on both sides, then A has the form snx “ smx. There are three cases:

3a. If n “ m “ 0, then A holds trivially in the whole model.

3b. If n “ 0 ‰ m, then Ap0q does not hold.

3c. If n ‰ 0 ‰ m, then M ⊨ Ap0q Ø Apxq for any x. In particular, induction over A
holds.

Now take any negated atom Lpxq ” t1 ‰ t2. We make a case distinction:

4. If x appears on neither side, induction over L holds for the same reasons as above.

5. If x appears in exactly on term, say t1, then t2 has a constant interpretation and t1
has the form snx. There are three cases:

5a. If t2 is interpreted as 0 and n “ 0, then Lp0q does not hold.

5b. If t2 is interpreted as 0 and n ‰ 0, then Lpxq holds for any x.

5c. If t2 is interpreted as y ‰ 0, then there is some y1, z1 s.t. sy1 “ y and snz1 “ y1.
However, snsz1 “ sy1 “ y. Thus, the left-hand side of the scheme of induction is not
met. ■

4.4 Injective Successor
We define the new theory T2:

Definition 4.4.1. T2 “ tA1, A3au over the language t0, su.

Now, we need some supplementary axioms:

Definition 4.4.2. We define the following axiom for every natural n ě 1:

x ‰ snx for any n ě 1Bn
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In [She63] the following was shown:

Theorem 4.4.3. T2 ` IOpen is equivalent to T2 ` tBn | n P N, n ě 1u.

We can also use Theorem 3.4.3:

Theorem 4.4.4.

T2 « T2 ` IAtom

ň T2 ` IAtom

« T2 ` IOpen

« T2 ` SUR ` tBn | n ě 1u
This yields the following Hasse Diagram:

T2 « T2 ` IAtom

T2 ` ILiteral « T2 ` IOpen

We conclude that SUR is superfluous in this context.

4.5 Adding the Predecessor
We define the theory T3:

Definition 4.5.1. T3 “ tA1, A2, A3u over the language t0, s, pu.

We need another auxiliary axiom:

Definition 4.5.2. We define the axiom:

x ‰ 0 Ñ x “ spxB1

In [She63] the following was proven:

Theorem 4.5.3. T3 ` IOpen is equivalent to T3 ` tBn | n P N, n ě 1u ` tB1u.

Again, we can strengthen this result:
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Theorem 4.5.4.

T3 « T3 ` IAtom

ň T3 ` ILiteral

« T3 ` IOpen

« T3 ` tBn | n P N, n ě 1u ` tB1u
This yields the following Hasse diagram:

T3 « T3 ` IAtom

T3 ` ILiteral « T3 ` IOpen

Lemma 4.5.5. T3 ` ILiteral $ Bn for all n ě 1.

Proof. We work in T3 `ILiteral. Fix any n ě 1 and consider the literal L1pxq ” x ‰ snx.
By A1 we have that L1p0q holds. By A3 we have sx “ sn`1x Ñ x “ psx “ psn`1x “ psnx
and by counterposition L1pxq Ñ L1psxq. By induction on L1, we obtain @x : x ‰ snx. ■

Lemma 4.5.6. T3 ` ILiteral $ B1

Proof. From Theorem 3.1.8 it follows that T3 ` ILiteral $ x “ 0 _ Dy : x “ sy. Assume
that x ‰ 0. There is some y s.t. x “ sy. It follows that x “ sy

A3“ sppsyq “ pspqsy “
spx ■

Lemma 4.5.7. T3 $ IAtom

Proof. We work in T3. Take any atom Apxq ” t1 “ t2. Assume that both terms have
the form st1

i. Then by A3, we obtain that t1
1 “ pst1

1 “ pst1
2 “ t1

2. We can therefore
cancel the leading s and assume that at most one of the terms starts with s. If neither
term contains x, then A Ø J or A Ø K - in any case, the induction over A holds.
If one of the terms does not contain x, then the other is interpreted as a fixed value,
regardless of x. In particular, either Ap0q or Aps0q does not hold since s0 ‰ 0 by A1.
Thus, induction over A holds. We are left with the case where both terms contain x. If
one of the terms, in fact, starts with an s, then Ap0q does not hold by A1. It follows
that Apxq Ø pnx “ pmx. Assume that Ap0q and Apxq Ñ Apsxq holds. If m ´ n “ k ą 0,
then Apxq Ñ Apsmxq and thus Apxq implies skx “ pnsmx “ pmsmx “ x. In particular,
Ap0q implies that 0 “ sk0, which contradicts A1. By symmetry, we conclude that m “ n
and Apxq Ø pnx “ pnx Ø J, which proves the claim. ■

Lemma 4.5.8. T3 ⊬ ILiteral

Proof. This follows directly from Theorem 4.2.6. ■
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4.6 Linear Arithmetic
We define the theory T4:

Definition 4.6.1. T4 “ tA1, A2, A3, A4, A5u over the language t0, s, p, `u

Now again, some auxiliary axioms:

Definition 4.6.2. We define the following axioms:

x ` y “ y ` xB2
px ` yq ` z “ x ` py ` zqxB3
x ` y “ x ` z Ñ y “ zB4

In [Sho58] the following was shown:

Theorem 4.6.3. T4 ` IOpen is equivalent to T4 ` tB1, B2, B3, B4u

We can strengthen this result in the usual way:

Theorem 4.6.4.

T4 ň T4 ` IAtom

ň ILiteral

« T4 ` IOpen

« T4 ` tB1, B2, B3, B4u
This yields the Hasse diagram:

T4

T4 ` IAtom

T4 ` ILiteral « T4 ` IOpen

Lemma 4.6.5. T4 ` ILiteral $ B1

Proof. This follows directly from Lemma 4.5.6 and the fact that T4 is a superset of
T3. ■
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Lemma 4.6.6. T4 ` IAtom $ B2.

Proof. Consider the atom A1pxq ” 0 ` x “ x. By A4, we have that A1p0q holds. Assume
that A1pxq holds and 0 ` x “ x. Then 0 ` sx

A5“ sp0 ` xq IH“ sx. By induction on A1, we
obtain @x : 0 ` x “ x.
Now consider the literal A2pxq ” sy ` x “ spy ` xq. A2p0q holds because sy ` 0 A4“ sy

A4“
spy ` 0q. Assume that A2pxq holds and sy ` x “ spy ` xq, then sy ` sx

A5“ spsy ` xq IH“
spspy ` xqq A5“ spy ` sxq. By induction on A2 and universal quantification, we obtain
@y@x : sy ` x “ spy ` xq.
Now consider the atom L3pxq ” x ` y “ y ` x. L3p0q holds because 0 ` y

A1“ y
A4“ y ` 0.

Assume that L3pxq holds and x`y “ y `x. Then sx`y
A2“ spx`yq IH“ spy `xq A5“ y `sx.

By induction on L3 and universal quantification, we obtain @y@x : x ` y “ y ` x. ■

Lemma 4.6.7. T4 ` IAtom $ B3.

Proof. Note that by Lemma 4.6.6, we already know that x ` y “ y ` x. Now consider the
atom Apxq ” px ` yq ` z “ x ` py ` zq. Ap0q holds because p0 ` yq ` z

B2“ py ` 0q ` z
A4“

y ` z
A4“ py ` zq ` 0 B2“ 0 ` py ` zq. Assume that Apxq holds and px ` yq ` z “ x ` py ` zq.

Then,

psx ` yq ` z
B2“ z ` py ` sxq A4“ spz ` py ` xqq B2“ sppx ` yq ` zq IH“ spx ` py ` zqq
B2“ sppy ` zq ` xq A5“ py ` zq ` sx

B2“ sx ` py ` zq
and Apsxq holds as well. By induction on A and universal quantification, we obtain
@z@y@x : px ` yq ` z “ x ` py ` zq. ■

Lemma 4.6.8. T4 ` ILiteral $ B4

Proof. We work in T4 ` ILiteral. Note that by Lemma 4.6.6, we can use commutativity.
Assume that y ‰ z and consider the literal Lpxq ” x ` y ‰ x ` z. Lp0q holds because
0 ` y

B2“ y ` 0 A4“ y ‰ z
A4“ z ` 0 B2“ 0 ` z. Assume that Lpxq holds and x ` y ‰ x ` z.

Then sx ` y
B2“ y ` sx

A5“ spy ` xq B2“ spx ` yq A3a‰ spx ` zq B2“ spz ` xq A5“ z ` sx
B2“ sx ` z.

By induction over L, we obtain @x : x ` y ‰ x ` z. ■

Lemma 4.6.9. T4 ⊬ IAtom

Proof. By Lemma 4.6.6, it suffices to give a model of T4, in which ` is not commutative.
The claim now follows directly from Lemma 4.2.9 if we take the appropriate reduct of
Na,b from Definition 4.2.7. ■

Lemma 4.6.10. T4 ` IAtom ⊬ ILiteral

Proof. This follows directly from Theorem 4.2.6. ■

50



4.7. Polynomials

4.7 Polynomials
We define the theory T5:

Definition 4.7.1. T5 “ tA1 ´ A7u over the language t0, s, p, `, ¨u.

We define new auxiliary axioms:

Definition 4.7.2. We define the following axioms:

xy “ yxB5
xpyzq “ pxyqzB6
xpy ` zq “ xy ` xz Ñ y “ zB7

dy “ dz Ñ
d´1ł
i“0

px ` iqy “ px ` iqz for any d “ 2, 3, . . .C1
d

The following result was postulated in [She63] and proven in [She67].

Theorem 4.7.3. T5 ` IOpen is equivalent to T5 ` tB1 ´ B7u ` tC 1
d | d P N, d ě 2u.

We can strengthen this result:

Theorem 4.7.4.

T5 ň T5 ` IAtom

ň T5 ` ILiteral

« T5 ` IDClause

ň T5 ` IClause

« T5 ` IOpen

« T5 ` tB1 ´ B7u ` tC 1
d | d P N, d ě 2u

This yields the following Hasse diagram:
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T5

T5 ` IAtom

T5 ` ILiteral « T5 ` IDClause

T5 ` IClause « T5 ` IOpen

This theorem will be a consequence of the following lemmas in combination with Theorem
4.7.3.

Lemma 4.7.5. T5 ` IAtom $ tB2, B3, B5, B6, B7u

Proof. Since T5 Ě T4, it follows from the Lemma 4.6.6 and Lemma 4.6.7 that T5`IAtom $
B2 and T5 ` IAtom $ B3. For the remaining proof, we work in T5 ` IAtom.

B5 : We need three atoms:

1. Consider the atom A1pxq ” 0x “ 0. A1p0q holds because 0 ¨ 0 A6“ 0. Assume that
A1pxq holds and 0x “ 0. Then 0sx

A7“ 0x ` 0 IH“ 0 ` 0 A4“ 0 and A1psxq holds as well. By
induction over A1, we obtain that @x : 0x “ 0.

2. Consider the atom A2pxq ” psyqx “ yx`x. A2p0q holds because psyq0 A6“ 0 A4“ 0`0 A6“
y0 ` 0. Assume that A2pxq holds and psyqx “ yx ` x. Then,

psyqpsxq A7“ psyqx ` sy
A5“ sppsyqx ` yq IH“ sppyx ` xq ` yq B2“ spy ` pyx ` xqq

B3“ sppy ` yxq ` xq A5“ py ` yxq ` sx
B2“ pyx ` yq ` sx

A7“ ypsxq ` sx

and A2psxq holds as well. By induction over A2 and universal quantification, we obtain
@y@x : psyqx “ yx ` y.

3. Now consider the atom A3pxq ” xy “ yx. A3p0q holds because 0y
A1“ 0 A6“ y0.

Assume that A3pxq holds and xy “ yx. Then psxqy A2“ xy ` y
IH“ yx ` y

A7“ ypsxq and
A3psxq holds as well. By induction over A3 and universal quantification, we obtain that
@y@x : xy “ yx.
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B7 : Consider the atom A4pxq ” xpy ` zq “ xy ` xz. A4p0q holds because 0px ` yq A1“
0 A4“ 0 ` 0 A1“ 0x ` 0y. Assume that A4pxq holds and xpy ` zq “ xy ` xz. Then,

psxqpy ` zq B5“ py ` zqpsxq A7“ py ` zqx ` py ` zq B5“ xpy ` zq ` py ` zq
IH“ pxy ` xzq ` py ` zq B2,B3“ pxy ` yq ` pxz ` zq B5“ pyx ` yq ` pzx ` zq
A7“ ypsxq ` zpsxq B5“ psxqy ` psxqz

and A4psxq holds as well. By induction over A4 and universal quantification, we obtain
that @z@y@x : xpy ` zq “ xy ` xz

B6 : Consider the atom A5pxq ” pxyqz “ xpyzq. A6p0q holds because p0yqz A1“ 0 A6“
pyzq0 B5“ 0pyzq. Assume that A5pxq holds. By A7, commutativity of ¨, distributivity of `
and ¨ and the induction hypothesis, it follows that

ppsxqyqz B5“ pypsxqqz A7“ pyx ` yqz B5“ zpyx ` yq B7“ zpyxq ` zy

B5“ pxyqz ` yz
IH“ xpyzq ` yz

A7“ pyzqpsxq B5“ psxqpyzq
Induction on A5 yields the desired result. ■

Lemma 4.7.6. T5 ` ILiteral $ tB1, B4u

Proof. Since T5 Ě T4, this claim follows directly from Lemma 4.6.5 and Lemma 4.6.8. ■

Lemma 4.7.7. T5 ` IClause $ C 1
d for any d ě 2.

Proof. We work in T5 ` IClause. Fix any d ě 2 and consider the clause Cpxq ” dy “
dz Ñ Žd´1

k“0pskxqy “ pskxqz. By A6 and commutativity of ¨, we have that 0y “ 0 “ 0z
and in particular that Cp0q holds. Now assume that Cpxq holds. Take any y, z s.t.
dy “ dz. If there is some k ą 0 s.t. pskxqy “ pskxqz, then psk´1sxqy “ psk´1sxqz and
in particular Cpsxq holds. If k “ 0, then xy “ xz. Consider the term psdxqy. It holds
that psdxqy “ psd´1xqy ` y “ ¨ ¨ ¨ “ ps0xqy ` dy “ xy ` dy “ xz ` dz “ psdxqz and thus
Cpsxq. Induction on C yields the desired result. ■

Lemma 4.7.8. T5 ⊬ IAtom

Proof. By Lemma 4.7.5 it suffices to give a model of T5, where ` is not commutative.
The claim now follows directly from Lemma 4.2.9. ■

Lemma 4.7.9. T5 ` IAtom ⊬ ILiteral

Proof. This follows directly from Theorem 4.2.6. ■

We now proceed similarly as in [She67], but fill the gaps:

53



4. Arithmetics

Lemma 4.7.10. The models of T5 ` tB1 ´ B7u are exactly the ones obtained by taking
a commutative ring with 1, R “ pR, `, ´, 0, ¨, 1q, and then taking some subset M of R
that does not contain ´1, is closed under 0, `, ¨, x ÞÑ x ` 1 and is closed under x ÞÑ x ´ 1
for all x ‰ 0. We then define the operations `, ¨ as in R, sx “ x ` 1 and px “ x ´ 1 if
x ‰ 0 and 0 otherwise.

Proof. The first direction is trivial: Any subset of a commutative ring with 1 with the
given properties is a model of T5 ` tB1 ´ B7u.

For the other direction, take any model M of T5`tB1´B7u with domain M . Consider the
set R “ M2

{„, where „ is equivalence relation defined by px, yq „ pa, bq :ô x ` b “ a ` y1.
The operations `, ¨, ´ are defined canonically on R:

• rpx, yqs„ ` rpa, bqs„ “ rpx ` a, y ` bqs„

• rpx, yqs„ ¨ rpa, bqs„ “ rpxa ` yb, ab ` yaqs„

• rpx, yqs„ ´ rpa, bqs„ “ rpx, yqs„ ` rpb, aqs„

Note that these operations are well-defined. Then, rp0, 0qs„ is neutral w.r.t. ` and
rs0, 0qs„ is neutral w.r.t to ¨. These elements are thus our 0 and 1 elements. The ring
axioms hold.

Define the function ϕ : M Ñ R : x ÞÑ rpx, 0qs„. ϕ is clearly a homomorphism w.r.t.
0, 1, `, ¨. Assume that x ‰ 0 and let y be s.t. x “ sy. Then px “ y and since
x ` 0 “ x “ sy “ y ` 1, ϕppxq “ rpy, 0qs„ “ rpx, 1qs„ “ rpx, 0qs„ ´ rp1, 0qs„. Thus, a
copy of M lies in R. ■

Note that any such ring has characteristic 0 because 0 ‰ sn0 for any n ě 1.

Definition 4.7.11. Let R be a commutative ring with unit and characteristic 0. R
induces a graph with the map x ÞÑ x ` 1. The connected components of this graph are
called comparison classes.

Definition 4.7.12. Let R be a commutative ring with 1. For any given natural number
d, we define Id “ tx P R | dy “ 0 Ñ xy “ 0u.

Lemma 4.7.13. For each natural number d, Id is an ideal of R.

Proof. We have to show that Id is an additive subgroup and that for any z P R it holds
that zId Ď Id.

Id is trivially closed under 0 and ´. To show the closure under `, consider two elements
x, x1 in Id and any element y s.t. dy “ 0. By distributivity, we have px`x1qy “ xy`x1y “
0 ` 0 “ 0.

1Note that this is basically the construction of Z
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For the second part, take any z P R, any x P Id, and any y P R s.t. dy “ 0. By
associativity, it holds that pzxqy “ zpxyq “ z0 “ 0. ■

Lemma 4.7.14. For each natural number d, for each element x P R we have x ” k pIdq
for some k P t0, . . . , d ´ 1u.

Proof. [She67, Lemma 2] ■

Lemma 4.7.15. Let f P Rrxs be a polynomial. If f has degree n and more than n roots
in one comparison class, then there is some natural number d s.t. the set of roots of f
are the union of certain equivalence classes modulo Id.

Proof. [She67, Lemma 3] ■

Lemma 4.7.16. Let M be any model of T5 `tB1´B7u with domain M and t some term.
Identify M with its embedding in the ring R. There is some polynomial f P M rxs s.t.
tpxq is interpreted as fpxq for almost all elements in M . The (finitely many) elements,
where the evaluation differs are all standard elements.

Proof. f is obtained by replacing every occurrence of px with x ´ 1. Note that x ´ 1
and px have the same evaluation if x ‰ 0. By the commutativity, associativity and
distributivity of ` and ¨, f is, w.l.o.g., a polynomial. If n is the largest number s.t. pnpt1q
appears in t, then f and t have a different evaluation, at most, at the first n successors
of 0. ■

Lemma 4.7.17. Let M be any model of T0 ` tB1, . . . , B7u and A any atom. If
M ⊨ Apsn0q for any n ě 0, then M ⊨ @x : Apxq.

Proof. Take any such model M and atom A. By Lemma 4.7.16, for every term t, there is
a polynomial gt s.t. tpxq “ gtpxq for almost all elements in M except for maybe finitely
many standard elements. Now take any atom Apxq ” t1 “ t2. Define the polynomial
f “ gt1 ´ gt2 . Then, for almost all x P M , except for maybe finitely many standard
elements, M ⊨ Apxq iff fpxq “ 0. By assumption, f has infinitely many roots in the
comparison class of 0. By Lemma 4.7.15, there is some d P N s.t. the set of roots of f is
the union of certain equivalence classes modulo Id. Fix this d. We claim that f has a root
in every equivalence class of Id and thus, f “ 0. Note that x ” x`d mod Id is equivalent
to d ” 0 mod d, which holds by definition. Thus, and since M ⊨ Ap0q ^ Apxq Ñ Apsxq,
we conclude that f has a zero in the equivalence classes of 0, 1, . . . , d ´ 1. By Lemma
4.7.14, these cover all the equivalence classes. Since M ⊨ Apxq iff fpxq “ 0 for any
non-standard element x, we have M ⊨ @x : Apxq. ■

Theorem 4.7.18. T5 ` tB1 ´ B7u $ ILiteral.
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Proof. Take any model M of T5 ` tB1 ´ B7u. By Lemma 4.7.16, for every term t, there
is a polynomial gt s.t. tpxq “ gtpxq for almost all elements in M except for maybe finitely
many standard elements.

It follows directly from Lemma 4.7.17 that M satisfies induction over atoms.

Now take any any negated atom Lpxq ” t1 ‰ t2 and assume that M ⊨ Lp0q ^ Lpxq Ñ
Lpsxq. Again, if f “ gt1 ´ gt2 , then M ⊨ Lpxq iff fpxq ‰ 0 for almost all elements, except
for maybe finitely many standard elements. If there is some y s.t. Lpyq does not hold,
then this y has to be a non-standard element and fpy ´ mq “ 0 for any m ě 0. Thus, f
has infinitely many zeros in the comparison class of y. By Lemma 4.7.15, there is some
d P N s.t. the set of roots of f is the union of certain equivalence classes modulo Id. In
particular, for every element y1 in the equivalence class of y it holds that fpy1q “ 0. By
Lemma 4.7.14, there is some k P t0, . . . , d ´ 1u s.t. k ” y mod Id. Note that x ” x ` d
mod Id is equivalent to 0 ” d mod Id, which holds by definition. Thus, fpk ` mdq “ 0
for any d P Z and f has infinitely many roots in the standard part of the model, which
contradicts our assumption of M ⊨ Lp0q ^ Lpxq Ñ Lpsxq. ■

Lemma 4.7.19. T5 ` ILiteral ⊬ IClause

Proof. By Lemma 4.7.7 it suffices to give a model of T5 ` ILiteral, where some C 1
d does

not hold.

We construct a suitable model. Take the ring Zru, vs and some prime number p P P.
Consider the factor ring R “ Zru, vs{p¨pu´vq. R is still a commutative ring with
1. For the domain of the model consider the following subset M “ trf s P R |
all coefficients of highest degree of f are non-negativeu. Note that in some equivalence
class rf s, there can be some polynomials that satisfy the conditions and some that do
not - we pick any class that contains at least one polynomial that satisfies the conditions.
We observe that M is closed under 0, 1, ` and ¨. Take any polynomial g P Zru, vs. Any
polynomial of the fort g ¨ p ¨ pu ´ vq ´ 1 cannot have only non-negative coefficients of
highest degree. It follows that r´1s R M . However, if rf s ‰ r0s, then rf s ´ r1s P M . The
model M is obtained by taking M as the domain and defining the operations canonically.
By Lemma 4.7.10, M is a model of T5 ` tB1, . . . , B7u. By Theorem 4.7.18, M is a model
of ILiteral.

Now consider x “ y “ rus and z “ rvs. Then prus “ rpus “ rpvs “ prvs, but prus `
rksqrus “ rpu ` kqus ‰ rpu ` kqvs “ prus ` rksqrvs for any k P t0, . . . , p ´ 1u as this would
imply that pu ` kqpu ´ vq is divisible by p, which cannot be the case. Thus, C 1

p does not
hold in M. ■

Lemma 4.7.20. T5 ` ILiteral $ IDClause

Proof. Take any model M of T5 ` ILiteral with domain M . By Lemma 4.7.10, we know
that M extends to a commutative ring with 1. and by Lemma 4.7.16 we know that for
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every term t, there is a polynomial gt s.t. gpxq and tpxq have the same interpretation for
almost all elements in M, except for maybe finitely many standard elements.

Take any dual clause Dpxq ” L1 ^ ¨ ¨ ¨ ^ Ln. Assume that M ⊨ Dp0q ^ Dpxq Ñ Dpsxq
If any of the Li is an atom, then M ⊨ Lipsn0q for any n ě 0 and by Lemma 4.7.17,
M ⊨ @x : Lipxq. Thus, D Ø D1, with D1 being obtained by deleting Li from D. We
can therefore assume that every literal in D is a negated atom Lipxq ” t1

i ‰ t2
i . For any

i ď n, let fi be the associated polynomial s.t. M ⊨ Lipxq iff fpxq “ 0 for almost all x
except for maybe finitely many standard elements.

Assume that there is some non-standard element y P M s.t. M ⊭ Dpyq. Then, M ⊭
Dpy ´ mq for any m ě 0. For any of these infinitely many y ´ m, one of the Li cannot
hold. Thus, there is some Li with M ⊭ Lipy ´ mq for infinitely many m ě 0. This is
equivalent to f having infinitely many roots in the comparison class of y. By Lemma
4.7.15, there is some d P N s.t. the set of roots of f is the union of certain equivalence
classes modulo Id. Pick any root and call it y1. By Lemma 4.7.14, y1 ” k mod Id for
some k P t0, . . . , d ´ 1u. Since k ” k ` md for any m P Z, we obtain that fipk ` mdq “ 0
for any m P Z. In particular, fi has infinitely many roots in the standard part of M,
which contradicts our assumption that M ⊨ Dp0q ^ Dpxq Ñ Dpsxq. Thus, such a y
cannot exist and M ⊨ @x : Dpxq. ■
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CHAPTER 5
General Inductive Data Types

with a Size Function

We now take an arbitrary general inductive data type as defined in Chapter 3. In contrast
to Chapter 3, we will consider, for this sort, constructors only. We will add another sort
Nat to this data type, to mimic the natural numbers and add a size function to connect
the sorts. This will allow us, to reduce the level of induction we need. In analogy to
[Sho58] and [She63], we give a simple alternative axiomatizations of open induction in
this context.

This chapter is now closer to reality as one rarely considers only one inductive data type,
but usually combines them.

About the outline of the chapter: We start by defining, what we mean with induction in
the context of two inductive data types. Then, we will prove some general lemmas about
these notions of induction.

5.1 General Frame
We start similar as in Section 3.1: We consider a (possibly) many-sorted logic with the
sorts D, T1, . . . , Tn. The first part of our language consists of the constructors c1, . . . , ck,
where each of the ci has arity mi and is a function symbol of type τ1

i ˆ ¨ ¨ ¨ ˆ τmi
i Ñ D

with τ l
i P tD, T1, . . . , Tnu.

The definition of static and dynamic constructors is taken from Section 3.1. In order
to define induction, we need some well-founded order relation on the elements of the
standard-model. This translates to the restriction that there is at least one static
constructor ci.
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Without loss of generality, we assume that for every constructor ci the first ni (possibly
0) input-sorts are D. The other sorts Tl are ordered by their index i.
The following will be the first part of our base axioms (cf. Section 3.1):

cipxq ‰ cjpyq for all i ‰ j, 1 ď i, j ď k DisjointnessDi,j

cipxq “ cipyq Ñ x “ y for all 1 ď i ď k InjectivityINJi

Now we add another sort Nat and enrich our language with the symbols 0 P Nat, s :
Nat Ñ Nat, ` : Nat ˆ Nat Ñ Nat, l : D Ñ Nat. We add the following to our base axioms
for the sort Nat (cf. Section 4.1):

spxq ‰ 0A1
sx “ sy Ñ x “ yA3a
x ` 0 “ xA4
x ` spyq “ spx ` yq ‰ 0A5

Furthermore, we need to axiomatize the size-function l:

E1 lpcipxqq “ 0 for any static constructor ci

E2 lpcipX1, . . . , Xj , xqq “ spřj
i“1 lpXiqq for any dynamic constructor, where exactly

the first j input-sorts of ci are D

Those are all the base axioms. We also need a definition for our case distinction:

Definition 5.1.1. A constructor ci : τ1
i ˆ ¨ ¨ ¨ ˆ τmi

i is essentially unary iff exactly one
of the τ l

i is D. Otherwise, it is not essentially unary.

Lastly, we define some auxiliary axioms, which we will need later. Note that these axioms
are not chosen arbitrarily. The ones relating to arithmetics were used in Chapter 4 to give
an alternative axiomatization of open induction in the context of arithmetics. The ones
concerning the data type D were used in Chapter 3 to give an alternative axiomatization
of open induction in the general context. Using them as a starting point, in order to find
an alternative axiomatization of open induction seems like a logical step. In fact, we will
see that they suffice.

X ‰ tpXq for any t P S (Acyclicity for D)Gt
kł

i“1
Dy : X “ cipyq (Surjectivity for D)SUR

x ‰ snx for any n ě 1 (Acyclicity for Nat)Bn

x “ 0 _ Dy : x “ sy (Surjectivity for Nat)B1a
x ` y “ y ` xB2
x ` py ` zq “ px ` yq ` zB3
x ` y “ x ` z Ñ y “ zB4
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Regarding the notation, we define a shorthand: Instead of writing x`x`¨ ¨ ¨`x (n-times),
we write nx. Since we do not have the symbol ¨ in our language, this should not lead to
any misunderstanding.

We overload the name of our language and base theory:

Definition 5.1.2. If there are essentially unary constructors only, then L0 “ tc1, . . . , ckuY
t0, s, lu and T0 “ tD1i,j | 1 ď i, j ď k, i ‰ ju Y tD2i | 1 ď i ď ku Y tA1, A3a, E1, E2u.

If there is at least one constructor, which is not essentially unary, then L0 “ tc1, . . . , ckuY
t0, s, l, `u and T0 “ tD1i,j | 1 ď i, j ď k, i ‰ juYtD2i | 1 ď i ď kuYtA1, A3a, A5, A5, E1, E2u

Note that the definition of L0 is perfectly fine in both cases as we do not need ` if there
are only essentially unary constructors.

5.1.1 The Scheme of Induction
In this case, with two sorts that satisfy some form of induction (at least in their respective
standard model), it is a priori unclear how the scheme of induction looks like. We present
two possibilities, that we will deal with in the following sections.

The first possibility, is to take the two single schemes of induction and take the union of
the induced sets of axioms. In that case, we have two left-hand-sides for the respective
axiom of induction:

kľ
i“1

¨̊
˚̋@x1, . . . , xmi

¨̊
˚̋ ľ

lPt1,...,miu
τl

i
“D

ϕpxl, zq Ñ ϕpcipx1, . . . , xmiq, zq‹̨‹‚‹̨‹‚LHSDpϕpxqq

ψp0q ^ p@x : Aqpψpxq Ñ ψpsxqqLHSNatpψpxqq
The schemes of induction now have the following form:

LHSDpϕpx, zqq Ñ p@X : DqpϕpX, zqqIDpϕq
LHSNatpψpx, zqq Ñ p@x : Aqpψpx, zqqINatpψq

The formulas ϕ and ψ potentially contain parameters z, which we will not explicitly
mention in the following as from now on every formula contains parameters if not stated
otherwise.

In the subscript of each scheme, it says, which sort it applies to.

Definition 5.1.3. We define I2 “ INat ` ID to be the union of the two single schemes of
induction.
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5. General Inductive Data Types with a Size Function

It should be stated that I2 is the standard approach in the literature. However, there is
a problem with this form of induction if we restrict it to open formulas: Assume that
we want to show that T $ p@X : Dqp@x : AqpF px, Xqq for some base theory T and open
formula F . We could apply the single schemes sequentially. The problem, however, is
that after the first application, we obtain @x : ϕpX, xq, which is not open anymore.

This leads to the second option. Let C be the set of all static constructors and C 1 the
set of all dynamic constructors. We define a new left-hand-side:

ľ
ciPC

@x : ϕpcipxq, 0, zq ^
ľ

ciPC1

¨̋
@x

¨̋ ľ
τk

i “D
ϕpxk, u, zq Ñ ϕpx1, spuq, zq ^ ϕpcipxq, u, zq‚̨̨‚

LHS1pϕpx, X, zqq

Then define the scheme of induction:

LHS1pϕpx, X, zqq Ñ p@X : Dqp@x : Aqpϕpx, X, zqqI1pϕq
This scheme introduces two universal quantifiers at once and thus, avoids the aforemen-
tioned problem.

The following observation seems obvious, but needs to be formulated nonetheless:

Observation 5.1.4. For any language L and base theory T , it holds that if some formula
ϕ can be shown in T ` I2pΓq, where Γ P tIAtom, ILiteral, IClause, IDClause, IOpenu,
then ϕ can be shown in T ` I1pΓq.

5.1.2 General Lemmas
We will now present some general lemmas that will come in handy later. Consider the
following example as motivation:

Example 5.1.5. Consider the language t0, s, c1, c2, l, `u and the sorts D and Nat. 0 P
Nat, s : Nat Ñ Nat, ` : Nat ˆ Nat Ñ Nat, c1 P D, c2 : D Ñ D, l : D Ñ Nat. Let
T “ tD11,2, D21, A1, A3a, A4, A5, E1, E2u.

The standard model M of this theory is two copies of N - one for Nat and one for D.
Consider any atom Bpx, Xq in this standard model. There is some affine function f : Nˆ
N Ñ Z with integer coefficients s.t. M ⊨ Bpn, mq iff fpn, mq “ 0 for all natural numbers
n, m. Let Sf “ tpn, mq P N2 | fpn, mq “ 0u be the set of solutions of f . We identify f
with its extension in RRˆR. The set Pf “ tpx, y, fpx, yqq | px, yq P R2u now describes
a plane in R3. If there are solutions of B in M of the form pl, cq, pl, cq, pa, mq, pb, mq
with a ‰ b and l ‰ n, then Pf “ tpx, y, 0q | px, yq P R2u, f is constantly 0 and
M ⊨ p@x : Natqp@X : DqpBpx, Xqq.

The idea of the following lemmas is to abstract the observation of the example above
and use it, to prove that only trivial atoms have many solutions in the standard part of
the models, we consider.
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Lemma 5.1.6. Let pAiqn
i“1 be a family of subsets of N ˆ N s.t.

Ťn
i“1 Ai “ t0, . . . , nu2.

Then there is some Ai and a, b, c, x, y, z ď n s.t. a ‰ b, x ‰ y and tpa, zq, pb, zq, pc, xq, pc, yqu Ď
Ai.

Proof. Fix such sets pAiqn
i“1 and assume that there is no Ai and a, b, c, x, y, z with the

desired properties. We fix the terminology, that two points a, b lie on a line if either the
first or the second coordinate are the same (i.e. we ignore diagonals). We show, that under
these assumptions - for each Ai there is at most one line with two points on it - every Ai

contains at most n ` 1 elements. Fix any Ai and assume that Ai contains n ` 2 elements
of the form pul, vlq. Since there are n ` 1 rows and n ` 1 columns, by the pigeonhole
principle, there have to be u and v s.t. there are elements pu, v0q, pu, v1q, pu0, vq, pu1, vq
in Ai with v0 ‰ v1 and u0 ‰ u1. Thus, for any Ai it holds that |Ai| ď n ` 1.

It follows that | Ťn
i“1 Ai| ď npn ` 1q ă pn ` 1q2 “ |t0, . . . , nu2|, which contradicts

our assumptions. Thus, there exists some Ai and some a, b, c, x, y, z with the desired
properties. ■

Lemma 5.1.7. Assume that there is at least one dynamic constructor ci. Let L Ě
tc1, . . . , ck, su be a language, T Ě tA1, A3au Y tD1i,j | 1 ď i, j ď k, i ‰ ju Y tD2i | 1 ď
i ď ku a theory and M a model of T . Let F px, Xq ” F1 _ ¨ ¨ ¨ _ Fn be a disjunction of
other formulas. If M ⊨ F pa, Aq for all standard elements a P NatM and A P DM, then
there is some Fi and some a, b, c P NatM and A, B, C P DM with the following properties:

1. a “ snb for some n ‰ 1

2. A “ tpBq for some non-constant term t that is not the identity

3. M ⊨ Fipa, Cq ^ Fipb, Cq ^ Fipc, Aq ^ Fipc, Bq

Proof. First, fix some instance c1 “ cjpaq for some static constructor cj . Now, fix the
dynamic constructor ci. We define as a shorthand cpEq “ cipE, bq, where E is of sort
D, every other occurrence of some variable of sort D is substituted with c1, and the rest
of b is some tuple of elements of appropriate sorts. Then, by A3a and D2i, it holds
that sn0 “ sm0 ñ n “ m and cnpc1q “ cmpc1q ñ m “ n. Thus, there is a natural
bijection between N ˆ N and tpsn0, cmpc1qq | n, m P Nu. Since all these elements sn0
and cnpc1q are standard elements, M ⊨ F psn0, cmpc1qq for any n, m P N. Define the
function f : t1, . . . , nu Ñ PpN ˆ Nq : i ÞÑ tpn, mq P N ˆ N | M ⊨ Fipsn0, cmpc1qqu.
By assumption, N ˆ N “ Ťn

i“1 fpiq and thus, t0, . . . , nu2 “ t0, . . . , nu2 X Ťn
i“1 fpiq “Ťn

i“1
`
fpiq X t0, . . . , nu2˘

. Now, we apply Lemma 5.1.6 and obtain that there is some
i P t1, . . . , nu s.t. fpiq X t0, . . . , nu2 contains elements pj, rq, pl, rq, pk, pq, pk, qq with
j ‰ l and p ‰ q. W.l.o.g., j ą l and p ą q. By definition, this means that M ⊨
Fipsj0, crpc1qq ^ Fipsl0, crpc1qq ^ Fipsk0, cppc1qq ^ Fipsl0, cqpc1qq. Setting a “ sj0, b “
sl0, c “ sk0, A “ cppc1q, B “ cqpc1q, C “ crpc1q proves the claim. ■

63



5. General Inductive Data Types with a Size Function

Lemma 5.1.8. Assume that there is at least one dynamic constructor ci. Let L Ě
tc1, . . . , ck, su be a language, T Ě tSUR, B1au Y tGt | t P Su Y tBn | n ě 1u a theory and
M a model of T ` I2pOpenq. Let F px, Xq ” D1 _ ¨ ¨ ¨ _ Dn be a formula in DNF s.t.
one of the dual clauses Di ” L1 ^ ¨ ¨ ¨ ^ Lk consists of negated atoms only. Assume that
M ⊨ LHS1pF q and that there are non-standard elements a P NatM and A P DM s.t.
M ⊭ F pa, Aq. Then, there is some negated atom Lj in Di and some a, b, c P NatM and
A, B, C P DM with the following properties:

1. a “ snb for some n ‰ 1

2. A “ tpBq for some non-constant term t that is not the identity

3. M ⊭ Ljpa, Cq _ Ljpb, Cq _ Ljpc, Aq _ Ljpc, Bq

Proof. Our goal will be to apply Lemma 5.1.6. First, we define partial function q :
DM ãÑ DM on the set of all B P DM s.t. M ⊭ F pa, Bq. Fix such a B. Note that the set
QB “ tC P DM | M ⊭ F pa, Cq, there is some ci and c s.t. B “ cM

i pC, cqu is not empty
since M ⊨ LHS1pF q and M ⊨ SUR. For any standard element E P DM consider the
formula F 1pxq ” F px, Eq. It holds that M ⊨ LHS1pF 1q and thus, the ones of I2. Since
M ⊨ I2pOpenq, we conclude that M ⊨ @x : F px, Eq. In particular, M ⊨ F pa, Eq for any
standard element E and the set QB contains only non-standard elements. Now define
qpBq by choosing any element from QB.

Analogously, we define the partial function p : NatM ãÑ NatM on the set of all B P DM

with M ⊭ F pb, Aq. Let Pb “ tc P NatM | M ⊭ F pc, Aq^b “ scu. For the same reasons as
above Pb is not empty and contains only non-standard elements. Define ppbq by choosing
some element in Pb.

From Gt and Bn, it follows that pna ‰ a and qna ‰ a for any n ě 1. Assume
that there is some n, m P N s.t. M ⊨ F ppna, qmAq. Then, since M ⊨ LHS1pF q,
M ⊨ F pa, qmAq, which contradicts the definition of q. Thus, for every n, m P N, it
holds that M ⊭ F ppna, qmAq. Since, we work in a model and every parameter is fixed,
we obtain M ⊨ ␣F ppna, qmAq and, by classical logic, M ⊨ ␣Dippna, qmAq. Define
the function f : t1, . . . , ku Ñ PpN ˆ Nq : i ÞÑ tpn, mq P N ˆ N | M ⊨ ␣Lippna, qmAqu.
By assumption,

Ťk
i“1 fpiq “ N ˆ N and t0, . . . , ku2 X Ťk

i“1 fpiq “ t0, . . . , ku2. We
apply Lemma 5.1.6 and obtain that there is some j s.t. t0, . . . , ku2 X fpjq contains
elements k, l, m, r, s, t with pk, tq, pl, tq, pr, mq, ps, mq P fpjq. This means that M ⊭
Ljppka, qtAq _ Ljppla, qtAq _ Ljppra, qmAq _ Ljppsa, qmAq, which proves the claim. ■

Definition 5.1.9. Let L Ě tc1, . . . , cn, 0, su be a language and T a theory over L. We
say that T has the anchor property if the following implication holds: Take any atom
Apx, Xq with the variables x P Nat and X P D and any model M of T . Assume that there
are elements e, f, g P NatM and E, F, G P DM s.t. a “ snb, A “ tpBq, where t contains
constructors only and A ‰ B, and M ⊨ Ape, Gq ^ Apf, Gq ^ Apg, F q ^ Apg, Gq. Then, it
holds that M ⊨ @x@X : Apx, Xq.
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Lemma 5.1.10. Let L Ě tc1, . . . , cn, 0, su be a language with a least one dynamic
constructor ci and and T Ě tA1, A3a, SUR, B1au ` tD1i,j | 1 ď i, j ď k, i ‰ ju ` tD2i |
1 ď i ď ku ` tGt | t P Su ` tBn | n ě 1u a theory with the anchor property. Then
T $ I2pOpenq.

Proof. We need to consider two induction schemes: For Nat and for D. Take any model
M of T . Now, we make a case distinction:

1. Take any formula F pxq ” D1 _ ¨ ¨ ¨ _Dn in DNF and assume that M ⊨ F p0q ^F pxq Ñ
F psxq. Assume that every dual clause Di contains some positive Ai and consider the
formula F 1 ” A1 _ ¨ ¨ ¨ _ An. By Lemma 5.1.7, there are elements l, m, n, L, M, N and
some atom Ai s.t. M ⊨ Aipl, Nq ^ Aipm, Nq ^ Aipn, Lq ^ Aipn, Mq and l “ skn, L ‰
M, L “ tpMq. By the anchor property, M ⊨ @x@X : Aipx, Xq. Note that the X in
Aipx, Xq does not actually appear anywhere. There are two cases:

• If Di ” Ai, then M ⊨ @x : F pxq and we are done

• If Di ” Ai ^ D1
i, then M ⊨ F Ø G, where G is obtained from F by replacing Di

with D1
i. We can restart the procedure with G.

Thus, w.l.o.g., we can assume that there is some dual clause Di ” L1 ^ ¨ ¨ ¨ ^ Lk that
contains negated atoms only. Assume that there is some literal Lj with M ⊨ @x : ␣Ljpxq.
There are two cases:

• If F ” Di, then M ⊨ F Ø K, which contradicts our assumption of M ⊨ F p0q
• If F ” Di _ G, then M ⊨ F Ø G and we can restart the procedure with G

Thus, w.l.o.g., we can assume that for every Lj in Di, it holds that M ⊨ Dx : Ljpxq. We
define the partial function p : NatM ãÑ NatM on the set S “ tn P NatM | M ⊭ F pnqu.
Pick any element m P S. m has to be a non-standard element and in particular m ‰ 0.
By B1a, the set Pm “ tn P NatM | sn “ mu is not empty. By A3a, Pm contains exactly
one element n. Define ppmq “ n. Note that M ⊭ F pnq since M ⊨ F pxq Ñ F psxq. Thus,
it makes sense to write pkm for the k-th application of p on m. By Bn, l ‰ k implies that
plm ‰ pkm. By the pigeonhole principle, there is some Lj and l ‰ n, 1 ď l, n ď k `1 with
M ⊨ ␣Ljpplmq^␣Ljppnmq. Since X does not appear in Lj , M ⊨ Ljpm, Aq Ø Ljpm, Bq
for any A, B P DM. In particular, the conditions of the anchor property are triggered
and M ⊨ @x : ␣Ljpxq. This, however, contradicts our assumption above. Thus, such an
m P NatM does not exist.

2. Take any formula F pXq ” D1 _ ¨ ¨ ¨ _ Dn in DNF and assume that M ⊨ LHSDpF q.
For the same reasons as above, we can assume w.l.o.g. that there is some dual clause
Di ” L1_¨ ¨ ¨_Lk that consists of negated atoms only and M ⊨ DX : LjpXq for any j. We
define a partial function q : DM ãÑ DM on the set S1 “ tN P DM | M ⊭ F pNqu. Take any
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element A P S1. By SUR, the set QA “ tB P DM | There is some ci and tuple y s.t. A “
cipB, yu is not empty. Since M ⊨ LHSDpF q, there is some element B P QA with
M ⊭ F pBq. Define qpAq “ B. Again, it makes sense to write qkpAq for the k-th
application of q. By Gt, it holds that k ‰ l implies that qkpAq ‰ qlpAq. Now assume
that there is in fact some A P S1. By the pigeonhole principle, there is some Lj in Di

and some k ‰ l P N with M ⊭ LjpqkpAqq _ LjpqlpAqq. Again, the anchor property is
triggered and M ⊨ @X : ␣LjpXq, which contradicts our assumption. Thus S1 “ H. ■

Theorem 5.1.11. Let L Ě tc1, . . . , cn, 0, su a language with a least one dynamic con-
structor ci and and T Ě tA1, A3a, SUR, B1au ` tD1i,j | 1 ď i, j ď k, i ‰ ju ` tD2i |
1 ď i ď ku ` tGt | t P Su ` tBn | n ě 1u a theory with the anchor property. Then
T $ I1pOpenq.

Proof. First, note that by Lemma 5.1.10, Γ $ I2pOpenq.
Now, take any model M of T and any formula F px, Xq ” D1 ^ ¨ ¨ ¨ ^ Dn in DNF.
Assume that M ⊨ LHS1pF q. If every dual clause Di contains an atom Ai, then
consider the formula G “ A1 _ ¨ ¨ ¨ _ An. Clearly, $ F Ñ G. Thus, M ⊨ Gpa, Aq
for any standard two elements a P NatM and A P DM. Lemma 5.1.7 is applicable
and there is some Ai and elements b, c, e P NatM and B, C, E P DM with b “ snc,
B “ tpCq, B ‰ C and M ⊨ Aipb, Eq ^ Aipc, Eq ^ Aipe, Bq ^ Aipe, Cq. By the anchor
property, M ⊨ @x@X : Aipx, Xq. We make a case distinction:

• If Di “ Ai, then M ⊨ @x@X : F px, Xq and induction over F holds

• If Di “ Ai ^ D1
i, then M ⊨ F Ø F 1, where F 1 is obtained from F by replacing Di

with D1
i. We can restart with F 1

Thus, w.l.o.g., we can assume that there is one dual clause Di, which only contains
negated atoms. Now fix this Di ” L1 ^ . . . Lk. Assume that there is some Lj with
M ⊨ @x@X : ␣Ljpx, Xq. We make another case distinction:

• If F ” Di, then M ⊨ @x@X : ␣F px, Xq, which is contradictory to our assumption

• If F ” Di _ F 1, then M ⊨ F Ø F 1 and we can restart with F 1

Thus, w.l.o.g., we can assume that for every literal Lj , M ⊨ DxDX : Ljpx, Xq. Assume that
there are some elements a P NatM and A P DM s.t. M ⊨ ␣F pa, Aq. Then, Lemma 5.1.8
is applicable and we obtain some Lj and elements b, c, e P NatM and B, C, E P DM with
b “ snc, B “ tpCq, B ‰ C and M ⊨ ␣Ljpb, Eq^␣Ljpc, Eq^␣Ljpe, Bq^␣Ljpe, Cq. Note
that ␣Lj is an atom and by the anchor property, we obtain that M ⊨ @x@X : ␣Ljpx, Xq,
which contradicts our assumption. Thus, such elements a P NatM and A P DM cannot
exist and M ⊨ @x@X : F px, Xq. ■
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5.2 Useful models
We will now define some models, which will prove useful in the later parts of this chapter.
One model will be for the case, where there are only essentially unary constructors and
two will be for the case, where there are not essentially-unary constructors as well.

5.2.1 The model Mu8
In this subsection, assume that every dynamic constructor is essentially unary1. We fix
the language L0 and the base theory T0:

Definition 5.2.1. L0 “ tc1, . . . , cku Y t0, s, lu and T0 “ tD1i,j | 1 ď i, j ď k, i ‰
ju Y tD2i | 1 ď i ď ku Y tA1, A3a, E1, E2u

Note that the definition of L is perfectly fine as we do not need ` because every dynamic
constructor is essentially unary.

Now, we define the model Mu8:

Definition 5.2.2. We start with the interpretation of the sorts:

• T
Mu8
i “ tiu

• DMu8 “ TpT Mu8
1 , . . . , T

Mu8
n q

• NatMu8 “ N Y t8u

The constructors are interpreted canonically:

• cipaqMu8 “ cipaq for any static constructor ci

• c
Mu8
i pt, a2, . . . , amiqq “ cipt1, a2 . . . , amiq for any dynamic constructor ci

• 0Mu8 “ 0

• sMu8n “ n ` 1, sMu88 “ 8

The size function l is interpreted according to E1 and E2:

• lMu8pcMu8
i paqq “ 0 for any static constructor ci

• lMu8pcipt, a2, . . . , amiqq “ sMu8 lMu8ptq for any dynamic constructor ci

Observation 5.2.3. Mu8 ⊨ T0

Observation 5.2.4. Mu8 ⊭ x ‰ snx for any n ě 1
1The u in Mu8 comes from unary
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5.2.2 The model M8
In this subsection assume that there is at least one constructor, which are not essentially
unary. Now, we define the model M8:

Definition 5.2.5. We start with the interpretation of the sorts:

• T M8
i “ tiu

• DM8 “ TpT M8
1 , . . . , T M8

n q
• NatM8 “ N Y t8u

The constructors are interpreted canonically:

• cM8
i paq “ cipaq for any static constructor ci

• cM8
i pt1, . . . , tki

, aki`1, . . . , amiq “ cipt1, . . . , tmiq for any dynamic constructor ci,
where exactly the first ki inputs are of sort D

• 0M8 “ 0

• sM8n “ n ` 1, sM88 “ 8

The symbol ` is interpreted as in N8:

• pn ` mqM8 “ n ` m

• pn ` 8qM8 “ p8 ` nqM8 “ 8

The size function l is interpreted according to E1 and E2:

• lM8pcipaqq “ 0 for any static constructor ci

• lM8pcipt1, . . . , tki
, aki`1, . . . amiqq “ sM8pplpt1qq ` ¨ ¨ ¨ ` lptki

qqM8 for any dynamic
constructor ci, where exactly the first ki inputs are of sort D

Observation 5.2.6. M8 ⊨ T0

Observation 5.2.7. M8 ⊭ x ‰ snx for any s ě 1

Observation 5.2.8. In M8, ` is associative and commutative. Thus, for any term
tpx, Xq of sort Nat, there is another term spx, Xq ” nlpXq ` mx ` s1 s.t. neither x nor
X appear in s1 and M8 ⊨ p@x : Natqp@X : Dqptpx, Xq “ spx, Xqq. Therefore, we can
assume that any term of sort Nat has this form.

Lemma 5.2.9. M8 ⊨ I1pAtomq
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Proof. Take any atom Apx, Xq ” t1 “ t2 and assume that M ⊨ LHS1pAq. There are
two cases:

1. Both terms ti are of the sort D. Then, x cannot appear in A. By construction of M8,
induction on the sort D and thus, on A, holds.

2. Both terms are of the sort Nat. W.l.o.g., assume that each ti has the form nilpXq `
mix ` t1

i for some natural numbers ni, mi. Fix some static constructor ci and some
dynamic constructor cj . We define B “ cM8

i pbq for some tuple b and C “ cM8
j pcq

for some tuple c, where each element in c of sort D is B. Note that lM8pBq “ 0 and
lM8pCq “ s0. By assumption, M8 ⊨ Ap0, Bq ^ Ap0, Cq ^ Aps0, Bq. Thus, M8 ⊨ t1

1 “
n10 ` m10 ` t1

1 “ t1p0, Bq “ t2p0, Bq “ n20 ` m20 ` t1
2 “ t1

2. Define t1 ” t1
1. There

is now another case distinction: If t1M8 “ 8, then M ⊨ @x@X : Apx, Xq since 8
absorbs everything. Assume that t1M8 ‰ 8. Note that in the standard part of N8
cancellation w.r.t. ` holds. Then, m1s0 ` t1 “ t1ps0, Bq “ t2ps0, Bq “ m2s0 ` t1. By
cancellation, we obtain m1s0 “ m2s0. Repeated application of cancellation and A1 yields
that m1 “ m2 “ m. Lastly, n1s0 ` m0 ` t1 “ t1p0, Cq “ t2p0, Cq “ n2s0 ` m0 ` t1.
Cancellation yields, n1s0 “ n2s0 and thus n1 “ n2 “ n. Thus, A is an identity and
M8 ⊨ @x@X : Apx, Xq. ■

5.2.3 The model Ma,b

In this subsection assume that there is at least one constructor, which are not essentially
unary. We adapt the model Nta,bu, which is again based on [Het24, page 38]:

Definition 5.2.10. We start with the interpretation of the sorts:

• T
Mta,bu
i “ tiu

• DMta,bu “ TpT Mta,bu
1 , . . . , T

Mta,bu
n q

• NatMta,bu “ N Y ta, bu

The constructors are interpreted canonically:

• c
Mta,bu
i paq “ cipaq for any static constructor ci

• c
Mta,bu
i pt1, . . . , tki

, aki`1, . . . , amiq “ cipt1, . . . , tmiq for any dynamic constructor ci,
where exactly the first ki inputs are of sort D

• 0Mta,bu “ 0

• sMta,bun “ n ` 1, sMta,bua “ a, sMta,bub “ b

` is interpreted according to the following table:

The size function l is interpreted according to E1 and E2:
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+ 0 1 2 . . . a b
0 0 1 2 . . . b a
1 1 2 3 . . . b a
2 2 3 4 . . . b a
...

...
...

... . . . ...
...

a a a a . . . a a
b b b b . . . b b

• lM8pcipaqq “ 0 for any static constructor ci

• lM8pcipt1, . . . , tki
, aki`1, . . . amiqq “ sM8pplpt1qq ` ¨ ¨ ¨ ` lptki

qqM8 for any dynamic
constructor ci, where exactly the first ki inputs are of sort D

Observation 5.2.11. Ma,b ⊨ T0

Observation 5.2.12. Ma,b ⊭ x ` y “ y ` x

5.3 Essentially Unary Constructors Only
In this section, we consider the case that every dynamic constructor of D is unary.

Now, before we dive into the scheme of induction, we will have a closer look at our theory
combined with our auxiliary axioms.

Definition 5.3.1. We define Γ “ T0 ` SUR ` B1a ` tGt | t P Su ` tBn | n ě 1u

It will be part of the next theorem that, analogously to [Sho58] and [She63], Γ is, in fact,
an alternative axiomatization of open induction in this context:

Theorem 5.3.2.

T 1
0 « T 1

0 ` I2pAtomq T 1
0 « T 1

0 ` I1pAtomq
ň T 1

0 ` I2pLiteralq ň T 1
0 ` I1pLiteralq

« T 1
0 ` I2pOpenq « T 1

0 ` I1pOpenq
« Γ « Γ

This yields the following Hasse Diagram:

T0 « T0 ` I2pAtomq « T0 ` I1pAtomq

T0 ` I2pLiteralq « T0 ` I1pLiteralq « T0 ` I2pOpenq « T0 ` I1pOpenq
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Observation 5.3.3. Let tpXq be a term of sort Nat that contains X. Then, T0 $ tpXq “
snplpXqq for some n P N.

Lemma 5.3.4. Take any model M of Γ and any atom Apx, Xq ” t1 “ t2. If there are
elements B, C, D P DM and b, c, d P NatM s.t. M ⊨ Apb, Dq^Apc, Dq^Apd, Bq^Apd, Cq,
b “ snc for some n ě 1 and B “ tpCq for some term t ı X, then M ⊨ @x@X : Apx, Xq.
In other words, Γ has the anchor property.

Proof. There are five cases:

1. If A contains neither x nor X, we are done.

2. Assume that A contains X on exactly one side, say t1, and that there there are
two elements B ‰ C with B “ tpCq and M ⊨ ApBq ^ ApCq. There are two cases: If
both terms are of sort Nat, then, w.l.o.g., t1 has the form skplpXqq and tM

2 P NatM

is constant in X. Note that M ⊨ lpBq “ skplpCqq for some k ě 1. From A3a and
M ⊨ snplpCqq “ sn`lplpCqq, it follows that M ⊨ lpCq “ skplpCqq, which contradicts Bk.
In the other case - both terms are of the sort D - it follows similarly that there is a cycle
in DM, which contradicts Gt.

3. Assume that A contains x on exactly one side, say t1, and that there are elements
b ‰ c with b “ snc and M ⊨ Apbq ^ Apcq. W.l.o.g., t1 has the form skx and tM

2 is
constant in x. It follows that M ⊨ skc “ sn`kc. From A3a it follows that M ⊨ c “ skc,
which contradicts Bn.

4. Assume that A contains X on both sides and that there are B ‰ C P DM with
B “ tpCq for some non-constant term t and M ⊨ ApBq ^ ApCq. There are two cases: If
A is of the sort D, then both t1 and t2 contain only the constructors ci. Since M does
not contain any cycles, it follows from 3.2.6 that M ⊨ @X : t1pXq “ t2pXq. Assume that
A is of the sort Nat. Then, w.l.o.g., t1 and t2 have the form sniplpXqq. It follows from
A3a that n1 “ n2. Thus, M ⊨ p@X : Dqt1pXq “ t2pXq.
5. Assume that A contains x on both sides and there are b, c P NatM with b “ snc and
M ⊨ Apbq ^ Apcq. Then both ti have the form snix. Since M does not contain any
cycles, it follows from 3.2.6 that M ⊨ p@x : Natqpt1pxq “ t2pxqq. ■

5.3.1 Two Schemes of Induction
Now, we consider a concrete scheme of induction, namely, the two single schemes for
arithmetics and general data types.

Lemma 5.3.5. It holds that

• T0 ` I2pLiteralq $ x ‰ snx

• T0 ` I2pLiteralq $ x “ 0 _ Dy : x “ sy

• T0 ` I2pLiteralq $ SUR
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Proof. This follows directly from Theorem 3.1.8 and Section 4.6. ■

The crucial Lemma is the following:

Lemma 5.3.6. T0 ` I2pLiteralq $ Gt for any t P S.

Proof. Assume that there is some t P S and X s.t. X “ tpXq. Then, since every t
is not identical to X and there are only unary constructors, there is some m ě 1 s.t.
lpXq “ smplpXqq, which contradicts Lemma 5.3.5 ■

Corollary 5.3.7. T0 ` I2pLiteralq $ Γ

Lemma 5.3.8. Γ $ I2pOpenq

Proof. This follows directly from Lemma 5.3.4 and Lemma 5.1.10. ■

Lemma 5.3.9. T0 $ I2pAtomq

Proof. Take any model M of T0. Fix the atom Apx, Xq with the variables x of sort Nat
and X of sort D. We want to show that for any b P NatM and B P DM, the respective
scheme of induction works for Apb, Xq and Apx, Bq. Note that we can restrict ourselves to
the case, where there is some occurrence of the function symbol l in A. Assume that there
is not such occurrence. Then, A is a well-formed atom in either t0, su or tc1, . . . , cku. By
Lemma 3.4.4, there are proofs of the respective induction axiom, instantiated with Apb, Xq
and Apx, Bq, in either tA1, A3au or tD1i,j | i ‰ j, 1 ď i, j ď ku Y tD2j | 1 ď j ď ku,
which clearly remains valid in T0.

Now, assume that l occurs somewhere in A. Both terms have to be of the sort Nat. We
make a case distinction:

1. If we consider the unary atom Apx, Bq, then x cannot appear inside l. Thus, we can
replace every subterm of the form lpsiq with some parameter zi. We obtain an equivalent
atom A1 that does not contain l. Thus, induction over A holds.

2. Now, let us consider the atom Apb, Xq. There are three cases:

2a. If X does not appear in A, we are done.

2b. If X appears on exactly one side, say t1, then modulo T0, t1 can be written as snlpXq
for some n ě 0. tM

2 is constant. Since, t1 is clearly not constant in the standard part of
the model, the left hand side of the induction scheme cannot hold.

2c. If X appears on both sides of A, then both terms can be written, modulo T0, as
sni lpXq. Since there is a static constructor ci with lpcipyqq “ 0 for any tuple y and
all successors of 0 are distinct, we conclude that if Apb, cipyqq holds, then n1 “ n2 and
Apb, Xq holds for all X. The left hand side of the induction scheme, clearly implies
Apb, cipyqq and thus, induction over Apb, Xq holds. ■
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Lemma 5.3.10. T0 ` I2pAtomq ⊬ I2pLiteralq

Proof. By Lemma 5.3.9 it suffices to give a model M of T0 s.t. ILiteral does not hold
in M. By Lemma 5.3.5, it suffices if M ⊭ B1a. The model Mu8 does exactly that. ■

5.3.2 One Combined Scheme of Induction
Now, we consider the case that we have one combined induction scheme of the following
form:

Ipϕq Ź
ciPC @x : ϕpcipxq, 0, zq^Ź

ciPC1
´

@x
´

ϕpŹ
τk

i “D ϕpxk, u, zq Ñ ϕpx1, spuq, zq ^ ϕpcipxq, u, zq
¯¯

Ñ
p@X : Dqp@u : NatqϕpX, u, zq

We collect known results:

Lemma 5.3.11. It holds that

• T0 ` I1pLiteralq $ x “ 0 _ Dy : x “ sx

• T0 ` I1pLiteralq $ x ‰ snx

• T0 ` I1pLiteralq $ SUR

• T0 ` I1pLiteralq $ Gt for any t P S

Proof. This follows directly from Lemma 5.3.5, Lemma 5.3.6 and the Observation 5.1.4
that the two individual schemes of induction are subsumed by the combined one. ■

Corollary 5.3.12. T0 ` I1pLiteralq $ Γ

Lemma 5.3.13. Γ $ I1pOpenq

Proof. This follows directly from Lemma 5.3.4 and Theorem 5.1.11. ■

Lemma 5.3.14. T0 $ I1pAtomq

Proof. Let M be any model of T0. Take any atom Apx, Xq ” t1 “ t2. Note that if A
does not contain both x and X, then this case is subsumed by Lemma 5.3.9. We are left
with the case that A contains both x and X. W.l.o.g., assume that t1 “ snlptpXqq and
t2 “ smx. Modulo T0, we can write t1 as sklpXq. Assume that M ⊨ LHS1pAq. Thus,
T0 $ Ap0, cipyqq and T0 $ Aps0, cipyqq for any static constructor ci and tuple y. By E1,
t1pcipyqq “ sk0. Thus, sm0 “ sk0 “ smps0q “ sm`10 and m “ k “ m ` 1, which cannot
be. Therefore, A cannot satisfy the left hand side of the scheme of induction. ■

Lemma 5.3.15. T0 ` I1pAtomq ⊬ I1pLiteralq

Proof. By Lemma 5.3.9 it suffices to give a model M of T0 s.t. ILiteral does not hold
in M. By Lemma 5.3.5, it suffices if M ⊭ B1a. The model Mu8 does exactly that. ■
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5.4 Not Only Essentially Unary Constructors
In this subsection, we consider the case that there is some constructor ci, which is not
essentially unary. Note that our arguments would work otherwise just as well, but we
would not add ` to our language and could receive different results (cf. Section 5.3).

Definition 5.4.1. We define the theory Γ “ T0 ` tB1a, B2, B3, B4, SURu ` tGt | t P Su.

Observation 5.4.2. Let tpx, Xq be any term in L0. If t is of sort Nat, then Γ $
tpx, Xq “ nlpXq ` mx ` t1 for some n, m P N and t1, which contains neither x nor X.

The following will be our main result:

Theorem 5.4.3.

T0 ň T0 ` I2pAtomq T0 ň T0 ` I1pAtomq
ň T0 ` I2pLiteralq ň T0 ` I1pLiteralq
« T0 ` I2pOpenq « T0 ` I1pOpenq
« Γ « Γ

This yields the following Hasse Diagram:

T0

T0 ` I2pAtomq

T0 ` I1pAtomq

T0 ` I2pILiteralq « T0 ` I1pLiteralq « T0 ` I2pOpenq « T0 ` I1pOpenq

Lemma 5.4.4. T0 ` B4 $ x ‰ snx for any n ě 1.

Proof. Assume that there is some x s.t. s “ snx. Then 0 ` x “ x “ snx “ sn0 ` x,
which contradicts A1 or B4. ■

Lemma 5.4.5. T0 ` B1a $ x ` y “ 0 Ñ x “ 0 ^ y “ 0
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Proof. Assume that x ` y “ 0. If y ‰ 0, then there is some z s.t. y “ sz. Thus,
0 “ x ` sz “ spx ` zq, which cannot be. Thus, y “ 0 and 0 “ x ` y “ x ` 0 “ x. ■

Lemma 5.4.6. Let M be a model of Γ and Apx, Xq an atom with the variables x P Nat
and X P D. Assume that there are values b, c, d P NatM and B, C, D P DM s.t. b “ slc
(l ě 1) and B “ tpCq with t ‰ id and M ⊨ Apb, Dq ^ Apc, Dq ^ Apd, Bq ^ Apd, Cq. Then,
M ⊨ @x@X : Apx, Xq. In other words, Γ has the anchor property.

Proof. There are two cases:

1. Both term ti are of the sort D. Then both terms contain only constructors cj . Since M
does not contain any cycles, it follows from Corollary 3.2.6 that M ⊨ p@X : DqpApd, Xqq,
which is equivalent to M ⊨ p@x : Natqp@X : DqpApx, Xqq as x does not appear in A.

2. Both terms ti are of the sort Nat. Then, w.l.o.g., they both have the form nilpXq `
mix ` t1

i. Since M ⊨ Apd, Bq ^ Apd, Cq and M ⊨ lpBq “ slpCq ` tC , it follows that
M ⊨ t1pd, Bq “ n1lpBq`m1d` t1

1 “ n1pslpCq` tCq`m1d` t1
1 “ n1ps0` tCq`pn1lpCq`

m1d`t1
1q “ n1ps0`tCq`t1pd, Cq. Analogously, M ⊨ t2pd, Bq “ n2ps0`tCq`t2pd, Cq. It

follows that M ⊨ n1ps0 ` tCq ` t1pd, Cq “ n2ps0 ` tCq ` t2pd, Cq “ n2ps0 ` tCq ` t1pd, Cq.
By cancellation w.r.t. `, we obtain M ⊨ n1s0 “ n2s0 and thus, n1 “ n2. We define
n “ n1. Since M ⊨ Apb, Dq ^ Apc, Dq and M ⊨ b “ skc, it follows that M ⊨ t1pb, Dq “
nlpDq ` m1skc ` t1

1 “ nlpDq ` m1sk0 ` m1c ` t1
1 “ m1sk0 ` t1pc, Dq. Analogously, it

follows that M ⊨ t2pb, Dq “ m2sk0 ` t2pc, Dq. It follows that M ⊨ m1sk0 ` t1pc, Dq “
m2sk0 ` t1pc, Dq. By cancellation w.r.t. `, we obtain M ⊨ m1sk0 “ m2sk0. Thus,
m1 “ m2. We define m “ m1. By assumption, t1

1 and t1
2 contain neither x nor X. Since

M ⊨ Apb, Dq, we conclude that M ⊨ nlpDq ` mb ` t1
1 “ nlpDq ` mb ` t1

2. By cancellation
w.r.t. `, we obtain M ⊨ t1

1 “ t1
2. Thus, M ⊨ p@x : Natqp@X : DqpApx, Xqq. ■

5.4.1 Two Schemes of Induction
Again, we start by considering the combination of the two schemes of induction - one for
the sort Nat and one for the sort D.

Lemma 5.4.7. The following holds:

• T0 ` I2pAtomq $ x ` y “ y ` x

• T0 ` I2pAtomq $ x ` py ` zq “ px ` yq ` z

• T0 ` I2pLiteralq $ x ` y “ x ` z Ñ y “ z

• T0 ` I2pLiteralq $ SUR

• T0 ` I2pLiteralq $ x “ 0 _ Dy : x “ sy

Proof. This follows directly from Theorem 3.1.8 and Section 4.6. ■
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Lemma 5.4.8. T0 ` I2pLiteralq $ Gt for any t P S.

Proof. Take any n ě 1 and t P Sn. Then, since t is not identical to X and by E2, we can
write lptpXqq as lpXq ` spt1q, where t1 is some term of sort Nat (possibly containing X).
If there is some X s.t. X “ tpXq, then, by B4, we obtain 0 “ spt1q, which contradicts
A1. ■

Lemma 5.4.9. Γ $ I2pOpenq

Proof. This follows directly from Lemma 5.4.6 and Lemma 5.1.10. ■

Lemma 5.4.10. Γ ⊬ I2pAtomq

Proof. It suffices to give a model M of T0 with M ⊭ x ` y “ y ` x. The model Ma,b

from the subsection 5.2.3 does exactly that. ■

Lemma 5.4.11. Γ ` I2pAtomq ⊬ I2pLiteralq

Proof. It suffices to give a model M of T0 ` I2pAtomq with M ⊭ x ‰ snx for some n ě 1.
Consider the model M8 from the Subsection 5.2.2. M8 ⊨ I1pAtomq. Thus, any by
Observation 5.1.4, M ⊨ I2pAtomq. Also, M ⊭ x ‰ snx for every n P N. ■

5.4.2 One Combined Scheme of Induction
Now, we use one combined scheme of induction I1.

Lemma 5.4.12. T0 ` I1pLiteralq $ Γ

Proof. This follows directly from Lemma 5.4.7 and Observation 5.1.4. ■

Lemma 5.4.13. Γ $ I1pOpenq

Proof. This follows directly from Lemma 5.4.6 and Theorem 5.1.11. ■

Lemma 5.4.14. T0 ⊬ I1pAtomq

Proof. It suffices to give a model M of T0 with M ⊭ x ` y “ y ` x. The model Ma,b

from the subsection 5.2.3 does exactly that. ■

Lemma 5.4.15. T0 ` I1pAtomq ⊬ I1pLiteralq

Proof. It suffices to give a model M of T0 ` I1pAtomq with M ⊭ x ‰ snx for some n ě 1.
The mode M8 from does exactly that. ■

Open Problem 5.4.16. It is yet unclear, whether T0 ` I2pAtomq $ I2pAtomq in the
case with not only essentially unary constructors.
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CHAPTER 6
Lists

In this chapter, we deal with the structure of lists in more depth. This seems to be the
logical next step as numbers can be considered a special case of lists, where the lists
contain only one element (possibly multiple times). We will see that theories of lists are,
in fact, much more complicated than arithmetic theories.

After defining the general frame, we work in, we will apply theorems from Chapters 3
and 5 to the special case of lists. After that, we consider list concatenation and see that
it makes things considerably more difficult.

6.1 General Frame
In the following, we will consider a two-sorted logic to represent lists: The sort ι is the
sort of the list elements, and L is the sort of the actual lists. To avoid confusion, we will
capitalize lists and list-variables and write elements and element-variables in lowercase.
The only exception will be the empty list nil.

The language L consists of the following symbols nil, r¨|¨s, `, where nil is a constant
symbol of sort L, r¨|¨s is a function symbol of type ι ˆ L Ñ L, and ` is a function symbol
of type LˆL Ñ L to denote list concatenation. Additionally, we have the equality relation
for each sort with the usual axiomatization. The other axioms are the following:

L1 nil ‰ rx|Xs
L2 rx|Xs “ ry|Y s Ñ x “ y ^ X “ Y

L3 nil ` X “ X

L4 rx|Xs ` Y “ rx|X ` Y s
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For the sake of readability, we use the shorthand rx1, x2, . . . , xn|Xs for rx1|rx2|r. . . |rxn|Xssss,
where rH|Xs is defined to be X.

The scheme of induction axiom is given by

ϕpnil, zq ^ @X@x : ϕpX, zq Ñ ϕprx|Xs, zqLHSpϕpx, zqq
LHSpϕpx, zq Ñ @X : ϕpX, zqqIpϕpx, zqq

Again, for the sake of readability, we will often refrain from writing the parameters of a
formula explicitly. If not explicitly stated otherwise, all our formulas in this chapter may
possibly contain parameters.

Remark 6.1.1. While dealing with lists, we thought about interesting properties of
them. One that should be mentioned is the property that lists are not periodic, in
the sense that no period x1, . . . , xn is repeated infinitely many times. This follows
clearly from the fact that lists are finite. However, this property cannot be formulated
in FOL: Assume there is a formula, ψpXq s.t. ψ expresses that X is not periodic.
Now extend the language with the new constant symbol c. We define new formulas
ϕnpXq ” pDY : DqpDx1, x2 : ιqpX “ rx1, x2, x1, x2, . . . , x1, x2|Y s, where the period x1, x2
is repeated n times. Consider the set Γ “ tϕnpcq | n P Nu. T0 ` Γ ` ψpcq is finitely
satisfiable (in any standard model of lists). However, ψpcq ` Γ is inconsistent. Thus, ψ
cannot exist.

The even more interesting part is the following: The standard model of lists over the
alphabet ι can be considered to be the set ιω. If we think about non-standard models of
lists, it is thus natural to consider the subsets of ια for some limit-ordinal α with the
canonical interpretation of r¨|¨s and ` (cf. [HV24, Section 2.3]). In these models, all
lists are aperiodic in the sense from above. However, if we consider the set Γ from above,
then T0 ` Γ ` tIpϕq | ϕ P WFFu is finitely satisfiable in any standard model. Thus, it
is satisfiable by compactness and there is a non-standard model of lists, which satisfies
induction and contains a periodic list. This shows that there are non-standard models of
lists with induction that are fundamentally different and harder to grasp than the ones
we might consider.

6.2 Constructors only
As usual, we start with the theory T0 “ tL1, L2u and the language consisting of only nil
and r¨|¨s.
We overload the axioms SUR and Gt to fit into the context of lists. Note that we only
have rather simple terms in this context. Thus, there is exactly one term t in Sn Ď S for
any n. Therefore, we can write Gn instead of Gt:

SUR @Y : Y “ nil _ DXDx : Y “ rx|Xs
Gn X ‰ rx1, . . . , xn|Xs for all n ě 1
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We have already dealt with this case in Chapter 3:

Theorem 6.2.1.

T0 « T0 ` IAtom

ň T0 ` ILiteral

« T0 ` IClause

ň T0 ` IDClause

« T0 ` IOpen

« T0 ` SUR ` tGn | n ě 1u

We receive the following Hasse Diagram:

T0 « T0 ` IAtom

T0 ` ILiteral « T0 ` IClause

T0 ` IDClause « T0 ` IOpen

Proof. This is a direct consequence of Theorem 3.4.3. ■

6.3 Constructors only and a Size Function
We now add the sort Nat to the lists to represent natural numbers. Additionally, we add
the symbols 0 P Nat, s : Nat Ñ Nat, l : L Ñ Nat with the following axioms:

A1. 0 “ sx

A3a. sx “ sy Ñ x “ y

E1. lpnilq “ 0

E2. lprx|Xsq “ slpXq

We will also need these auxiliary axioms:

B1a. x “ 0 _ Dy : x “ sy
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Bn. x ‰ snx

Definition 6.3.1. T 1
0 “ T0 ` tA1, A3a, E1, E2u over the language L1 “ tnil, r¨|¨s, 0, s, lu

Definition 6.3.2. Γ “ T 1
0 ` SUR ` B1a ` tBn, Gn | n ě 1u

Theorem 6.3.3.

T 1
0 « T 1

0 ` I2pAtomq T 1
0 « T 1

0 ` I1pAtomq
ň T 1

0 ` I2pLiteralq ň T 1
0 ` I1pLiteralq

« T 1
0 ` I2pOpenq « T 1

0 ` I1pOpenq
« Γ « Γ

This yields the following Hasse Diagram:

T 1
0 « T 1

0 ` I2pAtomq « T 1
0 ` I1pAtomq

T 1
0 ` I2pLiteralq « T 1

0 ` I1pLiteralq « T 1
0 ` I2pOpenq « T 1

0 ` I1pOpenq

Proof. This follows directly from Theorem 5.3.2. ■

6.4 Concatenation
We now consider the language nil, r¨|¨s and ` with the theory T1 “ tL1, L2, L3, l4u. We
use the induction scheme from Section 6.2.

Again, we define some additional axioms, which we will derive in this section:

M1. X ` nil “ X

M2. X ` pY ` Zq “ pX ` Y q ` Z

M3. X ` Y “ X ` Z Ñ Y “ Z

M4. X ` Y “ nil Ñ X “ nil ^ Y “ nil

The following will be our main result:

Theorem 6.4.1.

T1 ň T1 ` IAtom

ň T1 ` ILiteral

ň T1 ` IDClause

We obtain the following (partial) Hasse Diagram:
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B1
L ` IOpen

B1
L ` IClause B1

L ` IDClause

B1
L ` ILiteral

B1
L ` IAtom

B1
L

We start by collecting the results from the previous sections:

Lemma 6.4.2. The following holds:

• T1 ` ILiteral $ SUR

• T1 ` IDClause $ Gn for any n ě 1

Proof. These results are special cases of Theorem 3.1.8 and Lemma 3.4.13. ■

We also need to prove some new results:

Lemma 6.4.3. T1 ` IAtom $ X ` nil “ X.

Proof. We work in T1 ` IAtom. Consider the atom ApXq ” X ` nil “ X. By L3 it holds
that nil ` nil “ nil and thus Apnilq. Now assume that A holds for some X. Let x P ι be
arbitrary. By L4 and the induction hypothesis, it follows that rx|Xs`nil “ rx|X `nils “
rx|Xs. By applying the induction scheme on A, we obtain @X : X ` nil “ X. ■

Lemma 6.4.4. T1 ` IAtom $ X ` pY ` Zq “ pX ` Y q ` Z

Proof. Take any model M of T1 ` IAtom and consider the atom ApXq ” X ` pY ` Zq “
pX ` Y q ` Z. Fix any interpretation ξ : Y ÞÑ B, Z ÞÑ C. From L3 it follows that
M, ξ ⊨ nil `pY `Zq “ Y `Z “ pnil `Y q`Z and thus M, ξ ⊨ Apnilq. Now assume that
M, ξ ⊨ ApEq for some element E and pick an arbitrary element e P ιM. From L3 and
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the induction hypothesis, it follows that M, ξ ⊨ re|Es ` pY ` Zq “ re|pE ` pY ` Zqs “
re|pE ` Y q ` Zs “ re|E ` Y s ` Z “ pre|Es ` Y q ` Z. Thus, M, ξ ⊨ Apre|Esq. Induction
yields M, ξ ⊨ @X : X ` pY ` Zq “ pX ` Y q ` Z. Since ξ was arbitrary, it follows from
the semantics of classical FOL that M ⊨ @Z@Y @X : X ` pY ` Zq “ pX ` Y q ` Z. ■

Lemma 6.4.5. T0 ` SUR $ X ` Y “ nil Ñ X “ nil ^ Y “ nil. Thus, T0 ` ILiteral $
X ` Y “ nil Ñ X “ nil ^ Y “ nil.

Proof. We work in T0 ` SUR. Take any X, Y s.t. X ` Y “ nil. Assume that X ‰ nil.
By SUR there is some element Z s.t. X “ rx|Zs. By L4, it holds that X ` Y “
rx|Zs ` Y “ rx|Z ` Y s. By L1, this cannot be equal to nil. Thus, X “ nil. Assume
that Y ‰ nil. By SUR there is some element Z s.t. Y “ rx|Zs. By L3, it holds that
X ` Y “ nil ` Y “ Y “ rx|Zs. Again, by L1 this cannot be equal to nil. Thus,
Y “ nil. ■

Remark 6.4.6. The Lemma above will not be particularly useful, but it is a nice property
that can be shown with a low level of induction. Moreover, it emphasizes the following: In
previous Lemmas, we have seen that a formula can be an implication, but if it contains X
on only one side of the implication, it can be dealt with like a literal by fixing the parameters
(e.g. M3). The situation now is different: Although X ` Y “ nil Ñ X “ nil ^ Y “ nil
it is not even a clause or a dual clause and contains X in various places, it follows from
a level of induction much lower than general open induction.

The more general question is: What is the relation between two formulas F and G if
IpGq $ F? This question goes much deeper than the Lemma above and this thesis in
general, but this seemed like a good place to mention it.

Lemma 6.4.7. T0 ` ILiteral $ X ` Y “ X ` Z Ñ Y “ Z

Proof. We work in T0 ` ILiteral. Fix any two Y ‰ Z and consider the literal LpXq ”
X ` Y ‰ X ` Z. From L3 it follows that nil ` Y “ Y ‰ Z “ nil ` Z and thus Apnilq.
Now assume that A holds for some X and let x P ι be arbitrary. By counterposition of
L2, we obtain rx|X ` Y s ‰ rx|X ` Zs. By induction on the literal L, we obtain that it
holds for all X. ■

Remark 6.4.8. The previous Lemma shows that left-cancellation holds in all models of
T0 ` ILiteral. Interestingly, in [HV24, Chapter 4] it was shown that right-cancellation
(i.e. Y ` X “ Z ` X Ñ Y “ Z) cannot be shown with open induction at all. This is
characteristic for the problems we encountered with lists: Since list concatenation is in
general not commutative it is very difficult to deal with formulas, where the induction
variable appears on the right side of some (in)equality.

Lemma 6.4.9. T1 ⊬ IAtom

Proof. By Lemma 6.4.3 it suffices to give a model of T1 that does not satisfy M1. For
this consider the following model M:
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• ιM “ t1u
• nilM “ 0

• LM “ N Y ta, bu
• r1|nsM “ n ` 1, r1|asM “ a, r1|bsM “ b

• pn ` mqM “ n ` m, pn ` aqM “ a, pn ` bqM “ b, pa ` nqM “ b, pb ` nqM “ a,
pa ` bqM “ pb ` aqM “ pa ` aqM “ pb ` bqM “ a

Then, M ⊨ T1, but M ⊭ x ` nil “ x since M ⊨ a ` nil “ b. ■

Lemma 6.4.10. T1 ` IAtom ⊬ ILiteral

Proof. By Lemma 6.4.2 it suffices to give a model of T0 ` IAtom, where SUR does not
hold.

Consider the following model M:

• ιM “ t1u
• LM “ N ˆ t0, 1u
• nilM “ p0, 0q
• r1|pn, mqsM “ pn ` 1, mq
• ppa, bq ` pn, mqqM “ pa ` n, b ` m mod 2q

M ⊨ T1.

We still need to show that induction over atoms holds. For this take any atom ApXq ”
t1 “ t2. If neither t1 nor t2 contains X, then A either holds in the whole model or it holds
nowhere. Assume that exactly one term, say t1, contains X. Note that the reduct pL, `q of
our model is the product of two commutative monoids. Since commutative monoids form
a variety, they are closed under products. In particular, pL, `q is a commutative monoid.
Thus, w.l.o.g., we can write t1 in the form of nX ` t, where t is some fixed parameter and
nX is the usual abbreviation for

řn
i“1 X. Obviously, t1pnilq “ t ‰ pn, 0q ` t “ t1pp1, 0qq.

Thus, M ⊭ LHSpAq. We are left with the case that X appears in both sides of A.
Thus, t1 “ nX ` t and t2 “ mX ` t1. Assume that Apnilq holds. Then t “ t1. Thus,
t2 “ mX ` t. Let t “ pa, bq. If m ‰ n, then t1pp1, 0qq “ pn`a, bq ‰ pm`y, bq “ t2pp1, 0qq.
Thus, under the assumption that App0, 0qq and App1, 0qq hold, A has to hold for all
elements in LM. Since this condition is clearly implied if M ⊨ LHSpAq, we are done.

Lastly, we need to state the obvious: Since p0, 1q is not in the image of r1|¨s, the axiom
SUR and thus induction over literals cannot hold. ■
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Lemma 6.4.11. T1 ` ILiteral ⊬ IDClause

Proof. By Lemma 6.4.2 it suffices to give a model of T1 ` ILiteral, where some Gn does
not hold. Consider the alphabet Σ “ ta, b, c, du. We define the model M:

• ιM “ ta, bu
• LM “ ta, bu˚ Y tc, du Y ta, bu˚bc Y ta, bu˚ad

• ra|cs “ d and rb|ds “ c

• rx|ws “ xw for any other combination of x, w

• ε ` w “ w ` ε “ w

• a ` w “ ra|ws and b ` w “ rb|ws
• c ` w “ d ` w “ w1

• v ` w for some composite word v is defined according to L4

Note that L1 and L3 hold by construction. For L2, note that ra|vs ‰ rb|ws for any
v, w P L. Moreover, ra|vs “ ra|ws iff v “ w for any v, w P L. L4 again holds by
construction. Note that Gn does not hold and as a consequence, induction over dual
clauses cannot hold.

It remains to be shown that induction over literals holds.

Take any atom ApXq ” t1 “ t2. If neither t1 nor t2 contain X, then A is true in the
whole model or false in the whole model. If only t1 contains X, then tM

2 is constant.
Note the following: If t1pnilqM ‰ c and t1pnilqM ‰ d, then t1pra|nilsqM ‰ t1pnilq. If
tM
1 “ c, then t1pra|nilsqM ‰ t1pnilqM. Analogously for t1pnilqM “ d. In any case,

M ⊭ Apnilq ^ @x@XpApXq Ñ Aprx|Xsqq
We are left with the case that both sides contain X. Assume that Apnilq and ApXq Ñ
Aprx|Xsq hold. Again, since ` is associative in this model, we can write the terms as
sums t1 “ řn

i“1 Yi and t2 “ řm
j“1 Zj , where at least one of the Yi and Zj is identical X.

W.l.o.g., we assume that every second Yi and Zj is identical to X. Assume Y1 ” X and
Z1 ı X. W.l.o.g., we can assume that M ⊨ Z1 ‰ c and M ⊨ Z1 ‰ d, as we could pull it
to the next term otherwise. Thus, pZ1qM starts with either a or b and either M ⊭ Apbq
or M ⊭ Apaq. Assume that neither Y1 nor Z1 is identical to X. Then Y2 ” Z2 ” X.
Assume that M ⊨ Y1 ‰ Y2. By choosing X as a or b appropriately, we can again conclude
that M ⊭ Apaq or M ⊭ Apbq. In summary, we have shown that M ⊨ Y1 “ Z1. Since left-
cancellation holds in our model, it follows that M ⊨ ApXq Ñ řn

i“2 YipXq “ řm
j“2 ZjpXq.

By proceeding inductively, we can assume w.l.o.g. that t1 ” X. However, if t1 ” X and
Apnilq holds, t2 ” X as well. Thus, M ⊨ @X : ApXq.

1Note that c and d are not elements of ι.
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Now, take any negated atom LpXq ” t1 ‰ t2. Again, we can exclude the case that
neither t1 nor t2 contains X. Assume that exactly one term, say t1, contains X and
that Lpnilq holds. If there is some element B s.t. M ⊭ LpBq, then there is some C
and c s.t. B “ rc|Cs and by similar reasoning as above, t1pCqM ‰ t1pBqM “ t2. Thus,
M ⊭ LHSpLq.
We are left with the case that both terms contain X. Assume that Lpnilq and LpXq Ñ
Lprx|Xsq both hold. From this assumption, it follows that M ⊨ LpBq for any standard
element B in LM. If there is some element non-standard element B in LM s.t. M ⊭ LpBq,
then M ⊭ Lpcq or M ⊭ Lpdq since one of them is a predecessor of B. Assume that this
is the case.

Again, since ` is associative in this model, we can write the terms as sums t1 “ řn
i“1 Yi

and t2 “ řm
j“1 Zj , where at least one of the Yi and Zj is identical to X. W.l.o.g., we

assume that every second Yi and Zj is equal to X. Assume Y1 ” X and Z1 ı X.
W.l.o.g., we can assume that M ⊨ Z1 ‰ c and M ⊨ Z1 ‰ d, as we could pull it
to the next term otherwise. Consider Yn and Zm. Assume that Yn ” X ı Zm. If
M ⊭ Lpcq, then M ⊭ Lpdq as well. However, in that case pZmqM would have to
end with c and d, which is not possible. Now assume that Yn ı X ı Zm, then
M ⊨ t1pcq “ t1pnilq ‰ t2pnilq “ t2pcq and M ⊨ t1pdq “ t1pnilq ‰ t2pnilq “ t2pdq,
which contradicts our assumption. Lastly, assume that Yn ” X ” Zm. Assume that
M ⊭ Lpcq. Then M ⊨ t1pcq “ t1

1pcq ` c “ t1
2pcq ` c “ t2pcq, where t1

i is just the
term ti cut off s.t. the last summand not identical to X. M ⊭ Lpdq as well and
M ⊨ t1

1pdq ` d “ t1
2pdq ` d. Now note that since the last summand of t1

i is not X, we
have that M ⊨ t1

ipnilq “ t1
ipcq “ t1

ipdq “ ti̊ for i P t1, 2u. Thus, M ⊨ t1̊ ` c “ t2̊ ` c and
M ⊨ t1̊ ` d “ t2̊ ` d, which can only be the case if M ⊨ t1̊ “ t2̊ “ nil. In that case,
however, t1 ” t2 ” X and M ⊨ t1pnilq “ t2pnilq, which contradicts the assumption that
M ⊨ Lpnilq. ■

6.5 Concatenation and a Size Function
We proceed analogously to Section 6.3: We consider the language consisting of the
symbols 0, s, `Nat, nil, r¨|¨s, `L and l. Since it is always clear from the context, whether
`Nat or `L is used, we usually just write `.

We define the following additional axioms:

A4. x ` 0 “ x

A5. x ` sy “ spx ` yq
E3 lpX ` Y q “ lpXq ` lpY q

Definition 6.5.1. T 1
1 “ T1 ` tA1, A3a, A4, A5, E1, E2, E3u over the language L1

1 “
tnil, r¨|¨s, `L, 0, s, `Nat, lu
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The main result will be the following:

Theorem 6.5.2.

T 1
1 ň T 1

1 ` I2pAtomq T 1
1 ň T 1

1 ` I1pAtomq
ň T 1

1 ` I2pLiteralq ň T 1
1 ` I1pILiteralq

This yields the following (partial) Hasse Diagram:

T 1
1 ` I1pOpenq

T 1
1 ` I2pOpenq

T 1
1 ` I1pClauseq

T 1
1 ` I2pClauseq

T 1
1 ` I1pDClauseq

T 1
1 ` I2pDClauseq

T 1
1 ` I1pLiteralq

T 1
1 ` I2pLiteralq

T 1
1 ` I1pAtomq

T 1
1 ` I2pAtomq

T 1
1
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Lemma 6.5.3. The following holds:

• T 1
1 ` I2pAtomq $ X ` nil “ X

• T 1
1 ` I2pAtomq $ X ` pY ` Zq “ pX ` Y q ` Z

• T 1
1 ` I2pLiteralq $ X ` Y “ X ` Z Ñ Y “ Z

• T 1
1 ` I2pLiteralq $ X “ nil _ DY Dy : X “ ry|Y s

• T 1
1 ` SUR $ X ` Y “ nil Ñ X “ nil ^ Y “ nil

• T 1
1 ` I2pILiteralq $ Gn

Proof. This follows directly from the Sections 6.4 and 6.3 and 4.4 since T 1
1 Ě T1 and the

formulas above only contain symbols that are part of the original language. ■

Lemma 6.5.4. T 1
1 ` I2pLiteralq $ x “ 0 _ Dy : sy “ x

Proof. This follows directly from Lemma 5.4.7. ■

The following lemma is not very important here, but it is a nice example of how the
second sort Nat can come in handy: Using only lists, we failed to show the following
property. Using the additional sort Nat, it becomes almost trivial.

Lemma 6.5.5. Let tpXq be any term that contains X. Then T 1
1 ` ILiteral $ tpXq ‰

tprx|Xsq for any non-empty tuple x.

Proof. Let n be the length of x and m the number of occurrences of X in t. From asso-
ciativity and commutativity of `Nat (cf. Section 4.6) and A5 it follows that lptprx|Xsqq “
snmplptpXqqq. By assumption n ‰ 0 ‰ m and thus, by Bn, lptprx|Xsqq ‰ lptpXqq. Since
l is a function symbol, tprx|Xsq and tpXq cannot coincide either. ■

Lemma 6.5.6. T 1
1 ⊬ I2pAtomq

Proof. It suffices to give a model M of T 1
1, where `Nat is not commutative. Consider the

following model M:

• ιM “ t1u
• LM “ N

• NatM “ N Y ta, bu
• nilM “ 0 P LM

• r1|ns “ n
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• lpnq “ n

• The symbols 0, s, ` are interpreted as in Na,b

M ⊨ T 1
1, but M ⊭ p@x : Natqp@y : Natqpx ` y “ y ` xq ■

Lemma 6.5.7. T 1
1 ` I1pAtomq ⊬ I2pLiteralq

Proof. By Lemma 6.5.3 it suffices to give a model of T0 ` I1pAtomq, where SUR does
not hold.

Consider the following model M: The sort ι is interpreted as t1u, L is interpreted as
t0, 1u ˆN and Nat is interpreted as N. We interpret the function symbols in the following
way:

• nil “ p0, 0q, 0 “ 0

• r1|pn, mqs “ pn ` 1, mq
• px, yq ` pa, bq “ px ` a, y ` b mod 2q
• sn “ n ` 1

• n ` m “ n ` m

• lpn, mq “ n

The axioms of T 1
1 clearly hold. Also, the element p0, 1q is not in the image of r¨|¨s and not

nil either. It follows that SUR and thus induction over literals cannot hold.

It remains to be shown that induction over atoms does hold. For this take an arbitrary
atom Apx, Xq ” t1 “ t2 with the variables x P Nat and X P L. We make the following
observation: Both `Nat and `L are commutative and associative. Now, make a case
distinction:

1. Assume that both terms are of the sort Nat. Then, we can write each term ti “
nilpXq ` mix ` t1

i, where ni and mi can potentially be 0. Assume that M ⊨ LHSpAq.
If Ap0, nilq holds, it follows that t1

1 “ t1
2. In our model, right cancellation holds and thus

n1lpXq ` m1x “ n2lpXq ` m2x. Since A is closed under successors, we conclude that
Ap0, r1|nilsq and Aps0, nilq both have to hold. This, in turn, entails that n1 “ n2 and
m1 “ m2. Thus, A holds in the whole model and induction over it works.

2. Assume that both terms are of the sort L. We can write each term ti as niX`t1
i. Assume

that M ⊨ LHSpAq. From Ap0, nilq, we obtain t1
1 “ t1

2. And from right cancellation and
Ap0, r1|nilsq, we obtain n1 “ n2. Thus, A holds in the whole model.

Since A was arbitrary, induction over all atoms holds in this model. ■
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6.5. Concatenation and a Size Function

Open Problem 6.5.8. In previous sections, we used the approach to add a simple
inductive data type, which is well understood, to a more complicated one, in order to
understand it better. This worked to some extent, but it could be formalized and extended.
Theorems of the form T0 ` IDClause $ F ô T 1

0 ` ILiteral $ F have not been shown,
but could be true.
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CHAPTER 7
K-ary Trees

In this chapter, we will deal with the structure of k-ary trees. Again, we will see that
trees are more complicated than arithmetics. Moreover, we will include the structures of
natural numbers.

7.1 General Frame
In the following, we will use a two sorted logic with the sorts ι and T, where ι is the
sort of the labels of the nodes of the trees and T is the sort of the trees. Again, to avoid
confusion, we will capitalize variables of sort T. Variables of sort ι will be written in
lowercase letters.

The language L consist of the function symbols nil P T and c : Tk ˆ ι Ñ T. The intention
is that nil is the empty tree and the function c takes k trees X1, . . . , Xk and an element
z in ι and maps them to the tree that has a root node labelled by z with the children
X1, . . . , Xk. Then the axioms are as follows:

T1. nil ‰ cpX1, . . . , Xk, zq
T2. cpX1, . . . , Xk, z1q “ cpY1, . . . , Yk, , z2q Ñ z1 “ z2 ^ Źk

i“1 Xi “ Yi

We define the scheme of induction similarly as in the previous chapters:

ϕpnil, zq ^ @X1, . . . , Xk, yp
kľ

i“1
ϕpXi, zq Ñ ϕpcpX1, . . . , Xk, yq, zqqLHSpϕpX, zqq

LHSpϕpX, zq Ñ @X : ϕpX, zqqIpϕpX, zqq
For the sake of readability, we will often refrain from writing the parameters of a formula
explicitly. If not explicitly stated otherwise, all our formulas in this chapter may possibly
contain parameters.
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7. K-ary Trees

We define some important axioms (cf. Chapter 3):

Gt. X ‰ tpXq for any t P S
SUR. X “ nil _ DX1, . . . XkDz : X “ cpX1, . . . , Xk, zq

7.2 Constructors only
As usual, we start with the theory T0 “ tT1, T2u and the full language nil, c.

Implicitly, we have already dealt with this case in Chapter 3. By applying Theorem 3.4.3
to this case, we obtain the following result:

Theorem 7.2.1.

T0 « T0 ` IAtom

ň T0 ` ILiteral

ň T0 ` IDClause

« T0 ` IOpen

« T0 ` SUR ` tGt | t P Su
This yields the following Hasse Diagram:

T0 « T0 ` IAtom

T0 ` ILiteral

T0 ` IClause

T0 ` IDClause « T0 ` IOpen « T0 ` SUR ` tGt | t P Su

7.3 Constructors only and a Size Function
We now add the sort Nat to the lists to represent natural numbers. Additionally, we add
the symbols 0 P Nat, s : Nat Ñ Nat, ` : Nat ˆ Nat Ñ Nat, l : L Ñ Nat with the following
axioms:
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7.3. Constructors only and a Size Function

A1. 0 “ sx

A3a. sx “ sy Ñ x “ y

A4. x ` 0 “ x

A5. x ` sy “ spx ` yq
E1. lpnilq “ 0

E2. lpcpX1, . . . , Xn, zqq “ spřk
i“1 lpXiqq

We will also need these auxiliary axioms:

B1a. x “ 0 _ Dy : x “ sy

B2. x ` py ` zq “ px ` yq ` z

B3. x ` y “ y ` x

B4. x ` y “ x ` z Ñ y “ z

Definition 7.3.1. T 1
0 “ T0`tA1, A3a, A4, A5, E1, E2u over the language L1 “ tnil, c, 0, s, `, lu

Definition 7.3.2. Γ “ T 1
0 ` SUR ` tGt | t P Su ` B1a ` B2 ` B3 ` B4

Theorem 7.3.3.

T 1
0 ň T 1

0 ` I2pAtomq T 1
0 ň T 1

0 ` I1pAtomq
ň T 1

0 ` I2pLiteralq ň T 1
0 ` I1pLiteralq

« T 1
0 ` I2pOpenq « T 1

0 ` I1pOpenq
« Γ « Γ

This yields the following Hasse Diagram:

T 1
0

T 1
0 ` I2pAtomq

T 1
0 ` I1pAtomq

T 1
0 ` I2pILiteralq « T 1

0 ` I1pLiteralq « T 1
0 ` I2pOpenq « T 1

0 ` I1pOpenq
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7. K-ary Trees

Proof. This follows directly from Theorem 5.4.3. ■
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CHAPTER 8
Conclusion

We analyzed how open induction behaves in different contexts. The two main questions
considered are:

1. How do the subsystems of open induction relate to each other?

2. Can open induction be axiomatized by other non-induction axioms?

Regarding question 1, we saw that sometimes it is not that straightforward, which theory
proves which theorems. Consider T1 `ILiteral from Section 6.4 (lists with concatenation).
Obviously, there are some literals L (e.g. LpXq ” X ‰ rx|Xs) s.t. T1 `IpLq $ @X : LpXq
and thus, T1 ` ILitearl $ @X : LpXq. Less straightforward, yet unsurprising: There are
literals L (e.g. LpXq ” X ‰ rx1, x2|Xs) s.t. every model M of lists satisfies M ⊨ LpEq
for any standard element E P LM, but T1 ` ILiteral ⊬ @X : LpXq. This is not surprising
since it was shown in [She65] that the irrationality of

?
2 (which can be expressed by the

open formula p ‰ 0 Ñ p ¨ p ` p ¨ p ‰ q ¨ q) cannot be shown with open induction.

However, on a more positive note, there are formulas F pXq, which are not literals, but
can be proven in ILiteral. The most interesting example for this is probably the formula
F pXq ” X ` Y “ nil Ñ X “ nil ^ Y “ nil since it is neither a clause nor a dual clause
and if we write it in CNF as C1 ^ C2, then the induction variable X appears in both C1
and C2. Still T1 ` ILiteral $ @Y @X : F pXq.
Moreover, we saw two important things: First, depending on the language and base
theory, there often is some level of induction, which is seemingly weaker than open
induction, but entails open induction nonetheless. As an example consider the base
theory T2 from Subsection 4.4 (arithmetics with 0 ‰ sx and injective successor). It holds
that, T0 ` ILiteral $ IOpen. Secondly, this level of induction is not monotone in the
complexity of the language or theory in the following sense: If we consider the, less
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8. Conclusion

complicated, empty theory over the same language as T2, then H ` ILiteral ⊬ IClause.
However, if we make the language and theory more complicated by switching to T5 from
Section 4.7 (arithmetics with addition, multiplication and the usual axioms), we have
that T5 ` ILiteral ⊬ IClause as well.

In particular, we saw in Chapter 5 that adding some inductive data type to another one
drastically increases the complexity of the language and theory, but can have the effect
that the open induction collapses to a lower level than it would if there was only one
data type.

Regarding question 2, the most important discovery is, the connection between open
induction and the sets definable by open formulas in the language at hand. If one can
show that, modulo some theory T , open formulas only define very simple sets, this might
allow one to prove that T $ IOpen. This connection was used in [Sho58] and [She63], but
we saw that this goes deeper than just arithmetics and also works for general inductive
data types (cf. Chapter 3), where all the sets definable with open formulas are even
finite or cofinite. The sets we can define become progressively more complicated if we
add complexity to the language as we could see in Section 4.7. In this case, we could
apply ring theory to show that open induction has an alternative characterization. This
might be more difficult in a non-arithmetical context if the underlying structures are not
as well understood.

We did not succeed in giving an alternative axiomatization of open induction for every
base theory, we considered. While there there are theories, for which we believe it to
be unlikely that there is an alternative simple axiomatization of open induction (cf.
Conjecture 3.4.27), there are other theories, for which this seems more likely to us (e.g.
T 1

1 from Section 6.5).

There are three major directions, in which future work on this topic could be headed.
The first option is to work with general inductive data types and try to prove obtain
results in the most general setting. A good starting point for this would be to prove
Conjecture 3.4.27. The second option is to consider some data structure in more depth.
Here, one could start by considering lists with concatenation. Lastly, one could consider
the interplay of several data types. We considered a size function for general inductive
data types. The next step could be to connect trees and lists by tree-traversal functions.
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Overview of Generative AI Tools
Used

1. The free version of the Overleaf Add-on Writeful (https://www.writefull.
com/writefull-for-overleaf) was used throughout the thesis, to try to
improve the readability of the thesis. Since the free version has a cap on the
suggestions per day, one can see, the extent, to which it was used, is not substantial.
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