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A B S T R A C T   

Shear reinforcement design has changed over time, along with the knowledge about the shear behaviour of 
reinforced concrete structures. Until the 1970s, the shear design in Europe was based on empirical limits for 
shear stress. The rules stipulated by the design standards often resulted in designs of concrete slabs with shear 
reinforcement consisting only of bent-up bars without any additional stirrups. Today, truss models are widely 
used to design shear reinforcement. However, in the structural assessment of bridges with bent-up bars, it is 
difficult to apply such models due to their specific detailing requirements. In order to evaluate the applicability of 
current design standards and to span the knowledge gap between the load-bearing behaviour of small-size 
specimens and actual structures, four shear tests on two full-scale replica bridge slabs containing bent-up bars 
are presented in this paper. The applied load configuration represents two-axle and four-wheel loads of the 
current load models for railway bridges stipulated by Eurocode 1–2 and train load model UIC 71. The load 
distribution due to a track superstructure consisting of a track, sleepers and ballast was investigated. A com
parison of the obtained results with those of preliminary tests on narrow slab strips shows differences in the load- 
bearing behaviour of small-format laboratory tests. The results of the analysis of the bridge slabs according to 
various design standards show the potential of the newly developed potential shear crack model for the 
assessment of slab bridges with bent-up reinforcing bars.   

1. Introduction 

Since many structures built in the last century have reached, or will 
soon reach, the end of their theoretical service life, the following ques
tion arises: can we continue using these structures? In order to guarantee 
safe use, the structures must exhibit sufficient load-bearing capacity 
according to the semi-probabilistic security concept stipulated in current 
design standards. In Germany, rigorous structural assessment of road 
bridges has been conducted which showed that around 50% of 143 
bridges exhibit a lack of shear capacity [1]. Among these, a third of 27 
analysed slab bridges were found wanting due to insufficient shear 
reinforcement and detailing issues. Results like these gave rise to the 
development of refined shear models all over Europe. The goal of these 
models is to adequately model the shear behaviour of such bridges [2], 
especially those with reinforcement designs from the past that are no 
longer covered in current standards, such as bent-up bars used as shear 
reinforcement [3]. Bent-up bars were commonly used until the 1970s; 
however, they are less common nowadays due to the complicated 

process of bending of bars with large diameters and placing such rein
forcement on site. Also, the occurrence of larger shear crack widths 
under service load due to the large diameters of the bent-up bars led to 
the transition to stirrups as the preferred type of shear reinforcement 
[4]. 

In the early days of reinforced concrete construction, Mörsch [5] 
developed a graphical procedure to determine the required number and 
positions of bent-up bars based on the acting shear stress τ = V/b⋅z 
(Fig. 1a,b). Until the 1970s, however, the procedure was rarely used 
since the empirically derived limits for shear stress stipulated in the 
Austrian and German design standards [6,7] were much higher than 
those found in subsequent standards [8,9]. If these limits were not 
exceeded, the only detailing rule was that longitudinal bars had to be 
bent upwards if not needed to cover the bending moments (Fig. 1c). 
From the 1970s onward, it became more common to use the graphical 
procedure due to lower shear stress limits [10,11] (Fig. 1b,c). Some 
approaches assumed the concrete to transfer a portion of the shear stress 
(Fig. 1a), while in others the reinforcement was assumed to transfer the 
entire shear stress (Fig. 1b). Bent-up bar layouts designed according to 
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either type of approach are difficult to assess with current standards, as 
will be shown more in detail in Section 4 (due to, e.g., wide spacings 
between groups of bent-up longitudinal bars, a single group of parallel 
bent-up bars etc.). In addition, the standards also allowed the use of truss 
model approaches (Fig. 1d), but their application was required only if 
certain shear stress limits were exceeded. It is important to note that 
most of the bridges designed to these standards do not show any signs of 
shear problems in inspections (e.g., pronounced shear cracking or 
deformation). 

In addition to current shear models not being suitable to be used on 

bridges with old shear reinforcement layouts, these models were all 
calibrated on databases containing only results of small-scale tests under 
point loads. Furthermore, the database of tests with ribbed bent-up bars 
is somewhat limited [4,12–14]. Thus, full-scale testing of decom
missioned bridges could be a promising approach for investigating the 
load-bearing behaviour of past reinforcement designs. A comprehensive 
review of full-scale bridge tests has been carried out by Bagge [15], 
yielding a database of 30 bridges tested to failure. Only six of these 
bridges were reinforced concrete slab bridges which failed in shear. 
Evaluating whether the actual reinforcement of slab structures matches 

Nomenclature 

Ø Bar diameter 
As Cross-section area of the reinforcement 
A0 Support force due to the self-weights of the slab and the 

superstructure 
AF Support force due to external load 
C Bedding modulus 
E Young’s modulus  
F Force; point load 
L Elastic length 
M Bending moment 
V Shear force 
VC Shear resistance attributed to the concrete 
VF Shear force due to external load 
VExp Maximum shear strength in the experiment 
VS Shear resistance attributed to the transverse reinforcement 
a Shear span (distance between support and point load) 
b Width 
c Compression zone depth; cement 
d Static depth of the beam 
dg Maximum size of aggregate 
fc Concrete cylinder compressive strength 
fct Tensile strength of the concrete 
ft Tensile strength of the reinforcing bar 
fy Yield strength of the reinforcing bar 

g Dead load due to the self-weights of the slab and the 
superstructure 

h Height of the structural member 
k Stiffness 
l Length 
m Mean value 
sb Horizontal spacing between bent-up bars 
sa Horizontal spacing between the edge of the support and 

the theoretical bending point of the first bent-up bar 
z Inner lever arm 
α Angle of the inclined portion of the bent-up bar 
β Idealised crack angle 
δ Relative deflection 
εs Reinforcement strain 
ρ Longitudinal reinforcement ratio 
ρw Shear reinforcement ratio 
ρw,min Minimum shear reinforcement ratio according to structural 

standards 
τ Shear stress 
θ Truss angle or angle of the stress field 
Δ Height extension 
DIC Digital image correlation 
LVDT Linear variable differential transformer 
RC Reinforced concrete 
SG Strain gauge  

Fig. 1. Principle of shear design with bent-up bars: according to principal tensile stresses (a) with and (b) without assuming shear to be transferred by the concrete; 
(c) according to the bending moment envelope; (d) according to truss models. 
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the design drawings and retrieving mechanical parameters representa
tive of the entire structure are complex tasks. Moreover, the influence of 
deterioration on the structural capacity of an as-built structure several 
years after construction has to be taken into account but is difficult to 
assess. In the present study, the task is approached differently: by testing 
replicas of a representative bridge slab, thus possessing reliable data of 
the reinforcement layout and all mechanical parameters. Furthermore, a 
realistic testing concept was used to identify any capacity reserves 
(Fig. 2). 

In this paper, the results of four shear tests on two full-scale replica 
bridge slabs are presented. The slabs were loaded with a realistic load 
configuration representing two-axle and four-wheel loads of the loading 
model for railway bridges according to Eurocode 1–2 and train load 
model UIC71. The load distribution due to the track superstructure 
consisting of a track, sleepers and ballast and its influence on the shear 
capacity are investigated. Furthermore, the influence of the slab width 
on the shear capacity is investigated by comparing the results with those 
of preliminary tests on slab strips with a tenth of the slab width (reported 
in [16]). The achieved experimental loads are compared with the results 
obtained from current models available in Eurocode 2, ACI318, fib 
MC2010 and from the potential shear crack model (PSCM) of the Aus
trian structural assessment standard ÖN B4008–2 [17]. Since the use of 
shear models of current standards requires many assumptions and un
defined interpretations to be made, these are explained one by one. 

2. Full-scale experiments 

2.1. Specimens 

Two test slabs with a height of 660 mm, a width of 3800 mm and a 
length of 9.0 m were tested (Fig. 3). The longitudinal reinforcement 
consisted of 38 longitudinal bars Ø26 and Ø20, spaced at 100 mm. The 
secondary reinforcement consisted of 60 bars Ø14, spaced at 150 mm. 
The concrete cover is 30 mm, which results in a static depth d of around 
600 mm. In the middle of the span, the reinforcement ratio ρ = As/(b‧d) 
is 0.80% (29Ø26 mm + 9Ø20 mm). A single group of parallel bent-up 
bars (10Ø26 mm) was placed at one end of the slab. They were spaced 

at sa= 700 mm, which is the distance between the support and the 
theoretical intersection point between the bent-up bars’ inclined portion 
and the longitudinal reinforcement axis. Thus, the reinforcement ratio 
decreases to 0.57% beyond the bends of the bent-up bars. At the other 
end of the slab, an additional group of parallel bent-up bars (9Ø20 mm) 
was placed at a distance sb of 800 mm from the first group. Thus, the 
reinforcement ratio decreases to 0.68% and 0.47% after the first and 
second group of bars, respectively. The layout of the bent-up bars was 
designed according to technical drawings of existing Austrian railway 
bridges. It is important to note that the bridge slabs to be tested were 
initially 4000 mm wide, but the edges had been cut off on both sides 
(100 mm, see Fig. 3) to avoid any undue influence by the edge rein
forcement (Fig. 2c,d) on the test results. The initial width was required 
for another investigation [18]. The specimens from preliminary tests on 
slab strips [16] are also shown in Fig. 3. The slab strips with a width of 
400 mm have the same reinforcement configuration as the slabs. 

The test parameters are reflected in the specimen names as listed in  
Table 1. The first two letters and accompanying number indicate the 
tested component (SL: slab, SS: slab strip; #1 or #2). An additional 
group of parallel bent-up bars is indicated by the letter z, and the 
presence of the full superstructure by the letter o. If a tandem load 
configuration was used, the letter t is added at the end. 

2.2. Materials 

To ensure comparability of the results, both the test slabs and the 
specimens of the preliminary tests were cast from the same batch of the 
ready-mixed concrete (C25/30; see Table 2). It should be noted that the 
slabs were cast and stored outdoors, while the strips were cast and stored 
inside the prefabrication plant. The air void content determined on site 
was 1.0%. 

During the casting of the slabs, twelve cylinders (Ø = 150 mm, h =
300 mm) were also produced to determine the cylinder compressive 
strength fcm, the splitting tensile strength fct,sp and the Young’s modulus 
Ecm. In addition, six cubes (h = 150 mm) were produced to determine the 
compressive strength fcm,cube. The mean values of the material parame
ters were determined from three individual tests carried out 28 days 

Fig. 2. Full-scale testing: (a) slab without superstructure, (b) slab with superstructure, (c) two rows of bent-up bars and (d) a single row of bent-up bars.  
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after casting and after execution of the shear tests (561 days after cast
ing). The results are listed in Table 3. 

The results show that pronounced hardening took place between 
days 28 and 561 (Table 3). The slab strips and slabs were tested 41 days 

and 440 to 469 days after casting, respectively. In order to estimate the 
concrete properties on the day of testing, the amount of hardening was 
calculated using time-dependent concrete properties according to EC2 
(1): 

fcm(t) = βcc(t)⋅fcm with βcc(t) = es
[

1−
̅̅̅̅̅̅
28/t

√ ]

, (1)  

where t is the age in days and s is a coefficient depending on the early 
strength development of the concrete. 

The parameter s = 0.47 was determined from the test results. Sub
sequently, the strength on the testing days was calculated with Eq. (1); 
the values obtained are listed in Table 1. The material parameters of the 
longitudinal reinforcement were each determined in three tensile tests 
carried out by an external testing institution (Table 4). Ribbed bars of 
class B550B with diameters of Ø20 mm and Ø26 mm were used as the 
slab reinforcement. 

66
0

100 100

Ø26/400

Ø20/400

Ø14/100

 SL1 & SL2:

A

A Ø14/150 (SS1 & SS2: without)
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2000 7000
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Mandrel d=15Ø

Fig. 3. Reinforcement layout of the tested slab and the slab strips from [16].  

Table 1 
Details of reinforcement and loading, mechanical properties of the concrete and experimentally determined shear strengths.  

Specimen Span 
(mm) 

Width 
(mm) 

g 
(kN/m) 

Loads Bent-up barsa fc 
(MPa) 

fct 
(MPa) 

A0 

(kN) 
VF 

(kN) 
VExp

f 

(kN) 

SL1 SLz–t 8000 3800 62.7 3d & 5.67d 10Ø26 @ 700 
9Ø20 @ 1500 

52.1e 4.18 356.0 2656.2 2980.8c 

SL–t 3d & 5.67d 10Ø26 @ 700 358.6 2002.2 2329.5 
SL2 SLzo–t 123.5 3d & 5.67d 10Ø26 @ 700 

9Ø20 @ 1500 
631.7 2630.5 3200.4c 

SLo–t 3d & 5.67d 10Ø26 @ 700 629.8 2055.2 2623.4 
SS1 SSz–t 8000 400 6.6 3d & 5.67d 1Ø26 @ 700 

1Ø20 @ 1500 
39.7e 3.49 32.7g 255.5 284.9c 

SS 3d 1Ø26 @ 700 31.3g 295.8 323.8 
SS2 SSz 6200b 3d 1Ø26 @ 700 

1Ø20 @ 1500 
25.4g 339.4 361.5c 

SS–t 8000 3d & 5.67d 1Ø26 @ 700 32.7g 254.8 
231.0 

284.2c 

260.4d  

a Distance to the centre of the support in mm. 
b Span shortened due to damage from first test. 
c Flexural failure. 
d Shear failure after re-loading. 
e calculated with (1) 
f calculated with VExp = VF +A0 − g⋅a (for a see Fig. 12). 
g Dead load calculated from nominal dimensions, assuming γ = 25 kN/m3 for reinforced concrete. 

Table 2 
Concrete composition (amounts in kg/m3).   

Class m (kg/m3) 

Aggregate 0/4 912 
4/8 170 
8/16 377 
16/32 431 

Cement CEMII/42.5 N 270 
Hydraulic additives  68 
Water  173 
Plasticiser Visco 3088 VP 2 
Total  2401  

Table 3 
Mechanical properties of the concrete at different ages.  

Age (days) fc (MPa) fc,cube (MPa) fct (MPa) Ec (GPa) 

28 36.6 
± 1.8% 

46.1 
± 2.5% 

3.05 
± 1.2% 

29.602 
± 0.2% 

561 52.6 
± 4.3% 

71.2 
± 2.7% 

4.36 
± 2.4% 

38.140 
± 1.5%  

Table 4 
Mechanical properties of the reinforcing bars.   

Ø [mm] Ømeas [mm] fy [N/mm2] ft [N/mm2] 

SL1, SL2 20 19.9 556.2 670.5 
26 25.7 583.8 657.4 

SS1, SS2 20 – 598.1 686.1 
26 – 563.4 656.4  
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2.3. Test setup 

2.3.1. Direct loading of the bridge slab 
The influence of the slab width on the shear strength was investi

gated in two shear tests on slab SL1 without superstructure and by 
comparing the results with those from tests reported in [16] (SS-t, SSz-t; 
Table 1). At the same time, two different bent-up bar layouts (α = 45◦) 
were investigated. The configuration of the bent-up bars and the load 
arrangement in the longitudinal direction (a = 3.0‧d or 5.67‧d) were the 
same as those in the preliminary tests on slab strips (Table 1, Fig. 3). 

Fig. 4 shows the experimental setup for test SLz–t. In the second test, 
the positions of the loads were reversed with respect to the centre of the 
span. The loads were introduced on auxiliary beams HEB800 strength
ened with two lamellae of 30 mm thickness which were loaded by four 
hollow piston jacks with a total capacity of 500 tons each (Type VSL 
ZPE500). The individual loads were applied at a distance of 1.6 m in the 
longitudinal direction and a distance of 1.5 m transversally. The area of 
load application was 0.09 m2 (loading plate: 0.3 × 0.3 m). In the pre
sented tests, the supports consisted of four individual bearing points on 
each side. The loaded end was equipped with a total of eight load cells. A 
steel plate (250 mm × 250 mm × 30 mm) and an elastomeric plate 
(250 mm × 250 mm × 40 mm) were placed on top of each pair of load 
cells. At the other, unloaded end, elastomeric bearings 
(200 mm × 250 mm × 70 mm) were placed on blocks of tubular steel 
(Ø250 mm, h = 130 mm). The load cells were moved to the opposite end 
after the first test (due to the reversed load positions). 

2.3.2. Slab with superstructure 
The second slab was built including a superstructure consisting of 

rails, sleepers and a 550 mm ballast bed (Fig. 5). The required edge 
beams were cast separately and each block (length 2.25 m, height 
0.6 m) was mounted onto the slab using two formwork ties (Fig. 5a,b). 
The influence of this realistic superstructure on the shear resistance of 
slab SL2 was investigated by comparing the test results with those of slab 
SL1 (SL1-t, SL1z-t). The concrete mix, the configuration of the bent-up 
bars and the loading in the longitudinal direction (a = 3.0d or 5.67d) 
were identical for both slabs (Table 1). Fig. 5a shows the test setup for 
the second test on slab SLo–t. The first test was carried out with the load 

positions reversed with respect to the centre of the span. The loads were 
applied directly on the rails which were strengthened with rail brackets 
at the load application points (Fig. 5b). The geometric arrangement of 
the loads corresponds exactly to the load model 71 as described in [19]. 

2.4. Instrumentation 

Fig. 4 shows the extensive measurement programme for the tests. 
The support forces (Vi) and resulting deflections (δi) were determined 
using conventional measurement devices such as load cells and induc
tive displacement transducers (LVDT; Fig. 4). The relative vertical dis
placements underneath both load introduction points were determined 
taking into account the deflections measured at the supports. In addi
tion, the change in height (Δi) at four locations was monitored by LVDTs 
(Fig. 4). LVDTs and strain gauges were used to determine the principal 
strains (εi) at the concrete surface on the tension side (bottom) and 
compression side (top) of the slab, respectively. During the holding 
phases, oil pastels were used to trace the crack patterns. Additionally, a 
digital image correlation system (DIC) was utilised to detect cracks at 
the bottom of the slab. 

2.5. Results 

The load–deflection curves, vertical support force distribution and 
height monitoring results are shown in Fig. 6. 

All diagrams in Fig. 6 show a comparison of the two tests performed 
on the same slab by displaying the results for both the slab ends with two 
rows of bent-up bars (red) and for that with a single row of bent-up bars 
(black). It is important to note that the self-weights of the slab and the 
superstructure are not considered in the forces or deflections displayed 
in these diagrams. The support forces induced by the dead load (V0) 
were measured before testing and are listed in Table 1. 

From the results, it can be concluded that the shear capacity 
increased by at least 33% by the presence of an additional row of bent- 
up bars (comparison of SLz-t with SL-t). The presence of the super
structure led to an increase in shear capacity of 13.7% (comparison of 
SLo-t with SL-t). Figs. 6a and 6d show the comparison of the 
load–deflection behaviours of tests SLo-t and SL-t. It should be noted 

Fig. 4. Test setup for slab SL1 under directly applied loads, and instrumentation applied in all four tests.  
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that the deflections measured at the edge (δ4, δ6) and in the centre of the 
slab (δ3, δ5) were the same in all four tests. As can be seen in Figs. 6a and 
6d, the initial stiffnesses were lower in the second tests since the slabs 
had gained flexural cracks over their entire lengths in the first tests (see 
black cracks in Fig. 7). The change in stiffness was more pronounced in 
the slab with superstructure (Fig. 6d) as the slab had been fully un
cracked before testing, whereas the slab without superstructure had 
been loaded before the ultimate load test [18]. The slab ends with a 
single row of bent-up bars (SL–t and SLo–t) failed in shear, exhibiting a 
sudden increase in deflection. The slab ends containing two rows of 
bent-up bars (SLz–t and SLzo–t) exhibited flexural failure, with yielding 
plateaus in the associated load–deflection curves just before the loading 
procedure was aborted (Fig. 6a,d). The post-failure crack patterns with 
photos of examples are displayed in Fig. 7. 

Both shear failures were characterised by failure along an inclined 
flexural shear crack in the region without shear reinforcement (Fig. 7b, 
e). The flexural failures were characterised by a single pronounced 
vertical crack located at the second load introduction point (Fig. 7a,d). 
Fig. 7 shows the flexural cracks which tended to propagate along the 
secondary reinforcement (spaced at 150 mm), with every other crack 
being more pronounced (see side views of the slabs in Fig. 7). In
terconnections of those cracks within the testing area were found at the 
bottom of the slabs (Fig. 7). The slab without superstructure exhibited 
cracks at various angles at the top, including punching cracks in the area 
around the loading plate (Fig. 7c), whereas in the other slab there were 
almost no cracks visible after removal of the superstructure. It should be 
noted that the observed punching cracks do not indicate shear punching 
but rather result from the critical shear crack having propagated to the 
second load introduction point. The principal strain directions were 
calculated from the strain gauge measurements and are displayed in 
Fig. 7 for load VF. It should be noted that the principal directions 
remained almost constant for loads V > 0.5⋅VF. The calculated directions 
correspond to the actual orientations of the cracks, as can be seen in 
Fig. 7. 

Figs. 6b and 6e show the deviation of the individual vertical support 

forces from an average support force that assumes equal load distribu
tion to all four bearing points. As expected, the load tends to be 
distributed towards the inner supports, with a 7% higher load than the 
average, whereas the outer supports bear a 7% lower load. In all tests, it 
was observed that one of the inner bearings was loaded more than the 
other (Fig. 6, Table 5). 

In the tests with shear failures (shown in black in Fig. 6), a redis
tribution of forces towards one side occurred after VF had been reached, 
as shown in Figs. 6b and 6e. 

Figs. 6c and 6f show the results of the height monitoring performed 
at several points in the testing area (Fig. 4). The measurements of the 
tests with a single row of bent-up bars (SL–t, SLo–t) show increasing 
rates of height extension starting around a load of V = 1750 kN, 
compared to results from specimens with two rows of bent-up bars 
(SLz–t, Slzo–t). After reaching the peak load (VF), with values of Δ3/4 
between 0.4–0.6 mm, the height extension increased to 1.65 mm in the 
test without superstructure (SLz–t) and to 3.81 mm in the test with su
perstructure (SLzo–t) before the slab collapsed. A comparison of the 
values obtained at the same longitudinal positions (Δ3 and Δ4; Δ1 and 
Δ2) leads to the conclusion that the shear crack opened in equal amounts 
over the entire width of the slab. 

3. Discussion of the test results 

3.1. Influence of the track superstructure on the stress resultants 

In laboratory tests, loads are typically applied directly to the test 
specimens, while in reality, the loads are usually distributed by the 
railway superstructure. As no measurements of the pressure under the 
ballast were performed (see Section 2.4), several models for load dis
tribution are evaluated in the following. Eurocode 1 [19] provides ap
proaches for the distribution of point loads within the load models for 
roads and railways for design. For railways, the point loads of Load 
Model 71 may be distributed uniformly in the longitudinal direction if 
ballast is provided. Assuming an equal distribution for the tests with 

Fig. 5. Testing of the slab with superstructure: (a) load arrangement and layers of the superstructure; (b) reinforced load introduction point and mounted edge beam; 
(c) test setup. 
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superstructure, the resulting load distribution length ld = 3.20 m is two 
times the distance between the point loads of train load model UIC71. 
Furthermore, each point load can be distributed longitudinally over 
three sleepers should local load effects be of relevance, while a constant 
distribution over the whole sleeper width is assumed in the transverse 
direction. Within the ballast, a gradient of distribution of 4:1 can be 
assumed (Fig. 8c). Applying the principles for local load effects 
mentioned above on the conducted test setup yields a load distribution 
length of ld = 2.86 m (see Fig. 8d). 

A more refined approach is the model of a beam on elastic foundation 
[20,21]. The model is usually used to calculate the bending stresses of 
rails under the basic assumption that the deflection of the rail is pro
portional to that of the foundation. Zimmermann [21] provides the 
concept of an idealised longitudinal beam (rail and sleepers) resting on 
an elastic foundation (Fig. 8a). It can be shown that the stress resultants 
of the idealised longitudinal beam are identical to those of a stiff beam of 
twice the elastic length L [19]. The width bl of the idealised beam is 
calculated as: 

bl = la⋅
bs

a
= 1.05⋅

0.30
0.60

= 0.525 m, (2)  

where la is the load distribution length in the transverse direction, 
assuming a load-free strip of 0.50 m in the centre to take into account 
rail compaction [21], bs is the width of sleeper L260E1 and a is the 
spacing of the sleepers. 

The elastic length L is then calculated as: 

L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4⋅ER⋅IR

C⋅bl

4

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4⋅2.1⋅105⋅3.0383⋅10− 5

C⋅0.525
4

√

, (3)  

where Er is the Young’s Modulus of rail UIC60E1, Ir is the moment of 
inertia of the rail, C is the bedding modulus of the foundation under
neath the idealised beam and bl is width of the idealised beam. 

In the conducted tests, an elastic fastening system produced by 
Getzner Werkstoffe GmbH was used, with the stiffness retrieved from 
datasheets of compression tests with magnitudes ranging between 
16–68 kN. The bedding modulus of the other layers is usually difficult to 
determine since this parameter is load-dependent and strongly depends 
on the ground conditions. Table 6 lists approximate values found in 
literature. 

Nevertheless, it is possible to determine the actual stiffness since the 
relative deflection of the slab was measured at locations beyond the load 
introduction points. As shown in Fig. 6d (SLzo–t), the stiffness remains 
rather constant after initiation of cracking. For V = 2000 kN (F/2 =

1482 kN), stiffness values of 52 MN/m and 72 MN/m were determined 
for the locations of δ3 and δ5, respectively. As for the ballast, a Young’s 
modulus of E = 150 MN/m2 can be assumed which is rather stiff 
compared to the other layers. For the sake of simplicity, this layer is not 
considered in the analysis. Table 7 shows the compositions and stiff
nesses of the layers. It should be noted that there were no other elastic 
layers such as sleeper pads or ballast matting (Table 7). 

(a) (b) (c)

(d) (e) (f)

Fig. 6. Results for tests without superstructure: (a) load–deflection diagram; (b) deviation of the individual vertical support forces from the mean of the support 
forces; (c) height monitoring. Results for the tests with full superstructure: (d) load–deflection diagram; (e) deviation of the individual vertical support forces from the 
mean of the support forces; (f) height extension monitoring. 
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The stiffness of the entire system shown in Table 7 is used to calculate 
the bedding modulus C = k/(bl⋅a) in Eq. (3). The resulting elastic lengths 
L are 0.86 m and 0.82 m for the locations of δ3 and δ5, respectively. By 
following the same logic, an averaged elastic length (L = 0.84 m) is 
assumed and a load distribution length ld = 3.28 m is determined for the 
test configuration (Fig. 8b). If the lower limit for the bedding modulus 
for bridges of 300 MN/m2 (see Table 6) were used, the elastic length 
would be L= 0.80 m, which agrees well with the analysis above. Addi
tionally, if the contribution of the elastic fastening system were omitted, 
the elastic length would be L = 0.63 m. This confirms the distribution of 
the load over three sleepers, as suggested by Eurocode 1. 

Fig. 9 shows the calculated stress resultants for a beam at load VExp. 
The calculation of the stress resultants considers the distribution length 
ld = 3.28 m as well as the dead load. Formulas are given in Appendix A. 

Fig. 7. Principal strain directions at the top for load VF and post-failure cracking pattern displayed for the first (black) and second test (red): (a) critical flexural crack 
of specimen SLz–t; (b) critical shear crack and (c) punch-through of the loading plate of specimen SL–t; (d) critical flexural crack of specimen SLzo–t; (e) critical shear 
crack of specimen SLo–t. 

Table 5 
Vertical support forces for VF.  

Specimen  V1+2 

[kN] 
V3+4 

[kN] 
V5+6 [kN] V7+8 

[kN] 
VF 

[kN] 

SL1 SLz–t 621.9 686.5 742.1 605.6  2656.2 
(− 6.3%) (+3.4%) (+11.8%) (− 8.8%) 

SL–t 463.2 530.7 538.1 470.3  2002.2 
(− 7.5%) (+6.0%) (+7.5%) (− 6.0%) 

SL2 SLzo–t 593.5 689.1 720.5 627.5  2630.5 
(− 9.7%) (+4.8%) (+9.6%) (− 4.6%) 

SLo–t 472.3 540.6 561.7 480.6  2055.2 
(− 8.1%) (+5.2%) (+9.3%) (− 6.5%)  
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The analytical approach assuming load distribution in the longitu
dinal direction leads to plausible results: the obtained maximum 
bending moments are identical (as is ρ; see 2.1) in the two tests with 
flexural failure (Fig. 9a), although the measured shear forces at the 
supports are different between the two tests. 

Furthermore, the assumed load distribution leads to different shear 
force lines in the testing areas compared to tests without superstructure 
(Fig. 9a+b). In Fig. 9b, it can be seen that the shear forces measured in 
the tests in which shear failure occurred were lower in the region 
without bent-up bars (1.0 m < x < 1.8 m). At x = 1.20 m, the calculated 
shear forces are identical in both tests with shear failure (Fig. 9b). 

3.2. Comparison with tests on slab strips 

In addition to the generally acknowledged size effect in shear fail
ures, it is possible that the member width and load configuration could 
have a non-negligible effect on the shear capacity of one-way slabs 
without any shear reinforcement. In some studies, a possible positive 
effect of the member width on the shear capacity has been reported 
[24–26] while none was found in other publications [27–29]. Cantone 
et al. [30] recently analysed several results from the literature and 
concluded that the width likely has a favourable effect on the shear 
capacity for slabs with intermediate width-to-depth ratios (1 < b/d <5). 
The favourable effect is explained by the variation in the shape and 
development of the critical shear crack, which allows the load to be 
redistributed. For larger width-to-depth ratios, these positive load 
redistribution effects may be counteracted by force concentrations 
leading to uneven force distribution, whether at load introduction points 
or due to the slab curvature at the bearings [30]. As the width-to-depth 
ratio in the conducted slab tests was 6.3, the shear resistances of the 
slabs that failed in shear should be similar to those of the preliminary 
tests on slab strips (width-to-depth ratio of 0.67). It should be noted that 
these considerations only apply to tests with strip loads and line 
supports. 

The shear resistance of slabs can also be influenced by concentrated 
loads, as investigated in the presented tests. This topic has been inves
tigated in several studies with tests on slabs [31–34] and on slabs under 
concentrated loads close to the support [35–37]. Many of the studies 
address the common concept of effective shear width in shear design 
(Fig. 1). This concept assumes a certain angle of distribution which is 
used to calculate the effective width for shear distribution [38]. As the 
slab specimens in the present study are designed with b/d = 6.3, the 
effective shear width concept suggests that more than 50% of the slab 
width has to be considered at a distance of 0.5d from the edge of the 
loading plate (see Fig. 10c). It should be noted that the spreading rule of 

2·L

l a
0.

50
 m

b l

bs a
C = k/(a∙bl)
modulus of bedding

ER, IR of the rail

Load-free strip
Idealised beam

4:
1

F/4
F/2

F/4

F

(a) (c)

F/4 F/2 F/4 F∙ 5
12 F/2 F/12

ld = 2.86 1.37

F F

ld = 3.28 0.98

F F

(b) (d)

1.6 m

0.6 m A

Fig. 8. Load distribution in the longitudinal direction: (a) beam on elastic foundation according to Zimmermann [21]; (b) load distribution over three sleepers 
according to Eurocode 1 [19]; (c) application of [21] for tests with superstructure; (d) load distribution over three sleepers [19] for tests with superstructure. 

Table 6 
Dependence of the bedding modulus on the ground conditions [22,23].  

Ground conditions Bedding modulus [MN/m3] 

Poor (water-saturated soil, narrow graded sands) 20 
Bad (cohesive soil) 50 
Good (gravel) 100–150 
Very good (concrete, bridges, tunnels) 300–600  

Table 7 
Layer compositions and stiffnesses.  

Layer Type Stiffness [MN/m] 

Elastic fastening system ZW 700b/60 kFs 60 
Sleeper L260E1  stiff 
Sleeper pads none  – 
Ballast GK 31.5/63 

h = 310 mm 
kBal > > kFs,; kUg 

Ballast matting none  – 
Slab t = 660 mm kUg 72 and 52 
Entire system  k 1/(1/kFs + 1/kUg) =

32.7 and 27.8  
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Fig. 9. Calculated stress resultants at load VExp: (a) tests with two rows of bent-up bars and (b) tests with a single row of bent-up bars.  
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[38] works only for the design of cantilevers with a single concentrated 
load. To consider the interaction of several loads and other static sys
tems, finite-element analysis is required. Natário et al. [36] propose an 
approach in which the average unitary shear force over a distance of 4d 
is calculated based on linear− elastic finite-element models, using a 
reduced shear modulus and assuming a reduced Poisson’s ratio to ac
count for cracking. Reducing the elastic shear modulus by a factor of 8 
and assuming the Poisson’s ratio to be zero as suggested in [36] yields 
vExp = 583.0 kN/m for specimen SL–t at a distance of 0.5d from the edge 
of the loading plate. The average unitary shear force over the entire 
width is vExp = 590.4 kN/m. As both values are approximately the same, 
an influence on the shear capacity by concentrated loads can be 
neglected in this study. 

The slab strip with two rows of bent-up bars (SSz–t) also exhibited 
flexural failure. The observed cracking pattern is similar to that observed 
in the corresponding slab test (SLz–t). The unitary bending capacity MR 
at yielding (assuming mean values of the material properties listed in 
Tables 1 and 2 and a parabolic–rectangular stress distribution in the 
compression zone according to EC2 [39]) was almost the same in both 
tests (MR = 1.59 MNm/m for SLz–t and 1.54 MNm/m for SSz–t). The 
comparison of these values with the maximum bending moments MExp 
determined from the experiment (formulas in Appendix A) shows that 
the bending capacity was slightly exceeded in both tests. 

The slab strip with only one row of bent-up bars (SS–t) was loaded 
until the longitudinal reinforcing bars started to yield (at VF,max =

254.8 kN). After the load–deformation curve had flattened out, the 
specimen was unloaded slightly (–50 kN; see Fig. 10a). However, the 
subsequent re-loading step induced shear failure at VF = 231.0 kN, a 
significantly lower load (–9.3%) than in the first loading branch (see 
Table 1). It is important to note that the shear crack opened vertically 
during unloading rather than decreasing or staying the same (Fig. 10d) 
that indicates that the point load stabilised the shear crack beforehand 
by supporting a direct strut. At the same time, the horizontal crack 
displacement stayed almost constant. In the re-loading stage, the hori
zontal and vertical displacements remained almost constant. In [16], the 
authors analysed specimen SS–t by evaluating shear-transfer actions 
based on measured surface deformations (as has been done in [40–42]). 
The result of this analysis showed that when the highest shear force VF, 

max acted, nearly the entire shear force must have been carried by 

compression strut action. The assumption of shear transfer by a direct 
struts can further be supported by a) pronounced delamination cracks 
along the longitudinal reinforcement and b) stable growth of crack 
displacements, even at very large crack widths (> 3 mm). As redistri
bution of forces must have taken place, the overall capacity is then 
defined by the capacities of the individual struts rather by the interac
tion of several shear transfer mechanisms at a flexural shear crack. 
However, a further increase in load was prevented either by the longi
tudinal reinforcement reaching its capacity or by the shear capacity after 
re-loading being exceeded. The shear capacity was lower in the 
re-loading step, presumably due to the changed kinematics. The crack 
pattern observed at the end of the test looks very similar to that of the 
corresponding slab test (SL–t, Fig. 10d). The critical shear crack origi
nated in the region of the missing second row of bent-up bars and 
propagated almost horizontally to the second load introduction point. 
However, the slab strip exhibited higher normalised shear capacity 
(Fig. 10b). In the slab test, the above described force redistribution to 
direct struts is limited as the load is not introduced over the entire width 
and thus cannot support such struts in the same manner. As a conse
quence, the shear capacity of the slab was lower as it was defined by a 
combination of various shear transfer mechanisms in a flexural shear 
crack. The explanation given is supported as the observed capacity 
agrees well with the predictions of several models for the shear resis
tance of members without transverse reinforcement (Section 4). 

In another test with a single point load at a distance a = 3d from the 
support (SS, see Table 1), a 14% higher shear force acted (VF,max =

295.8 kN) before the specimen failed. The capacity of the compression 
zone near the load introduction point was reached and brittle crushing 
occurred. 

As for the influence of the type of load introduction, direct strut 
action was found to be responsible for the higher capacity of the slab 
strip. In contrast, direct strutting is prevented if the load is not intro
duced over the entire width. 

4. Analytical verification of the test results 

4.1. Eurocode 2 

Eurocode 2 (EC2) [39] stipulates that 50% of the transverse 

Fig. 10. Comparison between slab tests and slab strip tests: (a) effective widths for shear under concentrated loads [38]; (b) load–deflection curves; (c) comparison of 
the normalised shear capacity (d) comparison of crack patterns and observed kinematics in slab strips. 
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reinforcement in beams should consist of stirrups to transfer lateral 
forces. In slabs, these lateral forces can be transferred by transverse bars. 
According to EC2, the shear reinforcement can therefore consist entirely 
of bent-up bars (α ≥ 30◦) if the force transferred by the compression 
strut does not exceed one-third of its capacity (VRd,max in Eq. (4)). In EC2, 
the design of members with shear reinforcement is based on a truss 
model with variable concrete strut inclination (VRd in Eq. (4)) with a 
minimum capacity equal to the resistance provided by concrete (VRd,c in 
Eq. (4)). There is no separate model for bent-up bars. In EC2, the 
maximum allowed distance between bent-up bars in a truss model is 
limited to sb,max < d in slabs and sb,max = 0.6⋅d⋅(1+cot α) in beams. 

VEd ≤ max
{

VRd,c;VRd
}
, ​ where

VRd = min

⎧
⎪⎪⎨

⎪⎪⎩

VRd,s =
Asw

s
z⋅fywd⋅(cotθ + cotα)⋅sinα

VRd,max = αcwbwzνfcd⋅(cotθ + cotα)
/(

1 + cot2θ
)

⎫
⎪⎪⎬

⎪⎪⎭

(4) 

and VRd,c is the design value of the shear resistance for members not 
requiring shear reinforcement (see Appendix B), VRd,s is the shear ca
pacity of the tension ties, Asw is the cross-sectional area of the shear 
reinforcement, s is the spacing of the shear reinforcement, z is the inner 
lever arm, fywd is the design yield strength of the shear reinforcement, θ 
is the angle between the concrete compression strut and the beam axis 
perpendicular to the shear force, αcw is a coefficient taking into account 
the state of stress in the compression chord, bw is the minimum width of 
the cross section, ν is the strength reduction factor for concrete cracked 
in shear and fcd is the design value of the compressive cylinder strength 
of concrete. 

4.2. fib Model Code 2010 and CSA 

The fib Model Code 2010 (MC10) [38] provides three levels of 
approximation (LoA) for shear design with transverse reinforcement. In 
levels I and II, the contribution of the concrete is neglected. The level I 
approximation represents a variable angle truss model approach (as 
described in Section 4.1), while the level II approximation is based on a 
generalised stress field. The third level is based on the modified 
compression field theory (MCFT) [43], allowing a superposition of the 
contributions of concrete and reinforcement as a function of the longi
tudinal strain εx at half of the effective shear depth (Eq. (5)). 

VRd = min
{

VRd,c + VRd,s
VRd, max = kcfcdbwz

/
(cot θ + tan θ)

}

, (5)  

where kc is a strength reduction factor taking into account the state of 
strain in the webs and the more brittle failure behaviour of higher- 
strength concretes, and θ is the inclination of the compressive stress 
field. 

Similar rules are prescribed in the general method of the Canadian 
Code (CSA) [44]. Both fib Model Code 2010 and CSA accept bent-up bars 
with an angle of 30◦ or greater as shear reinforcement, provided that the 
inclined portion crossing potential diagonal cracks [38]. While the de
tailing of bent-up bars in one-way members is not addressed in MC10, 
the CSA states that “bent-up bars shall be spaced so that every 35◦ line, 
extending d/2 toward the reaction from mid-depth of member to lon
gitudinal tension reinforcement, shall be crossed by at least one line of 
shear reinforcement”. Moreover, only the centre three-quarters of the 
inclined portion of these bars may be considered effective. 

4.3. ACI 318–19 

In ACI318 [45,46], the design of shear reinforcement is based on a 
modified truss analogy, but, in contrast to EC2, the shear reinforcement 
needs to be designed to resist only the portion of the shear exceeding the 
limit at which inclined cracking occurs, provided the diagonal members 
in the truss are assumed to be inclined at 45◦ (Eq. (6)). The concrete is 

assumed to contribute to the shear capacity through resistance across 
the concrete compressive zone, aggregate interlock and dowel action in 
an amount equivalent to that which causes inclined cracking. ACI318 
[45] considers bent-up bars as shear reinforcement which provide shear 
resistance due to having an inclined portion inclined at 30◦ or more with 
respect to the longitudinal bars and crossing potential diagonal cracks. 
Contrary to EC2 and MC10, the evaluation of a single group of parallel 
bars, as well as combinations with other types of shear reinforcement, is 
addressed explicitly (see Eq. (6)).   

Vs ≥
Vu

ϕ
− Vc, ​ with

Vs = min

⎧
⎨

⎩

Av⋅fy⋅sinα

3
̅̅̅̅

f ′
c

√

bwd

⎫
⎬

⎭
for ​ a ​ single ​ group ​ of ​ parallel ​ bars, ​ and

Vs =
Av⋅fy⋅(sinα + cosα)⋅d

s
for ​ a ​ series ​ of ​ groups ​ of ​ parallel ​ bars,

(6)  

where Av is the cross-sectional area of the shear reinforcement, fc’ is the 
specified compressive strength of concrete, Vu is the factored shear force 
at the relevant section and ϕ is the strength reduction factor (for shear: 
0.75). 

ACI states that “longitudinal bars bent to act as shear reinforcement 
shall be spaced so that every 45◦ line, extending d/2 toward the reaction 
from mid-depth of member to longitudinal tension reinforcement, shall 
be crossed by at least one line of shear reinforcement.” Further, shear 
reinforcement may consist of only bent-up bars. Enclosing of compres
sion reinforcement for beams is required in order to prevent buckling of 
the reinforcing bars. 

4.4. ÖN B4008-2 

In the only recent systematic studies on bent-up bars [16,48], various 
configurations of bent-up bars were tested. The results confirmed that 
the spacing limits stipulated in EC2 (Section 4.1) are suitable to foster 
the development of a truss system of tension ties and compression struts. 
Tested members with wide spacings between bent-up bars (> d) showed 
that crack propagation and the associated cracking patterns were similar 
to those in beams without shear reinforcement. Thus, a well-pronounced 
rotating crack formed instead of smeared and more inclined cracks. The 
tests were analysed by evaluating shear transfer actions with the help of 
photogrammetric measurements. It became evident that shear transfer 
actions assigned to the concrete (aggregate interlock, fracture process 
zone, inclined strut in the uncracked compression zone) and those 
assigned to the reinforcement (tensile action and dowel action) act 
together in such cases. Based on these findings, a semi-empirical model 
with a mechanical basis (potential shear crack model; PSCM) for 
advanced structural assessment of bridges with widely spaced bent-up 
bars was formulated [3,47]. This model was integrated in the Austrian 
standard ÖN B4008–2 (B4008) [17] to assess the load capacity of 
existing bridge structures. 

According to ÖN B4008–2, the contribution of the concrete to the 
shear strength Vc can be simply described as a reduced value of the pure 
shear resistance of the concrete Vc0 multiplied by the coefficient ki (Eq. 
(7)) which is dependent on the ratio of the individual contributions of 
concrete and steel (Vs/Vc0). The total shear resistance VR considering 
bent-up bars can be calculated as follows (Eq. (7)): 
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VR = Vs + Vc0⋅ki and

Vs = Vbu + Vsw =
∑

Abu⋅fyb⋅sinα +
∑

Asw⋅fyw,

Vc0 = κ⋅(100⋅ρ⋅fck
ddg
̅̅̅̅̅̅̅̅̅̅̅̅
a⋅d/4

√

)1/3

⋅bwd [N],

ki = 1 − 0.125⋅Vs/Vc0 ≥ 0.0

(7) 

where Vc0 is the shear strength of concrete according to [49,50], 
κ = 0.6 is a calibration factor, ddg (= 16+dg ≤ 40 mm if fck<60 MPa) is a 
size parameter describing the failure zone roughness, dg is the maximum 
aggregate size and a = M/V is the shear span. For moving loads, which 
are common in infrastructure structures, the root in the denominator can 
be replaced by d. 

The formulations are rather similar to the concept developed by 
Thürlimann [51] which was used in the CEB-FIP Model Code 1978 [52] 
for the more refined verification of the shear resistance. The 
load-bearing portion of the concrete is reduced in a similar fashion, by 
considering the acting shear force. 

4.5. Comparison and structural analysis 

The rules of the standards described in Sections 4.1 to 4.4 are 
compared and applied to verify the shear resistance observed in the tests 
presented in Section 2. Fig. 11 shows the comparison of maximum 
spacings of bent-up bars of several standards (dashed grey lines) with 
the actual spacings of the test specimens. The maximum spacing deter
mined with the approach described in ÖN B4008 (Section 4.4) ensures 
that at least one group of parallel bent-up bars is crossed by a potential 
shear crack (Fig. 11). 

In EC2, MC10 and ACI318, detailing limits prevent the application of 
the truss model (Eqs. (4) and (6)) or stress field approaches (Eq. (5)). 
Even so, and to aid understanding, the resistances obtained from these 
models are depicted by coloured dashed lines in Fig. 11. In EC2 and 
MC10, only the contribution of the concrete VRd,c is thus considered, as 
no other model is given in these documents. As the spacing between the 
rows of bent-up bars is rather large in the tests (sb = 1.33⋅d, Table 1), 
only the shear resistance for a single bent-up bar can be calculated ac
cording to ACI318 (Eq. (6)). A combination of steel and concrete 

contributions can be considered only when using ACI318 or B4008.  
Table 8 summarises the contributions that can be considered for beams 
or slabs. They are also visualised in Fig. 11 (coloured solid lines and grey 
hatchings in the shear force diagram). 

Table 9 shows the detailed results of the analytical verification of the 
shear resistance according to various design standards. The results are 
compared with the acting shear force calculated according to Appendix 
B for specific sections (e.g., significant changes in the shear resistance 
curve in Fig. 11). 

The verification results show that current design standards (EC2, 
MC10&CSA, ACI) tend to underestimate the shear strength of slabs 
designed with bent-up bars with wide spacings due to detailing rules. 
Thus, they are not adequate for the assessment of existing structures. 
Even if detailing limits for the application of the truss model according 
to EC2 are ignored, capacity reserves become apparent (Fig. 11a). It 
should be noted, however, that ignoring these limits in the ACI approach 
would lead to remarkably high resistances due to the superposition of 
the steel and concrete contributions (Fig. 11c). The reason lies in the 
possibility of using either of two formulas for the concrete contribution 
(see Appendix B). Only one of these takes into account the longitudinal 
reinforcement ratio, which is rather low at the support (ρ = 0.44%, 
Fig. 3). The stress field approach found in MC10 (CSA) yields plausible 
results if spacing limits are ignored (Fig. 11b). The potential shear crack 
model introduced in ÖN B4008 is the only model which yields results 
similar to the test results. The shear resistance function displayed in 
Fig. 11d lies slightly above the acting shear forces determined in the tests 
with a second row of bent-up bars (SLz–t and SLzo–t). As the cracking 

Fig. 11. Comparison of the analytical shear resistances obtained with approaches from various design standards (coloured solid lines) with those from the slab tests 
(black solid lines): (a) EC2; (b) MC10 (CSA); (c) ACI318; (d) ÖN B4008. 

Table 8 
Considered contributions to the shear capacity according to current standards 
for the analytical verification of the tests with bent-up bars (Table 1).  

Component EC2 MC10 
(CSA) 

ACI318 B4008 

Beams VRd,c 

(stirrups <50% 
or single row) 

VRd,c 

(sb >

0.96⋅d) 

VS+VC 

(Vs of a single bent- 
up bar, since sb >

0.71⋅d) 

VS+VC0⋅ki 

Slabs 
(As,secondary 

≥ 0.2⋅As) 

VRd,c 

(sb > d)  
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pattern in those tests showed pronounced shear cracking in this region 
(Fig. 7), the authors suggest that the shear capacity was almost reached. 
The shear capacity and failure location for the tests with only one row of 
bent-up bars were predicted quite well. These results also indicate that 
the approach for longitudinal load distribution described in Section 3.1 
is valid, as the calculated shear force in the failure locations are almost 
the same as those predicted from the model. 

5. Summary and conclusions 

This investigation deals with the experimental and theoretical 
assessment of the shear capacity of slab bridges designed with bent-up 
bars. To span the knowledge gap between the load-bearing behaviour 
of small-size specimens and actual structures, the results of four shear 
tests on two full-scale replica slabs under realistic loading conditions are 
presented. Based on the findings of this analysis, the following conclu
sions are drawn:  

• The presence of a complete track superstructure showed an evident 
load distributing effect in the longitudinal direction. To take this into 
account, the model proposed by Zimmermann based on a beam on 
elastic foundation, is considered adequate. This approach leads to 
plausible results and confirms the rules for load distribution given in 
Eurocode 2. The application of such a refined model may lead to an 
advantageous shear force line if the superstructure consists of several 
elastic layers.  

• The comparison of the full-scale tests with preliminary tests on slab 
strips with a tenth of the width showed differences in the load- 
bearing behaviour of small-format laboratory tests. Direct struts 
between the applied force and the bends of the bent-up longitudinal 
bars or the bearings are likely to develop if loads are introduced over 
the whole width, which is typical for laboratory tests on slab strips. 
In real bridge structures, however, direct strutting is limited due to 
the introduction of point loads in wide members. This causes the 
shear capacity values of the slab strips to be greater than those of the 
slab specimens. Nevertheless, the experimentally obtained shear 
capacities of regions without shear reinforcement of the slabs were in 
sound agreement with the predictions of several standards and thus 
the models are considered adequate for cases when the load is not 
introduced over the entire width.  

• The analytical verification of the test results according to several 
design standards shows the potential of the newly developed po
tential shear crack model for assessing the shear capacity of slab 
bridges with widely spaced bent-up bars. The approach of evaluating 
the shear resistance at several locations is a suitable way to consider 
bent-up bars with variable diameters and spacings. The detailing 
rules of current design standards (Eurocode 2, fib Model Code 2010, 
CSA A23.3-04, ACI 318-19), however, hinder the application of shear 
models for existing structures designed with bent-up bars with wide 
spacings, and thus the actual shear resistance of such structures is 
likely to be underestimated with these approaches. Thus, they are 
not adequate for the assessment of such structures. 
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Appendix A. Calculation of stress resultants

F/2

x c l-x-c
l

M

F
2·(l-x)+F

2·(l-x-c)

l

·x ·x-F2·c

F/2

F
2·x+F

2·(x+c)

l

F
2·(l-x)+F

2·(l-x-c)

l

F
2·(l-x)+F

2·(l-x-c)

l

V

x c l-x-c
l

M

q·c·(l-x-c/2)
l

q=F/c

V

l

M

g·l/2

V

g
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g·a

-g·a2/2+g·l2/8

-g·a2/2

q·c·(x-c/2)
l

q·c·(l-x-c/2)·x
l q·c·(x-c/2)·(l-x-c)

l

c·(l-x-c/2)
l

q·c·(l-x-c/2)·(x+c·(l-x-c/2)/l)
l

(c)

(a) (b)

Figure 12. Calculation of stress resultants for (a) direct loading, (b) load distribution by superstructure and (c) dead load.  

Appendix B. Shear provisions for structures without shear reinforcement according to several standards  

Eurocode 2 [39]: 

VRd,c = max

⎧
⎪⎨

⎪⎩

[
CR,c

γc
k(100ρfck)1/3

+ k1σcp

]

bwd

(0.035k3/2f1/2
ck + k1σcp)bwd

⎫
⎪⎬

⎪⎭

CRc… Calibration factor (recommended value: 0.18 [39]) 
γc… Partial safety factor for concrete (=1.5 [39]) 
k = 1 + (200/d [mm])0,5… Size factor 
ρ ≤ 0.02… Longitudinal reinforcement ratio 
fck… Characteristic value of the concrete cylinder compressive strength 
k1… Factor for normal stresses (=0.15 [39]) 
σcp < 0.2⋅fcd… Normal stress (positive for compression) 
bw… Minimum width of the cross section 
d… Static depth 

fib Model Code 2010 [38]: 

VRd,c = kv

̅̅̅̅̅̅
fck

√

γc
zbw;

̅̅̅̅̅̅
fck

√
≤ 8MPa 

– LoA I 

z… Inner lever arm 
kdg= 32/(16 +dg) ≥ 0.75 
dg… Maximum size of aggregate 
εx… Strain at half of the effective shear depth 
MEd, VEd, NEd…Stress resultants 

(continued on next page) 
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(continued ) 

kv =
180

1000 + 1.25⋅z (mm)

– LoA II 

kv =
0.4

1 + 1500εx
⋅

1300
1000 + kdg⋅z (mm)

εx =

( MEd

z
+ VEd + NEd

zp − ep

z

)

2
( zs

z
EsAs +

zp

z
EpAp

) ;

0 ≤ εx ≤ 0,003

εs ≤
εsy

2 

E… Young’s modulus 
A… Cross-sectional area of the bars 
s… Reinforcing bars 
p… Tendons 

ACI 318–19 [45]: 

Av, min/s = max
{

0.75
̅̅̅̅

f′
c

√ bw

fyt
;50

bw

fyt

}

for non-prestressed beams. 

For Av ≥ Av,min: Vc = eitherof

⎧
⎪⎪⎨

⎪⎪⎩

[

2λ
̅̅̅̅

f′
c

√

+
Nu

6⋅Ag

]

bwd

[

8λsλ(ρw)
1/3

̅̅̅̅

f′
c

√

+
Nu

6⋅Ag

]

bwd

⎫
⎪⎪⎬

⎪⎪⎭

For Av < Av,min: Vc =
[
8λsλ(ρw)

1/3
̅̅̅̅

f′
c

√

+
Nu

6⋅Ag

]

bwd 

Vc ≤ 5λ
̅̅̅̅

f′
c

√

bwd and 
Nu

6⋅Ag
≤ 0.05fc′ 

λs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

1 + d/10

√

≤ 1, 
̅̅̅̅

f′
c

√

≤ 100psi 

Nu… Axial load (positive for compression) 
Ag… Gross area of concrete section 
fc’… Specified compressive strength of concrete 
λ… Modification factor for lightweight concrete relative to 
normal-weight concrete of the same compressive 
strength 
ρw… ratio of As to bw⋅d  
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[20] Winkler, E. (1867). Die Lehre von der Elasticitaet und Festigkeit: mit besonderer 
Rücksicht auf ihre Anwendung in der Technik, für polytechnische Schulen, 

Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc. Prague: H. 
Dominicus. 

[21] Zimmermann H. Die Berechnung des Eisenbahnoberbaues. Berlin: Ernst & Sohn,; 
1941. 
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[23] Kuttelwascher, C., & Zuzic, M. (2013). Oberbauschotter-Kompendium für 
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