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Kurzfassung

RDF-Wissensgraphen haben ein breites Anwendungsspektrum in der Industrie und in
der Wissenschaft. Dabei ist die Datenqualität entscheidend, welche mit der Validierungs-
sprache SHACL überprüft werden kann. Es gibt bereits ein Tool namens QSE (Quality
Shapes Extraction), welches automatisch SHACL-Shapes von großen Datensets generiert.
Eine webbasierte Erweiterung namens Shactor visualisiert den Extraktionsprozess und
zeigt Statistiken an. Wissensgraphen sind allerdings nicht statisch und können mehrere
Versionen haben, welche sich eventuell nur minimal unterscheiden. In diesem Bereich gibt
es noch keine Tools, mit welchen SHACL-Shapes zwischen verschiedenen Wissensgraph-
versionen verglichen werden können. Eine weitere offene Frage ist, ob es Möglichkeiten
gibt, QSE für Graphen mit mehreren Versionen zu beschleunigen.
Um diese erste Wissenslücke zu schließen, wurde eine webbasierte Anwendung erstellt,
mit der SHACL-Shapes verglichen werden können. Ebenso wurden zwei Algorithmen
entwickelt. Einer beschäftigt sich mit der Verwendung von Changesets zwischen ver-
schiedenen Graphversionen, um den QSE-Prozess zu beschleunigen, während der andere
bestehende SHACL-Shapes in nachfolgenden Versionen eines Wissensgraphen prüft.
Die Forschungsfragen wurden mithilfe des Design-Science-Research-Frameworks beant-
wortet, wobei als Methoden eine systematische Literaturrecherche, Prototyping, algo-
rithmisches Design, halb-strukturierte Experteninterviews und technische Experimente
verwendet wurden.
Die wesentlichen Ergebnisse zeigen, dass ein webbasiertes Tool zum Vergleich von SHACL-
Shapes benutzerfreundlicher ist als der Verzicht auf zusätzliche Anwendungen. Der
SHACL-Extraktionsprozess von QSE kann durch die Verwendung von Changesets be-
schleunigt werden, jedoch nur, wenn die Changesets im Vergleich zum tatsächlichen
Graphen relativ klein sind. Darüber hinaus ist die Nutzung von SPARQL-Abfragen zur
Überprüfung von existierenden SHACL-Shapes in folgenden Graphversionen schneller als
QSE mehrfach auszuführen. Diese Version hat allerdings den Nachteil, dass hinzugefügte
oder aktualisierte Shapes nicht erkannt werden können.
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Abstract

RDF knowledge graphs have a broad range of applications in academia and industry.
Ensuring data quality is vital and SHACL can be used as a validation language for
this purpose. Previously, an approach called QSE (Quality Shapes Extraction) which
automatically extracts SHACL shapes from large datasets, has been released. An
extension to this program is called Shactor, a web-based tool that visualizes the extraction
process and provides statistics. Since knowledge graphs are not static, there may exist
different versions of a graph, maybe with only minimal changes. There is a lack of tools to
compare SHACL shapes between these graph versions. Another open issue is determining
whether there are methods to accelerate QSE for evolving knowledge graphs.
To address this first gap, the proposed solution involves creating a web-based tool for
SHACL shape comparison. Additionally, two algorithms were developed. One focuses on
using changesets between graph versions to optimize the QSE extraction process, while
the other one is designed to verify existing SHACL shapes in subsequent versions of a
knowledge graph.
The research questions were answered by using the Design Science Research framework,
utilizing methods such as a Systematic Literature Review, prototyping, algorithm design,
semi-structured expert interviews, and technical experiments.
The key findings of the thesis indicate that a web-based tool for SHACL shape comparison
is more user-friendly than using no additional tools. The SHACL shapes extraction
process used in QSE can be accelerated using graph changesets, but only when the
changesets are relatively small in comparison to the actual graph file. Additionally, using
SPARQL queries to identify unchanged shapes in a subsequent graph version is faster
than executing QSE multiple times, although it has the drawback of not being able to
detect added or updated shapes.
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CHAPTER 1
Introduction

Storing complex and interconnected data is quite a challenge for data engineers. Know-
ledge graphs offer a versatile solution and have a broad range of applications, both in
industry and academia. For instance, knowledge graphs can serve as the foundation for
machine learning algorithms. A prominent example of a knowledge graph is DBpedia
[5], which contains the data behind Wikipedia. This example highlights the potential
size of knowledge graphs. Beyond DBpedia, there are many other examples of knowledge
graphs across various domains.
Given the wide range of applications and the massive amounts of data involved, main-
taining data quality is crucial. Changes to knowledge graphs can occur frequently and
may originate from different stakeholders, sometimes introducing errors. For instance,
the data in DBpedia changes at least daily, with numerous users from around the globe
contributing to these updates. The potential errors in such large knowledge graphs pose
a specific problem for applications that rely on the trustworthiness of data within a
knowledge graph. Ensuring data quality is therefore vital.
Knowledge graphs can be expressed in the Resource Description Framework (RDF) [20],
and data quality can be ensured by using the validation language SHACL [23]. With
SHACL, a schema in the form of so-called shapes can be created, which can be used to
validate a graph. During this validation, erroneous data can be filtered out, enhancing
overall data quality. Creating such schemas manually is impractical - therefore, algorithms
have been developed that automatically extract SHACL shapes from large knowledge
graphs. One such algorithm is QSE (Quality Shapes Extraction) [84], which uses pa-
rameters to create a meaningful set of shapes. This is crucial because an automatically
created schema itself can contain errors if it is based on incorrect data. Once a schema is
generated, it can be used to validate existing data and filter out incorrect data.
Another important aspect in this area is the evolution of knowledge graphs. Since
knowledge graphs are not static, there may exist different versions of a graph, maybe
with minimal changes. This evolution is particularly relevant to the topic of data quality.
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1. Introduction

1.1 Problem Statement

The evolution of knowledge graphs increases the complexity of schema creation to ensure
data quality. QSE was written with a focus on the extraction of SHACL shapes for
a specific version of a graph, but it does not provide a way to compare these shapes
between different graph versions. It would be beneficial for users to identify shapes that
remain unchanged across multiple versions of a graph or to detect shapes that have
changed. Currently, state of the art is to manually compare the extracted shapes between
versions, using a text comparison tool. Using manual methods is the only option, but
this is tedious and lacks practicality.
Another problem in this area is the inefficiency of running QSE independently on each
version of a graph, even when there are only minimal changes in the data and schema.
In summary, this work aims at shapes extraction and comparison, specifically in the
context of evolving knowledge graphs. As there is currently no tool available for this use
case, the characteristics of usability and execution time remain unmeasurable.

1.2 Goals and Expected Outcome

To overcome these issues, a user interface will be created, which allows users to conve-
niently compare SHACL shapes between different versions of a graph. For reusability,
graph versions and extracted shapes will be stored in a local database. The tool will allow
users to identify which shapes remained the same, have changed, have been added, or
have been deleted. Additionally, it will provide information on why shapes were deleted.
These features will apply not only to two graph versions but to multiple versions.
The second main goal of this thesis is to explore various methods for making the SHACL
shapes extraction more efficient for evolving knowledge graphs. One approach is to check
existing SHACL shapes generated by QSE on a subsequent version of a graph using the
query language SPARQL. This reduces the execution time for the subsequent version,
although it has the drawback of not generating shapes for newly added data. Another
approach is to use the changeset between two graph versions and the results from the
initial QSE run to build the shapes for the next version. This method also reduces the
execution time but requires the changeset between graph versions.
Summing up, after this thesis is finished, users should be able to conveniently and
efficiently compare SHACL shapes across various versions of a knowledge graph.

1.3 Research Questions

To specify these goals, the following research questions have been elaborated. There
is a graph G with its versions G1, G2, ..., Gn and the corresponding SHACL shapes
generated by QSE, S1, S2, ..., Sn. In the following the terms G1, G2, S1, and S2 will be
used, however, they can be replaced by any version of the graph or of the respective
shapes. Therefore, the research questions are not limited to two graph versions.
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1.3. Research Questions

RQ1: What is an appropriate way to compare S1 and S2 in a user-friendly way and
explain the differences (addition, removal, change)?

RQ2: Given S1 and the changeset between G1 and G2, how can we use the changeset and
S1 to derive S2?

RQ3: Given SPARQL endpoints hosting the graphs, how can we use SPARQL queries to
derive which shapes of S1 remain unchanged and which were removed for G2?

Appropriate for RQ1 means user-friendly, useful, and correct. It can be measured during
the evaluation of semi-structured interviews with experts. Appropriate for RQ2, and
RQ3 means correct and faster in comparison to the method described in the evaluation
sections.
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CHAPTER 2
Related Work

This chapter delivers a comprehensive overview of knowledge graphs, RDF, SPARQL, and
SHACL. Building on this foundation, a dedicated section explores evolving knowledge
graphs, which is particularly important to this subject. Additionally, the chapter presents
related work retrieved from a systematic literature review, along with a description of
the QSE algorithm which forms the basis of this thesis.

2.1 Preliminaries
The following pages cover fundamental aspects of semantic systems. The topics covered
include an overview of knowledge graphs, RDF (Resource Description Framework), the
query language SPARQL, and the validation language SHACL.

2.1.1 Knowledge Graphs
The focus of this thesis is on semantic systems and knowledge graphs. Semantic systems
are systems that make use of explicitly represented knowledge, through conceptual
structures such as ontologies, taxonomies, or knowledge graphs [62]. Many formal
definitions exist for knowledge graphs, such as the one articulated by professors at TU
Wien: “A knowledge graph contains semantically related information as nodes and edges”
[62] or “Knowledge Graphs are graph-structured representations intended to capture the
semantics about how entities relate to each other” [83]. Knowledge graphs find application
across diverse domains, including commercial and academic sectors. Moreover, they serve
as the foundation for Data Science, Graph Databases, Machine Learning, Reasoners, and
Data Integration/Wrangling. Noteworthy among these knowledge graphs is DBpedia [5],
which contains cleaned data from Wikipedia in all languages. In 2023, DBpedia’s Databus,
the platform hosting its data, provided 4,100 GByte of data [6]. Additionally, other
prominent knowledge graphs exist, such as Wikidata [28], compromising approximately
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2. Related Work

110 million editable records. Wikidata serves as the central repository for Wikimedia
projects like Wikipedia, Wikivoyage, Wiktionary, Wikisource, and others. It is a free
and open knowledge base. Besides general information, as it is provided by DBpedia,
knowledge graphs have found compelling applications in fields such as chemistry and
biology. For instance, Linked Life Data [16] offers access to 25 public biomedical databases,
facilitating questions like “find all human genes located in Y-chromosome with the known
molecular interactions”. Around 10 billion RDF statements are provided by Linked Life
Data. Finally, PubChem [19], an open chemistry database, is another notable example
of a large knowledge graph.

2.1.2 RDF
Knowledge graphs can be expressed as property graphs or by the Resource Description
Framework (RDF) [62]. The primary distinction lies in the fact that property graphs
allow edges to have attributes. However, this thesis focuses on RDF, which was developed
in the 1990s and is a W3C recommendation [20]. The primary strength of RDF lies
in its ability to associate metadata with resources. An RDF graph contains numerous
statements, known as triples, each consisting of a subject, a predicate, and an object. An
example is illustrated in Figure 2.1.

Alice Austria

Subject

lives in

Predicate Object

Figure 2.1: Example of RDF

An important term in knowledge graphs is the URI, which stands for Uniform Resource
Identifier. In RDF, anything with a URI is considered a resource. URIs are strings that
identify objects and resources typically found on the web. However, it is important to
note that resources do not have to be on the web. A further important property of
URIs is their uniqueness. A URI can be a Uniform Resource Name (URN), a Uniform
Resource Locator (URL), or a combination of both. An Internationalized Resource
Identifier (IRI) is a URI. An example of defining a resource using a URI could be
“http://semantics.id/ns/example#Alice”. To build RDF triples, the RDF data model
was defined which includes four sets [90]:

• The set of resources R contains all entities for which RDF statements can be made,
and these are identified by URIs.

• The set of properties P lists all features with values that can be attached to
resources. Properties, which are also RDF resources identified by URIs, define the
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2.1. Preliminaries

relationships between subjects and objects in an RDF triple and are referred to as
predicates. These properties form a subset of all resources.

• The set of literals L includes other values such as character sequences, integers,
decimals, dates, or booleans.

• Lastly, the set of statements E : ⟨s, p, o⟩ contains all triples in the graph. As
previously mentioned, a triple contains a subject, a predicate, and an object. The
subject of an RDF statement is an RDF resource or a blank resource, the predicate
is an RDF property. The object can be either an RDF resource, a literal, or a
blank resource. For instance, an adapted example from the one above could have
the predicate “age” and the object “25”, where the object is a literal, unlike the
original example where the object is a resource.

As blank resources or blank nodes were already mentioned, they exist besides RDF
resources and literals. They are used to improve the information structure and are not
globally unique. For example, a list cannot be modeled as an RDF triple without using
blank nodes. The definition of RDF graphs can be formally articulated as:

Definition 1 (RDF graph [84]). Given the sets of resources R, literals L and blank
nodes B, an RDF graph G : ⟨N, E⟩ is a graph with nodes N ⊂ (R ∪ B ∪ L) and edges
E ⊂ {⟨s, p, o⟩ ∈ (R ∪ B) × R × (R ∪ B ∪ L)}

A small example of a full graph can be seen in Listing 2.1. In this example, two people
are defined, who both have a name (Bob and Alice) and mutually know each other.
Prefixes are defined, which can be used in RDF to shorten URIs. For instance, “foaf:name”
abbreviates “<http://xmlns.com/foaf/0.1/name>”. A dot always indicates the end of an
RDF statement.

@pre f ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@pref ix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#> .

<http :// example . org / a l i c e > a f o a f : Person .
<http :// example . org /bob> a f o a f : Person .
<http :// example . org / a l i c e > f o a f : name " A l i c e " .
<http :// example . org /bob> f o a f : name "Bob" .
<http :// example . org / a l i c e > f o a f : knows

<http :// example . org /bob> .
<http :// example . org /bob> f o a f : knows

<http :// example . org / a l i c e > .
Listing 2.1: RDF graph in Turtle syntax

Furthermore, the letter “a” indicates, that the resource “Alice” is a Person. This predicate
a, which is an element of P , abbreviates the property rdf:type [20]. It links all instances
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2. Related Work

of a class to the node representing the class. Formally, all classes, which form a subset of
R, can be defined as C : {c ∈ R | ∃s ∈ R so that ⟨s, a, c⟩ ∈ E}.
RDF graphs can be represented in various formats, such as RDF/XML, N3/Turtle, or in
N-Triples format, which is shortened as “nt” or generally as a labeled directed graph.
An example of an RDF graph in N-Triples format based on Listing 2.1 in a shortened
version is shown in Listing 2.2.

<http :// example . org / a l i c e >
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .
<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/name> " Al i c e " .
<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/ knows> <http :// example . org /bob> .

Listing 2.2: RDF graph in N-Triples Format

Knowledge graphs can be stored by different graph stores, for instance, GraphDB [11].
GraphDB is provided by Ontotext, available as a free or commercial version. It offers a
visual interface for the interaction with graphs but also supports integration with various
programming languages. An alternative is OpenLink Virtuoso [17] which can also be
used in Microsoft Azure or Amazon AWS. To work with knowledge graphs, there exist
different frameworks, such as Apache Jena [2] or Eclipse RDF4J [9] which are both solely
compatible with Java.

2.1.3 SPARQL
Knowledge graphs can be queried by the query language SPARQL [25]. SPARQL shares
similarities with SQL, as it incorporates familiar keywords like “select”, “where”, “group
by”, and “order by”. An example query, as shown in Listing 2.3, retrieves the names of
people along with the number of their friends.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?name (COUNT(? f r i e n d ) AS ? count )
WHERE {

? person f o a f : name ?name .
? person f o a f : knows ? f r i e n d .

} GROUP BY ? person ?name
Listing 2.3: SPARQL example

The WHERE clause specifies a pattern to be matched in the graph. The variable
“?person” represents an RDF resource in the graph and is further constrained by the
statements, that the person must have a name and a friend. SPARQL offers various other
functionalities, including insert, update, and delete statements, filtering, ordering, and

8



2.1. Preliminaries

subqueries. SPARQL will be used in this thesis to query data in triple-stores, especially
in RQ3.

2.1.4 SHACL
Since data quality is an important topic in all areas, SHACL [23], which stands for Shapes
Constraint Language, has evolved as a language to validate RDF graphs against a certain
set of conditions. SHACL can be expressed as an RDF graph itself, it can also serve as
the description of the data graph. This representation is termed a “shapes graph” S,
whereas the actual dataset is called the “data graph” G. Shapes graphs contain different
shapes, which describe certain classes and their properties.
A key concept within SHACL is the node shape, which is often used to describe a class in
the RDF graph and may contain multiple property shapes. A property shape is usually
used to describe the objects of a property of a certain class. Mathematically, this can be
defined as:

Definition 2 (Shape graph [84]). A shape graph S contains node shapes N , with
⟨s, τn, Φn⟩ ∈ N where s is the subject IRI of the node shape (or the name), τn ∈ C
is the target class, and Φn are the property shapes, in the form φn : ⟨τp, Tp, Cp⟩. τp is the
target property, defined with “sh:path” and Tp ⊂ R contains, in case of the node kind of
τp “sh:Literal”, an IRI describing the literal type e.g. “xsd:string”. In case of the node
kind of τp “sh:IRI”, a set of IRIs is provided. Cp is a pair (n, m) ∈ N × (N ∪ {∞}) with
n ≤ m, which describes the min and max cardinality constraints.

An illustrative example is presented in Listing 2.4, where the validation of the class
“ex:Person” is specified. Every person must have at least one name.

ex : PersonShape a sh : NodeShape ;
sh : t a r g e t C l a s s ex : Person ;
sh : property [

a sh : PropertyShape ;
sh : path ex : name ;
sh : minCount 1

] .
Listing 2.4: SHACL example

SHACL shapes can have different targets. In this example, the target is the class
ex:Person, specified using the predicate “sh:targetClass”. The prefix “sh” abbreviates
SHACL i.e. the URI “http://www.w3.org/ns/shacl#”. However, targets of shapes can be
defined in different ways, not necessarily limited to classes. For instance, a shape might
exclusively target several nodes, denoted by “sh:targetNode”. Alternatively, it is possible
to define a predicate, e.g. “ex:knows” and target subjects or objects of this predicate,
where the IRIs “sh:targetSubjectsOf” and “sh:targetObjectsOf” would be used. However,
in this thesis, targets of node shapes will be only identified with “sh:targetClass”. The IRI
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2. Related Work

of the node shape shown in Listing 2.4 is “ex:PersonShape”, which can also be considered
as the name of the node shape. Property shapes can also have IRIs that identify them;
in this example, it could be “ex:namePersonShapeProperty”.
Besides various SHACL keywords used for property shapes, some important IRIs include
“sh:NodeKind”. This IRI defines whether the object of the specified predicate is “sh:Literal”
or “sh:IRI”, among other possible values. Another constraint is “sh:datatype” which
states the data type of the target objects, such as “xsd:integer” or “rdf:langString”.
The “sh:class” predicate is used to ensure that the target object is an instance of the
specified class. Each property shape mandatorily requires a predicate “sh:path”, whose
object specifies an IRI declaring the focus nodes of property shapes reachable from the
node shape via this path. Property shapes can also include cardinality constraints like
“sh:minCount” or “sh:maxCount”. Additionally, SHACL supports lists with “sh:in” and
logical constraints with “sh:or” to express more complex shapes. SHACL provides many
more options than those listed here, enabling a detailed description of a graph’s schema.
When a data graph is validated against a shapes graph, it is verified that all target
entities fulfill all property shapes in the given node shape. This can be expressed in the
following way:

Definition 3 (Validating Shapes Semantics [84]). All entities e, which are instances of
τn, in a graph G are validated by a node shape n, if the following conditions are fulfilled
for all property shapes φn : ⟨τp, Tp, Cp⟩ in n:

• If the node kind of φn is “sh:Literal”, then for every triple (e, τp, l) ∈ G, l is a
literal of type Tp

• If the node kind of φn is “sh:IRI”, then for every triple (e, τp, o) ∈ G, o is an
instance of type Cp, or of one of its subclasses

• n ≤ |{(s, p, o) ∈ G : s = e ∧ p = τp}| ≥ m, where Cp = (n, m)

There also exist other logic-based languages, which can describe the schema of a graph,
namely the Web Ontology Language (OWL) [18], or Shape Expressions (ShEx) [24].
However, SHACL is particularly important in this thesis because QSE outputs SHACL
shapes, which form the foundation for all research questions.

2.2 State of the Art
After understanding the fundamentals of semantic systems, specifically RDF and SHACL,
the subsequent section dives into the central themes of this thesis: evolving knowledge
graphs and the QSE algorithm. This section also covers the findings from the literature
review, including topics such as data quality in knowledge graphs and other algorithms
for extracting shapes from existing graphs.
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2.2.1 Evolving Knowledge Graphs

As one might expect, knowledge graphs are not static; they evolve over time just like the
reality they present. DBpedia [5], for instance, is updated regularly as new knowledge is
generated continuously.
Time can be represented in evolving knowledge graphs in different ways [83]. It can be
saved as data, for example, the construction year of a building can be recorded in the
knowledge graph. Contrastingly, time can also be saved as metadata. This includes the
creation time of an entry, the time an entry was deleted, and the existence of different
versions of an entry over time. Consequently, when time is saved as metadata, a knowledge
graph can be dynamic − providing access to all observable atomic changes over time −
or versioned, offering static snapshots of the knowledge graph at specific points in time.
In this thesis, only versioned knowledge graphs will be considered.
When discussing evolution, several new terms must be considered. First, structural
evolution can be measured, where different descriptive statistics, such as centrality
or connectedness are measured over time within a graph. Dynamics in an evolving
knowledge graph can be assessed by examining growth and change frequencies, which
can be interesting to compare across different areas of the graph. Timeliness refers to
the freshness of the data, indicating if data is out-of-date or out-of-sync. Monotonicity
describes whether data is only added to the graph or if there are also updates and
deletions. Semantic drift happens when there is a change in the meaning of a concept
over time.
It is also important to consider who makes changes in a knowledge graph. These
changes can be made by anonymous users, registered users, authoritative users, or bots.
Understanding who is making the changes is crucial, as it can impact data quality in
various ways.
Often, when changes in knowledge graphs occur, they happen at the level of object literals
[83]. Changes can be atomic, focusing on operations at the resource level, or they can be
local or global. Changes can also be monitored at the schema level. In a study of the
DyLOD dataset (Dynamic Linked Data Observatory) over one year, between 20% and
90% of schema structures changed between two versions. This indicates that while some
nodes retained the same schema structure, new schema structures were added, and some
were no longer used. This observation is particularly important for this thesis.
Pelgrin et al. [80] provide an example of how characteristics can be used to study the
evolution of a dataset. They analyzed certain areas of DBpedia from 2010 onwards,
focusing on major versions up to 2019. For instance, change ratios between these
versions indicate that until 2015, the growth rate was steady, but after that, the deletion
ratio exceeded the insertion ratio, signaling a major design shift. Subsequently, a
negative growth rate might suggest more curated data in the later versions. Additionally,
characteristics of the vocabulary dynamicity show that during the major design shift, noisy
data was removed, as this parameter remained unchanged. Other notable characteristics
of these DBpedia versions include entity changes, the triple-to-entity change score, and
object updates.
However, the dimension of time opens new challenges in knowledge graphs. For instance,
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there is a need for new data models and storage methods tailored to evolving knowledge
graphs. Additionally, there will be novel approaches to query processing, reasoning, and
learning that incorporate the temporal aspect in evolving knowledge graphs.
Based on this knowledge, various projects have been developed, and extensive research
has been conducted in this area. For instance, EvolveKG [70] is a framework designed
to reveal cross-time knowledge interactions. Another approach [91] involves creating
a summary graph for different versions of objects, which refers to the dynamic option
of evolving knowledge graphs, as discussed earlier. Additionally, KGdiff [67] has been
developed to track changes in both the schema and the individual data points.

2.2.2 Data Quality in Knowledge Graphs
Numerous approaches have also been developed in the area of data quality which is a
vital topic for knowledge graphs due to the huge amount of data involved and the schema
flexibility. Data quality is related to this thesis, as the primary purpose of the generated
SHACL shapes is to improve the quality of knowledge graphs by applying these shapes
to the knowledge graph to filter out spurious triples. This method is one approach to
increasing data quality, however, there are also other approaches. GraphGuard [47]
introduces a framework aimed at improving data quality in knowledge graph pipelines
for both humans and machines. Additionally, there has been a systematic review [95] of
quality management in knowledge graphs, as well as a general survey [65] on knowledge
graphs, including the temporal aspects of them. Another paper [63] aims to enhance
existing quality assessment frameworks by incorporating additional quality dimensions
and metrics.
Also in the area of data quality, a method [74] has been developed to judge whether an
incoming graph change is correct or not with classifiers based on topographical features
of a graph. PAC (property assertion constraints) [46] has the goal of checking data before
it gets added to the knowledge graph. With this approach, errors can be prevented and
the quality of knowledge graphs can be enhanced. PAC works by restricting the range of
properties using SPARQL. Additionally, a dissertation [45] has focused on incorporating
data transformations in knowledge graphs to clean the data and to complete the graphs
by calculating derived data.

2.2.3 Quality Shapes Extraction
QSE (Quality Shapes Extraction) [84] is an algorithm designed to extract SHACL shapes
from knowledge graphs to ensure data quality. It is particularly designed for very large
knowledge graphs and it is implemented in Java. The source code is publicly available
on GitHub [7]. A main advantage of QSE is that it eliminates the need for manual
steps during shape generation as this would be unmanageable for huge datasets such
as Wikidata, where there are approximately two million property shapes to identify.
Furthermore, a key objective is to eliminate spurious shapes that can be generated during
automatic shapes extraction. For instance, in DBpedia, some entities that represent
musical bands are incorrectly assigned to the class “dbo:City”. Without filtering, these
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errors would be replicated in the extracted shapes.
To address this issue, QSE calculates two parameters: support and confidence. The
support parameter determines the number of entities associated with a certain class for a
node shape while for a property shape, it defines the cardinality of entities conforming to
that class. The confidence parameter measures the ratio between the number of entities
that conform to a property shape and the total number of entities that are instances of
the target class. Formally, this can be described in the following way:

Definition 4 (Support [84]). Given a node shape ⟨s, τn, Φn⟩ ∈ N and a property shape
φn : ⟨τp, Tp, Cp⟩ ∈ Φn, the support is defined as the number of entities e which satisfy φn

supp(φn) = |{e ∈ R, which satisfy φn}|

Definition 5 (Confidence [84]). Given a node shape ⟨s, τn, Φn⟩ ∈ N and a property
shape φn : ⟨τp, Tp, Cp⟩ ∈ Φn, the confidence is defined as the proportion of entities which
fulfill φn among the entities that are instances of the target class τn of s

conf(φn) = supp(φn)
|{e|⟨e, a, τn⟩ ∈ E}|

When these parameters are configured, QSE generates shapes only if they exceed the
specified thresholds for support and confidence values. If these thresholds are not set,
QSE generates all shapes, which are referred to as the default shapes.
QSE is available as a command-line tool, primarily designed to extract SHACL shapes from
graphs provided as a file, which must be formatted in the N-Triples syntax. Moreover,
QSE offers a query-based option for graphs that are stored on graph stores such as
GraphDB. For this approach, QSE uses a set of SPARQL queries to extract information
from the graph.
To generate shapes from a graph, it is necessary to analyze all nodes and their types in a
graph, as nodes can be used as subjects or objects. Furthermore, it is necessary to count
how often a property connects nodes of given types. This is done in four steps, where the
QSE algorithm involves two iterations through all triples. During the initial phase (entity
extraction), all instances based on their types are counted, hence only triples containing
a type declaration (e.g. “rdf:type”) are considered. The algorithm stores the entity types
associated with each entity and calculates the total count for each class. Subsequently,
in the second run (entity constraints extraction), the algorithm gathers metadata for
property shapes. Here, all triples without a type declaration are analyzed. The subject
and the object types for each predicate are saved. The results, just as the previous data,
are stored in maps. Following this, in the third step, support and confidence metrics are
computed from the previously saved data. Based on these metrics, spurious shapes can
be filtered out. Finally, in the last step, the algorithm generates SHACL shapes. The
names of the shapes are declared and the information gathered so far including support
and confidence values is brought to the node and the corresponding property shapes. To
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output the shapes, they are stored locally in a triple store and exported as Turtle file.
Additionally, Java objects representing the node shapes (NS) and property shapes (PS), as
well as the constraints defined within the property shapes (referred to as ShaclOrListItem)
exist, which can be used in subsequent Java programs, but are not visible to the end
user. A class diagram of these Java objects is shown in Figure 2.2. These objects are
created at the end of the QSE algorithm when the SHACL shapes are created. Prior to
this, only maps with encoded values for class names and other elements are used. The
Java shapes objects are hierarchically organized, meaning that each node shape includes
a list of property shapes, and each property shape contains a list of constraints. All
other details, such as the shape name and target class, are also stored within these Java
objects. It is important to note, that these objects are not available in the “main” branch
of QSE but are only created in the “shactor version” [8]. More details on these different
implementations are provided in Section 4.2.

NS

~ targetClass: IRI
~ countPscWithPruneFlag: Integer
~ countPscWithSupportPruneFlag: Integer
~ countPropertyShapes: Integer
~ countPsWithPruneFlag: Integer
~ propertyShapes: List<PS>
~ countPsWithConfidencePruneFlag: Integer
~ iri: IRI
~ pruneFlag: Boolean
~ countPscWithConfidencePruneFlag: Integer
~ support: Integer
~ countPsWithSupportPruneFlag: Integer

PS

~ pruneFlag: Boolean
~ confidencePruneFlag: Boolean
~ dataTypeOrClass: String
~ hasOrList: Boolean
~ support: Integer
~ iri: IRI
~ path: String
~ nodeKind: String
~ shaclOrListItems: List<ShaclOrListItem>
~ confidence: Double
~ supportPruneFlag: Boolean

ShaclOrListItem

~ nodeKind: String
~ confidencePruneFlag: Boolean
~ pruneFlag: Boolean
~ dataTypeOrClass: String
~ support: Integer
~ supportPruneFlag: Boolean
~ confidence: Double

1 propertyShapes

* 1

shaclOrListItems

*

Figure 2.2: Class diagram of the Java objects created by QSE

Due to the potential size of knowledge graphs, QSE is offered in two versions: the exact
version, where the steps are described in detail above, and the approximate version. The
exact version keeps type and property information in memory which can lead to a high
memory consumption. QSE-Approximate was developed to enable shapes extraction on
commodity machines with limited memory. This algorithm is based on a multi-tiered
dynamic reservoir sampling algorithm which replaces the first phase of QSE-Exact where
all triples are read.
Another configuration possibility for QSE is to list the names of the classes C on which
QSE should be executed. This feature allows the extraction of shapes for specific classes
only, rather than running QSE on the entire graph.
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QSE Explained by an Example

To better grasp the theory behind QSE, a simple example with Alice and Bob is provided.
A snippet from this knowledge graph is presented in Listing 2.2, however, the complete
RDF graph is available in Listing B.1. A third person, Jenny, is added to the graph. After
executing QSE-Exact without parameters for support and confidence, the full output is
shown in Listing B.4. Listing 2.5 shows the node shape generated for the class “Person”
in Turtle syntax. This can be seen in the last triple of the snippet, by the property
“targetClass”. The node shape has a support of three because there are three people in
the knowledge graph. Furthermore, there are three property shapes in the node shape,
the first one describing the “rdf:type” property for the instances of the “Person” class,
and the second one is about the “knows” property, where each person knows another
person. Lastly, the property shape described in Listing 2.6, is about the “name” property.
It shows that the property is set for Alice, Bob, and Jenny and therefore the confidence
is 100%, which is written as “1E0”. The object of these triples must be a literal of the
type “xsd:string” and because the property is set for all instances, “minCount=1” is
added to the shapes, marking it as obligatory. The “path” describes the property, namely
“<http://xmlns.com/foaf/0.1/name>”.

@pre f ix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#> .

<http :// shac l shape s . org /PersonShape> rd f : type
<http ://www. w3 . org /ns/ shac l#NodeShape> ;

<http :// shac l shape s . org / support> "3"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#property>

<http :// shac l shape s . org / instanceTypePersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#property>

<http :// shac l shape s . org /knowsPersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#property>

<http :// shac l shape s . org /namePersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#targe tC la s s >

<http :// xmlns . com/ f o a f /0 .1/ Person> .
Listing 2.5: Result of QSE-Exact on the People Knowledge Graph, node shape for the
class “Person”

@pref ix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix xsd : <http ://www. w3 . org /2001/XMLSchema#> .

<http :// shac l shape s . org /namePersonShapeProperty> rd f : type
<http ://www. w3 . org /ns/ shac l#PropertyShape> ;

<http :// shac l shape s . org / con f idence > 1E0 ;
<http :// shac l shape s . org / support> "3"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
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<http ://www. w3 . org /ns/ shac l#datatype> xsd : s t r i n g ;
<http ://www. w3 . org /ns/ shac l#minCount> 1 ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// xmlns . com/ f o a f /0 .1/name> .
Listing 2.6: Result of QSE-Exact on the People Knowledge Graph, property shape for
the property “knows” from the class “Person”

In addition to the Turtle file generated, QSE creates Java objects that represent the
node and property shapes. These generated objects provide the same information as the
SHACL shapes in the Turtle file. The resulting objects for this example are illustrated in
Figure 2.3.
During the calculation, different maps are generated. Instances for these maps are
illustrated in Figure 2.4. First, a translation table is created and stored in the “strin-
gEncoder”, which assigns a unique number to each IRI to reduce memory consumption.
Next, the parser - a Java class responsible for the triple parsing in QSE - creates the
“classEntityCount” map, which records the number of instances for each class. In this
case, there are three people in the graph, therefore the key representing the class “Person”
(encoded as 0) has a value of three. The “entityDataHashMap”, which stores the types
for each resource along with their associated properties, is generated. For instance, in the
case of Alice, who is representative of all people in the graph, her “classType” includes
only the class "Person" (encoded as 0). Alice is associated with three properties: type,
name, and knows, encoded as 1, 3, and 5 respectively. The “objTypes” map further
specifies the expected class for the object of each property: the type property points to
“undefined” (encoded as 2), the name property to a string (encoded as 4), and the knows

personShape:NS

targetClass = http://xmlns.com/foaf/0.1/Person
iri = http://shaclshapes.org/PersonShape
pruneFlag = false
support = 3

instanceTypePersonPropertyShape:PS

pruneFlag = false
dataTypeOrClass = null
hasOrList = false
support = 3
iri = http://shaclshapes.org/instanceTypePersonShapeProperty
path = http://www.w3.org/1999/02/22-rdf-syntax-ns#type
nodeKind = null
shaclOrListItems = null
confidence = 1.0

namePersonPropertyShape:PS

pruneFlag = false
dataTypeOrClass = http://www.w3.org/2001/XMLSchema#string
hasOrList = false
support = 3
iri = http://shaclshapes.org/namePersonShapeProperty
path = http://xmlns.com/foaf/0.1/name
nodeKind = Literal
shaclOrListItems = null
confidence = 1.0

knowsPersonPropertyShape:PS

pruneFlag = false
dataTypeOrClass = http://xmlns.com/foaf/0.1/Person
hasOrList = false
support = 3
iri = http://shaclshapes.org/knowsPersonShapeProperty
path = http://xmlns.com/foaf/0.1/knows
nodeKind = IRI
shaclOrListItems = null
confidence = 1.0

Figure 2.3: Object diagram of shapes created by QSE
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parser.stringEncoder.table:Map<Integer, String>

0 = http://xmlns.com/foaf/0.1/Person
1 = http://www.w3.org/1999/02/22-rdf-syntax-ns#type
2 = http://shaclshapes.org/object-type/undefined
3 = http://xmlns.com/foaf/0.1/name
4 = <http://www.w3.org/2001/XMLSchema#string>
5 = http://xmlns.com/foaf/0.1/knows

parser.entityDataHashMap:Map<Node, EntityData>

<http://example.org/alice> = aliceEntityData
<http://example.org/bob> = bobEntityData
<http://example.org/jenny> = jennyEntityData

parser.classEntityCount:Map<Integer, Integer>

0 = 3

alicePropertyConstraintsMap:Map<Integer, PropertyData>

1=typePropertyData
3=namePropertyData
5=knowsPropertyData

aliceEntityData:EntityData

classTypes = (0) : Set<Integer>
propertyConstraintsMap = alicePropertyConstraintsMap

typePropertyData:PropertyData

objTypes = (2) : Set<Integer>
count=0

namePropertyData:PropertyData

objTypes = (4) : Set<Integer>
count=0

knowsPropertyData:PropertyData

objTypes = (0) : Set<Integer>
count=0

parser.classToPropWithObjTypes:Map<Integer, Map<Integer, Set<Integer>>>

0 = { 1 = (2), 3 = (4), 5 = (0) }

parser.shapeTripletSupport:Map<Tuple3<Integer,Integer,Integer>,SupportConfidence>

(0,1,2) = (support=3,confidence=1)
(0,3,4) = (support=3,confidence=1)
(0,5,0) = (support=3,confidence=1)

Figure 2.4: Object diagram of the maps created by QSE during shapes calculation

property to a Person (encoded as 0). Another key map, “classToPropWithObjTypes”, is
the foundation for generating SHACL shapes later on. This nested map summarizes data
from the “entityDataHashMap” across all entities. The first key in this map represents
the node shape, the key in the second level corresponds to the property shapes, and
the third level identifies the target classes for each property shape. Additionally, the
“shapeTripletSupport” map is crucial as it stores the support and confidence values for
all shapes. In this view, the information from the “classToPropWithObjTypes” map is
presented in a flattened form.
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Shactor

The visual extension to QSE is called Shactor [85]. It is a web-based tool that visualizes
the extraction process and provides valuable statistics. Shactor was developed by using
Vaadin [27] and supports only the file-based version of QSE. An example screenshot after
the extraction process is shown in Figure 2.5

Figure 2.5: Statistics provided by Shactor after analyzing version one of the BEAR-B
dataset

Limitations in the QSE algorithm

QSE is a powerful tool with many great features, but there are some important limitations
to be aware of. One significant issue arises when resources share the same name but have
different IRIs, such as http://dbpedia.org/property/name versus http://dbpedia.org/
ontology/name. In such cases, QSE should generate two distinct shapes, but instead, only
one shape is created. This occurs because QSE only takes the name of the resource to
generate a shape name. It leads to various confusing problems such as multiple support
statements, multiple confidence statements, multiple classes in a node shape, or even
multiple or-items lists in a single property shape which are meant for different shapes.
This behavior also affects the Java objects. Multiple property shapes are generated if
they share the same name. Since each node shape can only have one target class, this
similarly leads to the creation of multiple Java node shapes with the same name. However,
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when the SHACL shapes are eventually written to a file, they are merged back into a
single shape. This inconsistency complicates handling such cases, as the information
represented in the Java objects differs from what is outputted in the Turtle file. The
behavior was not intentionally designed, there should be a mechanism to prevent the
issue. Additionally, when a node shape contains multiple property shapes with the same
name, the suffix “_1” is added to one of the shapes, which can further contribute to
confusion.
A simple solution to this problem would be to incorporate the full or more parts of the
IRI in the SHACL shape name. This approach would significantly reduce the likelihood of
a shape targeting multiple IRIs which would resolve all of the above-mentioned problems.
However, a drawback of this solution is that the longer names would make the shape
names less readable for end users.
Besides this problem, there are some minor limitations. QSE is unable to handle
comments, so they must be removed from the graph file before QSE can parse it. There
are also inconsistencies between the query-based and file-based versions of QSE. For
the file-based version, the “instanceType” property shapes are generated while in the
query-based option, they are filtered out. This kind of property shape is generated when
a triple describes the class of a resource, i.e. the predicate of the triple equals “rdf:type”.
Furthermore, there are some encoding issues for literal objects of a certain type. For
instance, the triple “<http://dbpedia.org/resource/2015_US_Open_(tennis)> <http://
dbpedia.org/ontology/budget> "4.22534E7"ˆˆ <http://dbpedia.org/datatype/usDollar>”
results in a property shape with the class < %3Chttp : //dbpedia.org/datatype/usDollar
%3E >, where the angle brackets could not be resolved correctly. Another minor issue
arises with the pruning mechanism that filters out all shapes with values less than or
equal to the threshold. This behavior might be unintuitive for some users as they might
expect the pruning to exclude only shapes with values strictly less than the threshold.

Other Shapes Extraction Algorithms

Many algorithms follow the idea of extracting SHACL shapes or other schema information
from existing data sources to improve data quality and eliminate the need for manual
schema creation. Examples include SHACLGEN [22] or ShapeDesigner [38], which follow
a similar approach as QSE-Exact but lack the ability to process large knowledge graphs
[84]. Additional examples include Shape Induction [73] and the approach described by
Spahiu et al. [89] which both extract SHACL shapes from existing data. SCOOP [48]
similarly extracts SHACL shapes from existing knowledge graphs but uses ontologies and
data schemas primarily rather than individual entities. IOP [75, 76] is a predicate logic
formalism that identifies specific shapes over connected entities in the knowledge graph,
with its corresponding learning method known as SHACLearner. SheXer [52], using a
Python library, produces SHACL shapes similar to QSE. A logic called ABSTAT [89]
which automatically extracts SHACL shapes from knowledge graphs has already been
considered in QSE. Another approach, the Ontology Design Pattern [77], uses ontologies
to automatically generate SHACL shapes. Astrea [43] employs Astrea-KG, which provides
mappings between ontology constraint patterns and SHACL constraint patterns. While
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not generating SHACL shapes itself, Trav-SHACL [54] plans the execution and traversal
of a shapes graph to detect invalid entries early.
Also not directly related to shapes extraction, visualizing SHACL shapes has also been
explored. A master’s thesis [33] was written that generates a 3D model of interconnected
SHACL shapes.
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CHAPTER 3
Methods

This chapter describes the scientific methods that are used in this work. First, all methods
are described individually, and then the process of answering the research questions using
the mentioned methods is explained.

3.1 Research Methods
This section explores the scientific methods used in this thesis, namely the Design Science
Research framework, systematic literature review, prototyping, semi-structured expert
interviews, qualitative content analysis, algorithmic design, and technical experiments.

3.1.1 Design Science Research
Design Science [61], rooted in engineering, focuses on problem-solving through the creation
of useful artifacts. In Design Science Research design is both a process and a product
and the evaluation of both is crucial. This leads to a continuous cycle where artifacts
undergo regular evaluation and subsequent refinement, often referred to as the design
cycle [60].
Two important terms in design science are relevance and rigor. The artifact’s relevance
to its environment (people, organizations, technology) is crucial. This relationship
forms a cycle: the artifact’s development is shaped by the environmental needs and, in
turn, influences that environment through its application, termed the relevance cycle.
Simultaneously, ensuring rigorous development involves addressing existing knowledge.
Here, the knowledge base influences the design cycle, while the finished product contributes
back to the knowledge base in what’s known as the rigor cycle.
The heart of Design Science is the iterative design cycle, with relevance and rigor cycle
as its inputs. These cycles depend on each other, although during the actual research
execution, the design cycle remains relatively independent.
Hevner proposed seven guidelines for the design science framework:
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1. Design as Artifact: an artifact (construct, model, method, instantiation) must be
produced

2. Problem Relevance: ensuring the solution is relevant to business problems

3. Design Evaluation: evaluation methods must be executed to ensure the utility,
quality, and efficacy

4. Research Contributions: contributions in the area of design artifact, design founda-
tions, and/or design methodologies must be provided

5. Research Rigor: employing rigorous methods during construction and evaluation

6. Design as a Search Process: searching for an artifact requires available means to
reach desired ends while satisfying laws

7. Communication of Research: the results must be presented to a technology-oriented
and management-oriented audience

An especially important topic within the design cycle revolves around evaluation [79].
This involves establishing specific criteria, such as functionality, performance, or usability
as benchmarks for assessment. The study has evaluated several artifact types (e.g.
algorithm, instantiation, construct) and evaluation method types (e.g. expert evaluation,
technical experiment, prototype). The choice of evaluation method depends on the type
of artifact; technical experiments are predominantly used for algorithms, instantiations,
methods, and models.

3.1.2 Systematic Literature Review
Both rigor and relevance cycle require an understanding of the current state of the art.
Particularly, the relevance cycle relies on identifying existing research gaps, a task that
will be addressed through a partial systematic literature review (SLR) [68]. Typically, a
systematic literature review includes the following steps:

1. Planning: This phase begins by identifying the need for an SLR, (optionally)
commissioning the SLR, and defining research questions. After that, the review
protocol must be developed and evaluated, which includes search terms, resources
where to search, study selection criteria, and a quality checklist. A pilot phase
helps refine these elements.

2. Conducting: Firstly, the research must be identified and primary studies should be
selected. After that, the study quality must be assessed, followed by data extraction,
monitoring, and synthesis.
It is also important to consider synonyms, abbreviations, and combinations in the
search terms. Documentation throughout ensures transparency and replicability.
After all primary papers have been obtained, the papers must be filtered. Instead
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of reading all the papers, some papers can be dropped based on the titles and then
on the abstracts (study selection criteria). Then the remaining papers can be read
and further reduced. In the end, data needs to be extracted with a pre-defined
form, if possible, by multiple reviewers. During data synthesis, data is summarized.
This can be done descriptively, qualitatively, or quantitatively.

3. Reporting: The last step involves specifying the dissemination mechanism (how
and where the results should be published, e.g. in a magazine, journal articles,
or on a website), formatting, and evaluating the report. During the evaluation,
peer reviewing can be used e.g. for journal articles. Quality checklists and other
prepared documents from the planning phase can be utilized here.

3.1.3 Prototyping
Within the design cycle of Design Science Research, an artifact is developed. Prototyping
[37] has parallels to software engineering, which often uses agile development cycles with
frequent feedback. The primary aim is to construct the Minimum Viable Product before
completing the development process, aligning with the Plan-Do-Check-Act methodology.
Camburn et al. [39] describe prototypes as a pre-production representation of some aspect
of the final design. Prototypes can be used for refinement, communication, exploration
of new concepts, and learning. Noteworthy guidelines include testing, timing, ideation,
fixation, feedback, usability, and fidelity. Various prototyping techniques exist, such as
iterative, parallel, requirement relaxation, or subsystem isolation, each offering distinct
advantages for particular objectives. Despite the diverse techniques, detailed guidance
on prototyping remains limited, except for the iterative aspect.

3.1.4 Semi-Structured Expert Interviews
Semi-structured interviews (SSI) [32] are a qualitative evaluation method within the
design cycle, allowing feedback integration into the construct phase. Unlike traditional
surveys, SSI engage fewer participants, employing open questions that focus on “how”
and “why”, and the structure is not fixed. The disadvantages of SSI are that they
are time-consuming, labor-intensive, and require interviewer sophistication. SSI prove
beneficial when seeking open responses and individual perspectives, suitable for groups
like program recipients or interested stakeholders.
The methodological steps include selecting respondents and arranging interviews. The
target group should be identified, and researchers should choose a manageable random
sample. A brief introduction letter detailing the interview’s time frame is crucial before
sending invitations. This should be piloted before sending. Next, the questions should
be drafted and an interview guide should be created. There should not be too many
issues on the agenda. Closed questions can be an ideal start, open questions can follow
these questions. Attention to translations and avoiding questions that evoke pressure
to give socially acceptable answers is essential. Flexibility during the interview allows
agenda adaptation, keeping easy questions at the start, challenging ones at the end, and
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demographic inquiries at the interview’s conclusion.
During the interview, the interviewer should establish a positive first impression and
ask for permission to record the interview. This allows the interviewer to participate
more actively. Preparation ensures clear prioritization of questions. Interviewers should
maintain calm, listen actively, and seek clarification when necessary.
The analysis involves visualizing fixed choice answers in tables/graphs and employing
qualitative content analysis to categorize open ones.

3.1.5 Qualitative Content Analysis

Qualitative content analysis [72] is an approach of systematic, rule-guided qualitative
text analysis that can be used in the design cycle of DSR. It is used for fitting text
material into a model of communication. The aspects of text interpretation will be
put into categories, that follow the research question. There are two ways for category
development, namely inductive and deductive category development. Inductive category
development forms the categories out of the text, whereas deductive formulates the
categories on theory.
The detailed steps of inductive category development involve, based on the research
question, the determination of the category definition. Then, categories are formulated
based on the material. After 10-50% of the material, the categories are revised and the
process starts again. After working through all the material, everything should be checked
for reliability and the results can be interpreted, which can trigger another iteration.

3.1.6 Algorithmic Design

During the design cycle, another method applicable is Algorithmic Design [88], also
known as Algorithm Engineering, a scientific approach to developing efficient algorithms.
The method involves iterative steps: design, analysis, implementation, and experiments.
A key focus lies in crafting algorithms that are simple, implementable, and reusable, with
performance being a crucial factor.
It is crucial in the analysis phase that the design algorithm is easy to analyze, to close
the gap between theory and practice. Implementing the algorithm demands attention
to nuances across programming languages and hardware, as minor details can yield
significant differences. The last step is experiments, which can influence the analysis
again. Many experiments can be done with relatively little effort. However, they also
require nontrivial planning, evaluation, archiving, and interpretation of the results. The
starting point should be a falsifiable hypothesis, which can then be used for the next
iteration of the cycle.
Realistic models serve as inputs during the design phase, representing abstractions of
application problems. During the experimentation phase, real inputs are required. Most
of these steps are closely related to applications.
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3.1.7 Technical Experiments
Design of Experiments [35] is a statistical tool that can be used for planning and
conducting experiments. A practical methodology can be split into the planning, designing,
conducting, and analyzing phases [49]. The planning phase requires a clear, objective,
specific, and measurable statement of the problem. A meaningful response characteristic
should be carefully chosen, there can also be multiple. Furthermore, process variables
and design parameters must be selected, mostly they are set from knowledge of historical
data. The next steps are classification and determining the level of process variables, the
interaction between all variables must also be known.
The design phase is highly individualized, depending on many factors. Key principles to
consider here include randomization, replication, and blocking [34].
In the conducting phase, the experiment is carried out and the results are evaluated. It
is important to document everything during the experiment, even unusual occurrences.
The analysis phase involves interpreting results and drawing conclusions based on the
collected data.

3.2 Methodological Steps
To answer the research questions mentioned in Section 1.3, the framework of DSR is
used. As previously discussed, Design Science Research uses three cycles. In this thesis,
a Systematic Literature Review serves as the methodology for the relevance and rigor
cycle. Therefore, needs can be derived from the literature, and knowledge from the rigor
cycle can influence the thesis. Ultimately, this process contributes to the knowledge
base and aligns with evolving business needs by the cycle’s conclusion. Prototyping
and algorithmic design are used in the design cycle. Methods during the evaluation are
semi-structured expert interviews along with qualitative content analysis and technical
experiments.

3.2.1 Systematic Literature Review
Given the time-consuming nature of a Systematic Literature Review, a partial review was
chosen. During the planning phase, a review protocol was established and only one online
library was defined, where strict selection criteria were applied, to limit the number of
papers. In the conducting phase, qualitative data extraction was done, aiming to provide
a broad overview of the knowledge base and business needs rather than addressing a
specific research question. Reporting was done in a simplified way. The literature review
was conducted in the mid of May 2024.
The review protocol contained the following items:

• Objectives: Establish a broad understanding of the current knowledge base in the
area of evolving knowledge graphs, automatic extraction of data quality constraints
from knowledge graphs, and comparing of SHACL shapes and changesets between
knowledge graph versions.
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• Search Keywords: “evolving knowledge graphs”, “data quality in knowledge graphs”,
“shacl extraction from knowledge graphs”, “comparing shacl shapes”, “differences
between knowledge graphs versions”.

• Study selection criteria: published after 2000, written in English or German,
accessible with TU-Vienna Account for free.

• Library: Google Scholar.

• Study Exclusion Criteria: Has nothing to do with research questions or objectives.

• Procedure: In the conduct phase, the first ten results for each search keyword were
evaluated. The outcomes of this phase are detailed in Table A.1. After reviewing
the titles and applying the exclusion criteria, the abstracts of the papers were read
and each paper was rated for relevance on a scale from 1 (very relevant) to 3 (not
relevant). The results of this phase are presented in Table A.2. Papers with a high
relevance (rated 1) were further assessed by examining parts of the paper or the
entire paper.

• Data Extraction: Based on their abstracts and in some cases the full paper, key
sections of the content have been summarized.

• Data Synthesis: The content of the papers was descriptively synthesized.

• Data Reporting: The results of the Systematic Literature Review are presented in
Section 2.2.

3.2.2 Prototyping
During the design cycle, RQ1 was answered using the prototyping method [37] within
the construction phase. JustInMind [10], a design and prototyping tool for web and
mobile apps, was chosen for this purpose. The free version was adequate for this task, as
the offered features were sufficient. The initial stages involved low-fidelity prototypes to
determine the most suitable design that satisfies the end user’s requirements. Although
only one prototype was developed, this one was already pretty similar to the final web
app. Examples of this prototype are showcased in Figure 3.1 and Figure 3.2. Iteratively,
the minimum viable product was developed, incorporating feedback from the evaluation
phase.
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Figure 3.1: Prototype of a comparison

Figure 3.2: Prototype of comparing a shape in detail

3.2.3 Algorithmic Design

Contrastingly, RQ2, and RQ3 used algorithmic design [88] in the construction phase
of the design cycle. The approach entails maintaining algorithm simplicity, reusability,
and utilizing libraries. Iterative development through small experiments refined the
algorithms. Unit tests with synthesized data and small knowledge graphs were used
in this process. As realistic input, graph snapshots from the BEAR datasets [4] were
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used to test the applications. The BEAR, BEnchmark of RDF ARchives, datasets
are specifically designed for testing evolving semantic web data. They contain three
real-world datasets and provide a standard for benchmarking RDF archives. The BEAR
datasets will be described in more detail in Section 6.4.1.

3.2.4 Evaluation
For the evaluation part of the design cycle for RQ1, semi-structured expert interviews [32]
with students, who have already participated in the course “Introduction To Semantic
Systems” [1] were conducted. The analysis of interview content employed the inductive
approach of qualitative content analysis [72]. The important part here was to measure
the usability of the user interface in comparison to finding differences across the shapes
without the ShapeComparator. The detailed procedure and the results are provided in
Chapter 5.3.
For the evaluation phase in the design cycle for RQ2, and RQ3, technical experiments
[35] were conducted, aligning with common practices in Design Science Research projects
for instantiations [49]. The experiments ran on a virtual machine since the data size
of the test data was big. After it was ensured that the algorithm worked correctly, the
execution time became the measurable metric. The execution times of the developed
methods were compared to the execution times of the baseline. More details on the
baseline and on the definition of the execution times are provided in Chapter 6.4.2 and
7.4.
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CHAPTER 4
Shared Components

This chapter provides an overview of key components essential to all algorithms of this
diploma thesis. It starts with the basic concept of comparing SHACL shapes. Next, the
chapter covers the technical details of the implementation as well as a description of the
contributions made to the QSE algorithm, which forms the basis of all implementations.

4.1 Comparing SHACL Shapes
A key task for this thesis is to enable the comparison of generated SHACL shapes. The
information sources for this comparison include the SHACL file generated by QSE and
the internal Java objects after the QSE execution. Both of these information sources
contain all node and property shapes. QSE structures SHACL files always in the same
way using the TurtleFormatter [3]. This tool offers various configurations for structuring
Turtle files and the resulting SHACL shapes are mostly consistent, with a few exceptions.
However, comparing entire SHACL shape files directly is impractical, and also the Java
objects are not easily comparable or interpretable by users.
A primary challenge is to present a single SHACL shape in a readable format that is
user-friendly and also easily comparable by algorithms. To achieve this goal, it was
decided to present the SHACL shapes as Turtle text snippets with some modifications,
which will be described later in this section. This format is both readable and familiar to
users, and easy to compare for algorithms. An example is given in Listing 4.1, which
represents the raw SHACL snippet that can be found among many other shapes in the
SHACL file generated by QSE, and Listing 4.2 which contains the modified Turtle text
snippet for a shape.
<http :// shac l shape s . org / agePersonShapeProperty> rd f : type

<http ://www. w3 . org /ns/ shac l#PropertyShape> ;
<http ://www. w3 . org /ns/ shac l#or> ( [

<http :// shac l shape s . org / con f idence > 3 ,3333E−2 ;

29



4. Shared Components

<http :// shac l shape s . org / support> "2"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
<http ://www. w3 . org /ns/ shac l#datatype> xsd : i n t e g e r ;

] [
<http :// shac l shape s . org / con f idence > 3 ,3333E−2 ;
<http :// shac l shape s . org / support> "2"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
<http ://www. w3 . org /ns/ shac l#datatype> xsd : double ;

] ) ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// example . org /age> .
Listing 4.1: Example output from QSE for a SHACL shape

<http :// shac l shape s . org / agePersonShapeProperty> rd f : type
<http ://www. w3 . org /ns/ shac l#PropertyShape> ;

<http ://www. w3 . org /ns/ shac l#or> ( [
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
<http ://www. w3 . org /ns/ shac l#datatype> xsd : double ;

] [
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
<http ://www. w3 . org /ns/ shac l#datatype> xsd : i n t e g e r ;

] ) ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// example . org /age> .
Listing 4.2: Modified Turtle text snippet for a SHACL shape

Several approaches were considered on how to use the information provided by QSE to
get these comparable SHACL shape text snippets. In the final version, a combination of
the two artifacts was used. The Java objects served as the primary source of information,
providing an overview of all existing shapes, the attributes stored within each shape,
and how they relate to each other. The SHACL file was used to obtain the Turtle text
snippets, which are used for shape comparison.
A crucial decision in this context is the assumption that the most effective method for
identifying a shape is by using its name. The name of a shape is not defined by the
SHACL standard, it is up to the user to give a shape a meaningful name. However,
QSE structures the shape names during shape generation always in the same way. Node
shapes are named after their target class and the suffix “Shape”. The name of a property
shape begins with the path of the property, then uses the name of the corresponding node
shape, and ends with the suffix “Property”. Examples are the node shape “PersonShape”
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and its corresponding property shape “agePersonShapeProperty” for the property age.
After some experiments, it became clear that the fastest way to get a single SHACL
shape as text by name is to use regular expressions (regex) on the SHACL file and obtain
the SHACL text snippet of a shape in this way. With regular expressions, texts can be
efficiently searched by using keywords, wildcards, and other rules. Since the SHACL file
is formatted with the TurtleFormatter, the regex is relatively simple “\n<%s>.*? \.”.
It searches for new lines (\n) that start with the shape name enclosed in angle brack-
ets. The shape name is provided as a parameter in the string, which is stated as %s.
Then any characters are accepted (.*?) until there is a space followed by a dot, which
marks the end of a shape. The dot is a special character in regular expressions and
therefore has to be escaped with a backslash. The result of this regex for the shape name
“http://shaclshapes.org/agePersonShapeProperty” is given in Listing 4.1.
After extracting the unmodified text for a shape with regex, it still needs to be made com-
parable to other shapes. First, the support and confidence triples need to be removed, as
these values typically vary between different graph versions. Support and confidence values
are not part of the standard SHACL terminology, they were added by the QSE algorithm
during shape generation. That is also why support and confidence use the namespace
“http://shaclshapes.org” and not the SHACL namespace “http://www.w3.org/ns/shacl”.
The removal was done by converting the text segment into a Jena graph and then filtering
the support and confidence statements. Jena and RDF4J are Java libraries that allow the
creation of so-called models from a Turtle file, which can then be managed as a graph in
Java. Additionally, issues arose with SHACL-In and SHACL-Or items, as these are not
considered by the TurtleFormatter. Some adjustments to the text were needed to reorder
these items alphabetically. This task was solved using regex and Java string operations.
Finally, the shape is now comparable to shapes with an identical name from other graph
versions. This procedure is also illustrated in Algorithm 4.1. As given in the examples in
Listing 4.1 and Listing 4.2, the modified Turtle snippet does not contain triples for sup-
port and confidence anymore, and the constraints in the or-list were ordered alphabetically.

Algorithm 4.1: Modify a SHACL shape to make it comparable
Input : Sf : SHACL shapes in Turtle format, shapeName
Output : comparableShape

1 comparableShape ← use regex on Sf to find SHACL shape with the name
shapeName

2 Remove all support and confidence triples in comparableShape
3 Run TurtleFormatter [3] on comparableShape
4 Reorder items in SHACL-In lists in comparableShape alphabetically
5 Reorder items in SHACL-Or lists in comparableShape alphabetically

An alternative attempt involved reading the whole SHACL file provided by QSE into an
RDF4J or Jena model, querying it using the shape’s name, and recreating the Turtle
text snippet to avoid using regex and string operations on the SHACL file. Jena or
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RDF4J models can be queried using SPARQL or provided methods to retrieve only the
relevant parts for each shape. This was achieved by searching for triples where the subject
equals the name of the shape. However, more complex shapes can include SHACL-Or
items or SHACL-In lists that are internally stored with blank nodes. To retrieve the
information stored in these blank nodes, the triples had to be loaded recursively from
the model again. For instance, querying a small node shape by name was relatively
straightforward. However, querying a more complex property shape from a large model
led to complications. When a property shape includes a list, as illustrated in Listing
4.1, the content of this list is stored as a blank node. To retrieve the content of this
blank node, it is necessary to query the entire model again for the blank node’s identifier.
RDF lists involve multiple blank nodes: the first element is referenced by one blank node,
and the remaining elements, also called the rest, are also referenced in a blank node.
Consequently, retrieving the content of these triples requires multiple iterations over the
entire model. The complexity increases with longer lists or if an item in the list contains
a SHACL-In list. Therefore, this approach, in general, proved to be inefficient, which
is why the final solution was to use regex to extract the shape segments directly from
the SHACL file. Although this approach has several disadvantages, such as potential
inconsistencies, it is notably faster.

4.2 Technical Details of the Implementation

The implementation includes three tools to address all research questions: the ShapeCom-
parator, the SHACL-DiffExtractor, and the SPARQL-ShapeComparator. The ShapeCom-
parator is a web application, while the other two tools are command-line applications. To
implement this project Java (Version 17) was used. A project was created that includes
a Java package for each tool.
QSE is available in different versions, namely the “main” branch [7], which is used for ap-
plying QSE on a single graph in the console efficiently, and the “shactor version”. Shactor
utilizes a variant of the QSE algorithm that differs from the main branch. This version
generates Java objects for each node shape, property shape, and similar elements, in
addition to producing SHACL shapes as a Turtle file. These objects are needed to display
the SHACL shapes in Shactor’s graphical interface. Consequently, this thesis employs the
“shactor version” of QSE [8]. It is used for the graphical part, the ShapeComparator, but
also for the algorithms since the performance impact for the Java shape object generation
in QSE is minimal.
Some modifications in the QSE algorithm were needed for the successful implementation
of all functionalities described in this thesis. These modifications were done on the
“shactor”-branch and are described in detail in Section 4.3. Of course, these modifications
are included in the QSE version, which is used by all parts of this project.
The code used in this project is open source and available on GitHub at the following
link: https://github.com/dbai-tuw/QseEvolvingKg.

32

https://github.com/dbai-tuw/QseEvolvingKg


4.3. Extensions of the QSE Algorithm

4.3 Extensions of the QSE Algorithm
The QSE algorithm in the “shactor”-branch already offers many capabilities, such as
providing Java objects for node and property shapes. However, some adjustments were
necessary to enable the ShapeComparator, the SHACL-DiffExtractor, and the SPARQL-
ShapeChecker to work correctly. The extensions described were developed as part of this
thesis. However, the code was directly contributed to the official QSE repository to allow
other developers to benefit from the enhancements as well.
The main adjustments involved updating the code to make internal maps, methods,
and results accessible to external programs. For example, the SHACL-DiffExtractor
needs access to the “shapeTripletSupport”-map to recalculate the confidence values, as
described in Algorithm 6.1. Another modification was made to the “PropertyData” class
in the QSE algorithm. Originally, QSE only recorded which object types were referenced
by a given property. However, for the SHACL-DiffExtractor to work properly, it was
necessary to save also the count for each object type. This change enabled parsing the
changesets to obtain the correct support for a shape. The feature can be enabled or
disabled in the QSE configuration file.
Additional updates included upgrading the reference to GraphDB [11] from version 9.3
to 10.3, along with fixing several minor bugs. In the query-based version of QSE, the
output shapes were duplicated after each run, so a method was added to clear the output
directory to prevent this issue. Additionally, the query-based option of QSE produced
incomplete shapes for literal property shapes, which was resolved by fixing a parameter.
The QSE algorithm uses a SAIL (Storage And Inference Layer) repository [21] to export
SHACL shapes to a file. Previously, the SAIL repository was not closed after each run, as
the program was typically used only once at a time. This led to an issue where QSE could
not extract shapes more than once, which was resolved by ensuring the SAIL repository
was properly closed. Another issue involved an exception being thrown if the runtime
logs file was missing, which occurred when QSE had not been run for a specific graph
yet. The exception was resolved by creating a default file to minimize error messages.
Lastly, an improvement was made to allow setting pruning thresholds directly from the
program, rather than only through a file.
The updated code is available in the “shactor” branch of the QSE repository at https://
github.com/dkw-aau/qse/tree/shactor.
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CHAPTER 5
ShapeComparator

This chapter presents an in-depth overview of the ShapeComparator, which is the result
of research question 1. The ShapeComparator is a web application designed to compare
SHACL shapes generated by QSE [84]. The chapter starts with exploring the tool’s
requirements and functionality, followed by a demonstration with screenshots, along with
implementation details. Finally, it concludes with an evaluation based on semi-structured
interviews.

5.1 Requirements and Functionality
To answer research question 1, the ShapeComparator needs to enable a user to compare
SHACL shapes in a user-friendly way using a visual interface. The ShapeComparator
allows users to upload different versions of a graph, for example, G1 and G2. Next, the
tool facilitates the extraction of shape graphs, like S1 and S2, using QSE. Finally, users
can compare these generated shapes with each other.
A brief overview of the overall architecture for this tool is shown in Figure 5.1. The
diagram illustrates the involvement of a database that stores graph versions provided by
the user and the generated shapes. Additionally, the application uses the QSE algorithm
[84] to generate SHACL shapes. The application is accessible via a web browser. The user
workflow is provided in Figure 5.2. While this diagram illustrates the default workflow,
users have the flexibility to return to previous steps at any time. The subsequent sections
describe the functionalities of these steps in more detail.

5.1.1 Storage of Different Graph Versions
To make the comparison of graph versions easier, the ShapeComparator offers the
possibility to save graphs and their respective versions. Each graph can have multiple
versions associated with it. For instance, the graph BEAR-B, which is described in more
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QSE

ShapeComparator

ShapeComparator

Database

Web Browser

Figure 5.1: ShapeComparator - Architecture

detail in Section 6.4.1, has 89 versions.
In compliance with QSE, the ShapeComparator requires that only graphs or versions in
N-Triples format can be uploaded. Users have the option to either upload a file or use a
pre-loaded graph.
The capability to store graphs and their versions improves the user experience significantly.
Without this feature, users would have to upload files repeatedly for comparisons, which
would be very inconvenient and consume additional time and effort. Shactor [85] does
not include this time-saving feature. This is specifically convenient as there may arise
scenarios where running QSE multiple times on the same graph file is necessary, for
instance, with varying support or confidence parameters.

5.1.2 Extract SHACL Shapes
When QSE should be run, the user chooses a graph and the desired version. Similar to
Shactor, all classes C mentioned in the graph G and how often they occur in G are listed.
The user can then choose the target classes on which QSE should be run. Additionally,
the user can either extract default shapes (all shapes) or set the support and confidence
parameters for pruning. Notably, a node shape does not have a confidence parameter.

Store different
graph versions

Extract
SHACL shapes

Compare
SHACL shapes

Figure 5.2: ShapeComparator - Activity Diagram
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The program also stores the extracted SHACL shapes in the database, allowing them to
be selected for comparison later.

5.1.3 Compare SHACL Shapes

Finally, the extracted shapes S are available for comparison. Users can choose one or
multiple QSE runs along with their extracted shapes for comparison. In general, there is
the possibility to compare extracted shapes with all combinations of different parameters
such as support, confidence, or chosen classes. However, there will be warnings, if
extracted shapes with different support or confidence parameters are compared or if
extracted shapes with different classes are selected. The order in which the objects are
compared can also be chosen. For instance, if there are results from two QSE runs (S1
and S2), then S1 can be compared with S2, or vice versa, S2 with S1.
For an overview of the comparison, node and property shapes are organized in a tree-view
format. Objects from different QSE runs are displayed side by side, with shapes mapped
by their name across different QSE runs. A key assumption of this project is that shapes
can be identified by their name as QSE structures shape names following a consistent
naming convention. However, more details on this topic are provided in Section 4.1.
Shapes, which are added, deleted, or do not have the same content across different
versions are highlighted so that the user can easily find differences. Users can search for
specific shapes per name or filter by identical node shapes, identical property shapes, or
different shapes in general.
There is a detailed view for every node or property shape in the comparison overview,
where the SHACL shapes of the QSE runs are displayed as text. It was decided to display
SHACL shapes as Turtle text snippets, as this format is both readable and familiar to
users as the intended users of this tool have experience with SHACL in any way.
In this detailed view, discrepancies are also visually highlighted in red or green, indicating
additions or removals in the text. If multiple QSE runs were selected for comparison,
there is the possibility of selecting the desired runs, as only two shapes can be directly
compared at a time. Additionally, to the text comparison, all shapes are listed along
with their corresponding support and confidence values, as these were omitted from the
original SHACL shape.
When a user selects a row in the overview where a shape was deleted, a prompt will
appear, explaining why this shape was excluded. This information is retrieved from the
default shapes which are also preserved during shapes extraction.

5.2 Implementation
In reference to Shactor [85], the application was developed with Vaadin (Version 24.2.4)
[27], and Spring [26]. Vaadin is a full-stack framework that allows front-end development
with Java. For this project, the free version of Vaadin was selected as the features provided
were sufficient. Spring is a popular Java framework that simplifies the development
of different applications, such as microservices, web apps, cloud-based-, or serverless
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applications. In this context, it is used alongside Vaadin and offers the advantage of
reducing boilerplate code for web application development and simplifying configuration
tasks. Additionally, the Spring framework facilitates an easy integration of a local
database. Another tool involved was the JavaScript library jsdiff [15] to compare the
text segments of SHACL shapes visually. This tool is used to highlight the differences
automatically in the details view of ShapeComparator.

5.2.1 Illustration with Screenshots
An extended version of the example from Section 2.1.2 was chosen to showcase the func-
tionalities of ShapeComparator. The complete RDF graphs are available in Appendix B.
The ShapeComparator is designed for laptop screens, a screenshot is illustrated in Fig-
ure 5.3 The initial screen of the ShapeComparator application shows a list of all graphs

Figure 5.3: Full screenshot of the ShapeComparator application

saved in the application. Each graph can have multiple versions associated with it. In
this demonstration, the “People” knowledge graph has three versions. These versions of
the knowledge graph are fully printed in Listings B.1, B.2 and B.3.
In the first version of the knowledge graph, there are three people, Alice, Bob, and Jenny,
who have a name attribute and an attribute that indicates whether they know each other.
A snippet of this knowledge graph is shown in Listing 5.1.

<http :// example . org / a l i c e >
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/name> " Al i c e " .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /bob> .

Listing 5.1: Snippet of the People Knowledge Graph (Version 1)
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In the second version of this knowledge graph three cats, each with an associated color,
are added. A snippet of this knowledge graph can be seen in Listing 5.2.

<http :// example . org /orangeCat>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// example . org /orangeCat>
<http :// example . org / co lo r > " orange " .

Listing 5.2: Snippet of the People Knowledge Graph (Version 2)

In the third version, the color attribute is removed from two of the three cats, and instead
of knowing each other, Alice, Bob, and Jenny each now know one cat, as shown in Listing
5.3.

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /orangeCat> .

Listing 5.3: Snippet of the People Knowledge Graph (Version 3)

The user interface for the overview of the versions of a graph is illustrated in Figure 5.4.
While the version number is generated automatically, the user has the option to assign
a custom name to each version. When the graph is created, the initial version is
automatically named “Original”. Users can edit the name of a graph version by double-
clicking it in the list. However, the order of the graph versions cannot be modified.

Figure 5.4: Overview of all versions of a graph

After the knowledge graph versions are saved, to avoid uploading them repeatedly, the
user can continue to extract SHACL shapes. Figure 5.5 illustrates this process for the
second version of the graph (Box A). QSE automatically lists all classes along with their
instance counts for selection (Box B). As previously described, this version includes
three people and three cats. The support parameter is set to two and the confidence
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parameter is set to zero (Box C). This means that all shapes, with a support of two or
lower, are not considered for the resulting shapes. The confidence parameter is set to
zero percent, ensuring no triples are dropped because of too low confidence values. The
detailed definitions of the support and confidence parameters are provided in Section
2.2.3.

Figure 5.5: SHACL shapes can be extracted for a version of a graph

The overview of all extracted shapes for the third version is illustrated in Figure 5.6.
In this example, shapes were extracted once with a support threshold of two (Box A),
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and once without any pruning thresholds (Box B). The resulting shapes of a QSE run
without pruning thresholds are also called default shapes, meaning that all shapes are
created and none are discarded, as indicated by the support and confidence parameter
thresholds of zero. A more detailed description of this topic is provided in Section 2.2.3.
The system is able to store the resulting shapes for multiple QSE runs for a version
separately. These shapes are saved in the database.

Figure 5.6: Overview of all extracted shapes for a version of a graph

Finally, the extracted shapes are available for comparison in Figure 5.7. At the top of
the page, three QSE runs along with their extracted shapes are chosen (Box A). To
identify QSE runs in this view, they are named after the following naming convention:
<graph name>-<version number>-<version name>-<creation timestamp>-<QSE type>-
<support threshold>-<confidence threshold>. The overview indicates changes between
versions with a light red background for these lines. In this example the “knows” property
in the class Person has changed, as this property points to cats in the third version of
the graph (Box B). Additionally, there are changes for the cat class (Box C).
Clicking on the row “knowsPersonShapeProperty” in the comparison table (Figure 5.9)
redirects to a more detailed comparison view, where the discrepancies are visually
highlighted in red and green, indicating additions or removals in the text. “Cat” is
written in green, as the targeted class is now a “Cat” and not “Person” anymore, which
is written in red (Box A). Below the comparison, the SHACL shapes for all versions are
listed along with their corresponding support and confidence values (Box B). In this
example, the text for the first version was removed, since nothing has changed between
the first and the second version for the property “knowsPersonShapeProperty”.
To showcase the removal of a shape due to low support or confidence values, the detailed
comparison of the “colorCatShapeProperty” is chosen. In this example, the SHACL
shape no longer exists in the third version of the graph because the “color” attributes of
the black and grey cats were deleted. As a result, the support for this property is only
one, which is below the defined threshold of two when the shapes were created. This
explanation is displayed in Figure 5.8 which can be opened by clicking on the row in the
overview table, which is displayed in Figure 5.7.
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Figure 5.7: Comparison between extracted shapes

Figure 5.8: Detailed comparison view in case a shape was deleted
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Figure 5.9: Detailed comparison view
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5.2.2 Database Model
As a database, a local H2 instance [13] is used as it is lightweight and easy to integrate
with the Spring framework [26]. The H2 database engine is a relational database system
written in Java which makes it ideal for the integration with Java applications. Its
advantages include being very fast, open source, and having a small memory footprint.
The database is needed to store the graphs, versions, QSE runs, and the node and property
shapes generated. The object-relational mapping framework Hibernate [29] is used to
define Java classes which are then automatically mapped to relational database tables.
This feature is also utilized in this context. The database tables for this application,
which were automatically created, are displayed in Figure 5.10.
A graph can have multiple versions and those can have different extracted shapes. For
each QSE run (i.e., extracted shapes), classes C can be defined before the extraction
process. This feature, described in Section 2.2.3, allows QSE to be executed only on
specific classes in a graph, rather than processing all triples in a graph. The IRI of a
class is saved in the database for this use case. An extracted-shapes object, representing
a QSE run, contains all node shapes generated by QSE. Consequently, any number of
node shapes can be associated with an extracted-shapes object, depending on the graph.
The user has the option to prune the shapes via the support and confidence parameter
during the extraction process or to generate all shapes without pruning, which are also
referred to as the default shapes, as defined in Section 2.2.3. Depending on this choice,
either the pruned shapes and the default shapes are saved (both are needed to explain,
why a shape was removed), or only the default shapes are generated. If the user does
not define the support and confidence parameter, then all shapes are generated and only
these are saved in the database. In this case, the default shapes are saved in the list of
the node shapes for an extracted-shapes object and the list where the default shapes
would be saved in the pruning scenario is left empty. Each node shape has multiple
property shapes. The concept of node and property shapes is also modeled in the Java
objects of QSE, as defined in Section 2.2.3, however, the tables saved in the database are
slightly different to accommodate customization to the use case of the ShapeComparator
application.
The mapping tables, (i.e. EXTRACTED_SHAPES_NODE_SHAPES), do not have
primary keys because they are automatically created by the Spring framework to represent
lists in the Java classes. Adding primary keys to these tables would require the creation
of additional classes, which would make the code less readable.
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EXTRACTED_SHAPES

VERSION: integer
COMBO_BOX_STRING: character varying(255)
CONFIDENCE: double precision
CREATED_AT: timestamp
FILE_CONTENT_DEFAULT_SHAPES_PATH: character varying(255)
FILE_CONTENT_PATH: character varying(255)
QSE_TYPE: character varying(255)
SUPPORT: integer
VERSION_ENTITY_ID: bigint FK

EXTRACTEDSHAPES_ID: bigint PK

EXTRACTED_SHAPES_CLASSES

EXTRACTED_SHAPES_ID: bigint FK
CLASSES: character varying(255)

EXTRACTED_SHAPES_NODE_SHAPES_DEFAULT

EXTRACTED_SHAPES_EXTRACTEDSHAPES_ID : bigint FK
NODE_SHAPES_DEFAULT_NODE_SHAPE_ID: bigint FK

GRAPH

VERSION: integer
CREATED_AT: timestamp
NAME: character varying(255)

ID: bigint PK

NODE_SHAPE

GENERATED_TEXT: character large object
IRI: binary varying(255)
IRI_LOCAL_NAME: character varying(255)
SHOULD_GENERATE_TEXT: boolean
SUPPORT: integer
TARGET_CLASS: binary varying(255)
EXTRACTED_SHAPES_ID: bigint

NODE_SHAPE_ID: bigint PK

PROPERTY_SHAPE

CONFIDENCE: double precision
DATA_TYPE_OR_CLASS: character varying(255)
GENERATED_TEXT: character large object
IRI: binary varying(255)
NODE_KIND: character varying(255)
PATH: character varying(255)
SUPPORT: integer
NODE_SHAPE_ID: bigint FK

PROPERTY_SHAPE_ID: bigint PK

VERSION

VERSION: integer
CREATED_AT: timestamp
NAME: character varying(255)
PATH: character varying(255)
VERSION_NUMBER: integer
GRAPH_ID: bigint FK

ID: bigint PK

EXTRACTED_SHAPES_NODE_SHAPES

EXTRACTED_SHAPES_EXTRACTEDSHAPES_ID : bigint FK
NODE_SHAPES_NODE_SHAPE_ID: bigint FK

Figure 5.10: ERD of the database used for saving graphs and shapes in the ShapeCom-
parator
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5.2.3 Algorithm for Comparing SHACL Shapes

Building on the general concept of the shape comparison described in Section 4.1, an
approach was developed to efficiently compare the SHACL shapes within the ShapeCom-
parator. On the comparison overview page, users can select which extracted shapes (i.e.
QSE runs) should be compared with each other. The overview page table includes a
column for each extracted shapes object, which varies based on the number of extracted
shapes the user selects in the combo box. The table rows represent the node and property
shapes across the selected extracted shapes objects, with a hierarchical structure where
node shapes are parent objects to property shapes as illustrated in Figure 5.7
When a user selects an extracted shapes object in the combo box, the algorithm processes
the nodes and property shapes generated for that QSE run. For each row in the overview
table, an instance of the “ComparisonTreeViewItem” class is created. This class contains
the name of the shape and a map of the shapes across the extracted shapes objects. The
ID of the extracted shapes object is used as a key in the map and the value contains
either a node or a property shape because each row in the table can represent a node or
a property shape comparison. Additionally, a boolean in the comparison object indicates
whether the shapes are identical across the QSE runs.
These “ComparisonTreeViewItem” objects form the basis for both the comparison overview
and the comparison detail view. Whenever a user selects a new extracted shapes object
in the combo box, the list of comparison objects is updated accordingly. This may involve

Algorithm 5.1: Creation of the comparison table for the ShapeComparator
Input : selectedItems: chosen items in the combo box of extracted shapes
Output : nodeShapesToShow

1 nodeShapesToShow ← new List<ComparisonTreeViewItem>
2 foreach extractedShape ∈ selectedItems do
3 Check if extractedShape is cached - otherwise fetch from database
4 foreach nodeShape ∈ extractedShape.nodeShapes do
5 if getName(nodeShape) ∈ getNames(nodeShapesToShow) then
6 Add nodeShape to the corresponding item in nodeShapesToShow
7 end
8 else
9 Add a new ComparisonTreeViewItem to nodeShapesToShow with the

name getName(nodeShape) and add nodeShape to the list of shapes
10 end
11 end
12 end
13 foreach item ∈ nodeShapesToShow do
14 Set item.shapesEqual to true if all Turtle text snippets of the node shapes in

item are identical - otherwise false
15 end
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16 //To add child elements to the Vaadin TreeView, all ComparisonTreeViewItems
must be reiterated

17 foreach item ∈ treeV iew.items do
18 propertyShapesToShow ← new List<ComparisonTreeViewItem>
19 if item represents a comparison of node shapes then
20 foreach extractedShape ∈ selectedItems do
21 nodeShape ← find getName(item) in extractedShape.nodeShapes
22 foreach propertyShape ∈ nodeShape.propertyShapes do
23 if getName(propertyShape) ∈

getNames(propertyShapesToShow) then
24 Add propertyShape to the corresponding item in

propertyShapesToShow
25 end
26 else
27 Add a new ComparisonTreeViewItem to

propertyShapesToShow with the name
getName(propertyShape) and add propertyShape to the list
of shapes

28 end
29 end
30 end
31 end
32 foreach item ∈ propertyShapesToShow do
33 Set item.shapesEqual to true if all Turtle text snippets of the property

shapes in item are identical - otherwise false
34 end
35 Add propertyShapesToShow as child items to nodeShapeToShow

36 end

creating new rows or modifying the maps in existing comparison objects. The boolean
indicating if all rows contain the same Turtle snippet is also updated.
Algorithm 5.1 illustrates this process. The list “nodeShapesToShow”, consisting of “Com-
parisonTreeViewItems” represents all rows in the comparison tree view. The algorithm
begins by iterating through all QSE runs and their corresponding node shapes. Based on
the name of the node shape, it determines whether to create a new row in the table or
update an existing one by adding the node shape to the appropriate “ComparisonTree-
ViewItem”. Finally, the Turtle text snippets in each row are checked for differences, and
the boolean value in the “ComparisonTreeViewItem” is updated accordingly.
Since the tree view on the overview page is hierarchically structured, the algorithm must
iterate through all rows again to add or update the corresponding child items. However,
as this use case involves only a single level of hierarchy, only rows describing node shapes
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are considered. The algorithm iterates through the list of QSE runs and identifies the
corresponding node shape for each run. Then, all property shapes associated with the
node shape are processed. A new row represented by a “ComparisonTreeViewItem” is
created if no row exists for a given property shape name. If a “ComparisonTreeViewItem”
with the same shape name already exists, the property shape is added to the existing item.
Finally, the algorithm checks each row to determine whether all Turtle text snippets
are identical. The list of “ComparisonTreeViewItems ” is added to the node shape row,
completing the table’s preparation. This algorithm is triggered whenever changes occur
in the combo box of the selected QSE runs.

5.2.4 Performance Enhancements
After completing the initial version of the ShapeComparator, it was tested with very
small datasets to uncover potential edge cases. However, as testing progressed with larger
datasets, it became clear that certain features needed to be adjusted to enhance the
speed of the web application.
Originally, it was planned to store the extracted SHACL files directly in the database
as text. However, this approach quickly led to performance issues while querying data
because SHACL files can get quite large. Therefore, the extracted shapes and graph
versions are stored in the project directory as Turtle files and the file paths pointing to
the files are saved in the database as a reference.
A further performance improvement involved creating the generated Turtle text snippets
for the detail view for each node and property shape only once and saving it to the
database, which notably accelerated the comparison process. Details on this topic are
provided in Section 4.1.
Additionally, performance improvements were implemented for loading data from the
database into the main memory, particularly for node and property shape objects. When
fetching an extracted shapes object (also known as a QSE run) from the database, there
are two options for handling referenced node and property shapes. Those can either
be loaded immediately when the extracted shapes object is needed (eager loading) or
loaded only when required (lazy loading). For this project, lazy loading for the node
and property shapes was implemented by default. When only a small number of objects
are referenced, the difference between eager and lazy loading is negligible for the end
user. However, when hundreds of shapes with their associated Turtle text are loaded,
the performance difference becomes significant.
In the overview of all extracted shapes, only meta information such as creation date,
support, and confidence parameters are needed, therefore lazy loading is the preferred
solution here. This approach is also applied when generating options in the combo box on
the comparison overview page, where only meta information is required. However, when
creating the table in the comparison overview, all shapes and their details are fetched
from the database.
Section 5.2.3 explains how the comparison of SHACL shapes works for the ShapeCom-
parator. Users can select multiple extracted shapes (i.e. QSE runs) at the top of the
comparison overview page. This selection generates a table that compares all shapes
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across the different extracted shapes. Although the computation of this table is straight-
forward, users will notice a delay when there are many shapes. Therefore, optimizing this
part is crucial for performance improvements. A performance improvement in this area
is to cache the comparison objects in the overview, to prevent recreating all comparison
objects when the user returns from the comparison details page.

5.3 Evaluation
As described in Chapter 3.2.4, to evaluate the ShapeComparator, a qualitative approach
was employed through semi-structured interviews. Due to the time-intensive nature
of interviews, a convenience sample of six participants was selected. All participants
completed the course “Introduction to Semantic Systems” at TU Wien [1] within the
past two years. This prerequisite ensured that all participants shared a foundational
understanding of semantic systems and knowledge graphs.

5.3.1 Procedure

The interviews were conducted virtually via Zoom [30] between late September and early
October 2024, with each session lasting approximately 20 minutes. Before the interviews,
the participants received an introductory letter outlining the interview’s purpose. They
were also informed about their rights, and informed consent was obtained for the research
participation and the processing of personal data. This process followed the official
recommendations for informed consent at TU Wien [12]. All interviews were recorded;
due to technical difficulties with an external recording tool during two sessions, the
recording was later switched to Zoom’s built-in recording feature.
The interview began with introductory questions about when the participants took the
course at TU Wien and whether they remembered what RDF and SHACL were. After
that, a brief example of RDF, SHACL, and QSE was presented to ensure all participants
had a shared understanding of the topic. Next, the demonstration knowledge graph for
the interview was introduced. This graph included two versions, where the first version
consisted of three people and three cats. The graph was visually displayed as shown in
Figure 5.11. To illustrate the evolution of the knowledge graph, in the second version of
the graph, the “foaf:knows” property no longer pointed to people but instead pointed to
the cats (e.g., “Alice” knows the “orangeCat”, “Bob” knows the “blackCat”, and “Jenny”
knows the “greyCat”). Following this introduction, the evaluation of the tools began.
First, the QSE extraction process was demonstrated using Shactor [85]. The two versions
of the knowledge graph had been pre-loaded into the program so that QSE could be
executed on them. In this way, the participants could be familiarized with QSE. Next,
the two resulting Turtle files containing the SHACL shapes for both graph versions were
displayed side by side. Participants were then asked to identify the differences between
the SHACL shapes and to estimate the number of the SHACL shapes they believed it
would be practicable to compare them in this way or by using a text comparison tool.
In the final step, the ShapeComparator was introduced to the participants. They were
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foaf:name

rdf:type

foaf:knows

ex:Alice

"Alice"

foaf:Person

foaf:name

rdf:type
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"Bob"

foaf:name

rdf:type

foaf:knows

ex:Jenny

"Jenny"

foaf:knows

rdf:type

ex:color

ex:orangeCat

foaf:Cat

"orange"

rdf:type

ex:color

ex:blackCat

"black"

rdf:type

ex:color

ex:greyCat

"grey"

Figure 5.11: Demonstration knowledge graph - Version 1

guided through the tool to demonstrate its main features. The SHACL shapes for
the test knowledge graph versions had been pre-computed. Then, the SHACL shapes
were compared between the two versions of the test knowledge graph. At the end of
the interview, the participants were invited to ask any questions and to share their
preferences regarding the methods used (Shactor with manual comparison versus the
ShapeComparator). They were also asked whether they believed the ShapeComparator
would provide additional value to a knowledge graph engineer. Finally, participants were
asked to rate the tool’s usability and to give any other feedback. Open-ended questions
were employed in this part to get comprehensive insights.

5.3.2 Results
The results were obtained using the qualitative content analysis by Mayring [72]. The
inductive approach for category development was selected, as it allows categories to
emerge directly from the content. These categories were then continuously revised and
adapted throughout the analysis process. All results are summarized in Table 5.1.

Statements Mentions
Semester of course Introduction into Semantic Systems

Winter semester 2022 4
Winter semester 2023 2
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Continuation of Table 5.1
Statements Mentions

Familiarity with RDF knowledge graphs
Yes 6

Familiarity with SHACL
No, since it was not lectured in winter semester 2022 3
Yes 2
Partial 1
Difficulties comparing SHACL shapes by using only text files or a text comparison

tool
It is difficult to see differences using only text files 6
In the text files, there are a lot of lines, the shapes look similar and
there is a lot of unneeded information

4

A text-comparison tool helps in this process 3
Syntax highlighting would be great 2
The process of comparing shapes manually is cumbersome and error-
prone

1

Until which size of a graph is comparing SHACL shapes manageable without the
ShapeComparator

It can get complicated quickly 5
It is already difficult for a graph with seven shapes without additional
tools

3

Ten shapes 1
Hundred lines of text 1
Thousand or even ten thousand lines 1
Small knowledge graphs only, definitely not a production knowledge
graph

1

Depends on the kind and the number of changes 1
Little changes are easier to find than larger changes 1
It is tedious for larger files if you cannot use additional tools 1
The graph can be bigger if a text comparison tool can be used 1
It is even difficult with a text comparison tool to see what has already
been compared

1

The references in the files can be in different positions, the user might
have to jump back and forth

1

Tool comparison between Shactor and the ShapeComparator
I would prefer using the ShapeComparator over text-comparison tools 6

Usefulness of the ShapeComparator for a knowledge graph engineer
The ShapeComparator brings additional value to a knowledge graph
engineer

6

The tool can motivate a knowledge graph engineer 1
Intuitiveness of the ShapeComparator
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Continuation of Table 5.1
Statements Mentions
The shape that included changes was clearly visible to the interviewee
in the overview of the ShapeComparator

4

It was not clear which shape had differences only from the overview
menu

2

Usability
It is easy to spot differences between shapes 6
Good usability/the tool looks good/it is user-friendly 4
The program is clear for the user, it is straightforward, understandable 3
The tool hides unnecessary details 3
The interface is not too complicated and clean 3
The changes are easier to scan with the overview page 2
It is nice that the ShapeComparator can compare multiple extracted
shapes

2

The tool saves time/effort 2
The tool makes the process less tedious and frustrating 1
The feature for filtering is helpful 1
It’s okay, not amazing, not bad, needs polishing 1
The tool is specifically designed for comparing shapes 1

Suggested improvements
It would be nice to see the graph versions and the extracted SHACL
shapes

1

It would be nice if the ShapeComparator had a graphical interface in a
bubble-like manner

1

In case more versions are compared it is tricky to see the changes
between two single versions on the overview page, it would be beneficial
to see this information

1

A combination of Shactor and the ShapeComparator would be nice 1
There could be a more aggregated view on the overview page, in case
the list of shapes is very long, collapsing the node shapes automatically
in this case would help

1

Shapes could be marked with a dot if something has changed 1
On the overview page, the shapes should be automatically filtered for
changed shapes only

1

Criticism
Unsure, if the tool brings additional value if there are a lot of changes 1
It can get confusing if the IRI that is replaced in the SHACL shape is
very long and gets printed twice (once red, once green)

1

Feedback for the interview
It would have been great to use the ShapeComparator myself to test
the usability

2
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Continuation of Table 5.1
Statements Mentions
An example with the ShapeComparator and a big knowledge graph
would have been good to see

1

Other comments
The tool somehow looks similar to a version control tool 1

Table 5.1: Results of the qualitative content analysis of the interview for the ShapeCom-
parator

All participants were familiar with RDF knowledge graphs, though only some had prior
knowledge of SHACL. In the first part of the interview, which focused on the challenges
of comparing SHACL shapes manually or using a text comparison tool, all participants
agreed that identifying differences between SHACL shapes using only text files is difficult.
Although text comparison tools helped in this process, four participants noted that the
text often contains many lines and unneeded information so that the shapes appear quite
similar. Additionally, one participant outlined that this method is cumbersome and
error-prone.
The responses regarding the manageable size of a SHACL shapes file for manual com-
parison varied. Five participants said that the process can get complicated quite fast.
Three participants mentioned that comparing the test knowledge graph, which consists
of seven shapes, was already challenging without additional tools. For a maximum size
limit, participants suggested thresholds of ten shapes, one hundred lines of text, or even
up to ten thousand lines. However, one participant pointed out that the complexity also
depends on the kind and the number of changes. Another one added that, even with a
text comparison tool, it could be difficult to track what has already been compared and
that users may need to jump back and forth across different parts of the document to
find references.
After the ShapeComparator demonstration, all participants agreed that they would prefer
using the ShapeComparator over manual comparison methods and that the tool would
bring additional value to a knowledge graph engineer.
Regarding the intuitiveness of the ShapeComparator, when participants were shown the
overview page with one shape containing a difference, four participants immediately rec-
ognized which shape had changed, while two needed assistance. However, all participants
agreed that the ShapeComparator makes it easy to spot differences between shapes. Four
participants also commented positively on the tool’s usability, noting that it looks good
and is user-friendly. Three of them highlighted that the process is straightforward and
the tool hides unnecessary details. The overview page received positive feedback, as
well as the feature that allows the comparison of multiple versions of extracted shapes.
Additionally, participants mentioned that the tool saves time and effort, though one
participant noted that the interface looks okay but needs some polishing.
Suggested improvements include adding a feature that allows users to view the Turtle file
of the graph version and the extracted SHACL shapes, as well as providing a graphical
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interface for the shapes, similar to the illustration in Figure 5.11. In the case of comparing
more than two extracted shapes, it would be helpful to indicate on the overview page
which specific versions have differences, as the overview page currently displays only
that a change exists, without specifying between which versions. One participant also
suggested that integrating Shactor with the ShapeComparator would be beneficial. For
larger sets of shapes, a more aggregated view on the overview page was recommended,
including collapsing node shapes by default and changing the default filter to changed
shapes only.
One negative point raised was that a participant was unsure whether the ShapeCompara-
tor would bring additional value if there were a lot of changes. Regarding the interview
process, two participants noted that they would need to use the ShapeComparator
themselves to assess the usability and that an example with a large knowledge graph
would have been interesting.
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CHAPTER 6
SHACL-DiffExtractor

This chapter provides an overview of the requirements and the functionalities, along with
the algorithm and concepts to answer RQ2. The resulting tool is called the SHACL-
DiffExtractor. Furthermore, this chapter presents the implementation and the evaluation,
along with the BEAR [4] datasets and the system specifications for the evaluation.

6.1 Requirements and Functionality
As outlined in RQ2 in Section 1.3, the idea behind this research question is to generate
SHACL shapes for a subsequent version of a graph by using the changesets between two
versions of a graph instead of parsing all triples from the newer version. Given a version
of a graph G1, which is used to generate the SHACL shapes S1, the objective is to derive
the SHACL shapes S2∗ by utilizing the updates between G1 and G2. These changes are
represented by two sets: G+

1,2, containing all triples added in G2 that were not present in
G1, and G−

1,2, which includes all removed triples, which were part of G1 but are absent in
G2. The output of the SHACL-DiffExtractor is denoted as S2∗, while the actual output
from QSE applied to G2 is denoted as S2. The goal is for S2∗ to match S2.
The advantage of this approach is that it eliminates the need to run QSE on G2, thereby
avoiding reading all triples twice. This method operates under the assumption that the
changeset between two graph versions is significantly smaller than the overall graph size.
Consequently, iterating over the changed triples should be much faster than iterating
over G2. However, this assumption heavily depends on how much changed between G1
and G2. For instance, if G1 and G2 are large but only very few triples have changed,
the approach is efficient. Conversely, if nearly all triples from G1 are deleted and many
new triples are added in G2, the method would be impractical. Thus, the efficacy of the
SHACL-DiffExtractor is highly dependent on the specific use case. The prerequisites
are the changesets G+

1,2 and G−
1,2. Often, the computation of G+

1,2 and G−
1,2 is resource-

intensive and does not pay off. However, if the changeset is accessible, the graph size
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is large, and the changeset is assumed to be relatively small, this approach provides an
excellent alternative instead of running QSE on G2.
As displayed in the architecture diagram in Figure 6.1, the SHACL-DiffExtractor uses
the file-based version of QSE. It is crucial to understand that the SHACL-DiffExtractor
requires not only the final output from QSE - S1 as Turtle file and in the form of Java
objects - but also the intermediate data generated by QSE. As described in Section 2.2.3,
QSE produces various maps during the SHACL shapes generation process, and these
maps are reutilized when the SHACL-DiffExtractor is executed. Additionally, the sets
G+

1,2 and G−
1,2 provided as files in N-Triples format are needed for a successful execution.

QSE-FileBased

SHACL-
DiffExtractor

SHACL-DiffExtractor

G+
1,2 and G

-
1,2

Figure 6.1: SHACL-DiffExtractor - Architecture

To understand the steps involved in the execution process, Figure 6.2 provides an overview.
However, it is important to note that the SHACL-DiffExtractor is not restricted to
comparing two versions only - it can be applied iteratively across multiple versions as
needed. This figure serves as a high-level overview, while the detailed algorithm including
an example is discussed in Section 6.2.
It is assumed that QSE has already been executed on a graph version G1. During
this execution, not only the final output in the form of the Turtle file and the Java
objects describing the SHACL shapes S1 have been produced, but also different maps
are generated, as described in Section 2.2.3.
All these objects from the initial run are utilized and adapted in the following steps. The
progress begins with the first phase, where the entity extraction from QSE is performed
for the added triples G+

1,2. Next, an algorithm is executed, which at first parses all
added triples, followed by parsing the deleted triples. During these steps, the previously
mentioned maps are updated accordingly. Afterward, the algorithm runs once more over
the deleted triples to check their type predicates. Finally, the support and confidence
values are updated.
These internal QSE maps are then used in the second phase of the algorithm. They
are saved before any modifications occur, allowing a comparison before and after the
adaptations. With this information, deleted shapes can be computed easily. Additionally,
an “updates”-map between the old and the new version, with the same structure as the
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Figure 6.2: SHACL-DiffExtractor - Activity Diagram

“classToPropWithObjTypes” map, is generated. This map only contains information for
added and modified shapes. Using this “updates”-map, the file-based version of QSE is
executed once again, this time only for added and modified shapes.
In the final step, the original input SHACL shapes S1, both in the form of Java objects
and as Turtle file, are updated so that they become S2∗. The algorithm iterates through
the newly generated SHACL shapes from QSE in the second phase, adding them to S1
or replacing modified shapes in S1. Additionally, any deleted shapes are removed from
the file and the Java objects. The updated Java objects and the Turtle file for S2∗ can
then be used for subsequent execution of the SHACL-DiffExtractor, for instance, on the
graph version G3.
Pruning shapes based on support and confidence thresholds can also be applied during
this process. The program is available as a command-line tool.

6.2 Algorithms and Concepts
The central concept behind RQ2 is to use the changesets G+

1,2 and G−
1,2 between two graphs

to generate SHACL shapes using QSE. As outlined in Section 6.1, QSE must first be exe-
cuted on G1 to produce the SHACL shapes S1, which are output in the form of a Turtle file
and the corresponding Java shape objects. Additionally, this execution generates the inter-
mediate maps ΨCEC (“classEntityCount”), ΨCTP (“classToPropWithObjTypes”),ΨETD
(“entityDataHashMap”), and ΨSupport (“shapeTripletSupport”) [84] as mentioned in
Section 2.2.3. The task can be broken down into three sub-tasks.
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6.2.1 Parse Changesets
First, the changesets in the form of Turtle files are parsed twice and the QSE maps from
the first execution are updated. These steps are outlined in Algorithm 6.1. The objective
of this algorithm is to modify the QSE maps as if G2 had been parsed directly. With
this approach, QSE can later be run again to generate added or adapted shapes.
The algorithm starts by running the step “entity extraction” from QSE on the added
triples, requiring no code modifications for this part. Then, the added triples are processed
again. For each triple, the types of the object are recorded (a literal can have only one
type, while an IRI may have multiple types). Using this information, the corresponding
entry in the ΨETD∗ map is updated. The objects from QSE denoted with an asterisk
(*) indicate that the map has been adapted to differentiate them from the original QSE
output. A key modification in QSE for this step is saving a count for each object type
in the information for an entity. More details on this topic can be found in Section
4.3. Although QSE does not require this information in a single run, it is essential for
correctly handling deletions later on. Finally, the maps ΨCTP∗ and ΨSupport∗ can be
updated accordingly. During this step, the map “editedShapesMap” is also populated,
which will be used in Algorithm 6.2.
A similar algorithm is applied to handle deleted statements. In this task, all triples in
G−

1,2 are parsed. As in the algorithm for the added triples, the object types for each
triple are identified. However, instead of increasing the counter for these object types,
the counter is decreased. If the counter reaches zero, the object type is removed entirely.
Following this, the maps ΨCTP∗ and ΨSupport∗ are updated accordingly. Support values
are adjusted and entries are removed from ΨCTP∗ if they are no longer needed. This
algorithm mirrors the steps taken for the added triples but includes additional conditions
to remove unnecessary entries from the maps when they are no longer required.
As a last step, the algorithm loops through the deleted triples once again, focusing on
those with a type predicate, such as “rfd:type”. It then performs any necessary cleanup
steps on the maps ΨETD∗, ΨCEC∗, ΨCTP∗, and ΨSupport∗ if needed. Ultimately, the
confidence is calculated by running the QSE step “Support and Confidence Computation”
by QSE [84]. Only the confidence will be recalculated since the support values have
already been updated. At this point, all maps are identical to what they would be if
QSE had been run on G2.
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Algorithm 6.1: Parse graph changesets and update QSE maps
Input : S1j : Java objects from S1, G+

1,2: added triples from G1 to G2, G−
1,2:

deleted triples from G1 to G2, ΨCEC: “classEntityCount” map from S1,
ΨETD: “entityDataHashMap” from S1, ΨCTP:
“classToPropWithObjTypes” map from S1, ΨSupport:
“shapeTripletSupport” from S1

Output : ΨCEC∗, ΨETD∗, ΨCTP∗, ΨSupport∗, editedShapesMap
1 Function getObjTypes(triple t, Set objTypes):
2 if t.o is Literal then
3 objTypes.add(getType(t.o))
4 else
5 foreach objType ∈ ΨETD*.get(t.o) do
6 objTypes.add(objType)
7 end
8 end
9 ΨCEC* ← ΨCEC; ΨETD* ← ΨETD; ΨCTP* ← ΨCTP; ΨSupport* ← ΨSupport

10 Run QSE step “entity extraction” [84] on G+
1,2 to update ΨETD* and ΨCEC*

11 foreach t ∈ G+
1,2 do

12 objTypes ← new Set<Integer>
13 currentEntityData ← ΨETD*.get(t.s)
14 getObjTypes(t, objTypes)
15 //Add objTypes to currentEntityData
16 currentPropertyData ← currentEntityData.propertyConstraintsMap.get(t.p)
17 foreach objType ∈ objTypes do
18 Add objType to currentPropertyData
19 Increase the counter for this objType by 1
20 end
21 //Update ΨCTP* and ΨSupport*
22 foreach objType ∈ ΨETD*.get(t.o) do
23 Update editedShapesMap with objType and t.p to keep track of changes
24 Add objTypes to ΨCTP*.get(objType) for the key t.p
25 foreach classObjType ∈ objTypes do
26 if Count for classObjType in currentPropertyData = 1 then
27 Add 1 to the triple ⟨objType, t.p, classObjType⟩ in ΨSupport*
28 end
29 end
30 end
31 end
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32 foreach t ∈ G−
1,2 do

33 objTypes ← new Set<Integer>; currentEntityData ← ΨETD*.get(t.s)
34 getObjTypes(t, objTypes)
35 currentPropertyData ← currentEntityData.propertyConstraintsMap.get(t.p)
36 foreach objType∈objTypes do
37 Decrease the counter for this objType by 1
38 if Counter for objType=0 then
39 Remove objType from currentPropertyData
40 end
41 end
42 //Update ΨCTP* and ΨSupport*
43 foreach objType ∈ ΨETD*.get(t.o) do
44 Update editedShapesMap with objType and t.p to keep track of changes
45 objTypesToDelete ← new Set<Integer>
46 foreach classObjType ∈ objTypes do
47 if count for classObjType in currentPropertyData =0 then
48 objTypesToDelete.add(classObjType);
49 end
50 end
51 foreach classObjType ∈ objTypes do
52 currentSupportTriple ← ⟨objType, t.p, classObjType⟩ in ΨSupport*
53 if currentPropertyData does not contain entry for classObjType then
54 Subtract 1 for the triple currentSupportTriple
55 end
56 if objTypesToDelete.contains(classObjType) ∧ support for

currentSupportTriple = 0 then
57 Delete currentSupportTriple
58 Remove objTypesToDelete from ΨCTP*.get(objType) for t.p
59 end
60 end
61 if ΨSupport* does not contain a triple like ⟨objType, t.p, _⟩ then
62 ΨCTP*.get(objType).remove(t.p)
63 if ΨCTP*.get(objType) is empty then
64 ΨCTP*.remove(objType)
65 end
66 end
67 Remove entries from currentEntityData.propertyConstraintsMap that

have no objTypes left
68 end
69 end
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70 foreach t ∈ G−
1,2 do

71 if t.p = TypePredicate then
72 currentEntityData ← ΨETD*.get(t.s)
73 currentEntityData.classTypes.remove(t.o)
74 if currentEntityData.classTypes.isEmpty() then
75 ΨETD*.remove(t.s)
76 end
77 Decrease ΨCEC*.get(t.o) by 1
78 if ΨCEC*.get(t.o) = 0 then
79 ΨCEC*.remove(t.o)
80 Remove all entries from ΨSupport* with a triple like ⟨t.o, _, _⟩
81 ΨCTP*.remove(t.o)
82 end
83 end
84 end
85 Run QSE step “Support And Confidence Computation” [84] to update ΨSupport*

6.2.2 Generate Updated Shapes with QSE
This step aims to utilize the previously adapted maps, denoted with an asterisk (*) to
distinguish them from the original maps, to rerun QSE. This procedure is outlined in
Algorithm 6.2. It is divided into three sub-tasks. First, the deleted shapes need to be
identified by comparing the maps ΨCTP and ΨCTP*. The algorithm iterates over the
node shapes to detect any deletions. For each node shape, the corresponding property
shapes are examined. This process also considers the pruning thresholds for support and
confidence. The output is a map, which contains all deleted shapes.
Next, a map is created to capture all added and modified shapes. This map is passed
on to QSE later on, to avoid regenerating all shapes. The algorithm achieves this by
iterating through ΨCTP* and identifying shapes that are not part of ΨCTP. This process
is first applied to node shapes and then to property shapes within each node shape.
To accurately capture changes, the algorithm utilizes the “editedShapesMap” which
was generated during the first task where added and deleted triples were parsed. This
ensures that no shapes are missed, even if triples were added and then deleted. While
looping through the “editedShapesMap” all node and property shapes are added to the
“updatedShapes” map. It is important to check whether a shape has been deleted in
the meantime by using the “deletedShapes” map. After this step, the “updates”-map is
complete, with all content finalized.
Now, QSE is run again, but this time only for the “updatedShapes” map. It shares the
same structure as ΨCTP and thus it replaces this map in QSE. As output, QSE generates
a Turtle file S1_2f and the Java node objects S1_2j for the updated shapes.
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Algorithm 6.2: Generate maps to run QSE
Input : ΨCTP, ΨCTP*, ΨCEC*, ΨSupport*, ω: support-threshold, ϵ:

confidence-threshold, editedShapesMap
Output : deletedShapes, S1_2j, S1_2f

1 deletedShapes ← new HashMap<Integer, Set<Integer>>()
2 foreach nodeShapeEntry ∈ ΨCTP do
3 nodeShapeKey ← nodeShapeEntry.getKey()
4 if not ΨCTP*.containsKey(nodeShapeKey) or not

ΨCEC*.containsKey(nodeShapeKey) or ΨCEC*.get(nodeShapeKey) < ω
then

5 Add nodeShapeEntry to deletedShapes
6 else
7 foreach propertyShapeId ∈ nodeShapeEntry.getValue().keySet() do
8 supportKeys ← ΨSupport* with all triples like

⟨nodeShapeKey, propertyShapeId, _⟩
9 maxConfidenceItem ← item from supportKeys in ΨSupport* with

the highest confidence
10 if not ΨCTP*.get(nodeShapeKey).containsKey(propertyShapeId) or

maxConfidenceItem.support ≤ ω or maxConfidenceItem.confidence
≤ ϵ then

11 Add propertyShapeId to deletedShapes.get(nodeShapeKey)
12 end
13 end
14 end
15 end
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16 updatedShapes ← new HashMap<Integer, Map<Integer, Set<Integer>>>()
17 //Add added shapes
18 foreach nodeShapeEntry ∈ ΨCTP* do
19 nodeShapeKey ← nodeShapeEntry.getKey()
20 if not ΨCTP.containsKey(nodeShapeKey) then
21 Add nodeShapeEntry to updatedShapes
22 end
23 else
24 foreach propertyShapeEntry ∈ nodeShapeEntry do
25 if not

ΨCTP.get(nodeShapeKey).containsKey(propertyShapeEntry.getKey())
then

26 if not updatedShapes.containsKey(nodeShapeKey) then
27 Add a new entry in updatedShapes for nodeShapeKey
28 end
29 Add propertyShapeEntry to updatedShapes.get(nodeShapeKey)
30 end
31 end
32 end
33 end
34 //Add modified shapes
35 foreach nodeShapeEntry ∈ editedShapesMap do
36 nodeShapeKey ← nodeShapeEntry.getKey()
37 if not updatedShapes.containsKey(nodeShapeKey) then
38 Add nodeShapeEntry to updatedShapes
39 end
40 foreach propertyShapeId ∈ nodeShapeEntry.getValue() do
41 if not updatedShapes contains propertyShapeId and not

deletedShapes contains propertyShapeId then
42 Add propertyShapeId with constraints from ΨCTP* to updatedShapes
43 end
44 end
45 if updatedShapes.get(nodeShapeKey).isEmpty() then
46 updatedShapes.remove(nodeShapeKey)
47 end
48 end
49 Run QSE with updatedShapes instead of the original ΨCTP
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6.2.3 Merging Original and Updated Shapes

This last step aims to merge the updated shapes S1_2 with the original shapes S1,
resulting in S2∗. The output S2∗ should be identical to S2, which represents the shapes
that would have been generated if QSE had been run directly on G2. This merging
process involves updating the Java shape objects S1j and the Turtle file S1f . Specifically,
the added shapes from S1_2 must be added to S1. Also, adapted shapes, for example
when the data type of a property shape changes, need to be replaced in S1. Additionally,
deleted shapes must be handled correctly. These steps are outlined in Algorithm 6.3.
The process begins by iterating through the Java shape objects generated by QSE for the
updated shapes S1_2j . The algorithm first checks each node shape to determine whether
it is an added or edited shape by verifying if a node with the same IRI exists in S1j . If
a matching node shape is found, it indicates that changes have occurred, for example,
a property shape has been added to this node shape. The program then examines all
property shapes within the edited node shape. Again, the algorithm verifies for each
property shape, if it was already present in S1j . If this is the case, the old version of the
property shape is removed from S2j∗ and replaced with the updated version generated by
QSE. The same procedure is applied to the Turtle file: the old property shape is removed
from S2f∗, and the newly generated SHACL shape is added instead.
Here, a special condition needs to be addressed. QSE includes a special class, the
“PostConstraintsAnnotator”, which annotates shapes with a triple denoted as “node”
after all shapes have been generated. This “node” triple assigns each property shape
the class it is associated with. For example, if a property shape “knowsPersonShape-
Property” points to the class “Person”, the property shape would include a triple
“<http://shaclshapes.org/knowsPersonShapeProperty>
<http://www.w3.org/ns/shacl#node> <http://shaclshapes.org/PersonShape>”. How-
ever, QSE cannot always add this triple during the generation of the updated shapes,
as the corresponding node shape might not have been generated in Algorithm 6.2 if no
changes were detected. To handle this, the merging algorithm mimics this behavior by
looping through S1j to ensure these “node” triples are added when necessary.
If the property shape was not found in S1j then the Java node object is added to S2j∗ and
the corresponding Turtle text snippet is added to S2f∗. Additionally, a reference must be
included in the text of the node shape. Once all property shapes have been processed,
the Turtle text snippet of the node shape is added to S2f∗, replacing the existing one.
Newly added node shapes are handled similarly. The Java shape object from S1_2j is
added to S2j∗, and the corresponding text snippet from S1_2f gets included to S2f∗.
Then, all property shapes in this newly added node shape are incorporated into the Turtle
file S2f∗. Finally, the TurtleFormatter [3] is run on S2f∗ to ensure that the output is the
same as if QSE had been executed. Since the algorithm cannot guarantee the correct
order and formatting of SHACL shapes during the merging process, the TurtleFormatter
automatically handles this task.
As a result of this process, the generated updated shapes are now added to the original
shapes S1 and adapted shapes have been replaced accordingly. The only task left is
to handle deleted shapes. In Algorithm 6.2, these deleted shapes were identified by
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comparing ΨCTP and ΨCTP*, resulting in the “deletedShapes” map. This map is now
used to remove the corresponding Java node shape objects and the Turtle text snippets
from S2f∗ and S2j∗. To accomplish this, the algorithm loops through the “deletedShapes”
map. A key point to note is that “deletedShapes” only contains encoded numbers rather
than fully defined node or property shapes. Therefore, the procedure relies on the “strin-
gEncoder” from QSE, which provides a dictionary to translate the encoded numbers back
into IRIs. The first step is to find the actual node shape object in S1j by matching the
target class of the node shape with the decoded value from the “stringEncoder”. Similarly
to the other algorithms, once the node shape is identified, all associated property shape
keys are checked. It then locates the according property shape as Java object in S1j by
comparing the “path” value. Then the Java object can be deleted from S2j∗ and the
Turtle text snippet can be removed from S2f∗. Additionally, the reference in the node
shape for the property shape needs to be deleted from the Turtle file. Finally, for each
node shape, the algorithm verifies if any property shapes remain. If none are left, the
entire node shape can be deleted from both S2j∗ and S2f∗. By completing these steps,
the final output - the Java objects as well as the SHACL file in Turtle format - should be
identical to what would have been produced if QSE had been run directly on G2.
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Algorithm 6.3: Merge updated shapes with original shapes
Input : S1j , S1f , S1_2j , S1_2f , deletedShapes, stringEncoder
Output : S2j∗, S2f∗

1 S2f∗ ← S1f

2 S2j∗ ← S1j

3 //merge shapes
4 foreach updatedNS ∈ S1_2j do
5 existingNS ← find node shape in S1j based on IRI
6 if existingNS is not null then
7 existingNS.support ← updatedNS.support
8 nodeShapeText ← find text for node shape in S1f

9 foreach updatedPS ∈ updatedNS do
10 existingPS ← find property shape in S1j based on IRI
11 if existingPS is not null then
12 existingNS.propertyShapes.remove(existingPS)
13 existingNS.propertyShapes.add(updatedPS)
14 Delete property shape from S2f∗
15 newPSText ← property shape in Turtle format from S1_2f

16 addNodeTriple(newPSText)
17 Add newPSText to S2f∗
18 else
19 existingNS.propertyShapes.add(updatedPS)
20 newPSText ← property shape in Turtle format from S1_2f

21 addNodeTriple(newPSText)
22 Add newPSText to S2f∗
23 Add a reference for updatedPS in nodeShapeText

24 end
25 end
26 Delete node shape from S2f∗
27 Add nodeShapeText to S2f∗
28 else
29 S2j∗.add(updatedNS)
30 Add node shape in S1_2f to S2f∗
31 foreach updatedPS ∈ updatedNS do
32 Add property shape in S1_2f to S2f∗
33 end
34 end
35 end
36 Run TurtleFormatter [3] on S2f∗
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37 //Delete shapes
38 foreach nodeShapeEntry ∈ deletedShapes do
39 nodeShape ← find node shape in S1j based on target class encoded with the

stringEncoder from nodeShapeEntry.getKey()
40 foreach propertyShapeKey ∈ nodeShapeKey.getV alue() do
41 propertyShape ← find property shape in S1j based on path encoded with

the stringEncoder from propertyShapeKey
42 Delete propertyShape from S2f∗
43 Delete the reference for propertyShape in node shape from S2f∗
44 nodeShape.remove(propertyShape)
45 end
46 if nodeShape.propertyShapes.isEmpty() then
47 Delete nodeShape from S2f∗
48 Remove nodeShape from S2j∗
49 end
50 end

To better grasp the previously discussed algorithms, an example is provided using the
People Knowledge Graph. The complete knowledge graph versions can be found in
Listing B.2 and Listing B.3. This example focuses on the second and the third version
of the knowledge graph to demonstrate the addition and removal of triples. The initial
knowledge graph features three people, Alice, Bob, and Jenny, who all know each other.
Additionally, the knowledge graph includes three cats. In the subsequent version of the
knowledge graph, however, the people no longer know each other but instead know the
cats. These changes can be followed in Listing 6.1.

Added t r i p l e s :
<http :// example . org / a l i c e > <http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /orangeCat> .
<http :// example . org /bob> <http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /blackCat> .
<http :// example . org / jenny> <http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /greyCat> .

Deleted t r i p l e s :
<http :// example . org / a l i c e > <http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /bob> .
<http :// example . org /bob> <http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org / a l i c e > .
<http :// example . org / jenny> <http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org / a l i c e > .
<http :// example . org /blackCat> <http :// example . org / co lo r > " black " .
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<http :// example . org /greyCat> <http :// example . org / co lo r > " grey " .
Listing 6.1: Changeset for version 2 and version 3 of the People Knowledge Graph

After running the SHACL-DiffExtractor without any pruning thresholds, the resulting
QSE maps are visualized in Figure 6.3, reflecting the steps outlined in Algorithm 6.1.
One key change is in the “objTypes” for the “knowsPropertyData” of Alice, Bob, and
Jenny. Previously referencing a person (encoded with 0), it now points to the class “Cat”
(encoded with 1). Additionally, a new map “objTypeCount” has been introduced in the
“PropertyData” class, which tracks the count of each referenced class, as described in
Section 4.3. Furthermore, in the “classToPropWithObjTypes” map, the same changes
are visible for the “Person” class. The “knows” property (encoded as 6) now references
the class “Cat”. The “shapeTripletSupport” map has also been updated: the entry for
the triple (0,6,0) was removed as it is no longer needed, and instead, a new entry for
the triple (0,6,1) was added. Moreover, the support and confidence values for the “color”
property of the class “Cat” changed, since two corresponding triples were deleted.
After executing Algorithm 6.2, two maps are generated: the “deletedShapes” map and
the “updatedShapes” map. In this case, however, the “deletedShapes” map remains
empty, as no shapes were deleted. On the other hand, the “updatedShapes” map, which
mirrors the structure as the QSE map “classToPropWithObjTypes”, contains two entries:
0 = {6 = (1)} and 1 = {7 = (5)}. The first entry corresponds to the “knows” property
in the “Person” class, while the second refers to the “color” shape in the “Cat” class.
Although only the support and confidence values for the “color” shape changed, it is still
recreated, since there were changes for this shape. The node shapes “PersonShape” and
“CatShape” are recreated as well, as the parent node shape of property shapes are always
generated.
In the third phase of the algorithm, outlined in Algorithm 6.3, the updated shapes are
merged with the original shapes. Since all shapes already existed, their corresponding
Turtle text snippets and the Java objects are replaced. The final result matches exactly
the result of QSE if it had been executed on the third version of the People Knowledge
Graph, which is given in Listing B.3.

6.3 Implementation
The requirements described in Section 6.1, were implemented by using the algorithms
presented in Section 6.2 as a Java command line application in order to answer RQ2. The
program first runs QSE on the initial version of the knowledge graph and then executes
the above-mentioned algorithms. These contain parsing all added and deleted triples
and updating the previously generated internal maps from QSE. Using this updated
information, QSE is executed again, but this time, it generates shapes only for the
elements where changes or additions occurred. In the final step of the algorithm, these
shapes are merged with the shapes generated in the first run. This approach avoids the
need to parse all triples from G2, leading to improved performance. The algorithm also
supports handling multiple versions, using the output from the previous run as input for

68



6.3. Implementation

parser.stringEncoder.table:Map<Integer, String>

0 = http://xmlns.com/foaf/0.1/Person
1 = http://xmlns.com/foaf/0.1/Cat
2 = http://www.w3.org/1999/02/22-rdf-syntax-ns#type
3 = http://shaclshapes.org/object-type/undefined
4 = http://xmlns.com/foaf/0.1/name
5 = <http://www.w3.org/2001/XMLSchema#string>
6 = http://xmlns.com/foaf/0.1/knows
7 = http://example.org/color

parser.entityDataHashMap:Map<Node, EntityData>

<http://example.org/alice> = aliceEntityData
<http://example.org/bob> = bobEntityData
<http://example.org/jenny> = jennyEntityData
<http://example.org/greyCat> = greyCatEntityData
<http://example.org/blackCat> = blackCatEntityData
<http://example.org/orangeCat> = orangeCatEntityData

parser.classEntityCount:Map<Integer, Integer>

0 = 3
1 = 3

alicePropertyConstraintsMap:Map<Integer, PropertyData>

2=typePropertyData
4=namePropertyData
6=knowsPropertyData

aliceEntityData:EntityData

classTypes = (0) : Set<Integer>
propertyConstraintsMap = alicePropertyConstraintsMap

typePropertyData:PropertyData

objTypes = (3) : Set<Integer>
count=0
objTypeCount = { (3,1) } : Map<Integer, Integer>

namePropertyData:PropertyData

objTypes = (5) : Set<Integer>
count=0
objTypeCount = { (5,1) } : Map<Integer, Integer>

knowsPropertyData:PropertyData

objTypes = (0 1) : Set<Integer>
count=0
objTypeCount = { (0 1,1) } : Map<Integer, Integer>

parser.classToPropWithObjTypes:Map<Integer, Map<Integer, Set<Integer>>>

0 = { 2 = (3), 4 = (5), 6 = (0 1) }
1 = { 2 = (3), 7 = (5) }

parser.shapeTripletSupport:Map<Tuple3<Integer,Integer,Integer>,SupportConfidence>

(0,2,3) = (support=3,confidence=1)
(0,4,5) = (support=3,confidence=1)
(0,6,0) = (support=3,confidence=1)
(1,2,3) = (support=3,confidence=1)
(1,7,5) = (support=3 1,confidence=1 0.33)
(0,6,1) = (support=3,confidence=1)

Figure 6.3: Object diagram - QSE maps after running Algorithm 6.1 on Version 3 of the
People Knowledge Graph with Version 2 as basis

the next one.
For this task, all graph versions must be available as files in N-Triples format. Additionally,
the changesets between the versions, containing the added and deleted triples, must also
be available as files in N-Triples format. The SHACL-DiffExtractor modifies both the
Java objects and the resulting SHACL file from the initial QSE run, which can then be
used in subsequent executions.
The program can be executed by running the class “shacldiffextractor.ShaclDiffExtractor”
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from the command line.
A configuration file named “ConfigShaclDiffExtractor.properties” is available to supply
parameters for the execution of the program. The parameters and their descriptions are
provided below:

• filePathInitialVersion: This parameter specifies the full file path for the first version,
on which QSE will be run. The file must be available in N-Triples format.

• initialVersionName: This parameter defines the name of the dataset for the first
version. This allows the graph version to have a different name than the file name.

• pruningThresholds: The pruning thresholds for QSE can be defined here in the
format {(confidence, support)}. These will be considered during the first execution
of QSE but also during parsing the changesets. The confidence value must be a
decimal number between 0 and 1, while the support value can be any non-negative
number (with zero as the default value).

• doMetaComparison: A boolean value (“true” or “false”) is used to determine if
the algorithm’s results should be compared to the baseline. The baseline runs
QSE on all versions provided in the configuration file, ignoring the changesets. If
set to “true”, QSE will be executed in parallel, producing results from both the
SHACL-DiffExtractor and QSE, along with a comparison of the two methods. If
the parameter is set to “false”, only the SHACL-DiffExtractor will be run.

• A list of knowledge graph versions, which the SHACL-DiffExtractor will check, is
specified. Since there are multiple file paths needed for each version, the following
configuration properties must be prefixed with the version name to group the
corresponding file paths. The SHACL-DiffExtractor will be run on each of these
versions, using the QSE results from the previous execution as a basis. All files
must be available in N-Triples format. For each version, the following parameters
must be provided:

• <versionName>.filePathAdded: This parameter specifies the full file path for
the added triples between the previous version and this version.

• <versionName>.filePathDeleted: This parameter contains the full file path for
the deleted triples between the previous version and this version.

• <versionName>.filePathFullVersion: This parameter is optional, it is only
required when the parameter “doMetaComparison” is set to “true”. It provides
the file path for the full knowledge graph version.

A key implementation detail involves adapting QSE, as discussed in Section 4.3. The
implemented version of the “shactor” branch had to be updated, so that the maps, the
internal methods, and variables could be used by the SHACL-DiffExtractor. Additionally,
the structure of the “PropertyData” class was revised, to fulfill the requirements for
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handling added and deleted triples.
The results generated by the SHACL-DiffExtractor can be found in the project’s output
directory. Comparison results are saved as text files, while SHACL shapes are stored in
Turtle format. Depending on the configuration, the SHACL-DiffExtractor saves various
outputs, including the QSE results for all provided versions, the QSE results specifically
for added and updated shapes between versions, and the final resulting SHACL shapes
from the SHACL-DiffExtractor. For the meta-comparison, the SHACL-DiffExtractor
generates its own comparison output, detailing added, deleted, and modified shapes. The
same comparison is generated for the baseline. The meta-comparison is then derived by
comparing these two sets of results.
A further improvement for this tool includes an integration with the ShapeComparator.
In this case, the database mentioned in Section 5.2.2 could also be reused to store
generated shapes and graph versions.

6.4 Evaluation
This section begins by describing the test data and system information for the machine
used during the evaluation. This information applies to the evaluations of both the
SHACL-DiffExtractor and the SPARQL-ShapeChecker, which is detailed in Section 7.4.
Lastly, the evaluation results of the SHACL-DiffExtractor are presented.

6.4.1 System Information and Test Data
The SHACL-DiffExtractor and the SPARQL-ShapeChecker were tested on a Linux Vir-
tual machine with Debian (Version 11), 8 CPU cores, a speed of 2200 MHz, 128 GB of
RAM, and 780 GB of disk space available.

Dataset BEAR-A BEAR-B (daily) BEAR-C
Number of versions 58 89 32
Triples in first ver-
sion

30 million 33,502 485,179

Triples in last ver-
sion

66 million 43,907 563,738

Growth 101% 100.744% 100.478%
Change ratio 31% 1.778% 67.617%
Change ratio - adds 33% 1.252% 33.671%
Change ratio -
deletes

27% 0.526% 33.946%

Static core 3.5 million 32,448 178,484
Version-oblivious
triples

376 million 83,134 9,403,540

Table 6.1: Statistics of the BEAR datasets
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The data used during the evaluation is sourced from BEAR [4] which was designed
for testing archiving and querying of evolving semantic web data. In this thesis, these
datasets are used in the evaluation section of the SHACL-DiffExtractor, as discussed
in Section 6.4.2, and for assessing the SPARQL-ShapeChecker, as detailed in Section
7.4. The BEAR datasets, collectively known as the BEnchmark of RDF ARchives
(BEAR) consist of three real-world datasets. The BEAR data offers valuable statistics
and provides various methods for accessing the data, such as having one N-Triples file
per version.
Table 6.1 provides basic statistics for the BEAR datasets. The BEAR-A dataset, which
contains snapshots from the Dynamics Linked Data Observator is very large and homo-
geneous, with one file reaching 5 GB. As Figure 6.4 shows, the data growth between the
versions is marginal, except for the latest versions, where a lot of data is added.
The BEAR-B data has been compiled from DBpedia Live Changesets over three months
(August to October 2015), including the 100 most volatile resources along with their
updates. For BEAR-B, there is an instant, an hourly, and a daily version available. The
instant version contains a new version for every change that has been made, but for
this project, the daily changesets were used since there are already 89 different versions
available. Unfortunately, there is no graph with the number of statements available for
this dataset, however, the dataset grows continuously.
The data from BEAR-C (Europeans Open Data portals) is very homogeneous. It contains
a version for each week, therefore the dataset describes 32 weeks of data. The number of
statements per version is printed in Figure 6.5. The growth is very limited since most of
the updates are modifications on the metadata with similar numbers for additions and
deletions.
For testing, the data from BEAR-B and BEAR-C was used. While the datasets from
BEAR-A were too large, the data from BEAR-B has the disadvantage that it includes
multiple classes with the same name but a different IRI. QSE has limitations in this
area, as described in Section 2.2.3 which can lead to confusing outputs. The data from
BEAR-C is very homogeneous, therefore not many differences can be seen.

Figure 6.4: BEAR-A: Number of statements per version [4]
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Figure 6.5: BEAR-C: Number of statements per version [4]

6.4.2 Evaluation of the SHACL-DiffExtractor
The evaluation of the SHACL-DiffExtractor was conducted by comparing its performance
to running QSE for the specified versions of the graph which is the baseline. The
measurable characteristic used for this comparison is the execution time, which is
measured using the “Instant” class from the “java.time” package [14]. This class allows
capturing an instantaneous point in time. A timestamp is recorded and saved into a
variable before starting the execution of the code to be measured, and another timestamp
is recorded afterward. The duration between these two timestamps represents the
execution time for a specific step.
The execution time for the baseline includes the time taken by QSE to generate SHACL
shapes for the initial version and the following version, as well as the time used to
compare the resulting SHACL shapes of the two QSE runs, as illustrated in Equation 6.1.
For the SHACL-DiffExtractor, the execution time includes the time to run QSE on the
initial version, the time needed to execute the SHACL-DiffExtractor, and the time spent
comparing the initial run’s results with those produced by the SHACL-DiffExtractor.
This calculation is detailed in Equation 6.2. The comparison process of the resulting
SHACL shapes considers added, edited, and deleted shapes.

ΔtBaseline = tQSE_n + tQSE_n+1 + tComparison (6.1)

ΔtRQ2 = tQSE_n + tSHACL-DiffExtractor_n+1 + tComparison (6.2)
Based on the comparison between the results, a meta-comparison can be performed
to evaluate the content changes between the baseline and the SHACL-DiffExtractor.
Comparing SHACL shapes was handled by the procedure described in Section 4.1. The
identification of added and deleted SHACL shapes is achieved by comparing the resulting
shapes. For edited shapes, the algorithm described in Algorithm 6.3 additionally monitors
the names of shapes that have been modified. The results of this meta-comparison are
saved in a text file located in the project directory, with an example provided in Listing
6.2. In this example, the added and deleted shapes from the baseline and the SHACL-
DiffExtractor match. However, one property shape was modified in the second QSE
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run but not by the SHACL-DiffExtractor, while two property shapes were edited by
the SHACL-DiffExtractor but not by QSE. This approach makes it easy to detect
discrepancies between the baseline and the SHACL-DiffExtractor, which helps to verify
the correctness of the SHACL-DiffExtractor.
==== Comparison o f Compare−Methods ====
=== Added Node Shapes ===
=== Added Property Shapes ===
=== Deleted Node Shapes ===
=== Deleted Property Shapes ===
=== Edited Node Shape Names ===
=== Edited Property Shape Names ===

== Unique in QSE−Comparison ( Count = 1) ==
http :// shac l shape s . org / someProperty

== Unique in SHACL−Di f fExt rac to r −Comparison ( Count = 2) ==
http :// shac l shape s . org / anotherProperty
http :// shac l shape s . org / d i f f e r e n t P r o p e r t y

Execution Time QSE Total : 68 seconds
Execution Time SHACL−Di f fEx t r a c t o r Total : 32 seconds
Listing 6.2: Result of a meta comparison between the SHACL-DiffExtractor and QSE

The evaluation of the execution times was carried out on the virtual machine and with
the test data described in Section 6.4.1. The algorithm was primarily assessed with the
BEAR-C dataset, as well as the BEAR-B dataset. However, the dataset BEAR-B is less
ideal for this evaluation due to its numerous shapes, with the same name but different
IRIs, as described in Section 2.2.3. The evaluation involved comparing the initial seven
versions sequentially for both datasets (e.g. V1 - V2, V2 - V3...). The changesets between
the versions are provided by the BEAR datasets. For each version, two files are available
which contain the added triples and the deleted triples between two consecutive versions.
The execution times for this evaluation are presented in Table 6.2. To ensure the accuracy
of the SHACL-DiffExtractor, the changes in shapes were analyzed for each run by the
meta-comparison. The results, shown in Table 6.2, reveal that the SHACL-DiffExtractor
is only sometimes faster than the baseline and, in some cases, is actually slower. This
can be explained with the statistics for the datasets described in Table 6.1. While the
versions of the BEAR-C dataset are larger and have a higher change ratio of around 68%,
the BEAR-B dataset is smaller with a change ratio of only about 2%. This suggests that
the algorithm performs better with lower change ratios. However, significant performance
improvements are evident when the change ratio is small. For the BEAR-B dataset, a
performance increase of 37% is observed.
As Table 6.3 shows, there are some cases, where the SHACL-DiffExtractor and the
baseline do not produce the same results. In the BEAR-C dataset, the issue consistently
arises with the same shape. In a node shape, there are two classes referenced with the
same name but a different IRI. This leads to discrepancies in one of the property shapes.
While the changes are correctly calculated, a part of the property shape is deleted during
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the merge process. Internally, QSE generates two node shape objects in this specific case,
even though there is only one node shape in the Turtle file, which causes the differences.
For the BEAR-B dataset, multiple issues lead to the changes. Between versions
BEAR-B-1 and BEAR-B-2, the differences in the EPB column (edited property shapes
unique in QSE) can be explained by an error in the dataset. There is an entity
(http://dbpedia.org/resource/Revival_(Selena_Gomez_album)), which is associated
with nine types (hence, nine shapes are affected). In version BEAR-B-1, this entity
includes a statement with the property “http://dbpedia.org/ontology/wikiPageID”, but
this statement is missing in version BEAR-B-2. Unfortunately, this change is not recorded
in the changeset for the deleted triples. As a result, QSE detects the discrepancies, while
the SHACL-DiffExtractor does not. The change is that the support for the property
shape no longer matches the support for the node shape, causing the “minCount=1”
requirement to be removed.
The differences between BEAR-B-1 and BEAR-B-2 in the EPS column (edited property
shapes for the SHACL-DiffExtractor) can be explained by the fact that all the property
shapes showing changes have another property shape with the same name but a different
IRI. In this specific case, the affected property shapes target the property “name” but for
each of these property shapes, there is an additional property shape denoted as “name_1”
in the node shape. One property shape targets the IRI “http://xmlns.com/foaf/0.1/name”,
while the other shape targets the IRI “http://dbpedia.org/property/name”. When QSE
is executed again, it does not always assign the same name to a shape for a given IRI,
which can lead to swapping the shapes. For example, if a shape with the “_1” suffix
changes but the one without the suffix remains the same, and QSE recalculates it during
Algorithm 6.2, the updated name may no longer include the suffix. As a result, the
original shape without the suffix may be overwritten. Alternatively, the shapes may
be swapped between the SHACL-DiffExtractor and the QSE version, causing them to
appear as changes. This issue also explains the differences between versions BEAR-B-2
and BEAR-B-3.
As discussed in Section 2.2.3, a potential solution to this problem is to revise the method
of generating SHACL shape names to ensure that no shape addresses multiple IRIs.
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Version 1 Version 2 Baseline [seconds] SHACL-DiffExtractor [seconds]
BEAR-C-1 BEAR-C-2 11 11
BEAR-C-2 BEAR-C-3 8 8
BEAR-C-3 BEAR-C-4 7 7
BEAR-C-4 BEAR-C-5 6 7
BEAR-C-5 BEAR-C-6 7 7
BEAR-C-6 BEAR-C-7 6 6
BEAR-B-1 BEAR-B-2 68 34
BEAR-B-2 BEAR-B-3 55 19
BEAR-B-3 BEAR-B-4 54 21
BEAR-B-4 BEAR-B-5 53 17
BEAR-B-5 BEAR-B-6 54 18
BEAR-B-6 BEAR-B-7 54 18

Table 6.2: Execution times for the baseline and the SHACL-DiffExtractor

Version 1 Version 2 A
N
B

A
N
S

A
P
B

A
P
S

D
N
B

D
N
S

D
P
B

D
P
S

E
N
B

E
N
S

E
P
B

E
P
S

BEAR-C-1 BEAR-C-2 0 0 0 0 0 0 0 0 0 0 0 1
BEAR-C-2 BEAR-C-3 0 0 0 0 0 0 0 0 0 0 0 0
BEAR-C-3 BEAR-C-4 0 0 0 0 0 0 0 0 0 0 0 1
BEAR-C-4 BEAR-C-5 0 0 0 0 0 0 0 0 0 0 0 1
BEAR-C-5 BEAR-C-6 0 0 0 0 0 0 0 0 0 0 0 1
BEAR-C-6 BEAR-C-7 0 0 0 0 0 0 0 0 0 0 0 1
BEAR-B-1 BEAR-B-2 0 0 0 0 0 0 0 0 0 0 9 7
BEAR-B-2 BEAR-B-3 0 0 0 0 0 0 0 0 0 0 34 12
BEAR-B-3 BEAR-B-4 0 0 0 0 0 0 0 0 0 0 0 0
BEAR-B-4 BEAR-B-5 0 0 0 0 0 0 0 0 0 0 0 0
BEAR-B-5 BEAR-B-6 0 0 0 0 0 0 0 0 0 0 0 0
BEAR-B-6 BEAR-B-7 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.3: Changes in shapes between the baseline and the SHACL-DiffExtractor. Legend:
A (added), D (deleted), E (edited), N (node shape), P (property shape), B (baseline), S
(SHACL-DiffExtractor) e.g. DNB (deleted node shapes in the baseline)
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CHAPTER 7
SPARQL-ShapeChecker

This chapter outlines the requirements and functionalities, algorithms, implementation,
and evaluation of the SPARQL-ShapeChecker, addressing research question 3.

7.1 Requirements and Functionality
As described in RQ3 in Section 1.3, the primary goal of the described algorithm is to
enhance the speed of QSE for evolving knowledge graphs. In this context, QSE may
have already been executed on a previous version of a graph G1, resulting in the SHACL
shapes S1, and the goal is to obtain S2 for a subsequent version G2 of a graph.
As noted in Section 2.2.3, QSE can be applied to graphs either available as files or stored
in a graph database such as GraphDB. For this algorithm, the query-based option is
utilized, where the graph is saved in a graph store and QSE processes the graph using
SPARQL queries.
Given that changes in the schema between graph versions are often minimal, it is more
efficient to validate the existing shapes S1 rather than to reprocess all triples in the
graph G2, as QSE does. The reason for this is that the shapes graph, which defines the
schema, is usually significantly smaller compared to the data graph. For example, a
graph containing information about hundreds or thousands of people and their names can
be considered. In contrast, the shapes graph that describes the schema of the individuals
might only include a few shapes. In this example, the shapes graph would include a node
shape for the class “Person” and a property shape for the “name” attribute. Thus, while
the data graph grows substantially in size with the addition of more individuals, the
shapes graph would remain the same. Although there are exceptions, such as small data
graphs with only a few entries, processing the shapes graph S1 is generally more efficient
than iterating over the whole graph G2 which can be computationally expensive. This
approach leverages the fact that changes in the schema are infrequent, so reevaluating
the shapes directly can quickly determine whether the graph G2 adheres to the existing
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schema constraints without redundant reprocessing.
The validated shapes produced by the SPARQL-ShapeChecker are denoted as S2∗ in this
context whereas the shapes generated if QSE would be run on G2 are denoted as S2. The
main advantage of this approach is that it is faster than running QSE on G2. However, the
drawback of this solution is that the shape recognition is incomplete because new shapes
that were not present in S1 cannot be identified which means that S2∗ ≠ S2. Therefore,
the goal of this method is not to generate S2, it rather aims to balance runtime efficiency
with the accuracy of the results. The SPARQL-ShapeChecker is therefore mainly useful
for large graphs where shapes extraction performance is particularly important and where
the detection of new shapes is secondary.
The software architecture for this solution is shown in Figure 7.1. The SPARQL-
ShapeChecker needs the query-based version of QSE to obtain S1 and it also needs access
to G2 which must be stored on a triplestore like GraphDB.

QSE - QueryBased

SPARQL-
ShapeChecker

SPARQL-
ShapeChecker

GraphDB

Figure 7.1: SPARQL-ShapeChecker - Architecture

The main steps in this algorithm are illustrated in Figure 7.2. The process uses the
Java objects representing all shapes from S1 as input. These objects are simultaneously
created with the SHACL file in Turtle format by QSE, as described in Section 2.2.3. Each
shape in S1 is checked for its relevance in G2 by using SPARQL queries. Specifically,
the algorithm verifies whether all node and property shapes, along with the property
shapes’ constraints, are still satisfied in G2 by updating the corresponding support and
confidence values. Users can specify the support and confidence parameter thresholds,
and the algorithm checks if these thresholds continue to be met in G2. If the support
and confidence parameters are not specified, the algorithm checks if any instances of the
graph still meet the shapes, which corresponds to a support value of zero. Based on this
verification, i.e. the updated support and confidence values, the algorithm copies and
modifies the Turtle file containing all SHACL shapes S1, removing any parts that are no
longer valid. This resulting file is denoted as S2∗f . For the modification of S2∗f , regular
expressions are used. The resulting output is a new Turtle file with the shapes S2∗. The
detailed algorithm for this process is described in Section 7.2.
There is also the option to use the SPARQL-ShapeChecker with multiple versions. In
this scenario, the user can specify the initial version of the graph on which QSE should
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be executed, along with a list of versions that the SPARQL-ShapeChecker validates.

7.2 Algorithms
The task of checking SHACL shapes in a subsequent version of a graph as described in
Section 7.1 can be divided into two main steps. In the first step, the generated SHACL
shapes in the form of Java objects from the initial QSE run are used as input. The
algorithm loops through these objects and checks the constraints in the second version of
the graph. As outlined in Section 2.2.3, the objects contain node and property shapes, as
well as the constraints saved within each property shape. At first, a SPARQL query is
created, which returns the class count for all classes mentioned in the node shapes in the
Java objects. With this result, the support values of the node shapes can be updated. The
algorithm then iterates through the property shapes for each node shape, constructing a
SPARQL query depending on the property shapes’ attributes. For instance, the query
differs slightly if the property shape targets a literal versus an IRI. If the property shape
contains multiple constraints, the algorithm also loops through these and updates the
support and confidence values accordingly. The output from this step consists of the
same objects as those provided by QSE in the first run but with updated support and
confidence values. The pseudo-code for this algorithm is provided in Algorithm 7.1.
In the second step, which is illustrated in Algorithm 7.2, the adapted objects from the
first step are iterated through. The input for this step is the SHACL shapes file from the
first QSE run, and the output is also saved as a Turtle file, with the updated SHACL
shapes. During this process, any objects (including node shapes, property shapes, and
constraints in property shapes) that do not meet the thresholds for support or confidence

<<QSE>>

Java objects S1

<<QSE>>

Turtle file with all
SHACL shapes S1

GraphDB - G2

<<SPARQL-
ShapeChecker>>

Turtle file with all SHACL
shapes S2*

Generate SPARQL
query for each

shape

Update support and
confidence values
based on results

from G2

Compare updated
support and

confidence values
to thresholds

Modify Turtle file

Figure 7.2: SPARQL-ShapeChecker - Activity Diagram
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Algorithm 7.1: Validate existing shapes with SPARQL
Input : S1j : Java objects from S1, G2: second version of graph
Output : S2∗j : Adapted Java objects for G2

1 S2∗j ← S1j

2 Run SPARQL query on G2 which returns all counts for all classes mentioned in
S1j

3 Update the support values for the node shapes in S2∗j

4 foreach node shape ⟨s, τn, Φn⟩ ∈ S2∗j do
5 foreach property shape φn : ⟨τp, Tp, Cp⟩ ∈ Φn do
6 Run SPARQL query on G2 with given nodeKind and τp for all Tp which

returns the count for the specific constraint and update the support and
confidence values for φn in S2∗j

7 end
8 end
9 return S2∗j

are deleted. If these thresholds are not specified, then all shapes with a support of zero
are removed. The algorithm begins by examining the node shapes. If a node shape does
not meet the thresholds, it is deleted along with all property shapes that belong to it.
The deletion, just as the selection of shapes which was described in Section 4.1, works per
name and is completed with regex. Next, the algorithm processes the property shapes
associated with each node shape. If a property shape does not meet the thresholds, it is
removed from the file just as the triple in the node shape that references the property
shape. This part of the algorithm utilizes regular expressions as well. If a property
shape contains multiple constraints, the algorithm iterates through these. It checks their
support and confidence values, removing any that do not meet the thresholds. This step
also uses regular expressions. However, since the constraints in a property shape lack
names like those of node or property shapes, the regex searches for constraints using
keywords such as “NodeKind”, “class”, or “datatype”, which values are stored in the
Java objects. This process is adjusted based on the constraint’s attributes, as different
SHACL terms are used depending on whether the constraint targets an IRI or a literal.
There are specific edge cases to consider for the deletion of shapes. One such case occurs
when there is a SHACL-Or list with multiple constraints in the first version of a property
shape but there is only a single constraint in the second version left because the other
constraints did not meet the thresholds and were therefore deleted. In this scenario, the
list must be removed. For this task, the shape is converted to a Jena model, and the
algorithm then queries the Jena model to find the list and its sole remaining entry. Next,
it creates RDF triples for each triple within the list item but uses the property shape as
a subject, rather than the list itself. Subsequently, the list and all associated triples are
removed from the Jena model. The algorithm also generates new triples for support and
confidence in the property shape, using the values specified in the constraint. Finally, the
updated Jena model is converted back into a string using the TurtleFormatter library [3].
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In this way, it can be ensured that the created shape has the same format as all other
property shapes created by QSE in the Turtle file. Another edge case arises when the
support values of a node shape and a property shape are no longer equal. In this case, it
is necessary to remove the SHACL-minCount triple if it was present in the initial version
of the shape. The reason why this value is removed rather than adapted is that QSE
only creates SHACL-minCount triples with a value of one and disregards all other cases.
The result of this second step is a Turtle file containing all validated SHACL shapes.
This file serves as the basis for comparison during the evaluation phase. It is essential
that the shapes in the file match exactly the format produced by QSE. The comparison
algorithm compares the Turtle snippets of each shape as described in Section 4.1. If these
snippets differ in formatting or text but have the same semantic meaning, the comparison
algorithm may incorrectly determine that the shapes are not identical. Therefore, the
formatting of the SHACL shapes in the Turtle file is crucial.
An example is provided for the graphs shown in Listings 7.1 and 7.2. In the first version
of the graph, there is a person named Alice, aged 25. However, in the second version of
the graph Alice’s age is no longer mentioned. After running QSE on version one, the
resulting Java objects, are visualized in Figure 7.3. A node shape for the class “Person”
is created, along with two property shapes: one for the property “name” and one for the
property “age”. Only relevant properties are displayed in this figure. Additionally, the
SHACL shapes are generated by QSE and saved as a file, as shown in Listing 7.3.

<http :// example . org / a l i c e >
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/name> " Al i c e " .
<http :// example . org / a l i c e > <http :// xmlns . com/ f o a f /0 .1/ age>

"25"^^< http ://www. w3 . org /2001/XMLSchema#intege r > .
Listing 7.1: Example graph - Version 1

<http :// example . org / a l i c e >
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/name> " Al i c e " .

Listing 7.2: Example graph - Version 2
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Algorithm 7.2: Delete unvalidated SHACL shapes from file
Input : S2∗j : Adapted Java objects from S1 for G2, S1f : Turtle file with all

SHACL shapes S1, ω: support-threshold, ϵ: confidence-threshold
Output : Turtle file with updated SHACL shapes S2∗f

1 S2∗f ← S1f

2 foreach node shape ⟨s, τn, Φn⟩ ∈ S2∗j do
3 if support of node shape ≤ ω then
4 delete node shape from S2∗f with regex based on s
5 delete all associated property shapes Φn from S2∗f with regex
6 else
7 foreach property shape φn : ⟨τp, Tp, Cp⟩ ∈ Φn do
8 if support of φn ≤ ω or confidence of φn ≤ ϵ then
9 delete φn from S2∗f with regex

10 delete triple in node shape that makes φn part of the node shape
11 else
12 if |Tp| > 1 then
13 foreach constraint in φn do
14 if support of constraint ≤ ω or confidence of constraint ≤ ϵ

then
15 Delete constraint from the property shape from S2∗f

with regex
16 end
17 end
18 if only one constraint is left after deletion then
19 Remove the SHACL-Or list from the property shape and

connect the constraint directly to the property shape
20 end
21 end
22 if support of node shape ̸= support of φn then
23 Remove the SHACL-MinCount triple from property shape from

S2∗f with regex
24 end
25 end
26 end
27 end
28 end
29 return S2∗f
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PersonShape:NodeShape

support = 1
targetClass = "http://xmlns.com/foaf/0.1/Person"

agePersonShapeProperty:PropertyShape

support = 1
nodeKind = "Literal"
dataTypeOrClass = "http://www.w3.org/2001/XMLSchema#integer"
path = "http://xmlns.com/foaf/0.1/age"

namePersonShapeProperty:PropertyShape

support = 1
nodeKind = "Literal"
dataTypeOrClass = "http://www.w3.org/2001/XMLSchema#string"
path = "http://xmlns.com/foaf/0.1/name"

Figure 7.3: Object diagram - QSE Java objects

<http :// shac l shape s . org /PersonShape> rd f : type
<http ://www. w3 . org /ns/ shac l#NodeShape> ;

<http :// shac l shape s . org / support> "1"^^ xsd : i n t ;
<http://www.w3.org/ns/shacl#property>
<http://shaclshapes.org/agePersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#property>
<http :// shac l shape s . org /namePersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#targe tC la s s >
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http://shaclshapes.org/agePersonShapeProperty> rdf:type
<http://www.w3.org/ns/shacl#PropertyShape> ;

<http://shaclshapes.org/confidence> 1E0 ;
<http://shaclshapes.org/support> "1"^^xsd:int ;
<http://www.w3.org/ns/shacl#NodeKind>
<http://www.w3.org/ns/shacl#Literal> ;
<http://www.w3.org/ns/shacl#datatype> xsd:integer ;
<http://www.w3.org/ns/shacl#minCount> 1 ;
<http://www.w3.org/ns/shacl#path>
<http://xmlns.com/foaf/0.1/age> .

<http :// shac l shape s . org /namePersonShapeProperty> rd f : type
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<http ://www. w3 . org /ns/ shac l#PropertyShape> ;
<http :// shac l shape s . org / con f idence > 1E0 ;
<http :// shac l shape s . org / support> "1"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>
<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
<http ://www. w3 . org /ns/ shac l#datatype> xsd : s t r i n g ;
<http ://www. w3 . org /ns/ shac l#minCount> 1 ;
<http ://www. w3 . org /ns/ shac l#path>
<http :// xmlns . com/ f o a f /0 .1/name> .

Listing 7.3: SHACL shapes as result from QSE, deleted parts are indicated in italics

Using the SPARQL-ShapeChecker, Algorithm 7.1 is run on version two of the graph,
using the Java objects as input. After this step, the support value of the property
shape “agePersonShapeProperty” is set to zero, since Alice’s age is deleted in the second
version of the graph. With these updated Java objects Algorithm 7.2 is then executed.
Since there is an object with a support of zero, the algorithm takes the SHACL file as
input (Listing 7.3) and uses regex to search for the shape “agePersonShapeProperty”,
subsequently deleting it from the SHACL file. Furthermore, the algorithm removes the
reference in the PersonShape with regex as indicated by the italic text in Listing 7.3.

7.3 Implementation
The requirements of the SPARQL-ShapeChecker, outlined in Section 7.1, were imple-
mented using the algorithms detailed in Section 7.2 in Java as a command line application
to answer RQ3. The program executes QSE on the first version of the graph and then
performs the validation and deletion steps as described in detail in Section 7.2. For this
task, all graph versions must be available on a triplestore like GraphDB. As input for
the SPARQL-ShapeChecker, both the Java objects and the resulting SHACL file from
the initial QSE run are used. The Java objects represent the node and property shapes
as objects, while the SHACL file provides the same information in Turtle format. In the
first step of the algorithm, the validation phase, the support and confidence values in the
Java objects are updated. These new support and confidence values are calculated using
SPARQL queries on the consecutive versions of the graph. Next, the algorithm adapts
the SHACL shapes in the given Turtle file by using regular expressions, removing shapes
that no longer meet the thresholds for support or confidence.
When the program is run from the command line, a config file named “ConfigSparql-
ShapeChecker.properties” is available to provide parameters for the execution of the
SPARQL-ShapeChecker. The parameters and their description are outlined below:

• graphDbUrl: The URL through which the graph is accessible on a triple store. For
example, if GraphDB is hosted locally, it could be something like
http://localhost:7200/.
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• dataSetNameQSE: The name of the dataset for the first version. QSE is executed
on this version, and the results form the basis for the SPARQL-ShapeChecker. The
algorithm checks the URL provided via the graphDBUrl parameter and searches
for a dataset with this name.

• dataSetsToCheck: A list of version names available via the graphDbUrl parameter
should be given here. The SPARQL-ShapeChecker will be executed on each of these
versions, with the QSE results from the version of the parameter dataSetNameQSE
as a basis. There can be one or multiple dataset names, separated by commas.

• pruningThresholds: As used by QSE, the pruning thresholds can be defined here.
They must be provided in the format {(confidence, support)}. The confidence
value should be a decimal number between 0 and 1, while the support value can be
any non-negative number. Zero is the default value.

• doMetaComparison: A boolean value (“true” or “false”) is used for comparing the
algorithm to QSE. If it is set to “true”, QSE will be run in parallel and output the
results from both the SPARQL-ShapeChecker and QSE, along with a comparison
of the two methods. If the parameter is set to “false”, only the output from the
SPARQL-ShapeChecker will be generated.

The program can be executed by running the class “sparqlshapechecker.
SparqlShapeChecker” from the command line.
Similar to the SHACL-DiffExtractor the results produced by the SPARQL-ShapeChecker
are located in the project’s output directory. Based on the configuration, the SPARQL-
ShapeChecker saves the QSE results for all provided versions, the final SHACL shapes
generated by the SPARQL-ShapeChecker, as well as comparisons for the SPARQL-
ShapeChecker itself, the baseline, and the meta-comparison.
A further improvement for this tool includes an integration with the ShapeComparator. In
this case, the database mentioned in Section 5.2.2 could also be reused to store generated
shapes and graph versions. Using the example provided in Section 7.2, a successful
demonstration of the SPARQL-ShapeChecker is shown. In this example, a triple was
removed in the second version of the graph which led to the removal of a property shape
from the SHACL file without the need to iterate over all triples in the second version of
the graph. This leads to a significant reduction in execution time as the algorithm only
needs to process the generated SHACL shapes.
Using the example provided in Subsection 5.2.1, a more challenging use case can be
discussed. When version one is used as the basis and the SPARQL-ShapeChecker is
executed on the second version of the graph, the limitations of not considering newly
added triples and shapes become apparent. In this scenario, only new entities (e.g.
cats and their colors) are added to the second version of the graph. Consequently, the
SHACL shapes produced by the SPARQL-ShapeChecker miss the CatShape and the
colorCatShapeProperty, causing the output to look the same as for the first version of
the graph. This limitation is a known, significant drawback of this algorithm.
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When the SPARQL-ShapeChecker is executed on the third version of the graph, using
the second version as the basis, the colorCatShapeProperty is removed successfully using
a support threshold of two. In this case, the knowsPersonShapeProperty is also deleted
by the SPARQL-ShapeChecker because the target objects of the “knows” property in
the third version are cats instead of people. Consequently, the SPARQL-ShapeChecker
cannot find this property anymore. The output of the SPARQL-ShapeChecker for version
three would therefore look like the shape provided in Listing 7.4.
However, the SPARQL-ShapeChecker demonstrates a performance advantage, making it
considerably faster than running QSE twice. The experiments to prove this observation
will be discussed in the evaluation in Section 7.4.

@pre f ix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix xsd : <http ://www. w3 . org /2001/XMLSchema#> .

<http :// shac l shape s . org /CatShape> rd f : type
<http ://www. w3 . org /ns/ shac l#NodeShape> ;

<http ://www. w3 . org /ns/ shac l#targe tC la s s >
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// shac l shape s . org /PersonShape> rd f : type
<http ://www. w3 . org /ns/ shac l#NodeShape> ;

<http ://www. w3 . org /ns/ shac l#property>
<http :// shac l shape s . org /namePersonShapeProperty> ;

<http ://www. w3 . org /ns/ shac l#targe tC la s s >
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// shac l shape s . org /namePersonShapeProperty> rd f : type
<http ://www. w3 . org /ns/ shac l#PropertyShape> ;

<http :// shac l shape s . org / con f idence > 1E0 ;
<http :// shac l shape s . org / support> "3"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
<http ://www. w3 . org /ns/ shac l#datatype> xsd : s t r i n g ;
<http ://www. w3 . org /ns/ shac l#minCount> 1 ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// xmlns . com/ f o a f /0 .1/name> .
Listing 7.4: Result of the SPARQL-ShapeChecker on the People Knowledge Graph
(Version 3) with the People Knowledge Graph (Version 2) as basis

7.4 Evaluation
Similar to the procedure described in Section 6.4.2, the evaluation of the SPARQL-
ShapeChecker was done by comparing its performance to the baseline, which consists of
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running QSE for the specified versions of the graph. The measurable characteristic used
for this comparison is the execution time.

Run QSE on G1

Run QSE on
G2,3,4...

Compare QSE SHACL
shapes from G1 and

G2,3,4...

SPARQL-
ShapeChecker for

G2,3,4...

Compare SHACL shapes
from QSE on G1 and

SPARQL-ShapeChecker
for G2,3,4...

Meta comparison
between comparisons

<<ComparisonResult>>

Deleted node shapes
Deleted property shapes
Edited node shapes

Edited property shapes

Figure 7.4: Activity Diagram for the evaluation of the SPARQL-ShapeChecker

The process and the composition of the execution times are visualized in Figure 7.4. The
left path presents the baseline, and the right one shows the process for the SPARQL-
ShapeChecker. For the baseline, the execution time includes the time taken by QSE to
generate SHACL shapes for the first version of the graph, which is the same for both
the baseline and the SPARQL-ShapeChecker since QSE is run once for both methods.
Additionally, the execution time for the baseline includes the time required for QSE to
be run on the second version of the graph. For the SPARQL-ShapeChecker, this part
represents the execution time of the algorithm itself. The comparison time is included in
both execution times. This refers to the time required to compare all shapes from the
first version with those from the second version, using the algorithm described in Section
4.1. The main focus in this use case lies on deleted node and property shapes and edited
node and property shapes, as the SPARQL-ShapeChecker cannot detect added shapes.
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The equations for the execution times are formally expressed in Equation 7.1 for the
baseline and in Equation 7.2 for the SPARQL-ShapeChecker.

ΔtBaseline = tQSE_n + tQSE_n+1 + tComparison (7.1)

ΔtRQ3 = tQSE_n + tSPARQL-ShapeChecker_n+1 + tComparison (7.2)

To compare the results of the baseline with the SPARQL-ShapeChecker content-wise, a
meta comparison was developed which compares the differences found by the baseline
and the SPARQL-ShapeChecker with each other. The results of this meta-comparison
are output in a text file in the project directory. For the People Knowledge Graph, used
in Section 7.3, the comparison between the second and the third version is provided
in Listing 7.5. As it was previously mentioned, the “knowsPersonShapeProperty” does
not point to the same class anymore which is why the property shape is deleted in
the version of the SPARQL-ShapeChecker and edited in the QSE comparison. Also,
the node shape of the SPARQL-ShapeChecker is adapted, since the reference for the
“knowsPersonShapeProperty” is removed.

==== Comparison o f Compare−Methods ====
=== Added Node Shapes ===
=== Added Property Shapes ===
=== Deleted Node Shapes ===
=== Deleted Property Shapes ===

== Unique in SPARQL−ShapeChecker−Comparison ( Count = 1) ==
http :// shac l shape s . org /knowsPersonShapeProperty

=== Edited Node Shape Names ===
== Unique in SPARQL−ShapeChecker−Comparison ( Count = 1) ==

http :// shac l shape s . org /PersonShape
=== Edited Property Shape Names ===

== Unique in QSE−Comparison ( Count = 1) ==
http :// shac l shape s . org /knowsPersonShapeProperty

Execution Time QSE Total : 5 seconds
Execution Time SPARQL−ShapeChecker Total : 4 seconds
Listing 7.5: Result of the meta comparison between the SPARQL-ShapeChecker on the
People Knowledge Graph (Version 3) with the People Knowledge Graph (Version 2) as
basis

The evaluation of the execution times was conducted on the virtual machine and with
the test data as described in Section 6.4.1. The algorithm was primarily evaluated with
the BEAR-C dataset. The evaluation was conducted for three scenarios. First, the
initial seven versions were compared sequentially (e.g. V1 - V2, V2 - V3...). Second,
multiple versions were compared against a common base version (V1). Finally, versions
at intervals of ten were compared sequentially. The same evaluation process was applied
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to the BEAR-B dataset. However, BEAR-B is less suited for this use case, as it exposes
the limitations of QSE. This dataset contains multiple classes or resources with identical
names but different IRIs, leading to discrepancies in the results produced by the SPARQL-
ShapeChecker when compared to the baseline. Further details for these scenarios will be
described later in this section.
The execution times for this evaluation are presented in Table 7.1. It is evident that the
SPARQL-ShapeChecker is consistently faster, with an average execution time reduction
of 27%. To validate the correctness of the data, the updates in shapes were analyzed for
each run. The results, shown in Table 7.2, indicate that no modifications occurred in the
BEAR-C dataset. However, there were many additional shapes in the BEAR-B dataset,
but no removal of node shapes.
As already addressed before, the results in the shapes between the baseline and the
SPARQL-ShapeChecker are not always the same. The following list provides an overview
of scenarios where the results of the meta-comparison differ:

• Node or property shapes were added in the new version. Similarly, for existing
node shapes, if property shapes are added, the node shape changes accordingly.

• If the type of a property shape changes (e.g., from rdf:langString to xsd:string), it
will be deleted by the algorithm because no triples can be found for the original
type anymore.

• If a property shape has multiple constraints with different types which are listed in
a SHACL-Or list and one type changes, the property shape will be modified by both
algorithms. However, the modifications will differ, as the SPARQL-ShapeChecker
deletes the constraint. Similarly, if a new constraint with a new type is added to
the property shape, QSE will add it to the property shape, while the SPARQL-
ShapeChecker will leave the shape unchanged.

• Property shapes associated with node shapes that have multiple target classes lead
to ambiguity. It is unclear which class the property shape refers to. In this case,
the node shapes also have multiple support entries.
There also arise problems with the minCount = 1 constraint since this is only set
when the support of the property shapes matches the support of the node shape.
In such cases of ambiguity, it becomes challenging to differentiate whether this
condition holds true or not. Therefore, sometimes minCount = 1 is added, and
sometimes it is not. In this scenario, multiple SHACL-OR lists may also arise
within the property shape. This limitation is also listed in Section 2.2.3.

• When property shapes of the same node shape have identical names, but different
IRIs, two different shapes are created, distinguished by suffixes. An example are
the shapes producerTelevisionShowShapeProperty and
producer_1TelevisionShowShapeProperty. In this scenario, the name of the prop-
erty shape does not identify a shape correctly anymore. When QSE is run several
times and only one of these shapes is edited or deleted, it becomes uncertain which
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shape was originally meant. Because the comparison algorithm only compares
the names of shapes, differences can arise here. Even if both property shapes are
still present, it cannot be reliably predicted which one will receive the suffix “_1”.
Therefore, discrepancies can occur.
There are also cases where multiple path triples are created for a property shape
(similar to the case with different suffixes). This results in discrepancies again. An
example is provided in Listing 7.6.

• If the support of a property shape changes so that it equals the support of the
node shape in the second version, QSE adds the requirement minCount = 1.
This constraint is not added by the SPARQL-ShapeChecker. However, SPARQL-
ShapeChecker deletes the constraint if the condition is not met anymore.

<http :// shac l shape s . org / res idencePersonShapeProperty> rd f : type
<http ://www. w3 . org /ns/ shac l#PropertyShape> ;

<http :// shac l shape s . org / con f idence > 2E−1 ;
<http :// shac l shape s . org / con f idence > 2 ,2222E−1 ;
<http :// shac l shape s . org / support> "1"^^ xsd : i n t ;
<http :// shac l shape s . org / support> "2"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#IRI> ;
<http ://www. w3 . org /ns/ shac l#c l a s s >

<http :// shac l shape s . org / undef ined> ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// dbpedia . org / onto logy / re s idence > ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// dbpedia . org / property / r e s idence > .
Listing 7.6: Property shape with different paths
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Version 1 Version 2 Baseline [seconds] SPARQL-ShapeChecker [seconds]
BEAR-C-1 BEAR-C-2 41 30
BEAR-C-2 BEAR-C-3 30 19
BEAR-C-3 BEAR-C-4 29 18
BEAR-C-4 BEAR-C-5 28 19
BEAR-C-5 BEAR-C-6 29 19
BEAR-C-6 BEAR-C-7 29 19
BEAR-C-1 BEAR-C-2 25 19
BEAR-C-1 BEAR-C-3 25 19
BEAR-C-1 BEAR-C-4 25 19
BEAR-C-1 BEAR-C-5 25 19
BEAR-C-1 BEAR-C-6 25 19
BEAR-C-1 BEAR-C-7 25 18
BEAR-C-1 BEAR-C-10 30 19
BEAR-C-10 BEAR-C-20 31 20
BEAR-C-20 BEAR-C-30 30 20
BEAR-B-1 BEAR-B-2 253 192
BEAR-B-2 BEAR-B-3 235 175
BEAR-B-3 BEAR-B-4 242 178
BEAR-B-4 BEAR-B-5 240 177
BEAR-B-5 BEAR-B-6 239 179
BEAR-B-6 BEAR-B-7 241 180
BEAR-B-1 BEAR-B-2 220 168
BEAR-B-1 BEAR-B-3 216 168
BEAR-B-1 BEAR-B-4 217 167
BEAR-B-1 BEAR-B-5 218 167
BEAR-B-1 BEAR-B-6 216 166
BEAR-B-1 BEAR-B-7 217 167
BEAR-B- 1 BEAR-B-10 260 197
BEAR-B- 10 BEAR-B-20 243 180
BEAR-B- 20 BEAR-B-30 247 183
BEAR-B- 30 BEAR-B-40 258 188
BEAR-B- 40 BEAR-B-50 265 195
BEAR-B- 50 BEAR-B-60 273 208
BEAR-B- 60 BEAR-B-70 282 214
BEAR-B- 70 BEAR-B-80 290 224

Table 7.1: Execution times for the baseline and the SPARQL-ShapeChecker
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Version 1 Version 2 A
N

A
P

D
N
B

D
N
S

D
P
B

D
P
S

E
N
B

E
N
S

E
P
B

E
P
S

BEAR-C-1 BEAR-C-2 0 0 0 0 0 0 0 0 0 0
BEAR-C-2 BEAR-C-3 0 0 0 0 0 0 0 0 0 0
BEAR-C-3 BEAR-C-4 0 0 0 0 0 0 0 0 0 0
BEAR-C-4 BEAR-C-5 0 0 0 0 0 0 0 0 0 0
BEAR-C-5 BEAR-C-6 0 0 0 0 0 0 0 0 0 0
BEAR-C-6 BEAR-C-7 0 0 0 0 0 0 0 0 0 0
BEAR-C-1 BEAR-C-2 0 0 0 0 0 0 0 0 0 0
BEAR-C-1 BEAR-C-3 0 0 0 0 0 0 0 0 0 0
BEAR-C-1 BEAR-C-4 0 0 0 0 0 0 0 0 0 0
BEAR-C-1 BEAR-C-5 0 0 0 0 0 0 0 0 0 0
BEAR-C-1 BEAR-C-6 0 0 0 0 0 0 0 0 0 0
BEAR-C-1 BEAR-C-7 0 0 0 0 0 0 0 0 0 0
BEAR-C-1 BEAR-C-10 0 0 0 0 0 0 0 0 0 0
BEAR-C-10 BEAR-C-20 0 0 0 0 0 0 0 0 0 0
BEAR-C-20 BEAR-C-30 0 0 0 0 0 0 0 0 0 0
BEAR-B-1 BEAR-B-2 0 0 0 0 0 0 0 0 0 3
BEAR-B-2 BEAR-B-3 0 0 0 0 0 0 0 0 7 3
BEAR-B-3 BEAR-B-4 0 104 0 0 0 0 13 0 112 3
BEAR-B-4 BEAR-B-5 0 0 0 0 0 0 0 0 0 3
BEAR-B-5 BEAR-B-6 0 0 0 0 0 0 0 0 0 3
BEAR-B-6 BEAR-B-7 0 0 0 0 0 0 0 0 0 3
BEAR-B-1 BEAR-B-2 0 0 0 0 0 0 0 0 0 3
BEAR-B-1 BEAR-B-3 0 0 0 0 0 0 0 0 7 3
BEAR-B-1 BEAR-B-4 0 104 0 0 0 0 13 0 119 3
BEAR-B-1 BEAR-B-5 0 104 0 0 0 0 13 0 119 3
BEAR-B-1 BEAR-B-6 0 104 0 0 0 0 13 0 119 3
BEAR-B-1 BEAR-B-7 0 104 0 0 0 0 13 0 119 3
BEAR-B-1 BEAR-B-10 0 104 0 0 0 0 13 0 124 3
BEAR-B-10 BEAR-B-20 3 554 0 0 4 73 55 36 609 110
BEAR-B-20 BEAR-B-30 2 470 0 0 4 16 52 26 642 18
BEAR-B-30 BEAR-B-40 0 448 0 0 1 28 61 28 650 12
BEAR-B-40 BEAR-B-50 0 525 0 0 4 4 58 21 407 23
BEAR-B-50 BEAR-B-60 2 337 0 0 14 24 25 16 345 14
BEAR-B-60 BEAR-B-70 4 345 0 0 0 2 34 17 446 21
BEAR-B-70 BEAR-B-80 0 105 0 0 4 4 37 4 179 2

Table 7.2: Changes in shapes between the baseline and the SPARQL-ShapeChecker.
Legend: AN (added node shapes), AP (added property shapes), D (deleted), E (edited),
N (node shape), P (property shape), B (baseline), S (SPARQL-ShapeChecker) e.g. DNB
(deleted node shapes in the baseline)
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CHAPTER 8
Discussion

The results from the three previously discussed tools show that significant progress has
been made toward improving data quality through the extraction of SHACL shapes
in evolving knowledge graphs. Although the three research questions target different
approaches in this area, QSE serves as the foundational basis for each of them.
The aim of RQ1 was to develop a method for comparing extracted SHACL shapes across
different versions of a knowledge graph. There has already been a graphical user interface
in the form of a web application developed, which is called Shactor. While this tool
visualized the SHACL shapes extraction process using QSE, it did not offer a method
to compare SHACL shapes. Although manual comparison methods or text comparison
tools could be used for this task, these procedures proved to be impractical for larger
knowledge graphs. RQ1 was solved by developing the ShapeComparator and based on the
results from the semi-structured expert interviews discussed in Section 5.3, the feedback
is mainly positive. The initial challenge of providing a tool to efficiently compare SHACL
shapes across multiple graph versions has been solved successfully. All participants
indicated that they would prefer using this tool over manual or text-based comparison
methods.
Certainly, there is also room for improvement for the ShapeComparator. For example,
usability enhancements could be made when users compare SHACL shapes from many
different graph versions at once. Additionally, if a large number of shapes are analyzed,
further testing and refinements in usability would be beneficial. Nevertheless, the primary
research question has been successfully answered which delivers significant benefits to
users.
RQ2 and RQ3 focused on improving the execution time of QSE for evolving knowledge
graphs. Specifically, the aim of RQ2 was to optimize the performance by using changesets
between different versions of a knowledge graph. The resulting tool is called the SHACL-
DiffExtractor and it parses the changeset to produce SHACL shapes for a subsequent
version of a graph instead of using the actual graph file. QSE must have been run on
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the initial version of the graph in order to produce SHACL shapes and the intermediate
results. The SHACL-DiffExtractor then parses the changeset to obtain the SHACL
shapes for the following version, avoiding the need to rerun QSE from scratch on the
following version.
A key assumption for this approach is that the changeset size is relatively small compared
to the overall size of the graph. However, this assumption does not apply universally
to all knowledge graphs and therefore the usage of the SHACL-DiffExtractor should
be evaluated depending on the specific use case. As demonstrated in Section 6.4.2,
the assumption did not hold for the dataset BEAR-C. In this case, the change ratio
was around two-thirds of the graph size, resulting in roughly equal execution times
for running QSE multiple times and using the SHACL-DiffExtractor. In contrast, the
BEAR-B dataset has a change ratio of only 2%. The SHACL-DiffExtractor did result
in a performance improvement for this knowledge graph. This demonstrates that the
research question was answered successfully, however, the tool is only effective when
the changeset is relatively small compared to the overall size of the knowledge graph.
Another limitation of the SHACL-DiffExtractor is the requirement to have changesets
between knowledge graph versions available. If a use case does not automatically generate
changesets and only the graph versions are accessible, calculating the changesets would be
computationally expensive. In such scenarios, it is better to rely solely on QSE. However,
there might be use cases where only changesets are available, and in these situations, the
SHACL-DiffExtractor demonstrates significant strengths.
Another limitation arises from QSE itself, as it produces ambiguous results when resources
in a graph share the same name but have different IRIs, as described in Section 2.2.3.
This issue became evident during the evaluation of the SHACL-DiffExtractor and the
SPARQL-ShapeChecker with real-world datasets, which led to inconsistent results.
The final part of the thesis focused, similarly to the SHACL-DiffExtractor, on improving
the execution time of QSE for evolving knowledge graphs. To answer RQ3, a tool called
SPARQL-ShapeChecker has been developed, which utilizes the query-based version of
QSE. For this approach, the initially generated SHACL shapes by QSE were re-evaluated
on a subsequent version of a graph. While this method offers a significant performance
improvement, the trade-off is that added or updated shapes cannot be detected. As a
result, the tool is only suitable for specific use cases. For example, a huge knowledge
graph where QSE has already been executed and users do not anticipate significant
schema changes would be an ideal scenario. However, if a greater schema evolution is
expected, the SPARQL-ShapeChecker might not be the most suitable option.
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CHAPTER 9
Conclusion & Future Work

This thesis examined three distinct approaches for QSE in combination with evolving
knowledge graphs. A graphical interface for comparing SHACL shapes and two algorithmic
extensions have been developed. The algorithms aimed at enhancing the execution time
of QSE across different versions of a knowledge graph, where one approach involved
utilizing changesets between versions, while the other one re-evaluated existing SHACL
shapes on a subsequent graph version. With these tools, open research questions could
be resolved, however, there is still potential for further work in this area.
There are many integration possibilities for the ShapeComparator. It could be connected
with Shactor so that users could benefit from the valuable statistics. Furthermore, the
ShapeComparator could support the approximate and query-based version of QSE in
future releases. Additionally, an integration with the two algorithmic approaches - the
SHACL-DiffExtractor and the SPARQL-ShapeChecker - would be convenient to provide
a visual interface. Another enhancement would be to allow users to upload any SHACL
file, regardless of whether it was generated by QSE or not. Implementing this feature
could widen the area of application, however, the implementation could be challenging,
as raw Turtle files would need to be mapped to the internal structure of QSE.
For the SHACL-DiffExtractor, an integration with the approximate and the query-based
option of QSE would be convenient. Similarly for the SPARQL-ShapeChecker the
integration of the approximate and the file-based version of QSE would be beneficial.
However, another interesting aspect is whether there is a way to modify QSE so that the
execution time can be reduced for a subsequent run by only using the internal information
and the originally generated shapes. This would eliminate the need for changesets and
the trade-off from the SPARQL-ShapeChecker that added shapes cannot be discovered.
However, this research question presents a greater challenge since a subsequent version
of a graph must still be completely parsed to find all updates. Furthermore, future work
could include minor adaptions in QSE itself. One example includes the handling of
resources with the same name but different IRIs in knowledge graphs.
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APPENDIX A
Systematic Literature Review

Title, Reference Exclusion Reason
“evolving knowledge graphs”

1 Evolving Knowledge Graphs [70]
2 Know-Evolve: Deep Temporal Reasoning for Dynamic

Knowledge Graphs [92]
Title: Reasoning is not in
line with the thesis topic

3 Summarizing Entity Temporal Evolution in Knowledge
Graphs [91]

4 How does knowledge evolve in open knowledge graphs? [83]
5 Analysing the Evolution of Knowledge Graphs for the Pur-

pose of Change Verification [74]
6 EvolveKG: a general framework to learn evolving knowledge

graphs [69]
7 KGdiff: Tracking the Evolution of Knowledge Graphs [67]
8 Predicting the co-evolution of event and Knowledge Graphs

[50]
9 Knowledge Graphs Evolution and Preservation – A Techni-

cal Report from ISWS 2019 [31]
10 Representing Scientific Literature Evolution via Temporal

Knowledge Graphs [86]
Title: Scientific Literature
Evolution not in line with
the thesis topic

“data quality in knowledge graphs”
11 GraphGuard: Enhancing Data Quality in Knowledge Graph

Pipelines [47]
12 Improving and Assessing Data Quality of Knowledge Graphs

[45]
13 Knowledge Graph Quality Management: A Comprehensive

Survey [95]
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A. Systematic Literature Review

Continuation of Table A.1
Title, Reference Exclusion Reason

14 Knowledge Graph Completeness: A Systematic Literature
Review [64]

15 Steps to Knowledge Graphs Quality Assessment [63]
16 What Are Links in Linked Open Data? A Characterization

and Evaluation of Links between Knowledge Graphs on the
Web [58]

Title: Links in Linked
Open Data are not in line
with the thesis topic

17 Knowledge Graphs 2021: A Data Odyssey [94]
18 Knowledge graphs [51]
19 A Practical Framework for Evaluating the Quality of Know-

ledge Graph [40]
20 Towards Improving the Quality of Knowledge Graphs with

Data-driven Ontology Patterns and SHACL [89]
“shacl extraction from knowledge graphs”

21 A Library for Visualizing SHACL over Knowledge Graphs
[33]

22 SCOOP all the Constraints’ Flavours for your Knowledge
Graph [48]

23 Learning SHACL shapes from knowledge graphs [76]
24 Towards Improving the Quality of Knowledge Graphs with

Data-driven Ontology Patterns and SHACL [89]
Duplicate

25 Extraction of Validating Shapes from Very Large Knowledge
Graphs [84]

26 Using Knowledge Graph Technologies to Contextualize and
Validate Declarations in the Social Security Domain [41]

27 Automatic extraction of shapes using sheXer [52]
28 Property assertion constraints for an informed, error-

preventing expansion of knowledge graphs [46]
29 Automatic Construction of SHACL Schemas for RDF Know-

ledge Graphs Generated by Direct Mappings [42]
Language: Korean, not
available with TU-Wien
Account

30 Trav-SHACL: Efficiently Validating Networks of SHACL
Constraints [54]

“comparing shacl shapes”
31 Comparing ShEx and SHACL [55] Not available with TU-

Wien account
32 Using Ontology Design Patterns To Define SHACL Shapes

[77]
33 Semantic rule checking of cross-domain building data in

information containers for linked document delivery using
the shapes constraint language [57]
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Continuation of Table A.1
Title, Reference Exclusion Reason

34 Astrea: automatic generation of SHACL shapes from on-
tologies [43]

35 Trav-SHACL: Efficiently validating networks of SHACL
constraints [54]

Duplicate

36 Formalizing Property Constraints in Wikidata [53]
37 Semantics and Validation of Recursive SHACL [44]
38 An Argument for Generating SHACL Shapes from ODPs

[78]
39 Comparison of the eye’s wave-front aberration measured

psychophysically and with the Shack–Hartmann wave-front
sensor [87]

Title: not relevant for
knowledge graphs

40 Absolute sphericity measurement: a comparative study of
the use of interferometry and a Shack–Hartmann sensor [81]

Title: not relevant for
knowledge graphs

“differences between knowledge graphs versions”
41 Summarizing entity temporal evolution in knowledge graphs

[91]
Duplicate

42 KGDiff: Tracking the evolution of knowledge graphs [67] Duplicate
43 Knowledge Graphs on the Web-An Overview. [59]
44 Knowledge graphs: A practical review of the research land-

scape [66]
45 Bias in Knowledge Graphs–an Empirical Study with Movie

Recommendation and Different Language Editions of DB-
pedia [93]

Title: Bias not relevant for
thesis topic

46 Explaining and suggesting relatedness in knowledge graphs
[82]

47 A survey on knowledge graphs: Representation, acquisition,
and applications [65]

48 Measuring accuracy of triples in knowledge graphs [71] Title: Accuracy not rele-
vant for thesis topic

49 AYNEC: all you need for evaluating completion techniques
in knowledge graphs [36]

50 Modelling dynamics in semantic web knowledge graphs with
formal concept analysis [56]

Title: Modelling dynamics
not relevant for thesis topic

Table A.1: All initial search results for all search terms
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A. Systematic Literature Review

Title, Reference Comments Re-
levance

1 Evolving Knowledge
Graphs [70]

Theoretical description of EvolveKG [69] - a frame-
work that reveals cross-time knowledge interaction
with desirable performance. This is partly relevant
for this thesis since an extra framework is created
with a Derivative Graph, allowing knowledge pre-
diction. In this thesis, only snapshots of evolving
graphs are considered.

2

3 Summarizing Entity
Temporal Evolution in
Knowledge Graphs [91]

Envisions an approach where a summary graph is
created to catch the evolution of all entities across
all versions.

2

4 How does knowledge
evolve in open know-
ledge graphs? [83]

Explains the basics of evolving knowledge graphs. 1

5 Analysing the Evolution
of Knowledge Graphs
for the Purpose of
Change Verification [74]

This paper deals with topological features of a graph
to generate classifiers that can judge whether an
incoming graph change is correct or incorrect.

2

6 EvolveKG: a general
framework to learn
evolving knowledge
graphs [69]

Already mentioned in [70]. 3

7 KGdiff: Tracking the
Evolution of Knowledge
Graphs [67]

Proposes a software that tracks changes in the schema
and for the individuals.

2

8 Predicting the co-
evolution of event and
Knowledge Graphs [50]

The goal of this paper is to predict unobserved facts
by using previous temporal information from know-
ledge graphs and static information. This is not
relevant since prediction is not part of this thesis.

3

9 Knowledge Graphs Evo-
lution and Preservation
– A Technical Report
from ISWS 2019 [31]

Collection of ten papers: Papers 5,6,10 are not rele-
vant. Paper 1 differentiates between different types of
evolution and checks if machine learning can capture
this evolution. Paper 2 focuses on the characteristics
of an evolving knowledge graph, in this case, DB-
pedia. The third paper discusses changes between
two versions of a knowledge graph. Paper 4 is about
changes in ontologies and how they can be charac-
terized. Paper 7 deals with the integration of data
in knowledge graphs. Versioned knowledge graphs
are targeted in Chapter 8. Finally, paper 9 deals
with the support of interactive updates in knowledge
graphs.

2
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Continuation of Table A.2
Title, Reference Comments Re-

levance
11 GraphGuard: Enhanc-

ing Data Quality in
Knowledge Graph
Pipelines [47]

Introduces a framework for better data quality in
knowledge graph pipelines for humans and machines.
This paper is partly relevant to this thesis because
the goal of QSE and SHACL is not to check data
quality during data ingestion.

2

12 Improving and Assess-
ing Data Quality of
Knowledge Graphs [45]

Dissertation which focuses on including data trans-
formations in knowledge graphs that can help to
clean the data and complete knowledge graphs by
calculating derived data. Furthermore, this paper
is about validating knowledge graphs. Validation is
done by a reasoning solution called Validatrr. Clean-
ing, completing and reasoning are not directly ad-
dressed therefore this paper is not directly relevant.

2

13 Knowledge Graph Qual-
ity Management: A
Comprehensive Survey
[95]

This paper provides a systematic review of qual-
ity management in knowledge graphs, also includ-
ing quality management processes, such as quality
assessment, error detection, error correction, and
completion.

2

14 Knowledge Graph Com-
pleteness: A Systematic
Literature Review [64]

Different quality dimensions exist - such as accuracy
or completeness. This paper summarizes terminolo-
gies related to completeness. Therefore it is not
relevant for this thesis, since completeness is not a
topic.

3

15 Steps to Knowledge
Graphs Quality Assess-
ment [63]

The goal of this paper is to extend existing quality
assessment frameworks by adding quality dimensions
and quality metrics. It is only partly relevant for this
thesis since quality dimensions are evaluated with
SHACL.

2

17 Knowledge Graphs 2021:
A Data Odyssey [94]

This paper discusses advances and lessons learned in
the history of knowledge graphs. The abstract is too
general that it could be relevant for this thesis.

3

18 Knowledge graphs [51] Entire book on knowledge graphs that includes a
general introduction, how to build and use knowledge
graphs, and specific use cases.

2

19 A Practical Framework
for Evaluating the Qual-
ity of Knowledge Graph
[40]

In this paper, existing frameworks for quality in
knowledge graphs are assessed and a practical frame-
work is proposed which determines if a knowledge
graph is suitable for an intended purpose.

3
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Continuation of Table A.2
Title, Reference Comments Re-

levance
20 Towards Improving

the Quality of Know-
ledge Graphs with
Data-driven Ontology
Patterns and SHACL.
[89]

The approach of this paper is used in QSE. It pro-
poses a semantic profiling tool that helps to enhance
the understanding of the data by using SHACL.

1

21 A Library for Visualiz-
ing SHACL over Knowl-
edge Graphs [33]

This master thesis created a library called SHA-
CLViewer which illustrates SHACL shapes in a 3D
context.

1

22 SCOOP all the Con-
straints’ Flavours for
your Knowledge Graph
[48]

The goal of the SCOOP framework is to extract
SHACL shapes from already existing knowledge
graphs (similar to QSE). However, it mainly uses
ontologies and data schemas instead of the entities
itself.

2

23 Learning SHACL
shapes from knowledge
graphs [76]

This paper introduces Inverse Open Path (IOP),
a predicate logic formalism that presents specific
shapes over connected entities from a knowledge
graph. The corresponding learning method is called
SHACLearner.

2

25 Extraction of Validating
Shapes from Very Large
Knowledge Graphs [84]

The thesis builds on this paper, therefore it is ex-
cluded.

3

26 Using Knowledge Graph
Technologies to Con-
textualize and Validate
Declarations in the So-
cial Security Domain
[41]

A master thesis, which generates SHACL shapes for
a specific use case namely forms which describe the
work of employees in a quarter. Since SHACL shapes
are generated manually, the thesis is not relevant.

3

27 Automatic extraction of
shapes using sheXer [52]

sheXer produces SHACL shapes similar to QSE using
a python library. This paper is also mentioned in
the related work of QSE.

2

28 Property assertion con-
straints for an informed,
error-preventing ex-
pansion of knowledge
graphs [46]

PAC (property assertion constraints) have the goal of
checking data before it is added to a knowledge graph.
With this approach, errors can be prevented and the
quality of knowledge graphs can be enhanced. PAC
works by restricting the range of properties using
SPARQL.

2
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Continuation of Table A.2
Title, Reference Comments Re-

levance
30 Trav-SHACL: Effi-

ciently Validating
Networks of SHACL
Constraints [54]

Trav-SHACL plans the execution and the traversal
of a shapes graph so that invalid entries are detected
early. For this task, the shapes graph is reordered.

2

32 Using Ontology Design
Patterns To Define
SHACL Shapes [77]

Similar to [48], this paper reuses the Ontology De-
sign Pattern (ODP) and contexts to automatically
generate SHACL shapes.

2

33 Semantic rule checking
of cross-domain building
data in information con-
tainers for linked docu-
ment delivery using the
shapes constraint lan-
guage [57]

This case study uses SHACL in the domain of In-
formation Container for Linked Document Delivery
(ICDD). Since this is a specific case study, it is not
relevant to this thesis.

3

34 Astrea: automatic
generation of SHACL
shapes from ontologies
[43]

Similar to [48] this approach also uses ontologies
to automatically generate SHACL shapes. Astrea
uses Astrea-KG which provides mappings between
ontology constraint patterns and SHACL constraint
patterns.

2

36 Formalizing Property
Constraints in Wikidata
[53]

This paper compares constraints in Wikidata, which
uses its own RDF data model for constraints. These
can be created with SPARQL and SHACL. This
paper is not relevant, since Wikidata will not be
used in this thesis.

3

37 Semantics and Vali-
dation of Recursive
SHACL [44]

As the title suggests, this paper explores recursion
for SHACL constraints. It proposes concise formal
semantics of the core elements of SHACL and vali-
dates recursion for these elements. This paper is not
relevant since the recursion of SHACL elements is
not a topic for this thesis.

3

38 An Argument for Gen-
erating SHACL Shapes
from ODPs [78]

This book chapter extends the idea of [77]. 3

43 Knowledge Graphs on
the Web-An Overview.
[59]

This book chapter provides an overview and a com-
parison of publicly available knowledge graphs (DB-
pedia, Wikidata) and gives insights into their sizes
and contents. This chapter is not relevant to this
thesis since it is too general.

3
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Continuation of Table A.2
Title, Reference Comments Re-

levance
44 Knowledge graphs: A

practical review of the
research landscape [66]

The cross-disciplinary nature of knowledge graphs is
very important. This paper gives an overview of the
major strands in the research landscape and their
different communities. This paper is too general for
this thesis.

3

46 Explaining and suggest-
ing relatedness in know-
ledge graphs [82]

It provides a tool called RECAP, which explains the
relatedness of a pair of entities in a knowledge graph.
Relatedness is not a topic of this thesis, therefore it
is not relevant.

3

47 A survey on knowledge
graphs: Representation,
acquisition, and applica-
tions [65]

This survey covers a broad range of topics regarding
knowledge graphs. However, also temporal know-
ledge graphs are discussed, which makes the paper
partly relevant.

2

49 AYNEC: all you need
for evaluating comple-
tion techniques in know-
ledge graphs [36]

The tool AYNEC provides a suite for the evaluation
of knowledge graph completion techniques. Since
knowledge graph completion is not a topic of this
thesis, this paper is not relevant.

3

Table A.2: Comments and possible exclusion reasons for all papers after the first round
based on the Abstract. Relevance ranges from 1 (absolutely relevant) to 3 (not relevant)
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APPENDIX B
Demonstration Knowledge Graphs

<http :// example . org / a l i c e >
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org /bob>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / jenny>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/name> " Al i c e " .

<http :// example . org /bob>
<http :// xmlns . com/ f o a f /0 .1/name> "Bob" .

<http :// example . org / jenny>
<http :// xmlns . com/ f o a f /0 .1/name> " Jenny " .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /bob> .

<http :// example . org /bob>
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org / a l i c e > .

<http :// example . org / jenny>
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org / a l i c e > .

Listing B.1: People Knowledge Graph (Version 1)

<http :// example . org / a l i c e >
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<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org /bob>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / jenny>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/name> " Al i c e " .

<http :// example . org /bob>
<http :// xmlns . com/ f o a f /0 .1/name> "Bob" .

<http :// example . org / jenny>
<http :// xmlns . com/ f o a f /0 .1/name> " Jenny " .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /bob> .

<http :// example . org /bob>
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org / a l i c e > .

<http :// example . org / jenny>
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org / a l i c e > .

<http :// example . org /orangeCat>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// example . org /blackCat>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// example . org /greyCat>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// example . org /orangeCat>
<http :// example . org / co lo r > " orange " .

<http :// example . org /blackCat>
<http :// example . org / co lo r > " black " .

<http :// example . org /greyCat>
<http :// example . org / co lo r > " grey " .

Listing B.2: People Knowledge Graph (Version 2)

<http :// example . org / a l i c e >
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .
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<http :// example . org /bob>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / jenny>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/name> " Al i c e " .

<http :// example . org /bob>
<http :// xmlns . com/ f o a f /0 .1/name> "Bob" .

<http :// example . org / jenny>
<http :// xmlns . com/ f o a f /0 .1/name> " Jenny " .

<http :// example . org / a l i c e >
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /orangeCat> .

<http :// example . org /bob>
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /blackCat> .

<http :// example . org / jenny>
<http :// xmlns . com/ f o a f /0 .1/ knows>
<http :// example . org /greyCat> .

<http :// example . org /orangeCat>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// example . org /blackCat>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// example . org /greyCat>
<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Cat> .

<http :// example . org /orangeCat>
<http :// example . org / co lo r > " orange " .

Listing B.3: People Knowledge Graph (Version 3)

@pref ix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix xsd : <http ://www. w3 . org /2001/XMLSchema#> .

<http :// shac l shape s . org /PersonShape> rd f : type
<http ://www. w3 . org /ns/ shac l#NodeShape> ;

<http :// shac l shape s . org / support> "3"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#property>

<http :// shac l shape s . org / instanceTypePersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#property>
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B. Demonstration Knowledge Graphs

<http :// shac l shape s . org /knowsPersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#property>

<http :// shac l shape s . org /namePersonShapeProperty> ;
<http ://www. w3 . org /ns/ shac l#targe tC la s s >

<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// shac l shape s . org / instanceTypePersonShapeProperty>
rd f : type <http ://www. w3 . org /ns/ shac l#PropertyShape> ;

<http :// shac l shape s . org / con f idence > 1E0 ;
<http :// shac l shape s . org / support> "3"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#in>

(<http :// xmlns . com/ f o a f /0 .1/ Person> ) ;
<http ://www. w3 . org /ns/ shac l#path> rd f : type .

<http :// shac l shape s . org /knowsPersonShapeProperty>
rd f : type <http ://www. w3 . org /ns/ shac l#PropertyShape> ;

<http :// shac l shape s . org / con f idence > 1E0 ;
<http :// shac l shape s . org / support> "3"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#IRI> ;
<http ://www. w3 . org /ns/ shac l#c l a s s >

<http :// xmlns . com/ f o a f /0 .1/ Person> ;
<http ://www. w3 . org /ns/ shac l#minCount> 1 ;
<http ://www. w3 . org /ns/ shac l#node>

<http :// shac l shape s . org /PersonShape> ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// xmlns . com/ f o a f /0 .1/ knows> .

<http :// shac l shape s . org /namePersonShapeProperty>
rd f : type <http ://www. w3 . org /ns/ shac l#PropertyShape> ;

<http :// shac l shape s . org / con f idence > 1E0 ;
<http :// shac l shape s . org / support> "3"^^ xsd : i n t ;
<http ://www. w3 . org /ns/ shac l#NodeKind>

<http ://www. w3 . org /ns/ shac l#L i t e r a l > ;
<http ://www. w3 . org /ns/ shac l#datatype> xsd : s t r i n g ;
<http ://www. w3 . org /ns/ shac l#minCount> 1 ;
<http ://www. w3 . org /ns/ shac l#path>

<http :// xmlns . com/ f o a f /0 .1/name> .
Listing B.4: SHACL shapes for the People Knowledge Graph (Version 1) from QSE-Exact
with no parameters for support or confidence
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Overview of Generative AI Tools
Used

The primary AI tool used in this thesis was ChatGPT. It was used instead or in
combination with Google for general questions such as finding out how to make text
bold in LaTeX. Additionally, ChatGPT was used to generate small code snippets, like
comparing two maps in Java. The most significant use of ChatGPT however, was for
reformulating and correcting self-written English sentences during the writing process.
In addition, the free version of Grammarly was utilized to identify grammatical issues in
the text. Of course, all outputs from AI tools were reviewed and revised as necessary.
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