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Abstract

This work presents the results of state-of-the-art offline behavior agnostic policy evaluation
algorithms based on stationary distribution correction estimation, evaluated within a healthcare
setting using data from the AmsterdamUMCdb. We firstly, present the theory of these algorithms.
This includes the introduction of four tabular estimators and a revision of the well known
DualDICE, GenDICE, and GradientDICE. All algorithms are implemented in a modular open
source Python library. In order to evaluate the efficacy of the algorithms, they are tested in
the environments BoyanChain as well as the OpenAI Gym applications FrozenLake, Taxi, and
Cartpole. The continuous state space algorithms DualDICE, GenDICE, and GradientDICE are
run directly on the healthcare dataset. Additionally, the state space of healthcare applications
is clustered in order to perform policy evaluation in the tabular setting. Our analysis provides
a comprehensive examination of the practical functioning of all estimators, elucidating the
underlying theory and the connections between the results and the theory.



1 Introduction

Due to the rapid development of Machine Learning (ML) in recent years, there has been a
growing demand for ML algorithms to solve complex real-world applications. A subfield of ML
called Reinforcement Learning (RL) provides a versatile theoretical framework for optimal deci-
sion making [38]. This is done by formulating a theoretical environment called Markov Decision
Process (MDP), characterized by a set of states, actions, and rewards and their interactions.
They provide an abstract mathematical reflection of their real-world application counterparts,
which may come from fields such as games [27], robotics [3], or conversational systems [15, 22,
1]. The goal is to train a policy, which executes actions in certain states of the environment,
leading to a new state and reward. The quality of the policy is measured in terms of the policy
value (PV), which is the expectation of an exponential average of the rewards along an episode.

In many cases, the use of simulators for these MDPs is essential to facilitate a rapid and
straightforward interaction between the agent training the policy and the environment. These
can be constructed from a physical model or a dataset. However, this sort of simplification
introduces a sim-to-real gap, which can lead to a misrepresentation of the original environment.
In many cases, this makes it questionable, whether the behavior learned in the simulator can
safely be transferred to the real world [36]. Especially applications, such as recommendation [23],
education [24], autonomous driving [16, 18], and healthcare [30, 7, 8, 39, 19], where deploying a
new policy can be expensive and risky, call for policy optimization and evaluation algorithms,
which use an environment that most accurately represents the original task, ideally without the
use of a simulator.
An approach, having recently gained high popularity, uses a limited and fixed dataset of

samples describing an MDP, which models the application. Of the related contributions so far
in policy optimization (PO) [33, 21, 20, 25, 13] and policy evaluation (PE) [34, 44, 41, 43, 13,
28], we will be using NeuralDualDice [34], NeuralGenDice [44], and NeuralGradientDice [41]
in our work.

We refer to algorithms as online, if they are allowed to use an environment, with which they
can easily interact, by starting an episode and giving it actions in a state and receiving the next
state and reward. Removing this commodity limits us to the offline setting. These concepts
are similar to notions of on-policy (OnP) and off-policy (OffP). In the former setting, we gather
data on an evaluation policy for an MDP by executing its own actions in an environment,
while the latter uses a possibly different behavior policy for data collection [38]. Furthermore,
classical off-policy methods need full knowledge, not only for the evaluation policy, but also
for the behavior policy [38]. Moreover, data collection must be performed by a single behavior
policy, whereas real-world data is most often gathered by a mix of multiple behavior policies.
Should an algorithm be limited to samples generated by a single or multiple behavior policies,
and not require any explicit knowledge of its distribution, then it is called behavior agnostic.
In healthcare, certain sensory data is gathered from patients during the treatments, carried

out by human clinicians. In this publication, we use AmsterdamUMCdb1 [39]. Thus, the original

1https://amsterdammedicaldatascience.nl/amsterdamumcdb
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task of reproducing or even improving such treatments via RL is inherently offline. Further-
more, the distribution describing the mix of various clinician’s behavior policies, can only be
approximated at best [8], which motivates the use of behavior agnostic algorithms.

In this work, we apply the offline behavior agnostic algorithms NeuralDualDice [34], Neural-
GenDice [44], and NeuralGradientDice [41] to estimate the value of a policy, which was trained
to treat critically ill septic patients. The foundation of these three algorithms is the assertion
that the policy value can be expressed in terms of the expectation of the reward taken with
respect to the policy’s stationary distribution. The stationary distribution can be expressed
through a uniquely solvable system of linear equations or an eigenvalue problem, depending on
whether the setting is discounted or undiscounted, respectively. Each algorithm has its own
loss function, which is constructed from the equations and certain regularizers. The algorithms
approximate a saddle point of their aforementioned loss function through the application of
gradient descent and ascent. Because conventional approaches use clustering on the states
of the dataset in order to provide the possible use of tabular algorithms [7], we also explore
this approach, followed by our tabular policy evaluation methods TabularVafe, TabularDice,
TabularDualDice, and TabularGradientDice, that are based on the same theory as the three
above.
The policies and their respective datasets come from Bologheanu et al. [8]. Please refer to

our GitHub repository2 for details regarding the implementation.

In order to gain insight into the algorithm’s practical behavior, we test them on various well
established environments retaining certain selected properties. These include the tabular envi-
ronment Boyan Chain [11], also used by Zhang et al. [41]. It is an environment with a scalable
state space, where all the transition dynamics and rewards are known. This enables the compar-
ison of our approximate solutions to an analytical one. For the continuous algorithms, we use
one-hot-encoding to embed the state space of Boyan Chain. We further reinforce the credibility
of our algorithms by additionally running on some famous environments from OpenAI Gym3.

2https://github.com/MrWhiteRichard/dice rl sepsis.git
3https://gymnasium.farama.org/
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2 Methods

2.1 Measure Theory

Consider a set X. Denote the space of probability measures, measures and signed measures
on X into R, respectively, by P(X) ⊆ M(X) ⊆ S(X). We can interpret a signed measure
S ∈ S(X), a measure M ∈ M(X), and a probability measure P ∈ P(X), as a linear functional
[14]. For any integrable f : X → R, write

Sf
.
=

�
X
f dS, Mf

.
=

�
X
f dM, or Pf

.
= EP [f ]. (2.1)

For a class H of functions on X, consider the space of bounded linear functionals on H
equipped with the uniform norm

L∞(H)
.
= {H : H → R linear | ∥H∥L∞(H) < ∞}, where ∥H∥L∞(H)

.
= sup

ℓ∈H
|Hℓ|,

and B(H, S)
.
=

�
H ∈ L∞(H) | H uniformly ∥ · ∥L2(S)-continuous

�
.

By interpreting signed measures as linear functionals, we can define the space of signed
measures, measures and probability measures on X, bounded by ∥ · ∥H,

S(X;H)
.
= {H ∈ S(X) | ∥H∥L∞(H) < ∞},

M(X;H)
.
= {H ∈ M(X) | ∥H∥L∞(H) < ∞},

P(X;H)
.
= {H ∈ P(X) | ∥H∥L∞(H) < ∞}.

Let XD ⊆ Rm be discrete and XC ⊆ Rm continuous. Denote the sub sets of XD by P(XD),
the Borel-sets on XC by B(XC), the counting measure by µ, and the m-dimensional Lebesgue
measure by λ. Then, for P we will denote its Radon-Nikodym derivative with the corresponding
lower case letter, and vice versa, i.e.,

p =
dP

dµ
and ∀A ∈ P(XD) : P (A) =

�
A
p dµ =

,
x∈A

p(x),

p =
dP

dλ
and ∀B ∈ B(XC) : P (B) =

�
B
p dλ =

�
B
p(x) dx.

Let Δ(X) be the set of probability density functions on X, i.e., the above Radon-Nikodym
derivatives, depending on whether X ⊆ Rm is continuous or discrete. For a given q ∈ Δ(X),
we write the set of distributions, absolutely continuous with respect to q, as

Δq(X)
.
= {p ∈ Δ(X) | p ≪ q}.

Sometimes, q will have finite support supp(q) = {x1, . . . , xn}. Define the set of probability
vectors as

Δn .
=

�
p⃗ ∈ Rn

///// p⃗ ≥ 0,

n,
i=1

pi = 1

�
.

4



Then, we have

Δq(X) =

�
n,

i=1

pi xi=x

///// p⃗ ∈ Δn

�
. (2.2)

Now, consider a dataset D = (xi)
n
i=1 ⊂ X, where the samples are taken by distribution

pD ∈ Δ(X). We define the empirical distribution p̂D ∈ ΔpD(X) via

p̂D(x) .
=

1

n

n,
i=1

xi=x. (2.3)

Note that, since the samples x1, . . . , xn are random variables, the empirical distribution p̂D is
a random function on X. Since supp(p̂D) = {x1, . . . , xn}, we can apply (2.2) to p̂D. This holds
even if there are samples in D that occur more than once.

2.2 Optimization Theory

The DICE algorithms all require additional optimization techniques to regular RL algorithms.
To this end Nachum and Dai have published a review of optimization theory specifically for
DICE [32]. This section provides a far more detailed and rigorous review of the necessary back-
ground theory.

Consider the general optimization problem

min
x∈Rn

f(x) subject to g(x) = 0 and h(x) ≤ 0,

where f : Rn → R, g : Rn → Rℓ, h : Rn → Rk−ℓ.
(2.4)

We can summarize this entire problem in two different ways:
1. For a subset C ⊆ R we define the indicator function

δC : R → {0,∞}, δC(x)
.
=

�
0, if x ∈ C,

∞, else.

It is easy to verify that the initial formulation of the optimization problem can be restated in
terms of the summarized objective

min
x∈Rn

P (x)
.
= f(x) +

ℓ,
i=1

δ{0}(gi(x)) +
k−ℓ,
i=1

δR≤0
(hi(x)).

2. We introduce the Lagrangian function

L :

�
Rn × Rℓ × Rk−ℓ

≥0 → R,
x !→ f(x) + λ⊤g(x) + µ⊤h(x),

and consider the Lagrangian formulation

min
x∈Rn

P (x)
.
= max

λ∈Rℓ
max

µ∈Rk−ℓ
≥0

L(x, λ, µ).

We can check that both definitions of P are the same.

5



• If x satisfies all constraints, gi(x) = 0 and hi(x) ≤ 0, then L(x, λ, µ) is maximized when
taking λ = µ = 0, and its value will be f(x).

• If x violates some constraint, gi(x) ̸= 0 or hi(x) > 0, then L(x, λ, µ) → ∞ for
λi → sgn gi(x)∞ or µi → ∞, respectively.

This motivates us to consider a similar formulation to the Lagrangian

max
λ∈Rℓ

max
µ∈Rk−ℓ

≥0

D(λ, µ)
.
= min

x∈Rn
L(x, λ, µ).

We call the initial problem the primal and this one the dual optimization problem. Consequently,
D is named the dual function. A very important result in duality theory is Weak Duality,
provided in Proposition 2.2.1.

Proposition 2.2.1 (Weak Duality). Consider the general optimization problem (2.4). Then

max{D(λ, µ) | λ ∈ Rk, µ ∈ Rℓ
+} ≤ min{f(x) | x ∈ Rn, g(x) = 0, h(x) ≤ 0}.

Proof. Let x∗ be optimal with respect to the primal problem, i.e.,

x∗ = argmin{f(x) | x ∈ Rn, g(x) = 0, h(x) ≤ 0}.
This leads to

D(λ, µ) ≤ L(x∗, λ, µ) = f(x∗) + λ⊤g(x∗) + µ⊤h(x∗) ≤ f(x∗).

For the last inequality we used

g(x∗) = 0 =⇒ λ⊤g(x∗) = 0,

µ ≥ 0, h(x∗) ≤ 0 =⇒ µ⊤h(x∗) ≤ 0.

We will assume that for all i = 1, . . . ,m, where m ≤ n, we add xi ≥ 0 to our general
optimization problem. Since we could simply include these inequalities via h, this does not add
any extra expressiveness. However, in some cases it turns out to be convenient to separate these
simple constraints.
With Lemma 2.2.2 we provide a criterion that allows us to check, whether two optimization

problems are dual to one another.

Lemma 2.2.2. Let LP and LD be the Lagrangians of some optimization problems (P) and (D),
respectively, where

LP(x, (λ, µ)) = LD((µ, λ), x) for all x ∈ Rm
≥0 × Rn−m, λ ∈ Rℓ, µ ∈ Rk−ℓ

≥0 .

Then (D) is the dual of (P).

Proof. The dual function of (P) reads

DP(λ, µ) = min
x∈Rm

≥0×Rn−m
LP(x, (λ, µ)) = min

x∈Rm
≥0×Rn−m

LD((µ, λ), x) = PD((µ, λ)),

where PD is the summarized objective of (D).
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2.2.1 Convex Optimization Theory

This section summarizes the elements of convex analysis [10] which are important for this work.
We say that a function f : Ω → R is convex on a domain Ω ⊆ Rn if, for arbitrary 0 ≤ α ≤ 1
and x1, x2 ∈ Ω, we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

We call f∗ : Ω∗ → R the convex conjugate or Legendre-Fenchel transformation of f , where

f∗(y)
.
= sup

x∈Ω
⟨x, y⟩ − f(x) and Ω∗ = {y ∈ Rn | f∗(y) < ∞}.

Remark 2.2.3. Let f : Ω → R be a convex and differentiable function on Ω = Rn and f∗ : Ω∗ → R
its conjugate. Assume that f ′ is invertible.
By setting the derivative to zero,

0
!
= ∂

�
⟨x, y⟩ − f(x)

!
= y − ∂f(x), we get f∗(y) = (⟨x, y⟩ − f(x))

/////
x=(∂f)−1(y)

.

■
Example 2.2.4. Consider a symmetric positive definite matrix A ∈ Rn×n, a vector b ∈ R and a
constant c ∈ R. Then

f :

�
R → R
x !→ 1

2x
⊤Ax+ b⊤x+ c

has conjugate f∗ :

�
R → R
y !→ 1

2(y − b)⊤A−1(y − b)− c.

We use Remark 2.2.3 and calculate

∇f(x) = Ax+ b, so (∂f)−1(y) = A−1(y − b)

and

f∗(y) = (A−1(y − b))⊤y − 1

2
(A−1(y − b))⊤A(A−1(y − b))− b⊤(A−1(y − b))− c.

■
Example 2.2.5. Let p and q be Hölder conjugates, i.e., p, q > 1 and 1/p+ 1/q = 1. Then

f :

�
R → R
x !→ 1

p |x|p
has conjugate f∗ :

�
R → R
y !→ 1

q |y|q.

Recall that Young’s inequality for products reads

xy ≤ 1

p
|x|p + 1

q
|y|q,

where equality holds iff |x|p = |y|q. From this, it immediately follows that

sup
x∈R

xy − 1

p
|x|p = 1

q
|y|q.
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Furthermore,

f :

�
Rn → R
x !→ 1

p∥x∥pp
has conjugate f∗ :

�
Rn → R
y !→ 1

q∥y∥qq.
Using Hölder’s and Young’s inequality, we calculate

sup
x∈Rn

⟨x, y⟩ − 1

p
∥x∥pp ≤ sup

x∈Rn
∥x∥p∥y∥q − 1

p
∥x∥pp = sup

ξ∈R
ξ∥y∥q − 1

p
|ξ|p = 1

q
∥y∥qq.

The inequality becomes an equality for linear independent |x|p and |y|q and ∥x∥pp = ∥y∥qq and
the last equality follows from the above.

■
Another useful insight is that building convex conjugates is additive, as stated in Lemma

2.2.6.

Lemma 2.2.6. Let f : A → R and g : B → R be convex functions. Then

h :

�
A×B → R
x !→ f(x1) + g(x2)

has conjugate h∗ :

�
A∗ ×B∗ → R
x !→ f∗(x1) + g∗(x2).

Proof. Let us firstly prove that (A×B)∗ = A∗ ×B∗. For all x1 ∈ A and x2 ∈ B we have

max{f∗(x1), g∗(x2)} < ∞ ⇐⇒ h∗(x) < ∞.

Secondly, we calculate

h∗(y) = sup
x∈A×B

⟨x, y⟩ − h(x) = sup
x1∈A
x2∈B

⟨x1, y1⟩+ ⟨x2, y2⟩ − f(x1)− f(x2) = f∗(y1) + g∗(y2).

Example 2.2.7. Consider the sets A ⊆ Rn and B ⊆ Rm. By Lemma 2.2.6,

f :

��
Rnm → R
x !→ δA×B(x)

= δA(x1) + δB(x2)

has conjugate f∗ :

��
Rnm → R
y !→ δ∗A×B(y)

= δ∗A(y1) + δ∗B(y2).

Now, fix a domain Ω ⊆ Rn and a ∈ Ω. Then

f :

�
Ω → R
x !→ δ{a}(x)

has conjugate f∗ :

�
Ω → R
y !→ ⟨a, y⟩,

since

{⟨x, y⟩ − f(x) | x = a} = {⟨x, y⟩},
and {⟨x, y⟩ − f(x) | x ̸= a} = {−∞}.

In particular, for a = 0, we get that

f :

�
Ω → R
x !→ δ{0}(x)

has conjugate f∗ :

�
Ω → R
y !→ 0 = δΩ(y).

8



Finally,

f :

�
Rn → R
x !→ δRn

≥0
(x)

has conjugate f∗ :

�
Rn → R
y !→ δRn

≤0
(y),

since we can use the first identity and case n = 1, which follows from

{xy − f(x) | x ∈ R≥0} = {xy | x ∈ R≥0} =

��
R≥0, if y > 0,

R≤0, if y < 0,

{0}, else.

and {xy − f(x) | x ∈ R<0} = {−∞}.
■

Example 2.2.8. Let f : Rn → R be a convex function, a ∈ Rn and b > 0. Then

g :

�
Rnm → R
x !→ ⟨a, x⟩+ bf(x)

has conjugate g∗ :

�
Rnm → R
y !→ bf∗

�y−a
b

#
,

since

g∗(y) = sup
x∈Rn

⟨x, y⟩ − g(x) = sup
x∈Rn

⟨x, y − a⟩ − bf(x)

= b
�
sup
x∈Rn

⟨x, (y − a)/b⟩ − f(x)
!
= bf∗

�
y − a

b

$
.

■
Since the supremum is taken over a family of functions affine in y, the convex conjugate is

convex. Another useful property is that it can be specified in a differential equation, up to an
additive constant.

Lemma 2.2.9. Let f : Ω → R be a convex and differentiable function on Ω = R and f∗ : Ω∗ → R
its conjugate. Assume that f ′ is invertible and its inverse (f ′)−1 is differentiable. Then

f ′
∗ = (f ′)−1.

Proof. Let xy be a critical point of the function x !→ xy−f(x). Since f is convex, the supremum
is achieved at g(y)

.
= (f ′)−1(y) = xy. Therefore, we get

f∗(y) = xyy − f(xy) = g(y)y − f(g(y)).

Differentiating with respect to y leaves us with

f ′
∗(y) = g′(y)y + g(y)− f ′(g(y))g′(y)

= g′(y)y + g(y)− yg′(y)

= (f ′)−1(y).

If there exists x ∈ Ω such that f(x) < ∞ and f(x) > −∞ for all x ∈ Ω, then f is a proper
function. When {x ∈ Ω | f(x) > α} ≠ ∅ for any α ∈ R, then f is said to be lower semi-
continuous. In case a function fulfills all of these conditions, we can apply the Fenchel–Moreau
Theorem 2.2.10. It implies that all the examples we have seen so far can be reversed.
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Theorem 2.2.10 (Fenchel–Moreau). Consider a function f : Ω → R on a domain Ω ⊆ Rn. If
f ≡ ±∞ or f is proper, lower semi-continuous and convex, then f = f∗∗, i.e., for any x ∈ Ω,
we have

f(x) = max
y∈Ω∗

⟨x, y⟩ − f∗(y) = f∗∗(x).

f-Divergence

Here, we review some material from Nachum and Dai [32].
Let p and q be probability distributions with p ≪ q. A common way of characterizing their

deviation is using the Kullbach-Leibler (KL) divergence

DKL(p ∥ q)
.
= Ep

�
log

p

q

�
.

We will call a convex function f : R≥0 → R divergence conform iff

∀t > 0 : f(t) < ∞, f(0) = lim
t↓0

f(t) and f(1) = 0.

Using such a function, we can generalize the KL divergence and define the f -divergence as

Df (p ∥ q)
.
= Eq

�
f

�
p

q

$�
.

We get back the KL divergence by choosing f(x) = x log x, because then

Df (p ∥ q) = Eq

�
p

q
log

p

q

�
= Ep

�
log

p

q

�
= DKL(p ∥ q).

Another prominent member of the group of f -divergences is the χ2-divergence Dχ2 , where
f(x) = (x− 1)2, so

Dχ2(p ∥ q)
.
= Eq

��
p

q
− 1

$2
�
.

Applying Jensen’s inequality to f , we get that the f -divergence is non-negative,

Df (p ∥ q) ≥ f

�
Eq

�
p

q

�$
= f(Ep[1]) = f(1) = 0.

Later on, we are going to need some other properties of the f -divergence as a function in the
first argument. We summarize them in Lemma 2.2.11.

Lemma 2.2.11. Let f be divergence conform and fix a distribution q. Consider the f-divergence
Df (· ∥ q) as a function on

Ω
.
= {x : R → R | 0 ≤ x ≪ q}.

This function is convex with conjugate

D∗
f (y ∥ q) = Eq[f∗ ◦ y].

10



Proof. Consider x, y ∈ Ω and 0 ≤ α ≤ 1. Since f is convex, we can use the monotonicity of the
expected value and get

Df (αx+ (1− α)y ∥ q) = Ez∼q

�
f

�
α
x(z)

q(z)
+ (1− α)

y(z)

q(z)

$�
≤ Ez∼q

�
αf

�
x(z)

q(z)

$
+ (1− α)f

�
y(z)

q(z)

$�
= αDf (x ∥ q) + (1− α)Df (y ∥ q).

The convex conjugate can be calculated as

D∗
f (y ∥ q) = sup

x∈Ω
⟨x, y⟩ −Df (x ∥ q)

= sup
x∈Ω

Ez∼q

�
x(z)y(z)

q(z)

�
− Ez∼q

�
f

�
x(z)

q(z)

$�
= Ez∼q

�
sup

0≤x≪q(z)

x

q(z)
y(z)− f

�
x

q(z)

$�

= Ez∼q

�
sup
ξ≥0

ξy(z)− f(ξ)

�
= Ez∼q[f∗(y(z))].

Example 2.2.12. Assume the χ2-divergence Dχ2( ∥ p) to be a function on Ω, just like in Lemma
2.2.11, then

D∗
χ2(y ∥ p) = Ez∼p

�
y(z) +

y(z)2

4

�
.

We calculate the convex conjugate of f(x) = (x − 1)2. Build the derivative and its inverse
respectively,

f ′(x) = 2(x− 1) and (f ′)−1(y) =
y

2
+ 1.

Now, use Lemma 2.2.9 to get

f∗(y) =
�y
2
+ 1

!
y −

�y
2
+ 1− 1

!2
=

y2

2
+ y − y2

4
= y +

y2

4
.

■
Example 2.2.13. Consider the KL divergence DKL( ∥ q), but only as a function on probability
measures absolutely continuous with respect to q, i.e., Ω = Δq, then

D∗
KL(y ∥ q) = logEq[exp y].

Suppose, the domain of our probability measures is finite. Then, similar to 2.2, we can take

Δq =

�
x ∈ Rn

///// 0 ≤ x ≪ q,

n,
i=1

xi = 1

�
.

11



Since this simplex is compact, the supremum in the definition of the convex conjugate is obtained
at some x ∈ Δq, i.e.,

D∗
KL(y ∥ q) = sup

ξ∈Ω
⟨ξ, y⟩ −DKL(ξ ∥ q) =

n,
i=1

xi

�
yi − log

xi
qi

$
.

To find x, we consider the Lagrangian

L(x, λ)
.
=

n,
i=1

xi

�
yi − log

xi
qi

$
+ λ

�
n,

i=1

xi − 1

"
.

We set its partial derivatives to zero,

0
!
=

∂

∂xi
L(x, λ) =

�
yi − log

xi
qi

$
− xi

�
1

xi/qi

1

qi

$
+ λ = yi − log

xi
qi

− 1 + λ.

This yields

log
xi
qi

= yi − 1 + λ and xi = qie
yi−1+λ.

Notice, since eyi−1+λ > 0, we have 0 ≤ x ≪ q. Furthermore, we must choose λ, such that

1 =
n,

i=1

xi =
n,

i=1

qie
yi/e1−λ and 1− λ = log

n,
i=1

qie
yi .

Finally, substituting log xi
qi
, we get

D∗
KL(y ∥ q) =

n,
i=1

xi(yi − (yi − 1 + λ)) = (1− λ)

n,
i=1

xi

= log

n,
i=1

qie
yi = logEz∼q[exp y(z)].

■
Lastly, we will define the ϵ-ball for some ϵ > 0 around some probability distribution q ∈ Δ(Ω)

with respect to the f -divergence, as

Bf
ϵ (q)

.
= {p ∈ Δq | Df (p ∥ q) ≤ ϵ} . (2.5)

If we chose q
.
= p̂n, the empirical distribution from (2.3), we can write the f -divergence as

Df (p ∥ p̂n) =

n,
i=1

f

�
pi
1/n

$
1

n
=

1

n

n,
i=1

f(npi). (2.6)

Fenchel Optimization

Consider functions f : X → R and g : Y → R as well as a linear map A : X → Y . Define the
Fenchel optimization problems

min
x∈X

JP(x)
.
= f(x) + g(Ax), max

y∈Y
JD(y)

.
= −f∗(−A∗y)− g∗(y).

12



Not only does Weak Duality hold, under mild conditions, we even get Strong Duality,

min
x∈X

JP(x) ≥ max
y∈Y

JD(y), (2.7)

min
x∈X

JP(x) = max
y∈Y

JD(y). (2.8)

One can also show that if f ′∗ is well-defined, by using the optimal solution y∗ of the dual, we
can get the optimal solution of the primal through x∗ = f ′∗(−A∗y∗). More generally, the set of
all primal solutions is ∂f∗(−A∗y∗) ∩A−1∂g∗(y∗).

We can explain why the first one of these problems is primal and the second one is dual by
defining a Lagrangian

L(x, y)
.
= f(x) + ⟨Ax, y⟩ − g∗(y).

This results in

sup
y∈Ω∗

L(x, y) = sup
y∈Ω∗

f(x) + ⟨Ax, y⟩ − g∗(y) inf
x∈Ω

L(x, y) = inf
x∈Ω

f(x) + ⟨Ax, y⟩ − g∗(y)

= f(x) + sup
y∈Ω∗

⟨y,Ax⟩ − g∗(y) = − sup
x∈Ω

⟨x,−A∗y⟩ − f(x)− g∗(y)

= f(x) + g(Ax), = −f∗(−A∗y)− g∗(y).

Therefore, Strong Duality (2.8) leads to Lagrange Duality

inf
x∈Ω

sup
y∈Ω∗

L(x, y) = sup
y∈Ω∗

inf
x∈Ω

L(x, y). (2.9)

2.2.2 Linear Optimization Theory

Consider the optimization problem, also called Linear Programm (LP),

min f(x) = ⟨c, x⟩

s.t. b≤ℓ −A≤ℓx = g(x) = 0,

b>ℓ −A>ℓx = h(x) ≤ 0,

x1, . . . , xm ≥ 0,

x ∈ Rm
≥0 × Rn−m, y = (λ, µ) ∈ Rℓ × Rk−ℓ

≥0 ,

A ∈ Rk×n, b ∈ Rk, c ∈ Rn.

The Lagrangian for this optimization problem reads

L(x, y) = c⊤x+ y⊤(b−Ax) = b⊤y + x⊤(c−A⊤y),

and hence, the dual function

D(y) = min
x∈Rm

≥0×Rn−m
L(x, y) =

��b⊤y, if
(c−A⊤y)≤m ≥ 0,

(c−A⊤y)>m = 0,

−∞, else.
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Optimizing the dual function leads to the dual optimization problem

max f̃(y) = ⟨b, y⟩

s.t. (A⊤)>my − c>m = g̃(y) = 0,

(A⊤)≤my − c≤m = h̃(y) ≤ 0,

yℓ+1, . . . , yk ≥ 0.

We now want to apply Strong Duality (2.8) from Convex Optimization to Linear Optimiza-
tion. To this end, we reformulate our primal LP as a Fenchel program with

f(x) = ⟨c, x⟩+ δRm
≥0×Rk−m(x) and g(x) = δ{b≤m}×[b>m,∞)(x).

Building conjugates via Example 2.2.8 and 2.2.7 and Lemma 2.2.6, we get

f∗(y) = δ∗Rm
≥0×Rk−m(y − c) g∗(y) = δ∗{b≤m}(y≤m) + δ∗[b>m,∞)(y>m)

= δ∗Rm
≥0
(y≤m − c≤m) + δ∗Rk−m(y>m − c>m) = ⟨b≤m, y≤m⟩+ ⟨b>m, y>m⟩

= δRm
≤0
(y≤m − c≤m) + δ{0}(y>m − c>m) + δRm(y≤m) + δRk−m

≤0
(y>m)

= δRm
≤0×{0}(y − c), = ⟨b, y⟩+ δRm×Rk−m

≤0
(y),

because

δ∗[b>m,∞)(y>m) =
�
δRk−m

≥0
(y>m − b>m)

!
∗
=

�
δ∗Rk−m

≤0

(y>m − b>m)

$
∗
= ⟨b>m, y>m⟩+ δRk−m

≤0
(y>m).

If we now make the switch y → −y, we get that the dual Fenchel optimization problem is a
reformulation of our dual LP.

2.3 Reproducing Kernel Hilbert Spaces

The well known reproducing kernel Hilbert spaces (RKHS) provide a theoretical framework to
characterize neural networks [4, 5]. Since in RL algorithms we often assume that our function
classes are instances of neural networks, we can use RKHS in their theoretical analysis.
Another use case of RKHS involves the construction of a metric, the maximum mean discrep-

ancy (MMD), to distinguish between probability distributions [29]. Mousavi et al. [28] consider
parameterizations of the stationary distribution correction dπ and its application to the back-
wards Bellman oprator Pπ∗ , whose support is a subset of the dataset D. In this way, the can
find explicit equations for the MMD between these parameterizations and minimize them, thus
approximating the solution to the backwards Bellman equations (3.9). Since the focus of this
work is on DICE, we do not pursue this approach.

Let H be a Hilbert space over F with scalar product ⟨·, ·⟩H. Denote the algebraic and continuous
dual space of H, respectively, by

H∗ .
= {T : H → F | T linear} and H′ .

= {T ∈ H∗ | ∥T∥H∗ < ∞},
where ∥T∥H∗

.
= sup

f∈H\{0}

|Tf |
∥f∥H for T ∈ H∗.
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Now, let X be a set and consider the set of functions H ⊆ FX . Define the evaluation functionals

Ex :

�
H → F
f !→ f(x),

x ∈ X.

If H together with ⟨, ⟩H is a Hilbert space and all evaluation functionals are bounded, we call
H a reproducing kernel Hilbert space (RKHS) on X.

For every x ∈ X, the evaluation functional Ex is linear and bounded, hence they are all
continuous. Therefore, by Riesz’ representation theorem,

∃!kx ∈ H : ∀f ∈ H : Ex(f) = ⟨f, kx⟩H, ∥kx∥H = ∥Ex∥H∗ .

From this, we can construct the reproducing kernel for H,

k :

�
X ×X → F
(x, y) !→ ky(x).

By the Cauchy-Schwarz inequality, we have

|f(x)| = |⟨f, k(·, x)⟩H| ≤ ∥f∥H∥k(·, x)∥H. (2.10)

We say that the kernel function k is bounded by K < ∞ iff

sup
x∈X

∥k(·, x)∥H ≤ K.

We now want to list some important properties of RKHS with Propositions 2.3.1, 2.3.3, 2.3.4
and Theorem 2.3.5. The proofs can be found in any textbook on RKHS [29, 2, 6].

Proposition 2.3.1. Let H be an RKHS on the set X with kernel k. Then (kx)x∈X spans a
dense sub space of H, i.e.

span{k(·, x)}x∈X = H.

Remark 2.3.2. We can rewrite the kernel with the scalar product, yielding

k(x, y) = ky(x) = ⟨ky, kx⟩H = ⟨k(·, y), k(·, x)⟩H. (2.11)

Proposition 2.3.1 implies that we can represent a function f ∈ H as a countable sum

f(x) =

∞,
i=1

uik(x, xi), where (ui)i∈N ⊂ F, (xi)i∈N ⊂ X.

Let (vi)i∈N be the coefficients of another g ∈ H, w.l.o.g. with respect to the same (xi)i∈N. Then
the inner product of f and g can be represented as

⟨f, g⟩H =
∞,

i,j=1

uivj⟨k(·, xi), k(·, xj)⟩ =
∞,

i,j=1

uivjk(xi, xj).

■
Call a function k : X × X → F positive semi-definite, if for every set {x1, . . . , xn} ⊂ X of

n distinct elements, the matrix (k(xi, xj))
n
i,j=1 is positive semi-definite. Proposition 2.3.3 and

2.3.4 and Theorem 2.3.5 describe the relationship between these functions and RKHS.

Proposition 2.3.3. Let H1 and H2 be RKHS on X with kernels k1 and k2, respectively. If
k1 ≡ k2, then H1 = H2 and ∥ · ∥H1 ≡ ∥ · ∥H2.

Proposition 2.3.4. Let H be an RKHS on X with kernel k. Then k is positive semi-definite.

Theorem 2.3.5. Let X be a set and k : X × X → F a positive semi-definite function. Then
there exists an RKHS H on X with k as its reproducing kernel.
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2.4 Matrix Theory

2.4.1 Perron-Frobenius Theorem

Since one may view a Markov Decision Process as a graph, which is traversed according to the
initial state distribution, transition dynamics and policy, we will occasionally require the well
known Perron-Frobenius Theorem 2.4.1.

For a matrix A = (ai,j)
n
i,j=1 ∈ Rn×n, consider the graph G = (V,E), where V = {1, . . . , n}

and (i, j) ∈ E iff ai,j ̸= 0. We call A irreducible iff G is strongly connected, i.e., one can reach
any vertex j ∈ V from any other vertex i ∈ V by just traveling along edges in E in the forwards
direction.

Theorem 2.4.1 (Perron-Frobenius theorem). Let A ∈ Rn×n be irreducible with non-negative
components. Then the spectral radius r of A is a positive eigenvalue of A, the Perron-Frobenius
eigenvalue. It is also simple, i.e., both left- and right-eigenspaces of r are one dimensional.
Additionally, there exist a left-eigenvector v and right-eigenvector w for r whose components
are all non-negative. If A even has positive components, then all eigenvalues λ ̸= r of A have
|λ| < r.

2.4.2 Derivatives

In order to identify stationary points or to apply stochastic gradient (SG) methods, it is neces-
sary to calculate a gradient of some objective function. In order to facilitate the calculation of
multivariate derivatives, we present a series of elementary identities.

Remark 2.4.2. For x, y ∈ Rn, we get partial derivatives

∂

∂xk
⟨x, y⟩ = ∂

∂xk

n,
i=1

xiyi = yk and ∂x⟨x, y⟩ = y⊤.

For A ∈ Rn×m with rows a⊤1 , . . . , a⊤n , we therefore have

∂xAx = ∂x(⟨ai, x⟩)ni=1 = (∂x⟨ai, x⟩)ni=1 = (a⊤i )
n
i=1 = A.

Now, let A ∈ Rn×n and

g : Rn → R2n, g(x)
.
=

�
Ax
x

$
=

�
A
I

$
x and f : R2n → R, f(y1, y2)

.
= ⟨y1, y2⟩.

We further get the derivatives

∂yf(y1, y2) =
�
∂y1⟨y1, y2⟩ ∂y2⟨y1, y2⟩

#
=

�
y⊤2 y⊤1

#
and ∂xg(x) =

�
A
I

$
.

Therefore, according to the chain rule,

∂x⟨Ax, x⟩ = ∂x(f ◦ g)(x) = ∂yf(g(x))∂xg(x)

=
�
x⊤ (Ax)⊤

#�A
I

$
= x⊤A+ x⊤A⊤ = x⊤(A+A⊤)

In particular, if A is symmetric, i.e., A = A⊤, we get

∂x∥x∥2A = ∂x⟨Ax, x⟩ = 2x⊤A.
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This means that for d ∈ Rn,

∂x∥x∥2ℓ2(d) = ∂x⟨diag(d)x, x⟩ = 2x⊤ diag(d) and ∂x∥x∥22 = 2x⊤.

■
Remark 2.4.3. Let a matrix A ∈ Rn×n be positive definite. It is injective, because for any
x ∈ Rn,

Ax = 0 =⇒ x⊤Ax = 0 =⇒ x = 0.

The latter follows from positive definiteness. Since matrices represent linear operators between
finite dimensional vector spaces, A is also invertible.

■
Remark 2.4.4. Consider a matrix A ∈ Rm×n, a vector b ∈ Rm, and a symmetric, positive definite
matrix D ∈ Rm×m. Let A+ be the pseudo-inverse of A. It is commonly known that A+b solves
the

linear fitting problem: min
x∈Rn

∥Ax− b∥22 or equivalently, (2.12)

Gaussian normal equations: A⊤Ax = A⊤b. (2.13)

We assume that the columns of A are linearly independent. Then, A⊤A is positive definite,
hence, by Remark 2.4.3, invertible. The solution to (2.13) and (2.12) becomes unique and

A+ = (A⊤A)−1A⊤.

Now, we pose this minimization problem with respect to the norm ∥·∥D. Building derivatives
according to Remark 2.4.2, we get

∇x
1

2
∥Ax− b∥2D = A⊤D⊤(Ax− b) = A⊤DAx−A⊤Db.

The existence of the inverse of A⊤DA can be argued analogously to before, just by replacing
the norms. Setting the gradient to zero, yields

x = A+
Db, where A+

D
.
= (A⊤DA)−1A⊤D.

We define

P
.
= AA+

D = A(A⊤DA)−1A⊤D.

Now, P is a projection onto the range of A, since for any y = Ax,

Py = A(A⊤DA)−1A⊤DAx = Ax = y.

It is even an orthogonal projection with respect to the scalar product induced by D, since it is
self-adjoint,

⟨x, Py⟩D = ⟨Dx,Py⟩ = ⟨P⊤Dx, y⟩ = ⟨D⊤A(A⊤DA)−⊤A⊤Dx, y⟩ = ⟨DPx, y⟩ = ⟨Px, y⟩D.
Therefore, the Hilbert space projection theorem yields

Pb = argmin
�∥y − b∥2D

// y ∈ ran(A)
�
= argmin

�∥Ax− b∥2D
// x ∈ Rn

�
.

■
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2.4.3 Block Matrices

When applying SG methods on multiple parameterizations simultaneously, we can collect their
parameters in a single vector. Reformulating the objective yields a block matrix. To work with
the determinant and potential inverse of such a block matrix, we list the well known Lemma
2.4.5.

Lemma 2.4.5. Let A,B,C and D be matrices, and consider a block matrix

M =

�
A B
C D

$
.

Define the Schur complements M/A
.
= D − CA−1B and M/D

.
= A−BD−1C. Then

det(M) = det(A) det(M/A) (2.14)

= det(D) det(M/D). (2.15)

In case A and M/A, or D and M/D are invertible, i.e., M is invertible,

M−1 =

�
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

$
(2.16)

=

�
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 +D−1C(M/D)−1BD−1

$
. (2.17)

2.5 ODE Lemma

The ODE Lemma 2.5.7 serves as a powerful tool to prove convergence of SG methods [9].
In this section we will briefly cover some basic concepts from ODE theory to understand

Lemma 2.5.7 better and help apply it.

Let G ⊆ Rn be a simply connected domain and f : G → Rn be Lipschitz continuous. A point
y0 ∈ G is called equilibrium iff f(y0) = 0. Define the set of all equilibrium points

E .
= {y0 ∈ G | f(y0) = 0}.

Denote by yy0 the solution to the autonomous ODE y′(t) = f(y(t)) with y(0) = y0. It is called
asymptotically stable if it is stable and attractive, which means, respectively,

∀ϵ > 0 ∃δ > 0 s.t. ∀ỹ0 ∈ Bδ(y0) : yy0 exists on [0,∞) and ∥yy0(t)− yỹ0(t)∥ < ϵ for all t ≥ 0,

and ∃δ > 0 s.t. ∀ỹ0 ∈ Bδ(y0) : yy0 exists on [0,∞) and ∥yy0(t)− yỹ0(t)∥ t→∞−−−→ 0.

Theorem 2.5.1. Consider the function f(y) = Ay, where A ∈ Rn×n. Then y∗ = 0⃗ is a stable
equilibrium iff all eigenvalues λ of A fulfill ℜ(λ) ≤ 0 and if ℜ(λ) = 0, then λ is semi-simple,
i.e., its algebraic and geometric multiplicity coincide. Also, y∗ = 0⃗ is an asymptotically stable
equilibrium iff all eigenvalues λ of A fulfill ℜ(λ) < 0.

A function L : G → R is called (strict) Ljapunov function for f iff it is continuously differen-
tiable and for every y0, where yy0 is not constant, L ◦ yy0 is (strictly) monotonically decreasing.

Lemma 2.5.2. Consider a continuously differentiable function L : G → R. It is a Ljapunov-
function or even a strict one, respectively, if

∀y ∈ G : ⟨∇L(y), f(y)⟩ ≤ 0 and ∀y ∈ G \ E : ⟨∇L(y), f(y)⟩ < 0.
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Theorem 2.5.3 (Ljapunov’s method). Let L : G → Rn be a Ljapunov function and y∗ an
equilibrium. If y∗ is a strict minimum of V , then y∗ is stable. If y∗ is also isolated in E and V
is a strict Ljapunov function, then y∗ is asymptotically stable.

Consider the iteration

yt+1
.
= yt + αt(h(yt) +Mt+1), where t ∈ N,

for yt ∈ Rn, step sizes αt ∈ (0, 1], random vectors (Mt)t∈R, and the function h : Rn → Rn.

Assumption 2.5.4 (Lipschitz and ODEs). The function h is Lipschitz continuous and there
exists a function h∞ : Rn → Rn such that

lim
r→∞

h(ry)

r
= h∞(y) for all y ∈ Rn.

Furthermore, let the origin 0⃗ ∈ Rn be an asymptotically stable equilibrium for the ODE

y′(t) = h∞(y(t)) for all t ≥ 0

and let y∗ ∈ Rn be the unique globally asymptotically stable equilibrium for the ODE

y′(t) = h(y(t)) and t ≥ 0.

Assumption 2.5.5 (bounded martingale difference sequence). The sequence (Mt)t∈N is a mar-
tingale difference sequence with respect to the filtration Ft

.
= σ(yi,Mi)

t
i=1 and for any initial

condition y0 ∈ R,

E[∥Mt+1∥22 | Ft] = O(∥yt∥22 + 1).

Assumption 2.5.6 (Robbins-Monro). The Robbins-Monro conditions for (αt)t∈N ⊂ R>0 read

∞,
t=1

αt = ∞ and

∞,
t=1

α2
t < ∞. (2.18)

Now, we can finally formulate the ODE Lemma 2.5.7 by Borkar et al. [9].

Theorem 2.5.7 (ODE Lemma). Under Assumptions 2.5.4, 2.5.5 and 2.5.6, for any initial
condition y0 ∈ Rn, we have

yt
t→∞−−−→ y∗ almost surely.

2.6 Extended Delta Method

2.6.1 Hadamard Differentiability

The objective of this section is to present a more abstract notion of differentiability, which
will enable us to apply an extended version of the well-known Delta Method to functionals
T : P(X) ⊂ M(X) → R. The content is based on van der Vaart and Wellner [40].

Let X and Y be normed spaces over R. A function f : Xf ⊆ X → Y is called Hadamard
differentiable at x0 ∈ Xf tangentially to X∂fx0

⊆ X with Hadamard derivative ∂fx0 : X∂fx0
→ Y
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at x0 iff ∂fx0 is continuous and linear and for all x ∈ X∂fx0
and series (tn)n∈N ⊂ R \ {0} and

(xn)n∈N ⊂ X , where

tn
n→∞−−−→ 0, ∥xn − x∥X n→∞−−−→ 0, and x0 + tnxn ∈ Xf ,

we have

f(x0 + tnxn)− f(x0)

tn

n→∞−−−→ ∂fx0(x).

In order to highlight the difference between classically and Hadamard differentiable functions,
we aim to prove Lemmas 2.6.1 and 2.6.2. To this end, for a sub set K ⊆ X∂fx0

, define

rK(t)
.
= sup

	....f(x0 + tx)− f(x0)

t
− ∂fx0(x)

....
Y

//// x ∈ K, x0 + tx ∈ Xf

�
.

Lemma 2.6.1. Hadamard differentiability is equivalent to

∀K ⊂ X∂fx0
compact : rK(t)

t→0−−→ 0. (2.19)

Proof. Firstly, we assume that f is Hadamard differentiable and show (2.19). We show that
(2.19) holds for any (tn)n∈N → 0. For every n ∈ N, consider (xn,m)m∈N, with xn,m ∈ K and
x0 + tnxn,m ∈ Xf , such that....f(x0 + tnxn,m)− f(x0)

tn
− ∂fx0(xn,m)

....
Y

m→∞−−−−→ rK(tn).

Let (ϵn)n∈N ↓ 0 and choose (mn)n∈N, such that

rK(tn) ≤
....f(x0 + tnxn,m)− f(x0)

tn
− ∂fx0(xn,m)

....
Y
+ ϵn for all n ∈ N and m ≥ mn.

Because K is compact, there exists a sub sequence (xn)n∈N of (xn,mn)n∈N ⊂ K, converging
against some x ∈ K ⊂ X∂fx0

. We can now apply the triangle inequality and the continuity of
∂fx0 , to get

rK(tn) ≤
....f(x0 + tnxn)− f(x0)

tn
− ∂fx0(xn)

....
Y
+ ϵn

≤
....f(x0 + tnxn)− f(x0)

tn
− ∂fx0(x)

....
Y
+ ∥∂fx0(xn)− ∂fx0(x)∥Y + ϵn

n→∞−−−→ 0.

Secondly, we assume (2.19) and show Hadamard differentiability. Let K ⊂ X∂fx0
be compact,

such that x ∈ K and xn ∈ K for almost every n ∈ N. Again,....f(x0 + tnxn)− f(x0)

tn
− ∂fx0(x)

....
Y

≤ ∥∂fx0(xn)− ∂fx0(x)∥Y +

....f(x0 + tnxn)− f(x0)

tn
− ∂fx0(xn)

....
Y

≤ ∥∂fx0(xn)− ∂fx0(x)∥Y + rK(tn)
n→∞−−−→ 0.
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Lemma 2.6.2. Frechét differentiability is equivalent to

∀K ⊂ X∂fx0
= X bounded : rK(t)

t→0−−→ 0. (2.20)

Proof. Recall that f is Frechét differentiable in x0 iff

∥f(x0 + x)− f(x0)− ∂fx0(ξ)∥Y = O(∥ξ∥X ), ∥ξ∥X → 0, x0 + ξ ∈ Xf .

This means that for all C > 0 there exists an ϵ > 0, such that for all ξ ∈ Bϵ(0) with x0+ξ ∈ Xf ,
we have

∥f(x0 + ξ)− f(x0)− ∂fx0(ξ)∥X ≤ C∥ξ∥X .
Since we can bound the supremum rK(t) in (2.20) by taking BX

ε (0) ⊇ K with ε = supx∈K ∥x∥X ,
instead ofK, we can assure w.l.o.g. thatK is of such form. It follows that for all boundedK ⊆ X
and δ > 0 there exists a t0 > 0 such that for all t ∈ (0, t0) and x ∈ K with x0 + tx ∈ Xf , we
have ....f(x0 + tx)− f(x0)

t
− ∂fx0(x)

....
X
≤ δ,

which we can see by considering the substitution, w.l.o.g. K ̸= {0},
C = δ/ sup

x∈K
∥x∥X , t0 = ϵ/ sup

x∈K
∥x∥X , and ξ = tx.

The other direction follows by taking the same substitution, but with the unit ball K
.
= BX

1 (0).

Corollary 2.6.3. Every Frechét differentiable function f : Xf ⊆ X → Y is also Hadamard
differentiable tangentially to X∂fx0

= X . The reverse is true if the unit ball BX
1 (0) in X is

compact with respect to the norm topology, i.e., X is finite dimensional.

Proof. We consider the characterizations from Lemmas 2.6.2 and 2.6.1. Since every compact set
K ⊆ X is bounded, the first claim is immediate. If BX

1 (0) is compact and K ⊆ X is bounded,
BX

ε (0) ⊇ K with ε = supx∈K ∥x∥X is compact and we can bound the supremum rK(t) in (2.20)
by using the BX

ε (0) instead of K.

Note that the normed space M(X) is not finite dimensional. By Corollary 2.6.3, the notion
of Frechét differentiability is not powerful enough to support our original endeavor. Thus,
we extend the well known Delta Method for classically differentiable functions, to Hadamard
differentiable functions. For further details, please refer to Vaart and Wellner [40].

Theorem 2.6.4 (Informal Extended Delta Method). Let f : Xf ⊆ X → Y be Hadamard

differentiable at θ tangentially to X∂fx0
. Let (rn)n∈N > 0 be a sequence with rn

n→∞−−−→ ∞. Let
(Xn)n∈N be a sequence of random variables and X a single random variable into Xf and X∂fx0

,
respectively, such that

rn(Xn − θ)
n→∞−−−→ X almost surely.

Then

rn(f(Xn)− f(θ)) =
f(θ + r−1

n rn(Xn − θ))− f(θ)

r−1
n

n→∞−−−→ ∂fθ(X) in distribution.

If ∂fθ is defined and continuous on all of X , then

rn(f(Xn)− f(θ))− ∂fθ(rn(Xn − θ))
n→∞−−−→ 0 in probability.
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2.6.2 Confidence Intervals

In this section, we apply the Extended Delta Method 2.6.4 to obtain some asymptotic confidence
intervals, as described in Theorem 2.6.8. The results are taken from the work of Duchi et al. [14].

Call T (1) : X × P(X) → R an influence function of T iff we have EPD [T (1)(·;PD)] = 0 and

∂TPD(Q− PD) =
�
X
T (1)(x;PD) d(Q− PD)(x) for all Q ∈ M(X).

The law PG of a Borel-measurable random variable G is called tight iff

∀ϵ > 0 : ∃K compact : PG(K) ≥ 1− ϵ.

Recall that, since the samples in D are random variables on X, the empirical measure P̂D is a
random measure. Let H ⊂ L2(P

D) be a class of functions. We say that H is PD-Donsker iff
there exists some tight Borel-measurable G ∈ L∞(H), such that...√n

�
P̂D − PD

!
−G

...
L∞(H)

n→∞−−−→ 0 in probability.

We say that H has an L2-integrable envelope C : X → R≥0 iff

C ∈ L2(P
D) and ∀ℓ ∈ H : ℓ ≤ C almost surely.

Lemma 2.6.5. Let H .
= {ℓ(·; θ)}θ∈Fθ

be a set of functions, Cℓ-Lipschitz continuous in θ, with
Cℓ ∈ L2(P

D) and compact Fθ. Then H is PD-Donsker with L2-integrable envelope.

Assumption 2.6.6 (Smoothness of f -divergence). The function f : R≥0 → R∪{∞} divergence
conform, i.e.,

∀t > 0 : f(t) < ∞, f(0) = lim
t↓0

f(t) and f(1) = 0.

It is also three times differentiable in a neighborhood of 1 as well as

f ′(1) = 0 and f ′′(1) = 2.

Remark 2.6.7. Notice that Assumption 2.6.6 restricts the set of f -divergences we can use
severely. By differentiating x log x twice, one can easily see that the KL divergence does not
meet the requirements imposed by Assumption 2.6.6,

d

dx

�
x log x

#
= log x+ x

1

x
= log x+ 1 and

d2

dx2
�
x log x

#
=

1

x
. (2.21)

Nonetheless, by starting with an arbitrary f : R≥0 → R ∪ {∞}, which is divergence conform
and three times differentiable in a neighborhood of 1, we can enforce the missing conditions by
instead taking

2

f ′′(1)
�
f(x)− f ′(1)(x− 1)

#
. (2.22)

For the KL divergence, the modified version would then be based on

f(x)
.
= 2x log x− 2(x− 1). (2.23)

■
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Theorem 2.6.8 (General Asymptotic Coverage). Let Assumption 2.6.6 hold for f . Let H be a
PD-Donsker class of functions with L2-integrable envelope. Let the limit G of

√
n(P̂D−PD) take

values inside B(H, PD) ⊂ M(X;H). Assume that T : P(X) → R is Hadamard differentiable at
PD tangentially to B(H, PD) with influence function T (1)(·;PD) and ∂TPD is continuous and
defined on the whole of M(X;H). If 0 < VarPD [T (1)(·;PD)] < ∞, then

lim
n→∞P

�
T (PD) ∈

�
T (P )

/// P ∈ Bf
ξ/n(P̂

D)
!

= P(χ2
1 ≤ ξ).

Proof sketch. We want to apply the extended delta method from Theorem 2.6.4 to

f = T, rn =
√
n, Xn = P̂D, θ = PD and X = G.

We can rewrite

T (P̂D) = T (PD) + EP̂D [T
(1)(·;PD)] + κ(P̂D),

where κ(P )
.
= T (P )− T (PD)− EP [T

(1)(·;PD)].

Because

∂TPD(P̂D − PD) =
�
X
T (1)(x;PD) d(P̂D − PD)(x) = EP̂D [T

(1)(·;PD)]− EPD [T (1)(·;PD)]� �� �
0

,

we can apply the Extended Delta-Method from Theorem 2.6.4 and get

√
nκ(P̂D) =

√
n
�
T (P̂D)− T (PD)− EP̂D [T

(1)(·;PD)]
!

=
√
n
�
T (P̂D)− T (PD)− ∂TPD(

√
n(P̂D − PD)

!
n→∞−−−→ 0 in probability.

By [14, Lemma 16], this convergence even holds uniformly over Bf
ξ/n(P̂

D), i.e.,

∀ϵ > 0 : lim sup
n→∞

P
�√

n sup
�
|κ(P )|

/// P ∈ Bf
ξ/n(P̂

D)

≥ ϵ

!
= 0.

By definition of κ,

sup
P∈Bf

ξ/n
(P̂D)

(T (P )− T (PD)) ≤ sup
P∈Bf

ξ/n
(P̂D)

κ(P ) + sup
P∈Bf

ξ/n
(P̂D)

EP [T
(1)(·;PD)],

sup
P∈Bf

ξ/n
(P̂D)

EP [T
(1)(·;PD)] ≤ sup

P∈Bf
ξ/n

(P̂D)

(−κ(P )) + sup
P∈Bf

ξ/n
(P̂D)

(T (P )− T (PD)).

Applying uniform convergence, we obtain//////√n sup
P∈Bf

ξ/n
(P̂D)

�
T (P )− T (PD)

#−√
n sup

P∈Bf
ξ/n

(P̂D)

EP [T
(1)(·;PD)]

//////
≤ √

n sup
P∈Bf

ξ/n
(P̂D)

|κ(P )| n→∞−−−→ 0 in probability.

By [14, Theorem 9],

√
n sup

P∈Bf
ξ/n

(P̂D)

EP [T
(1)(·;PD)]−

�√
nEP̂D [T

(1)(·;PD)] +
)
ξVarP̂D [T (1)(·;PD)]

$
n→∞−−−→ 0 in probability.
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By the Central Limit Theorem,

√
n
�
EP̂D [T

(1)(·;PD)]− EPD [T (1)(·;PD)]� �� �
0

# n→∞−−−→ N
�
0,VarPD [T (1)(·;PD)]

!
.

The sample variance is a consistent estimator, i.e.,

VarP̂D [T
(1)(·;PD)] n→∞−−−→ VarPD [T (1)(·;PD)].

Putting it all together yields

P
�
T (PD) ≤ sup

P∈Bf
ξ/n

(P̂D)

T (P )

$
= P

�
0 ≤ √

n sup
P∈Bf

ξ/n
(P̂D)

�
T (P )− T (PD)

#$
n→∞−−−→ P

�
0 ≤

)
ξVarPD [T (1)(·;PD)] +N

�
0,VarPD [T (1)(·;PD)]

!$
= P

�
−
*

ξ ≤ N(0, 1)
!
.

By a symmetric argument on −T (PD), we get

P
�

inf
P∈Bf

ξ/n
(P̂D)

T (P ) ≤ T (PD)
$

n→∞−−−→ P
�
N(0, 1) ≤

*
ξ
!
.
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3 Reinforcement Learning

3.1 General

For a set X, let Δ(X) be the set of probability distributions on X. We consider a Markov
Decision Process (MDP) (S,A,R, T, d0, γ).

• S and A are the set of states and actions, respectively.

• R : S × A × S → Δ(R) is the reward function that assigns a state-action pair a reward
distribution, but we are often going to treat R(s, a, s′) as a random variable and write
r(s, a)

.
= Es′∼T (s,a)[R(s, a, s′)]. We assume that the reward function is bounded almost

surely.

• The transition probability distributions are given via T : S × A → Δ(S) and we write
T (s′ | s, a) for the probability of transitioning into state s′ ∈ S when choosing action
a ∈ A in state s ∈ S.

• The initial state distribution is d0 ∈ Δ(S).

• The discount factor γ ∈ (0, 1], that is, we allow for our MDP to be discounted or even
undiscounted in certain cases.

For the sake of brevity, when we want to make claims for the state-space S and state-action-
space S×A at the same time, we simply use Ω = S or Ω = S×A. In case the state-action-space
S ×A is finite, we fix some global enumeration. We write the column vector

f⃗
.
= (f(s, a))(s,a)∈S×A for f : S ×A → R.

Also, for any operator A on these functions, we write A⃗ for the operator on these column vectors.
In particular, this means that ifA is linear, A⃗ will be a matrix. Define the multiplication operator

Dw
.
= dw for w : S ×A → R, where d : S ×A → R.

Any sub or super scripts that d may have will get carried over to D. Note, that for a finite
state-action-space S ×A, the matrix version of the operator D will be a diagonal matrix

D⃗ = diag(d⃗).

For convenience, we define

dπ0 (s0, a0)
.
= π(a0 | s0)d0(s0) and T π(s′, a′ | s, a) .

= π(a′ | s′)T (s′ | s, a) for

(s0, a0) ∈ S ×A and (s, a), (s′, a′) ∈ S ×A.

Assumption 3.1.1 (MDP ergodicity). A finite MDP is said to be ergodic if for any policy,
starting from any state, it is possible to reach any other state (including itself) within a finite
number of steps with non-zero probability.
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The policy value (PV) ρπ of π is defined as

ρπ
.
= lim

H→∞
1-H

t=0 γ
t
E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

�
H,
t=0

γtR(st, at)

�
.

In the discounted case, the policy value ρπ reduces to

ρπ,γ
.
= (1− γ)E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

� ∞,
t=0

γtr(st, at)

�
,

where as the undiscounted case yields

ρπ,1
.
= lim

H→∞
E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

�
1

H

H−1,
t=0

r(st, at)

�
= lim

H→∞
E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)[r(sH , aH)].

The (state) value function and (state) action value function of π are denoted V π and Qπ,
respectively. In the discounted case, the state- and action-value functions of π are

V π,γ(s)
.
= Eat∼π(st), st+1∼T (st,at)

� ∞,
t=0

γtr(st, at)

///// s0 = s

�
,

Qπ,γ(s, a)
.
= E(st+1,at+1)∼Tπ(st,at)

� ∞,
t=0

γtr(st, at)

///// s0 = s,
a0 = a

�
,

in the undiscounted case, however,

V π,1(s)
.
= E at∼π(st),

st+1∼T (st,at)

� ∞,
t=0

(r(st, at)− ρπ)

///// s0 = s

�
,

Qπ,1(s, a)
.
= E(st+1,at+1)∼Tπ(st,at)

� ∞,
t=0

(r(st, at)− ρπ)

///// s0 = s,
a0 = a

�
.

The stationary distribution dπ of π is defined as

dπ(s, a)
.
= lim

H→∞
1-H

t=0 γ
t
E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

�
H,
t=0

γt st=s, at=a

�

dπ(s)
.
= lim

H→∞
1-H

t=0 γ
t
E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

�
H,
t=0

γt st=s

�

In the discounted case, the stationary distribution dπ of π reduces to

dπ,γ(s, a) = (1− γ)E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

� ∞,
t=0

γt st=s, at=a

�
,

dπ,γ(s) = (1− γ)E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

� ∞,
t=0

γt st=s

�
,
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where as the undiscounted case yields

dπ,1(s, a) = lim
H→∞

E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

�
1

H

H−1,
t=0

st=s, at=a

�
= lim

H→∞
P(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)(sH = s, aH = a),

dπ,1(s) = lim
H→∞

E(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)

�
1

H

H−1,
t=0

st=s

�
= lim

H→∞
P(s0,a0)∼dπ0 , (st+1,at+1)∼Tπ(st,at)(sH = s).

For simplicity, we abbreviate the statements

(s0 = s, a0 = a)t : ⇐⇒ s0 = s, a0 = a, (st, at) ∼ T π(st−1, at−1),
(s0 = s)t : ⇐⇒ s0 = s, a0 ∼ π(s0), (st, at) ∼ T π(st−1, at−1),

(∗)πt : ⇐⇒ s0 ∼ d0, a0 ∼ π(s0), (st, at) ∼ T π(st−1, at−1),
(∗)t : ⇐⇒ s0 ∼ d0, a0 ∼ π(s0), st ∼ T (st−1, at−1),

and everywhere ∀τ = 1, . . . , t : (sτ , aτ ) ∼ T π(sτ−1, aτ−1).

Now, we define the expected reward and occupancy at some time t ∈ N as

rπt (s, a)
.
= E(s0=s, a0=a)t [r(st, at)], dπt (s, a)

.
= P(∗)πt (st = s, at = a),

rπt (s)
.
= E(s0=s)t [r(st, at)], dπt (s)

.
= P(∗)t(st = s).

Notice that

rπ0 (s, a) = r(s, a), dπ0 (s, a) = d0(s)π(a | s),
rπ0 (s) = Ea∼π(s)[r(s, a)], dπ0 (s) = d0(s).

We can also recover the functions Qπ and V π,

Qπ(s, a) =

∞,
t=0

γtrπt (s, a) and V π(s) =

∞,
t=0

γtrπt (s), (3.1)

as well as the stationary distribution

dπ = lim
H→∞

H,
t=0

γtdπt

+ H,
t=0

γt. (3.2)

The discounted and undiscounted setting, respectively, yield

dπ,γ = (1− γ)

∞,
t=0

γtdπt , dπ,1 = lim
H→∞

1

H

H−1,
t=0

dπt = lim
H→∞

dπH .

For the sake of brevity, when we want to make claims for Qπ and V π at the same time, we
simply use fπ = Qπ or fπ = V π. This also applies to using none or other sub and super scripts.
Also notice that we overload rπt , d

π
t and dπ as functions on states as well as state-action pairs.

In case statements are meant for both cases, we will omit the arguments.
Lemma 3.1.2 tells us something about the connection of the stationary distribution on the

state- and state-action-space.
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Lemma 3.1.2. For any s ∈ S and a ∈ A, we have

rπt (s) = Ea∼π(s)[r
π
t (s, a)] and V π(s) = Ea∼π(s)[Q

π(s, a)],

as well as, for any s′ ∈ S and a′ ∈ A,

dπt (s
′) =

�
A
dπt (s

′, a′) da′, dπt (s
′, a′) = dπt (s

′)π(a′ | s′)

and dπ(s′) =
�
A
dπ(s′, a′) da′, dπ(s′, a′) = dπ(s′)π(a′ | s′).

Proof. All the equations, except the last two, follow directly from the definitions. For the last
two equations, we can use the ones before and (3.2).

The functions Qπ, V π and dπ are useful for policy evaluation, because they allow us to
describe the policy value ρπ in a simpler manner, as given in Lemma 3.1.3.

Lemma 3.1.3. For 0 < γ < 1, we have

ρπ = (1− γ)E(s0,a0)∼dπ0
[Q(s0, a0)] = (1− γ)Es0∼dπ0

[V (s0)]. (3.3)

For 0 < γ ≤ 1, we have

ρπ = E(s,a)∼dπ [r(s, a)]. (3.4)

Proof. The first equations follow directly from the definition and Lemma 3.1.2. For the last
equation, we apply the theorem of total expectation and get

ρπ = lim
H→∞

E(∗)H

�
H,
t=0

γtr(st, at)

+ H,
t=0

γt

�

= lim
H→∞

H,
t=0

γtE(∗)t [r(st, at)]
+ H,

t=0

γt

= lim
H→∞

H,
t=0

γt
,
s∈S

,
a∈A

r(s, a)P(∗)t(st = s, at = a)

+ H,
t=0

γt

=
,
s∈S

,
a∈A

r(s, a) lim
H→∞

H,
t=0

γtdπt (s, a)

+ H,
t=0

γt

=
,
s∈S

,
a∈A

r(s, a)dπ(s, a)

= E(s,a)∼dπ [r(s, a)].

We can also give a more high level proof of Lemma 3.1.3. It does not use any explicit definition
of Qπ or dπ. Instead, we can simply treat them as solutions to the Bellman equations (3.5) or
(3.7) and (3.9), respectively.
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Alternative proof of Lemma 3.1.3. We multiply the backwards Bellman equations (3.9) with Qπ

and use the fact from Lemma 3.2.3 that Pπ∗ is the adjoint operator of Pπ,

⟨Qπ, dπ⟩ = ⟨Qπ, (1− γ)dπ0 + γPπ
∗ d

π⟩ = (1− γ)⟨Qπ, dπ0 ⟩+ γ⟨PπQπ, dπ⟩.
We subtract the last summand, and apply the forwards Bellman equations (3.5) or (3.7),

ρπ = (1− γ)⟨Qπ, dπ0 ⟩+ ρπ γ=1

= ⟨Qπ − γPπQπ, dπ⟩+ ⟨ρπ γ=1, d
π⟩

= ⟨BπQπ + ρπ γ=1 − γPπQπ, dπ⟩ = ⟨r, dπ⟩.

3.2 Bellman Operators and Equations

For functions Q, d : S ×A → R, we define the expected Bellman operator and its adjoint as

PπQ(s, a)
.
=

�
S×A

Q(s′, a′)T π(s′, a′ | s, a) ds′ da′

= E(s′,a′)∼Tπ(s,a)[Q(s′, a′)], where (s, a) ∈ S ×A,

Pπ
∗ d(s

′, a′) .
=

�
S×A

d(s, a)T π(s′, a′ | s, a) ds da, where (s′, a′) ∈ S ×A.

We can also make these definitions for V, d : S → R,

PπV (s)
.
=

�
A

�
S
V (s′)T (s′ | s, a) ds′π(a | s) da

= Ea∼π(s), s′∼T (s,a)[V (s′)], where s ∈ S,

Pπ
∗ d(s

′) .
=

�
A

�
S
d(s)π(a | s)T (s′ | s, a) ds da, where s′ ∈ S.

Also, define the operators

A
.
= I − γPπ

∗ and A∗
.
= I − γPπ.

Note, that Pπ is a linear operator on C(Ω). In case the state-action-space S × A is finite, we
write

P⃗π .
= (T π(s′, a′ | s, a))(s,a),(s′,a′)∈S×A and P⃗π

∗
.
= (P⃗π)⊤.

It turns out that some of the properties of V π, Qπ and dπ get preserved when applying Pπ

and Pπ∗ , respectively. We state them collectively in the following Lemma 3.2.1.

Lemma 3.2.1. For any s ∈ S and a ∈ A, we have

Pπrπt (s) = Ea∼π(s)[Pπrπt (s, a)] and PπV π(s) = Ea∼π(s)[PπQπ(s, a)],

as well as, for any s′ ∈ S and a′ ∈ A,

Pπ
∗ d

π
t (s

′) =
�
A
Pπ
∗ d

π
t (s

′, a′) da′, Pπ
∗ d

π
t (s

′, a′) = Pπ
∗ d

π
t (s

′)π(a′ | s′),

and Pπ
∗ d

π(s′) =
�
A
Pπ
∗ d

π(s′, a′) da′, Pπ
∗ d

π(s′, a′) = Pπ
∗ d

π(s′)π(a′ | s′).
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Proof. We use the corresponding identities from Lemma 3.1.2, without Pπ. Firstly,

Ea∼π(s)[Pπrπt (s, a)] = Ea∼π(s)

�
E(s′,a′)∼Tπ(s,a)[r

π
t (s

′, a′)]
�

= Ea∼π(s), s′∼T (s,a)[r
π
t (s

′)]

= Pπrπt (s),

and

Ea∼π(s)[PπQπ(s, a)] = Ea∼π(s)

�
E(s′,a′)∼Tπ(s,a)[Q

π(s′, a′)]
�

= Ea∼π(s), s′∼T (s,a)[V
π(s′)]

= PπV π(s).

Secondly,�
A
Pπ
∗ d

π
t (s

′, a′) da′ =
�
A

�
S×A

dπt (s, a)T
π(s′, a′ | s, a) ds da da′

=

�
A

�
S
dπt (s)π(a | s)T (s′ | s, a) ds da

�
A
π(a′ | s′) da′� �� �

1

= Pπ
∗ d

π
t (s

′)

and

Pπ
∗ d

π
t (s

′)π(a′ | s′) =
�
A

�
S
dπt (s)π(a | s)T (s′ | s, a) ds daπ(a′ | s′)

=

�
S×A

dπt (s, a)T
π(s′, a′ | s, a) ds da = Pπ

∗ d
π
t (s

′, a′).

For the last two equations, we can use the two before, the linearity and continuity of the Pπ∗ ,
and (3.2).

Lemma 3.2.2. For all t ∈ N it holds that

rπt+1 = Pπrπt , rπt = (Pπ)trπ0 ,

dπt+1 = Pπ
∗ d

π
t , dπt = (Pπ

∗ )
tdπ0 .

Proof. Firstly,

Pπrπt−1(s, a) =
,
s′∈S

,
a′∈A

rπt−1(s
′, a′)T π(s′, a′ | s, a)

=
,
s′∈S

,
a′∈A

E(s0=s′, a0=a′)t−1
[r(st−1, at−1)]T

π(s′, a′ | s, a)

= E(s0=s, a0=a)t [r(st, at)]

= rπt (s, a).

Secondly, applying the theorem of total probability,

dπt (s
′) = P(∗)t(st = s′)

=
,
s∈S

,
a∈A

P(∗)t(st = s′ | st−1 = s, at−1 = a)P(∗)t(at−1 = a | st−1 = s)P(∗)t(st−1 = s)

=
,
s∈S

,
a∈A

T (s′ | s, a)π(a | s)dπt−1(s)

= Pπ
∗ d

π
t−1(s

′).
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Now, we just apply Ea∼π(s) or multiply with π(a′ | s′) and use Lemmas 3.1.2 and 3.2.1 to also
get the result for only states or state-action pairs, respectively.

For some of the proofs later on we are going to need some more technical properties of Pπ

and Pπ∗ , which we summarize in the following Lemma 3.2.3.

Lemma 3.2.3. The expected Bellman operator Pπ and Pπ∗ have the following properties:

1. On the Hilbert space L2(Ω), Pπ∗ is the adjoint operator of Pπ.

2. The operator norms on L∞(Ω) and L1(Ω), respectively, are

∥Pπ∥L∞(Ω) = 1 and ∥Pπ
∗ ∥L1(Ω) = 1.

3. Given a probability distribution d ∈ Δ(Ω) and p ≥ 1, we have

∥Pπ∥L∞(d) = 1 and ∥Pπ∥Lp(Pπ∗ d), Lp(d) = 1.

In case d > 0, it also holds that ∥D−1Pπ∗D∥L1(d) = 1.

4. The spectral radius of Pπ, Pπ∗ and D−1Pπ∗D is 1.

Proof. 1. Using Fubini’s theorem, we calculate

⟨PπQ, d⟩ =
�
S×A

��
S×A

Q(s′, a′)T π(s′, a′ | s, a) ds′ da′
$
d(s, a) ds da

=

�
S×A

Q(s′, a′)
��

S×A
d(s, a)T π(s′, a′ | s, a) ds da

$
ds′ da′ = ⟨Q,Pπ

∗ d⟩,

⟨PπV, d⟩ =
�
S

��
A

�
S
V (s′)T (s′ | s, a) ds′π(a | s) da

$
d(s) ds

=

�
S
V (s′)

��
A

�
S
d(s)π(a | s)T (s′ | s, a) ds da

$
ds′ = ⟨V,Pπ

∗ d⟩.

2. Using the triangle inequality, we calculate

∥Pπf∥L∞(Ω) = sup
ω∈Ω

//Eω′∼Tπ(ω)[f(ω
′)]
// ≤ sup

ω∈Ω
Eω′∼Tπ(ω)|f(ω′)| ≤ ∥f∥L∞(Ω).

Applying it again, this time together with Fubini’s theorem,

∥Pπ
∗ d∥L1(S×A) =

�
S×A

////�
S×A

d(s, a)T π(s′, a′ | s, a) ds da

//// ds′ da′

≤
�
S×A

|d(s, a)|
��

S×A
T π(s′, a′ | s, a) ds′ da′� �� �

1

$
ds da = ∥d∥L1(S×A),

∥Pπ
∗ d∥L1(S) =

�
S

////�
A

�
S
d(s)π(a | s)T (s′ | s, a) ds da

//// ds′

≤
�
S
|d(s)|

��
A

�
S
T (s′ | s, a) ds′π(a | s) da� �� �

1

$
ds = ∥d∥L1(S).
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Consider f ≡ 1 and d ≥ 0 for equality, respectively.

3. Similarly to before, we calculate,

∥Pπf∥L∞(d) = ess sup
ω∈Ω

//Eω′∼Tπ(ω)[f(ω
′)]
// ≤ ess sup

ω∈Ω
Eω′∼Tπ(ω)|f(ω′)| ≤ ∥f∥L∞(d)

and use Jensen’s inequality on Pπ and monotonicity of the inner product with a non-negative
second factor, to calculate

∥Pπf∥pLp(d)
= ⟨|Pπf |p, d⟩ ≤ ⟨Pπ|f |p, d⟩ = ⟨|f |p,Pπ

∗ d⟩ = ∥f∥pLp(Pπ∗ d)
.

Consider f ≡ 1 for equality. Then, using Fubini’s theorem again,

∥D−1Pπ
∗Dw∥L1(d) =

�
Ω

//// 1

d(ω′)

�
Ω
d(ω)w(ω)T π(ω′ | ω) dω

//// d(ω′) dω′

≤
�
Ω

��
Ω
T π(ω′ | ω) dω′� �� �

1

$
|w(ω)|d(ω) dω = ∥w∥L1(d).

Consider w ≥ 0 for equality.

4. It is well known that the spectrum of an operator is contained within the ball with its
operator norm as the radius. This bounds the spectral radius from above by 1. Now, by
definition of Pπ, the constant function 1 is an eigenvector with eigenvalue 1. It is also well
known that the spectrum of an operator is identical to that of its adjoint. Therefore, the
spectral radius of Pπ∗ is even equal to 1. Finally, note that similar operators share the same
spectrum and spectral radius.

For Q : S ×A → R, V : S → R and d : Ω → R, define the forwards Bellman operator Bπ and
backwards Bellman operator T π by

BπQ(s, a)
.
=

�
rπ0 (s, a) + γPπQ(s, a) for γ ∈ (0, 1),

rπ0 (s, a)− ρπ + PπQ(s, a) for γ = 1,

BπV (s)
.
=

�
rπ0 (s) + γPπV (s) for γ ∈ (0, 1),

rπ0 (s) − ρπ + PπV (s) for γ = 1,

T πd
.
= (1− γ)dπ0 + γPπ

∗ d for γ ∈ (0, 1],

where s ∈ S and a ∈ A. We will also use the notation

Bπ,γ
ρ f = rπ0 − ρ+ γPπf, so Bπ =

�
Bπ,γ
0 if 0 < γ < 1,

Bπ,1
ρπ if γ = 1.

The following two Lemmas 3.2.4 and 3.2.5 are both Bellman equations. They have in common
that they describe the state-(action-)function and stationary distribution by means of a time
shift. The first, better known result, uses states and actions after going forward in time by
applying Pπ. Accordingly, the latter uses previous states and actions together with Pπ∗ .
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Lemma 3.2.4 (forwards Bellman equations). Let γ ∈ (0, 1), then Qπ and V π are fixed points
of the Bellman operator Bπ,γ, i.e., solution to the (discounted) forwards Bellman equations,

Q = rπ0 + γPπQ, where Q : S ×A → R, (3.5)

V = rπ0 + γPπV, where V : S → R. (3.6)

Let γ = 1, then ρπ, Qπ and V π are solutions to the (undiscounted) forwards Bellman equations,

Q = rπ0 − ρ+ PπQ, where ρ ∈ R, Q : S ×A → R, (3.7)

V = rπ0 − ρ+ PπV, where ρ ∈ R, V : S → R. (3.8)

Proof. We first show the claim for state-action-values,

Qπ(s, a)

= E(st+1,at+1)∼Tπ(st,at)

� ∞,
t=0

(γtr(st, at)− ρπ γ=1)

///// s0 = s,
a0 = a

�

= E(st,at)∼Tπ(st−1,at−1)

�
(r(s0, a0)− ρπ γ=1) + γ

∞,
t=1

(γt−1r(st, at)− ρπ γ=1)

///// s0 = s,
a0 = a

�
= r(s, a)− ρπ γ=1

+ γE(s1,a1)∼Tπ(s0,a0)

�
E(st+1,at+1)∼Tπ(st,at)

� ∞,
t=1

(γt−1r(st, at)− ρπ γ=1)

� ///// s0 = s,
a0 = a

�
= r(s, a)− ρπ γ=1

+ γE(s′,a′)∼Tπ(s,a)

�
E(s̃t+1,ãt+1)∼Tπ(s̃t,ãt)

� ∞,
t=0

(γtr(s̃t, ãt)− ρπ γ=1)

///// s̃0 = s′,
ã0 = a′

��
= r(s, a)− ρπ γ=1 + γE(s′,a′)∼Tπ(s,a)[Q

π(s′, a′)]

= r(s, a)− ρπ γ=1 + γPπQπ(s, a).

By applying the expectation Ea∼π(s) on both sides and using Lemma 3.2.1, we get the claim for
the state-value function.

Lemma 3.2.5 (backwards Bellman equations). Let γ ∈ (0, 1], then dπ is a fixed point of the
backwards Bellman operator T π, i.e., a solution to the backwards Bellman equations

d = (1− γ)dπ0 + γPπ
∗ d, where d : Ω → R. (3.9)

In case γ = 1, we need to add the normalization constraint�
Ω
d(ω) dω = 1 and d ≥ 0.
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Proof. Because Pπ∗ is linear and bounded by Lemma 3.2.3, we get

dπ = lim
H→∞

H,
t=0

γtdπt

+ H,
t=0

γt

= lim
H→∞

dπ0

+ H,
t=0

γt + lim
H→∞

γ

H,
t=1

γt−1Pπ
∗ d

π
t−1

+ H,
t=0

γt

= (1− γ)dπ0 + γPπ
∗

�
lim

H→∞

H,
t=1

γt−1dπt−1

+ H,
t=0

γt� �� �
dπ

"
.

It remains to be discussed, whether Qπ, V π and dπ really exist, i.e., they are well defined,
and if they are unique as fixed points of the corresponding Bellman operators.

Remark 3.2.6. For γ < 1, we can verify that Bπ and T π are γ-contractions with respect to
∥ · ∥L∞(Ω) and ∥ · ∥L1(Ω), respectively. For f1, f2 : Ω → R and d1, d2 : Ω → R, we calculate

∥Bπf1 − Bπf2∥L∞(Ω) = ∥γPπ(f1 − f2)∥L∞(Ω) ≤ γ∥Pπ∥L∞(Ω)∥f1 − f2∥L∞(Ω),

∥T πd1 − T πd2∥L1(Ω) = ∥γPπ
∗ (d1 − d2)∥L1(Ω) ≤ γ∥Pπ

∗ ∥L1(Ω)∥d1 − d2∥L1(Ω).

By Lemma 3.2.3, the operator norms falls away. By Banach’s fixed point theorem, Qπ, V π and
dπ are fixed points of Bπ and T π, respectively. ■
Remark 3.2.7. Amore constructive alternative to Banach’s fixed point theorem uses the Bellman
equations (3.5), (3.6), and (3.9), and Neumann series. We start by rewriting the Bellman
equations as

(I − γPπ)f = rπ0 and (I − γPπ
∗ )d = (1− γ)dπ0 .

According to Lemma 3.2.3,

∥γPπ∥L∞(Ω) = γ < 1 and ∥γPπ
∗ ∥L1(Ω) = γ < 1.

Therefore, we can construct the Neumann series expansions for the resolvents at γ,

(I − γPπ)−1 =

∞,
t=0

γt(Pπ)t and (I − γPπ
∗ )

−1 =

∞,
t=0

γt(Pπ
∗ )

t.

We apply this and use Lemma 3.2.2, as well as (3.1) and (3.2), respectively, to get

f =
∞,
t=0

γt(Pπ)trπ0 =
∞,
t=0

γtrπt = fπ,

1

1− γ
d =

∞,
t=0

γt(Pπ
∗ )

tdπ0 =

∞,
t=0

γtdπt =
1

1− γ
dπ.

■
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Remark 3.2.8. For the undiscounted setting γ = 1, the Bellman operators are not a contraction
and the Neumann series expansion does not converge any more.
Once fπ is fixed, ρπ becomes a unique solution to the rest of the undiscounted forwards

Bellman equations (3.7) or (3.8), respectively. Any ρ ∈ R, such that fπ = Bπ,1
ρ fπ, causes

0 = fπ − fπ = Bπfπ − Bπ,1
ρ fπ = ρ− ρπ.

The backwards Bellman equations (3.9) from Lemma 3.2.5 reduce to the eigenvalue problem

Pπ
∗ d = d, where

�
Ω
d(ω) dω = 1 and d ≥ 0.

Therefore, the question is, whether Pπ∗ has eigenvalue 1 with a real-valued eigenvector. By
Lemma 3.2.3, the spectral radius of Pπ∗ is equal to 1. For a finite state-action-space, we can
use the Perron-Frobenius Theorem 2.4.1 on P⃗π∗ . In order for the matrix to be positive and
irreducible, we require Assumption 3.1.1. If so, dπ exists and is unique as solution to this
eigenvalue problem. For an infinite state-action-space, the theory gets more complicated and
beyond the scope of this work [26].

■
We can use the Bellman equations (3.5), (3.6), and (3.9), from Lemmas 3.2.4 and 3.2.5 to

derive some simple error bounds for the policy value and Qπ, V π and dπ, respectively, in terms
of the according Bellman error. Unfortunately, the bound is only sharp for very low discount
factor γ.

Proposition 3.2.9. Let γ < 1. Then, for any Q : S ×A → R, V : S → R, and d : S ×A → R,
we have ///E(s0,a0)∼dπ0

[Q(s0, a0)]− ρπ
/// ≤ ∥Qπ −Q∥L∞(dπ0 )

,//Es0∼dπ0
[V (s0)]− ρπ

// ≤ ∥V π − V ∥L∞(dπ0 )
,//E(s,a)∼d[r(s, a)]− ρπ

// ≤ ∥dπ − d∥L1(Ω)∥r∥L∞(Ω),

and

∥Qπ −Q∥L∞(dπ0 )
≤ 1

1− γ
∥BπQ−Q∥L∞(dπ0 )

,

∥V π − V ∥L∞(dπ0 )
≤ 1

1− γ
∥BπV − V ∥L∞(dπ0 )

,

∥dπ − d∥L1(Ω) ≤
1

1− γ
∥T πd− d∥L1(Ω).

Proof. For the first inequalities, we use Lemma 3.1.3 and calculate///E(s0,a0)∼dπ0
[Q(s0, a0)]− ρπ

/// = ///E(s0,a0)∼dπ0
[Qπ(s0, a0)−Q(s0, a0)]

///
≤ ∥Qπ −Q∥L1(dπ0 )

≤ ∥Qπ −Q∥L∞(dπ0 )
,//Es0∼dπ0

[V (s0)]− ρπ
// = //Es0∼dπ0

[V π(s0)− V (s0)]
//

≤ ∥V π − V ∥L1(dπ0 )
= ∥V π − V ∥L∞(dπ0 )

,//E(s,a)∼d[r(s, a)]− ρπ
// = ////�

S×A
r(s, a)(dπ(s, a)− d(s, a)) ds da

////
≤ ∥dπ − d∥L1(Ω)∥r∥L∞(Ω).
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According to Remark 3.2.6, the Bellman operators Bπ and T π are γ-contractions with respect
to ∥ · ∥L∞(Ω) and ∥ · ∥L1(Ω), where fπ and dπ are fixed points, respectively. Together with the
triangle inequality, this leads to

∥fπ − f∥L∞(dπ0 )
= ∥Bπfπ − f∥L∞(dπ0 )

≤ ∥Bπfπ − Bπf∥L∞(dπ0 )
+ ∥Bπf − f∥L∞(dπ0 )

≤ γ∥fπ − f∥L∞(dπ0 )
+ ∥Bπf − f∥L∞(dπ0 )

,

∥dπ − d∥L1(Ω) = ∥T πdπ − d∥L1(Ω) ≤ ∥T πdπ − T πd∥L1(Ω) + ∥T πd− d∥L1(Ω)

≤ γ∥dπ − d∥L1(Ω) + ∥T πd− d∥L1(Ω).

So far, it has become clear that the discounted case is usually much easier than the undis-
counted. It is also more general.

Remark 3.2.10. Let dπ and Pπ,γ be the stationary distribution and expected Bellman opera-
tor for some discounted MDP. Using the backwards Bellman equations (3.9), we can express
the expected Bellman operator Pπ,1 for an equivalent undiscounted MDP, i.e., the stationary
distributions are the same.
Writing down the backwards Bellman equations for both settings, we have

(1− γ)dπ0 + γPπ,γ
∗ dπ = dπ

!
= Pπ,1

∗ dπ.

Let λ be the Lebesgue measure on S ×A. Because dπ is a distribution, using (2.1), we get

λdπ =

�
S×A

dπ(s, a) ds da = 1.

Hence, we define

Pπ,1
∗

.
= (1− γ)dπ0λ+ γPπ,γ

∗ .

Now, we want to calculate the adjoint operator Pπ,1. We start with

⟨Q, dπ0λd⟩ =
�
S×A

Q(s, a)dπ0 (s, a)

�
S×A

d(s′, a′) ds′ da′ ds da

=

�
S×A

��
S×A

Q(s, a)dπ0 (s, a) ds da

$
d(s′, a′) ds′ da′ = ⟨Edπ0

[Q], d⟩.

Since building adjoint operators is linear, using (2.1), we have

Pπ,1 = (1− γ)dπ0 + γPπ,γ .

In case the state-action-space is finite, we have

P⃗π,1 = (1− γ)⃗1(d⃗π0 )
⊤ + γP⃗π,γ .

This means that when transitioning from (s, a) to (s′, a′) in the equivalent undiscounted MDP,
we transition, according to the transition probability T π(s′, a′ | s, a) of the original discounted
MDP with probability γ and re-spawn at an initial state-action pair, according to the initial
state-action-distribution dπ(s, a) of the original discounted MDP, with probability 1− γ.

■
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3.3 Bellman Linear Programs

There are two types of Bellman equations that follow a somewhat similar structure, using Pπ

and Pπ∗ , respectively, raises the question of whether there is some way to unify them. Indeed,
the theory of Linear Programming allows this, provided that the state-action-space is finite. We
provide the result in the following Lemma 3.3.1.

Lemma 3.3.1 (Q-LP). Let 0 < γ < 1. Then, the (discounted) primal Q-LP

ρπ,γ = min
Q:S×A→R

(1− γ)E(s0,a0)∼dπ0
[Q(s0, a0)] (3.10)

s.t. ∀(s, a) ∈ S ×A : Q(s, a) ≥ r(s, a) + γPπQ(s, a),

has the (discounted) dual Q-LP

ρπ,γ = max
d:S×A→R≥0

E(s,a)∼d[r(s, a)] (3.11)

s.t. ∀(s, a) ∈ S ×A : d(s, a) = (1− γ)dπ0 (s, a) + γPπ
∗ d(s, a).

They have unique solutions Qπ,γ and dπ,γ, respectively.
Let γ = 1. Then, the (undiscounted) primal Q-LP

ρπ,1 = min
Q:S×A→R, ρ∈R

ρ (3.12)

s.t. ∀(s, a) ∈ S ×A : Q(s, a) = r(s, a)− ρ+ PπQ(s, a),

has the (undiscounted) dual Q-LP

ρπ,1 = max
d:S×A→R

E(s,a)∼d[r(s, a)] (3.13)

s.t. ∀(s, a) ∈ S ×A : d(s, a) = Pπ
∗ d(s, a),,

(s,a)∈S×A

d(s, a) = 1.

They have solutions (Qπ,1, ρπ,1) and dπ,1, respectively, of which ρπ,1 is unique.

Proof. Let 0 < γ < 1 and LP(Q, d) and LD(d,Q) be the Lagrangian of the primal and dual
Q-LP (3.10) and (3.11), respectively. By Lemma 3.2.3, Pπ∗ is the adjoint of Pπ. Thus, the
conditions of Lemma 2.2.2 hold,

LP(Q, d) = (1− γ)E(s0,a0)∼dπ0
[Q(s0, a0)] + ⟨d, r + γPπQ−Q⟩

= (1− γ)⟨Q, dπ0 ⟩+ ⟨r, d⟩+ γ⟨PπQ, d⟩ − ⟨Q, d⟩
= E(s,a)∼d[r(s, a)] + ⟨Q, (1− γ)dπ0 + γPπ

∗ d− d⟩ = LD(d,Q).

Consider an arbitrary Q, which is feasible for the primal LP, i.e., Q ≥ BπQ. Since Bπ is a
monotonic γ-contraction, we can apply Banach iteration to Q and get

Q ≥ BπQ ≥ (Bπ)2Q ≥ (Bπ)3Q ≥ · · · ≥ lim
t→∞(Bπ)tQ = Qπ,γ .

Because we are minimizing the objective, Qπ,γ is the optimal solution.
The dual constraints are exactly the backwards Bellman equations (3.9). Their solution dπ,γ

is unique in the discounted setting.
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Now, let γ = 1 and LP((ρ,Q), d) and LD(d, (ρ,Q)) be the Lagrangian of the primal and dual
Q-LP (3.12) and (3.13), respectively. By Lemma 3.2.3, Pπ∗ is the adjoint of Pπ. Like before,

LP((ρ,Q), d) = ρ+ ⟨d, r − ρ+ PπQ−Q⟩
= ⟨r, d⟩+ ⟨Q,Pπ

∗ d⟩ − ⟨Q, d⟩+ ρ− ⟨ρ, d⟩
= E(s,a)∼d[r(s, a)] + ⟨Q,Pπ

∗ d− d⟩+ ρ(1− ⟨1, d⟩) = LD(d, (ρ,Q)).

The primal and dual constraints are exactly the forwards and backwards Bellman equations
(3.7) and (3.9) respectively. Due to the objective of the undiscounted primal Q-LP (3.12), ρπ,1

must be the unique solution.

Notice that applying Strong Duality yields Lemma 3.1.3. The primal constraints can be
viewed as a relaxation of the forwards Bellman equations (3.5), since the equality is replaced
by an inequality, while at the same time introducing a minimization to compensate for the loss
of information. Since the dual constraints are exactly the backwards Bellman equations from
Lemma 3.2.5, we establish a duality between these two notions.
One might wonder, if there is a reasonable V -LP, which would yield V π as its optimal solution

[32, 31]. Indeed, there is, but the solution is V π∗ , where π∗ is the optimal policy. Therefore, it
is more related to policy optimization rather than -evaluation. Therefore, we will not discuss it
further.

3.4 Classical Off-Policy Evaluation

We review the basics of the classical approach for OPE [38]. Consider an MDP with finite
horizon H and trajectory

τ = (s0, a0, s1, a1, . . . sH−1, aH−1, sH).

The probability of obtaining τ via evaluation policy π is

Pr
π
[τ ]

.
= d0(s0)

H−1(
t=0

π(at | st)T (st+1 | st, at).

Now, introduce a behavior policy b. Analogous to Assumption 3.5.1, we require π ≪ b. Since the
initial state distribution d0 and transition probabilities T stay the same, we get the importance
sampling quotient (ISQ)

qτ
.
=

Prπ[τ ]

Prb[τ ]
=

H−1(
t=0

qt, where qt
.
=

π(at | st)
b(at | st) .

We can use the ISQ to restate the policy value as

ρπ = Eπ[Gτ ] = Eb[Gτqτ ], where Gτ
.
=

H−1,
t=0

γtR(st, at, st+1).

Let (τi)
n
i=1 be trajectories, sampled by using the behavior policy b. Since we have access to

both π and b, we also get the evaluation- and behavior probabilities, respectively,�
(π(at,i | st,i))H−1

t=0

!n

i=1
and

�
(b(at,i | st,i))H−1

t=0

!n

i=1
.
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Using this, we can calculate the corresponding returns (Gτi)
n
i=1 and ISQ (qτi)

n
i=1. Then, ap-

proximate ρπ via

ρ̂πSIS
.
=

1

n

n,
i=1

Gτiqτi or ρ̂πWIS
.
=

1-n
i=1 qτi

n,
i=1

Gτiqτi .

They are called simple (SIS) and weighted importance sampling (WIS) estimators, respectively.
They are consistent due to the law of large numbers. In order to see consistency of the second
one, we expand the fraction with 1/n and use the fact that Eb[qτ ] = 1.
A major drawback of these estimators is that in many applications we do not have direct

access to the behavior policy b. Even worse, the variance of ρ̂πSIS increases exponentially as
H → ∞. This is known as the curse of the horizon [42]. To see this, rewrite the ISQ as

qτ = exp

H−1,
t=0

log qt.

By the Central Limit Theorem, we have

H−1,
t=0

log qt ≈ N(−Hµ,Hσ2), where µ
.
= E[log qt] and σ2 .

= Var[log qt].

This means that qτ is asymptotically logN(−Hµ,Hσ2) with variance eHσ2 −1. The algorithms
of the subsequent section apply IS differently and circumvent these issues.

3.5 Stationary DIstribution Correction Estimation

In many applications we are limited to data that was collected independently of any RL algo-
rithm. On top of that, we are often not informed on the distribution of the data. In a more
concrete manner, we are provided with a dataset of experience D = ((s0,i, si, ai, ri, s

′
i))

n
i=1, where

samples are drawn according to

s0 ∼ d0, (s, a) ∼ dD, r ∼ R(s, a, s′), s′ ∼ T (s, a), or, for short, (s0, s, a, r, s
′) ∼ pD.

We assume no prior knowledge of the distributions d0, d
D, R and T . Motivated by the lack of

knowledge of our behavior policy and its stationary distribution dD, we call methods that work
within this setting behavior agnostic. Even though we do not know dD explicitly, we assume
that D provides enough data, to include all the states and actions that we would visit under
the evaluation policy π, as stated in Assumption 3.5.1.

Assumption 3.5.1. The stationary distribution dπ of the evaluation policy π is absolutely
continuous with respect to the distribution dD of the dataset D, i.e., dπ ≪ dD or

dπ(s, a) > 0 =⇒ dD(s, a) > 0 for all (s, a) ∈ S ×A.

Many of these methods start off by a marginalized version of importance sampling (IS). Using
Assumption 3.5.1, applying IS to dπ in (3.4) from Lemma 3.1.3, we get

ρπ = E(s,a)∼dD [r(s, a)wπ/D(s, a)], where wπ/D = dπ/dD. (3.14)
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For any (s, a) ∈ S × A, such that dD(s, a) = 0, we leave wπ/D(s, a) undefined. This works as
long as we multiply it by zero every time we use it.
Approximating this stationary distribution correction (SDC) wπ/D by some ŵπ/D is referred to

as (stationary) distribution correction estimation (DICE). We can use the empirical density p̂D

to further approximate ρπ by a simple Monte Carlo estimate or, since E(s,a)∼dD [wπ/D(s, a)] = 1,
by a weighted Monte Carlo estimate, respectively,

ρ̂πS
.
= E(s0,s,a,r,s′)∼p̂D [r(s, a)ŵπ/D(s, a)] =

1

n

n,
i=1

riŵπ/D(si, ai), (3.15)

ρ̂πW
.
=

E(s0,s,a,r,s′)∼p̂D [r(s, a)ŵπ/D(s, a)]
E(s,a)∼d̂D [ŵπ/D(s, a)]

=
1-n

i=1 ŵπ/D(si, ai)

n,
i=1

riŵπ/D(si, ai). (3.16)

Let Pπ .
= ETπ and Pπ∗ denote the expected Bellman operator and its adjoint. Lemmas 3.2.4

and 3.2.5, the forwards and backwards Bellman equations, state that Qπ or V π and dπ are fixed
points of the forwards and backwards Bellman operators Bπ and T π, respectively.
We want to formulate modified backwards Bellman equations for the stationary distribution

correction wπ/D. To this end, define

T π
d w

.
= D−1T πDw = (1− γ)D−1dπ0 + γD−1Pπ

∗Dw,

for γ ∈ (0, 1], and d : S ×A → R>0, where w : S ×A → R, as well as

Dw(s, a) = d(s, a)w(s, a) for (s, a) ∈ S ×A.

Now, we can define the modified Bellman operator T π
D

.
= T π

dD . For any (s, a) ∈ S×A, such that
dD(s, a) = 0, we leave T π

Dw(s, a) undefined.

Lemma 3.5.2 (modified backwards Bellman equations). Let γ ∈ (0, 1], then wπ/D is a solution
to the modified backwards Bellman equation for w : S ×A → R:

DDw = T πDDw = (1− γ)dπ0 + γPπ
∗D

Dw and w = T π
Dw. (3.17)

In case γ = 1, we need to add the normalization constraint

E(s,a)∼dD [w(s, a)] = 1.

Proof. The first equation follows from the backwards Bellman equations (3.9) and the fact that
dπ = DDwπ/D. For the second equation, note that wπ/D is not defined iff T π

Dwπ/D is not defined.

Otherwise, we can apply (DD)−1 to the first equation.
By definition of wπ/D,

E(s,a)∼dD [wπ/D(s, a)] =
�
S×A

dD(s, a)wπ/D(s, a) ds da =

�
S×A

dπ(s, a) ds da = 1.

Remark 3.5.3. For γ < 1, wπ/D is the unique solution to the modified backwards Bellman
equations (3.17). For any d : S × A → R≥0, we can verify that T π

d is a γ-contraction with
respect to ∥ · ∥L1(d). We calculate

∥T π
d w1 − T π

d w2∥L1(d) = ∥γD−1Pπ
∗D(w1 − w2)∥L1(d) ≤ γ∥D−1Pπ

∗D∥L1(d)∥w1 − w2∥L1(d).
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Note, that although T π
d and D−1 are not always well defined, since there may be (s, a) ∈ S×A,

such that d(s, a) = 0, this problem can be ignored within the norm ∥ · ∥L1(d). By Lemma 3.2.3,
the operator norm falls away.

■
Remark 3.5.4. For γ = 1, wπ/D is the unique solution to the modified backwards Bellman
equations (3.17) given one of two conditions.

1. We include the constraint w ≥ 0 and the stationary distribution is unique [44]. To see
this, notice that d

.
= DDw ≥ 0 is a distribution, because the normalization constraint leads to�

S×A
d(s, a) ds da =

�
S×A

w(s, a)dD(s, a) ds da = E(s,a)∼dD [w(s, a)] = 1.

Additionally,

d = DDw = T πDDw = T πd = Pπ
∗ d.

This means that d is a stationary distribution, satisfying Assumption 3.5.1. Since we assume
that it is unique, we get d = dπ and hence

w = d/dD = dπ/dD = wπ/D.

2. The state-action space is finite and Assumption 3.1.1 is satisfied [41]. Now, D⃗Dw⃗ is an
eigenvector of P⃗π∗ with eigenvalue 1. According to the backwards Bellman equations (3.9) this
also holds for d⃗π. By Assumption 3.1.1, our MDP is ergodic, so P⃗π∗ is a non-negative irreducible
matrix. Hence, we can apply the Perron-Frobenius Theorem 2.4.1 to P⃗π∗ . In this case, it says
that the eigenspace of the eigenvalue 1 is one-dimensional and we get a scalar α ∈ R, such that

D⃗Dw⃗ = αd⃗π.

We use the fact that dπ is a distribution and the normalization constraint, to show that

α = α⟨d⃗π, 1⃗⟩ = ⟨⃗1, αd⃗π⟩ = ⟨⃗1, D⃗Dw⃗⟩ = ⟨D⃗D1⃗, w⃗⟩ = ⟨D⃗D, w⃗⟩ = 1.

Hence, D⃗Dw⃗ = d⃗π, i.e., w = wπ/D.
■

We can derive a simple error bound for the policy value ρπ and stationary distribution cor-
rection wπ/D, analogous to Lemma 3.2.9.

Proposition 3.5.5. Let γ < 1 and dD > 0. Then, for any w : S ×A → R,

///E(s,a)∼dD [r(s, a)w(s, a)]− ρπ
/// ≤ ∥wπ/D − w∥L1(dD)∥r∥L∞(dD),

and

∥wπ/D − w∥L1(dD) ≤
1

1− γ
∥T π

Dw − w∥L1(dD).

Proof. For the first inequality, we use (3.14) and calculate///E(s,a)∼dD [r(s, a)w(s, a)]− ρπ
/// = ///E(s,a)∼dD [r(s, a)(wπ/D(s, a)− w(s, a))]

///
≤ ∥wπ/D − w∥L1(dD)∥r∥L∞(dD).
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According to Remark 3.5.3, the modified backwards Bellman operator T π
D is a γ-contraction

with respect to ∥ ·∥L1(dD). By the modified backwards Bellman equations (3.17), wπ/D is a fixed
point. Together with the triangle inequality, this leads to

∥wπ/D − w∥L1(dD) = ∥T π
Dwπ/D − w∥L1(dD) ≤ ∥T π

Dwπ/D − T π
Dw∥L1(dD) + ∥T π

Dw − w∥L1(dD)

≤ γ∥wπ/D − w∥L1(dD) + ∥T π
Dw − w∥L1(dD).
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4 Algorithms

This chapter describes the theoretical background of the algorithms used to generate our nu-
merical results. This includes

• TabularVafe, estimating the state-
action value function Qπ with an approx-
imate linear equation system of the for-
wards Bellman equations (3.5),

• TabularDice, estimating the stationary
distribution correction wπ/D with an ap-
proximate linear equation system of the
modified backwards Bellman equations
(3.17),

• TabularDualDice, setting the gradi-
ent of the primal objective (4.3) of
DualDICE to zero,

• TabularGradientDice, setting the gra-
dient of the primal objective (4.5) of Gra-
dientDICE to zero,

• NeuralDualDice, performing stochastic
gradient descent and ascent on the dual
objective (4.6) of DualDICE,

• NeuralGenDice, performing stochastic
gradient descent and ascent on the dual
objective (4.7) of GenDICE,

• NeuralGradientDice, performing
stochastic gradient descent and ascent
on the dual objective (4.8) of Gradient-
DICE,

• NeuralCoinDice, using theorem 4.6.10
and stochastic gradient descent and as-
cent to obtain approximations of policy
value confidence intervals.

Using the methods described above, we give detailed derivations and discuss the theoretical
significance of the hyperparameters. We also provide convergence and consistency proofs along
with assumptions that support the theoretical justification of the algorithms.

4.1 Summary

This section provides a compact description of the algorithms, sufficient to interpret the numer-
ical results at a high level. Further details are given in the subsequent sections.
We divide this summary section into two parts, where the state-action space S × A is finite

and infinite, i.e., the Tabular Case and the Continuous Case, respectively.

4.1.1 Tabular Case

We can rewrite the modified Bellman equations (3.17) as

(1− γ)d⃗π0 = (I − γP⃗π
∗ )D⃗

Dw⃗π/D for 0 < γ < 1,

w⃗π/D = (D⃗D)−1P⃗π
∗ D⃗Dw⃗π/D, ⟨d⃗D, w⃗π/D⟩ = 1 for γ = 1.

(4.1)

The second equation is only defined for (s, a) ∈ S × A, such that dD(s, a) > 0. Accordingly, it
is no problem that some diagonal elements of D⃗D are zero and (D⃗D)−1 is not invertible.
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For γ < 1 and from Assumption 3.5.1, we get unique solvability, assuming that dD > 0, as
discussed in Remarks 3.2.6 and 3.2.7. For γ = 1 and Assumption 3.1.1, we can apply Lemma
3.2.3 and the Perron-Frobenius Theorem 2.4.1 to P⃗π∗ .
Replacing by Law of Large Numbers estimates (4.9), (4.10), (4.11), and (4.12), we get some

approximate modified Bellman equations. Using (4.13), (4.14), (4.15), and (4.16), we can write
these as

(1− γ)d̄π0 = (D̄D − γP̄π
1,∗)ŵπ/D for 0 < γ < 1,

ŵπ/D = (D̄D)−1P̄π
1,∗ ŵπ/D, ⟨d̄D, ŵπ/D⟩ = n for γ = 1.

(4.2)

Now, the primal objectives for DualDICE [34], GenDICE [44], and GradientDICE [41], re-
spectively, are

min
v:S×A→R

JDual(v), min
w:S×A→R≥0

JGen(w), min
w:S×A→R

JGradient(w),

where

JDual(v)
.
= (1− γ)E(s0,a0)∼dπ0

[v(s0, a0)] + E(s,a)∼dD [φ∗(γPπv(s, a)− v(s, a))], (4.3)

JGen(w)
.
= Dφ(D

Dw ∥ T πDDw) +
λ

2

�
E(s,a)∼dD [w(s, a)]− 1

!2
, (4.4)

JGradient(w)
.
=

1

2
∥T π

Dw − w∥2L2(dD) +
λ

2

�
E(s,a)∼dD [w(s, a)]− 1

!2
. (4.5)

The objectives (4.3) and (4.5) are unconstrained. Since they are all quadratic, setting their
gradient to zero yields a linear equation system.
Choose φ

.
= 1

2(·)2 and perform the same replacements as before. This gives us the respective
approximate linear equation systems

−Ā1/2Ā
⊤
1/2v̂ = (1− γ)d̄π0 and ŵπ/D = −(Ā1/2(D̄

D)−1/2)⊤v̂,�
Ā⊤

1 (D̄
D)−1Ā1 +

λ

n
d̄π0 (d̄

π
0 )

⊤#ŵπ/D = (1− γ)Ā⊤
1 (D̄

D)−1d̄π0 + λd̄π0 .

For 0 < γ < 1, we also perform value function estimation (VAFE), by using the approximate
version of the forwards Bellman equations (3.5),

r̂ = (I − γP̂π)Q̂π, ρ̂π = (1− γ)⟨d̂π0 , Q̂π⟩.
Some practical considerations lead us to two flaws in our algorithms, which both occur due

to possible inadequacies of the underlying dataset. For each of these, we employ a heuristic,
whose negative influence decreases as the quality of the dataset increases.

• It may not always be possible, to gather samples for all (s, a) ∈ S × A and assure that
D̄D is invertible. There may appear (s, a) ∈ S × A, where d̄D(s, a) = 0. According to
Assumption 3.5.1, the corresponding row and column inside P̄π should also be zero. By
manually defining 0/0, we can still work in this situation.

However, in case Assumption 3.5.1 is not satisfied, we can project into the subspace
R| supp(d̄D)| ≤ R|S×A|, solve using our estimator, and then embed back into the original
space. All further steps never use any values of our stationary distribution correction
estimate ŵπ/D(s, a), where d̄D(s, a) = 0. Therefore, it does not matter anyways, what
values we set them to. We chose −1 for error handling.

• We cannot guarantee that the Perron-Frobenius theorem 2.4.1 holds for the approximating
matrix in the eigenvalue problem (4.2). Thus, we chose an eigenpair whose eigenvalue is
closest to one and take the absolute value of the eigenvector.
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4.1.2 Continuous Case

The objectives (4.3), (4.4), and (4.5) have expectations inside non-linear functions. This pre-
vents us from performing SGD directly. However, applying Fenchel-Rockerfeller duality 2.2.10,
respectively, yields [34, 44, 41]

max
v:S×A→R

min
w:S×A→R

JDual(v, w), min
w:S×A→R≥0

max
v:S×A→R, u∈R

JGen(w, v, u),

min
w:S×A→R

max
v:S×A→R, u∈R

JGradient(w, v, u),

where

JDual(v, w)
.
= E(s0,s,a,r,s′)∼pD

�
L(v, w; s0, s, a, s

′) + φ(w(s, a))
�
, (4.6)

JGen(w, v, u)
.
= E(s0,s,a,r,s′)∼pD

�
L(v, w; s0, s, a, s

′) +N(w, u; s, a)− 1

4
v(s, a)2w(s, a)

�
, (4.7)

JGradient(w, v, u)
.
= E(s0,s,a,r,s′)∼pD

�
L(v, w; s0, s, a, s

′) +N(w, u; s, a)− 1

2
v(s, a)2

�
, (4.8)

L(v, w; s0, s, a, s
′) .
= (1− γ)Ea0∼π(s0)[v(s0, a0)] + w(s, a)

�
γEa′∼π(s′)[v(s

′, a′)]− v(s, a)
#
,

φ(x)
.
=

1

p
|x|p, p > 1, N(w, u; s, a)

.
= λ

�
u(w(s, a)− 1)− 1

2
u2

!
, λ > 0.

In order to parameterize v and w, we use neural networks vϑ and wθ, respectively, with a
single hidden layer. To provide non-negativity, we add (·)2 to the final layer [44].
Every 100 steps, we store the policy value and the average loss. If we have an analytical

solution for the the policy value ρπ and stationary distribution correction wπ/D, we also store
the error |ρ̂π − ρπ| and the MSE E(s,a)∼dD |wϑ−wπ/D|2. In addition, the Bellman residual angle
(BRA) between the gradients ∇ϑPπvϑ and ∇ϑvϑ is stored.

4.2 Tabular stationary DIstribution Correction Estimation

Let the state-action space be finite. Define the matrices

P⃗π
p,∗

.
= P⃗π

∗ (D⃗
D)p and A⃗p

.
= A⃗(D⃗D)p, where p ∈ R.

Since D⃗ is a diagonal matrix, its powers can be defined via component wise application. Using
the Law of Large Number approximations for d0(s0), T (s

′ | s, a), and dD(s, a), define

d̂π0
.
=

�
π(a0 | s0) 1

n

n,
i=1

s0=s0,i

$
(s0,a0)∈S×A

, (4.9)

d̂D .
=

�
1

n

n,
i=1

s=si, a=ai

$
(s,a)∈S×A

, D̂D .
= diag(d̂D), (4.10)

P̂π
∗

.
=

�
π(a′ | s′)

1
n

-n
i=1 s=si, a=ai, s′=s′i

1
n

-n
i=1 s=si, a=ai

$
(s′,a′),(s,a)∈S×A

, Â
.
= I − γP̂π

∗ , (4.11)

P̂π
p,∗

.
= P̂π

∗ (D̂
D)p. Âp

.
= Â(D̂D)p, (4.12)
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Notice that

d̂π0 =
1

n
d̄π0 , P̂π

∗ = P̄π
1,∗(D̄

D)−1, P̂π
p,∗ =

1

np
P̄π
p,∗,

D̂D =
1

n
D̄D, Â = Ā1(D̄

D)−1, Âp =
1

np
Āp,

where

d̄π0
.
=

n,
i=1

�
π(a0 | s0,i) s0=s0,i

#
(s0,a0)∈S×A

, (4.13)

d̄D .
=

n,
i=1

( s=si, a=ai)(s,a)∈S×A , D̄D .
= diag(d̄D), (4.14)

P̄π
∗

.
=

n,
i=1

�
π(a′ | s′i) s=si, a=ai, s′=s′i

!
(s′,a′),(s,a)∈S×A

, Ā
.
= D̄D − γP̄π

∗ , (4.15)

P̄π
p,∗

.
= P̄π

1,∗(D̄
D)p−1, Āp

.
= Ā1(D̄

D)p−1. (4.16)

Let x : S ×A → RK be a feature function and consider the feature matrix

X
.
= (x⃗1, . . . , x⃗K) ∈ R|S×A|×K . (4.17)

From this, we can derive the linear parameterization function space

F .
=

�
w⃗θ

.
= Xθ⃗

/// θ⃗ ∈ RK

. (4.18)

In order to approximate the stationary distribution correction exactly, we would need to chose
the feature matrix such that assumption 4.2.1 is satisfied. Note, that the choice X

.
= I cor-

responds do a one-hot-encoding. In particular, this choice of feature matrix would satisfy the
assumption 4.2.1.

Assumption 4.2.1. The stationary distribution correction w⃗π/D is part of the column span of
the feature matrix X.

Oftentimes, our feature matrix is not representative enough. An algorithm working with the
feature matrix X will, at best, approximate the projection Pwπ/D of the stationary distribution
correction onto the range of X. Finally, Remark 2.4.4 tells us that this projection can be
expressed as

P = X(X⊤DDX)−1X⊤DD.

4.3 Dual stationary DIstribution Correction Estimation

Using the Q-LP from Lemma 3.3.1 directly as a way of policy evaluation bears a major problem
for applications, where the state-action space is infinite. To circumvent this issue, Nachum et
al. [34] introduce the algorithm DualDICE.
We merge the contents of Nachum et al. [34] and [31] to create a better understanding of

DualDICE. On top of that, we include all the technical details, omitted by Nachum et al. [34].
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4.3.1 Objectives

Primal Objective

We consider the dual Q-LP (3.11). Since it is over-constrained, the optimal solution does not
change if we substitute the objective by the φ-divergence −Dφ(d ∥ dD). Even though this has
no impact on the divergence, we will assume that φ is defined for all real numbers. We get

max
d:S×A→R≥0

−Dφ(d ∥ dD)

s.t. ∀(s, a) ∈ S ×A : d(s, a) = (1− γ)dπ0 (s, a) + γPπ
∗ d(s, a).

Now, this is not an LP anymore, since the objective is not linear any more, but merely convex.
However, it is a Fenchel optimization problem

−min
d

f(d) + g(Ad), where

f(d)
.
= Dφ(d ∥ dD), g = δ(1−γ)dπ0

, A = I − γPπ
∗ .

Building the dual, we get

−max
v

−f∗(−A∗v)− g∗(v), where

f∗ = EdD [φ∗(·)], g∗ = (1− γ)Edπ0
[·], A∗ = I − γPπ,

resulting in

min
v:S×A→R

J(v)
.
= (1− γ)E(s0,a0)∼dπ0

[v(s0, a0)] + E(s,a)∼dD [φ∗(γPπv(s, a)− v(s, a))].

Dual Objective

Unrolling the definition of the convex conjugate φ∗ in the second expectation of J(v), we get

E(s,a)∼dD [φ∗(γPπv(s, a)− v(s, a))]

= E(s,a)∼dD [max
w∈R

(γPπv(s, a)− v(s, a))w − φ(w)]

= max
w:S×A→R

E(s,a)∼dD [(γPπv(s, a)− v(s, a))w(s, a)− φ(w(s, a))]

= max
w:S×A→R

γE(s,a)∼dD, (s′,a′)∼Tπ(s,a)[v(s
′, a′)w(s, a)]

− E(s,a)∼dD [v(s, a)w(s, a)]

− E(s,a)∼dD [φ(w(s, a))].

This leads to the dual objective

min
v:S×A→R

max
w:S×A→R

J(v, w)

.
= (1− γ)E(s0,a0)∼dπ0

[v(s0, a0)]

+ E(s,a)∼dD, (s′,a′)∼Tπ(s,a)

�
w(s, a)

�
γv(s′, a′)− v(s, a)

#�
− E(s,a)∼dD [φ(w(s, a))].
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4.3.2 The Dual Variable

For any function v : S × A → R, consider the change of variables x = −A∗v. According to
Remark 3.2.7, A∗ is bijective, so we can also reverse this substitution. Now, calculate

E(s,a)∼dπ [x(s, a)]

= E(s,a)∼dπ
�
γE(s′,a′)∼Tπ(s,a)[v(s

′, a′)]− v(s, a)
�

= (1− γ)
∞,
t=0

γtE(s,a)∼dπt

�
γE(s′,a′)∼Tπ(s,a)[v(s

′, a′)]− v(s, a)
�

= (1− γ)

∞,
t=0

γt+1E(s′,a′)∼dπt+1
[v(s′, a′)]− (1− γ)

∞,
t=0

γtE(s,a)∼dπt
[v(s, a)]

= −(1− γ)E(s0,a0)∼dπ0
[v(s0, a0)].

This lets us reformulate the primal objective

J(v) = E(s,a)∼dD [φ∗(x(s, a))]− E(s,a)∼dπ [x(s, a)]

=
,

(s,a)∈S×A

φ∗(x(s, a))dD(s, a)− x(s, a)dπ(s, a).

By taking the derivative with respect to x and setting it to zero, we gather that for the optimal
x∗, we get

φ′
∗(−A∗v∗) = φ′

∗(x
∗) = dπ/dD = wπ/D.

Alternatively, we can use the optimal solution v∗ of the dual Fenchel optimization problem to
derive that for the solution d∗ of the primal we have

dπ = d∗ = f ′
∗(−A∗v∗) = dDφ′

∗(−A∗v∗).

For a fixed v : S × A → R, taking the derivative of J(v, w) with respect to w and setting it to
zero, we gather that

φ′(w∗
v) = γPπv − v = −A∗v.

By Lemma 2.2.9, we have (φ′)−1 = φ′∗, so

w∗ = φ′
∗(−A∗v∗) = dπ/dD = wπ/D. (4.19)

4.3.3 Implementation

Tabular

For a finite state-action space, and φ
.
= 1

2(·)2, we can rewrite the primal objective with vector
notation as

J(v) = (1− γ)⟨v⃗, d⃗π0 ⟩+
1

2
∥A⃗⊤v⃗∥2ℓ2(dD).

Using Remark 2.4.2, we can build the gradient

∇vJ(v) = (1− γ)d⃗π0 + A⃗D⃗DA⃗⊤v⃗.
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Setting the gradient to zero, we get the linear equation system

−A⃗1/2A⃗
⊤
1/2v⃗

∗ = (1− γ)d⃗π0 .

Using (4.19), and φ∗ = 1
2(·)2 from Example 2.2.5, we get

w⃗π/D = −A⃗⊤v⃗∗.

Considering the law of large numbers approximations d̂π0 , Â, and D̂D, Âp, from (4.9), (4.10),
(4.11), and (4.12), respectively, we get the approximate linear equation system,

−Â1/2Â
⊤
1/2v̂ = (1− γ)d̂π0 and ŵπ/D = −Â⊤v̂.

Continuous

We specify φ
.
= 1

p(·)p, for some p > 1. For v and w we use the function classes Fv and Fw,
respectively, e.g. by parameterization using neural networks. Now, we have access to samples
taken with respect to pD and even explicit access to π. This lets us perform SGD on v and
SGA on w. Since we have a saddle point problem, we use SGDA, i.e., each time we sample a
batch of experience to approximate the gradient, we perform a gradient step on both v and w
in parallel. Building the gradients, we get

∇ϑJ(vϑ, wθ) = (1− γ)E(s0,a0)∼dπ0
[∇ϑvϑ(s0, a0)]

+ E(s,a)∼dD, (s′,a′)∼Tπ(s,a)[wθ(s, a)(γ∇ϑvϑ(s
′, a′)−∇ϑvϑ(s, a))],

∇θJ(vϑ, wθ) = E(s,a)∼dD, (s′,a′)∼Tπ(s,a)[(γvϑ(s
′, a′)− vϑ(s, a))∇θwθ(s, a)]

− E(s,a)∼dD [wθ(s, a)
p−1∇θwθ(s, a)].

4.3.4 Convergence

Parameterizing v and w in J(v, w), e.g. by neural networks, induces an inherent approximation
error ϵapprox(Fv,Fw). We can apply SGDA to J(v, w), and obtain an approximation ŵπ/D of
wπ/D. Let ϵopt denote the error, we get from SGDA. Finally, we can get the approximation ρ̂π

of ρπ, as in (3.15). The MSE of ρ̂π is discussed in Theorem 4.3.3.

Assumption 4.3.1. The stationary distribution correction is uniformly bounded, i.e.,

∃Cw > 0 : sup
(s,a)∈S×A

|wπ/D(s, a)| ≤ Cw.

Assumption 4.3.2. The observed reward r̂ is uniformly bounded, i.e.,

∃Cr > 0 : sup
(s,a)∈S×A

|r̂(s, a)| ≤ Cr.

Theorem 4.3.3. Let Assumptions 4.3.1 and 4.3.2 hold. Also, choose φ
.
= 1

2(·)2. Then, the
MSE of DualDICE’s estimate is bounded by

E|ρ̂π − ρπ|2 = Olog

�
ϵapprox(Fv,Fw) + ϵopt +

1√
n

$
.

The expectation is taken with respect to randomness both in the sampling of D ∼ pD and in the
algorithm. Olog simply ignores logarithmic factors.
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4.4 Generalized stationary DIstribution Correction Estimation

A major downside of DualDICE is that it only works in the discounted setting. On top of that,
pushing the discount factor γ towards 1 has a negative influence on the estimators accuracy [44].
The algorithm GenDICE by Zhang et al. [44] aims to also include the undiscounted setting in
its policy value approximation and improve stability for higher discount factors.

4.4.1 Objectives

Primal Objective

The idea behind GenDICE is to find the stationary distribution correction wπ/D, by starting
off with the modified backwards Bellman equations (3.17). A naive approach to the solution
of these equations in the continuous setting is to use a positive definite discrimination function
D(· ∥ ·) and consider the optimization problem

min
w:S×A→R≥0

D(DDw ∥ T πDDw).

Now, wπ/D would indeed be a solution, but any scaled version cwπ/D by a constant c ≥ 0 also
solves the problem. In particular, the trivial degenerate solution w ≡ 0 cannot be ruled out.
Therefore, consider the norm penalization coefficient λ > 0 and the optimization problem

min
w:S×A→R≥0

J(w)
.
= D(DDw ∥ T πDDw) +

λ

2

�
E(s,a)∼dD [w(s, a)]− 1

!2
.

According to Remarks 3.5.3 and 3.5.4, the stationary distribution correction wπ/D is the only
solution to J(w) = 0.

Dual Objective

However, since we only have access to samples of T πDD, we cannot evaluate it at arbitrary
points. Therefore, the objective becomes intractable. In order to make our objective tractable,
we must further specify our discrimination function. Using a φ-divergence,

Dφ(T πDDw ∥ dDw) =
�
S×A

dD(s, a)w(s, a)φ
� T πDDw(s, a)
dD(s, a)w(s, a)

$
ds da.
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We apply the Fenchel–Moreau Theorem 2.2.10 to φ and get�
S×A

dD(s′, a′)w(s′, a′)max
v∈R

� T πDDw(s′, a′)
dD(s′, a′)w(s′, a′)

v − φ∗(v)
$

ds′ da′

= max
v:S×A→R

�
S×A

T πDDw(s′, a′)v(s′, a′)− dD(s′, a′)w(s′, a′)φ∗(v(s′, a′)) ds′ da′

= max
v:S×A→R

�
S×A

�
(1− γ)d0(s

′)π(a′ | s′)

+ γ

�
S×A

T π(s′, a′ | s, a)dD(s, a)w(s, a) ds da

$
v(s′, a′)

− dD(s′, a′)w(s′, a′)φ∗(v(s′, a′)) ds′ da′

= max
v:S×A→R

(1− γ)

�
S×A

v(s′, a′)dπ0 (s
′, a′) ds′ da′

+ γ

�
S×A

�
S×A

w(s, a)v(s′, a′)T π(s′, a′ | s, a)dD(s, a) ds da ds′ da′

−
�
S×A

w(s′, a′)φ∗(v(s′, a′))dD(s′, a′) ds′ da′

= max
v:S×A→R

(1− γ)E(s,a)∼dπ0
[v(s, a)]

+ γE(s,a)∼dD, (s′,a′)∼Tπ(s,a)[w(s, a)v(s
′, a′)]

− E(s,a)∼dD [w(s, a)φ∗(v(s, a))].

Also applying it to 1
2(·)2 gives us a dual objective

min
w:S×A→R≥0

max
v:S×A→R, u∈R

J(w, v, u)

.
= (1− γ)E(s0,a0)∼dπ0

[v(s0, a0)]

+ γE(s,a)∼dD, (s′,a′)∼Tπ(s,a)[w(s, a)v(s
′, a′)]

− E(s,a)∼dD [w(s, a)φ∗(v(s, a))]

+ λ

�
E(s,a)∼dD [uw(s, a)− u]− 1

2
u2

$
.

4.4.2 Implementation

Continuous

The χ2-divergence was chosen as an f -divergence. By Example 2.2.12, this results in

min
w:S×A→R≥0

max
v:S×A→R, u∈R

J(w, v, u)

= (1− γ)E(s0,a0)∼dπ0
[v(s0, a0)]

+ E(s,a)∼dD, (s′,a′)∼Tπ(s,a)

�
w(s, a)

�
γv(s′, a′)− v(s, a)

#�
+

1

4
E(s,a)∼dD

�
w(s, a)v(s, a)2

�
+ λ

�
E(s,a)∼dD [uw(s, a)− u]− 1

2
u2

$
.
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The functions φ∗ and (·)2 are convex. Therefore, the objective J(w, v, u) is convex in w and
concave in v and u and we have a convex-concave saddle-point problem (CCSP). Recall the
estimation from DualDICE. For w and v, We will use function spaces Fw and Fv, respectively.
The variables w and v are parameterized by neural networks. Call the parameters θ, ϑ ∈ RK ,
respectively. To assure that the first network only outputs non-negative values, an extra positive
neuron was added to the end, such as

exp(·), log(1 + exp(·)), or (·)2. (4.20)

Building the gradients, we get

∇θJ(wθ, vϑ, u) = E(s,a)∼dD, (s′,a′)∼Tπ(s,a)[(γvϑ(s
′, a′)− vϑ(s, a))∇θwθ(s, a)]

− 1

4
E(s,a)∼dD [vϑ(s, a)

2∇θwθ(s, a)]

+ λuE(s,a)∼dD [wθ(s, a)],

∇ϑJ(wθ, vϑ, u) = (1− γ)E(s0,a0)∼dπ0
[∇ϑvϑ(s0, a0)]

+ E(s,a)∼dD, (s′,a′)∼Tπ(s,a)

�
wθ(s, a)

�
γ∇ϑvϑ(s

′, a′)−∇ϑvϑ(s, a)
#�

− 1

2
E(s,a)∼dD [wθ(s, a)vϑ(s, a)∇ϑvϑ(s, a)],

∇uJ(wθ, vϑ, u) = λ
�
E(s,a)∼dD [wθ(s, a)− 1]− u

!
.

4.4.3 Convergence

Since we now also include the undiscounted setting γ = 1, we have to include the additional
Assumption 4.4.1.

Assumption 4.4.1 (Markov chain regularity). The backwards Bellman equations (3.9) have a
unique solution, i.e., the stationary distribution dπ exists and is unique.

Theorem 4.4.2. Let Assumptions 4.3.1, 4.3.2, and 4.4.1 hold. Also, let φ∗ be Lipschitz-
continuous, let the psuedo-dimension of Fw and Fv be bounded and

∃CFw > 0 : ∀w ∈ Fw : ∥w∥∞ ≤ CFw .

Then, the error between GenDICE’s estimate ŵπ/D and wπ/D is bounded by

E
�
J(ŵπ/D)− J(wπ/D)

�
= Olog

�
ϵapprox(Fw,Fv) + ϵopt +

1√
n

$
.

The expectation is taken with respect to randomness both in the sampling of D ∼ pD and in the
algorithm. Olog simply ignores logarithmic factors.

4.5 Gradient stationary DIstribution Correction Estimation

GenDICE fixes some of the problems that DualDICE has. However, in doing so, it introduces
other problems [41].
Firstly, note that f -divergences are originally defined only for probability distributions. Ex-

tending the inputs of Dφ to generic functions will cause it to lose non-negativity. For example, if
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q > p > 0, then DKL(p ∥ q) < 0. However, as long as min{p, q} > 0, we still have Dχ2(p ∥ q) ≥ 0,
which is fortunate, since GenDICE actually uses this f -divergence.
Nevertheless, another problem arises when using the extra non-linear positive neuron (4.20),

to ensure wθ ≥ 0. Since objective J(w, v, u) is not necessarily non-decreasing in each wi, we
cannot assure that J(wθ, vϑ, u) is convex in θ, even if the extra positive neuron is convex [12,
p. 86].

Based on the ideas of GenDICE, Zhang et al. [41] present the algorithm GradientDICE. It tries
to solve the problems of GenDICE mentioned above, by using the L2(d

D)-norm instead of the
χ2-divergence, thereby removing the the necessity of the constraint w ≥ 0.

Not only do we cover the algorithm as in this section, we also mention important details,
omitted by Zhang et al. [41].

4.5.1 Objectives

Primal Objective

The primal objective that GradientDICE uses is similar to GenDICE,

min
w:S×A→R

J(w)
.
=

1

2
∥T π

Dw − w∥2L2(dD) +
λ

2

�
E(s,a)∼dD [w(s, a)]− 1

!2
.

Dual Objective

We apply the Fenchel–Moreau Theorem 2.2.10 to 1
2(·)2 and rewrite the first summand as

1

2
∥T π

Dw − w∥2L2(dD) = EdD
�1
2
(T π

Dw − w)2
�
= EdD

�
max
v∈R

(T π
Dw − w) v − 1

2
v2
�

= max
v:S×A→R

EdD
�
(DD)−1

�
(1− γ)dπ0 + γPπ

∗D
Dw

#
v
�
− EdD [wv]−

1

2
EdD [v

2].

= max
v:S×A→R

(1− γ)⟨dπ0 , v⟩+ γ⟨Pπ
∗D

Dw, v⟩ − ⟨DDw, v⟩ − 1

2
⟨dD, v2⟩

= max
v:S×A→R

(1− γ)⟨dπ0 , v⟩+ γ⟨dD, wPπv⟩ − ⟨dD, wv⟩ − 1

2
⟨dD, v2⟩.

Also doing this for the second summand, like we did for GenDICE, we get an objective

min
w:S×A→R≥0

max
v:S×A→R, u∈R

J(w, v, u)

.
= (1− γ)E(s0,a0)∼dπ0

[v(s0, a0)]

+ E(s,a)∼dD, (s′,a′)∼Tπ(s,a)

�
w(s, a)

�
γv(s′, a′)− v(s, a)

#�
− 1

2
E(s,a)∼dD

�
v(s, a)2

�
+ λ

�
E(s,a)∼dD [uw(s, a)− u]− 1

2
u2

$
.
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4.5.2 Implementation

Tabular

Using Remark 2.4.2, we can build the derivatives

∂w
1

2
∥T⃗ πD⃗Dw⃗ − D⃗Dw⃗∥2

(D⃗D)−1 = ∂w
1

2
∥(1− γ)d⃗π0 − A⃗1w⃗∥2(D⃗D)−1

= −�
(1− γ)d⃗π0 − A⃗1w⃗

#⊤
(D⃗D)−1A⃗1

= −(1− γ)(d⃗π0 )
⊤(D⃗D)−1A⃗1 + w⃗⊤A⃗⊤

1 (D⃗
D)−1A⃗1,

∂w
λ

2
((d⃗π0 )

⊤w⃗ − 1)2 = λ((d⃗π0 )
⊤w⃗ − 1)(d⃗π0 )

⊤

= λw⃗⊤d⃗π0 (d⃗
π
0 )

⊤ − λ(d⃗π0 )
⊤,

hence, the gradient is

∇wJ(w) =
�
A⃗⊤

1 (D⃗
D)−1A⃗1 + λd⃗π0 (d⃗

π
0 )

⊤#w⃗ − �
(1− γ)A⃗⊤

1 (D⃗
D)−1d⃗π0 + λd⃗π0

#
.

Setting the gradient to zero, and applying Remarks 3.5.3 and 3.5.4, we get the linear equation
system �

A⃗⊤
1 (D⃗

D)−1A⃗1 + λd⃗π0 (d⃗
π
0 )

⊤#w⃗π/D = (1− γ)A⃗⊤
1 (D⃗

D)−1d⃗π0 + λd⃗π0 .

Considering the Law of Large Numbers approximations d̂π0 , Â, and D̂D, Âp, from (4.9), (4.10),
(4.11), and (4.12), respectively, we get the approximate linear equation system,�

Â⊤
1 (D̂

D)−1Â1 + λd̂π0 (d̂
π
0 )

⊤#ŵπ/D = (1− γ)Â⊤
1 (D̂

D)−1d̂π0 + λd̂π0 .

Continuous

The implementation for the continuous setting is similar to that of DualDICE. In contrast to
GradientDICE, we do not require our parameterization for w to ensure non-negativity. Building
the gradients, we get

∇θJ(wθ, vϑ, u) = E(s,a)∼dD, (s′,a′)∼Tπ(s,a)[(γvϑ(s
′, a′)− vϑ(s, a))∇θwθ(s, a)]

+ λuE(s,a)∼dD [∇θwθ(s, a)],

∇ϑJ(wθ, vϑ, u) = (1− γ)E(s0,a0)∼dπ0
[∇ϑvϑ(s0, a0)]

+ E(s,a)∼dD, (s′,a′)∼Tπ(s,a)

�
wθ(s, a)

�
γ∇ϑvϑ(s

′, a′)−∇ϑvϑ(s, a)
#�

− E(s,a)∼dD [vϑ(s, a)∇ϑvϑ(s, a)],

∇uJ(wθ, vϑ, u) = λ
�
E(s,a)∼dD [wθ(s, a)− 1]− u

!
.

4.5.3 Convergence

We now want to prove some convergence results for GradientDICE, using a linear parame-
terization. To this end, consider the feature function x : S × A → RK and feature matrix
X ∈ R|S×A|×K from (4.17) and linear parameterizations

wθ(s, a)
.
= ⟨x(s, a), θ⟩ and vϑ(s, a)

.
= ⟨x(s, a), ϑ⟩ for (s, a) ∈ S ×A.
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We can choose a constant ξ ≥ 0 and perform ridge regularization,

min
θ∈RK

max
ϑ∈RK , u∈R

Jξ(wθ, vϑ, u)
.
= J(wθ, vϑ, u) +

ξ

2
∥θ∥22.

Building the gradients, using Remark 2.4.2, we get

∇θJξ(wθ, vϑ, u) = γE(s,a)∼dD, (s′,a′)∼Tπ(s,a)[⟨x(s′, a′), ϑ⟩x(s, a)]
− E(s,a)∼dD [⟨x(s, a), ϑ⟩x(s, a)]
− λuE(s,a)∼dD [x(s, a)]

+ ξθ,

∇ϑJξ(wθ, vϑ, u) = (1− γ)E(s0,a0)∼dπ0
[x(s0, a0)]

+ γE(s,a)∼dD, (s′,a′)∼Tπ(s,a)[⟨x(s, a), θ⟩x(s′, a′)]
− E(s,a)∼dD [⟨x(s, a), θ⟩x(s, a)]
− E(s,a)∼dD [⟨x(s, a), ϑ⟩x(s, a)],

∇uJξ(wθ, vϑ, u) = λ
�
⟨E(s,a)∼dD [x(s, a)], θ⟩ − 1− u

!
.

Replacing the expected values by samples,

(s0,t, st, at, s
′
t) ∼ pD, a0,t ∼ π(s0,t), a′t ∼ π(s′t),

x0,t
.
= x(s0,t, a0,t), xt

.
= x(st, at), x′t

.
= x(s′t, a

′
t),

and choosing a learning rate sequence (αt)t∈N, satisfying the Robbins-Monro conditions (2.18),
we get the SGDA formulation

θt+1
.
= θt − αt

�
γ⟨x′t, ϑt⟩xt − ⟨xt, ϑt⟩xt + λutxt + ξθt

#
,

ϑt+1
.
= ϑt + αt

�
(1− γ)x0,t + γ⟨xt, θt⟩x′t − ⟨xt, θt⟩xt − ⟨xt, ϑt⟩xt

#
,

ut+1
.
= ut + αtλ (⟨xt, θt⟩ − 1− ut) .

We can collect all parameters into a single vector κ⊤t
.
= (θ⊤t , ϑ⊤

t , ut). Then, we can rewrite a
step as κt+1

.
= κt + αt(Gt+1κt + gt+1), where

Gt+1
.
=

 −ξI xt(xt − γx′t)⊤ −λxt
−(xt − γx′t)x⊤t −xtx

⊤
t 0⃗

λx⊤t 0⃗ −λ

 and gt+1
.
=

 0⃗
(1− γ)x0,t

−λ

 .

We want to calculate the expected values G
.
= E[Gt+1] and g

.
= E[gt+1]. For the individual
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parts we have

E[xt(xt − γx′t)
⊤]

= E(s,a)∼dD, (s′,a′)∼Tπ(s,a)[x(s, a)(x(s, a)− γx(s′, a′))⊤]

=
,

(s,a)∈S×A

x(s, a)dD(s, a)

x(s, a)− γ
,

(s′,a′)∈S×A

T π(s′, a′ | s, a)x(s′, a′)
⊤

= X⊤D⃗D(I − γP⃗π)X =
�
X⊤(I − γP⃗π

∗ )D⃗
DX

!⊤
,

E[xt] = E(s,a)∼dD [x(s, a)] =
,

(s,a)∈S×A

x(s, a)dD(s, a) = X⊤dD,

E[xt,0] = E(s,a)∼dπ0
[x(s, a)] =

,
(s,a)∈S×A

x(s, a)dπ0 (s, a) = X⊤dπ0 ,

E[xtx⊤t ] =
,

(s,a)∈S×A

x(s, a)dD(s, a)x(s, a)⊤ = X⊤D⃗DX.

We define the matrices

Eγ
.
= X⊤(I − γP⃗π

∗ )D⃗
DX and E0

.
= X⊤D⃗DX.

Then, we get

G =

� −ξI E⊤
γ −λX⊤d⃗D

−Eγ −E0 0⃗

λ(X⊤d⃗D)⊤ 0⃗ −λ

& and g =

 0⃗

(1− γ)X⊤d⃗π0
−λ

 .

Now, we can finally formulate the SGDA convergence result in Theorem 4.5.6.

Assumption 4.5.1. X has full rank, i.e., linearly independent columns.

Remark 4.5.2. If we assume that DD > 0, Assumption 4.5.1 implies that E0 is positive definite.
Furthermore, since E0 ∈ RK×K is symmetric, ∥ · ∥E0 is a norm on CK . ■

Assumption 4.5.3. Eγ is non-singular or ξ > 0.

Remark 4.5.4. Sutton and Barto show that (I − γP⃗π∗ )D⃗D is positive definite for 0 ≤ γ < 1 [38,
pp. 206–207]. By Assumption 4.5.1, Eγ is positive definite. Remark 2.4.3 further implies that
Assumption 4.5.3 is satisfied for 0 ≤ γ < 1, even without ridge regularization, i.e., ξ = 0.

■

Assumption 4.5.5. The features x0,t, xt and x′t have uniformly bounded second moments.

Theorem 4.5.6. Let Assumptions 4.5.1, 4.5.3, and 4.5.5 hold. Then, we have

lim
t→∞κt = −G−1g almost surely.

Proof. Our goal is to apply the ODE Lemma 2.5.7. Rewrite the update for κt as

κt+1
.
= κt + αt(Gt+1κt + gt+1) = κt + αt(h(κt) +Mt+1), where (4.21)

h(κ)
.
= Gκ+ g, and Mt+1

.
= (Gt+1 −G)κt + (gt+1 − g).

56



1. We show that Assumption 2.5.5 is satisfied. For the first part, we verify that the sequence
(Mt)t∈N is a martingale difference sequence with respect to the filtration

Ft
.
= σ(κi−1,Mi)

t
i=1 = σ(x0,i, xi, x

′
i)
t−1
i=1.

Because all the random variables that Gt+1 and gt+1 are constructed from are x0,t, xt and x′t,
they are independent to Ft. On the other hand, the way we have rewritten κt in (4.21), we can
obtain it by using (κi)

t−1
i=0 and (Mi)

t
i=1, so it is Ft-measurable. This leads to

E[Mt+1 | Ft] = E[(Gt+1 −G)κt | Ft] + E[gt+1 − g | Ft]

= E[Gt+1 −G | Ft]κt + E[gt+1 − g | Ft]

= (E[Gt+1 | Ft]−G)κt + (E[gt+1 | Ft]− g)

= (E[Gt+1]−G)κt + (E[gt+1]− g) = 0.

For the last part, we define G̃t
.
= Gt −G and g̃t

.
= gt − g. Note that for all x ∈ R,

0 ≤ (x− 1)2 = x2 − 2x+ 1, so 2x ≤ x2 + 1 ≤ 2x2 + 1.

Now, define Ct
.
= 2max{∥G̃t+1∥2 + ∥G̃t+1∥ · ∥g̃t+1∥, ∥g̃t+1∥2} and use the Cauchy-Schwarz in-

equality, to show

∥Mt+1∥2 = ∥G̃t+1κt∥2 + 2⟨G̃t+1κt, g̃t+1⟩+ ∥g̃t+1∥2
≤ ∥G̃t+1κt∥2 + 2∥G̃t+1κt∥ · ∥g̃t+1∥+ ∥g̃t+1∥2
≤ ∥G̃t+1∥2∥κt∥2 + ∥G̃t+1∥(2∥κt∥)∥g̃t+1∥+ ∥g̃t+1∥2
≤ ∥G̃t+1∥2(2∥κt∥2 + 1) + ∥G̃t+1∥(2∥κt∥2 + 1)∥g̃t+1∥+ ∥g̃t+1∥2
≤ (∥G̃t+1∥2 + ∥G̃t+1∥ · ∥g̃t+1∥)(2∥κt∥2 + 1) + ∥g̃t+1∥2
≤ Ct(∥κt∥2 + 1).

Again, Ct is independent of Ft and κt is Ft-measurable, so

E[∥Mt+1∥2 | Ft] ≤ E[Ct(∥κt∥2 + 1) | Ft]

= E[Ct | Ft](∥κt∥2 + 1)

= E[Ct](∥κt∥2 + 1) ≤ sup
i∈N

E[Ci](∥κt∥2 + 1).

Since we assumed x0,t, xt and x′t to have uniformly bounded second moments, we also get
supi∈N E[Ci] < ∞.

2. We show that Assumption 2.5.4 is satisfied.
i. The function h is indeed Lipschitz continuous, because

∥h(y1)− h(y2)∥ = ∥(Gy1 − g)− (Gy2 − g)∥ = ∥G(y1 − y2)∥ ≤ ∥G∥ · ∥y1 − y2∥.
Defining the function h∞(y)

.
= Gy, we get....h(ry)r
− h∞(y)

.... =
...Gy − g

r
−Gy

... =
1

r
∥g∥ r→∞−−−→ 0.

ii. We need to prove that the origin 0⃗ ∈ Rn is an asymptotically stable equilibrium of the
ODE y′(t) = h∞(y(t)) = Gy(t). This can be done by checking that the real parts ℜ(l) < 0 for
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all eigenvalues l of G. For now, let l ̸= 0 be an eigenvalue of G with normalized eigenvector
κ ≠ 0, i.e., κ⊤κ = ∥κ∥2 = 1. If we let κ⊤ .

= (θ⊤, ϑ⊤, u), where θ ∈ CK , ϑ ∈ CK and u ∈ C, then

l = lκ⊤κ = κ⊤Gκ =

θ

ϑ
u

⊤� −ξI E⊤
γ −λX⊤d⃗D

−Eγ −E0 0⃗

λ(X⊤d⃗D)⊤ 0⃗ −λ

&
θ
ϑ
u

 (4.22)

= −ξθ
⊤
θ + θ

⊤
E⊤

γ ϑ− λuθ
⊤
X⊤d⃗D − ϑ

⊤
Eγθ − ϑ

⊤
E0ϑ+ λu(X⊤d⃗D)⊤θ − λuu

= −ξ∥θ∥2 − ∥ϑ∥2E0
− λ|u|2 + ℑ

�
θ
⊤
E⊤

γ ϑ− ϑ
⊤
Eγθ

!
−ℑ

�
λuθ

⊤
X⊤d⃗D − λu(X⊤d⃗D)⊤θ

!
.

In order to show that ℜ(l) < 0, we consider two cases. When γ < 1, we have ξ = 0 and l ̸= 0
implies that ϑ ̸= 0⃗ or u ̸= 0. When γ = 1, we have ξ > 0 and l ̸= 0 implies that θ ̸= 0⃗, ϑ ̸= 0⃗,
or u ̸= 0.

iii. It only remains to show that κ∗ .
= −G−1g is the unique globally asymptotically stable

equilibrium for the ODE y′(t) = h(y(t)) = Gy(t) + g.
Firstly, we want to show that G is non-singular, so we check for det(G) ̸= 0. Applying (2.15)

twice, we get

det(G) = −λ det

��−ξI E⊤
γ

−Eγ −E0

$
+ λ−1

�−λ2(X⊤d⃗D)(X⊤d⃗D)⊤ 0⃗

0⃗ 0⃗

$$
= (−1)2K+1λ det

�
ξI + λ(X⊤d⃗D)(X⊤d⃗D)⊤ −E⊤

γ

Eγ E0

$
= (−1)2K+1λ det(E0) det

�
ξI + λ(X⊤d⃗D)(X⊤d⃗D)⊤ + E⊤

γ E
−1
0 Eγ

#
.

Now, because λ > 0, all of our summands are positive semi-definite. According to Assumption
4.5.3, ξI or E⊤

γ E
−1
0 Eγ is strictly positive definite. Because the sum of positive semi-definite

matrices is positive semi-definite, and even positive definite if a single summand is positive
definite, this ensures det(G) ̸= 0. Since G is now verified to be non-singular, the linear equation
system 0 = h(κ) = Gκ+g only has κ∗ as solution, which means that it is the unique equilibrium.
For the global asymptotic stability, we use Ljapunov’s method and L(y)

.
= 1

2∥Gy + g∥2.
Applying the chain rule and Remark 2.4.2, we get ∇L(y) = G⊤(Gy + g). To verify that L is a
strict Ljapunov function for h, we consider y ∈ Rn, which is not an equilibrium, i.e., y ̸= −G−1g.
This means that κ

.
= Gy + g ̸= 0 is a real vector. We can reuse our calculation (4.22) from

earlier, and conclude analogously that

⟨∇L(y), h(y)⟩ = ⟨G⊤(Gy + g), Gy + g⟩ = κ⊤Gκ = −ξ∥θ∥2 − ∥ϑ∥2E0
− λ|u|2 < 0.

Thus, L is a strict Ljapunov function. Now, check that κ∗ is a strict minimum of L. We
notice that ∇L(κ∗) = 0 and the hessian matrix ∇2L(y) = GG⊤ is positive definite, since G is
non-singular, so for all y ∈ R2K+1,

y⊤∇2L(y)y = (G⊤y)⊤(G⊤y) = ∥G⊤y∥2 = 0 ⇐⇒ G⊤y = 0⃗ ⇐⇒ y = 0⃗.

Remark 4.5.7. A different perspective to solving for the optimal solution of our objective is to
set its gradient to zero. To do this as efficiently as possible, we combine our arguments into a
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single vector κ⊤ .
= (θ⊤, ϑ⊤, u) again. Then we can simplify the objective even more as

min
θ∈RK

max
ϑ∈RK , u∈R

Jξ(wθ, vϑ, u)

=
1

2

�
θ⊤ξIθ − ϑ⊤X⊤DDXϑ− uλu

!
− 1

2

�
ϑ⊤X⊤(I − γP⃗π

∗ )D
DXθ + θ⊤X⊤(I − γP⃗π

∗ )D
DXϑ

!
− 1

2

�
uλ(X⊤d⃗D)⊤θ + θ⊤λ(X⊤d⃗D)⊤u

!
−
�
(1− γ)X⊤d⃗π0

!⊤
ϑ− λu

=
1

2
κ⊤Hκ+ g⊤κ,

where

H
.
=

� ξI −E⊤
γ λx⊤d⃗D

−Eγ −E0 0⃗

λ(X⊤d⃗D)⊤ 0⃗ −λ

& .

Now, the overall gradient is simply

∇κJξ(wθ, vϑ, u) = Hκ+ g.

Define the invertible matrix σ
.
= diag(−IK , IK , 1). Since the θ-component of g is 0⃗, we have

σg = g. Also, by definition, σH = G. If we set the gradient to zero and multiply with σ, we get

0⃗ = σ(Hκ+ g) = Gκ+ g.

■
We now want to prove some consistency results, i.e., that the algorithm actually approximates

the stationary distribution correction w⃗π/D.
To this end, we invert the matrix

−G =

� ξI −E⊤
γ λX⊤d⃗D

Eγ E0 0⃗

− λ(X⊤d⃗D)⊤ 0⃗ λ

& .

Then, we use Theorem 4.5.6, to obtain θ, the part of κ∞, which relates to w⃗π/D. We do this,
by using Lemma 2.4.5 twice.
Firstly, we define

M
.
=

�
ξI −E⊤

γ

Eγ E0

$
and Ξ

.
= (M/E0)

−1 = (ξI + E⊤
γ E

−1
0 Eγ)

−1.

Note that by definition of E0, we have that Ξ is symmetric. We apply (2.17) to M and get

M−1 =

�
Ξ ΞE⊤

γ E
−1
0

−E−1
0 EγΞ E−1

0 + E−1
0 EγΞE

⊤
γ E

−1
0

$
.
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Secondly, we define

z
.
= ΞX⊤d⃗D and β

.
=

1

λ
(−G/M)

=
1

λ

�
λ−

�
−λ(X⊤d⃗D)⊤ 0⃗

!
M−1

�
λX⊤d⃗D

0⃗

$$
= 1 + λ(X⊤d⃗D)⊤Ξ(X⊤d⃗D)

= 1 + λz⊤Ξ−1z.

Now, we can calculate the blocks of −G−1 as

M−1 +M−1

�
λX⊤d⃗D

0⃗

$
β−1

λ

�
−λ(X⊤d⃗D)⊤ 0⃗

!
M−1

= M−1 − λβ−1

�
ΞX⊤d⃗D

−E−1
0 EγΞX

⊤d⃗D

"�
ΞX⊤d⃗D

E−1
0 EγΞX

⊤d⃗D

"⊤

= M−1 − λβ−1

�
Ξ(X⊤d⃗D)(X⊤d⃗D)⊤Ξ Ξ(X⊤d⃗D)(X⊤d⃗D)⊤ΞE⊤

γ E
−1
0

−E−1
0 EγΞ(X

⊤d⃗D)(X⊤d⃗D)⊤Ξ −E−1
0 EγΞ(X

⊤d⃗D)(X⊤d⃗D)⊤ΞE⊤
γ E

−1
0

"

=

�
Ξ + λβ−1zz⊤ ΞE⊤

γ E
−1
0 − λβ−1zz⊤E⊤

γ E
−1
0

−E−1
0 EγΞ + λβ−1E−1

0 Eγzz
⊤ E−1

0 + E−1
0 EγΞE

⊤
γ E

−1
0 − λβ−1E−1

0 Eγzz
⊤E⊤

γ E
−1
0

$
,

−M−1

�
λX⊤d⃗D

0⃗

$
β−1

λ
= −β−1

�
ΞX⊤d⃗D

−E−1
0 EγΞX

⊤d⃗D

"
=

� −β−1z

β−1E−1
0 Eγz

$
,

−β−1

λ

�
−λ(X⊤d⃗D)⊤ 0⃗

!
M−1 = β−1

�
(X⊤d⃗D)⊤Ξ −(X⊤d⃗D)⊤ΞE⊤

γ E
−1
0

!
=

�
β−1z⊤ −β−1z⊤E⊤

γ E
−1
0

#
.

Finally, we use (2.16) to calculate

−G−1 =

���
Ξ + λβ−1zz⊤ ΞE⊤

γ E−1
0 − λβ−1zz⊤E⊤

γ E−1
0 −β−1z

−E−1
0 EγΞ + λβ−1E−1

0 zz⊤ E−1
0 + E−1

0 EγΞE
⊤
γ E−1

0 − λβ−1E−1
0 Eγzz

⊤E⊤
γ E−1

0 β−1E−1
0 Eγz

β−1z⊤ −β−1z⊤E⊤
γ E−1

0 λβ−1

��� .

Multiplying with g, we can derive a formula for

θ∞ =
�
ΞE⊤

γ E
−1
0 − λβ−1zz⊤E⊤

γ E
−1
0

!
(1− γ)X⊤d⃗π0 + β−1zλ

= (1− γ)ΞE⊤
γ E

−1
0 X⊤d⃗π0 + λβ−1z

�
1− (1− γ)z⊤E⊤

γ E
−1
0 X⊤d⃗π0

!
. (4.23)

While Zhang et al. [41] have a consistency proof for the undiscounted case with Proposition
4.5.10, they are missing one for the discounted setting. We add such a statement in the form
of Proposition 4.5.8.

Proposition 4.5.8. Let Assumptions 4.5.1, 4.5.5 and 4.2.1 hold. Furthermore, assume that
ξ = 0 and Eγ is non-singular. Then

Xθ∞ = w⃗π/D.
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Proof. By the definition of the stationary distribution correction wπ/D, and the backwards
Bellman equations (3.9) respectively,

(D⃗D)−1d⃗π = w⃗π/D ⇐⇒ d⃗π = D⃗Dw⃗π/D,

d⃗π = (1− γ)d⃗π0 + γP⃗π
∗ d⃗

π ⇐⇒ (1− γ)d⃗π0 = (I − γP⃗π
∗ )d⃗

π = A1w⃗π/D.

The following matrix can be checked to be a projection onto the range of X,

P
.
= X(X⊤A1X)−1X⊤A1.

Applying both of these identities yields

(1− γ) XE−1
γ X⊤d⃗π0 = Pw⃗π/D.

Because ξ = 0, we have

Ξ−1 = E⊤
γ E

−1
0 Eγ , z = E−1

γ E0(E
−1
γ )⊤X⊤d⃗D,

Ξ = E−1
γ E0(E

−1
γ )⊤, z⊤ = (d⃗D)⊤XE−1

γ E0(E
−1
γ )⊤.

Putting it together with (4.23), we get

Xθ∞ = (1− γ)XE−1
γ E0(E

−1
γ )⊤E⊤

γ E
−1
0 X⊤d⃗π0

+ λβ−1z(1− (1− γ)(d⃗D)⊤XE−1
γ E0(E

−1
γ )⊤E⊤

γ E
−1
0 X⊤d⃗π0 )

= (1− γ)XE−1
γ X⊤d⃗π0 + λβ−1z(1− (1− γ)(d⃗D)⊤XE−1

γ X⊤d⃗π0 )

= Pw⃗π/D +
1− (d⃗D)⊤Pw⃗π/D
1/λ+ z⊤Ξ−1z

z.

Finally, we use assumption 4.2.1 to get

Pw⃗π/D = w⃗π/D and (d⃗D)⊤Pw⃗π/D = (d⃗D)⊤w⃗π/D = 1.

Remark 4.5.9. Unfortunately, in practice we are faced with the issue of having to chose the
feature matrix X ad hoc. This means that we cannot take assumption 4.2.1 for granted.
Now, we cannot say anything about the expectation of our projected stationary distribution

correction Pw⃗π/D being equal to one. Hence, the fraction as in the proof of Proposition 4.5.8
does not necessarily vanish.
Also, it is unclear, whether P is an orthogonal projection onto the range of X with respect

to the scalar product ⟨, ⟩A1 . In Remark 4.5.4 we already established that A1 is positive definite,
but it is not necessarily symmetric. By the Hilbert space projection theorem, this would have
led to

Pw⃗π/D = argmin
�∥w⃗ − w⃗π/D∥2A1

// w⃗ ∈ ran(X)
�
.

■
Non-singularity of Eγ for 0 ≤ γ < 1 is discussed in Remark 4.5.4. In case γ = 1, we cannot

apply Proposition 4.5.8, but we still have Proposition 4.5.10.
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Proposition 4.5.10. Let Assumptions 4.5.1, 4.5.5 and 4.2.1 hold. Furthermore, assume that
γ = 1 and XE−1

0 X⊤ is non-singular. Consider the eigendecomposition

E⊤
γ E

−1
0 Eγ = V ΛV ⊤, where

V orthogonal, Λ = diag(λ1, . . . , λr, 0, . . . , 0), λ1 ≥ · · · ≥ λr > 0.

Let v
.
= V ⊤X⊤d⃗D and j = r + 1, . . . ,K, such that vj ̸= 0. Then

Xθ∞,ξ
ξ↓0−−→ w⃗π/D.

Proof. Since XE−1
0 X⊤ is symmetric and positive semi-definite and we assumed that it is non-

singular, it even is positive definite. Therefore, according to Remarks 3.5.3 and 3.5.4, it suffices
to show that

ϵ1(ξ)
.
= ∥D⃗DT⃗ π

DXθ∞,ξ − D⃗DXθ∞,ξ∥2XE−1
0 X⊤

ξ↓0−−→ 0 and ϵ2(ξ)
.
= (X⊤d⃗D)⊤θ∞,ℓ − 1

ξ↓0−−→ 0.

We calculate the auxiliary quantities

Ξ = (ξI + V ΛV ⊤)−1 = (V (ξI + Λ)V ⊤)−1 = V (ξI + Λ)−1V ⊤,

z = V (ξI + Λ)−1V ⊤X⊤d⃗D = V (ξI + Λ)−1v,

β = 1 + λ(d⃗D)⊤XV (ξI + Λ)−1V ⊤X⊤d⃗D = 1 + λv⊤(ξI + Λ)−1v.

Applying this, together with γ = 1, to (4.23), we get

θ∞,ξ = λβ−1z = λ(1 + λv⊤(ξI + Λ)−1v)−1V (ξI + Λ)−1v.

Firstly, we take care of

ϵ1(ξ) = ∥(I − P⃗π
∗ )D⃗

DXθ∞,ξ∥2XE−1
0 X⊤

= θ⊤∞,ξX
⊤D⃗D(I − P⃗π)XE−1

0 X⊤(I − P⃗π
∗ )D⃗

DXθ∞,ξ

= θ⊤∞,ξE
⊤
γ E

−1
0 Eγθ∞,ξ

= (V ⊤θ∞,ξ)
⊤Λ(V ⊤θ∞,ξ)

=
λ2v⊤Λ(ξI + Λ)−2v

(1 + λv⊤(ξI + Λ)−1v)2
.

Secondly, we treat

ϵ2(ξ) + 1 = (d⃗D)⊤Xθ∞,ξ

= λ(1 + v⊤(ξI + Λ)−1v)−1(d⃗D)⊤XV (ξI + Λ)−1v

=
λv⊤(ξI + Λ)−1v

1 + λv⊤(ξI + Λ)−1v
, .

Notice that

v⊤Λ(ξI + Λ)−2v =

r,
i=1

v2i
λ2
i

(ξ + λi)2
and v⊤(ξI + Λ)−1v =

r,
i=1

v2i
1

ξ + λi
+

K,
i=r+1

v2i
1

ξ
.

Since vj ̸= 0 and applying L’Hospital’s rule, respectively,

lim
ξ↓0

ϵ1(ξ) = 0 and lim
ξ↓0

ϵ2(ξ) + 1 = 1.
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4.6 Confidence Interval DIstribution Correction Estimation

In order to obtain confidence intervals instead of point estimates, in the offline behavior agnostic
setting, via distribution correction estimation, Dai et al. [13] introduce the algorithm CoinDICE.
Similar to DualDICE, it formulates an objective based on the Q-LP from Lemma 3.3.1.

Similar to an approach by Duchi et al. [14], Theorem 2.6.8 is applied to obtain an asymptotic
confidence interval for the policy value.

Not only do we cover the algorithm as in this section, we also mention important details,
omitted by Dai et al. [13].

4.6.1 Embedded Q-LP

Just like DualDICE, CoinDICE takes the dual of theQ-LP from Lemma 3.3.1 as a starting point.
However, a feature map φ : S × A → RK is chosen and we consider a relaxation that embeds
the constraints in a function space Fφ. For any β ∈ RK we define the function Qβ

.
= β⊤φ. We

collect them inside the K-dimensional subspace

Fφ
.
= {Qβ | β ∈ RK} = span{φi}Ki=1.

We get back our original formulation by choosing

K = |S ×A| and φ(s, a)
.
= ( s′=s, a′=a)(s′,a′)∈S×A.

The following Lemmas 4.6.1 and 4.6.2 discuss an Fφ-embedded version of the Q-LP from
Lemma 3.3.1.

Lemma 4.6.1 (embedded Q-LP). Let 0 < γ < 1. Then, the primal embedded Q-LP

ρπφ = min
β∈RK

(1− γ)E(s0,a0)∼dπ0
[Qβ(s0, a0)] (4.24)

s.t. ∀(s, a) ∈ S ×A : Qβ(s, a) ≥ r(s, a) + γPπQβ(s, a),

has the dual embedded Q-LP

ρπφ = max
d:S×A→R≥0

E(s,a)∼d[r(s, a)] (4.25)

s.t. ⟨φ, d⟩ = ⟨φ, (1− γ)dπ0 + γPπ
∗ d⟩.

Proof. Let LP(β, d) and LD(d, β) be the Lagrangian of the primal and dual embedded Q-LP
(4.24) and (4.25), respectively. By Lemma 3.2.3, Pπ∗ is the adjoint of Pπ. Thus, the conditions
of Lemma 2.2.2 hold,

LP(β, d) = (1− γ)E(s0,a0)∼dπ0
[Qβ(s0, a0)] + ⟨d,BπQβ −Qβ⟩

= (1− γ)⟨Qβ , d
π
0 ⟩+ ⟨r, d⟩+ γ⟨PπQβ , d⟩ − ⟨Qβ , d⟩

= E(s,a)∼d[r(s, a)] + β⊤⟨φ, (1− γ)dπ0 + γPπ
∗ d− d⟩ = LD(d, β).

Lemma 4.6.2. Consider the modified primal embedded Q-LP

min
β∈RK

∥Qπ −Qβ∥L1(dπ0 )
(4.26)

s.t. ∀(s, a) ∈ S ×A : Qβ(s, a) ≥ r(s, a) + γPπQβ(s, a).

It shares the same optimal solution with the primal embedded Q-LP (4.24).
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Proof. Consider an arbitrary β ∈ RK , where Qβ is feasible for the primal embedded Q-LP
(4.24), i.e., Qβ ≥ BπQβ . Since Bπ is a monotonic γ-contraction, we can apply Banach iteration
to Q and get

Qβ ≥ BπQβ ≥ (Bπ)2Qβ ≥ (Bπ)3Qβ ≥ · · · ≥ lim
t→∞(Bπ)tQβ = Qπ.

Therefore, we can omit the absolute value inside ∥Qβ −Qπ∥L1(dπ0 )
and get

Edπ0
[Qπ] + ∥Qβ −Qπ∥L1(dπ0 )

=

�
S×A

Qπ(s, a)dπ0 (s, a) ds da+

�
S×A

(Qβ(s, a)−Qπ(s, a))dπ0 (s, a) ds da

= Edπ0
[Qβ ].

Because Edπ0
[Qπ] = ρπ is constant in β,

arg min
β∈RK

Edπ0
[Qβ ] = arg min

β∈RK
∥Qπ −Qβ∥L1(dπ0 )

.

We can use Lemma 4.6.1 for Theorem 4.6.3. It states that the error we make, by embedding
our constraints, for estimating the policy value ρπ by ρπφ, can be bounded by how well we can
approximate Qπ by functions from Fφ.

Theorem 4.6.3 (CoinDICE approximation error). Assume that Fφ contains the constant one
function. Then

0 ≤ ρπφ − ρπ ≤ 2 min
β∈RK

∥Qπ −Qβ∥∞.

Proof. Consider the optimal solution to the embedded Q-LP from Lemma 4.6.1,

(d∗, β∗)
.
= arg min

β∈RK
max

d:S×A→R≥0

L(β, d).

Furthermore, let

β⋆
.
= arg min

β∈RK
∥Qπ −Qβ∥∞ and ϵ

.
= min

β∈RK
∥Qπ −Qβ∥∞ = ∥Qπ −Qβ⋆∥∞.

By the forwards Bellman equations (3.5) and the fact that the forwards Bellman operator is
a γ-contraction with respect to the norm ∥ · ∥∞, we get

BπQβ⋆ −Qπ ≤ sup
(s,a)∈S×A

|BπQβ⋆(s, a)−Qπ(s, a)| = ∥BπQβ⋆ − BπQπ∥∞ ≤ γϵ.

Now, let

(1− γ)c+ (1 + γ)ϵ
!
= 0 ⇐⇒ c

.
= −1 + γ

1− γ
ϵ =⇒ (1− γ)(ϵ+ |c|) = 2ϵ.

Because the expected Bellman operator Pπ is linear,

Bπ(Qβ⋆ − c) = r + γPπ(Qβ⋆ − c) = r + γPπQβ⋆ − γc = BπQβ⋆ − γc.
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By definition of β⋆ and ϵ, we have

Qπ = Qβ⋆ +Qπ −Qβ⋆ ≤ Qβ⋆ + ϵ.

Putting all of this together yields

Bπ(Qβ⋆ − c) = BπQβ⋆ − γc

≤ Qπ + γϵ− γc

≤ Qβ⋆ + ϵ+ γϵ− γc

= Qβ⋆ − c+ (1− γ)c+ (1 + γ)ϵ

= Qβ⋆ − c.

Recall that the solution Qπ to the primal Q-LP (3.10) is better than the solution Qβ∗ to the
embedded primal Q-LP (4.24). Thus,

0 ≤ ρπφ − ρπ = (1− γ)E(s,a)∼dπ0
[Qβ∗ ]− (1− γ)E(s,a)∼dπ0

[Qπ].

By our assumption, Qβ⋆ − c ∈ Fφ. Therefore, there exists a β̄ ∈ RK , such that Qβ̄ = Qβ⋆ − c.
We have just shown that Qβ̄ ≥ BπQβ̄ . So, Qβ̄ is a feasible solution. By Lemma 4.6.2, Qβ∗ is
the optimal solution to the modified embedded primal Q-LP (4.26). Therefore, we further get

≤ (1− γ)∥Qβ∗ −Qπ∥L1(dπ0 )
≤ (1− γ)∥Qβ̄ −Qπ∥L1(dπ0 )

.

Because dπ0 is a distribution, ∥ · ∥L1(dπ0 )
≤ ∥ · ∥∞. Applying the triangle inequality, we further

calculate

≤ (1− γ)∥Qβ̄ −Qπ∥∞ ≤ (1− γ)(∥Qβ̄ −Qβ⋆∥∞ + ∥Qβ⋆ −Qπ∥∞)

= (1− γ)(|c|+ ϵ) = 2ϵ.

The claim follows from the definition of ϵ.

4.6.2 Generalized Estimating Equations

We now want to rewrite the dual constraints from the embedded Q-LP in Lemma 4.6.1 as
generalized estimating equations in Lemma 4.6.4. To this end, we introduce a notation to
bundle the samples in the spaces

X
.
= S × S ×A× R× S and Y

.
= S ×A× S ×A× R× S ×A.

For any w : S ×A → R≥0, define the function

ι(·;w) :
�
Y → RK

y !→ (1− γ)φ(s0, a0) + w(s, a)(γφ(s′, a′)− φ(s, a)).

Integrating over a0 and a′ by using π, we define

ιπ(·;w) :
�
X → RK

x !→ Ea0∼π(s0), a′∼π(s′)[ι(s0, a0, s, a, r, s
′, a′;w)].
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Lemma 4.6.4 (generalized estimating equations). For any d ∈ ΔdD(S × A) we let w
.
= d/dD

and for any w : S ×A → R≥0 with E(s,a)∼dD [w(s, a)] = 1, we let d
.
= wdD. Then, we have

⟨φ, d⟩ = ⟨φ, (1− γ)dπ0 + γPπ
∗ d⟩ ⇐⇒ Ex∼pD [ι

π(x;w)] = 0⃗.

Proof. Firstly,

E(s0,a0)∼dπ0
[(1− γ)φ(s0, a0)] =

�
S×A

(1− γ)φ(s0, a0)d
π
0 (s0, a0) ds0 da0 = ⟨φ, (1− γ)dπ0 ⟩,

and secondly,

E(s,a)∼dD, (s′,a′)∼Tπ(s,a)[w(s, a)(γφ(s
′, a′)− φ(s, a))]

=

�
S×A

�
S×A

d(s, a)

dD(s, a)
(γφ(s′, a′)− φ(s, a))T π(s′, a′ | s, a)dD(s, a) ds da ds′ da′

=

�
S×A

φ(s′, a′)γ
�
S×A

d(s, a)T π(s′, a′ | s, a) ds da ds′ da′

−
�
S×A

φ(s, a)d(s, a)

�
S×A

T π(s′, a′ | s, a) ds′ da′ ds da

=

�
S×A

φ(s′, a′)γPπ
∗ d(s

′, a′) ds′ da′ −
�
S×A

φ(s, a)d(s, a) ds da

= ⟨φ, γPπ
∗ d⟩ − ⟨φ, d⟩.

Therefore,

Ex∼pD [ι
π(x;w)] = E(s0,a0)∼dπ0

[(1− γ)φ(s0, a0)]

+ E(s,a)∼dD, (s′,a′)∼Tπ(s,a)[w(s, a)(γφ(s
′, a′)− φ(s, a))]

= ⟨φ, (1− γ)dπ0 + γPπ
∗ d⟩ − ⟨φ, d⟩.

By substituting w = d/dD and using the generalized estimating equations, we rewrite the
dual embedded Q-LP (4.25) as

ρπφ = max
w:S×A→R≥0

E(s,a)∼dD [w(s, a)r(s, a)] (4.27)

s.t. Ex∼pD [ι
π(x;w)] = 0⃗.

Consider the Lagrangian integrand

ℓ(·;w, β) :
�
Y → R
y !→ w(s, a)r(s, a) + β⊤ι(y;w).

We can rewrite it as

ℓ(y;w, β) = w(s, a)r(s, a) (4.28)

+ (1− γ)β⊤φ(s0, a0)

+ w(s, a)(γβ⊤φ(s′, a′)− β⊤φ(s, a))
= (1− γ)Qβ(s0, a0)

+ w(s, a)(r(s, a) + γQβ(s
′, a′)−Qβ(s, a)).
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Integrating over a0 and a′ by using π, we define

ℓπ(·;w, β) :
�
X → R
x !→ Ea0∼π(s0), a′∼π(s′)[ℓ(s0, a0, s, a, r, s

′, a′;w, β)].

Now, (4.27) is an LP. By Lagrange duality (2.9), we get

ρπφ = max
w:S×A→R≥0

min
β∈RK

Ex∼pD [ℓ
π(x;w, β)] = min

β∈RK
max

w:S×A→R≥0

Ex∼pD [ℓ
π(x;w, β)]. (4.29)

4.6.3 Confidence Interval Derivation

We now want to leverage Theorem 2.6.8, to find a confidence interval for our estimator ρπφ. Our
confidence interval can be formulated by using (4.27) or (4.29), as

Cf
n,ξ

.
=

	
max

w:S×A→R≥0

Ex∼p[w(s, a)r(s, a)]

//// p ∈ Bf
ξ/n(p̂

D), Ex∼p[ι
π(x;w)] = 0

�
=

	
max

w:S×A→R≥0

min
β∈RK

Ex∼p[ℓ
π(x;w, β)]

//// p ∈ Bf
ξ/n(p̂

D)
�

=

	
min
β∈RK

max
w:S×A→R≥0

Ex∼p[ℓ
π(x;w, β)]

//// p ∈ Bf
ξ/n(p̂

D)
�

Since the objective of Cf
n,ξ ⊂ R is convex in p and the constraints are a convex, the set is

also convex. The same goes for closedness. Therefore, we are dealing with a closed interval.
Theorem 4.6.9 claims, that Cf

n,ξ is a confidence interval.

Assumption 4.6.5 (Stationary ratio regularity). Let Hw be a bounded RKHS, with kernel
function k bounded byK < ∞. The stationary distribution correction wπ/D is part of a compact
subset Fw ⊂ Hw, where

∃Cw < ∞ : ∀w ∈ Fw : ∥w∥∞ ≤ Cw.

Assumption 4.6.5 together with (2.10) shows that

∀w ∈ Fw, ∀(s, a) ∈ S ×A : |w(s, a)| ≤ K∥w∥Fw .

Assumption 4.6.6 (Embedding feature regularity). Let Fβ ⊆ RK be a compact set of feature
coefficients. The features and their coefficients are universally bounded, i.e.,

∃Cφ < ∞ : ∥φ∥2 ≤ Cφ and ∃Cβ < ∞ : ∀β ∈ Fβ : ∥β∥2 ≤ Cβ .

Assumption 4.6.6 and the Cauchy-Schwarz inequality imply

∀β ∈ Fβ , ∀(s, a) ∈ S ×A : |Qβ(s, a)| = |β⊤φ(s, a)| ≤ ∥β∥2∥φ(s, a)∥2 ≤ CβCφ.

Lemma 4.6.7. Let Assumptions 4.6.5 and 4.6.6 hold. Then ℓ(y;w, β) is bounded and Cℓ-
Lipschitz-continuous in (w, β) with some Cℓ ∈ R.

Proof. 1. ℓ(y;w, β) is bounded, because

|ℓ(y;w, β)| = (1− γ)|Qβ(s0, a0)|+ |w(s, a)|(|r(s, a)|+ γ|Qβ(s
′, a′)|+ |Qβ(s, a)|)

≤ (1− γ)CβCφ + Cw(rmax + (1 + γ)CβCφ).
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2. ℓ(y;w, β) is Lipschitz-continuous in (w, β), because

|ℓ(y;w1, β1)− ℓ(y;w2, β2)|
=

/// �w1(s, a)r(s, a) + β⊤
1 ((1− γ)φ(s0, a0) + w1(s, a)(γφ(s

′, a′)− φ(s, a)))
!

−
�
w2(s, a)r(s, a) + β⊤

2 ((1− γ)φ(s0, a0) + w2(s, a)(γφ(s
′, a′)− φ(s, a)))

! ///
≤ (1− γ)|(β1 − β2)

⊤φ(s0, a0)|+ |(w1(s, a)− w2(s, a))r(s, a)|
+
/// �w1(s, a)β

⊤
1 (γφ(s

′, a′)− φ(s, a))
!
+
�
w1(s, a)β

⊤
2 (γφ(s

′, a′)− φ(s, a))
!

−
�
w1(s, a)β

⊤
2 (γφ(s

′, a′)− φ(s, a))
!
−
�
w2(s, a)β

⊤
2 (γφ(s

′, a′)− φ(s, a))
! ///

≤ (1− γ)|(β1 − β2)
⊤φ(s0, a0)|+ |(w1(s, a)− w2(s, a))r(s, a)|

+
///w1(s, a)(β1 − β2)

⊤(γφ(s′, a′)− φ(s, a))
///

+
///(w1(s, a)− w2(s, a))β

⊤
2 (γφ(s

′, a′)− φ(s, a))
///

≤ (1− γ)∥β1 − β2∥2∥φ(s0, a0)∥2 + |w1(s, a)− w2(s, a)|rmax

+ |w1(s, a)|∥β1 − β2∥2(γ∥φ(s′, a′)∥2 + ∥φ(s, a)∥2)
+ |w1(s, a)− w2(s, a)|∥β2∥2(γ∥φ(s′, a′)∥2 + ∥φ(s, a)∥2)

≤ (1− γ)∥β1 − β2∥2Cφ +K∥w1 − w2∥Fwrmax

+ Cw∥β1 − β2∥2(1 + γ)Cφ + ∥w1 − w2∥FwCβ(1 + γ)Cφ

≤ Cℓ(∥β1 − β2∥2 + ∥w1 − w2∥Fw),

where

Cℓ
.
= max{(1 + Cw)(1− γ)Cφ,Krmax + (1 + γ)CφCβ}.

Lemma 4.6.8. Let Assumptions 4.6.6 and 4.6.5 hold. Consider the class of functions

H .
= {ℓπ(·;w, β) | w ∈ Fw, β ∈ Fβ}

and the functional

L∗ :

�
P(X) → R
P !→ minβ∈Fβ

maxw∈Fw EP [ℓ
π(·;w, β)].

Let

P ∈ P(X) and (β∗, w∗) .
= arg min

β∈Fβ

max
w∈Fw

EP [ℓ
π(·;w, β)].

Then L∗ is Hadamard differentiable at P tangentially to B(H, P ) ⊂ L∞(H)
with Hadamard derivative

∂L∗
P (H) = Hℓπ(·;w∗, β∗), where H ∈ B(H, P ).

In particular, ∂L∗
P is a bounded linear functional on the space of bounded measures with the

canonical gradient as influence function

L(1)(·;P )
.
= ℓπ(·;w∗, β∗)− EP [ℓ

π(·;w∗, β∗)].
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Proof. Chose (tn)n∈N ⊂ R and (Hn)n∈N ⊂ H, such that

tn
n→∞−−−→ 0, ∥Hn −H∥L∞(H)

n→∞−−−→ 0, and P + tnHn ∈ P(X) for all n ∈ N.

Firstly, we show upper bound convergence. Start with

L∗(P + tnHn)− L∗(P )

= min
β∈Fβ

max
w∈Fw

�
EP [ℓ

π(·;w, β)] + tnHnℓ
π(·;w, β)#− min

β∈Fβ

max
w∈Fw

EP [ℓ
π(·;w, β)]

≤ max
w∈Fw

�
EP [ℓ

π(·;w, β∗)] + tnHnℓ
π(·;w, β∗)

#− EP [ℓ
π(·;w, β∗)]

≤ max
w∈Fw

tnHnℓ
π(·;w, β∗).

Define

w∗
n

.
= arg max

w∈Fw

Hnℓ
π(·;w, β∗).

Then,

max
w∈Fw

Hnℓ
π(·;w, β∗)− max

w∈Fw

Hℓπ(·;w, β∗) ≤ Hnℓ
π(·;w∗

n, β
∗)−Hℓπ(·;w∗

n, β
∗) ≤ ∥Hn −H∥L∞(H).

Therefore,

lim sup
n→∞

L∗(P + tnHn)− L∗(P )

tn
≤ Hℓπ(·;w∗, β∗).

Secondly, we show lower bound convergence. Define

wn(β)
.
= arg max

w∈Fw

�
EP [ℓ

π(·;w, β)] + tnHnℓ
π(·;w, β)#

Then,

L∗(P + tnHn)

= min
β∈Fβ

max
w∈Fw

EP [ℓ
π(·;w, β)] + tnHnℓ

π(·;w, β)

= min
β∈Fβ

EP [ℓ
π(·;wn(β), β)]

+ tn
�
Hnℓ

π(·;wn(β), β)−Hℓπ(·;wn(β), β)
#
+ tnHℓπ(·;wn(β), β)

≤ min
β∈Fβ

EP [ℓ
π(·;wn(β), β)] + tn∥Hn −H∥L∞(H) + tn∥H∥L∞(H)

≤ min
β∈Fβ

EP [ℓ
π(·;wn(β), β)] +O(tn).

Define the ϵ-ball

Bϵ(P )
.
=

	
β′ ∈ Fβ

//// max
w∈Fw

EP [ℓ
π(·;w, β′)] ≤ min

β∈Fβ

max
w∈Fw

EP [ℓ
π(·;w, β)] + ϵ

�
.

For every n ∈ N, take a solution β∗
n ∈ B0(P + tnHn). According to the above, this means

that there exists a C > 0 such that β∗
n ∈ BtnC(P ), for every n ∈ N. This means that (β∗

n)n∈N
is bounded and therefore, has a convergent sub sequence against β∗ ∈ B0(P ). W.l.o.g. let
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(β∗
n)n∈N be that sub sequence itself. Because ℓπ(·;w, β) is bounded and Lipschitz-continuous in

(w, β), we have that

lim
n→∞ max

w∈Fw

EP [ℓ
π(·;w, β∗

n)] = L∗(P ).

Due to optimality, we also have

inf
n∈N

max
w∈Fw

EP [ℓ
π(·;w, β∗

n)] ≥ L∗(P ).

Define

wn
.
= arg max

w∈Fw

EP [ℓ
π(·;w, β∗

n)].

Then,

L∗(P + tnHn)− L∗(P )

≥ max
w∈Fw

EP [ℓ
π(·;w, β∗

n)] + tnHnℓ
π(·;w, β∗

n)− max
w∈Fw

EP [ℓ
π(·;w, β∗

n)]

≥ EP [ℓ
π(·;wn, β

∗
n)] + tnHnℓ

π(·;wn, β
∗
n)− EP [ℓ

π(·;wn, β
∗
n)]

= tnHnℓ
π(·;wn, β

∗
n).

Also, we have wn
n→∞−−−→ w∗, so

|Hnℓ
π(·;wn, β

∗
n)−Hℓπ(·;w∗, β∗)|

≤ |Hnℓ
π(·;wn, β

∗
n)−Hℓπ(·;wn, β

∗
n)|+ |Hℓπ(·;wn, β

∗
n)−Hℓπ(·;w∗, β∗)|

≤ ∥Hn −H∥L∞(H) + |Hℓπ(·;wn, β
∗
n)−Hℓπ(·;w∗, β∗)| n→∞−−−→ 0.

Therefore,

lim inf
n→∞

L∗(P + tnHn)− L∗(P )

tn
≥ Hℓπ(·;w∗, β∗).

Theorem 4.6.9 (CoinDICE asymptotic coverage). Let D contain i.i.d. samples and the em-
bedded Q-LP from Lemma 4.6.1 have a unique solution. Also, let Assumptions 2.6.6, 4.6.5 and
4.6.6 hold. Then, we have that C

n,χ2,1−α
(1)

is an asymptotic (1−α)-confidence interval of ρπ, i.e.,

lim
n→∞P

�
ρπ ∈ Cf

n,ξ

!
= P

�
χ2
(1) ≤ ξ

!
.

Proof. We will apply Theorem 2.6.8 to prove this claim. Recall the definitions in lemma 4.6.7
4.6.8. By Lemma 4.6.7, ℓπ(·;w, β) is bounded and Lipschitz continuous in (w, β). By Assump-
tions 4.6.5 and 4.6.6, the sets Fw and Fβ are both compact. Finally, H ⊂ L2(P

D). By Lemma
2.6.5, H is pD-Donsker with L2-integrable envelope. Lemma 4.6.8 provides the last requirements
to apply Theorem 2.6.8.
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4.6.4 Confidence Interval Calculation

In the following Theorem 4.6.10, we discuss how to calculate the lower and upper bound for our
confidence interval Cf

n,ξ.

Theorem 4.6.10 (CoinDICE upper and lower confidence bounds). Let ln and un denote the

lower and upper confidence bounds of Cf
n,ξ, respectively. Then

ln = min
β∈RK

max
w:S×A→R≥0

min
p∈Bf

ξ/n
(p̂D)

Ex∼p[ℓ
π(x;w, β)],

= min
β∈RK

max
w:S×A→R≥0

min
λ∈R≥0,
η∈R

Ex∼p̂D

�
−λf∗

�
η − ℓπ(x;w, β)

λ

$
− λ

ξ

n
+ η

�
,

un = max
w:S×A→R≥0

min
β∈RK

max
p∈Bf

ξ/n
(p̂D)

Ex∼p[ℓ
π(x;w, β)].

= max
w:S×A→R≥0

min
β∈RK

min
λ∈R≥0,
η∈R

Ex∼p̂D

�
λf∗

�
ℓπ(x;w, β)− η

λ

$
+ λ

ξ

n
+ η

�
.

The optimal weights for lower and upper confidence bounds, respectively, are

pl = f ′
∗

�
η − ℓπ(x;w, β)

λ

$
p̂D(x) and pu = f ′

∗

�
ℓπ(x;w, β)− η

λ

$
p̂D(x). (4.30)

Proof. W.l.o.g. we only calculate the upper bound un.
By (4.28), one can see that ℓ(x;w, β) is linear in w and β, respectively. Also, Bf

ξ/n(p̂
D) is

compact and convex and RK is convex anyways. Therefore, we can apply Sion’s theorem and
get

un = max
p∈Bf

ξ/n
(p̂D)

max
w:S×A→R≥0

min
β∈RK

Ex∼p[ℓ
π(x;w, β)]

= max
w:S×A→R≥0

max
p∈Bf

ξ/n
(p̂D)

min
β∈RK

Ex∼p[ℓ
π(x;w, β)]

= max
w:S×A→R≥0

min
β∈RK

max
p∈Bf

ξ/n
(p̂D)

Ex∼p[ℓ
π(x;w, β)].

This proves the first claim.
For the second claim, we rewrite the inner maximization in terms of a Lagrangian. Since

Df (p ∥ p̂D) and ∥p∥1 are convex and linear in p : S × A → R≥0, respectively, we can apply
Lagrange duality (2.9) and get

max
p∈Bf

ξ/n
(p̂D)

Ex∼p[ℓ
π(x;w, β)]

= max
0≤p≪p̂D

min
λ∈R≥0,
η∈R

Ex∼p[ℓ
π(x;w, β)]− λ

�
Df (p ∥ p̂D)− ξ

n

$
− η (∥p∥1 − 1)

= min
λ∈R≥0,
η∈R

max
0≤p≪p̂D

Ex∼p[ℓ
π(x;w, β)]− λ

�
Df (p ∥ p̂D)− ξ

n

$
− η (∥p∥1 − 1) .

Again, we rewrite the inner maximization. This time, we use the substitution

q = p/p̂D for 0 ≤ p ≪ p̂D ⇐⇒ p = qp̂D for q : S ×A → R≥0.
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We get

max
0≤p≪p̂D

Ex∼p[ℓ
π(x;w, β)]− λEx∼p̂D

�
f

�
p(x)

p̂D(x)

$�
+ λ

ξ

n
− ηEx∼p[1] + η

= max
q:S×A→R≥0

Ex∼p̂D [ℓ
π(x;w, β)q(x)]− λEx∼p̂D [f(q(x))]− ηEx∼p̂D [q(x)] + λ

ξ

n
+ η

= Ex∼p̂D

�
λ max

q∈R≥0

�
ℓπ(x;w, β)− η

λ
q − f(q)

$
+ λ

ξ

n
+ η

�
= Ex∼p̂D

�
λf∗

�
ℓπ(x;w, β)− η

λ

$
+ λ

ξ

n
+ η

�
.

Now, the optimal q(x) is given by

f ′
∗

�
ℓπ(x;w, β)− η

λ

$
.

By applying our substitution p(x) = q(x)p̂D(x), we prove the second claim.

We now want to leverage Theorem 4.6.10, to come up with an explicit algorithm, to calculate
the lower an upper confidence bound.

Remark 4.6.11. Consider a distribution p ∈ Δp̂D . By (2.2) it takes the form

n,
i=1

pi s0,i=s0, si=s, ai=a, s′i=s′ , where p⃗ = (p1, . . . , pn)
⊤ ∈ Δn.

Therefore,

Ex∼p[ℓ
π(x;w, β)] =

n,
i=1

piℓi(w, β) = ⟨p⃗, ℓ⃗(w, β)⟩, where

ℓi(w, β)
.
= ℓπ(s0,i, si, ai, ri, s

′
i;w, β), i = 1, . . . , n.

We can obtain ℓ⃗(w, β) from the dataset D and evaluation policy π.
■

For now, we will fix β ∈ RK and w : S × A → R≥0. From the KKT-conditions, we gather
that

Df (p ∥ p̂D) =
1

n

n,
i=1

f(npi) =
ξ

n
. (4.31)

In order to apply (4.30), we need to further specify our f -divergence. We consider the modified
KL divergence (2.23). Using Lemma 2.2.9, we get

f ′(x) = 2

�
log x+ x

1

x

$
− 2 = 2 log x and f ′

∗(y) = (f ′)−1(y) = ey/2.

Plugging into (4.30) gives us

pi = exp

�
±η − ℓi

2λ

$
1

n
= exp

�
∓ ℓi
2λ

$+
n exp

�
± η

2λ

!
.
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Now, we use the fact that p⃗ must be a distributional vector and get

1 =
n,

i=1

pi =
n,

i=1

exp

�
∓ ℓi
2λ

$+
n exp

�
± η

2λ

!
.

Finally the optimal weights for lower and upper confidence bounds, respectively, are

p⃗λ = softmax

�
∓ ℓ

2λ

$
,

where we have to chose the λ ≥ 0 such that p⃗λ that satisfies the KKT-condition (4.31).
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5 Environments

5.1 General

Since we require our environments to have an infinite horizon, but in practice, this is rarely the
case, we apply two custom Wrapper1 objects from OpenAI Gym to still achieve it.

• AbsorbingWrapper. In this scenario, once the terminate flag is True, the environment
neglects all actions. It either stays in the same absorbing state [38] or acts on “auto
pilot,” e.g. in Cartpole the pole would swing without the cart moving. In any case, some
absorbing reward (usually zero) is handed out.

• LoopingWrapper. Instead of neglecting actions, the environment is immediately reset
using its initial state distribution, applying Env.reset(). Assuming that the state-action-
space is finite and it never enters any loops prior to termination, we achieve ergodicity.
This makes looping an attractive option for the undiscounted setting.

Remark 5.1.1. For applications where we want to achieve a specific goal similar to reaching the
end of a maze, e.g. successfully curing a patient, we apply absorbing with absorbing reward
zero. As reward function we use

R(s, a, s′) .
=

�
1, if the goal is reached in s′, but not in s,

0, else.

Also, let H be the (possibly infinite) random variable hitting time for the time step at which
the goal is first reached, i.e.,

H
.
= inf{t ∈ N | goal is first reached at time t}.

Considering our reward function, the policy value is computed as follows

ρπ,γ = (1− γ)E[γH ].

For lower γ, we get a higher penalty for taking longer to reach the goal. The closer γ moves
towards 1, the lower this penalty gets. Taking the limit and using dominated convergence, we
see that the scaled policy value converges towards the success rate, i.e.,

lim
γ→1

E[γH ] = lim
γ→1

�
E[γH | H < ∞]� �� �

<1

P(H < ∞) + E[γH | H = ∞]� �� �
0

P(H = ∞)
!

= E
�
lim
γ→1

γH
//// H < ∞

�
� �� �

1

P(H < ∞) = P(goal is reached).

■
1https://gymnasium.farama.org/api/wrappers/

74

https://gymnasium.farama.org/api/wrappers/


5.2 Boyan Chain

In order to compare our algorithms in an environment, where we can determine the stationary
distribution correction wπ/D and policy value ρπ analytically, we use BoyanChain [11, 41]. The
initial state distribution dπ0 , transition matrix Pπ, and reward function r are explicitly stated
in Figure 5.1. We choose dD to be uniform on S × A. With this information, we can solve the
modified backwards Bellman equations (3.17) explicitly.

sN sN−1 sN−2 . . . s2 s1 s0

a1

a0 a0 a0 a0 a0 a0

a1 a1 a1 a1

a1

Figure 5.1: We follow the setup by Yao and Liu [11]. The initial distribution is uniform over all
states. For all i ≥ 2, a0 transitions from si to si−1 and a1 from si to si−2, Both cases
yielding a reward of −3. For γ < 1, at s1 both a0 and a1 lead towards s0 and we get
a reward of −2. We consider s0 an absorbing state and let both actions steer from s0
back to s0, with a reward of 0. For γ = 1, we want to ensure ergodicity, hence, at s1
and s0, both actions reset the environment using the initial state distribution, with
rewards −2 and 0, respectively. This boils down to using absorbing and looping.

Considering the reward function, we notice that the goal of this environment is to reach s0 as
quickly as possible. Hence, the optimal policy always chooses a1 over a0. However, our policy
π has

π(a0 | si) = 0.1 and π(a1 | si) = 0.9 for all i = 0, . . . , N.

We generate a dataset of n = 100,000 samples for our numerical results and set N = 12
following Boyan et al. [11]. Since this environment is tabular, we use one hot encoding, to
embed S into [0, 1]N+1.

5.3 OpenAI Gym

To further investigate the performance of our estimators, we test them on the OpenAI Gym
environments FrozenLake2, Taxi3, and Cartpole4. Following Dai et al. [13], we use looping for
the first two instances and apply an absorbing state with a reward of −1 for the latter.
For FrozenLake, we have a deterministic and stochastic version, depending whether the pa-

rameter is slippery is False or True, respectively. In both cases, we generate n = 100,000
dataset samples using a uniform dataset distribution dD on S × A. The initial state distri-
bution dπ0 , transition matrix Pπ, and reward function r are obtained analytically. Just like in
BoyanChain, we can then solve the modified Bellman equations (3.17) explicitly. The evaluation
policies are trained with PPO5 [37, 35], without looping in the environment.
In Taxi, we use the same environment, behavior policy, and evaluation policy as Dai et al.

[13]. We gather 10,000 trajectories with a length of 200.

2https://gymnasium.farama.org/environments/toy text/frozen lake/
3https://gymnasium.farama.org/environments/toy text/taxi/
4https://gymnasium.farama.org/environments/classic control/cart pole/
5https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
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With Cartpole, however, we train a behavior and evaluation policy for 10,000 and 100,000
steps, using PPO, also without absorbing in the environment. Here, we gather 500 trajectories
with a length of 200. In all of these time steps, the behavior and evaluation policies manage to
balance the pole roughly 70% and 100% of the time, respectively.

5.4 Medical

We use a set of prerecorded data of septic patients and their treatment from AmsterdamUMCdb

[39, 8]. Each state is composed of certain sensory data, such as blood pressure, blood oxygen
saturation, etc. Actions are clustered administered dosage of the drug hydrocortisone. Once
a patient’s treatment ends successfully, a reward of 1 is handed out, otherwise, we only get 0.
The evaluation policy is obtained in the same way as Bologheanu et al. [8].
In order for the policy value to be easily interpretable, the setup from Remark 5.1.1 serves

as a basis for our environment. When a patient is cured or passed away in the state sH , all
subsequent states are chosen to be the same absorbing state, i.e., st = sH for all t ≥ H. In order
to implement this setup, we pad each ending of a trajectory with the respective finite state.
The evaluation was performed using this data directly via NeuralDualDice, NeuralGenDice,

and NeuralGradientDice, as well as in a clustered form, as described in Figure 5.2. Clustering
the dataset lets us construct a simulator and use algorithms with a more solid convergence
theory.

6https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html
7https://gymnasium.farama.org/api/env/
8https://sb3-contrib.readthedocs.io/en/master/modules/ppo mask.html
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Figure 5.2: We start by splitting the preprocessed data set into a training and testing data set.
We select some features from the un-clustered observations in the training data set
and train a KMeans6 model from Scikit-learn with 256 clusters, which we use to
extract clustered observations from the training and testing data set. Two addi-
tional clusters, representing “recovered” and “deceased,” are added at the end of
each trajectory. The clustered observations are stored in the clustered training and
testing data set, together with the patient IDs, time stamps, actions, and rewards.
From these, we construct a training and testing simulator in the format of an Env7

from OpenAI Gym, by approximating the initial state distribution and transition
kernel, respectively. We make sure for each environment to allow an action a in a
state s only if (s, a) is part of the associated clustered dataset. On the training sim-
ulator we apply MaskablePPO8 [17] from Stable-Baselines3 to train an exploratory
and evaluation policy. We apply these policies to the testing simulator, to produce
a exploratory and evaluation data set. Together with the clustered testing data
set, Monte Carlo agents use their rewards to approximate their respective policy
values via on policy evaluation. Additionally, we use the VAFE and DICE agents
TabularVafe, TabularDice, TabularDualDice, and TabularGradientDice, which
take the action distributions from the evaluation policy as well as the rewards and
state distribution from these datasets to produce an off policy estimate of the eval-
uation policy value.
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6 Numerical Results

We conducted experiments using both tabular and continuous algorithms with various hyper-
parameters, selecting those that yielded the best performance. We briefly summarize their
functionality.
The most important hyperparameter is the discount factor γ, which lets us control how much

weight is given to rewards further along a trajectory.
The objectives (4.4) and (4.5) also include the norm penalty coefficient λ. It determines, how

high the approximate stationary distribution correction should be penalized, when its expected
value under the dataset deviates from one.
The boolean hyperparameter weighted lets us choose between a simple (3.15) and weighted

Monte Carlo estimator (3.16) for the policy value, provided, we are already given an approxi-
mation for the stationary distribution correction.

Tabular algorithms also include projected. If active, we first project all vectors and matrices
onto the subspace of all indices whose corresponding state-action-pairs actually occur in the
dataset, before approximation. Afterwards, we embed back into the original space. In some
cases, it is necessary to enforce this assumption in order to satisfy the requirements set forth in
Assumption 3.5.1. If already satisfied, it does not make a difference for the estimator.
Finally TabularDice has the boolean hyperparameter modified, which dictates whether to

use the standard backwards (3.9) or modified backwards Bellman equations (3.17).

6.1 Boyan Chain

BoyanChain Tabular. This environment was used to investigate the performance of our tabular
algorithms, as we increase the number of states. In the episodic variant Subfigures 6.1a and
6.1b, the policy value drops as the chain length N increases. Recall that as the end of the chain
is reached, reward zero, instead of −3 and −2, is handed out. Similar behavior can be found
in the continuing variant Subfigure 6.1c. The Subfigures 6.1d, 6.1e, and 6.1f, show the policy
value error in more detail. We see that our tabular algorithms perform similarly well, if not
better than on-policy evaluation. In the episodic setting, the error increases as the number of
states goes up. This is not the case with regard to the continuing domain. The underlying
cause of this behavior is likely an increase and subsequent decrease in the discrepancy of the
rewards, respectively. However, an examination of the stationary distribution corrections, as
illustrated in Subfigures 6.1g, 6.1h, and 6.1i, reveals an increase in the MSE as the number of
iterations N increases. This means that this experiment was successful and the analytical value
was approximated properly.

BoyanChain Continuous. Here we provide an environment with a continuous state space and
access to an analytical solution to the stationary distribution correction wπ/D and policy value
ρπ. The Subfigures 6.2a, 6.2b, 6.2c, and 6.2e, 6.2f, 6.2g show that the analytical policy value
can be approximated decreasingly well as the discount factor increases. This can be observed
in more detail in Subfigures 6.2i, 6.2j, and 6.2k, respectively. Also, the weighted estimator
(3.16) performs a more accurate approximation than the simple estimator (3.15), especially for
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NeuralGenDice. As suggested by Nachum et al. [34] and Zhang et al [41], the performance of
NeuralDualDice, approximating the stationary distribution correction, is significantly impaired
when the discount factor is increased. NeuralGenDice and NeuralGradientDice also follow this
patter, but are more robust in this regard. Mao et al. [25] claim that a small Bellman residual
angle of the gradients ∇ϑPπvϑ and ∇ϑvϑ may be responsible for the instability associated with
a higher discount factor, as the gradients cancel each other out more and more. In Figure 8.21
we see that the BRA is indeed quite small, at about π

8 . Even so, in Subfigures 6.2d, 6.2h, and
6.2l, it is evident that the undiscounted case, with discount factor γ = 1, offers an excellent ap-
proximation performance, albeit it based in a slightly different environment. We have the same
setup as Zhang et al. [41]. However, our results for NeuralDualDice and NeuralGradientDice

show an even smaller MSE on the stationary distribution correction. We also get lower MSEs
for the continuing setting. Our analytical solution for the stationary distribution correction was
calculated by solving the eigenvalue problem (4.1) and not by iteratively applying the transition
matrix to the identity matrix 10,000 times [41]. This may explain the better performance.

6.2 OpenAI Gym

FrozenLake. This environment lets us observe the influence of adding randomness to the tran-
sition dynamics. Comparing Subfigures 6.3a and 6.3b, we notice that approximating the policy
value ρπ(γ) gets harder, not only as the discount factor γ increases, but also when we switch
from deterministic to stochastic transitions. For those algorithms that allow for an undiscounted
evaluation, the undiscounted counterparts converge to their evaluation outcome, with increasing
discount factor. This is not the case for episodic on-policy evaluation. The rationale behind this
phenomenon can be elucidated with relative ease. We are dealing with a looped environment,
but can only gather finite trajectories. With a higher discount factor, rewards further along the
episode are given a higher weighting. Not sampling them is equivalent to setting them to zero,
which biases the estimator.

Taxi. Here we provide a deterministic environment similar to FrozenLake, in terms of its
objective, but has a significantly higher state space. As a consequence, gathering experience
by means of a behavior policy is harder, since we must satisfy Assumption 3.5.1. Numerical
evidence for this claim can be found when comparing Figures 8.18 and 8.19. There, we see
that the approximations of the initial state distribution d̂π0 and the transition matrix P̂π are
already flawed. Further evidence is given in Subfigure 6.3c, which shows that approximating
the policy value does not work as well as for FrozenLake. Nevertheless, the approximations are
still reasonable, especially for a higher discount factor. This means that our algorithms are to
a certain extent robust against flaws in the dataset.

Cartpole. This classical environment serves as a more sophisticated continuous state space
testing environment than BoyanChain Continuous. Although an analytical solution is lack-
ing, we can still undertake a comparison with on-policy evaluation alone. The performance of
NeuralDualDice in Subfigures 6.3g, 6.3h, and 6.3i, is comparable to Nachum et al. [34]. Except
for NeuralGenDice with the discount factor γ = 0.1, the weighted estimators in Subfigures
6.3d, 6.3e, and 6.3f, perform better than their simple counterparts in Subfigures 6.3d, 6.3e,
and 6.3f, respectively. This does not agree with the comparison in BoyanChain Continous,
which shows that there is “no free lunch.” NeuralGenDice is as accurate as NeuralDualDice
for γ = 0.1, 0.5, but for γ = 0.9 it underestimates the policy value. For NeuralGenDice, this
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1: BoyanChain Tabular. The horizontal axis shows the length of the chain, i.e., N +1
is the number of states. The columns of the multi-plot, 6.1a, 6.1d, 6.1g and 6.1b,
6.1e, 6.1h and 6.1c, 6.1f, 6.1i, represent the same runs, displaying the (approximate)
policy value ρπ, policy value error |ρ̂π − ρπ| and stationary distribution correction
MSE ED|wπ/D − ŵπ/D|2. We use various discount factors γ and the same norm
penalization coefficients λ = 10−6. We plot the sample-mean and an area spanning
half the standard deviation using runs on four datasets, generated by different seeds.

is already the case for the lower discount factors. Taking a closer look at the loss functions,
plotted in Figures 8.10, 8.11, and 8.12, we see that they move increasingly closer to zero, the
higher the discount factor gets. Presumably, the Bellman error γPπv−v in the loss definition is
responsible. Figure 8.22 supports this claim, by showing a small Bellman residual angle below
π
16 . As already discussed in BoyanChain Continuous, this leads to many parts of the gradients
∇ϑPπvϑ and ∇ϑvϑ canceling each other out. Since the BRA in Cartpole is half of the BRA in
BoyanChain Continuous, this may explain why the approximation in this application is even
worse for the high discount factor γ = 0.9.
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Figure 6.2: BoyanChain Continuous. The horizontal axis shows the training step. The
columns, 6.2a, 6.2e, 6.2i, 6.2b, 6.2f, 6.2j, 6.2c, 6.2g, 6.2k, 6.2d, 6.2h, 6.2l, represent
the same runs, displaying the analytical and approximate policy value ρπ, using
the simple (3.15) and weighted (3.16) estimator, and the MSE ED|ŵπ/D − wπ/D|2
to the analytical stationary distribution correction wπ/D. We use various discount
factors γ and norm penalization coefficients λ. We plot the sample-mean and an
area spanning half the standard deviation using runs on four datasets, generated by
different seeds.

6.3 Medical Application

Medical Tabular. In order to be able to perform on-policy evaluation, we cluster our medi-
cal dataset, extract the necessary distributions and build a simulator, as described in Figure
5.2. Similar to Nachum et al. [34], we want to compare policy evaluation algorithms, using
various datasets. As illustrated in Figure 6.4, the clinician, exploratory, and evaluation policy
each demonstrate a distinct level of policy value, with each outperforming the others. Figure
6.6 depicts the convergence of policy values towards respective treatment success rates across
datasets. Since the goal of our algorithms is to approximate the evaluation policy value, we
notice that resampling the dataset by means of the exploratory policy 6.4b yields the best ap-
proximation. The clinician dataset 6.4a is likely too different from the trajectories that the
evaluation policy would follow. The dataset resampled with the evaluation policy 6.4c, on the
other hand, does not sample enough experience for Assumption 3.5.1 to be satisfied. Similarly
to Taxi, this can be supported by noticing the already flawed approximations of the initial state
distribution d̂π0 and transition matrix P̂π, as illustrated in Figure 8.20. For each algorithm and
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Figure 6.3: OpenAI Gym. The top three plots, 6.3a, 6.3b, and 6.3c, show the policy value ρπ(γ)
against the discount factor γ close to one, for FrozenLake and Taxi. The dotted
lines mark the respective undiscounted results for the policy value, i.e., γ = 1. The
bottom three plots, 6.3g, 6.3h, and 6.3i, present the policy value ρπ with discount
factor γ = 0.1, 0.5, and 0.9, respectively, plotted against the training step of the
respective algorithm, for Cartpole. Only the algorithms that yield sufficient results
were chosen. In all of the plots, we present the behavior- and evaluation policy
values as a reference point.

the onpolicy evaluation, consider the right most point on their respective curve, i.e., where the
discount factor γ is the highest. The differences between the points of an algorithm and on-
policy evaluation, are less than 5%, 1%, and 2.5%, respectively. These serve as error margins on
the evaluation policy treatment success rate, respectively. Since the difference of the treatment
success rates of the clinician and evaluation policy is more than 7.5%, this is already enough to
confirm superhuman performance.

Medical Continuous. The primary motivation for this work is to evaluate a policy, treat-
ing septically ill patients, using offline behavior agnostic policy evaluation algorithms. This
means that we operate directly on a dataset, without clustering or inferring the distribution
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of the behavior policy. In Figure 6.5, we illustrate the best results available. For all numbers
of hidden neurons, NeuralDualDice and NeuralGradientDice consistently produce a policy
value above the clinician’s behavior, even when accounting for the standard deviation. Here,
we chose the simple policy value estimate. In Figures 8.14 and 8.15, we see that the weighted
estimator is biased upwards [38, p. 105]. On the other hand, NeuralGenDice produces unstable
learning curves. This is probably due to a high variance of the stationary distribution correction
approximate ŵπ/D, resulting in some of its components being much higher than others. Conse-
quently, in Figure 8.16, the simple policy estimate skyrockets or oscillates immensely, while the
weighted estimator nullifies this effect. The choice of the low discount factor γ = 0.9 signifi-
cantly decouples the scaled policy value from the treatment success rate, as shown in the Figure
6.6. However, the policy gets a higher penalty for taking too many steps per episode. Also, the
estimators are more stable and less biased, while a discount factor of γ = 0.99 already leads to
implausible results. Our findings in Figure 6.5 are consistent with Bologheanu et al. [8], who
used the same method to obtain the evaluation policy. As already discussed for BoyanChain

Continuous and Cartpole, the Bellman residual angle can give an insight into the performance
of the estimator. Just like BoyanChain Continuous in Figure 8.21, NeuralGradientDice in
Figure 8.15 shows a BRA of just under π

8 . On the other hand, NeuralDualDice in Figure
8.14 and NeuralGenDice in Figure 8.16 have a BRA slightly below π

16 , similar to Cartpole

in Figure 8.22. In the same way that the results for BoyanChain Continuous are superior to
those of Cartpole, NeuralGradientDice produces more stable policy value and loss curves
than NeuralDualDice and NeuralGenDice.

(a) (b) (c)

Figure 6.4: Medical Tabular. These three plots show the scaled policy value ρπ(γ)/(1 − γ),
plotted against the discount factor γ close to one. The dotted lines mark the re-
spective treatment success rate for the clinicians, exploratory and evaluation policy.
The data for the VAFE and DICE algorithms is either taken from the clustered test
dataset directly 6.4a or resampled using an exploratory policy 6.4b or the evaluation
policy 6.4c.
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Figure 6.5: Medical Continuous. Here, we show the mean and standard deviation of the scaled
policy value with a discount factor of γ = 0.9. The objectives use the same norm
penalization coefficient λ = 1.0, as suggested by Zhang et al. [44, 41]. The primal
and dual neural networks have a single hidden layer, with different numbers of neu-
rons, specified on the horizontal axis. The samples were taken from the marked
parts of the learning curves in Figures 8.14, 8.15 and 8.16, where the policy value
estimate and the loss function settle in an equilibrium and oscillates with a con-
sistent amplitude. For each algorithm, we chose either the simple or the weighted
estimator, depending on which produced the more plausible output, respectively. As
a reference, we also show the clinician’s scaled behavior policy value on the dotted
horizontal line.

Figure 6.6: We plot the error between the scaled on-policy value ρ̂π(γ)/(1 − γ) and treatment
success rate σ, for the clinician as well as an exploratory- and the evaluation policy.
As we increase the discount factor γ towards one, the scaled policy value converges
linearly against the success rate.
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7 Conclusions and Future Work

In this work, we described methods that approximate the policy value for tabular environments,
based directly on the Bellman equations (3.5) and (3.9), solving linear equation systems and
eigenvalue problems and collected the most prominent DICE methods for continuous environ-
ments.
We tested these algorithms on various well established environments retaining certain selected

properties, analyzed the results and made connections to the underlying theory. Finally, we
executed the algorithms on a carefully constructed environment for medical applications, where
the policy values are easily interpretable.
We saw that our estimators yield good results, as long as we provide adequate data. For

the clustered medical application, our estimators achieved errors on the treatment success rate
ranging from 1% to 5%. This is especially interesting, since practical and theoretical evidence
confirms that classical off-policy evaluation methods based on importance sampling suffer from
high variance [42]. They also explicitly require the distribution of the clinician’s behavior policy,
which can only be approximated at best [19, 8].
Theoretical guarantees that the estimator will work in the undiscounted setting are difficult

to provide, when dealing with complex continuous environments. However, there are even some
issues relating to stability and bias, if one chooses to evaluate in the discounted setting with
a high discount factor. It is important to further develop stable and precise algorithms for
continuous environments. A clustered environment simulator always deviates from the original.
Possible solutions might adapt ideas from Mao et al. [25] from policy optimization to policy
evaluation. An alternative to DICE by Mousavi et al. [28] involves the use of reproducing kernel
Hilbert spaces and maximum mean discrepancy. Building upon their approach is to find kernels
that provide accurate estimates.
Also, the need for safe policy evaluation for medical applications calls for algorithms capable

of providing rigorous confidence intervals on the policy value. Algorithms like these, which also
only have the requirements of those discussed in this work, i.e., offline and behavior agnostic,
should be developed further and tested in the same way that we have done here [13].
It is still an open task, to run these offline behavior agnostic policy evaluation algorithms on

more and bigger dataset, including different clustering techniques and feature selections, perhaps
also with other treatment objectives. Nevertheless, the medical policy evaluation results are
very promising so far, showing that there is a lot of potential for RL and medicine to work
together.
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[7] Markus Böck et al. “Superhuman Performance on Sepsis MIMIC-III Data by Distribu-
tional Reinforcement Learning”. In: PLoS One 17.11 (2022), e0275358.

[8] Razvan Bologheanu et al. “Development of a Reinforcement Learning Algorithm to Opti-
mize Corticosteroid Therapy in Critically Ill Patients with Sepsis”. In: Journal of Clinical
Medicine 12.4 (2023), p. 1513.

[9] Vivek S Borkar and Sean P Meyn. “The ODE Method For Convergence of Stochastic
Approximation and Reinforcement Learning”. In: SIAM Journal on Control and Opti-
mization 38.2 (2000), pp. 447–469.

[10] Jonathan Borwein and Adrian Lewis. Convex Analysis. Springer, 2006.

[11] Justin A Boyan. “Least-Squares Temporal Difference Learning”. In: ICML. 1999, pp. 49–
56.

[12] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[13] Bo Dai et al. “Coindice: Off-policy Confidence Interval Estimation”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 9398–9411.

[14] John C Duchi, Peter W Glynn, and Hongseok Namkoong. “Statistics of Robust Opti-
mization: A Generalized Empirical Likelihood Approach”. In: Mathematics of Operations
Research 46.3 (2021), pp. 946–969.

[15] Jianfeng Gao, Michel Galley, and Lihong Li. “Neural Approaches to Conversational AI”.
In: The 41st International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval. 2018, pp. 1371–1374.

[16] Helmut Horvath. “Deep Reinforcement Learning with Applications to Autonomous Driv-
ing”. MSc thesis. Technische Universität Wien, 2024.

87
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8 Appendix

8.1 Additional Numerical Results

This section presents supplementary graphs and analyses that, while not central to the main
contributions of this work, provide valuable insights into the behavior of our algorithms. These
results help to contextualize and explain some of the phenomena observed in our main find-
ings. Specifically, we include plots that illustrate the effects of different learning rates and key
statistics of our algorithms. These additional visualizations support claims about why perfor-
mance varies under certain conditions and offer a deeper understanding of how our methods
respond to different parameter settings. Collectively, this evidence underscores the robustness
and adaptability of our approaches across a range of scenarios.
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Figure 8.1: BoyanChain Tabular
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Figure 8.2: BoyanChain Continuous - episodic - NeuralDualDice
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Figure 8.3: BoyanChain Continuous - episodic - NeuralGenDice
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Figure 8.4: BoyanChain Continuous - episodic - NeuralGradientDice
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Figure 8.5: BoyanChain Continuous - continuing - NeuralGenDice
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Figure 8.6: BoyanChain Continuous - continuing - NeuralGradientDice

96



Figure 8.7: FrozenLake - deterministic

Figure 8.8: FrozenLake - stochastic
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Figure 8.9: Taxi
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Figure 8.10: Cartpole - NeuralDualDice
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Figure 8.11: Cartpole - NeuralGenDice
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Figure 8.12: Cartpole - NeuralGradientDice
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Figure 8.13: Medical Tabular
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Figure 8.14: Medical Continuous - NeuralDualDice
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Figure 8.15: Medical Continuous - NeuralGradientDice
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Figure 8.16: Medical Continuous - NeuralGenDice
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Figure 8.17: Medical Continuous
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Figure 8.18: FrozenLake - Auxiliary Estimates
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Figure 8.19: Taxi - Auxiliary Estimates
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Figure 8.20: Medical Tabular - Auxiliary Estimates
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Figure 8.21: BoyanChain Continuous - BRAs

Figure 8.22: Cartpole - BRAs
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