Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

TECHNISCHE
UNIVERSITAT
WIEN

M ASTER T HESTIS

Evaluating Reinforcement-Learning-based
Sepsis Treatments
via Tabular and Continuous

Stationary Distribution Correction
Estimation

written at the

Institute for Information Systems Engineering,
Department of Computer Science,

Technical University of Vienna
under the guidance of

Prof. Clemens Heitzinger

by

Richard Weiss
student number: 11805800
Viktoriagasse 7/2/22, 1150 Vienna

Vienna, December 19, 2024



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Statutory Declaration

I declare under oath that I wrote this master’s thesis independently and without outside help,
that I did not use any sources or aids other than those specified, or that I identified the passages
taken literally or analogously as such.

Vienna, December 19, 2024

Richard Weiss

ii



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Contents

1 Introduction
2 Methods
2.1 Measure Theory . . . . . . . . .
2.2 Optimization Theory . . . . . . . . . . . .
2.2.1 Convex Optimization Theory . . . . . . . . ... ... ... ... ....
2.2.2  Linear Optimization Theory . . . . . . . . . . ... ... ... ... ....
2.3 Reproducing Kernel Hilbert Spaces . . . . . .. .. .. ... ... ... ......
2.4 Matrix Theory . . . . . . . .
2.4.1 Perron-Frobenius Theorem . . . .. . ... ... ... ... .. ......
2.4.2 Derivatives . . . . . .. e
2.4.3 Block Matrices . . . . . . . . . . e
2.5 ODE Lemma . . . . . . . . . . . e
2.6 Extended Delta Method . . . . . . . . . .. ... ...
2.6.1 Hadamard Differentiability . . . . . .. ... .. ... ...
2.6.2 Confidence Intervals . . . . . . . . . . . . ...
3 Reinforcement Learning

3.1 General . . . . . e
3.2 Bellman Operators and Equations . . . . . .. .. ... ... ... ........
3.3 Bellman Linear Programs . . . . . . .. .. .. . .. . .
3.4 Classical Off-Policy Evaluation . . .. ... ... ... ... ... ... ...,
3.5 Stationary Dlstribution Correction Estimation . . . . ... ... ... ... ...
Algorithms
4.1 Summary . ... e e e e e e e
4.1.1 Tabular Case . . . . . . . . . . . . . ..
4.1.2 Continuous Case . . . . . . . . e
4.2 Tabular stationary DIstribution Correction Estimation . . . . . . . ... ... ..
4.3 Dual stationary DIstribution Correction Estimation . . .. . ... ... ... ..
4.3.1 Objectives . . . . . . . .
4.3.2 The Dual Variable . . . . . . .. .. .. ...
4.3.3 Implementation . . . . . . . . ... Lo
4.3.4 Convergence . . . . . ... e e e
4.4 Generalized stationary DIstribution Correction Estimation . . . . . . .. ... ..
4.4.1 Objectives . . . . . . . .
4.4.2 TImplementation . . . . . . . . ..o
4.4.3 Convergence . . . . . .. e e e e e e e e e
4.5 Gradient stationary DIstribution Correction Estimation . . . ... ... ... ..
4.5.1 Objectives . . . . . . . .
4.5.2 Implementation . . . . . . . ... L L Lo
4.5.3 Convergence . . . . .. ..o e e e e

iii

25
25
29
37
38
39



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.6 Confidence Interval DIstribution Correction Estimation . . . . .. ... ... ..

4.6.1 FEmbedded Q-LP . . .

4.6.2 Generalized Estimating Equations . . . . . .. ... ... ... ... ...
4.6.3 Confidence Interval Derivation . . . . . . . . . . . . . .. ... . .....
4.6.4 Confidence Interval Calculation . . . . . . . . . . . ... ... ... ....

5 Environments
51 General ... .........
5.2 Boyan Chain . ... .. ...
53 OpenAl Gym . .. ... ...
54 Medical ... ... ... ...

6 Numerical Results
6.1 Boyan Chain . .. ... ...
6.2 OpenAl Gym . ... .. ...
6.3 Medical Application . . . . .

7 Conclusions and Future Work
Bibliography

8 Appendix
8.1 Additional Numerical Results

v

74
74
75
75
76

78
78
79
81

85
87

90



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Abstract

This work presents the results of state-of-the-art offline behavior agnostic policy evaluation
algorithms based on stationary distribution correction estimation, evaluated within a healthcare
setting using data from the AmsterdamUMCdb. We firstly, present the theory of these algorithms.
This includes the introduction of four tabular estimators and a revision of the well known
DualDICE, GenDICE, and GradientDICE. All algorithms are implemented in a modular open
source Python library. In order to evaluate the efficacy of the algorithms, they are tested in
the environments BoyanChain as well as the OpenAl Gym applications FrozenLake, Taxi, and
Cartpole. The continuous state space algorithms DualDICE, GenDICE, and GradientDICE are
run directly on the healthcare dataset. Additionally, the state space of healthcare applications
is clustered in order to perform policy evaluation in the tabular setting. Our analysis provides
a comprehensive examination of the practical functioning of all estimators, elucidating the
underlying theory and the connections between the results and the theory.
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1 Introduction

Due to the rapid development of Machine Learning (ML) in recent years, there has been a
growing demand for ML algorithms to solve complex real-world applications. A subfield of ML
called Reinforcement Learning (RL) provides a versatile theoretical framework for optimal deci-
sion making [38]. This is done by formulating a theoretical environment called Markov Decision
Process (MDP), characterized by a set of states, actions, and rewards and their interactions.
They provide an abstract mathematical reflection of their real-world application counterparts,
which may come from fields such as games [27], robotics [3], or conversational systems [15, 22,
1]. The goal is to train a policy, which executes actions in certain states of the environment,
leading to a new state and reward. The quality of the policy is measured in terms of the policy
value (PV), which is the expectation of an exponential average of the rewards along an episode.

In many cases, the use of simulators for these MDPs is essential to facilitate a rapid and
straightforward interaction between the agent training the policy and the environment. These
can be constructed from a physical model or a dataset. However, this sort of simplification
introduces a sim-to-real gap, which can lead to a misrepresentation of the original environment.
In many cases, this makes it questionable, whether the behavior learned in the simulator can
safely be transferred to the real world [36]. Especially applications, such as recommendation [23],
education [24], autonomous driving [16, 18], and healthcare [30, 7, 8, 39, 19], where deploying a
new policy can be expensive and risky, call for policy optimization and evaluation algorithms,
which use an environment that most accurately represents the original task, ideally without the
use of a simulator.

An approach, having recently gained high popularity, uses a limited and fixed dataset of
samples describing an MDP, which models the application. Of the related contributions so far
in policy optimization (PO) [33, 21, 20, 25, 13] and policy evaluation (PE) [34, 44, 41, 43, 13,
28], we will be using NeuralDualDice [34], NeuralGenDice [44], and NeuralGradientDice [41]
in our work.

We refer to algorithms as online, if they are allowed to use an environment, with which they
can easily interact, by starting an episode and giving it actions in a state and receiving the next
state and reward. Removing this commodity limits us to the offline setting. These concepts
are similar to notions of on-policy (OnP) and off-policy (OffP). In the former setting, we gather
data on an ewvaluation policy for an MDP by executing its own actions in an environment,
while the latter uses a possibly different behavior policy for data collection [38]. Furthermore,
classical off-policy methods need full knowledge, not only for the evaluation policy, but also
for the behavior policy [38]. Moreover, data collection must be performed by a single behavior
policy, whereas real-world data is most often gathered by a mix of multiple behavior policies.
Should an algorithm be limited to samples generated by a single or multiple behavior policies,
and not require any explicit knowledge of its distribution, then it is called behavior agnostic.
In healthcare, certain sensory data is gathered from patients during the treatments, carried
out by human clinicians. In this publication, we use AmsterdamUMCdb' [39]. Thus, the original

'https://amsterdammedicaldatascience.nl/amsterdamumcdb
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task of reproducing or even improving such treatments via RL is inherently offline. Further-
more, the distribution describing the mix of various clinician’s behavior policies, can only be
approximated at best [8], which motivates the use of behavior agnostic algorithms.

In this work, we apply the offline behavior agnostic algorithms NeuralDualDice [34], Neural-
GenDice [44], and NeuralGradientDice [41] to estimate the value of a policy, which was trained
to treat critically ill septic patients. The foundation of these three algorithms is the assertion
that the policy value can be expressed in terms of the expectation of the reward taken with
respect to the policy’s stationary distribution. The stationary distribution can be expressed
through a uniquely solvable system of linear equations or an eigenvalue problem, depending on
whether the setting is discounted or undiscounted, respectively. Each algorithm has its own
loss function, which is constructed from the equations and certain regularizers. The algorithms
approximate a saddle point of their aforementioned loss function through the application of
gradient descent and ascent. Because conventional approaches use clustering on the states
of the dataset in order to provide the possible use of tabular algorithms [7], we also explore
this approach, followed by our tabular policy evaluation methods TabularVafe, TabularDice,
TabularDualDice, and TabularGradientDice, that are based on the same theory as the three
above.

The policies and their respective datasets come from Bologheanu et al. [8]. Please refer to
our GitHub repository? for details regarding the implementation.

In order to gain insight into the algorithm’s practical behavior, we test them on various well
established environments retaining certain selected properties. These include the tabular envi-
ronment Boyan Chain [11], also used by Zhang et al. [41]. It is an environment with a scalable
state space, where all the transition dynamics and rewards are known. This enables the compar-
ison of our approximate solutions to an analytical one. For the continuous algorithms, we use
one-hot-encoding to embed the state space of Boyan Chain. We further reinforce the credibility
of our algorithms by additionally running on some famous environments from OpenAl Gym?.

Zhttps://github.com/MrWhiteRichard/dice_rl_sepsis.git
https://gymnasium.farama.org/
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2 Methods

2.1 Measure Theory

Consider a set X. Denote the space of probability measures, measures and signed measures
on X into R, respectively, by P(X) € M(X) C S(X). We can interpret a signed measure
S € 8(X), a measure M € M(X), and a probability measure P € P(X), as a linear functional
[14]. For any integrable f: X — R, write

Sfi/deS, Mfi/deM, or Pf=Ep[f]. (2.1)

For a class ‘H of functions on X, consider the space of bounded linear functionals on H
equipped with the uniform norm

Loo(H) ={H :H — R linear | |H||;_(y) < oo}, where [H|y_ () = sup|H/|,
leH

and  B(H,S) = {H € Loo(H) | H uniformly | - ||, (s)-continuous} .

By interpreting signed measures as linear functionals, we can define the space of signed
measures, measures and probability measures on X, bounded by || - ||%,

S(X;H) ={H € S(X) | [[H| () <00},
M(X;H) ={H € M(X) | [H][p () < o0},
PX;H) ={H € P(X) | [[H|| L, (3) < 00}
Let Xp C R™ be discrete and X¢ € R™ continuous. Denote the sub sets of Xp by P(Xp),
the Borel-sets on X¢ by B(X¢), the counting measure by p, and the m-dimensional Lebesgue

measure by A. Then, for P we will denote its Radon-Nikodym derivative with the corresponding
lower case letter, and vice versa, i.e.,

dpP

p=—-— and VA€ P(Xp): P(A) = / pdp=> px),
du A x€A
dpP

p=— and VBeB(Xc): P(B)= / pdA = / p(z) dz.
dA B B

Let A(X) be the set of probability density functions on X, i.e., the above Radon-Nikodym
derivatives, depending on whether X C R™ is continuous or discrete. For a given ¢ € A(X),
we write the set of distributions, absolutely continuous with respect to ¢, as

Ay(X)={peAX)|p<q}.

Sometimes, ¢ will have finite support supp(q) = {z1,...,2,}. Define the set of probability
vectors as
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Then, we have

AQ(X) = {ipiﬂmix ]76 An} . (2.2)

i=1

Now, consider a dataset D = (z;)]; C X, where the samples are taken by distribution
pP € A(X). We define the empirical distribution pP € A,p(X) via

' %Z — (2.3)

Note that, since the samples z1,...,, are random variables, the empirical distribution p”
a random function on X. Since supp(p?) = {x1,...,x,}, we can apply (2.2) to pP. This holds
even if there are samples in D that occur more than once.

2.2 Optimization Theory

The DICE algorithms all require additional optimization techniques to regular RL algorithms.
To this end Nachum and Dai have published a review of optimization theory specifically for
DICE [32]. This section provides a far more detailed and rigorous review of the necessary back-
ground theory.

Consider the general optimization problem

min f(x) subject to g(x) =0 and h(z)<0
xeR? (24)
where f:R" >R, g¢:R" R h:R"— RFE
We can summarize this entire problem in two different ways:
1. For a subset C' C R we define the indicator function

do : R —{0,00}, do(z)=
oo, else.

{0, if x € C,

It is easy to verify that the initial formulation of the optimization problem can be restated in
terms of the summarized objective

min P —|— Z (5{0} gz —|— Z 5]R<0

zeR™
2. We introduce the Lagrangian function

R X REXRES - R,
x> flz)+ A g(x) + p'h(z),

and consider the Lagrangian formulation

min P(x) =max max L(z, A
TER™ (=) AeR¢ g]Rk ¢ ( )

We can check that both definitions of P are the same.
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o If x satisfies all constraints, g;(x) = 0 and h;(z) < 0, then L(z, A, 1) is maximized when
taking A = p = 0, and its value will be f(z).

e If x violates some constraint, g;(x) # 0 or h;(x) > 0, then L(z, \, u) — oo for
i — sgn g;(z)oo or u; — oo, respectively.

This motivates us to consider a similar formulation to the Lagrangian

max max D(A\ ) = min L(x, A\, ).
AERE peRE S () zER" ( 2

We call the initial problem the primal and this one the dual optimization problem. Consequently,
D is named the dual function. A very important result in duality theory is Weak Duality,
provided in Proposition 2.2.1.

Proposition 2.2.1 (Weak Duality). Consider the general optimization problem (2.4). Then
max{D(\, ) | A € RF, pe RL} <min{f(z) |z € R", g(z) =0, h(z) <0}.
Proof. Let x* be optimal with respect to the primal problem, i.e.,
¥ =argmin{f(z) | z € R", g(x) =0, h(z) < 0}.
This leads to
DA, p) < L(*, A, p) = f(2*) + ATg(a®) + T h(z®) < f(a).

For the last inequality we used

g(z*) =0 = Ag(a*) =0,
p>0, h(z*) <0 = p'h(z*) <O0.
O
We will assume that for all ¢ = 1,...,m, where m < n, we add x; > 0 to our general

optimization problem. Since we could simply include these inequalities via h, this does not add
any extra expressiveness. However, in some cases it turns out to be convenient to separate these
simple constraints.

With Lemma 2.2.2 we provide a criterion that allows us to check, whether two optimization
problems are dual to one another.

Lemma 2.2.2. Let Lp and Lp be the Lagrangians of some optimization problems (P) and (D),
respectively, where

Lp(z, (A p)) = Lp((u, ), x) for all z€RZyxR*™™,  XeR’ peRES
Then (D) is the dual of (P).
Proof. The dual function of (P) reads

DP(Aa :U) = min LP($3 (>‘a :U)) = min LD((/"? )‘)71:) = PD((M7 A))?

2€RT, xRn—m 2€RT xRn—m

where Pp is the summarized objective of (D).
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2.2.1 Convex Optimization Theory

This section summarizes the elements of convex analysis [10] which are important for this work.
We say that a function f : 2 — R is conver on a domain 2 C R" if, for arbitrary 0 < o < 1
and x1,xo € 2, we have

flazy + (1 — a)az) < af(zr) + (1 — a)f(22).
We call f, : Q, — R the convex conjugate or Legendre-Fenchel transformation of f, where

fely) = Sgg(%w — f(z) and Q. ={yeR"| fi(y) <oo}.

Remark 2.2.3. Let f : Q — R be a convex and differentiable function on 2 = R™ and fe: Qy — R
its conjugate. Assume that f’ is invertible.
By setting the derivative to zero,

0= 9({e.y) ~ f(@) =y—0f(@). weget [y) = ((z.3) ~ f(x)

z=(0f)~(y)
|

Example 2.2.4. Consider a symmetric positive definite matrix A € R"*" a vector b € R and a
constant ¢ € R. Then

; R—R L ugate f R—R
: as conjugate fy :
v et Az + b +c e y—=iy—bTA (y—b)—c

We use Remark 2.2.3 and calculate
Vi(@)=Az+b, so (8f) '(y)=A"(y—b)

and

Fy)=(Ay=0)y— (A (y—b) TAA T (y—b) —b (A (y = b)) —c.

Ezample 2.2.5. Let p and g be Hélder conjugates, i.e., p,q > 1 and 1/p+1/q = 1. Then

R—R ) R - R
f: 1 has conjugate fy : 1
x> I;\x|p Y 5\y|‘1.

Recall that Young’s inequality for products reads
1 1
zy < —|x” + -~y
p q
where equality holds iff |z|P = |y|?. From this, it immediately follows that

1 1
supzy — — |z’ = —|y|7.
reR p q
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Furthermore,
R™ — R

_ R” R
y = llyllg.

Ly _p has conjugate S
z 2 lzlp

Using Holder’s and Young’s inequality, we calculate

1 1 1 1
supxy—f;z;p<sup T Y ——xpzsupéy —*gp_*yq.
< ’ > p” ||p 2ERn || Hp“ ||q p” ||p Jou || ||q p| | q” ||q

rER™?

The inequality becomes an equality for linear independent |z|? and |y|? and ||z|b = ||yl and

the last equality follows from the above.
|

Another useful insight is that building convex conjugates is additive, as stated in Lemma
2.2.6.

Lemma 2.2.6. Let f: A — R and g : B — R be convex functions. Then

A, x B, > R

. AxB—>R
' T fu(®1) + gu(22).

has conjugate hy :
xr— f(z1) + g(x2)
Proof. Let us firstly prove that (A x B). = A, X B,. For all ;1 € A and x2 € B we have
max{ f, (1), g«(22)} < 00 <= hy(z) < 0.

Secondly, we calculate

hi(y) = xESXEB<x’ y) — h(z) = wSUEIi‘(ﬂCl, y1) + (v, y2) — f(21) — f(22) = fulvn) + gu(y2)-
T2€B

Ezxample 2.2.7. Consider the sets A C R and B C R”. By Lemma 2.2.6,

R 5 R R R
f:qx daxp(z) has conjugate fi: ¢y 0%, 5(v)
= da(x1) +0p(22) = 04 (y1) + 05 (y2)-
Now, fix a domain 2 C R" and a € 2. Then
Q- R Q—R
f: - has conjugate fy : -
T — 5{a}($) y = (a,y),

since

{(z,y) = f(2) |z =a} = {(z,9)},
and  {(z,y) - f(2) |z # a} = {—o0}.

In particular, for a = 0, we get that

Q—->R ) Q—->R
f: has conjugate fy :
T = Opoy (7 y— 0 =da(y).
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Finally,

R®” - R ) R®” - R
f: has conjugate fy :
@ > Ory, (@) y = ore (y),

since we can use the first identity and case n = 1, which follows from

RZQ, if y > 0,
{oy — f(z) |z € Rxo} = {2y |z € Ryo} = { R<o, ify <0,
{0}, else.
and {zy — f(z) [ 2 € Reo} = {—oc}.
[ |
Example 2.2.8. Let f : R™ — R be a convex function, a € R” and b > 0. Then
R™ — R ) R — R
g: has conjugate g, : u
x'—><a,m)+bf(x) y'_>bf* (yT),
since
9+(y) = sup (z,y) — g(x) = sup (z,y —a) — bf(z)
zeR" zeR"
y—a
= sup (- 1)~ @) =0s. (15
reR™
[ |

Since the supremum is taken over a family of functions affine in y, the convex conjugate is
convex. Another useful property is that it can be specified in a differential equation, up to an
additive constant.

Lemma 2.2.9. Let f : Q — R be a convex and differentiable function on Q = R and f, : Q, — R
its conjugate. Assume that f' is invertible and its inverse (f')~1 is differentiable. Then

fo=(N"

Proof. Let z, be a critical point of the function « — xy— f(x). Since f is convex, the supremum
is achieved at g(y) = (f')"*(y) = z,. Therefore, we get

fe(y) = 2yy — f(2y) = 9(y)y — f(9(y))-

Differentiating with respect to y leaves us with

i) =d' W)y +9y) — f9()d (y)
=d Wy +9() —yd'(y)
= (/"))
0

If there exists x € 2 such that f(z) < co and f(z) > —oo for all x € Q, then f is a proper
function. When {x € Q | f(z) > a} # 0 for any a € R, then f is said to be lower semi-
continuous. In case a function fulfills all of these conditions, we can apply the Fenchel-Moreau
Theorem 2.2.10. It implies that all the examples we have seen so far can be reversed.
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Theorem 2.2.10 (Fenchel-Moreau). Consider a function f:Q — R on a domain Q C R"™. If
f = £oo or f is proper, lower semi-continuous and convex, then f = f**, i.e., for any x € €,
we have

f(x) = max(z,y) — fuly) = [ (2).

f-Divergence

Here, we review some material from Nachum and Dai [32].
Let p and ¢ be probability distributions with p < ¢. A common way of characterizing their
deviation is using the Kullbach-Leibler (KL) divergence

. P
Din(p |l @) = E, [1og q} |

We will call a convex function f : Rsg — R divergence conform iff

VE>0: f(t) < oo, f(O):ltiir(I)lf(t) and f(1)=0.

Using such a function, we can generalize the KL divergence and define the f-divergence as

Dstvll 0=, |1 (2)].

We get back the KL divergence by choosing f(z) = zlogz, because then
p p p
Dy(v 1l ) =, |Ptog2| =8, lioe2| = Dato 11 0

Another prominent member of the group of f-divergences is the y?-divergence D,2, where

f(z) = (z—1)% s0
(o))

Applying Jensen’s inequality to f, we get that the f-divergence is non-negative,

DXQ(p H q) iEq

Dip 1l 0) £ (B 2] ) = 1,11 = 1) 0.

Later on, we are going to need some other properties of the f-divergence as a function in the
first argument. We summarize them in Lemma 2.2.11.

Lemma 2.2.11. Let f be divergence conform and fix a distribution q. Consider the f-divergence
D¢(- || q) as a function on

Q={z:R->R|0<z<q}.
This function is convex with conjugate

Di(y || @) = Eq[fs oyl

10
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Proof. Consider z,y € Q and 0 < a < 1. Since f is convex, we can use the monotonicity of the
expected value and get

Dy(ax + (1= a)y || q) =Ezng [f <a$(2) - OOM)]

o (29 e (2]
=aDs(z || q) + (L —a)Ds(y || 9)-

The convex conjugate can be calculated as

Di(y |l q) = 81618@3,?;) —Dy(x || )

=y | 07| e |1 (5]

= B 0§:1<1<I;(z) @y(@ - (qz)
=E.4 [supy(z) — f(f)]

£>0
= E.vqlfi(y(2))].

O

Ezample 2.2.12. Assume the x2-divergence D,2( || p) to be a function on €, just like in Lemma
2.2.11, then

P 2
D3y 1l 9) = Bemy [o() + 251

We calculate the convex conjugate of f(x) = (x — 1)2. Build the derivative and its inverse
respectively,

fla)=2-1) and (f)'y)=3+1
Now, use Lemma 2.2.9 to get
2 2 2
sy (Y ) (y )2_y y© Yy
=(Z4+1)y—(24+1-1) =Z4y—Z =y + .
() (2+ y=(5+ SR A A

Ezample 2.2.13. Consider the KL divergence Dxy,( || ¢), but only as a function on probability
measures absolutely continuous with respect to g, i.e., @ = A, then

Dy (y || q) = log Eglexp y].

Suppose, the domain of our probability measures is finite. Then, similar to 2.2, we can take

n
0<zr<yq, Zmizl}.

i=1

Aq:{xeR”

11
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Since this simplex is compact, the supremum in the definition of the convex conjugate is obtained
at some x € Ay, i.e.,

* k Ly
Dir(y || @) =sup(&,y) — Dxi(§ || @) = Zl“z <yz — log ) -
£eN i1 q;
To find x, we consider the Lagrangian
):sz< — log — )4—)\(2;@—1)
i=1

We set its partial derivatives to zero,

!
0=

T

i 11 i
L(az,)\):<yi—1ogx>—xi< >+)\—yl logx——l—F)\.
q; xz/‘]z% qi

This yields

log T yi—1+ X and z; = ge¥i 1t

qi

Notice, since e¥~1** > 0, we have 0 < z < ¢. Furthermore, we must choose \, such that

1= Zl‘z = Zq'eyi/el_)‘ and 1—-)\= logzn:qieyi.
i=1

=1

Finally, substituting log %, we get

Di(y |l 9) = Z$1 yi — (i — 1+ ) le

= log Z gie¥' = logE._q[expy(2)].

Lastly, we will define the e-ball for some € > 0 around some probability distribution g € A(2)
with respect to the f-divergence, as

Bl(q) ={pe Ay | Ds(p | q) <€} (2.5)

If we chose ¢ = Py, the empirical distribution from (2.3), we can write the f-divergence as

Drto 50 =31 () 5 = 5 3 soom 2:0)

Fenchel Optimization

Consider functions f: X — R and g : Y — R as well as a linear map A : X — Y. Define the
Fenchel optimization problems

min Jp(z) = f(z) + g(Az), ma Ip(y) = —ful=Axy) — g+(v).

12
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Not only does Weak Duality hold, under mild conditions, we even get Strong Duality,

min Jp($) max JD(y), ( )
min (CC) max D(y) ( )

One can also show that if f/ is well-defined, by using the optimal solution y* of the dual, we
can get the optimal solution of the primal through z* = f/(—A.y*). More generally, the set of
all primal solutions is 0 fi(—A,y*) N A~10g.(y*).

We can explain why the first one of these problems is primal and the second one is dual by
defining a Lagrangian

L(z,y) = f(z) + (Az,y) — g+(y).

This results in

Sup L(z,y) = sup f(z) + (Az,y) — g4(y) ;ggL(fﬁ, y) = inf f(z) + (Az,y) — g«(y)
= f(z) + sup (y, Az) — g:(y) = — 21618@7 —Awy) — f(z) — g+(y)
= f(z) + g(Ax), = —fu(—Asy) — g+ (y).

Therefore, Strong Duality (2.8) leads to Lagrange Duality

inf sup L(z,y) = sup inf L(x,y). (2.9)
€] yeQ, yeQ, TE

2.2.2 Linear Optimization Theory

Consider the optimization problem, also called Linear Programm (LP),

min f(x) = (¢, x)

s.t. by — A<pxr =g(x) =0,
b>[ — A>£x = h(ﬂf) S 0,

xl?'-'axmzov

z € Ry xR™™, y=()\pn) e R xRES,
AeR"  peRF, ceR™

The Lagrangian for this optimization problem reads
Lz,y)=c oty (b—Azx)=by+a'(c—ATy),
and hence, the dual function

>0,

bTy if (C - ATy)Sm

D(y)= min  L(z,y) = ’ (c— ATy)sm =0,
wERT X Rn—m |

= —00, else.

13
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Optimizing the dual function leads to the dual optimization problem

max f(y) = (b, y)

st. (A )smy —cs>m =3g(y) =0,
(AT)<my — c<m = h(y) <0,
Yo+1, y Yk > 0.

We now want to apply Strong Duality (2.8) from Convex Optimization to Linear Optimiza-
tion. To this end, we reformulate our primal LP as a Fenchel program with

f(z) = (c,r) + 5Rg0ka—m(33) and g(z) = 5{b§m}x[b>m,oo)($)-

Building conjugates via Example 2.2.8 and 2.2.7 and Lemma 2.2.6, we get

Fey) = Oy xr-m (¥ =€) 9+() = 5, y(W<m) + 0 ooy (U>m)
= Oy, (Y<m — c<m) + Ogrm (Y>m — c>m) = (b<m, Y<m) + (O>m; Y>m)
= O (y<m — ¢<m) + 010} (Y>m — C>m) + 0rm (Y<m) + Ogm (Y>m)
= Orm 0} (Y = ©), = (0:9) + Oy (1)
because

5[kb>m,00) (Y>m) = (5R’;—Om (Y>m — b>m))* = < f&’g)m (Y>m — b>m)> = (bsm, Y>m) + 5R§Bm(y>m)-
If we now make the switch y — —y, we get that the dual Fenchel optimization problem is a
reformulation of our dual LP.

2.3 Reproducing Kernel Hilbert Spaces

The well known reproducing kernel Hilbert spaces (RKHS) provide a theoretical framework to
characterize neural networks [4, 5]. Since in RL algorithms we often assume that our function
classes are instances of neural networks, we can use RKHS in their theoretical analysis.

Another use case of RKHS involves the construction of a metric, the mazimum mean discrep-
ancy (MMD), to distinguish between probability distributions [29]. Mousavi et al. [28] consider
parameterizations of the stationary distribution correction d™ and its application to the back-
wards Bellman oprator PJ, whose support is a subset of the dataset D. In this way, the can
find explicit equations for the MMD between these parameterizations and minimize them, thus
approximating the solution to the backwards Bellman equations (3.9). Since the focus of this
work is on DICE, we do not pursue this approach.

Let H be a Hilbert space over F with scalar product (-, -)3;. Denote the algebraic and continuous
dual space of H, respectively, by

H*={T:H — F|T linear} and H ={T € H"||T|n+ < oo},
T
where ||T||x+ = sup 1T for T € H*.
servfoy 11l

14
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Now, let X be a set and consider the set of functions H C FX. Define the evaluation functionals

Em:{H—”F r e X.

If H together with (, )y is a Hilbert space and all evaluation functionals are bounded, we call
H a reproducing kernel Hilbert space (RKHS) on X.

For every x € X, the evaluation functional E, is linear and bounded, hence they are all
continuous. Therefore, by Riesz’ representation theorem,

WNep €eH: VfeH: Eu(f)=(fka)n, kel =Ezlls
From this, we can construct the reproducing kernel for H,
L XxX—F
(ac,y) = ky(x)
By the Cauchy-Schwarz inequality, we have
|f@)] = [(f, kCx))al < NFlallkC 2) |- (2.10)
We say that the kernel function k is bounded by K < oo iff
sup [|k(-, )|y < K.
zeX
We now want to list some important properties of RKHS with Propositions 2.3.1, 2.3.3, 2.3.4
and Theorem 2.3.5. The proofs can be found in any textbook on RKHS [29, 2, 6].

Proposition 2.3.1. Let H be an RKHS on the set X with kernel k. Then (ky)zex spans a
dense sub space of H, i.e.

span{k(-, x)}rex = H.
Remark 2.3.2. We can rewrite the kernel with the scalar product, yielding
k(z,y) = ky(x) = (ky, ka)n = (k(,y), k(- 2))n- (2.11)

Proposition 2.3.1 implies that we can represent a function f € H as a countable sum
o0
f(z) = Zuik(%?ﬁi)a where (u;)ien CF, (7i)ien C X.
i=1

Let (v;);en be the coefficients of another g € ‘H, w.l.o.g. with respect to the same (x;);en. Then
the inner product of f and g can be represented as

(frghm =D wivy k(i) k(- 25)) = Y wpvik(as, z)).

i,j=1 i,j=1
|

Call a function k : X x X — F positive semi-definite, if for every set {x1,...,z,} C X of
n distinct elements, the matrix (k(z;,2;));;—; is positive semi-definite. Proposition 2.3.3 and
2.3.4 and Theorem 2.3.5 describe the relationship between these functions and RKHS.

Proposition 2.3.3. Let Hy1 and Ha be RKHS on X with kernels k1 and ko, respectively. If
k‘l = k‘Q, then Hl = HQ and ” . H'Hl = H . H'Hz

Proposition 2.3.4. Let H be an RKHS on X with kernel k. Then k is positive semi-definite.

Theorem 2.3.5. Let X be a set and k : X x X — F a positive semi-definite function. Then
there exists an RKHS H on X with k as its reproducing kernel.

15
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2.4 Matrix Theory

2.4.1 Perron-Frobenius Theorem

Since one may view a Markov Decision Process as a graph, which is traversed according to the
initial state distribution, transition dynamics and policy, we will occasionally require the well
known Perron-Frobenius Theorem 2.4.1.

For a matrix A = (a;;)}';,—; € R™", consider the graph G = (V, E), where V = {1,...,n}
and (i,j) € E iff a; j # 0. We call A irreducible iff G is strongly connected, i.e., one can reach
any vertex j € V from any other vertex ¢ € V by just traveling along edges in F in the forwards
direction.

Theorem 2.4.1 (Perron-Frobenius theorem). Let A € R™ "™ be irreducible with non-negative
components. Then the spectral radius r of A is a positive eigenvalue of A, the Perron-Frobenius
eigenvalue. It is also simple, i.e., both left- and right-eigenspaces of r are one dimensional.
Additionally, there exist a left-eigenvector v and right-eigenvector w for r whose components
are all non-negative. If A even has positive components, then all eigenvalues A # r of A have
Al <.

2.4.2 Derivatives

In order to identify stationary points or to apply stochastic gradient (SG) methods, it is neces-
sary to calculate a gradient of some objective function. In order to facilitate the calculation of
multivariate derivatives, we present a series of elementary identities.

Remark 2.4.2. For x,y € R", we get partial derivatives
0 0 <
37%<:v,y> = T%Zﬁﬂzyz =yr and Op(z,y) =y
i=1
For A € R™"™ with rows alT, ...,a, , we therefore have

0y Az = 9, ((as, @)1y = (Ou(as, 2))iy = (a] )iy = A.
Now, let A € R™™™ and
n n . (A A n .
g:R" 5 R™  g(z) = < x:c) = <I> z and f:R SR, f(y,y2) = (y1,0).
We further get the derivatives
A

0 T(n,1) = Ot Onlinose)) = ]) and arg(o) = (7).

Therefore, according to the chain rule,
Ou(Az, ) = 0o(f 0 g)() = 0y f(9(x))Dug()
= (27 (Az)") (1;1) =z A4z AT =T (A+AT)

In particular, if A is symmetric, i.e., A= AT, we get

dp||z||A = 0p(Ax, ) = 22" A.
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This means that for d € R",
8;,;||3:H?2(d) = O, (diag(d)z, z) = 22" diag(d) and 9,|z|3 =2x".
|

Remark 2.4.3. Let a matrix A € R™ "™ be positive definite. It is injective, because for any
r € R,

Ar =0 = 2'Az=0 = 2 =0.

The latter follows from positive definiteness. Since matrices represent linear operators between

finite dimensional vector spaces, A is also invertible.
[ |

Remark 2.4.4. Consider a matrix A € R™*" a vector b € R™, and a symmetric, positive definite
matrix D € R™ ™, Let AT be the pseudo-inverse of A. It is commonly known that A*b solves
the

linear fitting problem: m]%n |Az —b||3  or equivalently, (2.12)
zeR™
Gaussian normal equations: A" Az = ATb. (2.13)

We assume that the columns of A are linearly independent. Then, AT A is positive definite,
hence, by Remark 2.4.3, invertible. The solution to (2.13) and (2.12) becomes unique and

At = (ATA)TAT,

Now, we pose this minimization problem with respect to the norm || -||p. Building derivatives
according to Remark 2.4.2, we get

VoilAz— by = ATDT(Ax —b) = ATDAz — AT Db,

The existence of the inverse of AT DA can be argued analogously to before, just by replacing
the norms. Setting the gradient to zero, yields

x=Abb, where AL =(A"DA)'ATD.
We define
P = AAL, = A(ATDA)'ATD.
Now, P is a projection onto the range of A, since for any y = Ax,
Py=A(ATDA)'AT DAz = Az = y.

It is even an orthogonal projection with respect to the scalar product induced by D, since it is
self-adjoint,

(¢, Py)p = (Dz, Py) = (P' Dx,y) = (D' A(A'DA)" ' A" Dz,y) = (DPz,y) = (Px,y)p.
Therefore, the Hilbert space projection theorem yields

Pb = argmin {|ly — bl|}, | y € ran(A)} = argmin {||Az — b|| | z € R"}.
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2.4.3 Block Matrices

When applying SG methods on multiple parameterizations simultaneously, we can collect their
parameters in a single vector. Reformulating the objective yields a block matrix. To work with
the determinant and potential inverse of such a block matrix, we list the well known Lemma
2.4.5.

Lemma 2.4.5. Let A, B,C and D be matrices, and consider a block matriz
A B
M= < 4 D> .
Define the Schur complements M/A = D — CA™'B and M/D = A — BD~'C. Then

det(M) = det(A) det(M/A) (2.14)
= det(D) det(M/D). (2.15)

In case A and M/A, or D and M/D are invertible, i.e., M is invertible,

1 (AT'4+ ATIB(M/A)TICATY —ATIB(M/A)T!
M 1—( —(M/A)TCA! (M/A)! ) (2.16)
:< (M/D)™* —(M/D)~*BD* ) (2.17)
-D-'c(mM/D)"' D'+ D 'C(M/D)"'BD71)" '

2.5 ODE Lemma

The ODE Lemma 2.5.7 serves as a powerful tool to prove convergence of SG methods [9].
In this section we will briefly cover some basic concepts from ODE theory to understand
Lemma 2.5.7 better and help apply it.

Let G C R™ be a simply connected domain and f : G — R™ be Lipschitz continuous. A point
yo € G is called equilibrium iff f(yo) = 0. Define the set of all equilibrium points

&€={y e G| fly)=0}.

Denote by y,, the solution to the autonomous ODE ¢/(t) = f(y(t)) with y(0) = yo. It is called
asymptotically stable if it is stable and attractive, which means, respectively,

Ve > 030 > 0s.t. Vo € Bs(yo) : Yy, exists on [0,00) and ||y, (t) — yg, (t)|| < € for all £ > 0,

t—o00

and 30 > 0 s.t. Vio € Bs(yo) : ¥y, exists on [0,00) and ||yy, (t) — yg,(t)|| — 0.

Theorem 2.5.1. Consider the function f(y) = Ay, where A € R™*". Then y* = 0 is a stable
equilibrium iff all eigenvalues A of A fulfill R(A\) < 0 and if R(N\) = 0, then X\ is semi-simple,
i.e., its algebraic and geometric multiplicity coincide. Also, y* = 0 is an asymptotically stable
equilibrium iff all eigenvalues X of A fulfill R(\) < 0.

A function L : G — R is called (strict) Ljapunov function for f iff it is continuously differen-
tiable and for every yo, where y,, is not constant, L oy,, is (strictly) monotonically decreasing.

Lemma 2.5.2. Consider a continuously differentiable function L : G — R. It is a Ljapunov-
function or even a strict one, respectively, if

Vye G: (VL(y), f(y)) <0 and VyeG\E: (VL(y), f(y)) <O0.
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Theorem 2.5.3 (Ljapunov’s method). Let L : G — R™ be a Ljapunov function and y* an
equilibrium. If y* is a strict minimum of V', then y* is stable. If y* is also isolated in £ and V'
is a strict Ljapunov function, then y* is asymptotically stable.

Consider the iteration
Yer1 = ye + ar(M(ye) + Miy1), where t €N,
for y, € R™, step sizes ay € (0, 1], random vectors (My)er, and the function h : R™ — R™.

Assumption 2.5.4 (Lipschitz and ODEs). The function h is Lipschitz continuous and there
exists a function hs : R™ — R™ such that

lim hiry) =hoo(y) forall yeR"™

r—oo T
Furthermore, let the origin 0 € R™ be an asymptotically stable equilibrium for the ODE
y'(t) = hoo(y(t)) forall t>0
and let y* € R" be the unique globally asymptotically stable equilibrium for the ODE
Y (t) = h(y(t)) and t>0.

Assumption 2.5.5 (bounded martingale difference sequence). The sequence (M;).en is a mar-
tingale difference sequence with respect to the filtration F; = o(y;, M;)!_; and for any initial
condition yg € R,

E[|Meall3 | 7] = O(lyell3 +1).
Assumption 2.5.6 (Robbins-Monro). The Robbins-Monro conditions for (a;)ieny C Rso read
oo [ee]
Zat =o0 and Za? < 0. (2.18)
t=1 t=1
Now, we can finally formulate the ODE Lemma 2.5.7 by Borkar et al. [9].

Theorem 2.5.7 (ODE Lemma). Under Assumptions 2.5.4, 2.5.5 and 2.5.6, for any initial
condition yo € R"™, we have

Yt KN y*  almost surely.

2.6 Extended Delta Method

2.6.1 Hadamard Differentiability

The objective of this section is to present a more abstract notion of differentiability, which
will enable us to apply an extended version of the well-known Delta Method to functionals
T:P(X)C M(X)— R. The content is based on van der Vaart and Wellner [40].

Let & and Y be normed spaces over R. A function f : &y € & — ) is called Hadamard
differentiable at zo € Xy tangentially to Xy, C X with Hadamard deriwative O fy, : Xap, — Y
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at xo iff 0fy, is continuous and linear and for all z € Xy, and series (tn)nen C R\ {0} and
(n)nen C X, where

t n—o00 0’ Hxn o xHX H—oo) O’ and xo + thxy € Xf:

we have

f(xO + tnxn) - f(xO) n—00
Z F.(o)

In order to highlight the difference between classically and Hadamard differentiable functions,
we aim to prove Lemmas 2.6.1 and 2.6.2. To this end, for a sub set K C Xafzo, define

Hf(fﬂo + tx) — f(xo)

t ~ 0 o(2)

TK(t)isup{ r e K, a:0+tx€Xf}.

Yy

Lemma 2.6.1. Hadamard differentiability is equivalent to
t—0

VK C Xpy,, compact: r(t) — 0. (2.19)

Proof. Firstly, we assume that f is Hadamard differentiable and show (2.19). We show that
(2.19) holds for any (t,)neny — 0. For every n € N, consider (2 m)men, with x, , € K and
o + tnTnm € Xy, such that

H f(wo + tnwn,m) — f(=o)

p — Of (xn,m)H 7% vk (tn)-

y

Let (€n)nen 4 0 and choose (my,)nen, such that

TK(tn) S H f(.CC[) + tnxn,m) - f(wO)

; — 8f$0(:1:n7m)H +¢e, forall neN and m > m,.

y

Because K is compact, there exists a sub sequence (2, )nen Of (pm, Jnen C K, converging
against some x € K C Xpy, . We can now apply the triangle inequality and the continuity of
0 fz, to get

ric(tn) < Hf(l'O‘Ftn‘::)_f(xO) _8fxg($n) y+€”
< |[Hlrot bt =) o )|+ 10 ) = (o)l + €0 220,
n y

Secondly, we assume (2.19) and show Hadamard differentiability. Let K C Xofeo be compact,
such that z € K and x,, € K for almost every n € N. Again,

H f(zo + tawn) — f(x0)

- - Ohif)|

i ot = o)

= Ofuo(@n)

<10z (n) = Do () ly

y

n—oo

< |0 fuo(zn) — 8f:co(33)”y +ri(ty) — 0.
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Lemma 2.6.2. Frechét differentiability is equivalent to

VK C Xpf,, = X bounded: rk(1) =0 0. (2.20)

Proof. Recall that f is Frechét differentiable in zq iff

1f(z0 + @) = fwo) = Ofwe (E)ly = O(l[€llx),  ll€llx =0, @0+ & € X

This means that for all C' > 0 there exists an € > 0, such that for all { € B.(0) with xo+§ € A,
we have

1/ (z0 + &) — f(w0) = Ofe (&) lx < CI€]|x-

Since we can bound the supremum 7 (t) in (2.20) by taking BX(0) O K with ¢ = sup,cx ||7||x,
instead of K, we can assure w.l.o.g. that K is of such form. It follows that for all bounded K C X
and 0 > 0 there exists a tg > 0 such that for all ¢ € (0,%p) and x € K with x¢ + tx € Xy, we
have

<5
X

= Ofzo ()

)

Hf(fﬂo +t9;) — f(z0)

which we can see by considering the substitution, w.l.o.g. K # {0},

C=246/sup ||z||x, to=c¢/sup|z|r, and & =tz.
reK rxeK

The other direction follows by taking the same substitution, but with the unit ball K = Bt (0).
O

Corollary 2.6.3. Every Frechét differentiable function f : Xy € X — Y is also Hadamard
differentiable tangentially to Xof,, = X. The reverse is true if the unit ball B{Y(O) m X s
compact with respect to the norm topology, i.e., X is finite dimensional.

Proof. We consider the characterizations from Lemmas 2.6.2 and 2.6.1. Since every compact set
K C X is bounded, the first claim is immediate. If B{*(0) is compact and K C X is bounded,
BX(0) O K with € = sup,¢ g |||+ is compact and we can bound the supremum 7 (t) in (2.20)
by using the BZ(0) instead of K.

O

Note that the normed space M(X) is not finite dimensional. By Corollary 2.6.3, the notion
of Frechét differentiability is not powerful enough to support our original endeavor. Thus,
we extend the well known Delta Method for classically differentiable functions, to Hadamard
differentiable functions. For further details, please refer to Vaart and Wellner [40].

Theorem 2.6.4 (Informal Extended Delta Method). Let f : Xy € X — YV be Hadamard
differentiable at 0 tangentially to Xy, . Let (rn)nen > 0 be a sequence with ry, 270 0o. Let
(Xn)nen be a sequence of random variables and X a single random variable into Xy and Xﬁfzoy
respectively, such that

n—o0

rn(Xp —0) —— X almost surely.

Then

7"_17' - - n—o0 . . . .
r(f(Xn) — f(0)) = SO+ rn (X — 6)) = 1(0) Afg(X) in distribution.

If Ofy is defined and continuous on all of X, then
o(f(Xn) = £(8)) — 0fo(ra(Xn — 0)) =250 in probability.
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2.6.2 Confidence Intervals

In this section, we apply the Extended Delta Method 2.6.4 to obtain some asymptotic confidence
intervals, as described in Theorem 2.6.8. The results are taken from the work of Duchi et al. [14].

Call T : X x P(X) — R an influence function of T iff we have Epp[T™M(-; PP)] = 0 and

OTpp(Q — PP = /X TW(z; PPY d(Q — PP)(z) forall Qe M(X).

The law Pg of a Borel-measurable random variable G is called tight iff
Ve > 0: 3K compact: Pg(K)>1—e

Recall that, since the samples in D are random variables on X, the empirical measure PPisa
random measure. Let H C Lo(PP) be a class of functions. We say that H is PP-Donsker iff
there exists some tight Borel-measurable G € Lo (H), such that

H\/ﬁ (PD — PD) _ GH 200 in probability.
Lo (M)

We say that ‘H has an Ls-integrable envelope C' : X — R iff
CeLy(PP) and VIeH: £<C almost surely.

Lemma 2.6.5. Let H = {{(-;0)}ocr, be a set of functions, Cy-Lipschitz continuous in 6, with
Cy € Ly(PP) and compact Fy. Then H is PP-Donsker with La-integrable envelope.

Assumption 2.6.6 (Smoothness of f-divergence). The function f : R>g — RU{oco} divergence
conform, i.e.,

Vi >0: f(t) < oo, f(O):lgﬁ)lf(t) and f(1)=0.

It is also three times differentiable in a neighborhood of 1 as well as
f(1)=0 and f"(1)=2.

Remark 2.6.7. Notice that Assumption 2.6.6 restricts the set of f-divergences we can use
severely. By differentiating zlogx twice, one can easily see that the KL divergence does not
meet the requirements imposed by Assumption 2.6.6,

d 1 d? 1

@(a: loga:) = logz + T = logz+1 and @(x loga:) = (2.21)
Nonetheless, by starting with an arbitrary f:R>o — R U {oc}, which is divergence conform

and three times differentiable in a neighborhood of 1, we can enforce the missing conditions by

instead taking

2
) (f@) = f()(z—1)). (2.22)
For the KL divergence, the modified version would then be based on
f(z) =2xlogx — 2(x — 1). (2.23)
|
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Theorem 2.6.8 (General Asymptotic Coverage). Let Assumption 2.6.6 hold for f. Let H be a
PP _Donsker class of functions with Lo-integrable envelope. Let the limit G of \/ﬁ(pD—PD) take
values inside B(H, PP) C M(X;H). Assume that T : P(X) — R is Hadamard differentiable at
PP tangentially to B(H, PP) with influence function TM(-; PP) and dTpp is continuous and
defined on the whole of M(X;H). If 0 < Varpp [T (-; PP)] < 0o, then

lim P (T(PP) € {T(P) | P € B, (PP)}) =3 <€),
Proof sketch. We want to apply the extended delta method from Theorem 2.6.4 to
f=T, rm=+vn X,=PP, 0=PP and X =0G.
We can rewrite
T(PP) = T(PP) + Epn [TV (- PP)] + n(PP),
where k(P) = T(P) — T(PP) - Ep[T"M(; PP)).

Because

OTp (PP — PP) = / T (2; PP) d(PP = PP)(x) = Epo [T (:; PP)] = Epn [T ( PP,
X

0
we can apply the Extended Delta-Method from Theorem 2.6.4 and get

Vik(PP) = Vi (T(PP) = T(PP) = Ego [TV (5 PP)))
= Vn (T(PD) — T(PP) — 0Tpo (Vi (PP — PD)) 2% () in probability.

AD), ie.,

By [14, Lemma 16], this convergence even holds uniformly over Bg /n (P

Ve >0: limsupP (\/ﬁsup {|n(P)| ‘ Pe Bg/n(PD)} > e) =0.

n—oo

By definition of &,
sup  (T(P)—T(PP)) <  sup w(P)+ sup Ep[TW(;PP)),

PeB{, (PP) PeB{, (PP) PeB{, (PP)
sup  Ep[TW(;PP) < swp  (=k(P)+ sup (T(P)—-T(PP)).
peB!, (PP) pPeB!, (PD) peB!, (PP)

§/n &/n &/n

Applying uniform convergence, we obtain

Vo sup  (T(P)=T(PP)) —vn sup  Ep[TM(;PP)]
PeBg/n(PD) PeBg/n(PD)

<vn sup  |k(P)] =250 in probability.
PeB/, (PP)

By [14, Theorem 9],

Vi s EelTO(PP)] - (VB [T PP)] e Varpo [T (PP
PeBg/n(ﬁD)

n—oo

——— 0 in probability.
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By the Central Limit Theorem,

V(B [T0 (5 PP)] = Epn [T (5 PP)] ) 225 N (0, Varpo [T PP)] ) .
0

The sample variance is a consistent estimator, i.e.,
Var pp [TW(; PP)] ™22 Varpo [TW(; PP)).

Putting it all together yields

]P’(T(PD) < sup T(P)) = P(O <vn sup (T(P) —T(PD))>

PeB{, (PP) PeB{, (PP)

N P<0 < \/gvarpp [T(M(; PP)] + N (O,Varpp M PD)]) )
=P (—\/E < N(0, 1)) :

By a symmetric argument on —T'(PP), we get

P(PeBigI/lf(PD) T(P) < T(PD)) nooo, p (N(o, 1) < \/E) .
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3 Reinforcement Learning

3.1 General

For a set X, let A(X) be the set of probability distributions on X. We consider a Markov
Decision Process (MDP) (S, A, R, T, dy,~).

e S and A are the set of states and actions, respectively.

e R:SxAxS — A(R) is the reward function that assigns a state-action pair a reward
distribution, but we are often going to treat R(s,a,s’) as a random variable and write
r(s,a) = Eyp(sa)[R(s,a,s")]. We assume that the reward function is bounded almost
surely.

e The transition probability distributions are given via 7' : S x A — A(S) and we write
T(s' | s,a) for the probability of transitioning into state s’ € S when choosing action
a € Ain state s € S.

e The initial state distribution is dy € A(S).

e The discount factor ~ € (0, 1], that is, we allow for our MDP to be discounted or even
undiscounted in certain cases.

For the sake of brevity, when we want to make claims for the state-space S and state-action-
space S X A at the same time, we simply use Q = S or {2 = § x A. In case the state-action-space
S x A is finite, we fix some global enumeration. We write the column vector

—

f=(f(s,0))(sapesxa for f:SxA—=R.

Also, for any operator A on these functions, we write A for the operator on these column vectors.
In particular, this means that if A is linear, A will be a matrix. Define the multiplication operator

Dw=dw for w:5xA—R, where d:5xA—R.

Any sub or super scripts that d may have will get carried over to D. Note, that for a finite
state-action-space S x A, the matrix version of the operator D will be a diagonal matrix

D = diag(d).
For convenience, we define

df(so,a0) = m(ag | so)do(sp) and T7(s',d’ | s,a) =m(a"|s)T(s'|s,a) for
(s0,a0) €S x A and (s,a),(s',d') €S x A.

Assumption 3.1.1 (MDP ergodicity). A finite MDP is said to be ergodic if for any policy,
starting from any state, it is possible to reach any other state (including itself) within a finite
number of steps with non-zero probability.
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The policy value (PV) p™ of 7 is defined as

T

H
Lo 1
p" = lim WE(so,ao)ng, (8t41,at41)~T™ (s¢,at) [ZVtR(Staat)] :
t=0

H—o0 =0

In the discounted case, the policy value p™ reduces to

o
P = (11— ’Y)E(so,ao)ngv (st+1,at41)~T™ (s¢.a¢) [Z Wtr(st’ at)] ’
t=0

where as the undiscounted case yields

H-1
1
71 - 3
pﬂ- - ngnoo E(so,ao)NdS, (8t+1,at41)~T™(s¢,a¢) [H Z r(shat)]
t=0

= Hh_rgo ]E(SOﬂO)NClZ)r7 (st41,a¢41)~T™(s¢,a¢) [T(SH> aH)] :

The (state) value function and (state) action value function of 7 are denoted V™ and Q7,
respectively. In the discounted case, the state- and action-value functions of 7 are

[o¢]
VTI(8) = Eaymr(se), ses1~T(se,ar) [Z Yr(se, ap) | so = s] ,
=0
> S S
. 0 p— 5
Qm’Y(S’a) — E(St+1,at+1)NT7r(St,at) [Z ")/t’]“(st,a/t) ag = a] )
t=0
in the undiscounted case, however,
o
V“’l(s) =E 4 on(s), [ (r(se,ar) —p™) | so = s] ,
st+1~T'(st,at) | t=0
> s s
. 0= 95,
le(s, Cl) = E(st+1,at+1)~Tﬂ(st7at) [Z("“(Sbat) - p7r) ag = a] .
t=0

The stationary distribution d™ of w is defined as

H
- . 1
d"(s,a) = }}gn H tE(Sovao)ng, (st+1,at41)~T7 (st,a1) [Z ’Ytﬂ'St:s, at—a]
%> im0 t=0
1 H
d7(s) = lim ———F(y, oy)mdr T "L,—
(5) Hgnoo Zio At (s0,a0)~dg, (st41,at41)~T™ (s¢,a¢) [;’7 st S]

In the discounted case, the stationary distribution d™ of 7 reduces to

o
d7r77(83 a) = (]- - V)E(so,ao)wdg, (St+1,at+1)~TW(st,at) [Z ’}/tILSt:S, at:a] 9
t=0

dﬂ-77(8) — (]. - ’Y)E(SO,(lo)ng, (st+1,at+1)~Tﬂ(st,at) [Z fytllstS] I
t=0
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where as the undiscounted case yields

[ Al
7,1 T

d (S,a) - lg%o ]E(Smao)’“dga (8t+1,at+1)NT”($t,at) E — ﬂst—S, at=a
= Hm Py ao)ndr, (sip1,a000)~T7(se.a0) (SH = 8, ag = a),

T OH-1

d™'(s) = lim E 15y
§ _Hl_Igo (s0,00)~dF, (se+1,ae41)~T7 (se,ae) | 7 pars st=5
=s

= lim ]P)(So,ao)wdg, (8t+1,at+1)~T”(St,az)(3H

H—o0

For simplicity, we abbreviate the statements

(so=s, ap=a)y, <= sop=s, ay=a, (sgyap) ~ T (sp—1,a1-1)
(so=1s)t <= so=s, ap~m(s0), (s¢yap) ~ T (s¢—1,a1-1),
(%) <= so~dy, ao~ 7(s0), (s¢yar) ~ T (S¢—1,a1-1),

(*)t L So do, agp ~ 71'(8()), St~ T(St_l, at_l),
and everywhere V7 =1,..., Sryar) ~T™(sr—1,a7-1).

Now, we define the expected reward and occupancy at some time ¢t € N as

di (s,a) =
d;r(s) = P(*)t (St = S).

T?(S, (L) = E(sozs, ao:a)t[r(sta at)]a
T?(S) = E(SOZS)t[T(St7 at)]v
Notice that
=r(s,a), dg(s,a) = do(s)m(a | s),
dg(s) = do(s).

o (s, a)
Tg(s) = EaNﬂ'(S) [T(‘S? a)],

We can also recover the functions Q™ and V'™,

27 (s,a)

as well as the stationary distribution

d" = hm Z’ytdw/

The discounted and undiscounted setting, respectively, yield

and V7(s Z ~yr

Y o t gm m,1 - (- 71'
0SS i 3

Pz (st = s, ar = a),

(3.1)

For the sake of brevity, when we want to make claims for Q™ and V™ at the same time, we

simply use f7

= Q7 or f™ = V™. This also applies to using none or other sub and super scripts.

Also notice that we overload r], df and d™ as functions on states as well as state-action pairs.

In case statements are meant for both cases, we will omit the arguments.

Lemma 3.1.2 tells us something about the connection of the stationary distribution on the

state- and state-action-space.
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Lemma 3.1.2. For any s € S and a € A, we have
17 (8) = Equrn(o)[rt (s,a)]  and V7 (s) = Equr(s)[Q" (s, a)],

as well as, for any s’ € S and o’ € A,
df(s') = / dy(s',a’) dd’, df(s',a)y =df (s")m(d' | &)
A
and d"(s') = / d™(s',a") dd’, d™(s',a") = d™(s")m(a" | §).
A

Proof. All the equations, except the last two, follow directly from the definitions. For the last

two equations, we can use the ones before and (3.2).
O

The functions Q™, V™ and d™ are useful for policy evaluation, because they allow us to
describe the policy value p™ in a simpler manner, as given in Lemma 3.1.3.

Lemma 3.1.3. For 0 < v <1, we have
P" = (1 = 7)E(s9,a0)~dz [Q(50,a0)] = (1 = 7)Espnag [V (s0)]- (3.3)

For 0 <~ <1, we have

Y

P = Il“--1:’(5,0L)~cl"’ [r(s,a)]. (3.4)

Proof. The first equations follow directly from the definition and Lemma 3.1.2. For the last
equation, we apply the theorem of total expectation and get

H
Z’W’ Sty Ot /271
;:0
- P}%Z’m ool 3o

Pr = hm IE(*

O

We can also give a more high level proof of Lemma 3.1.3. It does not use any explicit definition
of Q™ or d”. Instead, we can simply treat them as solutions to the Bellman equations (3.5) or
(3.7) and (3.9), respectively.
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Alternative proof of Lemma 3.1.3. We multiply the backwards Bellman equations (3.9) with Q™
and use the fact from Lemma 3.2.3 that P is the adjoint operator of P™,

(@, d") =(Q, (1 = y)dg +7PId™) = (1 =9)(Q7, d5) +~+(P"Q",d"),
We subtract the last summand, and apply the forwards Bellman equations (3.5) or (3.7),

pt =1 =)Q7, dg) + p L=
= (Q"T —PTQ",d") + (p"1y=1,d")
=(B"Q" 4+ p"Ly—1 —YPTQ",d") = (r,d").

3.2 Bellman Operators and Equations

For functions @, d : S x A — R, we define the expected Bellman operator and its adjoint as

PTQ(s,a) = Q(s',a\T™(s',d' | 5,a) ds’ dd’
SxA
= E (s )1 (s,0) [ QS )], where (s,a) € S x A,
Prd(s',a') = / d(s,a)T™(s',a’ | 5,a) ds da, where (s',a") € S x A.
SxA

We can also make these definitions for V,d : S — R,

5) = / /S V(\T(s | 5,a) ds'n(a | 5) da

= anﬂ(s s'~T(s,a) [V(Sl)], where s €S,
Prd(s / / m(a | s)T(s" | s,a) ds da, where s'es.
Also, define the operators
A=1—~P and A,=1-—~P".

Note, that P™ is a linear operator on C(2). In case the state-action-space S x A is finite, we
write

P = (T7(s',a’ | 5,a))(s.0).(s'.aresxa and P = (P7)T.

It turns out that some of the properties of V™, Q™ and d™ get preserved when applying P™
and PT, respectively. We state them collectively in the following Lemma 3.2.1.

Lemma 3.2.1. For any s € S and a € A, we have
lpﬂ—r?(s) = a~7r(s) [,Pﬂ ﬂ—( )] and ,Pwvﬂ(s) = anﬂ'(s) [,PWQﬂ(Sa CL)],

as well as, for any s’ € S and a' € A,
Prdf (s / PIdf(s',a") dd/, Prdf(s',a") = PId}(s")m(d | §'),

and Prd"(s / Prd™(s',a") dd, Prd™(s',a') = Prd™ (s )m(d | §').
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Proof. We use the corresponding identities from Lemma 3.1.2, without P". Firstly,
Eqrn(s) [PTrT (5,0)] = Egon(s) [E(sr 0yt (s,0)[1F (57, 0)]]
= anﬂ'(s), s'~T(s,a) [7’?(3/)]

— PTG,
and
anﬂ(s) [,PWQW(Saa)] = IE(1L~7T(5) [E(s ,a' ) ~T™ (s,a) [Q ( )H
= IEa'\nr(s), s'~T(s,a) [ ( )]
=PTV7(s).
Secondly,
/ Prdy(s',a") da’ = / / df (s,a)T™(s',d’ | s,a) ds da dd’
A SxA
/ /(17r m(a|s)T(s" | s,a) ds da/ n(ad | §') da’ = PIdf(s)
A
—_—
1
and

Prd}(s)m(d | §) / /dTr (a|s)T(s"|s,a)ds daw(a’ | s")
/ df (s,a)T7(s',a’ | s,a) ds da = PId(s',d).
SxA

For the last two equations, we can use the two before, the linearity and continuity of the PT,
and (3.2).
O
Lemma 3.2.2. For allt € N it holds that
TZrJrl = PWT?? T? = (P )trg]rv
T =Pidy,  df =(PI)'dg.
Proof. Firstly,

Prri_i(s,a) = ZZrtlsa "(s',a' | s,a)

s'eSa’€A

=3 3 Els, araya (51, 001)IT7(s 0 | 5,0)
s'eSa’€eA

= IE(50=8, ap=a)t [T(Sh at)]

=ry(s,a).

Secondly, applying the theorem of total probability,
df(s') = P, (st = s")
= Z Z Py, (st =8 | seo1 =5, a1 = a)Pp, (a1 = a | sp1 = 5)Ppy), (51 = 5)

seSacA

- Z ZT(s’ | s,a)m(a | s)di_{(s)

seS acA

= Pfd?_l(s’).
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Now, we just apply Eqr(s) or multiply with 7(a’ | s") and use Lemmas 3.1.2 and 3.2.1 to also

get the result for only states or state-action pairs, respectively.
O

For some of the proofs later on we are going to need some more technical properties of P™
and P, which we summarize in the following Lemma 3.2.3.

Lemma 3.2.3. The expected Bellman operator P™ and P have the following properties:
1. On the Hilbert space La(QY), P is the adjoint operator of P™.

2. The operator norms on Lo () and Lq(2), respectively, are

1P Ly =1 and [Pz @) = 1.

3. Given a probability distribution d € A(Q) and p > 1, we have
1P Npoo@y =1 and |P"|1,(pray, £, = 1-
In case d > 0, it also holds that ||[D~'PID||r, @) = 1.
4. The spectral radius of P™, PT and D~'PTD is 1.
Proof. 1. Using Fubini’s theorem, we calculate

(P™Q,d) = / ( Q(s',a\T™(s',d' | s,a) ds’ da') d(s,a) ds da
SxA SxA

= Q(s',a) </S Ad(s,a)T”(s’,a’ | s,a) ds da) ds’ da’ = (Q, Pl d),

SxA

(P™V, d) / (/ / V(\T(s' | 5,a) ds'n(a | 5) da) d(s) ds
/ (// m(a|s)T(s | s,a) ds da) ds’ = (V, PTd).

2. Using the triangle inequality, we calculate
IP™ fll Los () = sup By o ) [f ()] < sup Eur @) [ F (@) < 1 fll Lo

Applying it again, this time together with Fubini’s theorem,

IPrdl 1y (sxa) = /
Sx A

< [ ol [ 1 s a8 ao) ds da= s,
SxA SxA

1

|PEdlLy(s) = / ‘// (a|s)T(s"|s,a) ds da
< [aen( [ 76150 asnlal 9 da ) ds= a0,
1

ds’ dd’

/ d(s,a)T™(s',a’ | s,a) ds da
SxA

ds’
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Consider f =1 and d > 0 for equality, respectively.
3. Similarly to before, we calculate,
[P f Lo (@) = €ss sup | Bz (@)]] < ess sup Byt (@) f (@) < 1l Lo a
we we

and use Jensen’s inequality on P™ and monotonicity of the inner product with a non-negative
second factor, to calculate

IPFIE oy = (P F17,d) < (P7IAP,d) = (UFP, PEd) = 1L ey
Consider f =1 for equality. Then, using Fubini’s theorem again,

1
d(w")

< [ ([ 1610 e do = ol

1

||D_1’PwaHL1(d) = /Q ‘ /Qd(w)w(w)T”(w/ | w) dw‘ d(w') do’

Consider w > 0 for equality.

4. It is well known that the spectrum of an operator is contained within the ball with its
operator norm as the radius. This bounds the spectral radius from above by 1. Now, by
definition of P™, the constant function 1 is an eigenvector with eigenvalue 1. It is also well
known that the spectrum of an operator is identical to that of its adjoint. Therefore, the
spectral radius of PI is even equal to 1. Finally, note that similar operators share the same

spectrum and spectral radius.
O

ForQ:SxA—R,V:5—Randd:Q — R, define the forwards Bellman operator B™ and
backwards Bellman operator T™ by

i § f 0
B O(s.0) = 3 (s, a) +9P"Q(s,a) for ~e(0,1),
T(T)F(S,a)_PW"‘ ,PWQ(S,CL) for Y= 1’
T U i
BV (s) = 75 (s) +9P™V(s)  for v€(0,1),
ro(s) —p"+ PTV(s) for y=1,
T7d = (1—~)dy +~PId for ~e(0,1],

where s € S and a € A. We will also use the notation

By it 0<y <1,

Bl if v =1.

By f=rg—p+P"f, so BT = {

The following two Lemmas 3.2.4 and 3.2.5 are both Bellman equations. They have in common
that they describe the state-(action-)function and stationary distribution by means of a time
shift. The first, better known result, uses states and actions after going forward in time by
applying P7. Accordingly, the latter uses previous states and actions together with P7.
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Lemma 3.2.4 (forwards Bellman equations). Let v € (0,1), then Q™ and V™ are fized points
of the Bellman operator B™7, i.e., solution to the (discounted) forwards Bellman equations,

Q=1+ 1P where Q5 x AR, (5)
V =15 +~P"V, where VS —R. (3.6)

Let v =1, then p™, Q™ and V™ are solutions to the (undiscounted) forwards Bellman equations,

Q=r;—p+PrQ, where peR, Q:58xA— R, (3.7)
V=ri—p+P"V, where peR, V:S—=R. (3.8)

Proof. We first show the claim for state-action-values,

Q" (s, a)
> S S
0= 9
= E(3t+17at+1)NTW (st,at) [ /Y r(st, ar) pﬂ.ﬂﬁ:l) ap = a]
t=0
> S S
_ 0= 95
— E(St,at)NTﬂ-(St—lyat—l) [(T(SO, G/O) — pﬂ-:ﬂ_fyzl) + ’YZ(’yt 1r(3t, a,t) — pﬂﬂq/:l) a() — a]
t=1
=r(s,a) — p"ly=1
e | S S
0 )
+ VE(SLal)NT""(So,ao) [E(StJrl at+1 NT” (st,at) [Z Sta (It pﬂ'ﬂ’y=1) ao CL]
t=1 _

=r(s,a) — p"ly=1

+ ’YE(S/,CL/)NT” (s,a)

§0 = SI,
ELO = CL/

By applying the expectation E,. () on both sides and using Lemma 3.2.1, we get the claim for
the state-value function.

o0
E(St+1 CLt+1 NTT" S [Z ’Y r St7 at) p ﬂ )
=0

= T( ) P 1"/ 1 +7E(s ,al)~T™ (s, a)[ 3 7a
=7(s,a) = p"ly=1 +7P"Q"(s,0).

O

Lemma 3.2.5 (backwards Bellman equations). Let v € (0,1], then d™ is a fized point of the
backwards Bellman operator T™, i.e., a solution to the backwards Bellman equations

d=(1—~)di +~Pid, where d:Q —R. (3.9)

In case v =1, we need to add the normalization constraint

/d(w)dwzl and d>0.
Q
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Proof. Because P] is linear and bounded by Lemma 3.2.3, we get

t=0 t=0
us t—1pm t
—}}gnood /Z’y + hm 727 Prdi_ /

=(1—7)8+v7’f(hm th tdj / )

O

It remains to be discussed, whether Q™, V™ and d™ really exist, i.e., they are well defined,
and if they are unique as fixed points of the corresponding Bellman operators.

Remark 3.2.6. For v < 1, we can verify that B™ and 7™ are y-contractions with respect to
| oo () and [ - ||, (@), respectively. For fi, fo:  — R and dy,ds : 2 — R, we calculate

1B f1 = B” fall oo (@) = IVP™(f1 = f2)ll L@ S VP @)1 = foll Lo ()
|T7dy — T™da|1,(0) = VP (dr — d2)|| 2, 0) < YIPE Ly lld — 2|z, (@)

By Lemma 3.2.3, the operator norms falls away. By Banach’s fixed point theorem, @™, V™ and
d™ are fixed points of B™ and 7™, respectively. [ |

Remark 3.2.7. A more constructive alternative to Banach’s fixed point theorem uses the Bellman
equations (3.5), (3.6), and (3.9), and Neumann series. We start by rewriting the Bellman
equations as

(I =AP")f=rg and (I —~P)d=(1-7y)dj.
According to Lemma 3.2.3,
VP Ny =7 <1 and [[vPIL, @) =7 <1

Therefore, we can construct the Neumann series expansions for the resolvents at -,

hE

(I=yPT)h =) NPT and (I—+PI) " =) A(P]
t=0

H.
i
=)

We apply this and use Lemma 3.2.2, as well as (3.1) and (3.2), respectively, to get

F=>_4"(P") Zwt =
t=0

1 ™ ™ ™ ™
T4 =2 7(PD)'dg =3y = e
v t=0 t=0 v
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Remark 3.2.8. For the undiscounted setting v = 1, the Bellman operators are not a contraction
and the Neumann series expansion does not converge any more.

Once f7 is fixed, p™ becomes a unique solution to the rest of the undiscounted forwards
Bellman equations (3.7) or (3.8), respectively. Any p € R, such that f™ = Bg’l f™, causes

OZfTr_fﬁ:BWfﬁ_B;r,lfW:p_pw.

The backwards Bellman equations (3.9) from Lemma 3.2.5 reduce to the eigenvalue problem
Pld=d, where / dlw)dw=1 and d>0.
Q

Therefore, the question is, whether PI has eigenvalue 1 with a real-valued eigenvector. By
Lemma 3.2.3, the spectral radius of P is equal to 1. For a finite state-action-space, we can
use the Perron-Frobenius Theorem 2.4.1 on ﬁf . In order for the matrix to be positive and
irreducible, we require Assumption 3.1.1. If so, d™ exists and is unique as solution to this
eigenvalue problem. For an infinite state-action-space, the theory gets more complicated and

beyond the scope of this work [26].
|

We can use the Bellman equations (3.5), (3.6), and (3.9), from Lemmas 3.2.4 and 3.2.5 to
derive some simple error bounds for the policy value and Q™, V™ and d™, respectively, in terms
of the according Bellman error. Unfortunately, the bound is only sharp for very low discount
factor ~.

Proposition 3.2.9. Let v < 1. Then, forany Q: SxA—=R, V:S >R, andd: Sx A— R,
we have

’E(So,ao)ng [Q(s0,0a0)] — p
|Esodz [V (s0)] = p7| <
[Esaymalr(s,a)] = o7

and
107 = Qllpwiag) < 1_171\6%2 — Qi)
VT = VLo < 1_17HBWV — Vlzwar)
|4 = dl.g0) < 7= IT7d =l

Proof. For the first inequalities, we use Lemma 3.1.3 and calculate

= ‘E(so,ao)Nd(’)’ [Q™ (50, a0) — Q(s0, ao)]‘
<NQ™ = Qllryap) < NQT — Qll Lo ag):
|Esodz [V (50)] = 07| = [Esgmdz [V (s0) — V(s0)]|

< WV =Vl = V" = Vi)

/ r(s,a)(d"(s,a) — d(s,a)) ds da
SxA

< " = dllLy @) 7l Lo @)-

‘E(So,ao)ng [Q(s0,a0)] — p"

‘E(s,a)wd[r(37 a)] - pﬁ‘ =
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According to Remark 3.2.6, the Bellman operators B™ and 7™ are ~y-contractions with respect
to || - [ L) and || - ||z, (@), where f™ and d™ are fixed points, respectively. Together with the
triangle inequality, this leads to

1™ = fllpatagy = 1B™f™ = fllaagy S BT = B fllno(ag) + 1B™f = fll oo ar)
<A™ = fllzaeiay + 1B f = fllLooag)
|d™ —dll, ) = IT7d" —dl, @ < IT7d" = T"d|| L, + |T"d —dl|L, @)
<Ald™ —dll, ) + 1T7d —d| L, (@)

O

So far, it has become clear that the discounted case is usually much easier than the undis-
counted. It is also more general.

Remark 3.2.10. Let d™ and P™7 be the stationary distribution and expected Bellman opera-
tor for some discounted MDP. Using the backwards Bellman equations (3.9), we can express
the expected Bellman operator P™! for an equivalent undiscounted MDP, i.e., the stationary
distributions are the same.

Writing down the backwards Bellman equations for both settings, we have

(1 —)d§ +APFId" = d" = PP,

Let A be the Lebesgue measure on S x A. Because d™ is a distribution, using (2.1), we get
A" = / d"(s,a) ds da = 1.
SxA

Hence, we define
PIL = (1—y)dgA+ P17,

Now, we want to calculate the adjoint operator P™!. We start with

(Q,diAd) = Q(s,a)dg(s,a)/ d(s',a’) ds’ da’ ds da
SxA SxA

= / ( Q(s,a)dj(s,a) ds da) d(s',a’) ds" da’ = (Egz[Q], d).
SxA SxA
Since building adjoint operators is linear, using (2.1), we have
P™l = (1 —y)d} +~P™.
In case the state-action-space is finite, we have
Pt = (1= )I(d)" + 7P,

This means that when transitioning from (s, a) to (s’,a’) in the equivalent undiscounted MDP,
we transition, according to the transition probability T7(s’,a’ | s,a) of the original discounted
MDP with probability v and re-spawn at an initial state-action pair, according to the initial
state-action-distribution d™ (s, a) of the original discounted MDP, with probability 1 — ~.

|
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3.3 Bellman Linear Programs

There are two types of Bellman equations that follow a somewhat similar structure, using P™
and PT, respectively, raises the question of whether there is some way to unify them. Indeed,
the theory of Linear Programming allows this, provided that the state-action-space is finite. We
provide the result in the following Lemma 3.3.1.

Lemma 3.3.1 (Q-LP). Let 0 <y < 1. Then, the (discounted) primal @-LP

P = i (1= DB a5 @50, a0)] (3.10)

s.t. V(s,a) € SxA: Q(s,a) >r(s,a) +vP"Q(s,a),
has the (discounted) dual Q-LP

pW,V :dzgﬁai{ﬂ{>0 E(s,a)wd[r(s,a)] (3.11)

s.t. V(s,a) €S xA: d(s,a) =(1—7)dj(s,a) +~yPId(s,a).

They have unique solutions Q™7 and d™7, respectively.
Let v =1. Then, the (undiscounted) primal Q-LP

m,1 :
= m 3.12
Q:SXAHI%, pERp ( )

s.t. V(s,a) € SxA: Q(s,a) =r(s,a) — p+P"Q(s,a),

p

has the (undiscounted) dual Q-LP

w1 _
prt = disrgz):RE(s’a)Nd[r(s, a)] (3.13)

s.t. V(s,a) € SxA: d(s,a)="Prd(s,a),

Z d(s,a) = 1.

(s,a)eSxA
They have solutions (Q™, p™') and d™', respectively, of which p™' is unique.

Proof. Let 0 < v < 1 and Lp(Q,d) and Lp(d, @) be the Lagrangian of the primal and dual
Q-LP (3.10) and (3.11), respectively. By Lemma 3.2.3, P is the adjoint of P™. Thus, the
conditions of Lemma 2.2.2 hold,

Lp(Q,d) = (1 = 7)E(sp,a0)~dz [Q(80, a0)] + {d,7 +7P"Q — Q)
=1 =Q,d5) + (r,d) + v(P"Q,d) — (Q.d)
- E(s,a)wd[r(‘S? a)] + <Q7 (1 - V)dg + ’Y,P:d - d> - LD(da Q)
Consider an arbitrary @, which is feasible for the primal LP, i.e., Q > B™Q. Since B™ is a
monotonic y-contraction, we can apply Banach iteration to @ and get

Q=B"Q > (B)'Q = (B7)°Q = > lim (B7)'Q=Q™.

Because we are minimizing the objective, Q™7 is the optimal solution.
The dual constraints are exactly the backwards Bellman equations (3.9). Their solution d™7
is unique in the discounted setting.
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Now, let v =1 and Lp((p,@),d) and Lp(d, (p,Q)) be the Lagrangian of the primal and dual
Q-LP (3.12) and (3.13), respectively. By Lemma 3.2.3, PT is the adjoint of P™. Like before,

LP((/), Q))d) =P + <d,’l” - P + PTFQ - Q)
= (r,d) +(Q,Pid) — (Q,d) + p— (p,d)
= E(s.a)~alr(s, )] +(Q, PId — d) + p(1 — (1,d)) = Lp(d, (p, Q)).

The primal and dual constraints are exactly the forwards and backwards Bellman equations
(3.7) and (3.9) respectively. Due to the objective of the undiscounted primal Q-LP (3.12), p™!

must be the unique solution.
O

Notice that applying Strong Duality yields Lemma 3.1.3. The primal constraints can be
viewed as a relaxation of the forwards Bellman equations (3.5), since the equality is replaced
by an inequality, while at the same time introducing a minimization to compensate for the loss
of information. Since the dual constraints are exactly the backwards Bellman equations from
Lemma 3.2.5, we establish a duality between these two notions.

One might wonder, if there is a reasonable V-LP, which would yield V" as its optimal solution
[32, 31]. Indeed, there is, but the solution is V™ where m, is the optimal policy. Therefore, it
is more related to policy optimization rather than -evaluation. Therefore, we will not discuss it
further.

3.4 Classical Off-Policy Evaluation

We review the basics of the classical approach for OPE [38]. Consider an MDP with finite
horizon H and trajectory

T = (so,ao,sl,al,. . ~3H—1,(1H—1,5H)~

The probability of obtaining 7 via evaluation policy 7 is

™

H-1
Pr[r] = do(s0) H m(ag | s¢)T(sp41 | Sty a1)-
t=0

Now, introduce a behavior policy b. Analogous to Assumption 3.5.1, we require 7w < b. Since the
initial state distribution dy and transition probabilities T' stay the same, we get the importance
sampling quotient (ISQ)

Pr,[7] -t m(ag | st)
. m . t t
qr = = qt, where @ =-——=.
T Pryl7] tljo ! "7 b(ay | se)
We can use the ISQ to restate the policy value as

H-1
p" =E;[G;] = Ey[Grq:], where G, = Z Y R(s¢, a4, S¢41).
t=0

Let (73)7_, be trajectories, sampled by using the behavior policy b. Since we have access to
both 7 and b, we also get the evaluation- and behavior probabilities, respectively,

((nlari | sea)i5) and - ((blar | se))f5")

n

i=1
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Using this, we can calculate the corresponding returns (G,)7_; and ISQ (¢r,)i;. Then, ap-
proximate p™ via

n n
ﬁTSrIS = l ZGTiqTi or pA%FVIS = % ZGTiqﬂ"
(it 2i=14n i=1
They are called simple (SIS) and weighted importance sampling (WIS) estimators, respectively.
They are consistent due to the law of large numbers. In order to see consistency of the second
one, we expand the fraction with 1/n and use the fact that Ep[g,;] = 1.
A major drawback of these estimators is that in many applications we do not have direct
access to the behavior policy b. Even worse, the variance of p§;q increases exponentially as
H — oo. This is known as the curse of the horizon [42]. To see this, rewrite the ISQ as

H-1
¢r =exp Y _ logg.
t=0
By the Central Limit Theorem, we have
H-1
Z logqs =~ N(—Hpu, Ho?), where u=E[logq] and o2 = Var[logq].
t=0

This means that ¢, is asymptotically log N(—H u, Ho?) with variance e o _1. The algorithms
of the subsequent section apply IS differently and circumvent these issues.

3.5 Stationary Dlstribution Correction Estimation

In many applications we are limited to data that was collected independently of any RL algo-
rithm. On top of that, we are often not informed on the distribution of the data. In a more
concrete manner, we are provided with a dataset of experience D = ((so,, si, @i, 74, ;) , where
samples are drawn according to

s ~ dop, (s,a)~ dD, r~ R(s,a,s'), s ~T(s,a), or,for short, (so,s,a,r,s")~ pD.

We assume no prior knowledge of the distributions dy, d”, R and T. Motivated by the lack of
knowledge of our behavior policy and its stationary distribution dP, we call methods that work
within this setting behavior agnostic. Even though we do not know dP explicitly, we assume
that D provides enough data, to include all the states and actions that we would visit under
the evaluation policy 7, as stated in Assumption 3.5.1.

Assumption 3.5.1. The stationary distribution d™ of the evaluation policy 7 is absolutely
continuous with respect to the distribution d? of the dataset D, i.e., d™ < dP or

d™(s,a) >0 = dP(s,a) >0 forall (s,a)e S x A.

Many of these methods start off by a marginalized version of importance sampling (IS). Using
Assumption 3.5.1, applying IS to d” in (3.4) from Lemma 3.1.3, we get

P" = E(s q)ngr[r (s, a)wrp(s,a)], where wyp= d™/dP. (3.14)

39



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

For any (s,a) € S x A, such that dP(s,a) = 0, we leave wr/p(s,a) undefined. This works as
long as we multiply it by zero every time we use it.

Approximating this stationary distribution correction (SDC) w, /p by some 1 p is referred to
as (stationary) distribution correction estimation (DICE). We can use the empirical density pP
to further approximate p™ by a simple Monte Carlo estimate or, since E, 4)qp [wr/p(s,a)] = 1,
by a weighted Monte Carlo estimate, respectively,

n

1

PR = Esq sars)mip [1(80)m/p(s5, 0)] = — > rithep(si, ai), (3.15)
i=1
E NpD [1(8, )Wy (s, a)] 1 n
JU (s0,s,a,r,s")~pP ) w/D\2) .
PwW = — = ) < T W (SZ', a,;). (3.16)
Y IEd:(sﬁa)Nc?D [wﬂ/D(S’ a)l doic W p(8i,ai) ; /P

Let P™ = Ep» and P] denote the expected Bellman operator and its adjoint. Lemmas 3.2.4
and 3.2.5, the forwards and backwards Bellman equations, state that Q™ or V™ and d™ are fixed
points of the forwards and backwards Bellman operators B™ and T™, respectively.

We want to formulate modified backwards Bellman equations for the stationary distribution
correction wy/p. To this end, define

TFw =D 'T"Dw = (1—~)D"'d} + yD 'PT Duw,
for vy € (0,1], and d : S x A — R+, where w: S x A — R, as well as
Duw(s,a) =d(s,a)w(s,a) for (s,a)€ S x A.

Now, we can define the modified Bellman operator T =T . For any (s,a) € S x A, such that
dP(s,a) = 0, we leave TAw(s,a) undefined.

Lemma 3.5.2 (modified backwards Bellman equations). Let v € (0,1], then wyp is a solution
to the modified backwards Bellman equation for w:S x A — R:

DPw =T"DPw = (1—-7)dj +yP*DPw and w = TRw. (3.17)
In case v =1, we need to add the normalization constraint
E(s,a)~dv [w(s, a)] =1

Proof. The first equation follows from the backwards Bellman equations (3.9) and the fact that
d™ = DPw, /p- For the second equation, note that w, p is not defined iff 75w, /p is not defined.
Otherwise, we can apply (DP)~! to the first equation.

By definition of wy p,

dD(s,a)wﬁ/D(s,a) ds da = / d™(s,a) ds da = 1.

Es.a)oa? (W /p(8, 0 :/
(s,a)~d? [ Wr/D (8, @)] -

SxA
]

Remark 3.5.3. For v < 1, w/p is the unique solution to the modified backwards Bellman
equations (3.17). For any d : S x A — R>q, we can verify that 7] is a v-contraction with
respect to || - ||z, ). We calculate

177 w1 — Tfwal py ) = WD PID(wy — w2) | 1y@) < YID"PID|| 1y @ llwi — w2l 2, (a)-
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Note, that although 7, and D~! are not always well defined, since there may be (s,a) € S x A,
such that d(s,a) = 0, this problem can be ignored within the norm || - ||z, (4). By Lemma 3.2.3,

the operator norm falls away.
|

Remark 3.5.4. For v = 1, wy/p is the unique solution to the modified backwards Bellman
equations (3.17) given one of two conditions.

1. We include the constraint w > 0 and the stationary distribution is unique [44]. To see
this, notice that d = DPw > 0 is a distribution, because the normalization constraint leads to

/ d(s,a) ds da = / w(s,a)dP(s,a) ds da = E(sq)~gr[w(s,a)] = 1.
SxA SxA

Additionally,
d=DPw=T"DPw="T"d="Prd.

This means that d is a stationary distribution, satisfying Assumption 3.5.1. Since we assume
that it is unique, we get d = d™ and hence

w=d/d” =d"/d” = w,p.

2. The state-action space is finite and Assumption 3.1.1 is satisfied [41]. Now, DPif is an
eigenvector of ﬁf with eigenvalue 1. According to the backwards Bellman equations (3.9) this
also holds for d~. By Assumption 3.1.1, our MDP is ergodic, so 73: is a non-negative irreducible
matrix. Hence, we can apply the Perron-Frobenius Theorem 2.4.1 to ﬁf . In this case, it says
that the eigenspace of the eigenvalue 1 is one-dimensional and we get a scalar a € R, such that

DP@ = ad”.

We use the fact that d™ is a distribution and the normalization constraint, to show that

— —

(1, ad™) = (I, DPw) = (DP1,@) = (DP, @) = 1.

-,

o = a(d", 1)

ND, = _ gt _
Hence, D™w = d", i.e., w = wyp.
|

We can derive a simple error bound for the policy value p™ and stationary distribution cor-
rection wy p, analogous to Lemma 3.2.9.

Proposition 3.5.5. Let v < 1 and dP > 0. Then, for any w:S x A — R,

Esay~ar[r(s; a)w (s, a)] — p"| < |lwrp — wllp, @) lI7ll £ ap)s
and
1
|weyp — wllg, (gpy < jHTgw —w||z, @p)-

Proof. For the first inequality, we use (3.14) and calculate

E(s,a)wdD [T(37 a)w(87 CL)] —p"| = )E(s,a)wdD [T(‘S? a) (wﬂ/D(S7 a’) - w(37 CL))]

< Nwzryp — w1, @) lI7 £ (@Py-
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According to Remark 3.5.3, the modified backwards Bellman operator 77 is a 7-contraction
with respect to || ||, (4). By the modified backwards Bellman equations (3.17), w, p is a fixed
point. Together with the triangle inequality, this leads to

|wa/p — WL, @py = TBWr/p — W1, @apy < | TDWrp — THWI L, @Py + | THW — w1, (ar)

<A|wa/p —wlg,@ey + | TEw — wll, (v
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4 Algorithms

This chapter describes the theoretical background of the algorithms used to generate our nu-
merical results. This includes

e TabularVafe, estimating the state- e NeuralDualDice, performing stochastic
action value function Q™ with an approx- gradient descent and ascent on the dual
imate linear equation system of the for- objective (4.6) of DualDICE,

wards Bellman equations (3.5),
e NeuralGenDice, performing stochastic

e TabularDice, estimating the stationary gradient descent and ascent on the dual

distr'ibution‘ correction Wr/D with an ap- objective (4.7) of GenDICE,

proximate linear equation system of the

(3.17), stochastic gradient descent and ascent
e TabularDualDice, setting the gradi- on the dual objective (4.8) of Gradient-

ent of the primal objective (4.3) of DICE,

DualDICE t
a O Ze10; e NeuralCoinDice, using theorem 4.6.10

e TabularGradientDice, setting the gra- and stochastic gradient descent and as-
dient of the primal objective (4.5) of Gra- cent to obtain approximations of policy
dientDICE to zero, value confidence intervals.

Using the methods described above, we give detailed derivations and discuss the theoretical
significance of the hyperparameters. We also provide convergence and consistency proofs along
with assumptions that support the theoretical justification of the algorithms.

4.1 Summary

This section provides a compact description of the algorithms, sufficient to interpret the numer-
ical results at a high level. Further details are given in the subsequent sections.

We divide this summary section into two parts, where the state-action space S x A is finite
and infinite, i.e., the Tabular Case and the Continuous Case, respectively.

4.1.1 Tabular Case
We can rewrite the modified Bellman equations (3.17) as

(1—7)dE = (I —yPT) D, p for 0<~<1,

N S (4.1)
wﬂ'/D = (DD)_IPI DDfLEﬂ/Dv (dpaww/'D> =1 for Y= L.

The second equation is only defined for (s,a) € S x A, such that dP(s,a) > 0. Accordingly, it
is no problem that some diagonal elements of D? are zero and (DP)~! is not invertible.
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For v < 1 and from Assumption 3.5.1, we get unique solvability, assuming that d” > 0, as
discussed in Remarks 3.2.6 and 3.2.7. For v = 1 and Assumption 3.1.1, we can apply Lemma
3.2.3 and the Perron-Frobenius Theorem 2.4.1 to 75:3 .

Replacing by Law of Large Numbers estimates (4.9), (4.10), (4.11), and (4.12), we get some
approximate modified Bellman equations. Using (4.13), (4.14), (4.15), and (4.16), we can write

these as
(1—7)dg = (DP —~yP[, )i/ for 0<vy<1, )
Wr/p = (DD)_lﬁf,* Wr /D, <JD’1;,W/D> =n for v =1. ’

Now, the primal objectives for DualDICE [34], GenDICE [44], and GradientDICE [41], re-
spectively, are

L Juin  Jpwar(v), i Jeen(w),  min  JGradiens(w),
where
JDual(v) = (1 - W)E(smao)wdg [’U(307 GO)] + E(s,a)wdD [(Z)* (’Y’PWU(S, a) — U(s, a))], (4.3)
. D D A 2
Joen(w) = Do(DPw | T"DPw) + 5 (Eqqgpamlw(s, )] = 1) (4.4)
N - A 2
JGradient(w) = §||T’D’LU — UJH%?(C[D) + 5 (E(s,a)NdD [w(s, a)] — 1) . (45)

The objectives (4.3) and (4.5) are unconstrained. Since they are all quadratic, setting their
gradient to zero yields a linear equation system.

Choose ¢ = %()2 and perform the same replacements as before. This gives us the respective
approximate linear equation systems

—f_h/zfq/z@ =(1—v)dj and w;p= —(A1/2(DD)71/2)T17,
A N —-1a A Jm (T ~ A N —1 g7 Jm
(A{ (DP)'4; + ﬁdo(dO)T)ww/D = (1—~)A[ (DP)"d§ + \dj.

For 0 < v < 1, we also perform value function estimation (VAFE), by using the approximate
version of the forwards Bellman equations (3.5),

F=U—9yPH)Q", p"=(1—-7)dg,Q").
Some practical considerations lead us to two flaws in our algorithms, which both occur due

to possible inadequacies of the underlying dataset. For each of these, we employ a heuristic,
whose negative influence decreases as the quality of the dataset increases.

e It may not always be possible, to gather samples for all (s,a) € S x A and assure that
DP is invertible. There may appear (s,a) € S x A, where dP(s,a) = 0. According to
Assumption 3.5.1, the corresponding row and column inside P™ should also be zero. By
manually defining 0/0, we can still work in this situation.

However, in case Assumption 3.5.1 is not satisfied, we can project into the subspace
R supp(d®)] < RIS*Al golve using our estimator, and then embed back into the original
space. All further steps never use any values of our stationary distribution correction
estimate W p(s,a), where dP(s,a) = 0. Therefore, it does not matter anyways, what
values we set them to. We chose —1 for error handling.

e We cannot guarantee that the Perron-Frobenius theorem 2.4.1 holds for the approximating
matrix in the eigenvalue problem (4.2). Thus, we chose an eigenpair whose eigenvalue is
closest to one and take the absolute value of the eigenvector.
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4.1.2 Continuous Case

The objectives (4.3), (4.4), and (4.5) have expectations inside non-linear functions. This pre-
vents us from performing SGD directly. However, applying Fenchel-Rockerfeller duality 2.2.10,
respectively, yields [34, 44, 41]

v:snxl%)iRw:snxnf&R oua (v, w), w:sfflliERzo nSx AR, uck JGen(w, v, u),
w:SHxlglﬁR v:Sinf%’ weR JGradient (w, v, u),
where
Jpuat (v, w) = B s.a,r,s5)~p? [L(U,w;sms,a,s’) i ¢(w(s7a))}7 »
Joen(1,0,1) = Btsosara~p® [L(v,w; 50,8,a,8") + N(w,u; s,a) — iv(s,afw(s, a)]’ (4.7)
Toradient(10,0,14) = Bao sm)op® [L(U’U); 50,8,a,8") + N(w,u; s,a) — %U(s,a)ﬂ’ (4.8)

L(v,w; s0,8,a,5") = (1 =) Eqyorn(so) [0(50, a0)] + w(s, a) (YEqgwr(s[v(s', a')] — v(s, a)),
o(x) = 1|:U]p, p>1, N(w,u;s,a)= )\(u(w(s,a) —-1)— %u2>, A > 0.
p

In order to parameterize v and w, we use neural networks vy and wy, respectively, with a
single hidden layer. To provide non-negativity, we add (-)? to the final layer [44].

Every 100 steps, we store the policy value and the average loss. If we have an analytical
solution for the the policy value p™ and stationary distribution correction w;,p, we also store
the error [p™ — p™| and the MSE E(, ;)40 |wy — Wy p|?. In addition, the Bellman residual angle
(BRA) between the gradients VyP vy and Vyuvy is stored.

4.2 Tabular stationary Dlstribution Correction Estimation
Let the state-action space be finite. Define the matrices
73;* = PF(DP)? and A, = A(DP), where peR.

Since D is a diagonal matrix, its powers can be defined via component wise application. Using
the Law of Large Number approximations for do(sg), T(s' | s,a), and dP (s, a), define

dy = ( ao | s0)— Z o= sol> , (4.9)

(s0,a0)ESXA

n

"= )
i=1 (s,a)eSxA

. DP = diag(dP), (4.10)

E ILs =s;, a=a;

B\*—‘

l - —q. —a. — ~ -~
Pr = <7r(a’ | )2 lezln o A ‘) , A=1-—~Pr, (4.11)
n Zizl ILS:S«L: a=a; (s',a"),(s,a)eSXA
Pp. = PI(DP)P. A, = A(DP), (4.12)
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Notice that

5 = 5, PT = PLDP) Pr.= P
DP = 1D A=Ay (DP), d=La,
where

n

15 =D (m(ao | $0.0)Lso=so.) (s0.00)c5%4 (4.13)
’izl

AP =3 (Lams,, ama) (s ayeswar D7 = diag(d®), (4.14)
izl

P 3 (70 | ) o =) iy resas AT DT PR @)

Py, =P DPyPY, A, = Ay(DP)PL (4.16)

Let z : S x A — R be a feature function and consider the feature matrix
X = (Z,...,Txg) € RIS¥AXK, (4.17)
From this, we can derive the linear parameterization function space
fi{wgng‘geRK}. (4.18)

In order to approximate the stationary distribution correction exactly, we would need to chose
the feature matrix such that assumption 4.2.1 is satisfied. Note, that the choice X = I cor-
responds do a one-hot-encoding. In particular, this choice of feature matrix would satisfy the
assumption 4.2.1.

Assumption 4.2.1. The stationary distribution correction @, p is part of the column span of
the feature matrix X.

Oftentimes, our feature matrix is not representative enough. An algorithm working with the
feature matrix X will, at best, approximate the projection Pw, p of the stationary distribution
correction onto the range of X. Finally, Remark 2.4.4 tells us that this projection can be
expressed as

P=XX"DPX)"'X"DP.

4.3 Dual stationary Dlstribution Correction Estimation

Using the Q-LP from Lemma 3.3.1 directly as a way of policy evaluation bears a major problem
for applications, where the state-action space is infinite. To circumvent this issue, Nachum et
al. [34] introduce the algorithm DualDICE.

We merge the contents of Nachum et al. [34] and [31] to create a better understanding of
DualDICE. On top of that, we include all the technical details, omitted by Nachum et al. [34].
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4.3.1 Objectives

Primal Objective

We consider the dual Q-LP (3.11). Since it is over-constrained, the optimal solution does not
change if we substitute the objective by the ¢-divergence —Dy(d || dP). Even though this has
no impact on the divergence, we will assume that ¢ is defined for all real numbers. We get

—Dy(d || dP

s.t. V(s,a) € Sx A: d(s,a) =(1—7)dj(s,a) +yPld(s,a).

Now, this is not an LP anymore, since the objective is not linear any more, but merely convex.
However, it is a Fenchel optimization problem

— mjn f(d) + g(Ad), where
fd)=Dy(d || d°), g=0b1a;, A=I1-7PL.
Building the dual, we get
— max —f«(=Av) — g«(v), where
fe =Egp[6:()], g« = (1 =7)Egr[], As=1-7P7,
resulting in

v:SI>I<1.:14n—>R J(U) = (1 - V)E(so,ao)m/dg [U(S()v (10)] + E(s,a)NdD [¢* (IY,PWU(S’ a) - U(Sv a’))]

Dual Objective

Unrolling the definition of the convex conjugate ¢, in the second expectation of J(v), we get

B sayan [0 (YPT0(5,0) = v(s,0))]
= B yram [max(yPTu(s, @) — v(s, @))w — 9(w)]

- w:ga);RE(s’a)NdD [(’YPWU(S’ a) - 1}(8, a))w(s7 a) - ¢(w(3> a))]

— / !/
= w:SH>1<?4X—>R ’YE(s,a)NdD, (s',a")~T™(s,a) [U(S )y @ )w(s, CL)]

- ]E(s,a)NdD [U(S7 a)w(37 a)]
- E(s,a)NdD [¢(w(87 a))]

This leads to the dual objective

min max J(v,w)
v:SXA=-Rw:SXxA—=R

= (1 - V)E(So,ao)’vdg [U(SO7 QO)]
+ Es,0)~d?, (s7,0)~T™(s,0) [w(s, a) (’yv(s', a’) — (s, a))]
- E(s,a)wdv [¢(w(s, a))]
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4.3.2 The Dual Variable

For any function v : § x A — R, consider the change of variables x = —A,v. According to
Remark 3.2.7, A, is bijective, so we can also reverse this substitution. Now, calculate

IE(s,a)fvd” [$(37 a)]
= E(s.0)mar [VE(s o)y (s,0) V(5 a))] — v(s, a)]

=(1-7) Z’YtE(s,a)ng VE(s a) o (s,0) V(8 a')] — v(s, a)]

t=0
= (1 - 7) Z ’YH_lE(s/,a’)Nda_l [U(S/> a/)] - (1 - ’Y) Z '-)/tIE(s,a)rvd't’r [1}(8, a)]
t=0 t=0

= _(]' - ’Y)E(So,ao)wdg [U(SOa CL[))].
This lets us reformulate the primal objective
J(0) = B q)ar [0+ (2(s,0))] — Es ) nar[£(s, a)]
= Z bu(x(5,a))dP (s,a) — x(s,a)d™ (s, a).

(s,a)eSxA

By taking the derivative with respect to z and setting it to zero, we gather that for the optimal
¥, we get

P(—Aw") = ¢l(¢¥) = d"/dP = wep.

Alternatively, we can use the optimal solution v* of the dual Fenchel optimization problem to
derive that for the solution d* of the primal we have

0™ = d" = fl(~Aw*) = dP¢l(~ A",

For a fixed v : S x A — R, taking the derivative of J(v,w) with respect to w and setting it to
zero, we gather that

¢ (wh) = yP™v —v = —A,w.
By Lemma 2.2.9, we have (¢/)~! = ¢/, so

w* = ¢L(—Aw*) =d"/dP = Wr/p- (4.19)

4.3.3 Implementation
Tabular

2

For a finite state-action space, and ¢ = %() , we can rewrite the primal objective with vector

notation as
S T
J(v) = (1= )@, d5) + 5| A" 0E,m)-
Using Remark 2.4.2; we can build the gradient

Vo (v) = (1 —~)ds + ADPAT%.
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Setting the gradient to zero, we get the linear equation system

—

— Ay AT = (1= 7)dg.

Using (4.19), and ¢, = £(-)? from Example 2.2.5, we get

Wyyp = —ATT".

Considering the law of large numbers approximations cig, A, and DP, flp, from (4.9), (4.10),
(4.11), and (4.12), respectively, we get the approximate linear equation system,

~ Ay Al o = (1= )df and wyyp=—AT0.

Continuous

We specify ¢ = L(-)P, for some p > 1. For v and w we use the function classes F, and F,,,

P
respectively, e.g. by parameterization using neural networks. Now, we have access to samples

taken with respect to p” and even explicit access to w. This lets us perform SGD on v and
SGA on w. Since we have a saddle point problem, we use SGDA, i.e., each time we sample a
batch of experience to approximate the gradient, we perform a gradient step on both v and w
in parallel. Building the gradients, we get

Vg (vg, wg) = (1 = 7)E(sg,a0)~dg [Vovs(so, ao)]
+ IE(s,a)~dD, (s',a")~T™(s,a) [w9(57 a) (Vvﬁvﬁ(slv a,) - vﬁvﬁ(sv a’))]v

VGJ(’Ul% 'LUQ) = E(S,CL)NCZD, (s',a")~T™(s,a) [(7’019(8/7 a/) - ’1119(8, (I))V@’UJ@(S, a)]

- E(s,a)NdD [w0(37 a)p_lver(sa (I)]

4.3.4 Convergence

Parameterizing v and w in J(v,w), e.g. by neural networks, induces an inherent approximation
erTor €approx(Fu, Fuw). We can apply SGDA to J(v,w), and obtain an approximation . p of
wrp- Let €opt denote the error, we get from SGDA. Finally, we can get the approximation p"
of p™, as in (3.15). The MSE of p™ is discussed in Theorem 4.3.3.

Assumption 4.3.1. The stationary distribution correction is uniformly bounded, i.e.,

3Cw >0:  sup  |wgy p(s,a)| < Cy.
(s,a)eSxA

Assumption 4.3.2. The observed reward 7 is uniformly bounded, i.e.,

aC, > 0: sup |F(s,a)| < C,.
(s,a)eSxA

Theorem 4.3.3. Let Assumptions 4.3.1 and 4.3.2 hold. Also, choose ¢ = %()2 Then, the
MSE of DualDICE’s estimate is bounded by

AT T 1
IE|P —p |2 = Olog <€appm$(]rv,fw) + €opt + \/ﬁ) .

The expectation is taken with respect to randomness both in the sampling of D ~ pP and in the
algorithm. Oyeg simply ignores logarithmic factors.
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4.4 Generalized stationary Dlstribution Correction Estimation

A major downside of DualDICE is that it only works in the discounted setting. On top of that,
pushing the discount factor « towards 1 has a negative influence on the estimators accuracy [44].
The algorithm GenDICE by Zhang et al. [44] aims to also include the undiscounted setting in
its policy value approximation and improve stability for higher discount factors.

4.4.1 Objectives
Primal Objective

The idea behind GenDICE is to find the stationary distribution correction wy p, by starting
off with the modified backwards Bellman equations (3.17). A naive approach to the solution
of these equations in the continuous setting is to use a positive definite discrimination function
D(- || -) and consider the optimization problem

min_ D(DPw || T"DPw).
w:SXA—=R>q
Now, w,,p would indeed be a solution, but any scaled version cw, p by a constant ¢ > 0 also

solves the problem. In particular, the trivial degenerate solution w = 0 cannot be ruled out.
Therefore, consider the norm penalization coefficient X > 0 and the optimization problem

A 2
i - D T D
w:SXHXEREO J(w) =D(D"w || T"D"w) + 5 (E(s,a)NdD [w(s,a)] — 1) )

According to Remarks 3.5.3 and 3.5.4, the stationary distribution correction w, p is the only
solution to J(w) = 0.

Dual Objective

However, since we only have access to samples of T7DP | we cannot evaluate it at arbitrary
points. Therefore, the objective becomes intractable. In order to make our objective tractable,
we must further specify our discrimination function. Using a ¢-divergence,

T YD
T™D w(s,a)> ds da.

T D D — D/ NN\
DT D | dPu) = | (s, wio.a)

SxA

dP (s, a)w(s,a)e (
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We apply the Fenchel-Moreau Theorem 2.2.10 to ¢ and get

< T”DDw(S/, a/)

dP(s',aw(s',

/ dP(s',a")w(s',a') max v— @(v)) ds’ da’
SxA )

veER

= max T™DPw(s' a (s’ d) —dP (s, aYw(s',a')bu(v(s',d')) ds’ da’
v:SXA=R Jow A

= [ (@)

v:Sx A—=R
—i—’y/ T7(s',d’ | s,a)dP(s,a)w(s,a) ds da)v(s',a')
SxA
—dP(s',dYw(s',a ). (v(s',d")) ds’ dd’

_ 1— " aNdT (s ) ds’ dd’
L (1) [ (s )y (s a) s da

—1—7/ / w(s,a)v(s’,d\T™(s',d’ | s,a)dP(s,a) ds da ds’ da’
SxAJSxA

—/ w(s',a ). (v(s',a’))dP (s',d') ds’ dd/
SxA

= dnax (1= 7B a)~ag[o(s, )]
+ ’}/E(Sva)wdp, (Sl,a/)NTTr(57a) [w(87 a)’l}(S/’ a/)]

— E(sa)~ar [w(s, a) i (v(s, a))].
Also applying it to %()2 gives us a dual objective

min max J(w,v,u)
w:SXA—=R>g v:SXA—=R, ueR

= (1 - ’Y)E(So,ao)f\‘dg [U(S()? G/O)]
+VE (5,0)~dP, (s7,0/)~T" (5,0) [w(s,a)v(s’,a)]
- IIE(s,a)wdD [w(s, a)(b* ('U(S, a))]
1 2

+A <E(s,a)~dD [uw(s, a) — u] — U ) )

4.4.2 Implementation
Continuous

The y2-divergence was chosen as an f-divergence. By Example 2.2.12, this results in

min max J(w,v,u)
w:SXA—=R>g v:SXxA—=R, ueR

= (1 - V)E(So,ao)ng [U(SO’ CLO)]
+ E(s,0)~d?, (s/,0)~T7 (s,0) [w(s, a) ('yv(s/, a’) — (s, a))]

1
+ ZE(M)NdD [w(s,a)v(s,a)?]

1
+A (E(s,a)wdD [uw(s,a) —u] — 2u2> .
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The functions ¢, and (-)? are convex. Therefore, the objective J(w,v,u) is convex in w and
concave in v and u and we have a convez-concave saddle-point problem (CCSP). Recall the
estimation from DualDICE. For w and v, We will use function spaces F,, and F,, respectively.
The variables w and v are parameterized by neural networks. Call the parameters 0,9 € RX,
respectively. To assure that the first network only outputs non-negative values, an extra positive
neuron was added to the end, such as

exp(), log(l+exp(r)), or ()2 (4.20)
Building the gradients, we get

VQJ(’U)Q, Uy, u) - IE(s,a)wdD7 (s",a')~T™(s,a) [(’)”Uﬁ(s,, a/) - ’1)19(8, a))ngg(s, a)]
1
~ 1Esay~ar[v9(s, a)?Vowg(s, a)]
+ ME (g 4y qp [we(s,a)],
Vygd (wo, v, u) = (1 = V)E (50,a0)~dz [Vovu(s0, ao)]
+ IE(s,aL)wch7 (s',a")~T™ (s,a) [w9(57 a) (7V79U79(3/7 a/) - Vﬁ’Uﬁ(S, a))]

1
— 5B(s.a)~a? [we (s, a)vy(s,a)Vyvy(s,a)],

Vud (wg, vy, u) = A <]E(s,a)~dD [we(s,a) — 1] — u) .

4.4.3 Convergence

Since we now also include the undiscounted setting v = 1, we have to include the additional
Assumption 4.4.1.

Assumption 4.4.1 (Markov chain regularity). The backwards Bellman equations (3.9) have a
unique solution, i.e., the stationary distribution d™ exists and is unique.

Theorem 4.4.2. Let Assumptions 4.8.1, 4.3.2, and 4.4.1 hold. Also, let ¢, be Lipschitz-
continuous, let the psuedo-dimension of F, and F, be bounded and

ACr, >0: Yw e Fy : |w|leo < Cr,.

Then, the error between GenDICE’s estimate Wy p and wyp is bounded by

N 1
E [J(wﬂ'/D) - J(wﬂ‘/D)] = Olog <€appmx(-7_‘w7]:v) + €opt + \/ﬁ> .

The expectation is taken with respect to randomness both in the sampling of D ~ pP and in the
algorithm. Oy,g simply ignores logarithmic factors.

4.5 Gradient stationary Distribution Correction Estimation

GenDICE fixes some of the problems that DualDICE has. However, in doing so, it introduces
other problems [41].

Firstly, note that f-divergences are originally defined only for probability distributions. Ex-
tending the inputs of Dy to generic functions will cause it to lose non-negativity. For example, if
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q > p >0, then Dxi(p || ¢) < 0. However, as long as min{p, ¢} > 0, we still have D,(p || q¢) > 0,
which is fortunate, since GenDICE actually uses this f-divergence.

Nevertheless, another problem arises when using the extra non-linear positive neuron (4.20),
to ensure wy > 0. Since objective J(w,v,u) is not necessarily non-decreasing in each w;, we
cannot assure that J(wp, vy, ) is convex in #, even if the extra positive neuron is convex [12,
p. 86].

Based on the ideas of GenDICE, Zhang et al. [41] present the algorithm GradientDICE. 1t tries
to solve the problems of GenDICE mentioned above, by using the La(d?)-norm instead of the
x2-divergence, thereby removing the the necessity of the constraint w > 0.

Not only do we cover the algorithm as in this section, we also mention important details,
omitted by Zhang et al. [41].

4.5.1 Objectives
Primal Objective

The primal objective that GradientDICE uses is similar to GenDICE;,

. . 1 T 2 A E 2
_minJ(w) = [ TFw = il o) + 5 (Bgayean s @) — 1)

Dual Objective

We apply the Fenchel-Moreau Theorem 2.2.10 to %()2 and rewrite the first summand as

1 1 1
SITBw = wll} ) = Ego |5 (TFw = w)* | = Eg | max (T5w — w)v — So?

2
1
D\— T D
:v:SIE%}iREdD [(D )" (1 = y)df ++PI D w) v] *Edv[wv]*iEdD[UQ].
1
— _ i T D _ D 4D .2
= max (1—%)(dj,v) +7(PID w,v) = (D w,v) — S {d", %)
1
— _ L D T /4D _LtyD 2
= max (1—7)(dg,v) +(d", wPTv) —(d”, wo) — S{d", v%).

Also doing this for the second summand, like we did for GenDICE, we get an objective
min max J(w,v,u)
w:SXA—=R>0 v:SXA—=R, ueR
= (1 - 7)E(80,a0)~d6" [’U(SO, aO)]
+ IE(s,a)wdD7 (s',a")~T™ (s,a) [w(s, a) (’YU(S/: a/) - ’U(Sa a))]

1
- §E(S,(I)NdD [U(Sa a)Q]

1
+A (E(s,a)NdD [uw(s,a) —u] — 2u2> .
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4.5.2 Implementation
Tabular

Using Remark 2.4.2, we can build the derivatives

1 ~r=p . =p 1 3 =
au@HTFDDUJ - DDw|‘?ﬁD)—l = 8w§H(1 —7)dg — Alw”?ﬁD)—l
= —((1 —yds — A&y) (DP) ' 4,
= —(1—)(dj) " (DP) ™ A +wT AT (DP) ' Ay,
A 7 — k7 - s
w3 (( 0) i —1)% = \((dg) "w — 1)(dg) "

hence, the gradient is
Vo (w) = (AT (DP) 1Ay + A (d5) ") — (1= 7) AT (D7) 71 + Adg).

Setting the gradient to zero, and applying Remarks 3.5.3 and 3.5.4, we get the linear equation
system

(AL (DP) A1+ Adf (d§) ") iy = (L= ) A] (D7)~ df + Adj.

Considering the Law of Large Numbers approximations cfg, A, and DP, flp, from (4.9), (4.10),
(4.11), and (4.12), respectively, we get the approximate linear equation system,

(A (DP)" Ay + Adg (dg) ") ibryp = (1 — ) A (DP)~'df + Adg.

Continuous

The implementation for the continuous setting is similar to that of DualDICE. In contrast to
GradientDICE, we do not require our parameterization for w to ensure non-negativity. Building
the gradients, we get
Vo (wg, v, 1) = E(g q)dP, (57,0/)~1(s,0)[(Y00(5, @) — vi(s,0))Vows(s, a)]
+ )‘UE(S,a)NdD [V9w9(57 (L)],
Vyd (wo, v, w) = (1 = V)E (s0,a0)~dg [Vovu(so, ao)]
+ E(s.a)md?, (5/.0/)~T7 (s,0) [Wo(S,a) (YVyva(s',a') — Vyvg(s, a))]
- E(s,a)wdD [1)19(8, a)vﬁ'vﬁ(sa a)]7

Vaud (we, vg,u) = A (E(&a)NdD [we(s,a) — 1] — u) .

4.5.3 Convergence

We now want to prove some convergence results for GradientDICE, using a linear parame-
terization. To this end, consider the feature function z : S x A — RX and feature matrix
X € RIS¥AXK from (4.17) and linear parameterizations

wy(s,a) = (x(s,a),0) and wvy(s,a) = (x(s,a),v) for (s,a)e€ S x A.
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We can choose a constant ¢ > 0 and perform ridge regularization,

) ) § a2
min  max Je(wg, vy, u) = J(wy, vy, uw) + =|0]|5.
0eRK YeRK | ueR e(we, vy, u) (wg, vy, 1) 2” I2

Building the gradients, using Remark 2.4.2, we get

VoJe(wg, vy, u) = VE(s g)mdD, (57.0/)1m (5,0 [(2(5 0"), 0) (s, a)]
= E(s,0)~ar[(2(5,0), 9)2(s, a)]
— ME (g gy~ar [2(8, )]
+ &0,
Vi Je(wo, vy, 1) = (1 = 7)E(sy,a0)~az [2(S0, a0)]
+YE (5,0)~dD, (s ,0)~T (s,0) (T (5, ), 0)2 (5", )]
— Es a)~ar [(2(s,0), 0)2(s, a)]
— E(s,0)~ar [(2(8,0), 9)2(s, )],
Vo Je (we, vg, 1) = A ((E(S,Q)Ndp [2(s,a)],0) — 1 — u) .

Replacing the expected values by samples,

(So,t, St, Qt, 82) ~ pD, ap,t ~ 7T(So,t), afg ~ W(st)y
Tog = 37(30,157@0,15)7 ry = x(5¢, a), 532 = 33(32; a:ﬁ)’

and choosing a learning rate sequence (o), satisfying the Robbins-Monro conditions (2.18),
we get the SGDA formulation

Ori1 = 0p — o (y(@h, D)y — (o, O)ae + Augy + £0r)
Vi1 = 79t + oy (1= y)wo e + (@, Or)ay — (e, 0) e — (4, D))
Ut4+1 = Ug + Ott)\ ((ZEt, 0t> —1- ut)

We can collect all parameters into a single vector /{t (9,5T , 19t ,u¢). Then, we can rewrite a
step as ki1 = ke + o (Gry1ke + gi1), where

—&I wy(zy —yzh) T —Axy 0
Gi1 = | — (¢ —ya))x) —xza:tT 0 and g1 = | (1 —7v)zoy
Yo 0 A A

We want to calculate the expected values G = E[Gyy1] and g = E[g;+1]. For the individual
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parts we have
Elwy(z, —vay) ']
- IE’(s,a)walp, (s',a")~T7(s,a) [(E(S, a) (.Z‘(S, CL) - V‘T(S/7 a/))T]
= Z z(s,a)dP (s,a) | z(s,a) — Z T™(s',d" | s,a)x(s',a’)
(s,a)ESx A (s ,a')ESx A

N . - - T
= XTDP(I —AP™)X = (XT(I - W:)DDX> ,

E[‘rt] - IE(S,a,)/\/dD [x(87 a)] - Z IE(S, a)dD(Sa CL) - XTdD?
(s,a)eSxA
Elzio] = Egaeag(z(s,a)l = > a(s,a)dj(s,a) = X 'dg,
(s,a)eSxA
Elzz]] = Z z(s,a)dP(s,a)z(s,a) = X" DPX.
(s,a)eSxA

We define the matrices

E,=X"(I —4PT)DPX and E,=X'DPX,

Then, we get
—¢1 E] -AXTdP ]
G= -E, —1150 0 and g=|[(1-9)X"d}
AXTdDYT 0 —A —\

Now, we can finally formulate the SGDA convergence result in Theorem 4.5.6.
Assumption 4.5.1. X has full rank, i.e., linearly independent columns.

Remark 4.5.2. If we assume that D > 0, Assumption 4.5.1 implies that Ey is positive definite.

Furthermore, since Ey € RE*E is symmetric, || - ||z, is a norm on C¥. [

Assumption 4.5.3. E, is non-singular or £ > 0.

Remark 4.5.4. Sutton and Barto show that (I — 773:)517 is positive definite for 0 <~y < 1 [38,
pp. 206-207]. By Assumption 4.5.1, E,, is positive definite. Remark 2.4.3 further implies that
Assumption 4.5.3 is satisfied for 0 < v < 1, even without ridge regularization, i.e., £ = 0.

|
Assumption 4.5.5. The features x4, 2+ and z; have uniformly bounded second moments.
Theorem 4.5.6. Let Assumptions 4.5.1, 4.5.3, and 4.5.5 hold. Then, we have
tlggo ke = —G 7 lg  almost surely.
Proof. Our goal is to apply the ODE Lemma 2.5.7. Rewrite the update for r; as
Kir1 = Kt + a(Grrrke + gie1) = ke + o (h(ky) + Myy1), where (4.21)

h(k) =Gr+g, and My = (G — G)ke + (941 — 9)-
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1. We show that Assumption 2.5.5 is satisfied. For the first part, we verify that the sequence
(My)ten is a martingale difference sequence with respect to the filtration

Fi = o (kim1, My)iy = o(z0,, i, )1

Because all the random variables that Gy and g4y are constructed from are x4, z; and zj,
they are independent to .7-} On the other hand, the way we have rewritten x; in (4.21), we can
obtain it by using (k;)!Z} and (M;)!_,, so it is Fi-measurable. This leads to
E[Mit1 | Fe] = E[(Gea — Gk | o] + Elgerr — g | F
=E[Gi1 — G | Filke + Elger1 — g | Fi]
= (E[Gi41 | F] = Gk + (Elges | F2] — 9)
= (E[Gt41] — G)ke + (E[ge41] — g) = 0.

For the last part, we define G; = G; — G and gt = g+ — g. Note that for all x € R,
0§($—1)2:x2—2x+1, so 2r<a’+1<222+1.

Now, define Cy = 2max{||Gii1]|? + [|Geaall - 1321 ], 1Ge+1]%} and use the Cauchy-Schwarz in-
equality, to show
[Mea]? = [|Gryrmel” + 2(Grsr s, Gea) + |Gera

< Goprrel® + 20 Grsasiell - NGesall + 1G4 [

<G P 1mel® + G | @l e all + [1Gera

<G P @llmell* + 1) + 1 Geall 2l Ael* + DllGesll + 1G4

< (1Geal? + G esall - e Dl sell* + 1) + (1o |

< Cyl[lmel” +1).

Again, C} is independent of F; and k; is Fi-measurable, so

E[|Mya|* | ] < E[C([kel” + 1) | Fi]
=E[C, | Bkl + 1)
= E[C(||re]* + 1) < ilelgE[Ci](HHtHQ +1).

Since we assumed zo¢, z; and x; to have uniformly bounded second moments, we also get
sup;en E[C] < o0.

2. We show that Assumption 2.5.4 is satisfied.
i. The function h is indeed Lipschitz continuous, because

[h(y1) = h(y2)ll = I(Gyr — g) — (Gy2 — g)|| = [|G(y1 — v2) || < (Gl - llyr — w2l

Defining the function heo(y) = Gy, we get

10 | = flow =€ - G| = Thall =0

ii. We need to prove that the origin 0 € R™ is an asymptotically stable equilibrium of the
ODE y/(t) = hoo(y(t)) = Gy(t). This can be done by checking that the real parts R(l) < 0 for
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all eigenvalues [ of G. For now, let [ # 0 be an eigenvalue of G with normalized eigenvector
k#0,ie, 7 k=|r|?=1 Ifwelet 6 = (07,97, u), where § € CX, 9 € CK and u € C, then

N[ - Bl AXTdP\ [0
I=lF"k=R'Gr= |1 ~E, —FEp 0 ¥ (4.22)
@ MXTdD)T 0 ~A u

— —60'0+0 ET9— b XTd° -9 B0 -0 Eyd+ \a(X dP)T0 — uu
= —)|0)2 = 9], — Nul* + S @TEM - ETEWQ) -~ g (AUETXTJD - m(XTJD)Te) .

In order to show that R(l) < 0, we consider two cases. When v < 1, we have £ = 0 and [ # 0
implies that ¥ # 0 or u # 0. When v = 1, we have £ > 0 and [ # 0 implies that 6 # 0, ¢ # 0,
or u # 0.

iii. It only remains to show that k* = —G~!g is the unique globally asymptotically stable
equilibrium for the ODE y/(t) = h(y(t)) = Gy(t) + g.

Firstly, we want to show that G is non-singular, so we check for det(G) # 0. Applying (2.15)
twice, we get

B -1 E] (=X TAPYXTdPYT 0
olet(c;)_—Aclet<(_EW _%0) + A 1( B 5 )

o eK I+ NXTdP)(XTdP)T —ET

= (1) +)\det< £, P

= (—1)*K 1\ det(Ey) det (€1 + M(X "dP) (X "dP)" + E] Ey'E,).

Now, because A > 0, all of our summands are positive semi-definite. According to Assumption
4.5.3, &1 or E,I Ey 1EA, is strictly positive definite. Because the sum of positive semi-definite
matrices is positive semi-definite, and even positive definite if a single summand is positive
definite, this ensures det(G) # 0. Since G is now verified to be non-singular, the linear equation
system 0 = h(k) = Gk+g only has k* as solution, which means that it is the unique equilibrium.

For the global asymptotic stability, we use Ljapunov’s method and L(y) = 1[|Gy + g|*.
Applying the chain rule and Remark 2.4.2, we get VL(y) = G (Gy + g). To verify that L is a
strict Ljapunov function for h, we consider y € R™, which is not an equilibrium, i.e., y # —G1g.
This means that k = Gy + g # 0 is a real vector. We can reuse our calculation (4.22) from

earlier, and conclude analogously that
(VL(y), h(y)) = (GT(Gy +9), Gy + g) = &' Gr = =E[|0|* = [|9][F, — Aluf* < 0.

Thus, L is a strict Ljapunov function. Now, check that x* is a strict minimum of L. We
notice that VL(x*) = 0 and the hessian matrix V2L(y) = GG is positive definite, since G is
non-singular, so for all y € R2K+1,

y ' ViL(y)y=(G'y) (GTy) = |Gy’ =0 <= GTy=0 < y=0.
u

Remark 4.5.7. A different perspective to solving for the optimal solution of our objective is to
set its gradient to zero. To do this as efficiently as possible, we combine our arguments into a
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single vector k" = (7,97, u) again. Then we can simplify the objective even more as
R S g T (100 V- )
- % (9Tgw —9TXTDPXxY — uAu)
- % (97X (1 —~PT)DPX0 + 67X (I~ PT)DPX0)
- % (uA(XTd*D)Te n eTA(XTJD)Tu)

— ((1 . fy)XTd%T)T 9 — \u

1
= §/€TH/£ + gT/i,
where
€I ~E] Xa'dP
H= ~E, —Ey 0
AMXTdDYT 0 -\

Now, the overall gradient is simply
Vide(wg, vy, u) = Hk + g.

Define the invertible matrix o = diag(—If, Ix,1). Since the f-component of g is 0, we have
og = g. Also, by definition, c H = G. If we set the gradient to zero and multiply with o, we get

0=0(Hr+g) = Gr +g.

We now want to prove some consistency results, i.e., that the algorithm actually approximates
the stationary distribution correction wy p.
To this end, we invert the matrix

134 —E] | AXTdP
-G = E, Ey 0
“AXTd)T G | A

Then, we use Theorem 4.5.6, to obtain ¢, the part of koo, which relates to w; p. We do this,
by using Lemma 2.4.5 twice.
Firstly, we define

me (S8 B d E=(M/Ey) '=(I+E]E;'E)™!
- E’y EO al ‘—‘_( / 0) _(E + v =0 ’Y) .

Note that by definition of Ey, we have that Z is symmetric. We apply (2.17) to M and get

= =E Byt
—1 o 0
M= <—E‘1E7E Eyt+ EOJEWEEJEO*) '
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Secondly, we define

z=Z2X"dP? and ﬁ——( G/M)

- (A - (AT G M <AX§ JD»

=1+ AX"dP)5(xdP)
=1+ X'=2712

Now, we can calculate the blocks of —G~! as

T 3D -1
AXﬁd > i (~AxTd®)T ) m

A
=XTdP =xTa® )
- )‘571 ( —H1 T 'D) < —1H T b)
—E, EWEX d E, EWEX d

M- g1 2(XTdP)(XTdP)T= E(XTdP)(xTdP)TEE] Byt
—Ey 1E7H(XTJD)(XTJD) = —Ej 1E7_(XTJD)(XTJD)T:ETE
=+ 37t EEJE;' = A3 2 TE] Byt
—Ey'E\E+ A3 1E 'B,22T By +E01E7_ETEO — A3~ lEolEvzzTETEO

M+ Mt (

_M_1< XTCTD> B _ g =x"dP _ < —B12 >
0 A ~Ey E,EXTdP BBy Eyz)

gt =
-5 (AT G) M =T (XTdP)E (X TdP) 2] By )
— (ﬁflz'l' _BflzTE"yrEo—l) )

Finally, we use (2.16) to calculate

E4+ A8 22" EE] Byt — A7tz "E] Ey! -B71z
~-G'=| —E'E,E4+NT'E; 22" Ey' 4+ Ey'B,EE]Ey — AT Ey'Eyz2 E]Eyt | BETE,2
B2t ~B 712 EJEy! \ A
Multiplying with g, we can derive a formula for
0 — (EEngl - A,B—lzzTEJEgl) (1-XTdr+ 57
— (1—)ZE]Ey' X Td5 + 0872 (1 —(1- y)zTEJE(;IXTJg) . (4.23)

While Zhang et al. [41] have a consistency proof for the undiscounted case with Proposition
4.5.10, they are missing one for the discounted setting. We add such a statement in the form
of Proposition 4.5.8.

Proposition 4.5.8. Let Assumptions 4.5.1, 4.5.5 and 4.2.1 hold. Furthermore, assume that
§ = 0 and E is non-singular. Then

X0 = W -
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Proof. By the definition of the stationary distribution correction w,,p, and the backwards
Bellman equations (3.9) respectively,

(DP)~'d" =i, )p <= d" = DPii,p,
d" = (1 —y)dj +yPrd" <= (1—7)dy = (I —yPF)d" = A1@,p.
The following matrix can be checked to be a projection onto the range of X,
P=X(XTA4X)'XTA.
Applying both of these identities yields
(1-7) XE;'X"d} = P, p.
Because £ = 0, we have
="' =EE'E, v =E;'By(B;Y) X TdP,
E=E;'Ey(B;YT, 2l = (dP) XE Eo(ESY)T.
Putting it together with (4.23), we get
X0 = (1—)XE;'Eo(E;") E] By X Td}
+ A7 (1= (1= y)(dP) X B Eo(B; ) T E] By X Td)
— (1= XESX T+ A8 (1 — (1 - 9)(dP) X B X )

1— (JD)TPQEW/'D
I/A+2TE"12

:Pwﬂ/D+

Finally, we use assumption 4.2.1 to get
Py p = wWep and (d°)" Py p = (d°) ", p = 1.
O

Remark 4.5.9. Unfortunately, in practice we are faced with the issue of having to chose the
feature matrix X ad hoc. This means that we cannot take assumption 4.2.1 for granted.

Now, we cannot say anything about the expectation of our projected stationary distribution
correction P /p being equal to one. Hence, the fraction as in the proof of Proposition 4.5.8
does not necessarily vanish.

Also, it is unclear, whether P is an orthogonal projection onto the range of X with respect
to the scalar product (,)4,. In Remark 4.5.4 we already established that A, is positive definite,
but it is not necessarily symmetric. By the Hilbert space projection theorem, this would have
led to

P, p = arg min { || — wﬂ/DHil ’ W € ran(X)} .

Non-singularity of E, for 0 < v < 1 is discussed in Remark 4.5.4. In case v = 1, we cannot
apply Proposition 4.5.8, but we still have Proposition 4.5.10.
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Proposition 4.5.10. Let Assumptions 4.5.1, 4.5.5 and 4.2.1 hold. Furthermore, assume that
v=1 and XEO_IXT is non-singular. Consider the eigendecomposition

EJE;'Ey =VAVT, where
V orthogonal, A = diag(A1,..., A, 0,...,0), Ay >---> X >0.

Letv=VTXTdP and j =r+1,..., K, such that v; # 0. Then
X(goog—>wﬂ./p

Proof. Since X Ej X7 is symmetric and positive semi-definite and we assumed that it is non-
singular, it even is positive definite. Therefore, according to Remarks 3.5.3 and 3.5.4, it suffices
to show that

- | RDA = 0
€1(€) = [|DPTE X Ooe — DPX0ng %, &

1yt &) 0 and e(§) = (XT(i_D)Teoo,e -1-=—=0.
0

We calculate the auxiliary quantities
E=E+VAV) = (VEI+ V) =V(Er+A) VT
=VEI+N " VIXTdP =V(ET+A)?
B=1+AdP)"XV(EI+A)"VIXTdP =1+ ' (I+A)"
Applying this, together with v = 1, to (4.23), we get
O = A8z = A1+ Mo (T +A) ") V(T +A) !
Firstly, we take care of
(1(8) = I = PD)DP X bl s v
= 0L X DP(I —P)XEy' X" (I —PF)DP X0
= Ooo e By By ' Byt g
= (V' 0o0g) "A(V " cs6)

O ONTAGEL )
(LM (EL+ A) )2

Secondly, we treat

e2(&) +1=(d7) X
= A140 (T +A)"0) (dP) XV (L +A)7!

o+ AT
1+ AT (ET+A)T

Notice that

r

TAET+A)~ Zv ‘ and v (E1+A)” Zv Z

=1 =1 i=r+1

Since v; # 0 and applying L’Hospital’s rule, respectively,
lime =0 and lime +1=1.
i 1(8) i 2(¢)
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4.6 Confidence Interval Dlstribution Correction Estimation

In order to obtain confidence intervals instead of point estimates, in the offline behavior agnostic
setting, via distribution correction estimation, Dai et al. [13] introduce the algorithm CoinDICE.
Similar to DualDICE, it formulates an objective based on the @Q-LP from Lemma 3.3.1.
Similar to an approach by Duchi et al. [14], Theorem 2.6.8 is applied to obtain an asymptotic
confidence interval for the policy value.
Not only do we cover the algorithm as in this section, we also mention important details,
omitted by Dai et al. [13].

4.6.1 Embedded Q-LP

Just like DualDICE, CoinDICE takes the dual of the @Q-LP from Lemma 3.3.1 as a starting point.
However, a feature map ¢ : S x A — R is chosen and we consider a relaxation that embeds
the constraints in a function space Fy. For any § € RE we define the function Qs = BTé. We
collect them inside the K-dimensional subspace

Fs=1{Qs | B € R"} = span{¢;}iL ;.
We get back our original formulation by choosing
K= |S X A’ and ¢($,a) = (ILS’:S, a'=a)(s’,a’)ES><A-

The following Lemmas 4.6.1 and 4.6.2 discuss an Fy-embedded version of the Q-LP from
Lemma 3.3.1.

Lemma 4.6.1 (embedded Q-LP). Let 0 <y < 1. Then, the primal embedded Q-LP

PG = 51161]11{%(1 o V)E(So,ao)Ndér [@5(s0,a0)] (4.24)

s.t. V(s,a) e SxA: Qp(s,a) >r(s,a) +vP"Qs(s,a),
has the dual embedded Q-LP
o= e, E(s,a)~alr (s, a)] (4.25)
st (¢, d) = (&, (1 —7)dg +~Pld).

Proof. Let Lp(B,d) and Lp(d,3) be the Lagrangian of the primal and dual embedded Q-LP
(4.24) and (4.25), respectively. By Lemma 3.2.3, PT is the adjoint of P™. Thus, the conditions
of Lemma 2.2.2 hold,

Lp(B,d) = (1 — 7)E(s,a0)~dz [@8(s0, a0)] + {d, B"Qp — Qp)
= 1 =7){Qp,dg) + (r,d) + (P Qs,d) — (P, d)
= E(sajnalr(s, @) + 87(¢, (1 = )d§ +~PId - d) = Ln(d, B).
O
Lemma 4.6.2. Consider the modified primal embedded Q-LP
min Q" — QsllL, ) (4.26)

BERK
s.t. Y(s,a) € SxA: Qp(s,a) >r(s,a) +vP"Qs(s,a).

It shares the same optimal solution with the primal embedded Q-LP (4.24).
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Proof. Consider an arbitrary f € RY, where Qs is feasible for the primal embedded Q-LP
(4.24), i.e., Q3 > B"Qp. Since B™ is a monotonic y-contraction, we can apply Banach iteration
to @ and get

Qs 2 B™Qs > (B7)°Qs = (B7)°Qp > -+ > lim (B™)'Qs = Q"
Therefore, we can omit the absolute value inside ||Qg — Q™| L1(dF) and get

Eas Q7] + Qs — @l
~ [ Geadeodsdos [ (@lsa) - @ (sa)df(s.a) ds do
SxA SxA
= Eqr [Qg]-

Because Edg [Q”] = p™ is constant in 3,
arg min Egr[Qg] = arg min ||Q™ — Q Y.
gﬁe 1 do[ 6] gﬂe 1 | ﬂHLl(dO)
O

We can use Lemma 4.6.1 for Theorem 4.6.3. It states that the error we make, by embedding
our constraints, for estimating the policy value p™ by pg, can be bounded by how well we can
approximate " by functions from F.

Theorem 4.6.3 (CoinDICE approximation error). Assume that Fy contains the constant one
function. Then

0<pl—p" <2 min [|Q" — .
<pf—p" <2 min Q7 — Qplloc
Proof. Consider the optimal solution to the embedded Q-LP from Lemma 4.6.1,

dy, B,) = i L(B,d).
(d, Bs) arg i oI (8,d)

Furthermore, let

. : T _ - : T _ _ T _
« = arg min [|Q7 = Qllc and € = min [|Q7 = Qglleo = Q7 = Q. floo-

By the forwards Bellman equations (3.5) and the fact that the forwards Bellman operator is
a ~y-contraction with respect to the norm || - ||, we get

B"Qp, — Q"< sup  [B"Qp,(s,a) — Q7(s,a)| = [B"Qp, — B"Q7[|oc < e
(s,a)eSxA

Now, let

147

1_76 = (1 —=9)(e+]]) = 2e.

(1—7)64—(14—’7)6;0 = c=—

Because the expected Bellman operator P™ is linear,

B™(Qp, —c) =71 +P™(Qp, —c) =1 +7P"Qp, —vc=B"Qp, —c.
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By definition of 3, and €, we have

QT =Qp, +Q" —Qp, <Qp, +e

Putting all of this together yields

B™(Qp, —c¢) = B"Qp, — ¢
< Q"+ ye—nc
< Qp, +et+ye—c
=Qp, —c+ (1 —=7)c+ (1+7)e
=3, —c.

Recall that the solution Q™ to the primal Q-LP (3.10) is better than the solution (g, to the
embedded primal Q-LP (4.24). Thus,

0< Pg - prr - (1 - V)E(s,a)wdg [Qﬁ*] - (1 - V)E(s,a)wdg [Qﬂ-]

By our assumption, (Qg, — ¢ € Fy4. Therefore, there exists a B € RE, such that Q5 =Qs, —c
We have just shown that Q5 > B”QB. So, Q3 is a feasible solution. By Lemma 4.6.2, Qp, is
the optimal solution to the modified embedded primal Q-LP (4.26). Therefore, we further get

<A =M@ = QllLywag) < (1 =Rz — Q7| (ag)-

Because d is a distribution, || - ||z,r) < || - - Applying the triangle inequality, we further
calculate

<A-MQs— Qoo < (1 —N(1Q5 — Qp,lloc + 1Qs, — Q" llc)
(T =) (le| +€) = 2e.

The claim follows from the definition of e.

4.6.2 Generalized Estimating Equations

We now want to rewrite the dual constraints from the embedded Q-LP in Lemma 4.6.1 as
generalized estimating equations in Lemma 4.6.4. To this end, we introduce a notation to
bundle the samples in the spaces

X=9XxIxAXxRxS and Y =SxAxSSxAxRxS8 xA.

For any w : § x A — R>¢, define the function

oy {Y—>RK
, ' Y= (1 - ’7)¢(507 aO) + w(s, a)(’ﬂﬁ(sla a,) - ¢(5’a))'

Integrating over ag and a’ by using 7, we define

71'( )
(s w) e
T — E:aoNﬂ'(SO)y a/Nﬂ.(s/)[L(S(),a(), S,a,T, s/,a/;w)].
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Lemma 4.6.4 (generalized estimating equations). For any d € Ay (S x A) we let w = d/dP
and for any w: S X A — Rxo with E¢, ) qr[w(s,a)] =1, we let d = wdP. Then, we have

(,d) = (¢, (1 —)dj +vPld) <= K, o[ (z;w)] = 0.
Proof. Firstly,
E (sp.a0)~dz [(1 = 7)#(s0, a0)] = /S A(l —7)é(s0,a0)dg (80, ao) dso dag = (¢, (1 —v)dg),

and secondly,

s,a) D (s, NT“(S a)[ (S a)(7¢(3 CL) ¢(37a))]

= / D vo(s',a') — d(s,a))T™(s',a | 5,a)dP (s,a) ds da ds’ da’

SxA,d
/ / d(s,a)T7(s',a’" | s,a) ds da ds’ dd’
SxA
/ d(s a)/ T™(s',d’ | s,a) ds’ da’ ds da

SxA SxA

= o(s',a" ) yPrd(s',a") ds’ da’ — ¢(s,a)d(s,a) ds da

SxA SxA

= (¢,7Pid) — (¢,d).

Therefore,

Eppp [V (5 w)] = E(s,a0)~ag [(1 = 7)0(s0, a0)]
+ IE(s,a)wd"D, (s',a")~TT™(s,a) [w(87 a’) (7¢(S/) a/) - ¢(S7 a))]
= (¢, (1 =7)d§ +~yPId) — (¢,d).
O

By substituting w = d/dP and using the generalized estimating equations, we rewrite the
dual embedded Q-LP (4.25) as

Py = w:S>r<r}4a£>{R20 IE(s,a)NdD [w(& CL)T‘(S, a)] (4.27)

st. E, o[ (z;w)] = 0.
Consider the Lagrangian integrand
A ) {5: o r(o,0) + 570
We can rewrite it as
s w, B) = w(s, a)r(s,a) (1.28)
+ (1 —7)B8" ¢(s0, a0)
(s, a) (38Tl ) — T (s,0))

= (1 —7)Qs(s0,a0)
+w(s,a)(r(s,a) +vQs(s',a’") — Qp(s, a)).

66



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Integrating over ag and a’ by using 7, we define

(5w, B) {X .

T Bogon(sy), a/mr(s) [E(505 @0, 5, a, T, s’ alsw, B)).
Now, (4.27) is an LP. By Lagrange duality (2.9), we get

p[{"(v;w,B)] = min  max K, _o[("(z;w,)]. (4.29)

py= _max  min
BERK w:Sx A—R>q

w:SXA—=R>o BERE r~p

4.6.3 Confidence Interval Derivation

We now want to leverage Theorem 2.6.8, to find a confidence interval for our estimator pj. Our
confidence interval can be formulated by using (4.27) or (4.29), as

Cle={, gms, Eefulsa)(s.a)] | p€ B, (7). Byl (asui] =0}

w:SXA—=R>¢

— Epp| ;3
{smﬁﬁm oyl (350, B) \p /(P }

= < min max [E,. (x;w S B
{5GRKw:S><A—>]RZO el Bl ‘p /n(P }

Since the objective of o’ ne C R is convex in p and the constraints are a convex, the set is
also convex. The same goes for closedness. Therefore, we are dealing with a closed interval.
Theorem 4.6.9 claims, that C’n is a confidence interval.

Assumption 4.6.5 (Stationary ratio regularity). Let H, be a bounded RKHS, with kernel
function & bounded by K < co. The stationary distribution correction wy p is part of a compact
subset F,, C H,, where

30y <00 Yw € Fy i ||wloo < Co.
Assumption 4.6.5 together with (2.10) shows that
Yw € Fy, V(s,a) € S x A: |w(s,a)] < K|wl|z,.

Assumption 4.6.6 (Embedding feature regularity). Let F3 C RX be a compact set of feature
coefficients. The features and their coefficients are universally bounded, i.e.,

3C, <oo: ||B]la<Cp and 3Cs<oo: VB E Fz: ||Blla < Chs.
Assumption 4.6.6 and the Cauchy-Schwarz inequality imply
V5 € Fp, V(s,a) € S x A: |Qp(s,a)l = 87 d(s,a)] < [|Bll2]|é(s, a) 2 < CsC.

Lemma 4.6.7. Let Assumptions 4.6.5 and 4.6.6 hold. Then {(y;w, () is bounded and Cj-
Lipschitz-continuous in (w, ) with some Cy € R.

Proof. 1. {(y;w, 8) is bounded, because

[€y; w, B)| = (1 =)@ (50, a0)| + [w(s,a)|(|r(s, )| +7/Qs(s",a")| + Qs (s, a)])
< (1 =7)C3C4 + Cuy(rmax + (1 +7)CsCy).
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2. {(y;w, B) is Lipschitz-continuous in (w, ), because
[£(y; wy, 1) — £(y; wa, B2)|
= | (wi(s,)r(s,) + BT (1 = )(50, a0) + wi(s5, @) (39(s', ') = 6(s,a))))
- (w2<s a)r(s, @) + B3 (1= 7)é(s0, a0) + wa(s,0) (19(5', @) — 6(s.)))) |
< (1= 7)I(B1 = B2)"6(s0, 00)| + [(wr (s, ) = wa(s, a))r(s, )
| (wils, )BT (16(5's0') = (5, ) ) + (wils,0)8] (v(s', @) = 6(s,0)))
~ (wi(s, )81 (16(5, ') = 6(s,0))) = (wa(s,0)8] (vo(s',a') — B(s.0))) |
< (1=)I(B1 = B2) T éls0,a0)| + |(wr (s, @) = w(s,0))r(s, a)
+wrls, @)1 = B2)T(6( ) = 95, )
+ |(wi(s, @) = wals,))B] (16(5',a') — 6(s,0))|

< (X =B = Ball2lld(s0, ao) |2 + |wi(s, a) — wa(s, a)|[rmax

+ [wi(s, a)[[|B1 — Ball2(vl|6(s", a') |2 + | ¢(s, a)|2)

+ [wi(s, a) — wa(s, a)|[| B2ll2(v]¢(s", a')ll2 + (|6 (s, a)2)
< (=B = Ba2Cp + Kllw1 — wa|| 7, max

+ CuwllBr = Bal2(1 4+ 7)Cy + [[wr — w2l 7, Cs(1 +7)Co
< Co([|81 = B2ll2 + w1 — w2l 7,),

where

Cp = max{(1 + Cy)(1 —v)Cg, Krmax + (1 +7)CyCs}.

Lemma 4.6.8. Let Assumptions 4.6.6 and 4.6.5 hold. Consider the class of functions
H={(wp)|we Fu, B € Fg}
and the functional
. {P(X) —R
P — minger, maxyer, Ep[l™(:;w, B)].
Let

PeP(X) and (B*,w")=arg min max Ep[l"(-;w, )].
BEF wEF

Then L* is Hadamard differentiable at P tangentially to B(H, P) C Loo(H)
with Hadamard derivative

OLp(H) = H{™(;w*,B%), where H € B(H, P).

In particular, OL} is a bounded linear functional on the space of bounded measures with the
canonical gradient as influence function

LY (. P) = £ (;w*, %) — Ep[0™(-;w*, B7)).
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Proof. Chose (ty)neny C R and (Hy,)nen C H, such that

th ——0, |Hy—H|p ) —>0, and P+t,H, € P(X)foralneN.
Firstly, we show upper bound convergence. Start with

L*(P + toH,) — L*(P)
= min max (Ep[("(;w, B)] + tn Hpl™ (;w, B)) — min max Ep[¢™(;w, B)]

BEF5 WEF o BEFs wEFuw
< max (Epl™ (-;w, B)] + tn Hol™ (5w, %)) — Ep[l™(-;w, 67)]
< H T .. * .
= urjré%__}itn n‘g (7waﬁ )
Define
wy, = arg max Ho L7 (5w, B7).
Then,

max H, 0" (-;w, B%) — max HO™ (- w, B%) < Hol™ (5 wy,, %) — HEO (5w, B°) < ||Hp — Hl[ 1 ()

WEFuy WEFy

Therefore,

L*(P H,) — L*(P
lim sup (P + tnHp) (P)

n—oo tn

Secondly, we show lower bound convergence. Define

wy,(B) = arg max (Ep[l™(-;w, B)] + tn Hol™ (5w, B))

Then,
L*(P + t, H,)
= min max Ep[lT (5w, B)] + tn Hnl" (s w, B)
= min Ep[l™(;wn(B), B)]

+ to (Hul™ (5w0(B), B) — HE™ (5 wn(B), 8)) + ta HE™ (5;wn(5), B)
< 52?% Ep[l™(-;wn(B), B)] + tallHp — Hl L2y + tall H Lo ()

< 5H€lg; EP[FF('; wn(ﬂ)a 6)] =+ O(tn)

Define the e-ball

For every n € N, take a solution 8 € By(P + t,Hy). According to the above, this means
that there exists a C' > 0 such that 3 € By, ¢(P), for every n € N. This means that (3}),en
is bounded and therefore, has a convergent sub sequence against 5* € By(P). W.lo.g. let
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(B} )nen be that sub sequence itself. Because ¢7(-;w, 3) is bounded and Lipschitz-continuous in
(w, 8), we have that

lim max Ep[(™(-;w, B;)] = L*(P).

n—00 we Fy

Due to optimality, we also have

inf max Ep[¢™(-;w, B))] > L*(P).

neNweF,,
Define
wn = arg max Bp[l™(;w, £,)].
Then,
L*(P +t,H,)— L*(P)
> max Ep[l™(;w, B2)] 4 tnHol™ (s w, B) — max Ep[f™(-;w, 5)]
> EP[EW('Q wan:;)] + thnEﬂ-(';wna ﬁ;) - EP[ETF(';U)M/B:L)]
= thneﬂ(';wnyﬁz)-
Also, we have w, ——% w*, so
| Hnl™ (-3 wn, By) — HET (5 w", B7)
< Hpl7 (5 wn, B,) — HEO (5 wn, By)| + [HE (5 wn, B,) — HE (5 w™, 57))
<\ Hn = Hl ooy + [HE (5 w0, 83) — HE (0%, 87)] 2= 0.
Therefore,

L*(P+t,H,)— L*(P
lim inf P+ ) (P)

n—o00 tn

]

Theorem 4.6.9 (CoinDICE asymptotic coverage). Let D contain i.i.d. samples and the em-
bedded Q-LP from Lemma 4.6.1 have a unique solution. Also, let Assumptions 2.6.6, 4.6.5 and
4.6.6 hold. Then, we have that C_ e is an asymptotic (1 — a)-confidence interval of p™, i.e

X (1)
2 (7 <L) =2 (it <)

Proof. We will apply Theorem 2.6.8 to prove this claim. Recall the definitions in lemma 4.6.7
4.6.8. By Lemma 4.6.7, {™(-;w, 8) is bounded and Lipschitz continuous in (w, 5). By Assump-
tions 4.6.5 and 4.6.6, the sets F,, and F3 are both compact. Finally, H C Lo(PP). By Lemma
2.6.5, H is pP-Donsker with Lo-integrable envelope. Lemma 4.6.8 provides the last requirements

to apply Theorem 2.6.8.
O
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4.6.4 Confidence Interval Calculation

In the following Theorem 4.6.10, we discuss how to calculate the lower and upper bound for our
confidence interval C’f: ¢

Theorem 4.6.10 (CoinDICE upper and lower confidence bounds). Let I, and wu, denote the
lower and upper confidence bounds of C’Zg, respectively. Then

l, = min  max min  E,,[(" (z; w, B)]
~p y Wy )
BERK w:Sx A—R>¢ pGBg/n(ﬁD)
= min max min E__» [—A =+
BERK w:Sx AR AeRsg, © P [ I+ ( A n
ner

n—ﬁ“(x;w,ﬁ)) 6 } ’

Up, = max  min  max E.,["(z;w, ).
m w:SxA%REO,BeRerBg/ (ﬁD) T p[ ( ) 7ﬁ)]

_ Eppp | Ms | ————— ) + 2= :
w:S>r<I}4az>(]RZO ﬁrgl%&% /\gﬁ%lgo, PP |: f < A " n I
neR

The optimal weights for lower and upper confidence bounds, respectively, are

=t (P 52 ana = g (CESIE) 0w s

Proof. W.lo.g. we only calculate the upper bound wu,,.

By (4.28), one can see that ¢(z;w, ) is linear in w and [, respectively. Also, Bg/n(ﬁp) is
compact and convex and RX is convex anyways. Therefore, we can apply Sion’s theorem and
get

U, = max max min E,.,[f™ (z;w
! peBg/ (ﬁD)WZSXA%Rzo,BeRK T p[ ( ) aﬁ)]

=  max max  min K, (07 (x;w, )]
w:Sx A—R>q PeBg/n(f’D) BER

= max min max E; ,[("(z;w, )]
w:SXA—=R>0 ERK PGBg/n(f’D)

This proves the first claim.

For the second claim, we rewrite the inner maximization in terms of a Lagrangian. Since
D¢(p || pP) and ||p||; are convex and linear in p : S x A — Rsq, respectively, we can apply
Lagrange duality (2.9) and get

max  Epp[0"(z;w, 5)]
peB{,, ()

. R £

= Epp[l™ (25w, - D Py > - -1
OSIEZ(BD,\EIE;, ol (@50, B)) ( sl 27) n 1l =)

neR
. R £

= Egp[l™(x;w, 5)] — A | D Dy > — —1).
i s B (705w, ) ( @157 = > ) =n(lplh - 1)
neR

Again, we rewrite the inner maximization. This time, we use the substitution

q:p/ﬁD for 0<p<p?’ <= p=qp’ for q:5xA—=Rso.
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We get

: p(z) 3
oi?i}é Epnpll™ (25w, B)] — AE,pp [f (ﬁp(az)>} + Aﬁ —nNEg~pll] + 1
3

= el E, o ["(z;w, B)q(z)] — AEy po[f(q(2))] — nE,pr[q(x)] + AS 41
0™ (1 _
=E, 7 [)\ qrgﬂggo <(x,w),\5)nq _ f(q)) + )\% + 77}

oD [)\f* <€Tr(x’w’6)_77> +’\7§+”]'

A
/ Eﬁ(wiaﬂ)_n
775,

By applying our substitution p(z) = q(x)pP (), we prove the second claim.

Now, the optimal g(x) is given by

O

We now want to leverage Theorem 4.6.10, to come up with an explicit algorithm, to calculate

the lower an upper confidence bound.
Remark 4.6.11. Consider a distribution p € Ayp. By (2.2) it takes the form

n

— T n
E piﬂsoyizso, si=s, a;j=a, si=s"> where p'= (pb cee 7pn) SAGS
i=1

Therefore,

Epr[ (z;w, B)] sz i(w, B) = ﬁ[( ,B)), where

z(ww@) :e (SO,iysiaahTZ’asi;w:ﬁ): 1= 17"'1”'

—

We can obtain /(w, ) from the dataset D and evaluation policy .

For now, we will fix 8 € RE and w: S x A — Rxq. From the KKT-conditions, we gather

that

s |l 57 Zf np;) = = (4.31)

In order to apply (4.30), we need to further specify our f-divergence. We consider the modified
)-

KL divergence (2.23). Using Lemma 2.2.9, we get
1

Fl(z)=2 (logm + x) —2=2logz and fl(y)=(f")"(y) = e¥/>.
x

Plugging into (4.30) gives us

_ n—biy1 _ b N
pz—eXp<i o) >n—exp <$2)\> /nexp(j:Q)\).
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Now, we use the fact that p must be a distributional vector and get

n n .
1= Zpi = Zexp <:F2€—;) /nexp (:I:%) .
i=1 =1

Finally the optimal weights for lower and upper confidence bounds, respectively, are

p\ = softmax i
Px = :1:2)\ )

where we have to chose the A > 0 such that py that satisfies the KKT-condition (4.31).
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5 Environments

5.1 General

Since we require our environments to have an infinite horizon, but in practice, this is rarely the
case, we apply two custom Wrapper! objects from OpenAl Gym to still achieve it.

e AbsorbingWrapper. In this scenario, once the terminate flag is True, the environment
neglects all actions. It either stays in the same absorbing state [38] or acts on “auto
pilot,” e.g. in Cartpole the pole would swing without the cart moving. In any case, some
absorbing reward (usually zero) is handed out.

e LoopingWrapper. Instead of neglecting actions, the environment is immediately reset
using its initial state distribution, applying Env.reset (). Assuming that the state-action-
space is finite and it never enters any loops prior to termination, we achieve ergodicity.
This makes looping an attractive option for the undiscounted setting.

Remark 5.1.1. For applications where we want to achieve a specific goal similar to reaching the
end of a maze, e.g. successfully curing a patient, we apply absorbing with absorbing reward
zero. As reward function we use

1

0, else.

, if the goal is reached in s’, but not in s,

R(s,a,s") = {

Also, let H be the (possibly infinite) random variable hitting time for the time step at which
the goal is first reached, i.e.,

H = inf{t € N | goal is first reached at time ¢}.

Considering our reward function, the policy value is computed as follows
P = (1= y)ERT].

For lower v, we get a higher penalty for taking longer to reach the goal. The closer v moves
towards 1, the lower this penalty gets. Taking the limit and using dominated convergence, we
see that the scaled policy value converges towards the success rate, i.e.,

lim E[y"'] = lim (E[VH | H < 00] P(H < o0) + By | H = o0] P(H = oo))
y—1 Y1\ ——— N————
<1 0

=E [hml ~H ‘ H < oo] P(H < o00) = P(goal is reached).
y—

1

"https://gymnasium.farama.org/api/wrappers/
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5.2 Boyan Chain

In order to compare our algorithms in an environment, where we can determine the stationary
distribution correction w;p and policy value p™ analytically, we use BoyanChain [11, 41]. The
initial state distribution dfj, transition matrix P”, and reward function r are explicitly stated
in Figure 5.1. We choose dP to be uniform on S x A. With this information, we can solve the
modified backwards Bellman equations (3.17) explicitly.

ao ago ag agp ag ao
TN
. ! ! ; :
a a
1 ai ai ai

Figure 5.1: We follow the setup by Yao and Liu [11]. The initial distribution is uniform over all
states. For all 7 > 2, a¢ transitions from s; to s;_1 and ay from s; to s;_o, Both cases
yielding a reward of —3. For v < 1, at s; both a¢ and a; lead towards sy and we get
a reward of —2. We consider sg an absorbing state and let both actions steer from sg
back to sg, with a reward of 0. For v = 1, we want to ensure ergodicity, hence, at s;
and sg, both actions reset the environment using the initial state distribution, with
rewards —2 and 0, respectively. This boils down to using absorbing and looping.

Considering the reward function, we notice that the goal of this environment is to reach sq as
quickly as possible. Hence, the optimal policy always chooses a; over ag. However, our policy
7 has

m(ag | s;)) =0.1 and m(ay|s;) =09 forall i=0,...,N.

We generate a dataset of n = 100,000 samples for our numerical results and set N = 12
following Boyan et al. [11]. Since this environment is tabular, we use one hot encoding, to
embed S into [0, 1]V+1.

5.3 OpenAl Gym

To further investigate the performance of our estimators, we test them on the OpenAl Gym
environments FrozenLake?, Taxi®, and Cartpole*. Following Dai et al. [13], we use looping for
the first two instances and apply an absorbing state with a reward of —1 for the latter.

For FrozenLake, we have a deterministic and stochastic version, depending whether the pa-
rameter is_slippery is False or True, respectively. In both cases, we generate n = 100,000
dataset samples using a uniform dataset distribution d” on S x A. The initial state distri-
bution df, transition matrix P”™, and reward function r are obtained analytically. Just like in
BoyanChain, we can then solve the modified Bellman equations (3.17) explicitly. The evaluation
policies are trained with PP0® [37, 35], without looping in the environment.

In Taxi, we use the same environment, behavior policy, and evaluation policy as Dai et al.
[13]. We gather 10,000 trajectories with a length of 200.

https://gymnasium.farama.org/environments/toy_text /frozen_lake/
Shttps://gymnasium.farama.org/environments/toy_text /taxi,/
“https://gymnasium.farama.org/environments/classic_control /cart_pole/
Shttps://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
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With Cartpole, however, we train a behavior and evaluation policy for 10,000 and 100,000
steps, using PPO, also without absorbing in the environment. Here, we gather 500 trajectories
with a length of 200. In all of these time steps, the behavior and evaluation policies manage to
balance the pole roughly 70% and 100% of the time, respectively.

5.4 Medical

We use a set of prerecorded data of septic patients and their treatment from AmsterdamUMCdb
[39, 8]. Each state is composed of certain sensory data, such as blood pressure, blood oxygen
saturation, etc. Actions are clustered administered dosage of the drug hydrocortisone. Once
a patient’s treatment ends successfully, a reward of 1 is handed out, otherwise, we only get 0.
The evaluation policy is obtained in the same way as Bologheanu et al. [8].

In order for the policy value to be easily interpretable, the setup from Remark 5.1.1 serves
as a basis for our environment. When a patient is cured or passed away in the state sz, all
subsequent states are chosen to be the same absorbing state, i.e., s; = sy for all t > H. In order
to implement this setup, we pad each ending of a trajectory with the respective finite state.

The evaluation was performed using this data directly via NeuralDualDice, NeuralGenDice,
and NeuralGradientDice, as well as in a clustered form, as described in Figure 5.2. Clustering
the dataset lets us construct a simulator and use algorithms with a more solid convergence
theory.

Chttps://scikit-learn.org/1.5/modules/generated /sklearn.cluster. KMeans.html
"https://gymnasium.farama.org/api/env/
Shttps://sb3-contrib.readthedocs.io/en/master /modules/ppo_mask.html
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Figure 5.2: We start by splitting the preprocessed data set into a training and testing data set.

We select some features from the un-clustered observations in the training data set
and train a KMeans® model from Scikit-learn with 256 clusters, which we use to
extract clustered observations from the training and testing data set. Two addi-
tional clusters, representing “recovered” and “deceased,” are added at the end of
each trajectory. The clustered observations are stored in the clustered training and
testing data set, together with the patient IDs, time stamps, actions, and rewards.
From these, we construct a training and testing simulator in the format of an Env’
from OpenAl Gym, by approximating the initial state distribution and transition
kernel, respectively. We make sure for each environment to allow an action a in a
state s only if (s, a) is part of the associated clustered dataset. On the training sim-
ulator we apply MaskablePPQ® [17] from Stable-Baselines3 to train an exploratory
and evaluation policy. We apply these policies to the testing simulator, to produce
a exploratory and evaluation data set. Together with the clustered testing data
set, Monte Carlo agents use their rewards to approximate their respective policy
values via on policy evaluation. Additionally, we use the VAFE and DICFE agents
TabularVafe, TabularDice, TabularDualDice, and TabularGradientDice, which
take the action distributions from the evaluation policy as well as the rewards and
state distribution from these datasets to produce an off policy estimate of the eval-
uation policy value.
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6 Numerical Results

We conducted experiments using both tabular and continuous algorithms with various hyper-
parameters, selecting those that yielded the best performance. We briefly summarize their
functionality.

The most important hyperparameter is the discount factor +, which lets us control how much
weight is given to rewards further along a trajectory.

The objectives (4.4) and (4.5) also include the norm penalty coefficient A. It determines, how
high the approximate stationary distribution correction should be penalized, when its expected
value under the dataset deviates from one.

The boolean hyperparameter weighted lets us choose between a simple (3.15) and weighted
Monte Carlo estimator (3.16) for the policy value, provided, we are already given an approxi-
mation for the stationary distribution correction.

Tabular algorithms also include projected. If active, we first project all vectors and matrices
onto the subspace of all indices whose corresponding state-action-pairs actually occur in the
dataset, before approximation. Afterwards, we embed back into the original space. In some
cases, it is necessary to enforce this assumption in order to satisfy the requirements set forth in
Assumption 3.5.1. If already satisfied, it does not make a difference for the estimator.

Finally TabularDice has the boolean hyperparameter modified, which dictates whether to
use the standard backwards (3.9) or modified backwards Bellman equations (3.17).

6.1 Boyan Chain

BoyanChain Tabular. This environment was used to investigate the performance of our tabular
algorithms, as we increase the number of states. In the episodic variant Subfigures 6.1a and
6.1b, the policy value drops as the chain length N increases. Recall that as the end of the chain
is reached, reward zero, instead of —3 and —2, is handed out. Similar behavior can be found
in the continuing variant Subfigure 6.1c. The Subfigures 6.1d, 6.1e, and 6.1f, show the policy
value error in more detail. We see that our tabular algorithms perform similarly well, if not
better than on-policy evaluation. In the episodic setting, the error increases as the number of
states goes up. This is not the case with regard to the continuing domain. The underlying
cause of this behavior is likely an increase and subsequent decrease in the discrepancy of the
rewards, respectively. However, an examination of the stationary distribution corrections, as
illustrated in Subfigures 6.1g, 6.1h, and 6.1i, reveals an increase in the MSE as the number of
iterations IV increases. This means that this experiment was successful and the analytical value
was approximated properly.

BoyanChain Continuous. Here we provide an environment with a continuous state space and
access to an analytical solution to the stationary distribution correction w, p and policy value
p". The Subfigures 6.2a, 6.2b, 6.2¢, and 6.2e, 6.2f, 6.2g show that the analytical policy value
can be approximated decreasingly well as the discount factor increases. This can be observed
in more detail in Subfigures 6.2i, 6.2j, and 6.2k, respectively. Also, the weighted estimator
(3.16) performs a more accurate approximation than the simple estimator (3.15), especially for
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NeuralGenDice. As suggested by Nachum et al. [34] and Zhang et al [41], the performance of
NeuralDualDice, approximating the stationary distribution correction, is significantly impaired
when the discount factor is increased. NeuralGenDice and NeuralGradientDice also follow this
patter, but are more robust in this regard. Mao et al. [25] claim that a small Bellman residual
angle of the gradients VyP" vy and Vyvy may be responsible for the instability associated with
a higher discount factor, as the gradients cancel each other out more and more. In Figure 8.21
we see that the BRA is indeed quite small, at about §. Even so, in Subfigures 6.2d, 6.2h, and
6.21, it is evident that the undiscounted case, with discount factor v = 1, offers an excellent ap-
proximation performance, albeit it based in a slightly different environment. We have the same
setup as Zhang et al. [41]. However, our results for NeuralDualDice and NeuralGradientDice
show an even smaller MSE on the stationary distribution correction. We also get lower MSEs
for the continuing setting. Our analytical solution for the stationary distribution correction was
calculated by solving the eigenvalue problem (4.1) and not by iteratively applying the transition
matrix to the identity matrix 10,000 times [41]. This may explain the better performance.

6.2 OpenAl Gym

FrozenLake. This environment lets us observe the influence of adding randomness to the tran-
sition dynamics. Comparing Subfigures 6.3a and 6.3b, we notice that approximating the policy
value p™(7) gets harder, not only as the discount factor 7 increases, but also when we switch
from deterministic to stochastic transitions. For those algorithms that allow for an undiscounted
evaluation, the undiscounted counterparts converge to their evaluation outcome, with increasing
discount factor. This is not the case for episodic on-policy evaluation. The rationale behind this
phenomenon can be elucidated with relative ease. We are dealing with a looped environment,
but can only gather finite trajectories. With a higher discount factor, rewards further along the
episode are given a higher weighting. Not sampling them is equivalent to setting them to zero,
which biases the estimator.

Taxi. Here we provide a deterministic environment similar to FrozenLake, in terms of its
objective, but has a significantly higher state space. As a consequence, gathering experience
by means of a behavior policy is harder, since we must satisfy Assumption 3.5.1. Numerical
evidence for this claim can be found when comparing Figures 8.18 and 8.19. There, we see
that the approximations of the initial state distribution d7T and the transition matrix P™ are
already flawed. Further evidence is given in Subfigure 6.3c, which shows that approximating
the policy value does not work as well as for FrozenLake. Nevertheless, the approximations are
still reasonable, especially for a higher discount factor. This means that our algorithms are to
a certain extent robust against flaws in the dataset.

Cartpole. This classical environment serves as a more sophisticated continuous state space
testing environment than BoyanChain Continuous. Although an analytical solution is lack-
ing, we can still undertake a comparison with on-policy evaluation alone. The performance of
NeuralDualDice in Subfigures 6.3g, 6.3h, and 6.3i, is comparable to Nachum et al. [34]. Except
for NeuralGenDice with the discount factor v = 0.1, the weighted estimators in Subfigures
6.3d, 6.3e, and 6.3f, perform better than their simple counterparts in Subfigures 6.3d, 6.3e,
and 6.3f, respectively. This does not agree with the comparison in BoyanChain Continous,
which shows that there is “no free lunch.” NeuralGenDice is as accurate as NeuralDualDice
for v = 0.1,0.5, but for v = 0.9 it underestimates the policy value. For NeuralGenDice, this

79



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

PVs - Boyan Chain Tabular - episodic
gamma=0.99, projected=True, weighted=False

PVs - Boyan Chain Tabular - episodic
gamma=0.9999, projected=True, weighted=False

PVs - Boyan Chain Tabular - continuing
gamma=1, projected=True, weighted=True

oo 000 —a— OnPE evaluation
- Tabularbice, madified=True
-0.01 - —— analytical
-5
002 -2.0
-1.0 =ony -2.2
B 8 2 24
-1.5 —0.05
—— ONPE evaluation —— ONPE evaluation =5
—— Tabularvafe ~0:06 { —— Tabularvafe
-20 TabularDice, modified=True TabularDice, modified=True
== TabularDualDice ~0.07 { —— TabularDualDice -8
—— TabularGradientDice, lam=1¢-06 —— TabularGradientDice, lam=1¢-06
2| = ananytical ~0.08 { —— analytical 304
10! 107 1w 10 107 1w 10 107 10
N N N
(a) (b) (c)
PV Errors - Boyan Chain Tabular - episodic PV Errors - Boyan Chain Tabular - episodic PV Errors - Boyan Chain Tabular - continuing
gamma=0.99, projected=True, weighted=False gamma=0.9999, projected=True, weighted=False gamma=1, projected=True, weighted=True
—— ONPE evaluation —— OnPE evaluation
10714 TabularVafe TabularDice, madified =True
u Tabularbice, madified = True —
% —— TabularDualDice \\
103 | = TabularGradientoice. tam=1e-05 = 102
T 107 %10 T
g A I e
1074 —&— OnPE evaluation -,
—— Tabularvafe _—
TabularDice, madified=True
—— TabularDualDice -
s == TabularGradientDice, lam=1e-08 - 1074
10! 107 10! 10 107 10! 10 107 10!
N N N
(d) (e) ()
5DC MSEs - Boyan Chain Tabular - episodic 5DC MSEs - Boyan Chain Tabular - episodic SDC MSEs - Boyan Chain Tabular - continuing
gamma=0.99, projected=True gamma=0.9999, projected=True gamma=1, projected=True
TabularDice, modified="True TabularDice, modified=True
107 { —— TabularDualbice 0
—— TabularGradientDice, lam=1¢-06
" 1 - " 10
g® T 5
H H H
| ' |
s 107 £ .0 <
3 3o § w0
E £ E
& & &
3
0 S
TabularDice, modifisd= True 1044
—— TabularDualDice
w0 _— —— TabularGradientoice, lam=1&-06
10! 107 1w 10 107 1w 10 107 10?
N N N
(8) (h) (1)

Figure 6.1: BoyanChain Tabular. The horizontal axis shows the length of the chain, i.e., N +1
is the number of states. The columns of the multi-plot, 6.1a, 6.1d, 6.1g and 6.1b,
6.1e, 6.1h and 6.1c, 6.1f, 6.1i, represent the same runs, displaying the (approximate)
policy value p”, policy value error |p™ — p™| and stationary distribution correction
MSE Ep|w/p — Wy /D|2. We use various discount factors v and the same norm
penalization coefficients A = 1076, We plot the sample-mean and an area spanning
half the standard deviation using runs on four datasets, generated by different seeds.

is already the case for the lower discount factors. Taking a closer look at the loss functions,
plotted in Figures 8.10, 8.11, and 8.12, we see that they move increasingly closer to zero, the
higher the discount factor gets. Presumably, the Bellman error yP™v —wv in the loss definition is
responsible. Figure 8.22 supports this claim, by showing a small Bellman residual angle below
16- As already discussed in BoyanChain Continuous, this leads to many parts of the gradients
VyPT vy and Vyvy canceling each other out. Since the BRA in Cartpole is half of the BRA in
BoyanChain Continuous, this may explain why the approximation in this application is even
worse for the high discount factor v = 0.9.
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Figure 6.2: BoyanChain Continuous. The horizontal axis shows the training step. The
columns, 6.2a, 6.2e, 6.2i, 6.2b, 6.2f, 6.2j, 6.2¢c, 6.2g, 6.2k, 6.2d, 6.2h, 6.2], represent
the same runs, displaying the analytical and approximate policy value p™, using
the simple (3.15) and weighted (3.16) estimator, and the MSE Epli,/p — w,p|*
to the analytical stationary distribution correction w,,p. We use various discount
factors v and norm penalization coefficients A\. We plot the sample-mean and an
area spanning half the standard deviation using runs on four datasets, generated by
different seeds.

6.3 Medical Application

Medical Tabular. In order to be able to perform on-policy evaluation, we cluster our medi-
cal dataset, extract the necessary distributions and build a simulator, as described in Figure
5.2. Similar to Nachum et al. [34], we want to compare policy evaluation algorithms, using
various datasets. As illustrated in Figure 6.4, the clinician, exploratory, and evaluation policy
each demonstrate a distinct level of policy value, with each outperforming the others. Figure
6.6 depicts the convergence of policy values towards respective treatment success rates across
datasets. Since the goal of our algorithms is to approximate the evaluation policy value, we
notice that resampling the dataset by means of the exploratory policy 6.4b yields the best ap-
proximation. The clinician dataset 6.4a is likely too different from the trajectories that the
evaluation policy would follow. The dataset resampled with the evaluation policy 6.4c, on the
other hand, does not sample enough experience for Assumption 3.5.1 to be satisfied. Similarly
to Taxi, this can be supported by noticing the already flawed approximations of the initial state
distribution d7r and transition matrix P7, as illustrated in Figure 8.20. For each algorithm and
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Figure 6.3: OpenAI Gym. The top three plots, 6.3a, 6.3b, and 6.3c, show the policy value p™(v)
against the discount factor v close to one, for FrozenLake and Taxi. The dotted
lines mark the respective undiscounted results for the policy value, i.e., v = 1. The
bottom three plots, 6.3g, 6.3h, and 6.3i, present the policy value p" with discount
factor v = 0.1, 0.5, and 0.9, respectively, plotted against the training step of the
respective algorithm, for Cartpole. Only the algorithms that yield sufficient results
were chosen. In all of the plots, we present the behavior- and evaluation policy
values as a reference point.

the onpolicy evaluation, consider the right most point on their respective curve, i.e., where the
discount factor - is the highest. The differences between the points of an algorithm and on-
policy evaluation, are less than 5%, 1%, and 2.5%, respectively. These serve as error margins on
the evaluation policy treatment success rate, respectively. Since the difference of the treatment
success rates of the clinician and evaluation policy is more than 7.5%, this is already enough to
confirm superhuman performance.

Medical Continuous. The primary motivation for this work is to evaluate a policy, treat-

ing septically ill patients, using offline behavior agnostic policy evaluation algorithms. This
means that we operate directly on a dataset, without clustering or inferring the distribution
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of the behavior policy. In Figure 6.5, we illustrate the best results available. For all numbers
of hidden neurons, NeuralDualDice and NeuralGradientDice consistently produce a policy
value above the clinician’s behavior, even when accounting for the standard deviation. Here,
we chose the simple policy value estimate. In Figures 8.14 and 8.15, we see that the weighted
estimator is biased upwards [38, p. 105]. On the other hand, NeuralGenDice produces unstable
learning curves. This is probably due to a high variance of the stationary distribution correction
approximate W, p, resulting in some of its components being much higher than others. Conse-
quently, in Figure 8.16, the simple policy estimate skyrockets or oscillates immensely, while the
weighted estimator nullifies this effect. The choice of the low discount factor v = 0.9 signifi-
cantly decouples the scaled policy value from the treatment success rate, as shown in the Figure
6.6. However, the policy gets a higher penalty for taking too many steps per episode. Also, the
estimators are more stable and less biased, while a discount factor of v = 0.99 already leads to
implausible results. Our findings in Figure 6.5 are consistent with Bologheanu et al. [8], who
used the same method to obtain the evaluation policy. As already discussed for BoyanChain
Continuous and Cartpole, the Bellman residual angle can give an insight into the performance
of the estimator. Just like BoyanChain Continuous in Figure 8.21, NeuralGradientDice in
Figure 8.15 shows a BRA of just under §. On the other hand, NeuralDualDice in Figure
8.14 and NeuralGenDice in Figure 8.16 have a BRA slightly below {5, similar to Cartpole
in Figure 8.22. In the same way that the results for BoyanChain Continuous are superior to
those of Cartpole, NeuralGradientDice produces more stable policy value and loss curves

than NeuralDualDice and NeuralGenDice.
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Figure 6.4: Medical Tabular. These three plots show the scaled policy value p™(v)/(1 — 7),
plotted against the discount factor 7 close to one. The dotted lines mark the re-
spective treatment success rate for the clinicians, exploratory and evaluation policy.
The data for the VAFE and DICE algorithms is either taken from the clustered test
dataset directly 6.4a or resampled using an exploratory policy 6.4b or the evaluation
policy 6.4c.
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Figure 6.5: Medical Continuous. Here, we show the mean and standard deviation of the scaled
policy value with a discount factor of v = 0.9. The objectives use the same norm
penalization coefficient A = 1.0, as suggested by Zhang et al. [44, 41]. The primal
and dual neural networks have a single hidden layer, with different numbers of neu-
rons, specified on the horizontal axis. The samples were taken from the marked
parts of the learning curves in Figures 8.14, 8.15 and 8.16, where the policy value
estimate and the loss function settle in an equilibrium and oscillates with a con-
sistent amplitude. For each algorithm, we chose either the simple or the weighted
estimator, depending on which produced the more plausible output, respectively. As
a reference, we also show the clinician’s scaled behavior policy value on the dotted
horizontal line.
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Figure 6.6: We plot the error between the scaled on-policy value p7(v)/(1 — ) and treatment
success rate o, for the clinician as well as an exploratory- and the evaluation policy.
As we increase the discount factor v towards one, the scaled policy value converges
linearly against the success rate.
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7 Conclusions and Future Work

In this work, we described methods that approximate the policy value for tabular environments,
based directly on the Bellman equations (3.5) and (3.9), solving linear equation systems and
eigenvalue problems and collected the most prominent DICE methods for continuous environ-
ments.

We tested these algorithms on various well established environments retaining certain selected
properties, analyzed the results and made connections to the underlying theory. Finally, we
executed the algorithms on a carefully constructed environment for medical applications, where
the policy values are easily interpretable.

We saw that our estimators yield good results, as long as we provide adequate data. For
the clustered medical application, our estimators achieved errors on the treatment success rate
ranging from 1% to 5%. This is especially interesting, since practical and theoretical evidence
confirms that classical off-policy evaluation methods based on importance sampling suffer from
high variance [42]. They also explicitly require the distribution of the clinician’s behavior policy,
which can only be approximated at best [19, §].

Theoretical guarantees that the estimator will work in the undiscounted setting are difficult
to provide, when dealing with complex continuous environments. However, there are even some
issues relating to stability and bias, if one chooses to evaluate in the discounted setting with
a high discount factor. It is important to further develop stable and precise algorithms for
continuous environments. A clustered environment simulator always deviates from the original.
Possible solutions might adapt ideas from Mao et al. [25] from policy optimization to policy
evaluation. An alternative to DICE by Mousavi et al. [28] involves the use of reproducing kernel
Hilbert spaces and maximum mean discrepancy. Building upon their approach is to find kernels
that provide accurate estimates.

Also, the need for safe policy evaluation for medical applications calls for algorithms capable
of providing rigorous confidence intervals on the policy value. Algorithms like these, which also
only have the requirements of those discussed in this work, i.e., offline and behavior agnostic,
should be developed further and tested in the same way that we have done here [13].

It is still an open task, to run these offline behavior agnostic policy evaluation algorithms on
more and bigger dataset, including different clustering techniques and feature selections, perhaps
also with other treatment objectives. Nevertheless, the medical policy evaluation results are
very promising so far, showing that there is a lot of potential for RL and medicine to work
together.
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8 Appendix

8.1 Additional Numerical Results

This section presents supplementary graphs and analyses that, while not central to the main
contributions of this work, provide valuable insights into the behavior of our algorithms. These
results help to contextualize and explain some of the phenomena observed in our main find-
ings. Specifically, we include plots that illustrate the effects of different learning rates and key
statistics of our algorithms. These additional visualizations support claims about why perfor-
mance varies under certain conditions and offer a deeper understanding of how our methods
respond to different parameter settings. Collectively, this evidence underscores the robustness
and adaptability of our approaches across a range of scenarios.

90



tgbar

Bibliothek verfi

ien
Bibliothek.

i

1en

intat TU W

in pr

Diplomarbeit ist an der TU W
lable

leser

d
is is avai

ion

thes

Ivers
f this

g

igina
ion o
16

iginal vers

te gedruckte Or

ier

i —ptik

Vs - Boyan Chain Tabular - episadic
gamma=0.9, projected=True, weighted=False

PVs - Boyan Chain Tabulat - episadic
gamma=0.99, projected=True, weighted=False

PVs - Hoyan Chain Tabular - continuing

PVs - Boyan Chain Tabular - episodic Vs - Boyan Chain Tabular - episodic
> , projected=True, weighted=False

(gamma=0.999, projected=True, weighted=False 3 ighted=! gamma="

Die approb
The approved or

T -

ibliothek,

Your knowledge hub

a0
) am
-as TabalarDice. mofied=Te: ot
— Tk “as
e
10
10 o
s = s
& § o0
13
i 008
006
25 e
o0
30 a5 -a0e
w w0 0! w w 0! w w0 0
w " w
s - Boyan Chain Tabular - episadic PVs - Boyan Chain Tabular - episadic PVs - Boyan Chain Tabular - episodic s - Boyan Chain Tabular - episodic PVs - Boyan Chain Tabular - continuing
‘gamma=0 9, projected=True, weighted=True gamma=0.99, projected=True, weighted=True gamma=0 999, projected=True, weighted=True gamma=D.9999, projected=True, weighted=True gamma=1, projected=True, weighted=True
o, —— OnPE evabuation e —i OnPFE evaluatic
— Tiulanate - T —
i TabularDice. morified=Tre oot P ———
——
arorentoie, lams15.06 o0 a0
-10 — el
o0z &
s s
s £ om z
= % s
20 .
B -2
006
25 i 28
-i0 008 a0
10 t 0 10 w 0 10 t 0
w " w
PV Errors - Boyan Chain Tabular - episodic PV Errors - Bayan Chain Tabular - episodic PV Errors - Bayan Chain Tabular - episodic PV Errors - Boyan Chain Tabular - episodic PV Errors - Bayan Chain Tabular - continuing
gamma=0.9, projected=True, weighted=rfalse gamma=0.99, projected="True, weighted=False (gamma=0.999, projected="True, weightad=False’ ), pro ighted =</ , projected=True, weighted=Falss
y — GnFE evabiaton
ol — TabutarDice, modiied=Tue
10t ) |
w0
= e = w
o S o
h h h
= = =
s 5 £ 5
w 10
- o TubslartradentDice, lam e 66 - = TubalarCradientOice am16-08 i = TabularGradestOice 1608
10 t 0 w0 t P w0 fre P 10 w 0 10 t 0
w w " " w
PV Errors - Boyan Chain Tabular - episodic P Errors - Bayan Chain Tabular - episodic PV Errors - Bayan Chain Tabular - episodic PV Errors - Boyan Chain Tabular - episodic PV Errors - Bayan Chain Tabular - continuing
‘gamma=0.9, projecte True 89, projected=True, weighted=True gamma=0 999 projected=True, weighted=True gamma=D.9999, projected=True, weighted=True gamma=1, projected=True, weighted="True
e —
w# / "~ huiarmics, modied=me
10 1!
w0t e
£ B = £ 3
3 3 e 3
= = = =
/\ L .3 By Ko
P
w0 = ORPE wvalugtion ‘--‘—\q e ONPE Balation e ORPE evatIaton
- Tabularvat wt — Tabularvate - — Tabularvats e e Tablarvals
" Tabuiartice, modifed=Tue " abaartice, modied=Tue " TbularDice, modifed=Tue " bularDice, madifed=Tue
— Tabstarouse — Tt — DU s
— TobularGradientDie, I 108 § —— TibalarCradentDie, =108 —— TablarGradaDice, 1608 § 06 1ot
0 1w 0% 1w
w w 0! w w 0! w w 0! w w 10! w0 0
w w " " w
SDC MSE= - Boyan Chain Tabular - episodic SDC MSEs - Boyan Chain Tabular - episodic SDC MSEs - Boyan Chain Tabular - episodic SOC MSEs - Boyan Chain Tabular - episedic SDC MSES - Boyan Chain Tabular - continuing
gamma=0.9, projected=True gamma=0 99, projected=True gamma=0.999, projected=True gamma=0 5999, projected="True ma=1, projected=True
— TbularDice, modified =True. W mmbularDice, modified=Tre. —— Tabularoice, modified=True. .
108 | — mbuarouaice — mburbuaice " ;
= TabilardradientDice. lam=1e-06 == TabuilardradientDice. lam=1e-05 o1
107 ! T
z w! ES T o E 4
i H H i
- Low L L "
i zw 2 I ow % 0t p
i 3 3 i
5 g ) 5
160 10! i o
— balrpice, modifed=Te — Tbularice, modifed=Tue -
s — Tt ’
o Tab GBSO, I 100 10t W 45
10 1w 08 w0 1w w0 w0 fre w0 10 fre 08 10 1w ]
w w " " w

Figure 8.1: BoyanChain Tabular



Diplomarbeit ist an der TU Wien Bibliothek verfligbar

ieser
The approved original version of this thesis is available in print at TU Wien Bibliothek.

jon di

Ivers

igina

te gedruckte Ori

ler

Die approb

[ 3ibliothek,
Your knowledge hub

6

oo 04 0 — & 1
=] =
Lo % a3 on T ~8 A "
3 e by 10 -0 2 L =
i s s £. Mw-m -t
e 20 20 i - =
o s a5 -
¢=0.5, n-moving.averages=24 VD8, ovingAvragesaat = 0.1, n-moving-averages=24 = 0.5, n-moving-averages=24 = 0.9, n-moving-averages=24
2x10° 10t 1wt 00 0!
10" W b-E.;q. = w0t
s e )
— ulbren - Wi’ § w04 o e o
00 oo = = 0
i = B L =4 a1 h
w - — Elbag— Woal? 10
o m, 07— llieol 11 far
exint e
¥ 0.1, -moving-averagess16 ¥ =05, n-moving-averagess 16 ¥= 0.9, rmoving-averagess 16 ¥=0.1, n-moving-averages=16 ¥=0.5, n-moving-averages=16 = 0.9, n-moving-averages= 16
-agotars Sy % I
“aso1300 0072 i s
5 T . &
3 ~000132 ~0.00074 i B NWW
~a.po13s0 0000150 4
5
0001375 [P o o 2
-apo14an o 0.000155 o —= Nl = : i
ot -om  ak am  am S e o sk am ot oer o om ot T mmetn Moo a0 moon 160000 T w0 w00 w0 mowd 100900 T o0 woo eoo 80600 loacad
aep w0
Boyan Chain Continuous - episedic Boyan Chain Continuaus - episadic
, batch-size=64; , mlp-regs o batch-size=64, hidden. 32,), learning-rate=0.001, mip-requiarizer=0.0
y=0.1, n-moving-averages=8 =05, n-moving-averages=5 ¥ = 0.9, n-moving-averages=5 1, n-moving-averages=8 y=0.5. n-moving-averages=8 y=0.9. n-moving-averages=8
o - o o - a
— & 00 — &
= e = n
a o a
« analytical 100 3 « analytical lj
= o ._.ﬂ 2= 5§ l
bt e =3 Av L o
5 -100 ] a { e
= 0.1, n-moving-averages=24 = 0.5, n-moving-averages=24 = 0.9, n-moving-averages=24 = 0.1, n-moving-averages=24 = 0.5, n-moving-averages=24 = 0.9, n-moving-averages=24
10 100 b 0° ki —e—
wef w1 :: ol A ek w =i
2 R e LU s e A
P = = = we| SRR G (IR =¥ T
g et N 1 WL vl 201 P i e il st - s 10t
104 { — Eelan = Waal? 2 e 104 { — Ecltap=Wual?
1ot ] = robbeal- 11 o 01 ] — Weldal-11 w* 1wt
W
¥=0.1, nmoving-averages=16 ¥=05, n-moving-averages=16 ¥= 0.9, nmoving-averages=16 ¥=0.1, n-moving-averages =16 ¥=0.5, n-moving-averages=16 = 0.9, n-moving-averages=16
75 — "5
15 400000 — fv.den )
50 15 Et) 100
P e e B e U I g T __/""“'W
a0 'S » LL) *
03 SE us -
— o1 4 o 10
o0 50 et 0o 0
D 30000 w00 w00 m00o0 0000w ) T oo wow  wda  webo  ioacad T mmetn Moo a0 moon 160000 T w0 w00 w0 mowa 100900 T a0 wowo eoo 80600 loacad
=0 =
Boyan Chain Continuous - episadic Bayan Chain Cantinuous - episodic
batch-size=64, hidde 2 (32,), leaming-fate=0.0001, miprequiarizer=0.0 batch size=64, hidden: 32,), learning-rate=1e-05, mip-reqularizer=0.0
y=0.1, n-moving-averages=8 =05, n-moving-averages=5 - y = 0.9, n-moving-averages=5 ¥=0.1, n-moving-averages=8 & ¥ =0.5, n-moving-averages=6 y=0.9. n-moving-averages=g
o o o
m
i E s ! e
. o Iz
z B s i,
=
a B
¥=0.5. n-moving-averages=24 ¥=0.9, fmoving-averages=24 ¥=0.1, n-moving-averages =24 ¥=0.5, h-moving-averages =24 ¥ = 0.9, n.moving-averages=24
0t 00 10! _—__———___ 1w
Wi wt
-t 4 : I _——_—-‘——_,
= e i AR — e — —-n S =
w ’ | g ’ T — = = —
e ] ———— et t 0t
107 i 3 wE " o ——
" | - v — o= Wl -
107 — irolibenl- 11 g o] = Edbial-11 e e
10 wt
Y= 0.1, nmoving-averages=16 ¥=05, n-moving-averages=16 ¥= 0.9, nmoving-averages=16 ¥=0.1, n-moving-averages =16 ¥=0.5, n-moving-averages=16 ¥=0.9, nmoving-averages=16
= s = so1s
15— Jvdes, ) — 06 — I s a3
15
oo10
10 4 0
i = 10 §
o as 008 02 el 6008
00 ao 000 op a0 00
D 30000 woon sooon  m00o0  1oooon 5 oo oo sono0  sobe0  locamo © w000 eecoa  macoa  1bopeo 5 wmoon wwe0 w00 mowo  laaon § soow w00 e meied 190000 T o000 om0 eowo  Bojan Ioopeo
o0 o

Bayan Chain Cantinuous - episodic
. s o i1

¥=0.1, nmoving-averages=8

¥=05, rmoving averages=8

a
¥ = 0.9, r-maving-averages =8

MNeuralDualDics. batch-si

¥=0.1, nmoving averages=8

Boyan Chain Cantinuous - episodic
4. hidden-dimensis ). leaming:

¥=0.5, n-moving-averages=8

B i -0
¥=0.9. n-moving-averages=g

Figure 8.2: BoyanChain Continuous

- episodic - NeuralDualDice




Diplomarbeit ist an der TU Wien Bibliothek verfligbar

ieser
The approved original version of this thesis is available in print at TU Wien Bibliothek.

jon di

Ivers

igina

te gedruckte Ori

ler

Die approb

[ 3ibliothek,
Your knowledge hub

€6

L4

plicy value
& hod
we b

~ras
2 -1
2

e

ey v
L

L

Boyan Chain Continuous - episodic
64, i it 23

¥=0.1, 4= 1.0, h-moving-avernges =5

¥=05,A =10, n-moving-averages=8

.0
¥=0.8,A= 1.0, nmoving-averages=6

Boyan Chain Continuoys - episodic

. batch-size=64, hidden. 2., grate=0.1.

¥=01,A=1.0 n-moving-averages=8

¥=0.5,4=10, nmaving-averages=8

.0
¥=09.4=10, nmoving averages=8

— an aa a0 e 00
— A 05 05 -0s ﬂ, -0s ”WW%
13 13 Fas s -
-a -2a 0 -0
T -5 —28 a5 -1
y=0.1 A= 1.0, n-moving-averages=24 = 0.5. 4= 1.0, n-movin =0.5, 4 = 1.0, n-moving y=0.1, A= 1,0, n-moving-averages=24 ¥=0.5, A= 1.0, nmoving-averages=24 y=0.9, 4 = 1.0, n-moving-averages =24
— - 2100 2x100 .
— e e ] R aen i
— Ciia= Mgl 10 E — b= Waol! 10 10 '
— — ielsa] - 1|
10t i ax10t ot
Axapt 10¢ axiot
¥=0.1, A= L0, n-maving-averages=16 ¥=05, A= L0, nmoving-averages=16 ¥=08, A = L0, nmoving averages=16 ¥=0.1, 4 =10, nmovng-averages=18 =05, A=10, n-moving-averages=15 0.9,4=10, nmoving-averages=16
e = os
= e s — e |
P73 [ UL S ———
-130 10 g1 30 -as
-155 -15% =135 =155 e
13
e o om am oo To <m o o am om om oo ab ope T oo i ooioo oo omon T b wom  soon  me oooon R T R
a8 wap
Boyan Chain Continuous - episadic Boyan Chain Continuous - episadic
; hidden-dis (32,), iearning-rate=0.01, mip-regularizer=0.0 batch-size =64, hidds (32,), leaming-rate=0.001, mip-regulafizer=0.0
=0 1.0, n-moving-averages=8 =1.0, n-moving-averages=8 y=09. n-moving-averages=§ y=0.1,A=10, n-maving-averages=5§ ¥=0.5, 4 = L0, n-moving-averages=3 =09, A =10, n-moving-averages=8
= o — S o 7w | oS
— & L {
— s B -1
oo anlytical = T -20 e
Y 4 - — =
-6 ] & S -10
% analytical
¥=0.1.4 = 1.0, n-moving-averages =24 ¥=0.5,A = L0, n-moving-aversges=24 ¥=08, 4 = 1.0, nemoving-averages=24 ¥=0.1 A= 10, n-moving-averages =24 =05, A= 1.0, -moving-averages=24 =0, A= L0, n-moving-averages =2
ST m: o] — #-2 i »
m, = = £ b ~ ¥ — e = w
— R SR | e X e 1wt § 100 ] — el Wal? !
186, = 4 EEe 1 a1y m 0 10
— el Wanl? ot 10
— |Foltbenl - 11 w 10 1 w0 10t
10
=01 A= 10, n-moving-averages =16 ¥=0.5, 4= L0, n-moving-averages=16 ¥=09, 4 = 1.0, n-moving-averages=16 ¥=0.1, A= 1.0, n-moving-averages =16 =05, A= 10, n-moving averages=16 =09, A= L0, n-moving-averages=16
— i f ke — w1
i » B
—_— P
"CAN S S . S s
Ly — o o
g 10
o A—
- - =
R S
D 30000 oo socon  m00o0  loooon 3 om0 wmo eowo  booe0  locamo G b  wooo  eeooa  sosoo  ibopeo 5 smoon wweo sao0  mowo  16doon § om0 woon woon  mseed 10000 T o0 om0 eowo  sooeo  ibapeo
o0 o
Boyan Chain Continuous - apisedic Boyan Chain Cantinuous - episodic
. hidd (32, leaming-rate=0 D001, mip-regularizer=0.0 batch-size=64, hidds 132.), learning-rates 1 ip 0
J= L0, nmoving-averages=g moving-averages=6 9,1= 1, nmoving-averages=8 =01, A= 1.0, n-moving sverages=5 ¥=0.5, A= L0, n-meving-averages=8 =09, A= 1.0, nmoving-averages=5
o e e | o 00 00
b A i \f\__ 05 -05 -5
20 H 2
¥ oo —& -0 10
£ —
= 0 z * 15 -1s
& ~ia E il =20 =20
o anaytical =0 =15 =15 . = = =25 -
y=01.A=10. nmaving.averages=24 _ p=05.4=10, nmoving averages=24 V=05, A=1.0, n-moving-averages=24 ¥=0.1 A= 1.0, n-moving-averages =24 =05, A= 1.0, -moving-averages=24 =0, A= L0, n-moving-averages=24
—E-A - 4k 2 2x100 il = T
e - = -
\ \ — ol 1] o ¥ = et
i - 10 W 1078 — Eolgn— Wal’ ex10 — i
w0 . s e i ——— axiot w
¥=0.1,A= 1.0, n-maving-averages=16 y=0.5,A= 1.0, n-maving-averages=16 y=0.9. A= 1.0, n-moving-aversges=16 y=0.1 A =10, n-moving-averages=16 y=0.5.4=10, n-moving-averages=16 ¥=0.9, A= L0, n-moving-averages=16
2
— v B} o . — v, o .
flns bL——‘Vh— 4 0.0
a -5
s 2 03
2 10
N o -10
-~ EH 15
0 oo womw  s0m0  mowoa  10m000 o aow 4bn  sojos  moson  ioooo 00w aoen  sotoa  weioa  iacono 5 zmoon weoa w00 mowo  1ogoon § 0w woon w00  msied 100900 T o0 om0 eowo  soee0  lowono
sep o

Figure 8.3: BoyanChain Continuous - episodic - NeuralGenDice
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Figure 8.12: Cartpole - NeuralGradientDice
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