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Abstract

With 32 million people working in the European manufacturing sector, human work still plays a crucial role in industry. However, due to lot size
one manufacturing and increased quality requirements, the complexity of products and processes is growing. Therefore, numerous approaches
introduce adaptive assistance systems in assembly to support workers during complex work tasks and adapt their level of assistance to the current
situation. To enable adaptivity, human action recognition must be incorporated into the consideration of context. Until now, research has focused on
providing context to the machine through wearable sensors or cameras. However, wearable sensors hinder worker’s movements and cameras have
difficulties distinguishing between work steps of high visual similarity. To mitigate these challenges, we present a new method to classify manual
work steps only by their typical acoustic characteristics. The proposed method uses log-Mel spectrograms of work sounds fed into a convolutional
neural network (CNN), thus learning their characteristic structure. Moreover, we present a new public dataset for the acoustic classification of
manual work steps. The dataset includes typical sources of sounds in manufacturing, such as working with a bench grinder, cordless screwdriver,
filing, or grabbing screws. Before feeding the data to the CNN, we apply various pre-processing and data augmentation techniques to increase
generalisation capabilities. Our method can detect work steps with reliable accuracy while requiring less parameters than other techniques, proving
that detecting work context through acoustics is possible and feasible.
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stantly rising. In order for workers to master this challenge, they

need to be supported accordingly. Recently, the emergence of fteraction Vlaptive Behavion
Industry 4.0 technologies and intelligent human-centered sys-
tems has presented a po[entia] solution to tackle the increas- Fig. 1: High level overview of our method, towards adaptive behaviour. We

ing complexity of work, improve productivity, and help workers created and labeled a new da}taset of typica.l manual manufactgring sgunds.. This
meet the required quality standards [14]. dataset was then used to train a new algorithm for the acoustic classification of
e .. . . assembly tasks.
Within this line of research, assistance systems aim to pro-
vide cognitive and physical support to workers. Examples of
assistance systems include augmented reality, virtual assistants,
or robotic assistants that provide workers with the tools and
information needed to perform their tasks efficiently [3]. Re-
cently, research has focused on enhancing these systems by the
ability to detect context in the work environment [7]. In man-

ufacturing, context-awareness refers to the recognition of the
work tasks currently performed, the work progress, and pos-
sible errors. By detecting this information, feedback from the
system can be adapted to users and their current needs. Ulti-
mately, the goal of such systems, also referred to as adaptive
assistance systems, is to provide assistance at the right time,
and hence improve user acceptance and usability [21].
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In previous research, various sensors for enabling adaptivity
in assistance systems have been proposed. Popular approaches
include wearables such as inertial measurement units (IMUs),
or cameras. While IMUs are widely used, a major limitation
of this method is that they affect workers’ mobility and work
comfort. In addition, IMUs are prone to drift due to thermo-
mechanical and flicker noise, temperature effects, or calibration
errors [18]. Although cameras have been proven to provide ac-
curate detection, recognition of tasks with visual similarity re-
mains challenging. Moreover, only a small part of video record-
ings contain relevant temporal information, making most of the
data redundant [8].

To mitigate these issues, we propose a novel approach for
classifying assembly tasks based on their acoustic characteris-
tics. As shown in Figure 1, our method is based on raw au-
dio recordings of the work process, which are transformed into
spectrogram images, and fed to a convolutional neural network
(CNN) to perform the classification. In order to train the net-
work, a new dataset containing sound samples of seven rele-
vant manufacturing activities was created and open-sourced for
future research. Within this work, we demonstrate that acous-
tic detection of assembly tasks can be performed with reliable
accuracy, highlighting the potential of leveraging acoustics for
context-awareness in manufacturing.

Our method aims to address current limitations of wearables
and camera-based techniques and can be used to enhance these
approaches by incorporating acoustics into multi-modal recog-
nition of manual work by leveraging sensor fusion techniques.
The contribution of our work is twofold. First, we introduce
the first public dataset! for sound-based classification of work
tasks. This dataset aims to address the lack of available open-
source data in the manufacturing domain and enable future re-
search on the use of acoustics recognition in assembly. Second,
we present a new method for acoustic classification of man-
ual work tasks, which serves as a baseline for future research
and demonstrates the feasibility of our approach. Moreover, by
open-sourcing our method?, we aim to contribute to a faster
transfer of our findings into related research, thus benefiting the
community and advancing research on adaptive assistance sys-
tems in assembly.

2. Background and Related Work

In manufacturing and assembly, the trend of product cus-
tomisation is increasing the complexity of labour. Under these
conditions, the workforce will face increased cognitive de-
mands to ensure high productivity and error-free produc-
tion [26]. To mitigate negative effects on workers, such as in-
creased mental or physical strain, adaptive assistance systems
have been introduced as a potential solution [7]. Adaptive assis-
tance systems refer to the implementation of context-awareness
to detect the current stage of work and support workers depend-
ing on their current needs [15]. Examples of adapting assistance

! https://doi.org/10.48436/hv20e-zzb35
2 https://github.com/finklorenz/MakeSomeNoise

depending on the work context involve alerting workers upon
missing work steps or preparing and handing tools required for
the next step. Other applications involve adapting the content
of work information displayed on an interface, or error han-
dling [11].

To enable adaptivity, the system has to acquire data related
to the user and the work progress. This can be achieved by hu-
man action recognition (HAR), which focuses on the recogni-
tion of the performed tasks [4]. Recently, HAR has been used in
adaptive assistance systems to trigger action-specific assembly
instructions [22] or improve human-robot collaboration during
assembly tasks [28].

In previous works, different approaches for recognising as-
sembly tasks have been proposed. One way to derive this infor-
mation is through wearable sensors, such as inertial measure-
ment units (IMUs), which are placed on the hands of the worker.
The method presented in [1] utilises one sensor on each hand
and convolutional neural networks (CNN) to process the data.
In [25], IMUs were combined with electromyography to infer
muscular activity of the forehand. However, the invasive nature
of body-worn sensors reduces work comfort. Another way to
perform HAR is via visual recognition with a camera. Popular
methods include extracting the pose of the worker, which can be
further processed with hidden Markov models [2] or LSTM net-
works [20], or applying CNN to detect the task from the video
stream [23]. However, recognition by visual means is prone to
occlusions, visual similarity of tasks, and temporal redundancy
of the data.

Recently, the combination of audio-visual features has be-
come increasingly popular in video processing. Leveraging
acoustics for action recognition was first presented in [8]. By
processing image-audio pairs, the work displayed similar lev-
els of accuracy as complex visual models, while reducing the
computational cost and improving the processing speed. Other
works that utilise acoustics for action recognition followed,
with applications in crowd activities [27] or recognition of ac-
tivities performed at home [12]. Due to the discreet nature of
data acquisition and the acoustic characteristics of manufactur-
ing and assembly tasks, leveraging acoustics for action recog-
nition holds promising potential. Despite this, to the best of our
knowledge, no work has attempted to close this gap by incor-
porating sounds into the recognition of assembly tasks.

3. Method

In this section, we introduce “Make some Noise”, a novel
method for detecting assembly operations by their acoustic
characteristics. This approach can be used as an alternative to
current action recognition techniques in assembly, mitigating
the challenges imposed by the use of wearable sensors or cam-
eras. The overview of our approach is shown in Figure 2. In
Section 3.1, we introduce the dataset including technical spec-
ifications and further describe the processing performed on the
data (Section 3.2) and present the architecture of our network
(Section 3.3).



Lorenz Fink et al. / Procedia CIRP 127 (2024) 135-140 137

Input CNN

Log-Mel Spectrograms:

Beneh Grinder

Pre-Processing:
cut
remove
Raw Audio split

MWW normalize

resample

mix down

right pad

Data Augmentation:

Conv-X Block

Conv-X Layer

ReLU

Conv-X Layer

ReLU

Max Pooling

Original

Conv-64 Block

Conv-128 Block

Classification

Conv-256 Block

Conv-512 Block

Max Pooling

Fully Connected

v
Classification

Fig. 2: Overview of the pre-processing, augmentations, and the proposed architecture.

3.1. Dataset

The lack of accessible datasets serves as a great challenge
for research on adaptivity in assembly assistance. Currently, a
dataset that contains sounds specific to the manufacturing and
assembly domain is not available. Therefore, we developed a
new dataset for action classification via acoustics and made it
publicly available [6].

The dataset contains a selection of typical production activi-
ties, which can be classified based on their typical sounds. The
different classes and their distribution are depicted in Figure 3.
In total, almost 7 hours of data was recorded and, after pre-
processing, the recorded dataset consists of 6,117 audio clips,
each 4 seconds long.

Bench Grinder

Drill Press
Background Sounds
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Fig. 3: Distribution of the different labels. Dashed line represents the mean
sample size per class.

The dataset was constructed in a laboratory facility under
realistic settings, including background noise from machinery.
The samples were recorded using the built-in microphones of
an iPhone and of a notebook with different apps. The position
of the microphone was varied, and executions of noise pro-
duction (e.g., pace, intensity, movement pattern) were regularly
changed to increase data variance. The variance is further in-
creased by samples with a varying number of audio channels,
sampling rate, and bit depth.

In order to include “unknown” sounds not represented in
our dataset, such as human conversations, sneezing, or ambi-
ent noise, we have introduced an additional class, the back-
ground class, for training purposes. The background class was
sampled from ESC-50: Dataset for Environmental Sound Clas-
sification [17], which contains various different environmental
sounds. This was done to avoid possible misclassifications and
increase the robustness of the classification. In practice, this
class aims to label all outputs which are unknown to the model
as “unknown background noise”.

3.2. Data Transformation and and Augmentation

The audio recordings were divided into samples of uniform
length. Those Samples that were too short to extract relevant in-
formation from were removed, while samples that were slightly
too short but still contained the bulk of the information were
right-padded. The samples were also normalised between [-1.0,
1.0], resampled to 44.1 kHz, and mixed down to mono audio.
For training purposses, a 80/20 training to validation split was
applied.

After preprocessing, the raw audio signals were transformed
to Mel spectrograms. Then, the spectrograms were transformed
from the power-amplitude scale to the decibel scale (log-
Mel spectrogram). The number of Fast Fourier Transformation
(FFT) bins was set to 1,024, which is the same as the window
length. We use a hop length of 512 and the number of Mel filters
was set to 64. The resulting size of the spectrogram is [64,345],
examples are shown in Figure 2.

To increase robustness during training, several data augmen-
tation techniques were implemented and applied with a prob-
ability of 70%. Raw audio files are randomly cropped to 90%
at their beginning and end. Furthermore, Gaussian noise was
added with a random signal-to-noise ratio (SNR) between 0.001
and 0.05. The short-time Fourier transform (STFT) of the spec-
trogram was stretched in time without modifying the pitch for
a rate between 0.8 and 1.2. Lastly, we use masking both in the
frequency domain and in the time domain at a random position
with a maximum of 20% of the length.
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3.3. Model

The proposed CNN model, shown in Figure 1, was originally
inspired by the VGG architecture [24], with modifications for
improved detection on spectrograms. The network consists of
four convolutional blocks and a classification head, each block
further consisting of two convolutional layers with a ReLU as
an activation function. Furthermore, we utilise batch normali-
sation and a dropout layer in each block for improved stability
and regularisation. Overall, the model contains almost 4.7 mil-
lion trainable parameters.

To normalise the acoustic frequencies of action, we intro-
duced a batch-wise frequency normalisation layer as the first
block of our network. This is achieved by two transposing func-
tion, with a batch normalisation layer in between. As differ-
ent materials in manufacturing might produce different frequen-
cies of manual operations, such as filing or drilling, we aim to
normalise the data by centering the mean and standard devia-
tion per frequency bin over the whole mini-batch. In the end,
this aims to better normalise the acoustic characteristics of the
dataset.

To train the network, we use cross entropy loss, and AdamW
as the optimiser. Further details on the hyperparameters can be
found in our GitHub repository?.

4. Results

To demonstrate the value of our approach, we performed an
evaluation in three different scenarios. First, in 4.1, we present
the results computed on the dataset introduced in Section 3.1. In
order to compare our method to strong baselines, we performed
an evaluation on the UrbanSound8k dataset (4.2). Lastly, we
provide experimental results from a realistic simulation of a
manufacturing workflow, where classes are sequentially or-
dered (4.3).

4.1. Results on the Presented Dataset

To evaluate the presented architecture, the classifier was
trained on the dataset as described in Section 3, including a
background class sampled from ESC-50 [17], until a conver-
gence was reached. We have achieved an overall validation ac-
curacy of 97.76%, and the resulting validation metrics were
computed per class and are depicted in Table 1.

The metrics presented demonstrate the feasibility of our ap-
proach, given the low computational cost of our architecture.
From Table 1, accurate and well-distributed recognition met-
rics can be observed for each class. Considering the similarities
in the movement patterns among the represented classes, such
as sanding and filing, this demonstrates that the use of sounds
can aid in the recognition of assembly tasks.

3 https://github.com/finklorenz/MakeSomeNoise

Table 1: Multiclass metrics per label.

Classes Precision Recall F1

Bench grinder 0.9856 1 0.9928
Cordless screwdriver 0.9824 0.9882 0.9853
Drill press 0.9877 0.9938 0.9908
Filing 0.9785 0.9838 0.9811
Grab screws 0.9952 0.9952 0.9952
Hammer 0.9891 0.9628 0.9757
Sanding 0.9892 0.9892 0.9892

4.2. Ablation Experiments: UrbanSound8k Dataset

To compare our method to existing models, we performed
additional experiments on the UrbanSound8k dataset [19],
which is considered as one of the most challenging datasets for
sound classification tasks. To create log-Mel spectrograms, we
use the same settings as described in Section 3.2, with the ex-
ception of resampling to 22.05 kHz, as proposed in [9], and set-
ting the number of Mel filters to 128. Moreover, similar to [9],
we introduced label-smoothing as an additional regularisation,
and one-cycle learning rate scheduler for faster convergence.
We use a batch size of 128 and set the learning rate of 0.001.
We did not further optimise or change the architecture proposed
in Section 3.3. We trained the model from scratch using the of-
ficial 10-fold cross-validation split.

We present the results in comparison to other relevant base-
lines in Table 2. As discussed in [10], we do not include works
that use pre-training or validation methods other than the offi-
cial cross-validation split in order to ensure transferability and
reproducibility.

Table 2: Comparison of state-of-the-art methods on UrbanSound8K dataset.

Method Feature Acc (%) Param
Baseline [19] MFCC 68 SVM
Piczak-CNN [16] Log-Mel 73.7 26 M
Pyramid-Combined CNN [5] Spectrogram 78.14 20M
ESResNet (mono) [10] STFT 79.91 23.53 M
AemNet WM1.0 [13] Log-Mel 81.5 5M
EAT-S [9] Raw data 85.5 53M
Our Method Log-Mel 77.98 4.69 M

We demonstrate that our method achieves a high accuracy on
the UrbanSound8k dataset, while requiring less parameters than
other models. In practice, this results in a lower computational
demand during training, as well as lower memory requirements
during the deployment.

4.3. Tests on Continuous Workflow

So far, we have presented an evaluation on datasets that are
sampled from a well-distributed sample set. However, we be-
lieve that such metrics are not directly transferable to real-life
assembly, due to the disturbances inherent in the work process
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and the environment. Such disturbances may include overlap-
ping actions, or samples that do not contain any actions at all,
both possibly degrading the results achievable during deploy-
ment.

In order to evaluate our approach during a continuous and
realistic workflow, and not only on individual data samples,
complete sequential workflows were recorded and processed
with the network. In the process, the seven classifiable assembly
tasks were performed directly one after the other. To process the
audio stream, we implemented a sliding-window approach with
a window size of 4 seconds. We set the window to move for-
ward by 0.5 seconds after each sample, thus overlapping with
the previous windows by 3.5 seconds. During the testing, we
deliberately included difficult cases, such as activities executed
for a shorter time than the size of the sliding window or merging
of two activities to deceive the network and create ambiguous
inputs.

In total, 11 tests were carried out, each between 1-1.5 min-
utes long. Of the 11 tests, 62 of the 77 recorded assembly activ-
ities were recognised correctly (80.5%). An analysis has shown
that, on average, our method requires approximately 1.5-2 sec-
onds to recognise the sound of the assembly step. We note that
this delay is inherent to the sliding window approach, as the
window must contain an appropriate number of data items re-
lated to the action in order to classify the action correctly.

5. Discussion
5.1. Potential of Acoustics in Classification of Assembly Steps

Despite the success of leveraging acoustics in the area of
data science, especially for human action recognition, no previ-
ous works were able to evaluate the potential of acoustic clas-
sification of assembly tasks given the lack of available data.
Hence, our work presents the first experimental foundation and
aims to motivate and guide future research in this area. The re-
sults highlight the ability to detect manual work steps by accu-
rately classifying their characteristic sounds.

Because of the materials used in manufacturing and the
sounds they produce, as well as the repetitive pattern of certain
work tasks (e.g., filing, hammering), we hypothesise that many
assembly tasks and their respective sounds have clear decision
boundaries. By utilising acoustics, we show that less complex
models, such as the one presented in our work, are sufficient to
exploit these clear boundaries.

5.2. Implications on the Design of Adaptive Assistance

CNNs in combination with spectrogram images are the most
widely used methodology to classify sounds, mainly because
they are computationally cheap to implement. Compared to
other works, especially in the area of camera-based HAR, we
demonstrate that sophisticated models may not be necessary
to recognise assembly tasks. Thus, models that utilise acous-
tics could provide a similar recognition accuracy with lower
computational demand. This makes deployment directly at the

edge possible, without the need for powerful computational
resources. Therefore, this approach could be highly suitable
for context-awareness in assembly and thus adaptive assistance
systems.

We also demonstrate that acoustic classification is a viable
alternative to wearable sensors, which reduce work comfort.
Moreover, wearables suffer from calibration issues or sensor
noise. In practice, we believe that a multi-modal approach,
that is, combining acoustics with wearables or cameras, holds
promising potential for the design of assistance systems in as-
sembly.

5.3. Limitations and Future Work

Due to the interactive nature of assembly assistance systems,
recognition of assembly steps should be performed with a low
level of latency. Only in this scenario, assistance can be adapted
according to the context of the environment. As a result of the
windowing-method chosen for live classification, there is a time
delay of 1.5-2 seconds before the system catches up with the
classification. This could be a constraint for real-time applica-
tions. At the same time, we note that a high-level comparison
in terms of reactiveness cannot be performed due to the current
lack of metrics provided by other works. Therefore, we would
like to encourage future works to include such metrics, to en-
able practical evaluation and support real-life deployment.

When compared to other established datasets, such as Ur-
banSound8k, our model displays a lower precision than the re-
sults obtained on our presented dataset. This is primarily due to
the fact that our dataset was sampled in one single environment,
resulting in a higher degree of similarity. On the contrary, the
sounds within established datasets exhibit great variance. More-
over, the range of the activities represented in our dataset is lim-
ited. While aiming to present a proof-of-concept for acoustics
classification, we suggest and encourage future research to in-
vestigate the impact of a larger number of classes and a greater
variety of recordings on classification performance. Moreover,
subsequent research efforts should focus on refining more com-
plex networks to reduce classification time.

Furthermore, we note that acoustic classification may not be
suitable for all actions and environments. Certain assembly ac-
tions may not be distinguished by sounds alone, and sometimes
the sounds of activities may be too quiet or impacted by am-
bient noise to be distinguished. We believe that a combination
with other modalities, such as cameras or wearables holds the
potential to address this issue.

6. Conclusion

In this work, we propose a novel approach for the classifi-
cation of assembly tasks by leveraging acoustics. Our method
aims to resolve the challenges current techniques for the clas-
sification of manual work tasks face and open up new areas of
research on the use of acoustics in action recognition in manu-
facturing. To address the lack of open data, we introduced the
first public dataset containing sounds of relevant manual work
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tasks and demonstrated that they can be detected with a high
accuracy. In the future, we aim to explore this area of research
further, providing additional baselines and deploying the con-
cept in novel applications.
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