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Abstract: This study investigates human-centered task allocation, focusing on factors such as
cognitive load, physical demand, and ergonomics. A discrete event simulator was developed to
validate the task allocation results of the Q-learning optimization. The simulation evaluates
the process and resulting task allocation plan based on predefined human-centered objectives.
Through a case study on remanufacturing, we demonstrate how to optimize the coordination
of a robotic arm and two human operators to reduce overall workforce requirements. The
simulation allows for the analysis of operators’ cognitive and physical workloads over time,
enabling exploration of not only typical time balances but also cognitive and physical burdens.
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1. INTRODUCTION

In industrial settings, task allocation methodologies typi-
cally prioritize optimizing time and performance metrics.
However, this narrow focus often overlooks crucial human-
centered considerations that are essential for creating ef-
ficient and sustainable work environments. The current
paradigm fails to consider the varied cognitive, physical,
and ergonomic demands placed on human operators, lead-
ing to suboptimal task distributions that could compro-
mise both productivity and worker well-being (Petzoldt
et al., 2023). Therefore, there is an urgent need for an
advanced approach that prioritizes human-centric factors,
in task allocation strategies. As the number of agents in
a system exceeds the dyadic setup, considerations for hu-
man well-being become more complex and urgent. Height-
ened agent count amplifies system complexity, leading to
increased uncertainties. Addressing these complexities is
crucial for effectively integrating multiple agents while pri-
oritizing human welfare alongside technological advance-
ments.

In a manufacturing environment, workers can perceive psy-
chological stress (Lazarus, 2020) because of the physical
environment (Vischer, 2007), the work setting known as
the work context (WHO, 2020), and the work content,
which is the demand of their assigned tasks (Hacker, 1993).
Stress manifests itself as a state of worry and mental or
physical tension when workers are faced with physical
or psychological demands that exceed their capabilities
(WHO, 2020). Although several studies focused only on
physical (Kuijer et al., 1999) or mental workload (Rus-
nock and Borghetti, 2018), in the general case industrial
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workers have to perform a complex combination of these
two (Permatasari and Anis, 2021).

Several studies have addressed task allocation, especially
in dyadic systems, focusing on key performance metrics
such as waiting time, production time, mean flow time,
and cost in human-robot collaboration (HRC) (Petzoldt
et al., 2023; Kousi et al., 2022; Schmidbauer et al., 2023).
Recently, there has been growing interest in task alloca-
tion within multi-human robot teams, prompting several
research endeavors in this domain(Skaltsis et al., 2021).
Despite these advances, research on task scheduling in
multi-human robotic systems is still lacking, especially
with regard to prioritizing human welfare. Addressing this
gap is critical to optimizing human-centered task alloca-
tion in such systems, and calls for further research and
development in this area.

(Granata et al., 2024) emphasizes the importance of con-
sidering human elements in Industry 5.0 manufacturing,
prioritizing operator well-being through cobot integration.
It proposes a dynamic multi-objective task allocation sys-
tem, evaluating human welfare via physiological and per-
formance data to prevent excessive workloads and fatigue
in real-time, balancing productivity and operator well-
being. (Cunha et al., 2021) proposes achieving balanced
harmony among safety, ergonomics, and effectiveness in
collaborative frameworks. They demonstrate task distri-
bution between humans and robots to improve working
conditions and resource cooperation. In multi-objective
task assignment optimization, cognitive workload of the
workforce is prioritized alongside traditional objectives
(Calzavara et al., 2023).

This study aims to explore the complexities of human-
centered task assignment in industrial contexts. Recogniz-
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centered task assignment in industrial contexts. Recogniz-
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1. INTRODUCTION

In industrial settings, task allocation methodologies typi-
cally prioritize optimizing time and performance metrics.
However, this narrow focus often overlooks crucial human-
centered considerations that are essential for creating ef-
ficient and sustainable work environments. The current
paradigm fails to consider the varied cognitive, physical,
and ergonomic demands placed on human operators, lead-
ing to suboptimal task distributions that could compro-
mise both productivity and worker well-being (Petzoldt
et al., 2023). Therefore, there is an urgent need for an
advanced approach that prioritizes human-centric factors,
in task allocation strategies. As the number of agents in
a system exceeds the dyadic setup, considerations for hu-
man well-being become more complex and urgent. Height-
ened agent count amplifies system complexity, leading to
increased uncertainties. Addressing these complexities is
crucial for effectively integrating multiple agents while pri-
oritizing human welfare alongside technological advance-
ments.

In a manufacturing environment, workers can perceive psy-
chological stress (Lazarus, 2020) because of the physical
environment (Vischer, 2007), the work setting known as
the work context (WHO, 2020), and the work content,
which is the demand of their assigned tasks (Hacker, 1993).
Stress manifests itself as a state of worry and mental or
physical tension when workers are faced with physical
or psychological demands that exceed their capabilities
(WHO, 2020). Although several studies focused only on
physical (Kuijer et al., 1999) or mental workload (Rus-
nock and Borghetti, 2018), in the general case industrial
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workers have to perform a complex combination of these
two (Permatasari and Anis, 2021).

Several studies have addressed task allocation, especially
in dyadic systems, focusing on key performance metrics
such as waiting time, production time, mean flow time,
and cost in human-robot collaboration (HRC) (Petzoldt
et al., 2023; Kousi et al., 2022; Schmidbauer et al., 2023).
Recently, there has been growing interest in task alloca-
tion within multi-human robot teams, prompting several
research endeavors in this domain(Skaltsis et al., 2021).
Despite these advances, research on task scheduling in
multi-human robotic systems is still lacking, especially
with regard to prioritizing human welfare. Addressing this
gap is critical to optimizing human-centered task alloca-
tion in such systems, and calls for further research and
development in this area.

(Granata et al., 2024) emphasizes the importance of con-
sidering human elements in Industry 5.0 manufacturing,
prioritizing operator well-being through cobot integration.
It proposes a dynamic multi-objective task allocation sys-
tem, evaluating human welfare via physiological and per-
formance data to prevent excessive workloads and fatigue
in real-time, balancing productivity and operator well-
being. (Cunha et al., 2021) proposes achieving balanced
harmony among safety, ergonomics, and effectiveness in
collaborative frameworks. They demonstrate task distri-
bution between humans and robots to improve working
conditions and resource cooperation. In multi-objective
task assignment optimization, cognitive workload of the
workforce is prioritized alongside traditional objectives
(Calzavara et al., 2023).

This study aims to explore the complexities of human-
centered task assignment in industrial contexts. Recogniz-
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ing the limitations of conventional approaches that over-
look crucial human factors, our research aims to bridge
this gap by proposing a novel framework that empha-
sizes the holistic well-being of human operators. At the
core of our approach is the discrete event simulator de-
veloped to validate the Q-learning (Jang et al., 2019)
optimization-based human-centered task assignment. The
defined human-centered factors allow us to allocate tasks
based not only on traditional metrics, but also on human-
centered objectives such as cognitive load, physical de-
mand, and ergonomic considerations.

To demonstrate the practical applicability of our frame-
work, we present a compelling case study in the field
of remanufacturing. Through a simulation-based analysis,
we show how the coordination of machines and human
operators can be optimized to reduce overall workforce
workloads while also reducing cognitive and physical bur-
dens. By integrating human-centric considerations with
operational efficiency, our case study exemplifies the trans-
formative potential of our proposed approach in real-world
industrial settings.

2. HUMAN FACTORS IN TASK ALLOCATION

Consideration of various human factors, including er-
gonomic level, mental workload, skills, and abilities, is
crucial in designing a work cell (Colim et al., 2020), with an
assessment of their impact, alongside collaborative robots,
on system productivity. Extending the influence of human
factors engineering throughout the system design and task
assignment phases is critical (Cheng et al., 2019). By
integrating productivity, flexibility, and human factors,
an optimal task allocation strategy can be formulated to
simultaneously achieve improved productivity and create
a human-centered workplace that minimizes both operator
energy expenditure and mental workload (Calzavara et al.,
2023). An approach is presented to improve the perfor-
mance of manufacturing systems by quantifying occupa-
tional health impacts and incorporating other operational
aspects into optimization processes (Sobhani et al., 2015).
The importance of human factors in manufacturing, par-
ticularly fatigue, is explored to investigate an agent mod-
eling architecture (Fruggiero et al., 2016). While numerous
studies have addressed individual human factors or envi-
ronmental issues, there remains a need for an integrated
approach to comprehensively analyze both social benefits
and financial gains (Cheng et al., 2019).

The physical task load is characterized by three compo-
nents: posture, force and time (Berlin and Adams, 2017).
This type of load can be measured by separate measures
such as the REEDCO Posture Score Sheet (Manske and
Magee, 2020) for posture, force in Newtons and time in
seconds, or by collective measures such as cardiovascular
load (Dias et al., 2023). Mental task load is analyzed as
visual, auditory, cognitive and psychomotor according to
the four components of the VACP model (Aldrich et al.,
1989). This type of load can be measured by subjective
methods such as self-reported questionnaires, i.e. the Borg
Workload Scale and the National Aeronautics and Space
Administration Task Load Index (NASA-TLX) (Web-
ster and Weller, 2018). The Cognitive Load Assessment
for Manufacturing (CLAM) is an analytical method and

tool designed to assess cognitive load in manufacturing
processes, particularly assembly tasks (Thorvald et al.,
2017). The primary goal of CLAM is to reduce the cog-
nitive load of assembly workers on the shop floor, with a
strong emphasis on practical applicability and usability.
The method emphasizes simplicity, ensuring that it can
be easily implemented by practitioners without requiring
expert knowledge. In addition, CLAM includes supporting
documentation, such as a handbook, to guide users in
applying the method and interpreting the results. Effi-
cient task allocation in multi-human, multi-robot inter-
action systems requires consideration of operator-specific
workload thresholds and cognitive constraints to optimize
system performance (Malvankar-Mehta and Mehta, 2015).

Considering human factors in simulations is vital, given
that human operators are regarded as adaptable elements
in manufacturing enterprises. These simulations offer valu-
able insights into system design, assessment, and improve-
ments, accounting for factors such as skills, fatigue, health,
and environmental conditions (Zhang et al., 2008). We
have incorporated three key human factors - physical de-
mand, ergonomics, and cognitive load - to evaluate task
assignment. Each factor is rated on a three-point scale:
low, medium, and high. Ergonomics (ER) is categorized
into standard risk levels - safe, risk, and danger zones
labeled 1, 2, and 3, respectively. Cognitive Load (CL)
is assessed using the low, moderate, and high intervals
of the CLAM method, with very low cognitive load rat-
ings deemed inappropriate for the assembly line processes
under study. In addition, physical demand is categorized
into low, moderate, and high levels based on task ratings
such as the weight of semi-finished products, tools, or the
assembly activity itself.

3. THE DEVELOPED HUMAN-CENTERED TASK
ALLOCATION

In our study, we developed a cost function based on three
essential human factors - cognitive load, ergonomics, and
physical demand - in addition to productivity metrics.
Using a Q-learning algorithm, we optimized task allocation
within an assembly production process to minimize the
impact of human factors while maximizing efficiency. Q-
learning algorithms are off-policy reinforcement learning
techniques aimed at determining the most advantageous
action based on the current state (Jang et al., 2019). To
validate and evaluate the effectiveness of our approach,
we built a discrete event simulation model. This model al-
lowed us to assess the impact of human factors on produc-
tivity and provided valuable insights into the effectiveness
of our task allocation strategy.

3.1 The Q-learning optimisation model

To tackle the challenges of task assignment among agents
while reducing time and human-related risks, it’s crucial to
employ an optimization algorithm. To address this need,
we crafted a mathematical model of the objectives, con-
sidering all task attributes, and formulated a cost function
to optimize the process. This method’s cost function com-
bines normalized time and human factor risks, considering
cognitive, physical loads, and ergonomics. It seeks task

2

allocation strategies to reduce time and mitigate human-
related risks simultaneously.

Considering the intricate nature of our multi-objective ar-
chitecture, where we aim to find optimal solutions without
labeled data, we have found Q-learning to be the most
suitable optimization model. In comparison to classical op-
timization algorithms like genetic algorithms, we opted for
Q-learning due to its independence from knowledge about
the underlying dynamics of the environment. This feature
makes it well-suited for problems where the dynamics are
complex, unknown, or difficult to model, which is common
in many real-world scenarios (Kegyes et al., 2021). The Q-
learning algorithm serves as the task allocator, leveraging
the characteristics of each task (states) to determine the
most appropriate agent for each step (action), thereby
minimizing both overall time and human risks. Within
this framework, we defined the reward function mirroring
the cost function. In essence, when a task is assigned to
a robot, only time is factored into the reward; however,
if a human agent is assigned the task, both time and
human risks are considered. To enhance the realism of
the optimization process, we introduced variability in the
time required for human tasks by sampling from a nor-
mal distribution. This approach accounts for the natural
variance in human performance, where some individuals
may take longer while others complete tasks more quickly.
Moreover, to ensure fairness in task distribution, the algo-
rithm endeavors to allocate tasks among two human agents
in a manner that balances their overall involvement time,
striving for equality or approximate parity between them.

The Q-value function is updated using the following for-
mula. Here, the states correspond to the task steps, and
the actions represent the assignment of agents to tasks.

Q(s, a) ← Q(s, a)+α (R(s, a) + γmaxa′ Q(s′, a′)−Q(s, a))

Where s′ represents the resulting state after taking action
a, a′ is the next action chosen in state s′, Q(s, a) denotes
the current estimate of the Q-value for state s and action
a, α stands for the learning rate, R(s, a) signifies the
immediate reward received after taking action a in state
s, and γ represents the discount factor.

To implement the optimization algorithm for this case
study, the objectives corresponding to the reward function,
such as time and human factors, were normalized to
values between 0 and 1. The optimisation’s objective
is to reduce the reward over time, thereby discovering
the optimal policy. To achieve this, Q-learning iterates
through assignments, initially randomly allocating tasks
but learning iteratively from previous experiences. At
each iteration, expected rewards are calculated based on
predefined factors, with the ultimate aim of minimizing
rewards while minimizing execution time and human risks.
This iterative process enables the system to adapt and
improve its allocation strategies over time.

3.2 The developed simulation model

In this study, we employed Siemens Tecnomatix Plant
Simulation software to integrate process simulation and
human factors modeling seamlessly. This software enables
simultaneous simulation of manufacturing processes and
human interactions, facilitating thorough analysis and op-

timization. To streamline the simulation, we modeled indi-
vidual sub-activities within workstations, with each work-
station containing multiple tasks scheduled during task
allocation. Additionally, tasks were subdivided into station
elements within each workstation to enhance efficient task
allocation, ensuring effective implementation of strategies.

Two types of agents were modeled in the simulation:
robots and humans. Each agent’s behavior and char-
acteristics were meticulously defined to accurately de-
pict their roles in the manufacturing process. For human
agents, three key human-centered conditions—cognitive
load, physical load, and ergonomics—were crucial for eval-
uating and enhancing human performance in the simulated
environment. Tasks were assigned predefined cognitive,
physical, and ergonomic demands for the workers involved,
and these demands were documented. This method en-
abled us to evaluate and optimize the effects of task as-
signments on human operators.

Furthermore, we introduced collaborative workstations
where both human and robot agents were required to
work together. Through process simulation, we analyze
human-centric metrics and process efficiency, considering
the stochastic nature of human activities with probabilistic
representations of task completion times. This approach
offers insights into the interplay between human factors
and process performance, enhancing understanding of how
uncertainty in human behavior impacts productivity and
task allocation in complex manufacturing environments.

4. CASE STUDY AND RESULTS

The case study examines the optimization of a remanu-
facturing process by replacing an underutilized industrial
robot arm with a collaborative robot (cobot) to increase
productivity while improving human factors. Driven by
the underutilization of a robotic arm in the maintenance
testers and challenges related to human labor costs, the in-
troduction of cobot technology creates shared workspaces
on the assembly line. This strategic integration exploits
the availability of cobots at two manual manufacturing
workstations, especially during long test process times.
A process simulation based on discrete event simulation
was developed to comprehensively analyze the remanu-
facturing process, evaluating not only process times and
efficiencies, but also human factors such as ergonomics and
cognitive load. The detailed process is shown in Figure 1.

Fig. 1. The process flow of the re-manufacturing work steps
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allocation strategies to reduce time and mitigate human-
related risks simultaneously.

Considering the intricate nature of our multi-objective ar-
chitecture, where we aim to find optimal solutions without
labeled data, we have found Q-learning to be the most
suitable optimization model. In comparison to classical op-
timization algorithms like genetic algorithms, we opted for
Q-learning due to its independence from knowledge about
the underlying dynamics of the environment. This feature
makes it well-suited for problems where the dynamics are
complex, unknown, or difficult to model, which is common
in many real-world scenarios (Kegyes et al., 2021). The Q-
learning algorithm serves as the task allocator, leveraging
the characteristics of each task (states) to determine the
most appropriate agent for each step (action), thereby
minimizing both overall time and human risks. Within
this framework, we defined the reward function mirroring
the cost function. In essence, when a task is assigned to
a robot, only time is factored into the reward; however,
if a human agent is assigned the task, both time and
human risks are considered. To enhance the realism of
the optimization process, we introduced variability in the
time required for human tasks by sampling from a nor-
mal distribution. This approach accounts for the natural
variance in human performance, where some individuals
may take longer while others complete tasks more quickly.
Moreover, to ensure fairness in task distribution, the algo-
rithm endeavors to allocate tasks among two human agents
in a manner that balances their overall involvement time,
striving for equality or approximate parity between them.

The Q-value function is updated using the following for-
mula. Here, the states correspond to the task steps, and
the actions represent the assignment of agents to tasks.

Q(s, a) ← Q(s, a)+α (R(s, a) + γmaxa′ Q(s′, a′)−Q(s, a))

Where s′ represents the resulting state after taking action
a, a′ is the next action chosen in state s′, Q(s, a) denotes
the current estimate of the Q-value for state s and action
a, α stands for the learning rate, R(s, a) signifies the
immediate reward received after taking action a in state
s, and γ represents the discount factor.

To implement the optimization algorithm for this case
study, the objectives corresponding to the reward function,
such as time and human factors, were normalized to
values between 0 and 1. The optimisation’s objective
is to reduce the reward over time, thereby discovering
the optimal policy. To achieve this, Q-learning iterates
through assignments, initially randomly allocating tasks
but learning iteratively from previous experiences. At
each iteration, expected rewards are calculated based on
predefined factors, with the ultimate aim of minimizing
rewards while minimizing execution time and human risks.
This iterative process enables the system to adapt and
improve its allocation strategies over time.

3.2 The developed simulation model

In this study, we employed Siemens Tecnomatix Plant
Simulation software to integrate process simulation and
human factors modeling seamlessly. This software enables
simultaneous simulation of manufacturing processes and
human interactions, facilitating thorough analysis and op-

timization. To streamline the simulation, we modeled indi-
vidual sub-activities within workstations, with each work-
station containing multiple tasks scheduled during task
allocation. Additionally, tasks were subdivided into station
elements within each workstation to enhance efficient task
allocation, ensuring effective implementation of strategies.

Two types of agents were modeled in the simulation:
robots and humans. Each agent’s behavior and char-
acteristics were meticulously defined to accurately de-
pict their roles in the manufacturing process. For human
agents, three key human-centered conditions—cognitive
load, physical load, and ergonomics—were crucial for eval-
uating and enhancing human performance in the simulated
environment. Tasks were assigned predefined cognitive,
physical, and ergonomic demands for the workers involved,
and these demands were documented. This method en-
abled us to evaluate and optimize the effects of task as-
signments on human operators.

Furthermore, we introduced collaborative workstations
where both human and robot agents were required to
work together. Through process simulation, we analyze
human-centric metrics and process efficiency, considering
the stochastic nature of human activities with probabilistic
representations of task completion times. This approach
offers insights into the interplay between human factors
and process performance, enhancing understanding of how
uncertainty in human behavior impacts productivity and
task allocation in complex manufacturing environments.

4. CASE STUDY AND RESULTS

The case study examines the optimization of a remanu-
facturing process by replacing an underutilized industrial
robot arm with a collaborative robot (cobot) to increase
productivity while improving human factors. Driven by
the underutilization of a robotic arm in the maintenance
testers and challenges related to human labor costs, the in-
troduction of cobot technology creates shared workspaces
on the assembly line. This strategic integration exploits
the availability of cobots at two manual manufacturing
workstations, especially during long test process times.
A process simulation based on discrete event simulation
was developed to comprehensively analyze the remanu-
facturing process, evaluating not only process times and
efficiencies, but also human factors such as ergonomics and
cognitive load. The detailed process is shown in Figure 1.

Fig. 1. The process flow of the re-manufacturing work steps
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Table 1. Detailed process steps within the
workstations with the required number of
agents (Req.). The last three columns define
which agent is capable to handle the task (H.

- Human, R. - Robot, A. - Automation)

Station Task Task type Req. H. R. A.

Assy1 a1 Inloading 1 1 1

Assy1 a2 Inspection 1 1

Assy1 a3 Assign workflow 1 1

Assy1 a4 Disassembly 2 1 1

Assy1 a5 Component reproc. 1 1

Assy1 a6 Component test 1 1

Assy1 a7 Assembly - complex 2 1 1

Assy1 a8 OutLoading 1 1 1

Assy2 a9 Inloading 1 1 1

Assy2 a10 Assembly - simple 1 1 1

Assy2 a11 Assembly - precise 2 1 1

Assy2 a12 Drying 1 1

Assy2 a13 OutLoading 1 1 1

T1 a14 Inloading 1 1

T1 a15 Testing 1 1

T1 a16 OutLoading 1 1

T2 a17 Inloading 1 1

T2 a18 Testing 1 1

T2 a19 OutLoading 1 1

T3 a20 Inloading 1 1

T3 a21 Testing 1 1

T3 a22 OutLoading 1 1

4.1 Data and parameters

At each workstation we have defined activities (a), each of
which is associated with specific task types. These detailed
activities can be assigned to different agents. Table 1
outlines the number of agents required for each activity
and the agents that can be assigned to them based on their
capabilities. We have assigned different human factors
such as cognitive load, physical demand and ergonomics
to these activity types. Each of these aspects has three
levels of characterisation (see Table 2). These values are
determined on the basis of the specific characteristics of
the process and task, and they are depending on the
traditional evaluation methods which are described in
Section 2. Table 3 shows the activity times for each task
type at each workstation and agent. Processing times

Table 2. Human factors definition for each type
of task (CL - Cognitive level [1 - low, 2 -
medium, 3 - high], PD - Physical demand [1
- low, 2 - medium, 3 - high], ER - Ergonomic

[1 - safe, 2 - risk, 3 - danger]).

Task type CL PD ER

Inloading 1 3 3

Inspection 3 1 1

Assign workflow 3 1 1

Disassembly 3 3 2

Component reproc. 2 2 1

Assembly - complex 3 3 1

OutLoading 1 3 3

Picking up 1 2 2

Placing 2 2 1

Assembly - simple 2 2 1

Assembly - precise 3 3 1

Component test - - -

Testing - - -

Table 3. Task type with the processing time for
each agents and workstations in seconds.

Task type H R A

Inloading 10, 1, 6, 15 15

Inspection 50, 10, 40, 30

Assign workflow 90, 20, 60, 210

Disassembly 120, 20, 80, 210 150

Component reproc. 20

Assembly - complex 180, 30, 120, 240 200

OutLoading 10, 3, 6, 20 15

Picking up 5, 1, 3, 8 10

Placing 10, 3, 6, 20 15

Assembly - simple 120, 20, 90, 180 30

Assembly - precise 180, 30, 120, 240 200

Component test 120

Testing 300

Drying 120

for human agents are represented by a truncated normal
distribution with parameters [µ, σ, LB,UB], where µ is the
mean, σ is the standard deviation, and LB and UB are
the lower and upper bounds respectively.

The simulation model, depicted in Figure 2, showcases
the primary structure created with Siemens Tecnomatix
Plant Simulation software. Workstation activities are de-
picted by station units, each designated to a particular
workplace. The cobot is simulated as a basic pick-and-
place unit, with activity times based on its transportation
capabilities. Task allocation is guided by selectors within
the model, referencing the task scheduling table from the
optimization process. For activities involving both human
and robot participation, we employ DismantleStation and
AssemblyStation units for precise process modeling.

4.2 Task allocation results and simulation-based validation

Task allocation was conducted across three scenarios, each
assigning different weights to objectives within the reward
function. In Scenario 1, tasks were allocated traditionally,
with one operator per workstation. In Scenario 2, produc-
tivity was emphasized, given double the weight of human
factors. Conversely, Scenario 3 prioritized human factors,
with double the weight of execution time. These scenarios
enabled exploration of different prioritization strategies,
offering insights into how task allocation decisions are in-
fluenced by varying emphasis on productivity and human
welfare.

The quantitative results of different scenarios in terms of
productivity metrics are presented in Table 4. For three
different scenarios, the table illustrates the percentage of
agent utilisation and the number of products produced
within a single shift (8 hours). Notably, each scenario
shows an imbalance due to the complexity of the assem-
bly process, including dual agent requirements and the
stochastic nature of human behaviour. In addition, the
analysis shows minimal differences in productivity, all less
than 5%. In particular, the robot is given more tasks in
the scenarios focused on human assistance.

Figure 3 shows a sample period illustrating the cognitive
load of operator 1 under traditional task allocation. This
analysis provides valuable insights into the factors that
influence human workers during shifts, providing a deeper
understanding of their cognitive workload.
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Fig. 2. The structure of the developed simulation model

Table 4. Quantitative results of the different
scenarios related to the productivity metrics.

Scenario Prod. H1 work H2 work R work

Traditional 60 38.81% 76.18% 82.7%

Productivity 58 65.31% 46.62% 80.31%

Human 57 34.93% 66.69% 86.28%

Figure 4 shows the results of the three factors across dif-
ferent scenarios. We observe fluctuations in the values for
each human agent across the three scenarios. The distri-
bution of cognitive load proves to be the most challenging
aspect, while ergonomics shows minimal significance in all
cases, crucially avoiding the dangerous level 3 category.
The highest physical demand consistently decreases to zero
in all scenarios, reaching its lowest value in the human-
centred scenario, which is a favourable result. In addition,
the distribution of cognitive load between the two human
agents is evident, with operator H1 experiencing the high-
est load, which decreases significantly for H2, indicating
an overall improvement.

4.3 Discussion

One of the key achievements of this study is the adoption of
human factors based task assignment strategies, a concept
that has been successfully validated using the simulation
model we developed. The capability to individually eval-
uate human factors represents a notable advancement,
enabling researchers to conduct experiments and analyze
real-world data with increased precision and depth. Hu-
man factors directly impact the performance, efficiency,
acceptance, and various other components of Human-
Robot Collaboration (HRC) systems (Hopko et al., 2022).
By applying the evaluation techniques discovered, such as
online optimization and deeper integration of simulation
and optimization processes, we are able to improve task

Fig. 3. Example period of a cognitive load on operator 1
during the traditional task allocation.

assignment methods. This includes the use of real-time
data from the shop floor, laying the foundation for an
evolution toward digital twin-based task allocation ap-
proaches. Through these advances, we can ensure that
our simulations and optimizations are more accurate and
reflect real-world scenarios, ultimately leading to more
efficient and effective manufacturing processes.

5. CONCLUSION AND LIMITATIONS

In this study, we address human-centred task allocation,
prioritising factors such as cognitive load, physical demand
and ergonomics. Our approach involves the development
of a discrete event simulator that is seamlessly integrated
with Q-learning optimisation techniques to efficiently allo-
cate tasks while meeting pre-defined human-centred objec-
tives. Through a case study focusing on remanufacturing,
we show how optimal coordination between a robotic arm
and two human operators can significantly reduce the
overall manpower requirements. Using our simulation, we
analyse the cognitive and physical workloads of the op-
erators over time, allowing a comprehensive examination
of time balances and strains. Our results highlight the
applicability and effectiveness of our proposed concept
in the context of remanufacturing processes. Future work
entails integrating real-time human factors and feedback
of physiological data to dynamically (re)allocate tasks,
addressing human-centered issues effectively.
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and optimization processes, we are able to improve task

Fig. 3. Example period of a cognitive load on operator 1
during the traditional task allocation.

assignment methods. This includes the use of real-time
data from the shop floor, laying the foundation for an
evolution toward digital twin-based task allocation ap-
proaches. Through these advances, we can ensure that
our simulations and optimizations are more accurate and
reflect real-world scenarios, ultimately leading to more
efficient and effective manufacturing processes.

5. CONCLUSION AND LIMITATIONS

In this study, we address human-centred task allocation,
prioritising factors such as cognitive load, physical demand
and ergonomics. Our approach involves the development
of a discrete event simulator that is seamlessly integrated
with Q-learning optimisation techniques to efficiently allo-
cate tasks while meeting pre-defined human-centred objec-
tives. Through a case study focusing on remanufacturing,
we show how optimal coordination between a robotic arm
and two human operators can significantly reduce the
overall manpower requirements. Using our simulation, we
analyse the cognitive and physical workloads of the op-
erators over time, allowing a comprehensive examination
of time balances and strains. Our results highlight the
applicability and effectiveness of our proposed concept
in the context of remanufacturing processes. Future work
entails integrating real-time human factors and feedback
of physiological data to dynamically (re)allocate tasks,
addressing human-centered issues effectively.
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