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Kurzfassung

Eine effektive Planung von Funknetzen erfordert genaue Ausbreitungsmodelle, die das komple-
xe Verhalten elektromagnetischer Wellen, einschließlich Streuung, Mehrwegeausbreitung und
Interferenzen, berücksichtigen. Herkömmliche empirische Modelle können diese physikalischen
Eigenschaften oft nicht richtig darstellen. Im Gegensatz dazu liefern deterministische Modelle wie
Ray Tracing genauere Vorhersagen, sind jedoch mit hohen Rechenkosten verbunden und erfordern
sehr detaillierte Beschreibungen der städtischen Gebiete. Um diesen Herausforderungen Herr zu
werden, gewinnen datengetriebene Modelle, insbesondere UNets, zunehmend an Aufmerksamkeit.

In dieser Arbeit wird ein neuronales Netz namens UNet analysiert, das durch Lernen aus
etablierten Verteilungen der empfangenen Signalstärken in städtischen Gebieten wichtige Erkennt-
nisse über die Wellenausbreitung gewinnt. Einmal trainiert, kann es die Signalstärke über große
Gebiete mit bemerkenswerter Effizienz und Genauigkeit vorhersagen. Darüber hinaus macht
die Fähigkeit des UNet, Signalstärkeverteilungen aus einer begrenzten Anzahl von Messungen
zu interpolieren, es zu einem wichtigen Hilfsmittel für die Planung neuer und die Optimierung
bestehender Funknetze.

Ein zentrales Ziel dieser Forschungsarbeit ist es, die Beziehung zwischen der Anzahl der
Eingangsmessungen und der Vorhersagegenauigkeit zu untersuchen. Die Ergebnisse zeigen, dass
UNet selbst mit relativ wenigen Messungen eine beeindruckende Vorhersagegenauigkeit erreicht,
obwohl der Nutzen durch Hinzufügen weiterer Messungen abnimmt. Diese Erkenntnis unterstreicht
die Notwendigkeit, die Vorhersagegenauigkeit mit dem Messaufwand in Einklang zu bringen.

Darüber hinaus zeigt die Untersuchung, dass UNet Messunsicherheiten wie Rauschen und
Global Positioning System (GPS)-Ungenauigkeiten wirksam ausgleicht und diese Diskrepanzen
teilweise kompensiert. Seine Robustheit unter realen Bedingungen macht UNet zu einer guten
Wahl für die Vorhersage der Signalstärke in Städten. Zusammenfassend lässt sich sagen, dass UNet
eine ressourceneffiziente Lösung bietet, die eine schnelle und genaue Vorhersage der Signalstärke
gewährleistet und gleichzeitig das transformative Potenzial von Deep-Learning-Techniken zur
Verbesserung der Funknetzplanung und -optimierung aufzeigt.





Abstract

Effective radio network planning requires accurate propagation models that account for complex
behaviors of electromagnetic waves, including scattering, multipath propagation, and interference.
Traditional empirical models often fail to present properly these physical properties. In contrast,
deterministic models such as ray tracing provide more precise predictions, but they come with
high computational costs and require highly detailed descriptions of urban environments. In
response to these challenges, data-driven models, particularly UNets, are gaining increasing
attention.

This thesis analyzes a UNet neural network, which acquires significant insights into wave
propagation mechanics by learning from established distributions of received signal strengths
in urban areas. Once trained, it can predict signal strength over large areas with remarkable
efficiency and accuracy. Furthermore, the UNet’s capability to interpolate signal strength
distributions from a limited number of measurements makes it an essential tool for planning new
networks and optimizing existing ones.

A central objective of this research is to investigate the relationship between the number of
input measurements and prediction accuracy. The results indicate that UNet achieves impressive
prediction accuracy even with relatively few measurements, although the benefit of adding more
measurements diminishes. This finding emphasizes the necessity of balancing prediction accuracy
with measurement effort.

Additionally, the study demonstrates that UNet effectively addresses measurement uncertainties,
such as noise and GPS inaccuracies, partially compensating for these discrepancies. Its robustness
in real-world conditions makes UNet a strong choice for urban signal strength prediction. In
conclusion, UNet offers a resource-efficient solution that ensures rapid and accurate signal
strength forecasting while showcasing the transformative potential of deep learning techniques in
enhancing radio network planning and optimization.
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Chapter 1

Introduction

1.1 Motivation

Radio network planning is essential to operate a cellular network efficiently [1]. A thorough
understanding of signal strength distribution in an urban area for a given antenna setup helps
the network operator to define coverage areas, mitigate interferences, and allocate power and
resources [2]. Consequently, accurate models for predicting signal strength are essential.

However, calculating received signal strength in wireless communications faces many challenges.
Radio waves obey Maxwell’s equations, and the complexities introduced by urban structures,
antenna modeling, and their physical properties make the computation of the signal strength
very resource-consuming. Ray tracing simplifies the propagation model by assuming radio signals
propagate as rays, each traveling in a particular direction. Further assumptions, i.e., harmonic,
high frequency, and free space propagation, reduce the complexity compared to the Maxwell
approach. The propagation medium attenuates each ray, and obstacles on their paths scatter,
diffract, or reflect the waves in the ray tracing model [3]. Therefore, it requires a complex
description of the environment and a lot of computing power.

Empirical models offer an alternative approach that addresses the computational intensity of
deterministic models. These models simplify the prediction process by utilizing equations with a
small number of parameters derived from measurements. However, a significant drawback of
empirical models is their limited accuracy as they neglect complex propagation mechanics in the
urban environment [4].

As a complement to the other models, data-driven models are powerful tools gaining more
attention since they can produce accurate signal strength predictions while being computationally
efficient with a low execution time [5]. A reinterpretation of the problem allows the expression of
the Radio Map Estimation (RME) task as a regression problem [4], where the network such as a
UNet generates a radio map using information about the environment and the antenna setup. The
UNet acquires extensive knowledge of propagation mechanics through comprehensive learning
from various radio maps across different urban environments and antenna settings. The model
can make highly accurate predictions for various urban scenarios and antenna configurations.
Due to these advantages, this thesis emphasizes UNets. Advancements in neural networks will
continue, leading to the development of more precise models and the inclusion of additional
features in the future.
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1.2 Related Works

Understanding existing methods for RME highlights the significance of UNets. This section begins
by introducing classical models, outlining their strengths and limitations. It then continues to
neural network approaches, discussing the current state of the art. Finally, the section concludes
with a summary of the contributions of this thesis.

1.2.1 Empirical and Deterministic Models

There are two categories of classical radio map estimation models: empirical and deterministic.
Empirical models are based on measurements and typically provide less accurate predictions
for general urban wireless networks. In contrast, deterministic models are founded on physical
properties and can represent the real world with greater accuracy. However, they tend to require
significantly more computational resources.

A well-known empirical model for predicting radio wave propagation is the Okumura-Hata
model [6]. This model is based on statistical measurements conducted in Tokyo. The model’s
equation considers several factors, including the carrier frequency, which ranges from 150MHz to
1500MHz, the transmitter height, which varies between 30m and 200m, and the distance, which
spans from 1km to 20km. It also includes a correction factor that accounts for the type of area in
which the prediction is made, categorized as open, suburban, or urban. The model incorporates
the urban environment solely through a correction factor without considering individual building
structures. Another empirical model is the COST 231 model, which covers a frequency range
from 800MHz to 2000MHz to accommodate the GSM frequency band [7]. However, compared to
more straightforward methods used in this thesis, the Okumura-Hata and COST 231 models
are deemed too imprecise. For Okumura-Hata model predictions, the root mean square error
(RMSE) is approximately 12-15dB [4].

Deterministic models, like ray tracing, are more effective when the predictions have to be
more accurate than with empirical models. The fundamental simplification in ray tracing is
the assumption of a harmonic electromagnetic wave that follows straight propagation paths.
Nonetheless, the need for a highly accurate three-dimensional representation of the urban
environment persists to account for reflections, scattering, and diffraction. A ray is reflected by
interacting with the interface of the obstacles. Reflection law and Fresnel’s equations determine
the ray’s direction and intensity. Diffracting occurs when objects split the incoming ray into
infinite outgoing rays. Scattering alters the propagation paths depending on the property of
the surface of the obstacles [3]. This requirement and the computation of the propagation of
each ray make ray tracing methods computationally expensive despite the simplification of the
propagation model. Since this model generates predictions based on physical properties, authors
in [5], [8], [9] have performed simulations using ray tracing to generate the dataset [9], on which
this thesis relies.



10 1 Introduction

1.2.2 Neural Network Approaches for RME

Deep-learning approaches overcome the limitations of deterministic and empirical models. While
they involve substantial computational complexity during the training phase, they become com-
putationally efficient and can make highly accurate predictions once trained. Crucial challenges
associated with neural networks include generalization and handling nonlinear relationships [10].
Furthermore, the training process requires extensive training data.

Multiple data-driven approaches for RME utilize at least some knowledge from the radio map
in the training dataset to predict signal strength. One example of many elaborated by Romero
et al. in [2] is the linear parametric RME, which calculates the signal strength by summing the
weighted received powers of individual transmitters [2]. The limitations of this structure include
low accuracy in non-line-of-sight conditions and an inability to generalize to unfamiliar urban
scenarios and antenna placements.

Mentionable methods, including interpolation and Gaussian regression, can complete the
radio map with sparse measurements of an area of interest [11]–[13]. These methods rely on
measurement data availability, limiting their practicality for network planning tasks. This work
aims for a moderate level of implementation complexity by utilizing the straightforward models
provided by the scipy package, such as linear interpolation and k-nearest neighbors (KNN)
regression. These methods form the foundation for evaluating the benchmark.

For example, neural networks used in image processing can predict radio maps even in regions
where the radio network is underdeveloped. They achieve this by learning the average material
and propagation properties from existing radio maps based on specific input parameters, including
environmental information and antenna characteristics. UNets are a popular choice for RME, and
the works in [4], [14], [15] emphasize the effectiveness. Their U-shaped structure is straightforward,
and the overall network is computationally efficient. Hence, this thesis discusses this type of
network in detail. The input parameters, which encompass both urban environments and antenna
characteristics, can be described with a high degree of precision, e.g., by using seven parameters,
i.e., surface type, height, and position information of buildings, the height of the terrain, the
horizontal and vertical angle difference between the line of sight to the antenna, antenna height,
carrier frequency, and antenna gain as referenced in [4]. Additionally, the authors in [15] define
the radio network setup by incorporating a building model, an elevation map, the transmitter
frequency, horizontal and vertical pointing offsets relative to the antenna, and transmitter power.

There are two methods for a network to create a complete radio map from the information
passed through it. One method is the UNet described in [15], which generates the signal strength
prediction for each position individually in an urban scenario. A vital advantage of this network
is that it can forecast signal strength without using a complete radio map of an area of interest
for training purposes. UNets, as discussed in [4] and in this thesis, are designed for image
translation tasks. They take input images, such as those depicting urban environments, and
generate comprehensive signal strength maps. For training purposes, it is crucial to have a
comprehensive set of complete signal strength maps for the areas of interest. Suppose a vast
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amount of training data is accessible to the network. In that case, the network computes the
complete radio map for a specific urban area much faster than calculates it point by point.

Alternative structures are also considerable choices for RME, such as RadioUNet, as described
by [8]. This architecture consists of two UNets arranged in a W-shape. The input for the second
UNet includes the same data as the first UNet and the output from the first UNet. Further
networks set their focus on completing radio maps from sparse measurements as in [16], [17].
However, besides sparse measurement of the radio networks, these networks need to include
urban information in their input, making them suitable for radio network planning. This thesis
modifies this concept for network calibration to enhance prediction accuracy and enable the
completion of the radio map from measurements.

1.2.3 Contribution

This thesis contributes to the neural network approach for RME as follows.

• A UNet that processes city and antenna information as images and optionally includes
measurement to generate a signal strength prediction. This thesis also compares the model
with simple alternatives such as linear interpolation and KNN regression.

• The input includes a measurement channel in addition to the environment and antenna
description for network calibration. The more measurements passed through the network,
the more prior knowledge about the signal strength distribution it gains, and the more
accurate the prediction will be. When the prediction of a sample delivers unsatisfactory
results, measurements assist the network to generate more accurate predictions.

• This thesis explores how the measurement channel impacts UNet. The use of this channel
is not mandatory. The network can rely on the model for unmeasured areas if it does not
receive any measurements.

• This study demonstrates the robustness of the presented model against measurement
distortions by testing it with various types of noise and intensity levels. Because of its
robustness, this model is more practical for real-world measurements compared to other
methods, such as interpolation.

1.3 Outline

When the urban scenarios are represented as images, which are essentially two-dimensional arrays,
information about the position can be encoded in the index of the arrays, and the element’s
value represents a physical quantity, such as the height of a building, signal strength outside
buildings, distance to an antenna, or antenna height. This thesis presents and analyzes a neural
network that processes input arrays representing the urban scenario, i.e., the placement and
height of buildings on a map, the basic setup of an antenna, i.e., the location and height where
the antenna is mounted, and later a measurement map and generate an output which is an array
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with detailed information about the signal strength at each location of interest, which is the
street area in the city map. Signal strength inside buildings is out of interest, so the network
neglects these predictions. Fig. 1.1 sketches the general task of the neural network. Chapter 2
and 3 will introduce the UNet and the SegNET, where the UNet remains in further investigations.
Chapter 4 introduces the measurement map to the network, representing simulated signal strength
measurements across urban areas. Furthermore, this work compares the results with those of
linear interpolation and KNN regression, where the measurements serve as supporting points and
observations, respectively. This thesis mainly focuses on assessing prediction quality by altering
the number of measurements and simulating real-world measurement conditions by incorporating
measurement errors in Chapter 4 and 5.

Fig. 1.1: Sketch of a Neural Network for RME



Chapter 2

Problem Statement

This work aims to design a neural network that processes input images that carry information
about the urban scenario, antenna settings, and later measurements. An ideal candidate is a
neural network based on convolutional operations, such as UNets or SegNETs. These networks
have a simple structure consisting of convolutional and transposed convolutional layers. They
are particularly effective for image processing because they require a relatively small number of
parameters, making them computationally efficient. The total number of parameters depends on
the architecture of the Convolutional Neural Network (CNN) and the chosen window, which is
typically small.

2.1 Neural Networks

SegNET and UNet feature a similar U-shaped structure; however, the UNet includes connections
between non-adjacent layers, known as skip connections. This work investigates both networks,
utilizing SegNET to examine the skip connections in UNet.

2.1.1 SegNET

Initially, SegNETs, short for segmentation networks, were used for pixel-wise segmentation and
classification tasks. Suitable design enables regression tasks as well. The architecture consists
of an encoder network connected to a decoder network [18], [19]. Fig. 2.1 shows an exemplary
SegNET. Typically, the encoder network consists of convolutional layers, and the decoder layer
consists of convolutional or transpose convolutional layers, depending on the implementation.
The layers are connected sequentially, i.e., after processing the input, the layer passes the output
to the next layer. Suppose the network has n encoder and n decoder layers. The encoding
process involves enumerating n layers from the input layer to the n-th layer, which is the final
layer of the encoder. The encoder connects to the decoder by linking its last n layer to the n

layer of the decoder. The layer connected to the n-th layer is the n − 1-th layer1. The activation
function usually concludes the operation of a layer, optionally followed by a pooling layer and a
dropout layer, which decrease the size of the feature maps. In the case of a pooling layer, the
max-pooling layer is a common choice. However, for pixel-wise classification or regression tasks,

1This is one way of enumerating the layers; other literature may use different enumerations.
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the output image should have the same size as an input image. Therefore, methods to increase
the image size are necessary, called up-sampling, at some point. Some papers, such as in [20],
propose unpooling operation, while authors in [21] perform transpose convolution in their work.
A combination of both methods is also possible. This thesis only uses transpose convolution
and striding to restore the original image size. When using pooling layers, the decoder performs
unpooling operations, and as in [19]. The i-th encoder layer passes the pooling indices to the
unpooling layer. The pooling operation reduces the size of the feature maps. In contrast, the
unpooling operation increases the size of the feature maps depending on the pooling indices it
receives from the encoder.

Fig. 2.1: Exemplary architecture of a SegNET.

2.1.2 UNet

UNets can be considered an evolution of SegNET, initially designed for segmentation tasks. Like
SegNET, a UNet consists of an encoder consisting of convolutional layers and a decoder consisting
of (transposed) convolutional layers, each usually terminated with an activation function. The
difference between SegNET and UNet is the connection between the corresponding encoder and
decoder layers, which is called the skip connection. Consider a UNet, where the encoder and the
decoder have each n layers. The enumeration is the same as that for SegNET. An i-th decoder
layer receives feature maps from an i-th encoder layer through a skip connection. It concatenates
them with feature maps from a layer one level below, i.e., the i − 1-th decoder layer, to form
an input tensor for the (transpose) convolution operation of the i-th decoder layer. Unless it is
the n-th decoder layer, the input of this layer is solely connected with the output of the n-th
encoder layer. Pooling or unpooling at the end of each layer alters the size of the feature map.
Alternatively, using striding is a valid option or a combination of both methods. An example of
a typical UNet architecture based on [22] is shown in Fig. 2.2.
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Fig. 2.2: Exemplary architecture of a UNet.

2.2 Convolutional and Transpose Convolution Operation

The main task of a (transpose) convolutional layer is performing (transpose) convolutional
operations for image manipulation. In machine learning, a convolutional operation generates an
output by a weighted sum of some input elements and a bias. Which input elements are selected
depends primarily on the convolutional operation’s window size and the output element index
of the output array. Assuming a 2D convolution with a kernel W of size (W1 × W2), then the
output element Ŷ kl is given by

Ŷ kl =
W1∑︁
i=1

W2∑︁
j=1

Xk+i l+jW ij + Bkl, (2.1)

where Xkl is the k, l-th element of the input X and Bkl is the bias [23]. Unfortunately, the
operation reduces the output size by the convolutional operation inherently by W1 − 1 × W2 − 1.
Therefore, additional processes, such as padding, must be performed to preserve the image size.
The following Fig. 2.3 gives a visualization of the process.
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Fig. 2.3: Visualization of a convolution process for an input of size 2 × 3 and a window size of
1 × 2 [23].

A 2D transpose convolution performs as follows. Based on [24], assume a 2D input X of
size N1 × N2 with elements denoted with xij and a kernel with window size W1 × W2 with
elements wkl. Contrary to convolutional operation, a transpose convolutional operation first
generates for each element xij an intermediate array Ỹ

ij of size (N1 + W1 − 1) × (N2 + W2 − 1)
and for i = 1, 2, . . . , N1 and j = 1, 2, . . . , N2, whereby the intermediate array element ỹij,mn, is
constructed as followed

Ỹ
ij
mn =

��XijW m−i−1 n−j−1 for i ≤ m ≤ i + W1, j ≤ n ≤ j + W2

0 else
. (2.2)

Then the output Y of size (N1 + W1 − 1) × (N2 + W2 − 1) is obtained by the summation

Y =
N1∑︁
i=1

N2∑︁
j=1

Ỹ
ij

. (2.3)

The process is visualized in Fig. 2.4.

Fig. 2.4: A transpose convolution with an input of size 2 × 2 and a kernel with window size
2 × 2[24].
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If an enlarged of the feature map is necessary, striding could be a considerable choice. A stride
parameter of p × q forces the operation to generate intermediate arrays of size (pN1 + W1 − p) ×
(qN2 + W2 − q) and instead of moving the kernel by one element horizontally or vertically, the
kernel will be moved by p elements horizontally or q elements vertically. Fig. 2.5 visualizes this
operation.

Fig. 2.5: A transpose convolution with an input of size 2 × 2 and a kernel with window size
2 × 2 and a stride of 2 × 2[24].

2.3 Training and Test Dataset

The paper [9] provides an extensive dataset. It contains 701 city maps of size 256 × 256 square
meters from different cities. These maps are stored as two-dimensional image arrays of size
256 × 256, so each element of the image array corresponds to a spot on a map with a resolution
of 1m2. The value of the elements depends on the application area, such as height or signal
strength.

These maps provide information about the location of buildings on the map and their heights.
The range of heights starts from 6.6 meters to 19.8 meters. In this dataset, the tallest building
defines the normalization, i.e., the tallest buildings have a value of 1. This simulation neglects
ground elevation, meaning the entire street area has a value of 0.

Yapar et al. have done path loss simulation, using the ray-tracing software WinProp from
Altair, for 80 different antenna locations for each city map in [9]. For each city map, there is one
antenna mounted 3m above the roof of a building with a minimum height of 16.5m. A receiver
height of 1.5m determines the path loss over the entire street area. In [9] path loss is defined as

PL = (PRx)dB − (PTx)dB. (2.4)

Usually (PTx)dB > (PRx)dB, resulting in negative path loss values, i.e. PL < 0. The path loss
range is [−104dB, −75dB], i.e., the received power is at least −75dB less than the transmitted
power. According to [9] the transmit power is (PTx)dB = 23dBm, so the range of receive power
is (PRx)dB ∈ [−81dBm, −52dBm]. The path loss threshold is −104dB, determining the lowest
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possible path loss value. The path loss map contains path loss over road areas that are normalized
from 0 to 1, i.e., a value of zero means a path loss of PL = −104dB and one means PL = −75dB.
Due to the normalization, the path loss map is equivalent to the signal strength map, where zero
corresponds to (PRx)dB = −81dBm, while one corresponds to (PRx)dB = −52dBm. Therefore,
this thesis treats the normalized path loss map as the signal strength map. In addition, the
signal strength is easier to access from the measurement because it does not require knowledge
of the transmit power, and the device does not need to convert from receive power to path loss.

Tab. 2.1 summarizes the parameters of the simulations, provided by [9].

Tab. 2.1: Simulation parameters of the dataset [9]

Parameters Value
Map size 256 × 256 pixels

Pixel length 1m
Rx height 1.5m

Transmit power 23dBm
Antenna type Isotropic

Height range of the buildings 6.6m − 19.8m
Tx height 3m above rooftop

Center carrier frequency 3GHz
Channel bandwidth 20MHz

Path loss thresh hold -104dB
Path loss range 29dB

Noise Figure 20dB

The antenna’s position is stored as an array representing an area of size 256 × 256m2 for each
simulation. This array has a non-zero element, while all other elements are zero. This non-zero
element carries the information about the antenna. The position can be retrieved by its index
and the height by its value. Since the antenna installation is 3m above a building that is at least
16.5m tall, the tallest building in the dataset is 19.8m tall, the range of the vertical position of
the antenna is hantenna ∈ [19.5m, 22.8m]. The value is normalized, i.e., 1 for antennas at 22.8m
height.

This thesis mainly used normalized maps, such as maps that provide the placement and
height of buildings in an urban scenario, called building information maps. It also processes
signal strength maps, which provide the antenna position, called antenna information maps.
Other information that did not pass through the CNN is transmit power, carrier frequency, and
bandwidth since the CNN is designed for signal strength prediction for a fixed frequency and
bandwidth.

Since the dataset contains 701 city maps and each map has 80 simulations with different
antenna locations, it contains 56080 simulations. This number of simulations was too much
for this analysis, so a fraction served this thesis. The complete set would consume too much
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memory2. First, 600 (because of the round number) of the 701 city maps were randomly selected.
Five simulations with different antenna locations were chosen for each map, resulting in 3000
samples assigned to the training dataset. One hundred additional city maps, randomly selected
and not previously included in the training data set, were utilized to create five simulations
each, resulting in 500 samples designated for the test data set. By choosing this option, the
urban maps assigned in the test dataset are unknown to the CNN. The training dataset does
not overlap with the test dataset, i.e., no sample exists in both sets. The training and test data
set can be divided into input and ground truth. Due to the image’s resolution, the antenna
coordinates correspond to the indices [k̂, l̂], which can be expressed as a vector x̂antenna = [k̂, l̂] of
the element that carries the antenna information in meters, and the height is its value, called
hantenna. Additional information, such as the distance from any position to the antenna, may
help the network. Thus a two-dimensional array Xantenna is introduced, where an element with
index k , l given by

Xk l ,antenna = 1 −
⃦⃦
x̂antenna − [k , l]

⃦⃦
256

√
2

+ hantenna. (2.5)

The distance from any point given by the vector [k , l] to the antenna
⃦⃦
x̂antenna − [k , l]

⃦⃦
is first

normalized to the largest possible and straightest distance in a map representing an urban area of
256 × 256m2, which is a diagonal of length d = 256

√
2. Then, the value one is subtracted by these

values, and normalized antenna height hantenna is added. This results in elements corresponding
to points closer to the antenna having larger values, while points further away from the antenna
have smaller values.

The signal strength maps corresponding to their inputs are assigned to the ground truth of
the training and test datasets, respectively. An example is shown in Fig. 2.6. The first and last
images are building information and ground truth. They are taken directly from the dataset
[9], denoted as Xbuilding and Y , and the middle image is the modified antenna information map
Xantenna. A conversion of the normalized signal strength to a dB scale enables a direct link to the
received power in these plots. Signal strength inside buildings is out of interest, so the value is
equal to the noise floor in the ground truth. Consideration of the signal strength inside buildings
faces many challenges. The signal strength depends on the floor level since it varies with the
distance to the antenna and on the internal architecture of the building. This case requires
additional signal strength maps for each receiver’s floor level and increases the measurement or
simulation effort for the ground truth generation.

2Using 3500 samples occupies about 7.3GB of memory.
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Fig. 2.6: A sample contains a building information map that represents the localization of
facilities, an antenna information map, and the ground truth. This figure shows a
training data sample

This particular training sample is an exemplary sample to demonstrate a single neural network
prediction. To ensure a fair performance comparison, a test sample with characteristics similar
to those of the training sample in Fig. 2.6, specifically the street share of the urban scenario, is
necessary. This characteristic is computed by

rstreet = |Ni,street|
2562 , (2.6)

where |Ni,street| is the number of pixels out of 256 × 256 pixels of the map that correspond to the
street for the sample i. For the sample in Fig. 2.6 it is rstreet = 0.6637. Therefore, a test sample,
shown in Fig. 2.7 exhibits a similar street share of rstreet = 0.6684.

Fig. 2.7: Test data sample that contains building information map, antenna information map,
and ground truth
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2.4 Network Training

A neural network consists of a concatenation of (transpose) convolutional layers. It processes a
three-dimensional input tensor X of size N1 × N2 × K, where N1 × N2 is the spatial dimension,
i.e., the size of the image in pixels, and K is the feature map dimension [25]. After a convolution
layer, it is widespread to use a pooling layer, as in [25] or in [26]. Striding can also be used
instead, as in [27], which has been done in this thesis since stride is an integrated feature of the
(transpose) convolutional layer of tensorflow. The output Ŷ of the dimension M1 × M2 × L

(M1 × M2 is the spatial dimension and L is the feature map dimension) of the network can be
given by the function

Ŷ = f(X; w), (2.7)

where w are the parameters of the function f(·) : RN1×N2×K → RM1×M2×L. In supervised
learning, the samples include the ground truth Y , allowing a definition of a cost or loss function
L(·). The goal is to strive for optimal parameters wopt, by minimizing this cost or loss function,
i.e.

wopt = arg min
w

L(Y , Ŷ ) = arg min
w

L(Y , f(X; w)). (2.8)

In most cases, finding a global minimum is impossible. Therefore, a technique called Gradient
Descent is applied. The process starts with randomly initialized wk=0. Then at step k the
parameters wk are given by

wk = wk−1 − η
∂L(Y , f(X; w))

∂w

⃒⃒⃒⃒
⃒
w=wk−1

, (2.9)

where η > 0 is the step size or learning rate [28], [29]. The parameter epoch gives the number of
iterations. The loss function has to be a convex function [30], and in the regression task, it is
reasonable to choose it to be the averaged Mean Squared Error (MSE) since it takes the error of
each element of the prediction into account. A classical approach involves calculating the MSE
for each prediction Ŷ n of the n-th sample in a dataset with N samples and then averaging all
the MSE values., i.e.

L({Y n}N
n=1, {Ŷ n}N

n=1) = 1
N

N∑︁
n=1

‖Y n − Ŷ n‖, (2.10)

where Y n is the ground truth of the n-th sample3.
For large data set computing (2.10) can result in a large training duration. Stochastic gradient

descent offers a more efficient solution to address this issue. At every iteration, it executes a
gradient descent algorithm with a randomly chosen sample Xn. The following equation represents
its MSE loss

L({Y n}N
n=1, {Ŷ n}N

n=1) = ‖Y n − Ŷ n‖. (2.11)

3The n-th two-dimensional array from a set is indexed by one index, while the k l-th element of a two-dimensional
array is indexed by two indices. If the two-dimensional array is not indexed, then is a generic sample, prediction
or ground truth.
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The loss function is estimated by randomly choosing the sample, and its complexity is strongly
reduced compared to (2.10) [29]. Another algorithm used in this thesis is the Mini-Batch
algorithm. Here, 1 < NBatch < N samples Xn are selected randomly to compute the loss
function. Let the set Xk contains randomly selected Xn and has the cardinality |Xk| = NBatch,
then the MSE loss function is

L({Y n}N
n=1, {Ŷ n}N

n=1) = 1
NBatch

∑︁
Xn∈Xk

‖Y n − Ŷ n‖. (2.12)

The advantage of this method over stochastic gradient descent is the reduction of the variance of
the gradient [30].

2.5 Baselines

This thesis mainly utilizes baselines for benchmarking neural networks. Multiple methods exist
for generating them, including interpolation and regression techniques. The preferred choices
were linear interpolation and KNN regression due to their simplicity of implementation. These
methods only require knowledge of signal strength at specific locations. This information, which
includes the position and corresponding signal strength, is the basis for completing a signal
strength map. This knowledge contains the position and the signal strength of the position and
forms supporting points for linear interpolation and observation for KNN regression.

2.5.1 Linear Interpolation

Various interpolations exist, including Lagrangian, Newton, and Hermite splines. All of them have
the property p(xi) = yi, where the pairs (xi, yi)N−1

i=0 are supporting points for an interpolation
[31] (Note that N is not the number of samples in a data set, but the size of the set of supporting
points). This analysis exploits piece-wise linear interpolation to generate the baselines. The
information regarding the signal strength yi with i = 0, . . . N at specific positions xi ∈ R provides
the foundation for the linear interpolation. Let xj and xk denote the closest points to xi, i.e.
there are no other points xl such that l ≠ i, j , k with |xi − xl| < |xi − xj | or |xi − xl| < |xi − xk|.
With the corresponding values yi, yj , and yk at these positions, the linear interpolation p(x)
determines a baseline within the triangle formed by these points. Using the linear interpolation

p(x) = a0 + a1x1 + a2x2, (2.13)

where x1, x2 are the elements of x and x is inside the domain defined by the triangle, then the
parameters a0, a1, a2 can be obtained by solving the following set of equations

p(xi) = yi,

p(xj) = yj ,

p(xk) = yk.

(2.14)
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2.5.2 KNN Regression

A common regression task is predicting out of observed data. Unlike interpolation, the values of the
regression at the support point are primarily not equal to the actual value, i.e., r(xi) ̸= yi = y(xi).
The tuple (xi, yi) is called an observation in some literature such as in [32] or data point as in
[33].

The computation of the signal strength r(x) considers the k nearest neighbors xj belonging to
the set XNN,x. These measurement positions are the closest to x and they form the set of nearest
neighbors XNN,x. Then, the following equation provides the KNN regression for these points

r(x) = 1
k

∑︁
xj∈XNN,x

y(xj). (2.15)

2.6 Quality Measures for Evaluation

This section presents two measures to quantify the performance of the network. These are a
modified RMSE, which quantifies the prediction accuracy solely for signal strength, and the R2
score, which gives some insight into the model.

2.6.1 Error Quantification

This will quantify the prediction error with (root) mean squared error ((R)MSE), which is defined
as

RMSE =

⎯⎸⎸⎷ 1
N1N2

N1∑︁
k=1

N2∑︁
l=1

(Y k l − Ŷ k l)2, (2.16)

where Y k l is the ground truth value, Ŷ k l is the prediction value, and N is the array size of the
prediction output or ground truth. First, collecting all possible two-dimensional indices results in
a set of index tuples Nj = {[0, 0], [0, 1], [1, 0], . . . , [N1, N2]}. (Note that N1 and N2 here are the
dimensions of a single feature array) for a sample j from a dataset. City maps consist of building
areas and street areas. Therefore, two disjoint subsets Nj,street and Nj,building together form the
set Nj , i.e. Nj,street ∩ Nj,building = ∅, with Nj = Nj,street ∪ Nj,building, where Nj,street contains all
index tuple [k , l] of sample j that are street areas and Nj,building contains all index tuple [k , l] of
sample j that are building areas. For samples with larger building areas, the subset Nj,building

is usually larger than for samples with larger street areas, i.e. for the cardinality of these set
it holds |Nj,street| < |Nj,building|. Signal strength inside buildings is out of interest. Therefore,
the ground truth is Y k l = 0 for [k , l] ∈ Nj,building and samples with a higher density of buildings
tend to have more zero elements. Furthermore, the network is capable of accurately detecting
building areas. A prediction for a sample j will have elements that are mostly close to zero
for building areas, i.e., Ŷ k l ≈ 0 for [k , l] ∈ Nj,building. In samples with high building densities,
the subset Nj,building is usually larger. In these cases, the ground truth contains many zero
elements, while the predictions also have many close-to-zero values. According to (2.16) elements
[k , l] ∈ Nj,building will have a small contribution to the RMSE, since Ŷ k l ≈ Y k l = 0 for Nj,building.
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Consider a scenario where a network generates predictions for two samples with different building
densities, and using (2.16) would deliver similar RMSE. These similar RMSEs can lead to the
misinterpretation that the network can predict radio maps for samples representing densely
developed regions with the same accuracy as for samples representing regions with few buildings.
However, a sparsely developed area has a larger area where the prediction might deviate from the
ground truth. Consequently, the deviation of each Ŷ k l of the predictions belonging to the road
area of the sparsely built-up area is more likely to be smaller than those in the densely built-up
area sample. Computing the RMSE only for predicted values in street areas mitigates this effect.
Let |Nj,street| be the number of elements in Nj,street or the number of elements belonging to street
areas. Then, the RMSE for predicting only street areas is

RMSEstreet =
⎯⎸⎸⎷ 1

|Nj,street|
∑︁

[k ,l]∈Nj,street

(Y k l − Ŷ k l)2. (2.17)

2.6.2 R2 Score

This thesis determines the quality of the model using the coefficient of determination, commonly
referred to as the R2 score. The R2 score measures how well the independent variables explain
the variation in the model. It also provides a quality indicator for the fit [34], [35]. This analysis
uses the R2 score method from sklearn package, which computes the R2 score according to the
following equation

R2 = 1 −
∑︀

k ,l(Y k l − Ŷ k l)2∑︀
k ,l(Y k l − Ȳ )2 . (2.18)

Equation (2.18) considers a single ground truth sample Y with elements Y k l and a prediction Ŷ
with elements Ŷ k l. The value Ȳ is the mean of all elements Y k l in Y and is obtained by the
following equation

Ȳ = 1
Nsample

∑︁
k ,l

Y k l, (2.19)

where Nsample is the number of elements in Y. The variation is given by (Y k l − Ȳ )2, while
(Y k l − Ŷ k l)2 is the squared error.

An R2 score of R2 = 1 would result from Ŷ k l = Y k l, meaning that the prediction is equal
to the ground truth, which is the best achievable score. In this case, the model predicts with
the highest accuracy. If a model predicts every element equal to the mean of Y, i.e., Ŷ k l = Ȳ ,
∀i, regardless of the input variable, then R2 score is R2 = 0. A prediction from a model with
this R2 score is called an imperfect prediction according to [34]. An R2 score below indicates a
model worse than the imperfect prediction. It can theoretically go down to R2 = −∞, since the
squared error (Y k l − Ŷ k l)2 can be arbitrarily large, i.e. the model can be arbitrarily bad.



Chapter 3

Neural Network Evaluation

This chapter examines the impact of skip connections on UNet’s performance compared to
SegNET’s. The training of both networks took place using the same dataset to ensure a fair
comparison. The resulting learning curves provide insights into convergence, loss, and steepness in
the training process. Predictions of selected samples show practical and visual results. However,
the averaged RMSE determines and assesses the overall performance of the networks, facilitating
comparison. The R2 score enables the evaluation of the model.

3.1 SegNET

3.1.1 Network Architecture and Training

The input of the SegNET consists of a building information map and a modified antenna
information map, as discussed earlier, i.e. X = (Xbuilding, Xantenna) and the output is a single
image output, which is the prediction and denote as Ŷ . The CNN consists of four encoder and
decoder layers in this simulation.
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Fig. 3.1: Sketch of a SegNET with four encoder and four decoder layers

The architecture of the CNN is shown in figure 3.1 and is built up as follows.

• Encoder

– Input_Layer

∗ Input: Tensor of size 256 × 256 × 2, consists of Building and Antenna Information,
each of size 256 × 256

∗ Output: Tensor of size 256 × 256 × 2

∗ Connected to Layer_1_encoder

– Layer_1_encoder

∗ Input: Tensor of size 256 × 256 × 2

∗ 2D Convolutional Layer, 32 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 128 × 128 × 32

∗ Connected to Layer_2_encoder

– Layer_2_encoder

∗ Input: Tensor of size 128 × 128 × 32

∗ 2D Convolutional Layer, 64 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 64 × 64 × 64

∗ Connected to Layer_3_encoder
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– Layer_3_encoder

∗ Input: Tensor of size 64 × 64 × 64

∗ 2D Convolutional Layer, 128 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 32 × 32 × 128

∗ Connected to Layer_4_encoder

– Layer_4_encoder

∗ Input: Tensor of size 32 × 32 × 128

∗ 2D Convolutional Layer, 256 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 16 × 16 × 256

∗ Connected to Layer_4_decoder

• Decoder

– Layer_4_decoder

∗ Input: Tensor of size 16 × 16 × 256

∗ Transpose 2D Convolutional Layer, 256 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: ReLU

∗ Output: Tensor of size 32 × 32 × 256

∗ Connected to Layer_3_decoder

– Layer_3_decoder

∗ Input: Tensor of size 32 × 32 × 256

∗ Transpose 2D Convolutional Layer, 128 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: ReLU

∗ Output: Tensor of size 64 × 64 × 128

∗ Connected to Layer_2_decoder

– Layer_2_decoder

∗ Input: Tensor of size 64 × 64 × 128

∗ Transpose 2D Convolutional Layer, 64 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: ReLU

∗ Output: Tensor of size 128 × 128 × 64

∗ Connected to Layer_1_decoder

– Layer_1_decoder

∗ Input: Tensor of size 128 × 128 × 64
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∗ Transpose 2D Convolutional Layer, 1 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: Linear

∗ Output: Tensor of size 256 × 256 × 1

The goal of this work is different from the focus of finding an optimal network. So, the decision
fell on this setup due to reasonable training complexity with reasonable computational resources
and good prediction results. The network has a window size of (4 × 4) and a stride parameter of
(2 × 2). Imagine that a two-dimensional array input can be interpreted as an object that can
be traversed horizontally and vertically. After computing one output element of a feature map,
the window moves vertically or horizontally by two elements. Furthermore, padding was used so
that the size reduction only results from striding. For a single convolutional kernel and an array
that represents a single image, i.e., an array of size N × N × 1, these choices result in an array
with half the feature map size of the input, i.e., the size of the output array is ⌊N

2 ⌋ × ⌊N
2 ⌋ × 1.

Since the choice is this method, a pooling layer can be omitted.
The transpose convolution operation with the same settings for stride, window_size and

padding as for convolutional layer doubles the size of an image, i.e. for a single kernel and an
input array of size N × N × 1 that contains a single image, the transpose convolution generates
output arrays of size 2N × 2N × 1. All layers have a ReLU activation, except the first decoder
layer, which has a linear activation to satisfy the regression task requirement.

The training of the CNN took place using the training dataset, discussed in Section 2.3, using
200 epochs, a batch size of 16, and a default setting of the learning rate of 10−3. The MSE serves
as the loss function, which is given by

MSE = 1
N2

∑︁
i=1

N∑︁
j=1

(Y ij − Ŷ ij)2, (3.1)

Y ij corresponds to an element of the ground truth and Ŷ ij to an element of the prediction,
and N2 = 2562 is the number of elements in the ground truth array. The loss, computed with
normalized values for Y ij and Ŷ ij , requires a conversion to a dB scale for presentation, providing
a direct relation to the power. According to [9] the following equation determines the conversion

Ŷ dBm = −104dBm + 29dBmŶ scaled + 23dBm⏟  ⏞  
transmit power

, (3.2)

where Ŷ scaled is the SegNET’s prediction. The ground truth undergoes the same conversion.
Consequently, the conversion of the normalized MSE loss to RMSE loss in dB scale is computed
by

MSEdB = 29
√

MSE. (3.3)

Due to the complexity of implementation with the tensorflow package, loss exclusively for
street areas was not applied. Fig. 3.2 shows the learning curve converted to the dB scale. The
noisy behavior of the learning curves is present and can affect the final loss. The blue curve,
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which corresponds to the RMSE of the training data, and the orange curve, which corresponds
to the RMSE of the test data, diverge from each other. While the validation loss converges at
about 50 epochs, the training loss decreases even for more significant epochs, increasing the gap
between the training and test data loss, reaching about 1dB in this simulation. Consequently,
the RMSE of the test data cannot be improved by increasing the number of epochs.

Fig. 3.2: Learning curves for SegNET. The CNN is trained with 3000 training samples, 200
epochs, and a batch size equal to 16. The RMSE loss for the training data is shown as
the blue curve. Furthermore, 500 test data are used to compute the validation loss,
which is the orange curve.

3.1.2 Prediction Results

The prediction of a given training sample, shown in Fig. 2.6, and the one of a particular test
sample, shown in Fig. 2.7, are presented. Since the activation of the output layer of the neural
network is chosen as a linear activation, values outside the normalized range can be expected.
For elements of the prediction that have values below zero, those elements are truncated to zero.
This truncation is an integral part of the process for every prediction and baseline throughout
this thesis. Then, converting the network’s output to the dB scale remains the last step.

An introduction of an error map enables a visual evaluation of the quality of the prediction. This
map highlights places where the prediction deviates from the ground truth. It is a two-dimensional
array E with elements defined as

Ekl = |Ŷ kl,dBm − Y kl,dBm|, (3.4)

where Ŷ kl,dBm is a element of the prediction in dB and Y kl,dBm is a element of the ground truth
in dB. According to its definition, this error map shows the absolute signal strength error at each
point on the map. Introducing the RMSE from 2.17 helps to quantify the prediction quality.
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The prediction of a training data sample shown in Fig. 2.6 is shown in Fig. 3.3a while the
pixel-wise deviation from the ground truth is displayed in Fig. 3.3b. These figures mediate that
the SegNET can detect the buildings and set all pixels belonging to buildings to values close to
zero, which is about −81dBm, which can be interpreted as a segmentation task. Furthermore,
the SegNET can predict the signal strength in street areas, so we can see that the network can
perform regression tasks. Errors can be found near the antenna and mainly at the corner of the
shadow.

(a) prediction in dB scale (b) Absolute error in dB scale

Fig. 3.3: SegNET prediction of a training data sample and pixel-wise prediction error

The RMSE is

RMSE = 1.1956dB.

A particular test data sample’s prediction, shown in Fig. 2.7, was analyzed. This sample has
almost the same proportion of streets as the training sample above. Therefore, this sample is
suitable for comparing the neural network’s performance for unknown urban scenarios. The
prediction and the error map are given in Fig. 3.4. As seen in the figure, the SegNET can
determine the locations of the buildings. The error map reflects this ability, where building areas
usually show low error. A blurry distribution of the signal strength around the antenna can
be observed for prediction in street areas. Compared to the prediction of the training sample
shown in Fig. 3.3, the details of the signal strength distribution, such as reflection, shadowing,
diffraction, and other propagation mechanics, are less pronounced and get worse when the
distance to the antenna is increased. The error map also shows these problems, indicated by a
lighter color in Fig. 3.4b. Some pixels of the predictions can have errors of more than 25dB.
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(a) prediction in dB scale (b) Absolute error in dB scale

Fig. 3.4: SegNET prediction of a training data sample and pixel-wise prediction error

It can be stated that the quality of the prediction is rather poor, which is reflected by the
RMSE of

RMSE = 2.8927dB.

Since two predictions are not representative of determining the performance of the CNN, the
averaged RMSE expresses the performance of the Network. The prediction accuracy depends on
whether the sample belongs to the training or test data set. Therefore, this analysis investigates
these cases separately. The first step is to compute the RMSEs of the predictions for all 3000
samples from the training data set, which results in a distribution of the RMSEs of all predictions
from samples from the training dataset. This distribution provides the calculation of the averaged
RMSE and variance. These values show the expected RMSE of the prediction of a sample from
the training set and the variation of the RMSEs. The RMSE for a training sample is

RMSE = (1.297 ± 0.2066)dB.

If the same is done for all 500 samples from the test data set, the following results can be
obtained.

RMSE = (2.4789 ± 0.3416)dB

The SegNET can predict training samples with higher accuracy, while the predictions of test
data samples tend to be more erroneous. The higher accuracy of the training sample prediction
is due to the training of the network since it has seen the input and the ground truth during the
training process. The parameters can be optimally tuned to perform the regression tasks for
training samples. The test samples are unknown to the network, so it must rely solely on the
trained parameters to perform the prediction.

The R2 Score for training samples is computed by calculating the R2 Score of each sample
from the training data set and averaged over all R2 Scores. This computation results in an
averaged R2 for the training data set, which is
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R2 = 0.8669

and the same process for the test data set leads to

R2 = 0.64.

The training data samples have a more significant R2 score than the test data, which means
that the model can explain most of the variation of the training samples. It also implies that
the regression model works modestly for the test data samples. However, predicting a test data
sample can be a basis for determining a coarse region where significant signal strength is possible.

3.2 UNet

For a fair comparison between these networks, implementing a UNet consists of the same number
of layers for the encoder and decoder. Furthermore, the layer settings (window size, stride,
activation of a layer) correspond to the SegNET from the previous section. This section will
analyze the impact of the skip connections on the predictions. Furthermore, the UNet is trained
using the MSE Loss function with the same number of epochs = 200 and batch size = 16.

3.2.1 Network Architecture and Training

A UNet processes an input that consists of a building information map and antenna information
map, i.e., X = (Xbuilding, Xantenna) and generates a single prediction Ŷ . This UNet contains
a four-layer encoder and a four-layer decoder. Since the output of the i-th level decoder layer
and the output layer of an i + 1-th level encoder layer head to the decoder inputs of the i + 1-th
level layer, the network merges those feature maps before these maps enter the decoder layer.
Ideally, these outputs have identical image sizes, e.g., the encoder output is of size N1 × N2 × K1,
where N1 × N2 is the size of a single feature map and K1 is the number of feature maps of
the output. This output is merged with a feature map from a lower level decoder layer of size
N1 × N2 × K2 to form an input of size N1 × N2 × (K1 + K2). However, this is not mandatory
since the image size can be changed, e.g., by cropping. In this thesis, the selected parameters for
each convolutional layer made cropping unnecessary. Due to the larger input tensors of the layers,
the UNet has more trainable parameters than a SegNET with the same parameters (2 395 041
trainable parameters for SegNET and 2 723 233 trainable parameters for UNet). Furthermore,
instead of pooling, this network reduces the image size using the stride method. The architecture
is given in Fig.3.5.
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Fig. 3.5: Sketch of a UNet with four encoder and four decoder layers

Moreover, it is constructed with the following components.

• Encoder

– Input_Layer

∗ Input: Tensor of size 256 × 256 × 2, consists of Building and Antenna Information,
each of size 256 × 256

∗ Output: Tensor of size 256 × 256 × 2

∗ Connected to Layer_1_encoder

– Layer_1_encoder

∗ Input: Tensor of size 256 × 256 × 2

∗ 2D Convolutional Layer, 32 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 128 × 128 × 32

∗ Connected to Layer_2_encoder, Layer_1_decoder

– Layer_2_encoder
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∗ Input: Tensor of size 128 × 128 × 32

∗ 2D Convolutional Layer, 64 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 64 × 64 × 64

∗ Connected to Layer_3_encoder, Layer_2_decoder

– Layer_3_encoder

∗ Input: Tensor of size 64 × 64 × 64

∗ 2D Convolutional Layer, 128 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 32 × 32 × 128

∗ Connected to Layer_4_encoder, Layer_3_decoder

– Layer_4_encoder

∗ Input: Tensor of size 32 × 32 × 128

∗ 2D Convolutional Layer, 256 Kernel, Window size: 4 × 4, Stride: 2 × 2, Padding:
same, Activation: ReLU

∗ Output: Tensor of size 16 × 16 × 256

∗ Connected to Layer_4_decoder

• Decoder

– Layer_4_decoder

∗ Input: Tensor of size 16 × 16 × 256

∗ Transpose 2D Convolutional Layer, 256 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: ReLU

∗ Output: Tensor of size 32 × 32 × 256

∗ Connected to Layer_3_decoder

– Layer_3_decoder

∗ Input: Tensor of size 32 × 32 × 384

∗ Transpose 2D Convolutional Layer, 128 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: ReLU

∗ Output: Tensor of size 64 × 64 × 128

∗ Connected to Layer_2_decoder

– Layer_2_decoder

∗ Input: Tensor of size 64 × 64 × 192
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∗ Transpose 2D Convolutional Layer, 64 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: ReLU

∗ Output: Tensor of size 128 × 128 × 64

∗ Connected to Layer_1_decoder

– Layer_1_decoder

∗ Input: Tensor of size 128 × 128 × 96

∗ Transpose 2D Convolutional Layer, 1 Kernel, Window size: 4 × 4, Stride: 2 × 2,
Padding: same, Activation: Linear

∗ Output: Tensor of size 256 × 256 × 1

After setting up a network, it underwent training with the same training data set used to
train the SegNET using epochs = 200, batch size = 16, and a learning rate of 10−3. Again, since
normalized maps, i.e., building maps, antenna maps, and ground truth, were used to train the
network, the results of the learning curves were converted to the dB scale when presented. The
learning curves for the loss and validation loss of the UNet training are shown in Fig. 3.6. The
learning curves of the SegNET training are also present in this figure as semitransparent lines for
comparison. After 200 epochs, the training loss of the UNet is 1.1348dB, while the SegNET has
1.2318dB, which is an improvement of 0.097dB. However, the training curves suffer from a noisy
behavior such that, by chance, the loss of the SegNET could outperform UNet after 200 epochs.
For validation loss, the result is 2.2256dB for UNet compared to 2.2762dB for SegNET, which is
a reduction of 0.0506dB. In Fig. 3.6, the validation learning curves of SegNET and UNet are
similar, while it is evident from this figure that for training samples, the loss curve is slightly
lower for a UNet.

Fig. 3.6: Learning curves for UNet. These curves are shown in semitransparent color for
comparison with the learning curves for SegNET.
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3.2.2 Prediction Results

The prediction of a particular training sample, namely the sample shown in Fig. 2.6, is shown
in Fig. 3.7a along with the corresponding error map in Fig. 3.7b. Since SegNETs can predict
training samples with remarkable accuracy, a network with more trainable parameters should be
able to predict with at least the same accuracy as the SegNET. Figure 3.7a shows reasonable
illumination of signal power in street areas and some shadows cast by buildings. However, these
shadows do not have sharp edges as in the ground truth, reflected in the deviation in these
areas in the absolute error map in Fig. 3.7b. Furthermore, the illumination details become less
pronounced for areas far from the antenna.

(a) prediction in dB scale (b) Absolute error in dB scale

Fig. 3.7: UNet prediction of a training data sample and pixel-wise prediction error

For this prediction, the RMSE is

RMSE = 1.0016dB.

This result shows that the UNet predicts this sample more accurately than the SegNET, which
generates a prediction for this particular training sample with an RMSE of 1.1956dB.

Fig. 3.8 shows the prediction for a test sample together with the corresponding error map.
Similar to the SegNET prediction of this sample, the prediction shows a blurry receive power
around the area. Coarse details of the signal strength distribution are recognizable mostly around
the antenna, and they get lost when the position is further away from the antenna. The absolute
error can reach more than 25dB for some pixels in the error map. Building areas can be detected
accurately, showing the strength of UNets for segmentation tasks.
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(a) prediction in dB scale (b) Absolute error in dB scale

Fig. 3.8: UNet prediction of a test data sample and pixel-wise prediction error

The RMSE of this prediction is

RMSE = 2.8347dB.

Moreover, it is slightly smaller than SegNET’s prediction, which has an RMSE of 2.8927dB.
The averaged RMSE and variance can determine the overall performance of the UNET.

Therefore, as in the previous section, the mean and variance of all RMSEs of all predictions of a
set were calculated. The result for training samples is

RMSE = (1.1883 ± 0.1987)dB

whereas for test samples, the result is

RMSE = (2.4747 ± 0.3268)dB.

Compared to SegNET, where the RMSE is (1.297 ± 0.2066)dB for training samples and
(2.4789 ± 0.3416)dB for test samples, the UNet exhibits a marginal increase in accuracy. However,
this architecture will be used for further simulations and not perform any modification to the
current network, except in Chapter 4, where the network includes an additional layer dedicated
for measurements.

Predicting signal strength for complicated urban scenarios can be challenging for neural
networks, and the signal strength distribution can become very complex. The signal has to deal
with more obstacles, resulting in reflection or scattering. Furthermore, these objects can alter the
signal’s propagation path. If the network cannot handle these propagation mechanics properly,
then the RMSE is expected to be significant. At the same time, a sparsely built area causes
less scattering or shadowing. This urban environment may simplify the propagation mechanics
and result in predictions with low RMSE. Therefore, it is interesting to analyze the training
and test data samples where the UNet predicts the lowest and highest RMSE, respectively, and
investigate if there are any correlations with building density.
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Figure 3.9 shows a training sample and a test sample whose UNet predictions have the lowest
RMSE. As can be seen from this figure, the placement of the buildings allows the signal to
propagate with few obstacles in the vicinity of the transmitter.

Fig. 3.9: Predictions of training and test sample that show the lowest RMSE

The results are shown in the following table.

Training Sample Test Sample
RMSE 0.6158dB 1.3538dB
rstreet 0.9609 0.7246

Predictions for the training and test samples with the highest street share offer exciting
insights. They could have generally small RMSE since there are few obstacles, and the signal
could propagate without significant distortion. The results are shown in Fig. 3.10. Compared
to Fig. 3.9, where the signal can propagate without significant obstacles in the vicinity of the
transmitter in an angle of almost 180 degrees in azimuth, the scenario in Fig. 3.9 allows the
signal to propagate in almost every azimuth directions.

Fig. 3.10: Predictions of training and test sample that have the highest street share

The results are given as follows.

Training Sample Test Sample
RMSE 0.8876dB 1.7003dB
rstreet 0.9983 0.9587
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Although fewer objects than in Fig. 3.9 and the signal is more likely to perform free space
propagation in almost every azimuth direction, the predictions have larger RMSE in both cases.

Predictions of training and test samples that show the highest RMSE are shown in Fig. 3.11.

Fig. 3.11: Predictions of training and test sample that have the highest RMSE

The following table gives the RMSE and corresponding street shares.

Training Sample Test Sample
RMSE 2.9388dB 3.5911dB
rstreet 0.9120 0.8

Although these samples have a higher street share than the samples given in Fig. 2.6 and Fig.
2.7, the network is not able to predict the signal strength with reasonable accuracy. Oddities
in the structures of the shadows are prominent effects of the prediction. They appear to be
displayed at low resolutions and have a squared structure, which is not observable in Fig. 3.7. In
addition, the error map shows the deviation from the ground truth in some areas further away
from the antenna. Unfortunately, the error map shows the absolute error. The information is
lost if the prediction for a pixel is smaller or larger than the ground truth. For example, in figure
3.11, where the building should cast shadows, common sense suggests that the UNet predicts
higher receive power in certain areas.

These samples with the highest RMSE demonstrate that the prediction accuracy depends
on many factors, such as antenna placement, building placement, and street area on a given
map. Figure 3.12 shows the RMSE and the street share for each prediction on each training and
test sample and shows no clear correlation between a higher street share and the RMSE. The
variation in RMSEs for similar street shares indicates that buildings or antenna placements play
a critical role in prediction accuracy. For the training samples, the predictions with the largest
RMSE are from samples with a relatively high street share (around rstreet = 0.8 and rstreet = 0.9).
Furthermore, the RMSE shows more variation with higher street shares. RMSEs of predictions
from test data samples show a slightly decreasing behavior for the higher street areas.
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Fig. 3.12: This plot shows the RMSE and the corresponding street share rstreet for each prediction
of each training and test data sample.

Finally, R2 is

R2 = 0.8836,

for training data samples, and it shows a small improvement to SegNET, where the R2 score
is R2 = 0.8669, and for test samples, it is

R2 = 0.6461.

R2 score for test samples is slightly better compared to R2 = 0.64, what the SegNET delivers.

3.3 Summary

• Two types of neural networks, namely SegNET and UNet, will be analyzed for signal
strength prediction tasks

• SegNETs consist of an encoder and a decoder. These are a sequence of (transpose)
convolutional layers. Instead of pooling or dropout layers, striding fulfills the task of
increasing or decreasing the feature maps.

• UNets are similarly structured, but UNets have a skip connection between the corresponding
encoder and decoder layers.

• UNets perform slightly better than SegNETs, even though both networks have the same
number of layers and the configurations of each corresponding layer of both networks are
the same.
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• The accuracy of the prediction depends on the urban scenario. It is harder to obtain
accurate predictions when the signal has many obstacles in its path that cause shadowing,
scattering, reflection, and other phenomena.



Chapter 4

Measurement Channel for Local Calibration

In this analysis, the question arises of whether the UNet can improve the prediction when it
receives additional information about the signal strength across the city map. Methods such as
crowd sensing (CS) can be applied to investigate the wireless properties in a cell. These methods
exploit the property that these devices are distributed throughout the urban area and can collect
information about signal quality and location data and provide this local information to the
radio network [36]. This information provides the UNet knowledge about the signal strength at
specific locations and can be used to calibrate it implicitly.

This chapter will examine the performance of this approach by using different amounts of
local information. A comparison of a UNet with a measurement channel versus one without
highlights the increased accuracy gained from additional signal strength information. Adding local
information to the network will support the network with information about the signal strengths
in some locations and thus improve the accuracy of the prediction. Due to the accessibility of
measurements across the city map, baseline generation is now feasible. This information on the
signal strength serves as support points and observations. Baselines provide a foundation for
evaluating the prediction accuracy of the UNet model.

4.1 Additional Measurement Input

A crucial assumption is the correctness of local signal strength information obtained from
measurements, i.e., the signal strength values of specific positions on the map equal the ground
truth at their positions. Modification of the network allows signal strength information to pass
through. The most straightforward implementation is to increase the input by one channel, i.e.,
including a third feature map dimension and increasing the dimension of the input array of size
256 × 256 × 2 by one 256 × 256 × 3, which then requires an additional map of the same size as
the other input maps. This map stores all the measurement information for a particular sample.
A sketch is given in Fig. 4.1. This work investigates the effect of this additional channel on the
learning curves and the prediction.
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Fig. 4.1: Sketch of a UNet with three-channel input and single-channel output. The input
consists of the two maps that have been used and the measurement map. The output
is the signal strength prediction for a given urban scenario and antenna setting.

4.1.1 Measurement Map

An array, namely measurement map, stores the signal strength information and the locations of
the measurements. The additional channel for the measurement map is called the measurement
channel. Thus, the network has to process an additional image with 256 × 256 pixels. Therefore,
the input size of the first UNet layer is 256×256×3. Methods to generate this map are presented
in [17], [37] and will be briefly summarized here. The process of creating a measurement map,
denoted as Xmeasurement, begins with a matrix M with elements

Mkl =

��1, if position [k, l] is measured

0, else
. (4.1)

Assuming that a simulation exists for a specific urban scenario, declared as the ground truth Y ,
the following equation

Xmeasurement = M ◦ Y , (4.2)

simulates measurements, including their positions, where ◦ represents a Hadamard product,
which is an element-wise product. This thesis utilizes the following definition for the measurement
map, which is given by

Xkl,measurement =

��������
Y kl, if position [k, l] is street area and measured

0, if position [k, l] is building area

−1, else

. (4.3)
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In contrast to (4.2), the measurement map additionally contains information about buildings’
locations. Knowing the exact placement of buildings in an urban scenario justifies this choice.
Since signal strength inside buildings is irrelevant in this thesis, the corresponding values are zero.
Unmeasured street areas are set to −1 to inform the CNN that there is no information about that
region. The authors in [17] have done an analysis with measurements of about 5% of the area and
were able to generate complete radio maps with reasonable error. Therefore, this measurement
amount is the reference in this simulation. To obtain measurements covering about 5% of the
road area, first recall the set Nj,streets, the set of index tuples [k, l] of a sample j belonging to the
road area, and Nj,building, the set of index tuples [k, l] of a sample j belonging to the building
area. Then, for all elements of the measurement map Xkl,measurement that belong to the street
area [k, l] ∈ Nj,streets are drawn from a probability mass function (pmf) P (Xkl,measurement) with

P (Xkl,measurement = Y kl) = 0.05

P (Xkl,measurement = −1) = 0.95,
(4.4)

while the elements with indices [k, l] ∈ Nj,buildings are Xkl,measurement = 0. A more general
formulation for any probability that the street area position [k, l] is measured is

P (Xkl,measurement = Y kl) = p

P (Xkl,measurement = −1) = 1 − p
(4.5)

Using these expressions ensures that the measurement covers, on average, 5% or p of the street
regions. In this thesis, this value is termed as normalized measurement density (NMD), referring
to a measurement density for a given street area. It gives the expected amount of measurements
for a given sample. Also, when defined this way, the measurements are distributed over the
entire street area of a sample. An example is given in Fig. 4.2a, while Fig. 4.2b shows the
corresponding ground truth. The measurement map shows the signal strength values of a couple
of points evenly distributed over the street area. It also shows silhouettes of buildings that have
a signal strength of zero.

(a) Measurement Map (b) Ground Truth

Fig. 4.2: Measurement Map and Ground Truth
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4.1.2 Training and Test Dataset

Training and test datasets generated in Sec. 2.3 are taken for this analysis. Since the generation
of new sets in future simulations relies on these sets, this thesis labels the training dataset as
XTrain and the test dataset as XTest. Each of the samples of the training dataset XTrain and test
dataset XTest contains three maps, namely the building information map, the antenna information
map and the ground truth, where the building information map and the antenna information
map form the input of a sample, i.e. X = (Xbuilding, Xantenna), while the ground truth Y is used
for training or evaluating the predictions. The construction of the training and test dataset with
measurement map was simply the addition of a corresponding measurement map Xmeasurement to
each sample from XTrain and XTest. The Alg. A.1 describes the algorithm for its implementation.
The input of a sample from the new set is now X = (Xbuilding, Xantenna, Xmeasurement). For
this analysis, each sample has NMD of NMD = 5%, which will be called XTrain,5% and XTest,5%.
Since the samples have different urban scenarios, the expected number of measurements depends
on the street share. The first step to estimate the expected average number of measurements
for a randomly selected sample is to determine the average street share for all samples, which
is r̄street = 0.767. An urban scenario, discretized by 256 × 256 = 65 536 pixels, has on average
0.767 · 65 536 = 50 266 pixels of street area. With an NMD of NMD = 5%, the expected amount
of information about signal strength and its location is 2513. In this implementation, the training
and test datasets have the same urban environment and antenna placement in the same order
as their corresponding training and test datasets XTrain and XTest. This choice simplifies the
comparison of the three-channel UNet with the two-channel UNet of section 3.2.

4.1.3 Network Training

The network with an additional measurement channel was trained with samples from a training
dataset XTrain,5%. The training was made with epochs = 200, batch size = 16 and a learning rate
of 10−3. The learning curves are shown in Fig. 4.3 together with the learning rate of a two-channel
UNet without measurement support as semitransparent curves. It shows that the training loss
and the validation loss of the UNet with measurement support has a steeper decline at the
beginning of the training process than the UNet without measurement support and a smaller
RMSE at the end. In particular, the measurement-assisted network significantly reduces the loss
of test samples. The behavior in terms of convergence, steepness, and noise of the learning curves
of the measurement-supported UNet are similar to those of the non-measurement-supported
UNet. The steepness learning curve for training samples decreases with an increasing number of
epochs. However, this learning curve stays within the selected epoch range, while the learning
curve for test samples converges at a very early stage of training.

The training loss after training is 0.6626dB for the three-channel input UNet and 1.1348dB for
the two-channel input UNet, which is a reduction of 41.61%. The validation loss is reduced from
2.2256dB for a two-channel input UNet to 1.2166dB for a three-channel input UNet, which is a
reduction of 45.34%.
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Fig. 4.3: Learning curves for a measurement assisted and not a non-assisted UNet

4.1.4 Prediction Results

First, the prediction of a training sample whose building and antenna information is shown in Fig.
2.6 will be presented. Additionally, this sample has a measurement map with NMD = 5%. This
sample is known to the network due to the training. The prediction result is in the upper image
in 4.4a, while the lower image shows the error map, i.e., the pixel-wise absolute error. Since
exact information about the signal strength is available at some locations, linear interpolation,
and KNN regression can be performed to generate baselines for benchmarking the UNet. The
algorithms are in Alg. A.2 and Alg. A.3. The baselines and the corresponding error maps are
in 4.4b and 4.4c. All methods show reasonable signal strength maps with detailed illumination
and shadows. However, the error maps show that linear interpolation and KNN regression have
problems calculating signal strength near buildings, possibly due to incorrect building detection.
They also show deviations from the ground truth at the edge of shadows. The UNet error map
does not show significant deviations from the ground truth compared to other methods1.

1Note that all error maps have the same scale, so these maps are comparable to each other.
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(a) UNet Prediction (b) Linear Interpolation (c) KNN Regression

Fig. 4.4: The first row shows the signal strength map that is generated with a UNet, linear
interpolation, and KNN regression. The second row shows the error map of each
method.

The RMSE of the UNet prediction prediction, linear interpolation, and KNN regression are
given in the following table.

UNet Linear
Interpolation

KNN
Regression

RMSE 0.7837dB 2.3118dB 2.5110dB

Overall, UNet produces the most accurate predictions, with minor deviations and generally
small RMSE. One can argue that the CNN has seen this sample during training and, therefore,
can easily predict the signal strength for this sample, while other methods have to rely solely on
measurements. Therefore, a test sample with a similar building-to-street ratio, shown in Fig.
2.7, will be chosen with a measurement map with NMD = 5% for the following prediction. The
network has never seen this sample, i.e., it has to generate a prediction without knowing the
ground truth. In contrast to the prediction of training data samples, it is more comparable to
other methods used in this section. The results are in Fig. 4.5. In Fig. 4.5a, some light spots
can be found, especially around buildings, that indicate deviation from the ground truth in these
regions. The same applies for baselines.
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(a) UNet Prediction (b) Linear Interpolation (c) KNN Regression

Fig. 4.5: The first row shows the signal strength map that is generated with a UNet, linear
interpolation, and KNN regression. The second row shows the error map of each
method.

The RMSE of each method is given in the following table

UNet Linear
Interpolation

KNN
Regression

RMSE 1.5468dB 1.9595dB 2.0994dB

As expected, the RMSE of the UNet prediction of this test sample is more significant than
that of a training sample. Furthermore, it is smaller than the RMSE of the baselines, which
interestingly is smaller than the RMSE of the baselines of the training sample discussed earlier.
The linear interpolation and the KNN regression do not depend on whether the sample is from
the training or the test dataset but only on the support points and the observation, respectively.

The overall performance of this three-channel input UNet, supported by measurements with
NMD = 5%, will be expressed in terms of averaged RMSE separately for training and test
samples. For 3000 training samples from the training dataset, the averaged RMSE of each
prediction RMSE is

RMSE = (0.7099 ± 0.1)dB

whereas for the 500 test samples from the training dataset, it is
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RMSE = (1.2693 ± 0.2421)dB.

4.2 UNet for Fixed Measurement Density

So far, the focus was on UNet for samples with measurement maps with a specific NMD, which in
this case was NMD = 5%. In this section, the investigation will focus on variations in the NMD,
with two approaches available. Analysis of the behavior of the UNet for different NMD enables
the investigation of the effect of the variations in the NMD. The first approach is generating
multiple training and test datasets, each with different NMD and where each measurement
map of a training and the corresponding test dataset has the same particularNMD. The second
approach will be part of the discussion in the next section.

The training of the UNet will take place with samples from a training dataset with a specific
NMD, and it will predict samples with the same NMD. For example, a UNet involves the training
dataset that contains samples with NMD = 1% for training purposes and predicts samples with
NMD = 1%. Then, the performance of the UNet will be analyzed by evaluating the predictions.
Next, the UNet will perform training with a training dataset with higher NMD and undergo
performance evaluations.

The process will continue until the set covers the specified NMD range. From expectations, the
more measurements passed through the network, the more knowledge about the signal strength
the UNet receives to generate more accurate predictions.

4.2.1 Training and Test Dataset

These sets are the basis for analyzing the UNet for training and test data sets with different
NMD. Based on the training XTrain and test datasets XTest created in Section 2.32, training
and a test dataset was created for each NMD ∈ NNMD = {1%, 2%, 5%, 10%, 20%}, which is
called XTrain,NMD and XTest,NMD, where NMD ∈ NNMD. For training and dataset with certain
NMD, a measurement map Xmeasurement was created with this NMD for each sample from XTrain

and XTest. Then Xmeasurement was added to the input sample of XTrain and XTest to obtain
X = (Xbuilding, Xantenna, Xmeasurement) for a training XTrain,NMD and test dataset XTest,NMD
with a certain NMD. Due to this choice of implementation, the sets XTrain and XTrain,NMD,
with NMD ∈ NNMD, have the same set of urban scenarios in the same order. They only differ
in their measurement maps depending on the NMD XTrain,NMD. The same is true for the
training datasets XTest and XTest,NMD, with NMD ∈ NNMD. Examples of measurement maps
with different NMD for a given urban scenario and antenna placement can be seen in Fig. 4.6.

These training and test datasets will be reused, i.e. XTrain, XTest, XTrain,NMD and XTest,NMD,
where NMD ∈ NNMD, mostly for prediction, in further analysis. Therefore, labels will be added
to these sets to avoid confusion. In some cases, a UNet trained with specific training datasets
predicts a sample with the same urban environment contained in the dataset that has been used

2These are sets that have input samples consisting of two maps (Xbuilding, Xantenna) and their corresponding
ground truth Y .
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for training but with a different measurement map. So, the sample is a training sample from a
different training dataset. Therefore, this training dataset will be labeled as known environment,
since the urban scenarios are known to the network, and the test dataset accordingly as unknown
environment.

Fig. 4.6: Measurement maps for different NMD for an exemplary urban environment.

4.2.2 Network Training

Since there are five training and five test datasets with different NMD from the set NNMD, the
training of the UNet was carried out with these different training datasets XTrain,NMD, with
NMD ∈ NNMD, and the learning curves for each dataset was examined. The results of training
with 200 epochs and a batch size of 16 are in Fig. 4.7, which shows the learning curves for
training data for different NMD in Fig. 4.7a and the learning curves for test data for different
NMD in Fig. 4.7b. Furthermore, the Fig. 4.7 shows the learning curves for the two-channel
UNet for comparison. In both plots, noisy behavior in the learning curves is present. In both
plots, noisy behavior in the learning curves is present. In this training process, large spikes
are common in the learning curves for the training dataset, which can lead to a higher loss for
training data sets with larger NMD than for lower NMD. For example, training the UNet with
training samples from XTrain,2% has a higher final loss than training with training samples from
XTrain,1%. Test data samples share the same behavior, but the spikes are not as pronounced as
for training samples, and the final validation loss is lower for samples with larger NMD. The
validation losses converge around 50 epochs, while the training losses do not converge in the
epoch range.
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(a) Learning Curves for Training Data (b) Learning Curves for Test Data

Fig. 4.7: Learning Curves for various NMD

4.2.3 Prediction Results

In Section 4.1.4, a UNet was analyzed for a selected sample from a training and a test dataset
with NMD = 5%. This section completes the remaining NMD from NNMD. A UNet trained
with samples from XTrain,NMD with a specific NMD performed the prediction of a training
sample from XTrain,NMD with the same NMD. Furthermore, this sample has the same urban
environment with the exact antenna placement as the training sample in Section 4.1.4, which
is essentially Fig. 2.6. The following Tab. 4.1 shows the RMSE of the prediction and the
baselines for NMD from NNMD for this particular city map. Here, the RMSE does not decrease
monotonically with increasing NMD.

Tab. 4.1: RMSE for a particular training sample with different NMD

NMD UNet Linear Interpolation KNN Regression
1% 0.8682dB 2.6919dB 2.9705dB
2% 0.8562dB 2.4833dB 2.7499dB
5% 0.7837dB 2.3118dB 2.5110dB
10% 0.7723dB 2.1189dB 2.2792dB
20% 0.6272dB 2.0981dB 2.1854dB

The same analysis for the test sample, where the urban environment and antenna placement are
in Fig. 2.7, delivers Tab. 4.2. This table demonstrates for unknown urban environment that the
more information about the signal strength the UNet receives, the more accurate the predictions
it can generate. Also, the baselines become more accurate as the linear interpolation and KNN
regression have access to more information. For small NMD, i.e., when the measurement map
contains sparse information about the signal strength, the UNet can still generate a more accurate
prediction than the baseline generation methods, since it can rely on the model.
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Tab. 4.2: RMSE for a particular training sample with different NMD

NMD UNet Linear Interpolation KNN Regression
1% 2.0367dB 2.5811dB 2.4710dB
2% 1.8221dB 2.2602dB 2.2435dB
5% 1.5468dB 1.9595dB 2.0994dB
10% 1.2352dB 1.7946dB 1.9020dB
20% 1.0749dB 1.7196dB 1.8077dB

As done before, the averaged RMSE determines the overall performance of the UNet for
training and test samples. The performance of linear interpolation and KNN regression is the
benchmark for comparison. The performance of these two methods is independent of whether
the measurement map from which the support points and the observation belong to the training
or the test dataset. Therefore, the performance of these methods will not be distinguished
for training or test samples. For computationally efficiency, the averaged RMSE computation
involved only a subset of the training and test dataset. The subset for a specific NMD contains
500 randomly selected samples from the training dataset and 250 samples from the same NMD
test dataset. The average RMSE and variance followed from the calculation for each RMSE for
every baseline derived from measurement maps in this set. For the averaged RMSE of the UNet
for a given NMD, the complete training XTrain,NMD and test dataset XTest,NMD was used. The
result is displayed in Fig. 4.8. The corresponding table with numerical results is in Tab. B.1 for
the UNet and Tab. B.2 for the baselines. On average, the RMSE decreases as the density of
measurements increases. This behavior holds for training and test data and UNet prediction,
linear interpolation, and KNN regression.

The UNet predictions for training and test samples have the smallest RMSE over any NMD
compared to the baselines in the given range. Fascinatingly, even with small measurement
densities, the UNet can generate more accurate predictions than linear interpolation and KNN
regression methods. Even for test samples, the UNet yields a smaller averaged RMSE than the
baselines. The UNet has learned the propagation characteristics from the existing radio map
and can apply that knowledge to unknown urban scenarios. Furthermore, the averaged RMSE of
the UNet for the training dataset does not show a monotonically decreasing behavior due to the
noisy behavior and spikes during the training process.
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Fig. 4.8: Box plot of the RMSE over NMD for UNet, linear interpolation, and KNN regression.
The training and test datasets are distinguished for UNet only. The points represent
each method’s averaged RMSE for a given NMD. Information about the distribution
of the RMSE for a given NMD and methods can be retrieved from the box plot. The
outliers are not displayed in this plot.

Next is a discussion on the R2 score of a UNet for training sample prediction, a UNet for test
sample prediction, linear interpolation, and KNN regression. The overall R2 score for a given
NMD is the average R2 score for each prediction or baseline. Again, a subset determines the
computation of the R2 score due to computational efficiency. Results for the R2 score over the
NMD can be seen in Fig. 4.9, where the UNet prediction of the training dataset has the highest
R2 score over all NMD, which by definition means that the input explains most of the variation.
The R2 score for the test dataset starts from a lower R2 score and increases with increasing
NMD, but it is always smaller than that of the training dataset. Other methods, such as linear
interpolation and KNN regression, start with a much lower R2 score. They increase with more
measurements, especially at the beginning of the graph, but will never outperform the neural
network.

Fig. 4.9: Averaged R2 score over NMD for different methods
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4.3 UNet for Variable Measurement Density

So far, this thesis has analyzed a UNet trained with samples, each with the same measurement
density. Therefore, the network has learned to process measurement maps with a specific NMD.
Usually, this network predicts samples from the same training or the test dataset with the same
NMD. Some experiments have shown that if a sample has a different NMD than the training
dataset used to train the network, then the network will generate considerably less accurate
predictions, even if the measurement density is higher than that NMD. Therefore, this network
will be called NMD-specialized UNet since it prefers measurement maps with NMD, which is
exactly the NMD of XTrain,NMD used to train the UNet. The recommendation specifies that
the test samples have the same NMD as the training samples. Therefore, the measurements
for a region should fulfill this criterion in the real world. However, a more realistic scenario is
that the density of measurements may vary from sample to sample, i.e., some samples contain
more or less measurements per square meter in street areas than other samples. In this section,
investigations focus on the performance of a UNet for samples with different NMD. This UNet is
called NMD-flexible UNet.

4.3.1 Training and Test Dataset

The training and test datasets discussed in this section served only the training and validation of
the CNN. The training XTrain and test dataset XTest created in Sec. 2.3 are the starting point.
Again, a measurement map was added to each sample from these sets to obtain new training
and test datasets, which is called XTrain,var, XTest,var, to indicate the variation of the NMD of
each sample in the sets. The urban environments of the samples in XTrain and XTrain, var are
the same and have the same order. The same is true for XTest and XTest,var. The generation
of measurement maps took place with different NMD, and a uniform distribution determines
the value for the NMD for each map. The uniform distribution has limits from 2% to 7%, i.e.,
NMD ∼ U(0.02, 0.07). The network will learn how to process measurement maps with NMDs
that are within this range. The choice of the range was, in a way, such that it is possible to reuse
some samples that have smaller NMD than the lower limit, i.e. NMD < 2%, and larger NMD
than the upper limit, i.e. NMD > 7%, to investigate how the UNet performs when the NMD of
the sample is outside the range trained NMD range.

4.3.2 Network Training

The learning curve of the NMD-flexible UNet for the training dataset XTrain,var is shown in Fig.
4.10a and the validation using XTrest,var is shown in Fig. 4.10b in pink color. Furthermore, the
same learning curves from Sec. 3.2.1 for the UNet are shown for comparison and are named
Without Measurement Channel in the legends. These curves represent the training loss and
validation loss over epochs of a two-channel input UNet trained with XTrain and validated with
XTest, which are sets of samples without measurement maps. In addition, this Fig. 4.10 shows the
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learning curves for each NMD ∈ NNMD of the NMD-specialized UNet trained with XTrain,NMD
and validated with XTest,NMD. These are labeled with 1% NMD, 2% NMD, and so on.

The Fig. 4.10 shows that the training loss and the validation have similar behavior and have
slightly higher losses than the losses from the NMD-specialized UNet that has trained with
samples with NMD = 5%. Unfortunately, noisy behavior is present during the training phase.

(a) Learning Curves for Training Data. (b) Learning Curves for Test Data.

Fig. 4.10: Learning curve (highlighted) for training and test datasets with measurement cards
with different NMD from NMD = 2% to NMD = 7%. The validation loss has also
been computed with samples with different NMD. The legend calls this curve is
called mixed NMD. The learning curves from the last section are also shown in
semitransparent colors for comparison. These are learning curves from a two-channel
input UNet and learning curves from NMD-specialized UNets, where each of which
is trained with samples having the same NMD from the set NNMD.

4.3.3 Prediction Results

This NMD-specialized UNet explicitly predicts samples with measurement maps with NMD = 5%
with high accuracy. The question arises about how the NMD-flexible UNet performs when it
generates a signal strength prediction with samples with NMD = 5%. For a fair comparison, the
training and test samples should have the same urban scenarios and antenna placements as the
training and test samples in Sec. 4.2.3, which are depicted in Fig. 2.6 and Fig. 2.7. Since it is
unlikely that XTrain,var contains this particular training sample with the same urban environment
and antenna placement and an NMD of NMD = 5%, the corresponding training sample is from
XTrain,5% and it will be called known environment with NMD = 5%, because the NMD-flexible
UNet knows the environment due to the training process, but the measurement map is unknown.
The prediction result is given in Fig. 4.11a and the pixel-wise absolute error in Fig. 4.11b.
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(a) Prediction (b) Absolute Error

Fig. 4.11: Prediction of a known environment with measurement map with NMD = 5%.

Computing the RMSE allows a direct comparison of this prediction and the prediction of an
NMD-specialized UNet with NMD = 5%. For this known environment, the RMSE is

RMSE = 1.0747dB,

which is 0.291dB greater than the prediction of the NMD-specialized UNet with NMD = 5%.
This NMD-specialized UNet has an advantage over NMD-flexible UNet because this known
environment with NMD = 5% is contained in the training dataset XTrain,5%, that was part of
the training data set for the NMD-specialized UNet, therefore it has already seen this sample.
Consequently, it can predict the signal strength with more accuracy.

A test sample from Fig. 2.7 with a measurement map with NMD = 5% serves for the following
analysis. This sample is unknown to both networks, i.e., the NMD-specialized UNet and the
NMD-flexible UNet. The NMD-flexible UNet produces a signal strength prediction that is shown
in Fig. 4.12a and the pixel-wise absolute error is shown in Fig. 4.12b.

(a) Prediction (b) Absolute Error

Fig. 4.12: Prediction of an unknown environment with measurement map with NMD = 5%.

A measure to quantify the quality of the prediction is again the RMSE, and it is
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RMSE 1.554dB,

moreover, it is only 0.0072dB larger than the prediction with the NMD-specialized UNet for
NMD = 5%. Thus, both networks have similar accuracy in predicting signal strength for a
unknown environment.

Next, the discussion focuses on the overall performance of the NMD-flexible UNet for each
NMD ∈ NNMD. The averaged RMSE expresses this performance. This analysis distinguishes
the averaged RMSE for known environment and unknown environment. Therefore, for each
NMD ∈ NNMD the averaged RMSE was determined for known environments by computing
the RMSE of all predictions of all samples in the training datasets XTrain,NMD. The process
to compute the RMSE for unknown environments was similar and included XTest,NMD for
an NMD ∈ NNMD. Fig. 4.13 compares these results with the averaged RMSE of the NMD-
specialized UNet for (un)known environments3 for various NMD and the baselines. For clarity,
these plots exclude the statistical characteristics. In addition, Fig. 4.13 compares the networks
and the baseline. It shows that the NMD-flexible UNet generates predictions with lower expected
accuracy for a known environment than when it is unknown. For larger NMD, the expected
accuracy of the prediction seems to decrease when the NMD is well outside the trained range of
2% < NMD < 7%. Speculatively, the prediction might have a larger RMSE for much higher
NMD > 20% than the baseline methods using this NMD. In conclusion, the network cannot
handle higher measurement densities than the NMD of the samples used for training. One can
imagine how an NMD-specialized network would behave when it predicts samples with a different
NMD than the NMD used for network training. The NMD-specialized UNet generates more
accurate signal strength predictions for unknown environments than the NMD-flexible UNet, and
the accuracy increases with larger NMD. However, the drawback of the NMD-specialized UNet is
that it cannot handle an extensive range of NMD and must be trained for each NMD separately.

Fig. 4.13: This graph shows the averaged RMSE of predictions from NMD-specialized and
NMD-flexible UNet of known and unknown environments for NMD ∈ NNMD. It also
shows the RMSE of the baselines as a function of the NMD.

3Note that for the NMD-specialized UNet for a given NMD, the known environment with NMD is the training
data set used to train that network, i.e. it has already seen those samples.
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Finally, this paragraph compares the R2 scores with other methods for the NMD-flexible
UNet, as shown in Fig. 4.14. The R2 score is highest when the samples have an NMD around
the trained range of the NMD-flexible UNet, which is 2% < NMD < 7%. Furthermore, when
the environment is known, and NMD ≤ 10%, the R2 score of the prediction is higher than the
R2 score of the prediction of the unknown environment. However, for NMD = 20%, the model
becomes worse for the known environment than for the unknown environment. From the behavior
of the R2 score, it is possible that for NMD > 20, the R2 score will continue to decrease and
become worse than the baselines.

Fig. 4.14: R2 score for NMD-specialized and NMD-flexible UNet and baselines

4.4 Summary

• The prediction of a UNet becomes more accurate when supported with additional informa-
tion about the signal strength.

• The information is encoded in the measurement map. The UNet will be trained with it to
learn to process this additional information.

• The more information passed to the UNet, the higher the prediction accuracy. However,
the accuracy increases slowly with NMD.

• The UNet prediction for a given NMD is more accurate than the baselines generated with
linear interpolation and KNN regression using the information of the measurement map
with this certain NMD.

• A UNet must learn to deal with samples with different NMD to handle it.



Chapter 5

Realistic Measurement Conditions

The uniform distribution of the measurements across the entire urban area is unrealistic, even for
CS. People are not evenly distributed on the streets and often gather in busy areas. Section 5.3
presents a random walker that explores the streets and scans only parts of the urban environment,
providing dense signal strength information for certain regions while leaving others unscanned.
The performance of the UNet prediction will be investigated and compared to the baselines, where
the information gathered by the random walker provides the support points and observations.

So far, the signal strength measurements are error-free. Realistically, however, any measurement
is subject to error. A radio measurement device contains many components, such as a receiver
antenna, amplifier, mixer for frequency conversion, filters, and many more, and each adds noise
to the measurement. In addition, the information from the locations of the measurements can be
erroneous due to GPS error. In the first two sections, i.e., Sec. 5.1 and 5.2, the measurements
include distortion in signal strength and position, and these sections conduct the analysis of how
the UNet performs prediction under this condition. The predictions with baselines generated
with methods using distorted measurements serve as a benchmark for the network.

5.1 Signal Power Noise

In this section, the signal power contains white noise, and investigations on the UNet allow an
analysis of how it handles the distortion of measurements. Therefore, a method will generate a
training and test data set, where each sample contains a measurement map with distorted signal
power measurements. An additive white Gaussian noise given by the variance σ2 determines the
intensity of this distortion. A network trained with a dataset where each measurement suffered
from the same noise with variance σ2 will be called a signal noise specialized UNet. This UNet
will predict samples with measurement maps where the measurement is disturbed by white noise
with the same variance σ2. Only the behavior of the signal power noise is interesting for this
analysis. Therefore, the position measurement is considered correct.

5.1.1 Training and Test Dataset

The basis was the training XTrain,5% and test dataset XTest,5% from Section 4.1.2, which already
contain measurement maps with an NMD of MND = 5%. The measurement map delivers
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information about the measurement, i.e., the position of the measurement on the map and
its normalized signal strength value. A method extracted this information and added a zero
mean random value N (0, σ2). Any values below zero due to addition with a negative random
value, and therefore below the noise floor, were set to −1. The interpretation is that they are
outliers, and the evaluation usually excludes them. Therefore, the more variance in the noise,
the more information is lost, and the NMD will be slightly lower than the original. Training and
test datasets were created for each σ2 ∈ N 2

σ = {0.01, 0.02, 0.05, 0.1, 0.2}. The resulting training
dataset will be denoted as XTrain,S,σ2 and the test dataset as XTrain,S,σ2 , where S in the index
indicates the distorted signal power and σ2 ∈ N 2

σ . Using this implementation, the training data
sets XTrain,S,σ2 , σ2 ∈ N 2

σ and the training dataset XTrain,5% have the same urban scenarios in
the same order. Furthermore, each corresponding measurement map of XTrain,S,σ2 , σ2 ∈ N 2

σ ,
and XTrain,5% has identical measurement distributions for a given urban scenario and antenna
placement. The same is true for the test datasets. In other words, for a given building and
antenna information map, the locations of the measurements are the same in each training and
test dataset. The measurements of the same sample of each training or test dataset and the
same position on the map differ only in their perturbations, i.e., the measured signal strengths
might have different values.

It is possible to create datasets by generating new measurement maps from scratch. This
process would result in datasets with a different number and distribution of measurements for a
given urban scenario and antenna placement, which may also affect the prediction. Therefore,
white noise was added to each existing measurement to study only the effect of measurement
error on the prediction.

5.1.2 Network Training

This Section focuses on network training with the support of erroneous measurements. Note that
there were no modifications to the ground truth. Since there are five training and test datasets,
i.e., one for each σ2 = {0.01, 0.02, 0.05, 0.1, 0.2}, UNet was trained for each of these σ2. This
UNet will be called signal noise specialized UNet since it predicts samples with measurement
distortion with a given σ2. The network trained with epochs = 200 and batch siz e = 16. The
learning curves for training and test data samples are shown in Fig. 5.1. The left plot in this
figure shows the learning curves of the training samples for different σ2, and the right plot
shows the learning curves of the test samples for different σ2. The standard deviation in the
dB scale indicates the noise intensity. Furthermore, the learning curves for training and test
samples that are not distorted (σ = 0dB) and learning curves for a non-measurement supported
UNet (labeled as Without Measurement Support) are shown for comparison. mi Due to the
noisy behavior of the training sample learning curves, it is difficult to determine the losses of
each UNet individually. However, these learning curves are all lower than the learning curves of
non-measurement-supported training and more significant than the case where the measurements
are error-free. The effect of measurement uncertainty is more apparent for the learning curves of
the test data sample than for training data. The corresponding plot shows that for error-free
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measurements, the (R)MSE loss is lowest over an extensive range of epochs, as expected, and
the loss increases with increasing noise intensity σ. Fascinatingly, even the learning curve for
test samples with large measurement perturbations, i.e., σ2 = 0.2, shows smaller losses over
an extensive range of epochs than the learning curve of a non-measurement-assisted UNet. A
σ2 = 0.2 variance corresponds to a standard deviation of σ = 0.4472, which is σ = 12.97dB on a
dB scale. Adding a random value with this standard deviation to a measurement would mean a
multiplication by a factor of 19.815 on a linear scale. This validation loss for this noise intensity
is smaller than that of UNet without a measurement channel, even if the additional measurement
passed through the network contains significant uncertainties.

(a) Learning Curves for Training Data (b) Learning Curves for Test Data

Fig. 5.1: Learning Curves for different σ2

5.1.3 Prediction Results

This paragraph presents the results of the UNet prediction of a sample of a known urban scenario,
shown in Fig. 2.6. This sample includes a measurement map that is affected by an additional
white noise with variance σ2 = 0.05, i.e., the sample is in XT rain,S , 0.05. First, a signal strength
prediction was generated for this sample using a signal noise specialized UNet for σ2 = 0.05.
Then, a NMD-specialized UNet generated a prediction using this sample for comparison. The
comparison also includes Baseline-generating methods such as linear interpolation and KNN
regression. Predictions, baselines, and the corresponding error maps showing the pixel-wise
deviation from the ground truth are shown in Fig. 5.2. Figure 5.3a shows the prediction of a
noise-specialized UNet for this particular sample. The error map below shows that this particular
UNet can compensate for the measurement uncertainties and produce a signal strength prediction
with a slight deviation from the ground truth. A NMD specialized UNet is not trained on
erroneous measurements, resulting in a noticeable deviation from the ground truth prediction,
as shown in Fig. 5.2b. Figures 5.2c and 5.2d show that the uncertainties strongly affect the
baselines, and it is not possible to generate proper baselines with either linear interpolation or
KNN regression.
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(a) Signal Noise Special-
ized UNet

(b) NMD-Specialized
UNet (c) Linear Interpolation (d) KNN Regression

Fig. 5.2: The first row shows the signal strength map for a known environment, that is generated
with a Signal Noise Specialized UNet for σ2 = 0.05, NMD-specialized UNet for
MND = 5%, linear interpolation and KNN regression. The second row shows the error
map of each method.

The RMSE for each method is given in the following table.

Signal Noise
Specialized

UNet

NMD-
Specialized

UNet
Linear Interpolation KNN Regression

RMSE 0.8868dB 3.6943dB 5.1630dB 4.4465dB

The predictions of an unknown environment sample shown in Fig. 2.7, will be analyzed, which
additionally has a distorted measurement map with σ2 = 0.05 that is in XT rain,S , 0.05. Similar
to the analysis of the prediction of the training sample, the question arises as to how a signal
noise specialized UNet and an NMD-specialized UNet will perform. Furthermore, comparison
includes linear interpolation and KNN regression. The visual result is in Fig. 4.5. As can
be seen, the signal noise specialized UNet performs the best since it knows how to counteract
measurement noise. This noise seems to confuse the NMD specialized UNet so that the signal
strength prediction shows a blurry illumination of the signal strength, and buildings do not cast
shadows with a clear, detailed structure.
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(a) Signal Noise Special-
ized UNet

(b) NMD-Specialized
UNet (c) Linear Interpolation (d) KNN Regression

Fig. 5.3: The first row shows the signal strength map for an unknown environment, that is
generated with a signal noise specialized UNet for σ2 = 0.05, NMD-specialized UNet
for MND = 5%, linear interpolation and KNN regression. The second row shows the
error map of each method.

The RMSEs given in the following table show the expected results. The signal noise specialized
UNet has the highest accuracy for this sample. Interestingly, the performance of the NMD-
specialized UNet is similar to the linear interpolation and is worse than the KNN regression.

Signal Noise
Specialized

UNet

NMD-
Specialized

UNet
Linear Interpolation KNN Regression

RMSE 2.0345dB 4.3537dB 4.3608dB 3.7708dB

After displaying the performance of the prediction and baseline generation for a single sample
from the training XTrain,S,0.05 and test dataset XTest,S,0.05, it is interesting to know the overall
performance of these methods, which the averaged RMSE expresses. Each method exhibits
different averaged RMSE over noise variance σ2. The methods are signal noise specialized UNet,
where this UNet was trained separately for each σ2 ∈ Nσ2 and performed predictions for samples
containing measurements with signal noise given by σ2 of the training dataset used for training,
a NMD-specialized UNet for MND = 5%, linear interpolation and KNN regression.

The plot of the averaged RMSEs of the predictions for all known environments in XTrain,S,σ2

and unknown environments in XTest,S,σ2 for each method and for given variances σ2 ∈ Nσ2 is in
Fig. 5.4. Findings show that the RMSE increases when the uncertainties of the measurement
become more dominant, whereby linear interpolation and KNN regression are most susceptible
to measurement uncertainty. At the same time, the signal noise specialized UNet is more
resilient to this distortion because it has gained the ability to handle signal strength measurement
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uncertainties through training. Furthermore, the noise confuses the NMD-specialized UNet. The
RMSE curves of the predictions of a signal noise specialized UNet for known and unknown
environments increase slowly with increasing σ2. The fact that the measurements become less
reliable explains this phenomenon. The network may reduce the influence of the measurement
channel on the prediction and become more of a non-measurement-supported network, or it may
transfer the distortion to the predictions. More research needs to be done in this area to provide
more clarity. Numerical results are given tab B.4, B.5 and B.6.

Fig. 5.4: Average RMSE over signal noise variance σ2 for known and unknown environments
and different methods.

The R2 score for each method is given in Fig. 5.5. It shows a high R2 score of signal noise
specialized UNet predictions, and the R2 has a slight decay. At the same time, other methods,
such as NMD-specialized UNET, linear interpolation, and KNN regression, start with smaller
R2 scores and worsen with increasing measurement distortion, whereby the linear interpolation
exhibits an inferior model than KNN regression and the NMD-specialized UNET shows the worst
results for known environments. These methods achieve negative values when the distortion
reaches a certain noise level of σ > 5dB.
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Fig. 5.5: Averaged R2 score over measurement uncertainty for different methods

5.2 Position Measurement Uncertainty

In real-world scenarios, positional measurement uncertainties may occur, providing a signal
strength measurement slightly off the position where it is measured. Therefore, the examination
will show the behavior of the UNet when the position of the signal strength measurement is
perturbed while assuming that the signal strength measurement is accurate. A network will
learn to compensate for these distortions, as in the previous section.

5.2.1 Training and Test Dataset

Based on the data sets XTrain,NMD and XTest,NMD created in Sec, 4.1.2, which has MND = 5%,
appropriate modifications were made to the measurement map of each sample to simulate position
measurement error. First, a method identified all the elements corresponding to a signal strength
measurement on the measurement map. The indices of the elements correspond to the coordinates
of the measurement on the map. An array of length Nmeasurement stored all coordinates, where
Nmeasurement is the number of measurements of a particular sample. Next, the method introduced
positional perturbation by alternating the coordinates of the measurements to move them to a
slightly different position. Therefore a two-dimensional multivariate Gaussian random vector
ñ ∼ N (µµµ,σσσ2

pos) was introduced, where

µµµ =

0
0

 ,

σσσ2
pos =

σ2
x 0

0 σ2
y

 .

(5.1)
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The elements of the random vector ñ have zero means with variance σ2
x or σ2

x and are
independent of each other. This analysis assumed that the perturbation in the x-direction is
the same as in the y-direction, i.e., σ2

pos = σ2
x = σ2

y for simplicity. A non-zero mean µµµ ≠ 000 could
also be chosen as well as a non-diagonal covariance matrix σσσ2

pos with σ2
x to simulate a drift in a

specific direction, for example. The position coordinates for the measurement i are both integers
and bounded between (xi, yi) ∈ [0, 255] × [0, 255], so it is necessary to convert ñ, which is usually
R2, to Z2. The simplest method is to round each element to the nearest integer.

For each measurement i = 1, . . . Nmeasurement of a particular sample, a position noise vector ni

was generated and added to the coordinates of the measurement, i.e. (x̂i, ŷi) = (xi +nx,i, yi +ny ,i).
Due to the limited range of the coordinates (x̂i, ŷi) ∈ [0, 255] × [0, 255] following cases can occur,

• If (x̂i, ŷi) /∈ [0, 255] × [0, 255], then the measurement is omitted.

• If (x̂i, ŷi) coincides with a coordinate that belongs to a building, then the measurement is
omitted since the position of buildings is known and is automatically set to zero in the
measurement map.

• If (x̂i, ŷi) coincides with (x̂j , ŷj), then the measurement with lower indices is overwritten.
E.g. if i < j, then measurement i will be overwritten.

Similar to the last section (Sec. 5.1), the higher the position distribution is, the more
information gets lost. The resulting NMD is necessarily smaller than the original map from
XTrain,5% or XTrain,5%. Again, this thesis considered them outliers and excluded them from the
evaluation.

For the investigation the sensitivity of the network in dependence of the positional uncertainty,
multiple training and test data set were created, each with different positional perturbation σ2

pos,
which are σ2

pos ∈ Nσ2
pos

= [1m2, 4m2, 9m2, 16m2, 25m2]. The process started with samples from
XTrain,5% and XTest,5%. A method added positional perturbation with an intensity determined by
σ2

pos to each measurement in order to generate the sets XTrain,P,σ2 and XTest,P,σ2 for σ2
pos ∈ Nσ2

pos
.

The index P indicates the positional perturbation of each measurement.

5.2.2 Network Training

The network trained with training data sets with different σ2
pos to study the learning curves for

different position measurement errors. Training parameters were epchos = 200 and batch siz e =
16. The learning curves for the training and test data sets and different position measurement
uncertainty are shown in Fig. 5.6. The position perturbation has little effect on the training
samples since all learning curves show similar behavior. The training loss curves cluster in
such a way as to give the impression that the learning curves for training samples are almost
insensitive to positional perturbations. The learning curves for the test samples show dependence
on the position measurement uncertainty. This learning curve converges to higher loss when
the perturbation is more dominant. However, for the selected range of σ2

pos, the increase of
the loss for increasing σ2

pos is not very pronounced. For σ2
pos = 1m2, the learning curve is
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similar to the learning curve of the unperturbed measurements. This observation might be
because for σ2

pos = 1m2, the probability that a measuring position is distorted by at most one
pixel is p = 0.75, and for a distortion by at most two pixels, it is p = 0.97. Therefore, it is
most likely that the position of the measurement is off by two pixels or less from its original
position. The signal strength near the original measurement position will likely be similar in
magnitude to the original position. The deviation from the ground truth will be correspondingly
unnoticeable. For larger σ2

pos, the deviations from the ground truth slowly become dominant,
resulting in a corresponding validation curve, which converges to a higher loss, as shown in Fig.
5.6b. However, even the learning curve for test samples with a distortion σ2

pos = 25m2, where the
probability that measurements are off by at most 7 pixels from their original position is p = 0.75,
converges to a loss that is closer to the loss of the undisturbed measurement than to the loss of a
non-measurement supported UNet.

(a) Learning Curves for Training Data (b) Learning Curves for Test Data

Fig. 5.6: Learning Curves for different σpos

5.2.3 Prediction results

The results of the prediction of the known environment are shown in Fig. 2.6 with a position
determination uncertainty of σ2

pos = 9m2. The UNets used in this section are an NMD-specialized
UNet for MND = 5% and a UNet trained with distorted measurements with σ2

pos = 9m2, which
is called position noise specialized UNet. Furthermore, comparing these and the baseline results
generated by linear interpolation and KNN regression addresses the effect of introducing positional
error to the network. Visual results are given in Fig. 5.7. The NMD-specialized UNET is also
suitable for predicting this particular known sample. The error maps for both UNets show no
noticeable deviation of the predictions from the ground truth. In contrast, the baselines show
some odds in the shadows and deviations from the ground truth at the edge of the buildings.
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(a) Signal Noise Special-
ized UNet

(b) NMD-Specialized
UNet (c) Linear Interpolation (d) KNN Regression

Fig. 5.7: The first row shows the signal strength map for a known environment, that is generated
with a position noise specialized UNet for σ2

pos = 9m2, NMD-specialized UNet for
MND = 5%, linear interpolation and KNN regression. The second row shows the error
map of each method.

The table below shows the RMSE for each method. As expected, the RMSE for a position
noise specialized UNet produces a prediction with the smallest RMSE. The prediction from an
NMD-specialized UNet has a slightly larger RMSE. Both methods outperform linear interpolation
and KNN regression in accuracy.

Position Noise
Specialized

UNet

NMD-
Specialized

UNet
Linear Interpolation KNN Regression

RMSE 0.8352dB 1.1204dB 2.5198dB 2.6213dB

Figure 5.8 visually shows the predictions for an unknown environment, displayed in Fig. 2.7,
with positionally distorted measurements with σ2

pos = 9m2, generated with the same UNets
discussed above, and the baselines. The prediction error maps show that the signal strength
predictions for both UNets and the baselines deviate from the ground truth in some areas,
particularly around buildings.
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(a) Signal Noise Special-
ized UNet

(b) NMD-Specialized
UNet (c) Linear Interpolation (d) KNN Regression

Fig. 5.8: The first row shows the signal strength map for an unknown environment, that is
generated with a Signal Noise Specialized UNet for σ2 = 0.05, NMD-specialized UNet
for MND = 5%, linear interpolation and KNN regression. The second row shows the
error map of each method.

The table below shows the RMSE for each method. Interestingly, the prediction of an NMD-
specialized UNet has a smaller RMSE than the position noise specialized UNet, contrary to
the expectation that the position noise specialized UNet should be able to handle positional
perturbations. In order to investigate whether this is a coincidence, the RMSEs of all test samples
of the test dataset with positionally distorted measurements with both UNets are computed and
compared to the averaged RMSE.

Position Noise
Specialized

UNet

NMD-
Specialized

UNet
Linear Interpolation KNN Regression

RMSE 1.6989dB 1.6772dB 2.2636dB 2.2028dB

The average RMSEs over the standard deviation σpos are displayed in Fig. 5.9 for each
method used in this section, which express the overall performance of each method. Figure 5.9
shows that the position noise specialized UNet trained has the smallest RMSE for the known
environment over the entire chosen range of σ2

pos. This UNet has learned to compensate for the
uncertainty of the position measurement, which comparison with the NMD-specialized UNet
shows. For an unknown environment, both networks’ overall performance seems similar. Since
the NMD-specialized UNet trained with undisturbed measurements performs slightly better
than the position noise specialized UNet, it leads to the assumption that this UNet has lost the
ability to counteract positional errors when it has to predict the signal strength of unknown
environments. Numerical values are given in Tab. B.4 and B.5.
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Linear Interpolation and KNN regression display high prediction inaccuracy with a significant
variance. Numerical values are given in Tab. B.9. Like the last section, these methods rely
on supporting points and observation. Therefore, they are more error-prone to positional
measurement uncertainty.

Fig. 5.9: Average RMSE and variance in dB scale over position uncertainty for the training
dataset and test dataset and for different methods.

The end of this section focuses on the discussion of the R2 score of each method. Fig. 5.10
shows the results. For the known environment, the position noise specialized UNet has the highest
R2 score over the chosen range of σpos, followed by the NMD-specialized UNet for MND = 5%,
then linear interpolation, and KNN regression. Unlike Fig. 5.5, where the baseline generation
models have negative R2 scores for some σ2, in this analysis, the R2 score is always positive for
the chosen range σ2

pos. For the unknown environment, an unexpected property occurs, namely
that the NMD-specialized UNet has a higher R2 score than the position noise specialized UNet,
which should better handle positional distortions.
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Fig. 5.10: Averaged R2 score over position uncertainty for different methods

5.3 Random Walker Measurement

Studies on the effect of the measurement channel on the UNet show that the predictions become
more accurate when supported with many signal strength measurements. In this case, the
measurements are distributed evenly over the entire map. However, it is rather unlikely that the
measurements are distributed evenly over the street since, in some streets, the density of user
devices, especially in busy areas, is higher than in other streets. Therefore, some parts of the map
will obtain more information about the signal strength, while others have few measurements. A
random walker that explores some streets while leaving others unscanned simulates this situation.
This results in a measurement map with numerous signal strength measurements in some parts
of the map, while it contains no information in other parts. In the previous simulation, a value
NMD determined the number of measurements. The introduction of the value coverage links the
number of measurements taken by the random walker and the NMD. The advantage of this value
is the straightforward comparability. This value coverage describes the percentage of streets with
signal strength measurement. The random walker explores the radio map until it reaches the
given percentage of the area. The number of steps, and therefore the number of measurements,
depends on the percentage of streets for a given urban scenario and coverage. The expression of
the coverage value in percent directly relates to NMD.

5.3.1 Training and Test Dataset

Similar to Section 4.2.1, adding a measurement map to each sample of the training XTrain and
test datasets XTest resulted in training and test data sets with random walker measurements. The
value coverage specified the distance and number of measurements. This value also determined
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the percentage of the area to be measured. The random walker explored the map and measured
until he achieved the specified street proportion. In order to analyze solely the effect of having
information in some parts of the map, the measurements have to be accurate, i.e., there is no
measurement error in the signal strength and the position where the measurement is. Each other
regions on the measurement map that was not measured or did not have a building on them
have a "no information" value, i.e., −1.

Now, this paragraph discusses the random walker. The first step is to set the starting point of
the random walker to any position on the street area. Then, it can move one pixel in a horizontal,
vertical, or diagonal direction, corresponding to 1m in the horizontal and vertical direction and√

2m in a diagonal direction, which are eight directions in total. The movement of one pixel in
any direction is called a step s = [sx, sy], where sx, sy ∈ {−1, 0, 1}, where s = [0, 0] is excluded.
The first step will be in any direction, i.e., a step in each direction has the same probability.
The current step is selected depending on its last step to ensure that the random walker has
a preferred direction. A pmf for the current step conditioned on the last step expressed this
property, i.e., the step sk is drawn from the following pmf

sk ∼ p(sk|sk−1). (5.2)

The question arises about the structure of this pmf. Since it is desired that the current step
be the last, the probability for sk = sk−1 must be much higher than in any other direction.
Experiments with the following pmf

p(sk|sk−1) =

��0.72 for sk = sk−1

0.04 for one of the other seven directions
. (5.3)

deliver good results. Therefore, this simulation used this pmf for the random walker. Other
choices of the probabilities should also work, especially individual probabilities for each direction,
as long as p(sk = sk−1|sk−1) > p(sk ̸= sk−1|sk−1). For the choice made in this simulation the
probability is p(sk = sk−1|sk−1) = 0.72 > p(sk ̸= sk−1|sk−1) = 0.28.

The random walker cannot enter buildings. For example, a building area will choose another
direction if the next step is a building area. It also cannot leave the map. If the next step leaves
it, the random walker moves in another direction.

Due to the definition of coverage in this thesis, there is a direct relation between NMD
and coverage1. In Sec. 4.2.12, the number of measurements is within the set NNMD =
{1%, 2%, 5%, 10%, 20%}. To compare how the UNet performs with a similar amount of measure-
ments, training, and test data sets were created for each coverage ∈ Ncoverage = {1%, 2%, 5%, 10%, 20%}.
Examples of measurement maps with different coverage for a given urban scenario and antenna
placement are in Fig. 5.11.

1Note that for measurements spread over the entire map, the positions of the measurements, and thus the total
number of measurements, are random. In this case, the proportion of measured street areas is an expected
value.

2This section considers uniformly distributed measurements over the whole map
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Fig. 5.11: Measurement maps with different coverage for a chosen urban scenario and antenna
placement

5.3.2 Network Training

For each coverage ∈ Ncoverage, a UNet was trained with 200 epochs and a batch size of 16. This
UNet is called random walker specialized UNet. The results of each training process are shown
in Fig. 5.12 as opaque lines. For the training dataset, Fig. 5.12a shows that the learning
curve converges to more minor losses when the random walker explores more extensive regions.
However, Fig. 5.12b shows that for coverage below 5%, the learning curve converges to a more
significant loss than the learning curve of non-measurement supported UNet. The additional
information in the test samples of these test data sets is likely to confuse the neural network,
resulting in a higher loss. In this case, the neural network should ignore the measurement map
and perform at least as well as the two-channel UNet. When the coverage increases, the converged
loss decreases. If the random walker jas measured more than 5% of the street area, then the loss
is smaller than that of the non-measurement supported UNet.

For comparison, the learning curves of the network training and validation with measurements
spread over the whole street area from Section 4.1.4 are shown in semitransparent colors in
Fig. 5.12. Note that NMD-Specialized UNet was trained and validated with training and test
datasets that contain measurement maps with measurements distributed over the entire map, i.e.,
Xtrain,NMD and Xtest,NMD. For training data, the NMD Specialized UNet and the random walker
specialized UNet behave very similarly, with the learning curves of the random walker specialized
UNet ending with a higher loss after training. The learning curves for validating the random
walker specialized UNet have exciting properties compared to those of the NMD-Specialized
UNet. First, the validation loss converges before 25 epochs, earlier than the validation loss of the
NMD-Specialized UNet, which converges at about 50 epochs. Furthermore, the validation losses
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of the random walker specialized UNet are more significant than those of the NMD-Specialized
UNet for any coverage. Furthermore, the validation loss for an NMD-Specialized UNet for
MND = 1% is much smaller than that for a random walker specialized UNet for coverage = 20%.
These losses are visible in Fig. 5.12b.

(a) Learning Curves for Training Data (b) Learning Curves for Test Data

Fig. 5.12: Learning Curves for various steps

5.3.3 Prediction Results

Fig. 2.6 displays the urban environment of the training sample for evaluating the prediction of
the UNet. Passing this urban environment along with a measurement map with coverage = 5%
through a random walker specialized UNet for coverage = 5% results in a prediction, shown in
Fig. 5.13a The signal strength structure and the buildings’ shadowing in this prediction are
detailed. Accordingly, the error map does not display any spot with a significant deviation from
the ground truth. The Fig. 5.13b and 5.13c show the baselines generated by linear interpolation
and KNN regression. It follows that the UNet can predict the complete map even if parts of the
maps are unknown. At the same time, the interpolation and regression generate only parts of the
map that make sense, especially where the random walker has made some measurements. Regions
away from the measurements have no supporting points or observations, so the interpolated
values go to the noise level. At the same time, the KNN regressor selects the closest observations
for a given point and averages the observation values. The error maps corresponding to these
methods show low errors around the area measured and considerable deviations from ground
truth everywhere else.



5.3 Random Walker Measurement 75

(a) UNet Prediction (b) Linear Interpolation (c) KNN Regression

Fig. 5.13: The first row shows the signal strength map that is generated with a UNet, linear
interpolation, and KNN regression for a training sample. The second row shows the
error map of each method.

The RMSEs of the prediction and baseline for this particular test sample for each method are

UNet Linear
Interpolation

KNN
Regression

RMSE 1.0102dB 7.7519dB 7.3897dB

While the UNet can produce predictions with comparatively low RMSE, linear interpolation,
and KNN regression have problems with limited information, and they tend to have larger RMSE
for these two methods, whereby the RMSE of the KNN regression baseline shows a slightly
smaller RMSE than the linear interpolation baseline. This UNet cannot compete with the
NMD-Specialized UNet for MND = 5%. The prediction of this network with a sample of the
same urban environment but with measurements uniformly distributed over the entire map has
an RMSE of RMSE = 0.7837dB. However, in both cases, the measurement maps have a similar
number of measurements.

Next, a test sample shown in Fig. 2.7 was passed through the network with a measurement map
with coverage = 5%. The prediction is shown in Fig. 5.14a. Compared to baselines generated by
linear interpolation or KNN regression in Fig. 5.14b and 5.14c, the UNet can generate a complete
signal strength prediction map with comparatively lower RMSE. However, the prediction shows a
blurred distribution of the signal strength and the shadows cast by the building. This results in a
larger region with more deviation from the ground truth. Problems with the baselines generated
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by linear interpolation and KNN are the same as for the training sample, and they also apply
here.

(a) UNet Prediction (b) Linear Interpolation (c) KNN Regression

Fig. 5.14: The first row shows the signal strength map that is generated with a UNet, linear
interpolation, and KNN regression for a test sample. The second row shows the error
map of each method.

The RMSEs of the prediction and baseline for this particular test sample for each method are

UNet Linear
Interpolation

KNN
Regression

RMSE 2.5498dB 6.5061dB 5.0632dB

For these samples with random walker measurements, the RMSE is larger compared to the
prediction with distributed measurements. For comparison, a NMD-specialized UNet predicts
RMSE = 1.5468dB for the same urban environment but with distributed measurements with
a MND = 5% measurement density. The result of the random walker specialized UNet is
comparable to the two-channel UNet without measurement support, generating a prediction with
RMSE = 2.8347dB. Although the RMSE of the baselines for this test sample is smaller for the
training sample, they do not depend on either the training or the test data sample but on the
path of the random walker, which can lead to significant variation of the RMSE compared to the
baselines of a training sample.

The computation for averaged RMSE of the predictions for the training and test datasets
took place separately and for each coverage ∈ Ncoverage to obtain the overall performance of the
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random walker specialized UNet in dependence of the coverage. The results are shown in Fig.
5.15 along with the averaged RMSE of the NMD-Specialized UNet and for the baselines. The
statistics of each RMSE are also shown in this figure to emphasize the considerable variation in
the accuracy of the baselines.

Fig. 5.15: Average RMSE and variance in dB scale for all training and test datasets samples.

The baselines have the largest averaged RMSE over the entire defined range, with the averaged
RMSE of the linear interpolator being more significant than that of the KNN regressor. The
averaged RMSE of these methods decreases as larger areas are measured, i.e., the random walker
takes more steps and explores larger areas. Furthermore, these methods have the most significant
variation. The accuracy of the baselines will suffer if the random walker starts at a position
with low signal strength and explores only tiny regions with a given number of steps or regions
where the signal strength is generally low. Exploring large areas with the same number of steps
and areas around the antenna provides more valuable information about the signal strength,
resulting in more accurate baselines. Since the starting point of the random walker is random,
the datasets indeed include these cases in the datasets. The random walker specialized UNet
exhibits smaller averaged RMSE than the linear interpolation and KNN regression. The network
has higher prediction accuracy for samples in the training data set than those in the test data
sample. There is a slight and barely noticeable decrease in the averaged RMSE with increasing
coverage, implying that the prediction accuracy does not improve on average as the random
walker explores large areas. In addition, the variance of the individual RMSEs is not as significant
as for the baselines. However, Fig. 5.15 also shows superior performance for uniformly distributed
measurements.

Finally, the section discusses the R2 score for random walker specialized UNet, NMD Specialized
UNet, linear interpolation, and KNN regression. The R2 score for each method is given in Fig.
5.16, whereby for UNets, the R2 score is distinguished between training and test samples. The
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R2 scores for the corresponding training dataset of both UNets show a value close to one over
the defined coverage or NMD range. For NMD-Specialized UNet, the R2 score is close to one for
the test dataset. In contrast, the random walker specialized measurement has a lower R2 score
for test samples. There is a slight increase of these R2 scores by increasing the coverage or the
NMD.

For the baseline generated by linear interpolation and KNN regression, R2 scores show negative
values even for extensive coverage. The negative score is apparent since large regions of the signal
strength prediction map are not reconstructible if the random walker does not traverse around
these regions. More extensive coverage increases the probability of exploring more extended
regions so that a larger region can be interpolated or regressed. The higher exploration leads to
an increasing R2 score, but as shown in Fig. 5.16, the R2 score is almost always below zero for
the given range.

Fig. 5.16: Averaged R2 score for different methods

5.4 Summary

• Real-world measurements will always suffer from measurement uncertainties. Therefore,
simulation has been done by adding power signal noise and position error to the signal
power measurement.

• A UNet can be trained with these measurement uncertainties to learn how to handle and
counteract erroneous measurements.

• Baselines are heavily affected by measurement errors.

• A more realistic scenario is that the measurements are concentrated in a few regions.
Simulation this scenario results in a measurement maps with much information, while other
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parts have no information about signal strength. This scenario will be simulated with a
random walker. It explores the map until the defined ratio of the street area is measured.

• A UNet can predict the signal strength outside the measured area more accurately than
the baselines generated by linear interpolation and KNN regression.

• For the highest prediction accuracy, it is necessary to have some information in every region
of a given urban environment.
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Conclusion

This thesis examined various techniques to enhance UNet models for RME, focusing on introducing
a measurement channel. The measurement channel is the most effective approach, providing
the network with additional signal strength information and significantly improving prediction
accuracy.

For UNets without a measurement channel, the prediction quality varies depending on the
characteristics of the city maps. Predictions for areas with a high proportion of roads typically
show higher accuracy. At the same time, in densely built-up environments, the UNet must account
for complex propagation characteristics, resulting in increased RMSE. However, the prediction
accuracy in certain road-dominant areas is below expectations, underscoring the necessity for a
calibration mechanism. The network utilizes partial signal strength data to enhance predictions by
incorporating a measurement channel. Experiments have shown that a distributed measurement
over the complete map with a density of approximately 0.05 measurements per square meter
significantly improves the prediction accuracy by 1.2054dB for unknown urban environments.

The study also examined partially explored city map scenarios and the inclusion of measurement
errors to ensure a more realistic representation of real-world conditions. UNets can compensate
for measurement errors, even for distortions of 12.9 dB. When only an incomplete city map
scan is available, the UNet relied on its model for predictions in areas lacking measurements,
which increased RMSE compared to distributed measurements. However, the UNet significantly
outperformed baseline methods, which are restricted to predicting signal strength only in areas
close to the measurements and assessing the accuracy of those measurements. These findings
highlight the advantage of incorporating at least some information across the entire area of
interest and the method’s resilience against measurement distortions, regardless of the approach
employed.

For real-world applications, the UNet requires further adaptations. These include training the
UNet with a broader range of urban environments that account for elevation, diverse terrains,
and multiple carrier frequencies. One of the main challenges is designing a UNet that can
learn propagation mechanics from incomplete scans of the urban environment, enabling accurate
predictions for unknown city maps. Reducing the dependency on fully detailed radio maps lessens
the effort to generate ground truth data.

A critical aspect of practical implementation is assessing prediction reliability. This the-
sis proposes integrating uncertainty measures, including epistemic uncertainty (arising from
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model limitations) and aleatoric uncertainty (stemming from input variability) [38], into the
network. These indicators provide valuable insights into prediction confidence, enabling targeted
adjustments in low-confidence areas through additional simulations or measurements.

In summary, this thesis presents a robust and efficient framework for RME using deep learning.
The findings indicate that including calibration measurements significantly enhances prediction
accuracy. Additionally, UNet-based models provide reliable predictions, even in realistic scenarios
that involve incomplete data and measurement noise. These advancements open new possibilities
for resource-efficient network planning, optimization, and real-world implementation, paving the
way for future developments in telecommunication network management.
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Appendix A

Implementation

A.1 Measurement Map

The algorithm A.1 shows how to generate the measurement map Xmeasurement. First, an array
is created with N1 × N2 = 256 × 256 elements, which are random values, independently and
identically distributed according to a Gaussian distribution with limits from 0 to 1. Any element
that is 1 − p, where p corresponds to the NMD in this project, will be set to −1, and all others
will be equal to the ground truth. Since we know the position of the buildings and are not
interested in the signal strength inside the buildings, all elements are set to 0, i.e., Xij = 0.
Algorithm A.1: Generating Measurement Map
Data: -
Result: Measurement Map Xmeasurement

1 Create an array Xmeasurement of size N1 × N2;
2 Assign each element a random value according to Xij ∼ U(0, 1);
3 Set each element Xij < 1 − p to Xij = −1 ;
4 Set each element Xij ≥ p to Xij = yij ;
5 for ∀ elements Xij of Xmeasurement do
6 if Index i, j corresponds to building area then
7 Set Xij = 0;
8 end
9 end

A.2 Linear Interpolation

In the first step, we extract all elements Xij of Xmeasurement that corresponds to a measured
position, i.e., Xij ̸= −1 and the indices i, j do not correspond to the building area. These
elements form the support points for the linear interpolation P lin.int.. After generating P lin.int.

we set all values P ij whose indices i, j belong to the building area to zero, i.e. P ij = 0.
Experiments have shown that if we add the information about the buildings to the support

points, which is easy to do since the signal strength is set to zero, the accuracy of the baseline
will decrease. The problem is that the buildings drag the surrounding signal strength to a lower
value due to the linear interpolation.
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Algorithm A.2: Liner Interpolation Baseline
Data: Measurement Map Xmeasurement

Result: Linear interpolation Baseline P lin.int.

1 create an empty list support points;
2 for ∀ elements Xij of Xmeasurement do
3 if Index i, j corresponds to a measured position then
4 Add ([i, j], Xij) to list support points ;
5 end
6 end
7 Call LinearNDInterpolator class from scipy package;
8 Pass support points to LinearNDInterpolator class;
9 Perform piece wise linear interpolation P lin.int.;

10 for ∀ elements P ij of P lin.int. do
11 if Index i, j corresponds to building area then
12 Set P ij = 0
13 end
14 end

A.3 KNN Regression

The procedure is similar to linear interpolation. Each element Xij of the measurement map
Xmeasurement corresponding to a measurement is collected in a list called observation. Then, with
this information, a KNN regression is performed, creating a baseline P knn.reg.. Then all elements
P ij whose indices i, j belong to the building area are set to zero, i.e. P ij = 0.
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Algorithm A.3: KNN Regression Baseline
Data: Measurement Map Xmeasurement

Result: KNN Regression Baseline P knn.reg.

1 create an empty list observation;
2 for ∀ elements Xij of Xmeasurement do
3 if Index i, j corresponds to a measured position then
4 Add ([i, j], Xij) to list observation ;
5 end
6 end
7 Call KNeighborsRegressor class from scipy package;
8 Pass observation to KNeighborsRegressor class;
9 Perform KNN regression with n_neighbors=5 and obtain P knn.reg.;

10 for ∀ elements P ij of P knn.reg. do
11 if Index i, j corresponds to building area then
12 Set P ij = 0
13 end
14 end
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Tables

B.1 Tables for Normalized Measurement Density Analysis

Tab. B.1: Average RMSE over all samples from the training and test dataset along with the
standard deviation for different NMD for UNet prediction.

NMD
Average RMSE
Training Data

Sample

Std. Dev. of RMSE
Training Data

Sample

Average RMSE
Test Data

Sample

Std. Dev. of RMSE
Test Data

Sample
1% 0.7968dB 0.1044dB 1.6438dB 0.3092dB
2% 0.8229dB 0.1180dB 1.4683dB 0.2658dB
5% 0.7099dB 0.1000dB 1.2693dB 0.2420dB
10% 0.7108dB 0.0940dB 1.0578dB 0.1900dB
20% 0.5478dB 0.0796dB 0.8972dB 0.1742dB

Tab. B.2: Average RMSE and standard deviation for different NMD for linear interpolation and
KNN regression.

NMD
Average RMSE

Linear
Interpolation

Std. Dev. of RMSE
Linear

Interpolation

Average RMSE
KNN

Regression

Std. Dev. of RMSE
KNN

Regression
1% 2.3204dB 0.3244dB 2.3161dB 0.4127dB
2% 1.9887dB 0.3279dB 2.0692dB 0.3944dB
5% 1.6829dB 0.3199dB 1.8168dB 0.3666dB
10% 1.6829dB 0.3199dB 1.8168dB 0.3666dB
20% 1.4214dB 0.3124dB 1.5537dB 0.3342dB
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Tab. B.3: Average RMSE over all prediction of the NMD-flexible UNet for known and unknown
environments

NMD Average RMSE
known Env.

Std. Dev. of RMSE
known Env.

Average RMSE
unknown Env.

Std. Dev. of RMSE
unknown Env.

1% 1.7767dB 0.3293dB 2.0274dB 0.3727dB
2% 1.2691dB 0.2214dB 1.5666dB 0.2889dB
5% 1.0238dB 0.1644dB 1.3042dB 0.2384dB
10% 1.0125dB 0.1623dB 1.2279dB 0.2200dB
20% 1.2090dB 0.1651dB 1.3236dB 0.2043dB

B.2 Tables for Singal Noise Analysis

Tab. B.4: Average RMSE and Std. Dev. for signal noise specialized UNet prediction for known
and unknown environments with different standard deviation of the noise σ

σ

Average RMSE
Known

Environment

Std. Dev. of RMSE
Known

Environment

Average RMSE
Unknown

Environment

Std. Dev. of RMSE
Unknown

Environment
2.9dB 0.7588dB 0.0959dB 1.5616dB 0.2634dB
4.1dB 0.8334dB 0.0982dB 1.7822dB 0.2825dB
6.48dB 0.8534dB 0.1073dB 1.9665dB 0.2822dB
9.17dB 0.8605dB 0.1036dB 2.1148dB 0.2689dB
12.97dB 0.8867dB 0.0973dB 2.3465dB 0.2839dB

Tab. B.5: Average RMSE and Std. Dev. for NMD-specialized UNet prediction, trained with
N M D = 5%, for known and unknown environments with different standard deviation
of the noise σ

σ

Average RMSE
Known

Environment

Std. Dev. of RMSE
Known

Environment

Average RMSE
Unknown

Environment

Std. Dev. of RMSE
Unknown

Environment
2.9dB 1.3780dB 0.1156dB 1.7228dB 0.2019dB
4.1dB 2.0122dB 0.1756dB 2.2508dB 0.2160dB
6.48dB 3.5330dB 0.2910dB 3.6376dB 0.2894dB
9.17dB 5.4150dB 0.3769dB 5.4644dB 0.3746dB
12.97dB 8.0887dB 0.4750dB 8.0856dB 0.4732dB
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Tab. B.6: Average RMSE and Std. Dev. for linear interpolation and KNN regression for samples
with different σ

σ

Average RMSE
Linear

Interpolation

Std. Dev. of RMSE
Linear

Interpolation

Average RMSE
KNN

Regression

Std. Dev. of RMSE
KNN

Regression
2.9dB 2.6402dB 0.2011dB 2.2478dB 0.2972dB
4.1dB 3.3343dB 0.1821dB 2.6990dB 0.2997dB
6.48dB 4.8081dB 0.2163dB 3.8079dB 0.3634dB
9.17dB 6.6186dB 0.3141dB 5.3584dB 0.4647dB
12.97dB 9.4374dB 0.4255dB 7.9084dB 0.5802dB

B.3 Tables for Position Noise Analysis

Tab. B.7: Average RMSE and Std. Dev. for position noise specialized UNet prediction for
known and unknown environments with different standard deviation of the position
noise σpos

σpos

Average RMSE
Known

Environment

Std. Dev. of RMSE
Known

Environment

Average RMSE
Unknown

Environment

Std. Dev. of RMSE
Unknown

Environment
1m 0.7061dB 0.1038dB 1.2513dB 0.2348dB
2m 0.7474dB 0.1057dB 1.3720dB 0.2511dB
3m 0.7923dB 0.1118dB 1.4090dB 0.2658dB
4m 0.7499dB 0.1054dB 1.4457dB 0.2710dB
5m 0.7600dB 0.1058dB 1.5277dB 0.2786dB

Tab. B.8: Average RMSE and Std. Dev. for NMD-specialized UNet prediction, trained with
N M D = 5%, for known and unknown environments with different standard deviation
of the position noise σpos

σpos

Average RMSE
Known

Environment

Std. Dev. of RMSE
Known

Environment

Average RMSE
Unknown

Environment

Std. Dev. of RMSE
Unknown

Environment
1m 0.8561dB 0.1352dB 1.2893dB 0.2474dB
2m 0.9141dB 0.1513dB 1.3260dB 0.2575dB
3m 0.9789dB 0.1680dB 1.3743dB 0.2692dB
4m 1.0512dB 0.1867dB 1.4291dB 0.2841dB
5m 1.1238dB 0.2043dB 1.4834dB 0.2906dB
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Tab. B.9: Average RMSE over all samples from the training and test dataset along with the
Std. Dev. for different σpos for linear interpolation and KNN regression

σpos

Average RMSE
Linear

Interpolation

Std. Dev. of RMSE
Linear

Interpolation

Average RMSE
KNN

Regression

Std. Dev. of RMSE
KNN

Regression
1m 1.7664dB 0.3199dB 1.8444dB 0.3716dB
2m 1.8749dB 0.3258dB 1.8880dB 0.3777dB
3m 1.9862dB 0.3373dB 1.9408dB 0.3841dB
4m 2.0945dB 0.3429dB 2.0027dB 0.3882dB
5m 2.1970dB 0.3565dB 2.0637dB 0.3921dB

B.4 Tables for Random Walker Analysis

Tab. B.10: Average RMSE over all samples from the training and test dataset along with the
Std. Dev. for different coverage for UNet prediction

coverage
Average RMSE
Training Data

Sample

Std. Dev. of RMSE
Training Data

Sample

Average RMSE
Test Data

Sample

Std. Dev. of RMSE
Test Data

Sample
1% 1.1397dB 0.1719dB 2.5771dB 0.3633dB
2% 1.1167dB 0.1863dB 2.5654dB 0.3934dB
5% 1.0832dB 0.1375dB 2.4613dB 0.3461dB
10% 0.9994dB 0.1303dB 2.3560dB 0.3919dB
20% 0.8738dB 0.1121dB 2.1579dB 0.4353dB

Tab. B.11: Average RMSE over all samples from a subset training and test dataset along with
the Std. Dev. for different coverage for linear interpolation and KNN regression

coverage
Average RMSE

Linear
Interpolation

Std. Dev. of RMSE
Linear

Interpolation

Average RMSE
KNN Regression

Std. Dev. of RMSE
KNN Regression

1% 9.8566dB 1.0738dB 6.8641dB 2.1271dB
2% 9.5934dB 1.0877dB 6.7032dB 2.1422dB
5% 8.9126dB 1.1997dB 6.2165dB 1.8558dB
10% 7.8245dB 1.5482dB 5.4789dB 1.5833dB
20% 5.8560dB 1.6661dB 4.2985dB 1.3326dB



Acronyms

(R)MSE (root) mean squared error

CNN Convolutional Neural Network

CS crowd sensing

GPS Global Positioning System

KNN k-nearest neighbors

NMD normalized measurement density

pmf probability mass function

RME Radio Map Estimation
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