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Abstract

Automated reasoners, such as SAT and SMT solvers as well as first-order theorem provers,
are becoming the backbones of applications of formal methods, for example in automating
deductive verification, program synthesis, and security analysis. Automation in these
formal methods domains crucially depends on the efficiency of the underlying reasoners
towards finding proofs and/or counterexamples of the task to be enforced. The goal of
this thesis is to improve efficiency of automated reasoning on different levels, inspired by
automation of formal methods.

The first part of the thesis deals with improving efficiency of saturation-based first-order
theorem proving. Such theorem provers use dedicated proof rules to keep proof search
manageable.

Inspired by applications in program verification, we introduce a new inference rule, called
subsumption demodulation, to improve support for reasoning with conditional equalities
in superposition-based theorem proving. We show that subsumption demodulation is a
simplification rule that does not require radical changes to the underlying superposition
calculus and hence can be efficiently integrated in superposition provers. We implement
subsumption demodulation in the theorem prover Vampire, by extending Vampire with
a new clause index and adapting its multi-literal matching component. Our experiments,
using the TPTP and SMT-LIB benchmark repositories, show that subsumption demodu-
lation in Vampire can solve several new problems that previously could not be solved by
state-of-the-art reasoners.

Next, we turn our attention to subsumption, which is one of the most important proof
rules in practice. It is common that millions of subsumption checks are performed
during proof search, necessitating efficient implementations. However, in contrast to
propositional subsumption as used by SAT solvers and implemented using sophisticated
polynomial algorithms, first-order subsumption in first-order theorem provers involves
NP-complete search queries, turning the efficient use of first-order subsumption into
a huge practical burden. In this thesis, we argue that integration of a dedicated SAT
solver provides a remedy towards efficient implementation of first-order subsumption
and related rules, and thus further increasing scalability of first-order theorem proving
towards applications of formal methods. Our experimental results demonstrate that,
by using a tailored SAT solver within first-order reasoning, we gain a large speed-up in
state-of-the-art benchmarks.

vii



In the second part of the thesis, we examine bit-vector reasoning within SMT solving.
We introduce PolySAT, a word-level decision procedure supporting bit-precise SMT
reasoning over polynomial arithmetic with large bit-vector operations. The PolySAT
calculus extends conflict-driven clause learning modulo theories with two key components:
(i) a bit-vector plugin to the equality graph, and (ii) a theory solver for bit-vector
arithmetic with non-linear polynomials. PolySAT implements dedicated procedures
to extract bit-vector intervals from polynomial inequalities. For the purpose of conflict
analysis and resolution, PolySAT comes with on-demand lemma generation over non-
linear bit-vector arithmetic. PolySAT is integrated into the SMT solver Z3 and has
potential applications in model checking and smart contract verification where bit-blasting
techniques on multipliers/divisions do not scale.



Kurzfassung

Automatische Beweiser wie SAT- und SMT-Solver, sowie Beweiser für Prädikatenlogik
erster Stufe, werden immer wichtigere Komponenten in zahlreichen Anwendungen, vor
allem im Bereich der formalen Methoden, wie beispielsweise in Software zur automa-
tisierten deduktiven Verifikation, Programmsynthese und der Sicherheitsanalyse von
Programmen. Insbesondere im Bereich der formalen Methoden hängt der Automati-
sierungsgrad entscheidend von der Effizienz der zugrunde liegenden Beweiser bei der
Suche nach Beweisen und/oder Gegenbeispielen für die zu lösende Aufgabe ab. Das Ziel
der vorliegenden Dissertation ist es, motiviert durch die Anwendungen im Bereich der
automatischen Analyse von Programmen, die Effizienz der automatisierten Beweiser in
verschiedenen Bereichen zu verbessern.

Der erste Teil der Arbeit beschäftigt sich mit der Optimierung von auf Saturierung
basierenden Theorembeweisern für Prädikatenlogik erster Stufe. Beweiser dieser Art
verwenden Inferenzregeln, um schrittweise Konsequenzen aus der Eingabe herzuleiten.
Eine besondere Herausforderung ist dabei die enorme Menge an möglichen Konsequenzen,
die die Suche nach Beweisen empfindlich verlangsamt. Einen gängigen Ansatz zur Verbes-
serung dieses Problems bieten sogenannte Vereinfachungsregeln: spezielle Inferenzregeln,
deren Verwendung die Anzahl redundanter Klauseln reduziert oder zumindest nicht weiter
erhöht.

Wir führen eine neue Inferenzregel namens Subsumption Demodulation ein, um das
Erkennen von Redundanzen im Zusammenhang mit bedingten Gleichungen in Beweisern,
die auf dem Superpositionskalkül basieren, zu verbessern. Wir zeigen, dass Subsump-
tion Demodulation eine Vereinfachungsregel ist, die keine fundamentalen Änderungen
am zugrunde liegenden Superpositionskalkül erfordert. Durch Erweiterung um einen
neuen Klauselindex und Anpassung der Multiliteral-Matching-Komponente konnten wir
Subsumption Demodulation effizient in dem Theorembeweiser Vampire implementieren.
Unsere Experimente zeigen, dass Vampire mit Hilfe der in dieser Dissertation beschrie-
benen Änderungen mehrere neue Probleme aus den Benchmark-Sammlungen TPTP und
SMT-LIB lösen kann, die bisher von modernen Beweisern nicht gelöst werden konnten.

Darüber hinaus wenden wir uns der Subsumption-Regel zu, die eine der wichtigsten
Beweisregeln in der Praxis ist. Es kommt häufig vor, dass während der Beweissuche
Millionen von potenziellen Anwendungen von Subsumption geprüft werden, weshalb
eine effiziente Implementierung erforderlich ist. Im Gegensatz zu Subsumption in der

ix



Aussagenlogik, die von SAT-Solvern verwendet wird und ausgefeilte Algorithmen mit
polynomieller Laufzeit erlaubt, erfordert Subsumption in der Prädikatenlogik erster Stufe
die Lösung eines NP-vollständigen Entscheidungsproblems. Dadurch ist die effiziente
Nutzung von Subsumption in der Prädikatenlogik erster Stufe eine große praktische Her-
ausforderung. In der vorliegenden Arbeit zeigen wir, dass die Integration eines dedizierten
SAT-Solvers eine gute Möglichkeit zur effizienten Implementierung von Subsumption und
verwandter Regeln bietet und damit die Skalierbarkeit des Theorembeweisens in Logik
erster Stufe für Anwendungen formaler Methoden verbessert. Unsere experimentellen
Ergebnisse zeigen, dass wir durch die Verwendung eines maßgeschneiderten SAT-Solvers
innerhalb von Vampire einen großen Geschwindigkeitszuwachs in aktuellen Benchmarks
erzielen.

Im zweiten Teil der Dissertation betrachten wir Bitvektoren im Kontext von SMT-Solvern.
Wir stellen PolySAT vor, ein Entscheidungsverfahren auf Wortebene, das bit-präzises
Schließen über polynomiale Arithmetik mit Operationen über Bitvektoren großer Länge
erlaubt. Der PolySAT-Kalkül erweitert konfliktgesteuertes Klausellernen modulo Theo-
rien um zwei Schlüsselkomponenten: (i) ein Bitvektor-Plugin für den Gleichheitsgraphen,
und (ii) einen Theorielöser für Bitvektor-Arithmetik mit nicht-linearen Polynomen. Po-
lySAT implementiert spezielle Verfahren zur Extraktion von Bitvektor-Intervallen aus
polynomialen Ungleichungen. Zur Konfliktanalyse und -resolution generiert PolySAT
on demand Lemmas über nicht-linearer Bitvektor-Arithmetik. PolySAT wurde in den
SMT-Solver Z3 integriert und hat potenzielle Anwendungen in der Modellprüfung und
der Verifikation von Smart Contracts, wo die üblicherweise verwendete Methode des
bit-blasting auf Multiplikationen/Divisionen an ihre Grenzen stößt.
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CHAPTER 1
Introduction

Automated reasoning provides the foundation on which many formal verification applica-
tions in modern computer science are built. Such approaches use automated reasoners in
their backend to, for example, discharge verification conditions [Lei17, CMP20, GGK20],
produce/block counter-examples [KGC16, PMP+16, ABH+20], or enforce security and
privacy properties [PFG20, MAD+19, BEG+19, SGSM20]. All these approaches crucially
depend on the efficiency of the underlying reasoning procedures.

Depending on the concrete application, different levels of expressivity may be desired
for the backend logic. As a rule of thumb, more expressivity in the language leads to
higher complexity of the solving process and thus to more performance problems (i.e.,
timeouts). On the other hand, even in cases where it is possible, it may not be desirable
to compile a problem down into a less expressive language, because a well-structured
high-level representation in an expressive language may allow the solver to use shortcuts
that are not easily discovered when working in the low-level representation. In practice,
common target logics for automatic solving are propositional logic and first-order logic,
with many different dialects of the latter that vary in which quantifiers and theories are
allowed.

In this thesis, we are interested in the following three levels of automated reasoning,
addressing increasingly complex logics:

L1. SAT Solving [Bie08] to solve propositional formulas (Section 1.2)

L2. SMT Solving [dMB08, BBB+22], which extends SAT Solving to solve formulas in
certain fragments of first-order logic with theories (Section 1.3)

L3. Saturation-based Theorem Proving [WDF+09, KV13, Cru17, SCV19] for solving
formulas in first-order logic with complete support for quantifiers (Section 1.1)

The thesis is split into two parts. Part I, consisting mainly of chapters 3 and 4, focuses on
saturation-based theorem proving and combines levels L1 and L3. Chapter 3 introduces
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1. Introduction

the rule of subsumption demodulation with the aim of improving reasoning power for
program analysis and verification [BEG+19]. In a nutshell, subsumption demodulation
performs equational rewriting under side constraints, which allows the theorem prover to
more easily handle constraints arising from statements within loops. Chapter 4 enhances
the efficiency of superposition-based theorem provers as a whole by introducing a new
method of performing subsumption inferences. Subsumption is a crucial inference rule in
theorem proving, but is expensive to check and thus often accounts for a large portion of
the prover’s running time. To tackle this problem, we encode subsumption checks into
propositional formulas, which are then checked by a specialized SAT solver.

Part II of the thesis focuses on the theory of bit-vectors within SMT solving and advances
level L2. The state of the art in bit-vector solving is bit-blasting, i.e., translating the
bit-vector formula into propositional logic and passing control to a SAT solver. As the
size of bit-vectors grows, however, bit-blasting soon reaches its limits of scalability. To
try and overcome this limitation, we present our new PolySAT framework, a word-level
approach to bit-vector solving.

1.1 Saturation-Based Theorem Proving
The leading concept behind the proof-search algorithms used by state-of-the-art first-
order theorem provers is saturation [SCV19, KV13]. While the concept of saturation is
relatively unknown outside of the theorem proving community, similar algorithms that
are used in other areas, such as Gröbner basis computation [Buc06], can be considered
examples of saturation algorithms. The key idea behind saturation-based proof search is
to reduce the problem of proving validity of a first-order formula F to the problem of
establishing unsatisfiability of ¬F by using a sound inference system, most commonly
using the superposition inference system [NR01]. That is, instead of proving F , we
refute ¬F , by selecting and applying inferences from the superposition calculus. In this
work, we focus on saturation algorithms using the superposition calculus.

For the efficiency of saturation-based proof search, simplification rules are of critical
importance. Simplification rules are inference rules that do not add new formulas to the
clause database, but instead simplify formulas by deleting redundant clauses from the
database. As such, simplification rules reduce the size of the proof search space and are
crucial in making automated reasoning efficient.

When reasoning about properties of first-order logic with equality, one of the most
common simplification rules is demodulation [KV13] for rewriting (and hence simplifying)
formulas using unit equalities l ≃ r, where l, r are terms and ≃ denotes equality. As a
special case of superposition, demodulation is implemented in first-order provers such as
E [SCV19], Spass [WDF+09] and Vampire [KV13]. Recent applications of superposition-
based reasoning, for example to program analysis and verification [BEG+19], demand
however new and efficient extensions of demodulation to reason about and simplify upon
conditional equalities C → l ≃ r, where C is a first-order formula. Such conditional
equalities may, for example, encode software properties expressed in a guarded command

2



1.1. Saturation-Based Theorem Proving

language, with C denoting a guard (such as a loop condition) and l ≃ r encoding
equational properties over program variables. We illustrate the need of considering
generalized versions of demodulation in the following example.

Example 1. Consider the following formulas expressed in the first-order theory of linear
integer arithmetic:

f(i) ≃ g(i)
0 ≤ i < n → p(f(i)) (1.1)

Here, i is an implicitly universally quantified logical variable of integer sort, and n
is an integer-valued constant symbol. Saturation-based reasoners will first clausify
formulas (1.1), deriving:

f(i) ≃ g(i)
0 ≰ i ∨ i ≮ n ∨ p(f(i)) (1.2)

By applying demodulation over (1.2), the formula 0 ≰ i ∨ i ≮ n ∨ p(f(i)) is rewritten1

using the unit equality f(i) ≃ g(i), yielding the clause 0 ≰ i ∨ i ≮ n ∨ p(g(i)). In terms
of the original formula, this step corresponds to deriving 0 ≤ i < n → p(g(i)) from (1.1)
by one application of demodulation.

Let us now consider a slightly modified version of (1.1), as below:

0 ≤ i < n → f(i) ≃ g(i)
0 ≤ i < n → p(f(i)) (1.3)

The clausal representation of (1.3) is given by:

0 ≰ i ∨ i ≮ n ∨ f(i) ≃ g(i)
0 ≰ i ∨ i ≮ n ∨ p(f(i)) (1.4)

It is again obvious that from (1.3) one can derive the formula 0 ≤ i < n → p(g(i)), or
equivalently, the clause:

0 ≰ i ∨ i ≮ n ∨ p(g(i)) (1.5)

Yet, one cannot anymore apply demodulation over (1.4) to derive such a clause, as (1.4)
does not contain any unit equality.

Contributions to saturation-based theorem proving. In Chapter 3, we propose a
generalized version of demodulation, called subsumption demodulation, which allows to
rewrite terms and simplify formulas using rewriting based on conditional equalities, such
as in (1.3). To do so, we extend demodulation with subsumption, that is, with deciding
whether (an instance of a) clause C is a submultiset of a clause D. In particular, the
non-equality literals of the conditional equality (i.e., the condition) need to subsume the
unchanged literals of the simplified clause. This way, subsumption demodulation can be
applied to non-unit clauses and is not restricted to have at least one premise clause that

1assuming that g is simpler/smaller than f
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1. Introduction

is a unit equality. We show that subsumption demodulation is a simplification rule of the
superposition framework (Section 3.1), allowing for example to derive the clause (1.5)
from (1.4) in one inference step. By properly adjusting clause indexing and multi-
literal matching in first-order theorem provers, we provide an efficient implementation
of subsumption demodulation in Vampire (Section 3.3) and evaluate our work against
state-of-the-art reasoners, including E [SCV19], Spass [WDF+09], CVC4 [BCD+11] and
Z3 [dMB08] (Section 3.4).

In summary, Chapter 3 of the thesis brings the following results.

• To improve reasoning in the presence of conditional equalities, we introduce the
new inference rule subsumption demodulation, which generalizes demodulation to
non-unit equalities by combining demodulation and subsumption (Section 3.1).

• Subsumption demodulation does not require radical changes to the underlying
superposition calculus. We implemented subsumption demodulation in the first-
order theorem prover Vampire, by extending Vampire with a new clause index
and adapting its multi-literal matching component (Section 3.3).

• We compared our work against state-of-the-art reasoners, using the TPTP and SMT-
LIB benchmark repositories. Our experiments show that subsumption demodulation
in Vampire can solve 11 first-order problems that could previously not be solved
by any other state-of-the-art provers, including Vampire, E, Spass, CVC4 and
Z3 (Section 3.4).

1.2 Saturation-Based Theorem Proving and SAT Solving
We remain in the setting of saturation-based theorem proving as in the previous Section 1.1,
and expand on the importance of redundancy. During saturation, the prover keeps a
set of usable clauses C1, . . . Ck, with k ≥ 0. This is the set of clauses that the prover
considers as possible premises for inferences. After applying an inference with one or
more usable clauses as premises, the consequence Ck+1 is added to the set of usable
clauses. The number of usable clauses is an important factor for the efficiency of proof
search. A naive saturation algorithm that keeps all derived clauses in the usable set would
not scale in practice. One reason is that first-order formulas in general yield infinitely
many consequences.

Example 2. Consider the clause

¬positive(x) ∨ positive(reverse(x)), (1.6)

where x is a universally quantified variable ranging over the algebraic data type list,
where list elements are integers; positive is a unary predicate over list such that
positive(x) is valid iff all elements of x are positive integers; and reverse is a unary
function symbol reversing a list. As such, clause (1.6) asserts that the reverse of a
list x of positive integers is also a list of positive integers (which is clearly valid).

4



1.2. Saturation-Based Theorem Proving and SAT Solving

Note that, when having clause (1.6) as a usable clause during proof search, the clause
¬positive(x)∨positive(reversen(x)) can be derived for any n ≥ 1 from clause (1.6). Adding
¬positive(x) ∨ positive(reversen(x)) to the set of usable clauses would however blow up
the clause database unnecessarily. This is because ¬positive(x) ∨ positive(reversen(x))
is a logical consequence of clause (1.6), and hence, if a formula F can be proved using
¬positive(x) ∨ positive(reversen(x)), then F is also provable using clause (1.6). Yet,
storing ¬positive(x) ∨ positive(reversen(x)) as usable formulas is highly inefficient as n
can be arbitrarily large.

Saturation with Redundancy. To avoid such and similar cases of unnecessarily
increasing the set of usable formulas during proof search, first-order theorem provers
implement the notion of redundancy [Rob65], by extending the standard superposition
calculus with term/clause ordering and literal selection functions. These orderings and
selection functions are used to eliminate so-called redundant clauses from the clause
database, where redundant clauses are logical consequences of smaller clauses w.r.t. the
considered ordering. In Example 2, the clause ¬positive(x) ∨ positive(reversen(x)) would
be a redundant clause as it is a logical consequence of clause (1.6), with clause (1.6)
being smaller (i.e., using fewer symbols) than ¬positive(x) ∨ positive(reversen(x)). As
such, if clause (1.6) is already a usable clause, saturation algorithms implementing
redundancy should ideally not store ¬positive(x) ∨ positive(reversen(x)) as usable clauses.
To detect and reason about redundant clauses, saturation algorithms with redundancy
extend the superposition inference system with so-called simplification rules and deletion
rules. Simplification and deletion rules do not add new formulas to the set of (usable)
clauses, but instead simplify and delete redundant formulas from the clause database,
respectively, without destroying the refutational completeness of superposition: if a
formula F is valid, then ¬F can be refuted using the superposition calculus extended
with simplification rules. In Example 2, this means that if ¬F can be refuted using
¬positive(x)∨positive(reversen(x)), then ¬F can be refuted in the superposition calculus
extended with simplification rules, without using ¬positive(x) ∨ positive(reversen(x)) but
using clause (1.6) instead.

Ensuring that simplification rules are applied efficiently for eliminating redundant clauses
is, however, not trivial. In Chapter 4, we show that SAT-based approaches can be used
to identify the application of simplification rules during saturation, improving thus the
efficiency of saturation algorithms implementing the superposition calculus extended
with simplification rules, as discussed next.

Contributions to saturation-based theorem proving with SAT solving. While
redundancy is a powerful criterion for keeping the set of clauses used in proof search as
small as possible, establishing whether an arbitrary first-order formula is redundant is as
hard as proving whether it is valid. For example, in order to derive that ¬positive(x) ∨
positive(reversen(x)) is redundant in Example 2, the prover should establish (among
other conditions) that it is a logical consequence of (1.6), which essentially requires
proving based on superposition. To reduce the burden of establishing redundancy, first-
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1. Introduction

order provers implement sufficient conditions towards deriving redundancy, so that these
conditions can be efficiently checked (ideally using only syntactic arguments, and no
proofs). One such condition comes from the notion of subsumption, yielding one of the
most impactful simplification rules in superposition-based theorem proving [BG94].

The intuition behind subsumption is that a (potentially large) instance of a clause C
does not convey any additional information over C, and thus it should be avoided to
have both C and its instance in the set of usable clauses; to this end, we say that
the instance of C is subsumed by C. More formally, a clause C subsumes another
clause D if there is a substitution σ such that σ(C) is a submultiset2 of D. In such a
case, subsumption removes the subsumed clause D from the clause set. To continue
Example 2, a unit clause positive(reversem(x)), with m ≥ 1, would prevent us from
deriving ¬positive(x) ∨ positive(reversen(x)) for any n ≥ m, and hence eliminate an
infinite branch of clause derivations from the search space.

To detect possible inferences of subsumption and related rules, state-of-the-art provers
use a two-step approach [SRV01]: (i) retrieve a small set of candidate clauses, using literal
filtering methods, and then (ii) check whether any of the candidate clauses represents an
actual instance of the rule. Step (i) has been well-researched over the years, leading to
highly efficient indexing solutions [NHRV01, Sch13, SRV01]. Interestingly, step (ii) has
not received much attention, even though it is known that checking subsumption relations
between multi-literal clauses is an NP-complete problem [KN86]. Although indexing in
step (i) allows the first-order prover to skip step (ii) in many cases, the application of (ii)
in the remaining cases may remain problematic (due to NP-hardness). For example, while
profiling subsumption in the world-leading theorem prover Vampire [KV13], we observed
subsumption applications, and in particular calls to the literal-matching algorithm of
step (ii), that consume more than 20 seconds of running time. Given that millions of
such matchings are performed during a typical first-order proof attempt, we consider
such cases highly inefficient, calling for improved solutions towards step (ii). In Chapter 4
we address this demand and show that a tailored SAT-based encoding can significantly
improve the literal matching, and thus subsumption, in first-order theorem proving.

Chapter 4 brings the following main contributions.

• We propose a SAT-based encoding for capturing potential applications of subsump-
tion in first-order theorem proving (Section 4.2). A solution to our SAT-based
encoding gives a concrete application of subsumption, allowing the first-order prover
to apply that instance of subsumption as a simplification rule during saturation.
Our encoding uses so-called substitution constraints (Section 4.1) to formalize
matching of literals within the premises (i.e., subset relation among literals of
premises). Our encoding can be extended to other simplification rules, in particular
when applying simplifications using the combination of subsumption with binary
resolution (i.e., subsumption resolution).

2we consider a clause C as a multiset of its literals
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• We introduce a lightweight SAT solving approach tailored to substitution constraints,
by adjusting unit propagation and conflict resolution towards efficient handling of
such constraints (Section 4.3). We introduce a tailored encoding of substitution
constraints in SAT solving, advocating the direct use of our SAT solver for deciding
application of subsumption within first-order proving.

• We implement our SAT-based subsumption approach as a new SAT solver in the
theorem prover Vampire (Section 4.4). We empirically evaluate our approach on the
standard benchmark library TPTP (Section 4.5). Our experiments demonstrate that
using SAT solving for deciding and applying subsumption brings clear improvements
in the saturation process of first-order proving, for example improving the (time)
performance of the prover by a factor of 2.

1.3 SMT Solving for Bit-Vector Reasoning
Bit-vector reasoning plays a central role in applications of system verification, en-
abling for example efficient bounded model checking [CKL04], bit-precise memory
handling [LLH+21], or proving safety of decentralized financial transactions [AGR+20].
Although one may argue that, because bit-vectors are bounded, bit-vector reasoning is sim-
pler than proving arithmetic properties over the integers or reals, showing (un)satisfiability
of bit-vector problems is inherently expensive due to complex arithmetic operations over
large bit-widths [KFB16].

In Part II of this thesis, we propose PolySAT, a word-level reasoning procedure as a
theory solver integrated into SMT solving. PolySAT is based on conflict-driven clause
learning modulo theories (CDCL(T)), providing thus an alternative to bit-blasting. Our
work builds on and extends previous research on bit-vector slicing [BS09], forbidden
intervals [GJD20], and fixing bits [ZWR16]. From Part I, we apply subsumption resolution
to simplify conflict clauses in some cases.

In our setting, we consider bit-vectors as elements of the ring Z/2wZ. Informally,
arithmetical operations on bit-vectors can be seen as the respective integer operations,
where the result is evaluated “mod 2w”. Yet, due to modulo/bounded arithmetic, many
properties of the integers (such as, there is no maximal element and no zero-divisors) do
not hold over bit-vectors. Nevertheless, with PolySAT we support bit-vector arithmetic
without bit-blasting.

Example 3. Let us illustrate the benefits of PolySAT using the following bit-vector
constraints with large bit-width w:

xy + y >u y + 3
6 = 2y + z

1 = 3x + 6yz + 3z2

0 = (2y + 1) & x

where “&” denotes the bit-wise and operation and >u refers to unsigned comparison.
PolySAT proves this set of bit-vector constraints to be Unsat, without using bit-blasting
as follows.
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We guess the assignment x = 0, simplifying the first constraint to y >u y + 3. We pick
the assignment y = 2w − 2 which is feasible w.r.t. the inequality. Hence, the constraint
6 = 2y + z simplifies to z = 10, which conflicts with the constraint 1 = 3x + 6yz + 3z2.
We backtrack, apply variable elimination upon y on the two equality constraints, and
learn the equation 3x + 18z = 1. From the bit-wise &-constraint, we derive that x is
even, as 2y + 1 is odd. This, however, conflicts with the learned clause, as it implies that
x is odd. Hence, PolySAT concludes that the given constraints are Unsat.

Contributions to SMT Solving. With PolySAT (Chapters 7–12) we bring the
following main improvements to word-level reasoning over bit-vectors.

• We adjust the concept of forbidden intervals [GJD20] to track viable values in
PolySAT (Chapter 8);

• We extract bit-vectors intervals from polynomial (non-linear) inequalities (Chap-
ter 9);

• We introduce lemmas on-demand for detecting and resolving non-linear conflicts in
PolySAT (Chapter 10);

• We implement PolySAT directly in the SMT solver Z3 [dMB08] and evaluate our
work on challenging examples (Chapter 11).

1.4 Publications
The thesis at hand is based on the following publications:

[GKR20] Bernhard Gleiss, Laura Kovács, and Jakob Rath. Subsumption Demodu-
lation in First-Order Theorem Proving. In Proceedings of IJCAR, pages
297–315, 2020. doi:10.1007/978-3-030-51074-9_17

[RBK22] Jakob Rath, Armin Biere, and Laura Kovács. First-Order Subsumption
via SAT Solving. In Proceedings of FMCAD, pages 160–169, 2022. doi:
10.34727/2022/ISBN.978-3-85448-053-2_22

[REK+24] Jakob Rath, Clemens Eisenhofer, Daniela Kaufmann, Nikolaj Bjørner,
and Laura Kovács. PolySAT: Word-level Bit-vector Reasoning in Z3, 2024.
Accepted for VSTTE 2024. arXiv:2406.04696

I have been the main author of [RBK22] and [REK+24]. The work in [GKR20] has been
led and implemented by me, including devising and integrating subsumption demodulation
in saturation.

As part of my PhD research, the following additional works have also been published.
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[CRR+24] Robin Coutelier, Jakob Rath, Michael Rawson, Armin Biere, and
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CHAPTER 2
Background

We begin by defining the relevant vocabulary. In this chapter, we encounter both standard
multi-sorted first-order logic with equality (for the target formula to be proved, and
intermediate formulas), as well as standard propositional logic (as compilation target for
sub-problems to be solved).

We first consider standard multi-sorted first-order logic with equality, where the equality
predicate is denoted by ≃. We support the standard Boolean connectives (negation ¬,
conjunction ∧, disjunction ∨, implication →, equivalence ↔) and quantifiers (universal ∀,
existential ∃) in the language. We write F |= G to indicate that formula G holds whenever
formula F holds, or equivalently, that F → G is valid.

Let V be a countably infinite set of first-order variables. Throughout the chapter, we
write x, y, z for first-order variables (i.e., elements of V), c, d for constant symbols, f, g
for function symbols, and p, q for predicate symbols. The set of first-order terms T is
constructed inductively: variables and constant symbols are terms, and complex terms
are built by applying function symbols to existing terms. We denote terms by l, r, s, t.

All notation throughout this text may use indices, and we may drop the qualifier “first-
order” when it is clear from the context.

First-order atoms are predicates applied to terms. Atoms and negated atoms are also
called first-order literals, and we denote them by L, M . We further call a literal for the
form s ≃ t an equality literal, and write s ̸≃ t for the literal ¬(s ≃ t).

First-order clauses are disjunctions of literals and denoted by C, D. A clause that consists
of a single literal is called a unit clause, and a clause that consists of a single equality
literal is called a unit equality. Clauses are often viewed as multisets of literals; that is,
a clause C = L1 ∨ L2 ∨ · · · ∨ Ln is considered to be the multiset {L1, L2, . . . , Ln}. For
example, the clause p ∨ ¬q ∨ p is the multiset {p, p, ¬q}. The empty clause is denoted
by □.
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An expression E is a term, literal, or clause. We denote the set of variables occurring in
the expression E by V(E). A substitution is a function σ : V → T such that σ(x) ̸= x
only for finitely many x ∈ V. As a shorthand, we also write {x1 ↦→ t1, . . . , xn ↦→ tn} for
the substitution that maps xi to ti for i ∈ {1, . . . , n} and leaves y unchanged for y ̸∈
{x1, . . . , xn}. The function σ is extended to arbitrary expressions E by simultaneously
replacing each variable x in E by σ(x). Traditionally in logic, σ(E) is often written in
postfix notation as Eσ.

An expression E is said to be ground if it does not contain any variables.

To formally define replacement of a distinguished occurrence of a subterm s within an
expression E, consider an expression E′ with a single occurrence of a fresh variable z such
that E′{z ↦→ s} = E (i.e., put a “hole” z in place of the distinguished occurrence of s).
We can then obtain the version of E with the distinguished occurrence of s replaced by a
term t as E′{z ↦→ t}. As a shorthand for such constructions, we write E[s] (e.g., in the
premise of an inference rule) to indicate a distinguished occurrence of the term s within
the expression E. Subsequent notation E[t] (e.g., in the conclusion of an inference rule)
stands for the expression E with the distinguished occurrence of s replaced by the term t.

We say that Eσ is an instance of E. A unifier of two expressions E1 and E2 is a
substitution σ such that E1σ = E2σ. If two expressions E1 and E2 have a unifier, they
also have a most general unifier (mgu); we write mgu(E1, E2). A match of expression E1
to expression E2 is a substitution σ such that E1σ = E2; if such a σ exists we say E1 can
be matched to E2. Note that, if the sets of variables in E1 and E2 are disjoint, any match
is a unifier, but not every unifier is a match, as illustrated by the following example.

Example 4. Let E1 and E2 be the clauses p(x, y)∨q(x, y) and p(c, d)∨q(c, z), respectively.
The only possible match of p(x, y) to p(c, d) is σ1 = {x ↦→ c, y ↦→ d}. On the other hand,
the only possible match of q(x, y) to q(c, z) is σ2 = {x ↦→ c, y ↦→ z}. As σ1 and σ2 are not
the same, there is no match of E1 to E2. Note however that E1 and E2 can be unified,
for example, using σ3 = {x ↦→ c, y ↦→ d, z ↦→ d}.

2.1 Saturation-Based Theorem Proving
In this section, we recall the basics of saturation-based theorem proving and superposition
reasoning and refer to the literature for further details [BG94, BG01, NR01]. We adopt
the notations and the inference system of superposition from [KV13].

The key idea behind saturation-based proof search is to reduce the problem of proving
validity of a first-order formula F to the problem of establishing unsatisfiability of ¬F by
using a sound inference system. More precisely, the prover first obtains a clausification
of ¬F and tries to derive the empty clause □ by applying sound inferences over its clause
database. The details of how the clause database is organized depends on the concrete
saturation algorithm, but usually, at each step of the saturation algorithm, not all clauses
are eligible to trigger inferences.
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An inference is usually written as

C1 . . . Cn

C

with n ≥ 0 and clauses C, C1, . . . , Cn. The clauses C1, . . . , Cn are called the premises
and C is the conclusion of the inference above. An inference rule is a set of (concrete)
inferences and an inference system is a set of inference rules. An inference is sound if its
conclusion is a logical consequence of its premises. An inference rule is sound if all its
inferences are sound, and an inference system is sound if all its inference rules are sound.

2.2 Superposition Inference System
Modern first-order theorem provers implement the superposition inference system for
first-order logic with equality. This inference system is parametrized by a simplification
ordering over terms and a literal selection function over clauses. In what follows, we
denote by ≻ a simplification ordering over terms, that is ≻ is a well-founded partial
ordering satisfying the following three conditions for all terms s and t:

• stability under substitutions: if s ≻ t, then sσ ≻ tσ for any substitution σ;

• monotonicity: if s ≻ t, then l[s] ≻ l[t] for any term l;

• subterm property: s ≻ t whenever t is a proper subterm of s.

The simplification ordering ≻ on terms can be extended to a simplification ordering on
literals and clauses, using a multiset extension of orderings. For simplicity, the extension
of ≻ to literals and clauses will also be denoted by ≻. Whenever E1 ≻ E2, we say that
E1 is bigger than E2 and E2 is smaller than E1 w.r.t. ≻. We say that an equality literal
s ≃ t is oriented, if s ≻ t or t ≻ s. The literal extension of ≻ asserts that negative literals
are always bigger than their positive counterparts. Moreover, if L1 ≻ L2, where L1 and
L2 are positive, then ¬L1 ≻ L1 ≻ ¬L2 ≻ L2. Finally, equality literals are set to be
smaller than any literal using a predicate different than ≃.

A selection function selects at least one literal in every non-empty clause. In what follows,
selected literals in clauses will be underlined: when writing L ∨ C, we mean that (at
least) L is selected in L ∨ C. In what follows, we assume that selection functions are
well-behaved w.r.t. ≻: either a negative literal is selected or all maximal literals w.r.t. ≻
are selected.

In the sequel, we fix a simplification ordering ≻ and a well-behaved selection function
and consider the superposition inference system, denoted by Sup, parametrized by these
two ingredients. The inference system Sup for first-order logic with equality consists of
the inference rules of Figure 2.1, and it is both sound and refutationally complete. That
is, if a set S of clauses is unsatisfiable, then the empty clause (that is, the always false
formula) is derivable from S in Sup.
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• Resolution and Factoring

L ∨ C1 ¬L′ ∨ C2

(C1 ∨ C2)σ
L ∨ L′ ∨ C

(L ∨ C)σ

where L is not an equality literal and σ = mgu(L, L′).

• Superposition
s ≃ t ∨ C1 L[s′] ∨ C2

(C1 ∨ L[t] ∨ C2)σ

s ≃ t ∨ C1 l[s′] ≃ l′ ∨ C2

(C1 ∨ l[t] ≃ l′ ∨ C2)σ
s ≃ t ∨ C1 l[s′] ̸≃ l′ ∨ C2

(C1 ∨ l[t] ̸≃ l′ ∨ C2)σ

where s′ not a variable, L is not an equality, σ = mgu(s, s′), tσ ̸≻ sσ and l′σ ̸≻ l[s′]σ.

• Equality Resolution and Equality Factoring

s ̸≃ s′ ∨ C

Cσ

s ≃ t ∨ s′ ≃ t′ ∨ C

(s ≃ t ∨ t ̸≃ t′ ∨ C)σ

where σ = mgu(s, s′), tσ ̸≻ sσ and t′σ ̸≻ tσ.

Figure 2.1: The superposition calculus Sup.

2.3 Saturation and Redundancy
The basic idea behind saturation is simple: apply all possible inferences of Sup to the
clauses in the clause database until (i) no more inferences can be applied or (ii) the empty
clause □ has been derived. However, a naïve implementation of saturation would not be
very useful in practice, because simply applying all possible inferences will quickly blow
up the search space.

The design of efficient saturation algorithms exploits the powerful concept of redundancy:
deleting so-called redundant clauses from the clause database while preserving the
completeness of Sup.

Redundancy builds on the literal ordering ≻ introduced in the previous section.

Definition 1 (Ground Redundancy). A ground clause C is ground-redundant in a set of
ground clauses S if there are C1, . . . , Cn ∈ S such that

• C1, . . . , Cn |= C, and

• Ci ≺ C for all i ∈ {1, . . . , n}.

Definition 2 (Redundancy). A clause C is redundant in a set of clauses S if all ground
instances of C are ground-redundant in a set of ground instances of clauses in S.
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It is known that redundant clauses can be removed from the clause database without
affecting the completeness of saturation-based proof search. However, determining exactly
whether a clause C is redundant in the current database S is undecidable in general. Thus,
in practice, the focus is on identifying sufficient conditions that guarantee redundancy.

Some redundancy is already baked into Sup in the form of ordering constraints.

The inferences of Sup add new clauses to the clause database and thus increase the
size of the database; such inferences are called generating inferences. In addition to
generating inferences, state-of-the-art theorem provers employ also simplifying inferences
that simplify the clause database or reduce its size. Such inferences are unnecessary from
a theoretical perspective, but they are responsible for major speed-ups in practice.

Simplification Rules. An inference with premises C1, . . . , Cn and conclusion C is
a simplifying inference if one of its premises Ci is redundant in the updated clause
database S ∪ {C} after the addition of the conclusion C. In what follows, we will denote
deleted clauses by drawing a line through them and refer to inference rules that only
contain simplifying inferences as simplification rules. The premise Ci that becomes
redundant is called the main premise, whereas any other premises are called side premises
of the simplification rule. Intuitively, a simplification rule simplifies its main premise to
its conclusion by using additional knowledge from its side premises.

In saturation-based proof search, we distinguish between forward and backward sim-
plifications. During forward simplification, a newly derived clause is simplified using
previously derived clauses as side clauses. Conversely, during backward simplification a
newly derived clause is used as a side clause to simplify previously derived clauses.

One important example of a simplification rule is demodulation, also called rewriting by
unit equalities.

Definition 3 (Demodulation). Demodulation is the inference rule

l ≃ r ✘✘✘✘✘L[t] ∨ C

L[rσ] ∨ C

where lσ = t, lσ ≻ rσ and L[t] ∨ C ≻ (l ≃ r)σ, for some substitution σ.

It is easy to see that demodulation is a simplification rule. Moreover, demodulation is
a special case of a superposition inference of Sup where one premise of the inference is
deleted. However, unlike a superposition inference, demodulation is not restricted to
selected literals.

Example 5. Consider the clauses C1 = f(f(x)) ≃ f(x) and C2 = p(f(f(c))) ∨ q(d).
Let σ be the substitution σ = {x ↦→ c}. By the subterm property of ≻, we have
f(f(c)) ≻ f(c). Further, as equality literals are smaller than non-equality literals,
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we have p(f(f(c))) ∨ q(d) ≻ f(f(c)) ≃ f(c). We may thus apply demodulation and
simplify C2 into the clause C3 = p(f(c)) ∨ q(d):

f(f(x)) ≃ f(x) ✭✭✭✭✭✭✭✭✭
p(f(f(c))) ∨ q(d)

p(f(c)) ∨ q(d)

Deletion Rules. Even with simplification rules, it is useful to identify other redundant
clauses and delete them to keep the clause database small. For this reason, in addition
to simplifying and generating rules, theorem provers also use deletion rules: a deletion
rule checks whether clauses in the clause database are redundant due to the presence of
other clauses, and removes redundant clauses from the database.

Definition 4 (Subsumption). We say a clause C subsumes another clause D if there exists
a substitution σ such that Cσ ⊑ D, where ⊑ denotes multiset inclusion. Subsumption is
the deletion rule that removes subsumed clauses from the clause database.

Example 6. Let C = p(x)∨q(f(x)) and D = p(f(c))∨p(g(c))∨q(f(c))∨q(f(g(c)))∨q(y)
be clauses in the clause database. Using the substitution σ = {x ↦→ g(c)}, it is easy to
see that C subsumes D, and hence we may delete D from the clause database.

Example 7. On the other hand, the clause C = p(x)∨p(y) does not subsume D = p(f(c)),
because it is not possible to satisfy the multiset inclusion constraint. A theorem prover
based on Sup may first apply factoring to derive C ′ = p(z) from C, and subsequently
delete both C and D as they are now both subsumed by C ′.

This example also gives some intuition why the definition of subsumption relies on
multiset inclusion rather than ordinary set inclusion: with ordinary set inclusion, C
would subsume C ′.

Subsumption gives a powerful basis for other simplification rules. For example, subsump-
tion resolution [KV13, SCV19], also known as contextual literal cutting or self-subsuming
resolution, is the combination of subsumption with binary resolution; and subsumption
demodulation (see Chapter 3) results from combining subsumption with demodulation.

Definition 5 (Subsumption Resolution). For the purpose of this thesis, let subsumption
resolution denote the rules

L ∨ C ✭✭✭✭✭¬M ∨ D

D

¬L ∨ C ✘✘✘✘M ∨ D

D

where Lσ = M and Cσ ⊆ D for some substitution σ.

Subsumption resolution is a well-known simplification rule. A notable difference to
subsumption is the use of regular set inclusion rather than multi-set inclusion in the side
conditions, which is justified because the conclusion is always strictly smaller than the
main premise due to the removal of a literal. A more thorough definition and treatment
of subsumption resolution may be found in [CRR+24].
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2.4 Propositional Logic and SAT Solving
We introduce standard propositional logic, which will be used in Chapter 4 as compilation
target for subsumption constraints.

Let B be a countably infinite set of Boolean variables. We denote Boolean variables by b,
possibly with indices. We use the standard Boolean connectives ∧, ∨, →, ¬, and write ⊤
for the Boolean constant true as well as ⊥ for the Boolean constant false. A Boolean
literal, denoted l, is a variable b or its negation ¬b.1 A Boolean clause is a disjunction of
literals. As before, we drop the qualifier Boolean when it is clear from the context.

Modern SAT solvers are based on conflict-driven clause learning (CDCL) [BS97, MS99,
MLM21], with the core procedures decide, unit-propagate, and resolve-conflict. The
solver maintains a partial assignment of truth values to the Boolean variables. Unit
propagation (also called Boolean constraint propagation), that is unit-propagate in a
SAT solver, propagates clauses w.r.t. the partial assignment. If exactly one literal l in a
clause remains unassigned in the current assignment while all other literals are false, the
solver sets l to true to avoid a conflict. The two-watched-literals scheme [MMZ+01] is
the standard approach for efficient implementation of unit propagation.

If no propagation is possible, the solver may choose a currently unassigned variable b
and set it to true or false; hence, decide in SAT solving. The number of variables in the
current assignment that have been assigned by decision is called the decision level.

If all literals in a clause are false in the current assignment, the solver enters conflict
resolution, via the resolve-conflict procedure of SAT solving. If the current decision level
is 0, the conflict follows unconditionally from the input clauses and the solver returns
Unsat (“unsatisfiable”). Otherwise, by analyzing how the literals in the conflicting clause
have been assigned, the solver may derive and learn a conflict lemma, undo some decisions,
and continue solving.

If the solver succeeds in assigning all Boolean variables without falsifying any clause, it
returns Sat (“satisfiable”) and the current assignment as a model of the input formula.

1While we also use l for first-order terms in some places, the distinction will be clear from the context.
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CHAPTER 3
Subsumption Demodulation

This chapter is based on the following publication:

[GKR20] Bernhard Gleiss, Laura Kovács, and Jakob Rath. Subsumption Demodu-
lation in First-Order Theorem Proving. In Proceedings of IJCAR, pages
297–315, 2020. doi:10.1007/978-3-030-51074-9_17

In this chapter we introduce a new simplification rule, called subsumption demodulation,
by extending demodulation as defined in Definition 3 to a simplification rule over
conditional equalities. We do so by combining demodulation with subsumption checks to
find simplifying applications of rewriting by non-unit (and hence conditional) equalities.

3.1 Definition and Soundness

Definition 6 (Subsumption Demodulation). Subsumption demodulation is the inference
rule:

l ≃ r ∨ C L[t] ∨ D

L[rσ] ∨ D (3.1)
where:

1. lσ = t,

2. Cσ ⊑ D,

3. lσ ≻ rσ, and

4. L[t] ∨ D ≻ (l ≃ r)σ ∨ Cσ.

We call the equality l ≃ r in the left premise of (3.1) the rewriting equality of subsumption
demodulation.
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3. Subsumption Demodulation

Intuitively, the side conditions 1 and 2 of Definition 6 ensure the soundness of the rule:
it is easy to see that if l ≃ r ∨ C and L[t] ∨ D are true, then L[rσ] ∨ D also holds. We
thus conclude:

Theorem 1 (Soundness). Subsumption demodulation is sound.

On the other hand, side conditions 3 and 4 of Definition 6 are vital to ensure that
subsumption demodulation is a simplification rule (details follow in Section 3.2).

Detecting possible applications of subsumption demodulation involves (i) selecting one
equality of the side clause as rewriting equality and (ii) matching each of the remaining
literals, denoted C in (3.1), to some literal in the main clause. Step (i) is similar to
finding unit equalities in demodulation, whereas step (ii) reduces to showing that C
subsumes parts of the main premise. Informally speaking, subsumption demodulation
combines demodulation and subsumption, as discussed in Section 3.3. Note that in step
(ii), matching allows any instantiation of C to Cσ via substitution σ; yet, we we do not
unify the side and main premises of subsumption demodulation, as illustrated later in
Example 10. Furthermore, we need to find a term t in the unmatched part D \ Cσ of the
main premise, such that t can be rewritten according to the rewriting equality into rσ.

As the ordering ≻ is partial, the conditions of Definition 6 must be checked a posteriori,
that is after subsumption demodulation has been applied with a fixed substitution. Note
however that if l ≻ r in the rewriting equality, then lσ ≻ rσ for any substitution, so
checking the ordering a priori helps, as illustrated in the following example.

Example 8. Let us consider the following two clauses:

C1 = f(g(x)) ≃ g(x) ∨ q1(x) ∨ q2(y)
C2 = p(f(g(c))) ∨ q1(c) ∨ q1(d) ∨ q2(f(g(d)))

By the subterm property of ≻, we conclude that f(g(x)) ≻ g(x). Hence, the rewriting
equality, as well as any instance of it, is oriented.

Let σ be the substitution σ = {x ↦→ c, y ↦→ f(g(d))}. Due to the previous paragraph,
we know f(g(c)) ≻ g(c) As equality literals are smaller than non-equality ones, we also
conclude p(f(g(c))) ≻ f(g(c)) ≃ g(c). Thus, we have

p(f(g(c))) ∨ q1(c) ∨ q1(d) ∨ q2(f(g(d))) ≻ f(g(c)) ≃ g(c) ∨ q1(c) ∨ q2(f(g(d)))

and we can apply subsumption demodulation to C1 and C2, deriving the clause C3 =
p(g(c)) ∨ q1(c) ∨ q1(d) ∨ q2(f(g(d))).

We note that demodulation cannot derive C3 from C1 and C2, as there is no unit
equality.

Example 8 highlights limitations of demodulation when compared to subsumption demod-
ulation. We next illustrate different possible applications of subsumption demodulation
using a fixed side premise and different main premises.
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Example 9. Consider the clause C1 = f(g(x)) ≃ g(y) ∨ q1(x) ∨ q2(y). Only the first
literal f(g(x)) ≃ g(y) is a positive equality and as such eligible as rewriting equality.
Note that f(g(x)) and g(y) are incomparable w.r.t. ≻ due to occurrences of different
variables, and hence whether f(g(x))σ ≻ g(y)σ depends on the chosen substitution σ.

1. Consider the clause C2 = p(f(g(c))) ∨ q1(c) ∨ q2(c) as the main premise. With the
substitution σ1 = {x ↦→ c, y ↦→ c}, we have f(g(x))σ1 ≻ g(x)σ1 as f(g(c)) ≻ g(c)
due to the subterm property of ≻, enabling a possible application of subsumption
demodulation over C1 and C2.

2. Consider now C3 = p(g(f(g(c)))) ∨ q1(c) ∨ q2(f(g(c))) as the main premise and
the substitution σ2 = {x ↦→ c, y ↦→ f(g(c))}. We have g(y)σ2 ≻ f(g(x))σ2, as
g(f(g(c)) ≻ f(g(c)). The instance of the rewriting equality is oriented differently in
this case than in the previous one, enabling a possible application of subsumption
demodulation over C1 and C3.

3. On the other hand, using the clause C4 = p(f(g(c))) ∨ q1(c) ∨ q2(z) as the main
premise, the only substitution we can use is σ3 = {x ↦→ c, y ↦→ z}. The corre-
sponding instance of the rewriting equality is then f(g(c)) ≃ g(z), which cannot be
oriented in general. Hence, subsumption demodulation cannot be applied in this
case, even though we can find the matching term f(g(c)) in C4.

As mentioned before, the substitution σ appearing in subsumption demodulation can
only be used to instantiate the side premise, but not for unifying side and main premises,
as we would not obtain a simplification rule.

Example 10. Consider the clauses:

C1 = f(c) ≃ c ∨ q(d)
C2 = p(f(c)) ∨ q(x)

As we cannot match q(d) to q(x) (although we could match q(x) to q(d)), subsumption
demodulation is not applicable with premises C1 and C2.

3.2 Simplification using Subsumption Demodulation
Note that in the special case where C is the empty clause in (3.1), subsumption demodu-
lation reduces to demodulation and hence it is a simplification rule. We next show that
this is the case in general.

Theorem 2 (Simplification Rule). Subsumption demodulation is a simplification rule
and we have

l ≃ r ∨ C ✘✘✘✘✘L[t] ∨ D

L[rσ] ∨ D

where
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1. lσ = t,

2. Cσ ⊑ D,

3. lσ ≻ rσ, and

4. L[t] ∨ D ≻ (l ≃ r)σ ∨ Cσ.

Proof. Because of the second condition of the definition of subsumption demodulation,
L[t] ∨ D is clearly a logical consequence of L[rσ] ∨ D and l ≃ r ∨ C. Moreover, from the
fourth condition, we trivially have L[t] ∨ D ≻ (l ≃ r)σ ∨ Cσ. It thus remains to show
that L[rσ] ∨ D is smaller than L[t] ∨ D w.r.t. ≻. As t = lσ ≻ rσ, the monotonicity
property of ≻ asserts that L[t] ≻ L[rσ], and hence L[t] ∨ D ≻ L[rσ] ∨ D. This concludes
that L[t] ∨ D is redundant w.r.t. the conclusion and left-most premise of subsumption
demodulation.

Example 11. By revisiting Example 8, Theorem 2 asserts that clause C2 is simplified
into C3, and subsumption demodulation deletes C2 from the search space.

3.2.1 Refining Redundancy
The fourth condition defining subsumption demodulation in Definition 6 is required to
ensure that the main premise of subsumption demodulation becomes redundant. However,
comparing clauses w.r.t. the ordering ≻ is computationally expensive; yet, not necessary
for subsumption demodulation. Following the notation of Definition 6, let D′ such that
D = Cσ ∨D′. By properties of multiset orderings, the condition L[t]∨D ≻ (l ≃ r)σ ∨Cσ
is equivalent to L[t] ∨ D′ ≻ (l ≃ r)σ, as the literals in Cσ occur on both sides of ≻. This
means, to ensure the redundancy of the main premise of subsumption demodulation, we
only need to ensure that there is a literal from L[t] ∨ D such that this literal is bigger
that the rewriting equality.

Theorem 3 (Refining Redundancy). The following conditions are equivalent:

(R1) L[t] ∨ D ≻ (l ≃ r)σ ∨ Cσ

(R2) L[t] ∨ D′ ≻ (l ≃ r)σ

As mentioned in Section 3.1, application of subsumption demodulation involves checking
that an ordering condition between premises holds (side condition 4 in Definition 6).
Theorem 3 asserts that we only need to find a literal in L[t] ∨ D′ that is bigger than the
rewriting equality in order to ensure that the ordering condition is fulfilled. In the next
section we show that by re-using and properly changing the underlying machinery of
first-order provers for demodulation and subsumption, subsumption demodulation can
efficiently be implemented in superposition-based proof search.
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3.3 Implementation in Vampire
We implemented subsumption demodulation in the first-order theorem prover Vampire.
As for any simplification rule, we implemented both the forward and backward versions
of subsumption demodulation, and their use can be controlled separately. Subsumption
demodulation is available in the mainline version of Vampire1 and can be enabled by
setting the options fsd and bsd, both with possible values on and off, to enable
forward and backward subsumption demodulation, respectively.

As discussed in Section 3.1, subsumption demodulation uses reasoning based on a
combination of demodulation and subsumption. Algorithm 3.1 details our implementation
for forward subsumption demodulation. In a nutshell, given a clause D as main premise,
(forward) subsumption demodulation in Vampire consists of the following main steps:

1. Retrieve candidate clauses C as side premises of subsumption demodulation (line 1
of Algorithm 3.1). To this end, we design a new clause index with imperfect filtering,
by modifying the subsumption index in Vampire, as discussed later in this section.

2. Prune candidate clauses by checking the conditions of subsumption demodulation
(lines 3–7 of Algorithm 3.1), in particular selecting a rewriting equality and matching
the remaining literals of the side premise to literals of the main premise. After this,
prune further by performing a posteriori checks for orienting the rewriting equality
E, and checking the redundancy of the given main premise D. To do so, we revised
multi-literal matching and redundancy checking in Vampire (see later).

3. Build simplified clause by simplifying and deleting the (main) premise D of sub-
sumption demodulation using (forward) simplification (line 8 of Algorithm 3.1).

Our implementation of backward subsumption demodulation requires only a few changes
to Algorithm 3.1: (i) we use the input clause as side premise C of backward subsumption
demodulation and (ii) we retrieve candidate clauses D as potential main premises of sub-
sumption demodulation. Additionally, (iii) instead of returning a single simplified clause
D′, we record a replacement clause for each candidate clause D where a simplification
was possible.

Clause Indexing for Subsumption Demodulation. We build upon the indexing
approach [SRV01] used for subsumption in Vampire: the subsumption index in Vampire
stores and retrieves candidate clauses for subsumption. Each clause is indexed by exactly
one of its literals. In principle, any literal of the clause can be chosen. In order to reduce
the number of retrieved candidates, the best literal is chosen in the sense that the chosen
literal maximizes a certain heuristic (e.g., maximal weight). Since the subsumption index
is not a perfect index (i.e., it may retrieve non-subsumed clauses), additional checks on
the retrieved clauses are performed.

1Available at https://github.com/vprover/vampire
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Algorithm 3.1: Forward Subsumption Demodulation – FSD
Input : Clause D, to be used as main premise
Output : Simplified clause D′ if (forward) subsumption demodulation is possible
// Retrieve candidate side premises

1 candidates := FSDIndex .Retrieve(D)
2 for each C ∈ candidates do
3 while m = FindNextMLMatch(C, D) do
4 σ′ := m.GetSubstitution()
5 E := m.GetRewritingEquality()

// E is of the form l ≃ r, for some terms l, r

6 if exists term t in D \ Cσ′ and substitution σ ⊇ σ′ such that t = lσ then
7 if CheckOrderingConditions(D, E, t, σ) then
8 D′ := BuildSimplifiedClause(D, E, t, σ)
9 return D′

10 end
11 end
12 end
13 end

Using the subsumption index of Vampire as the clause index for forward subsumption
demodulation would however omit retrieving clauses (side premises) in which the rewriting
equality is chosen as key for the index, omitting this way a possible application of
subsumption demodulation. Hence, we need a new clause index in which the best literal
can be adjusted to be the rewriting equality. To address this issue, we added a new clause
index, called the forward subsumption demodulation index (FSD index), to Vampire, as
follows: we index potential side premises either by their best literal (according to the
heuristic), the second best literal, or both. If the best literal in a clause C is a positive
equality (i.e., a candidate rewriting equality) but the second best is not, C is indexed
by the second best literal, and vice versa. If both the best and second best literal are
positive equalities, C is indexed by both of them. Furthermore, because the FSD index
is exclusively used by forward subsumption demodulation, this index only needs to keep
track of clauses that contain at least one positive equality.

In the backward case, we can in fact reuse Vampire’s index for backward subsumption.
Instead we need to query the index by the best literal, the second best literal, or both
(as described in the previous paragraph).

Multi-literal Matching. Similarly to the subsumption index, our new subsumption
demodulation index is not a perfect index, that is it performs imperfect filtering for
retrieving clauses. Therefore, additional post-checks are required on the retrieved clauses.
In our work, we devised a multi-literal matching approach to:

• choose the rewriting equality among the literals of the side premise C, and
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• check whether the remaining literals of C can be uniformly instantiated to the
literals of the main premise D of subsumption demodulation.

There are multiple ways to organize this process. A simple approach is to (i) first pick
any equality of a side premise C as the rewriting equality of subsumption demodulation,
and then (ii) invoke the existing multi-literal matching machinery of Vampire to match
the remaining literals of C with a subset of literals of D. For the latter step (ii), the task
is to find a substitution σ such that Cσ becomes a submultiset of the given clause D. If
the choice of the rewriting equality in step (i) turns out to be wrong, we backtrack. In
our work, we revised the existing multi-literal matching machinery of Vampire to a new
multi-literal matching approach for subsumption demodulation, by using the steps (i)-(ii)
and interleaving equality selection with matching.

We note that the substitution σ in step (ii) above is built in two stages: first we get a
partial substitution σ′ from multi-literal matching and then (possibly) extend σ′ to σ by
matching term instances of the rewriting equality with terms of D \ Cσ.

Example 12. Let D be the clause p(f(c, d)) ∨ q(c). Assume that our (FSD) clause index
retrieves the clause C = f(x, y) ≃ y ∨ q(x) from the search space (line 1 of Algorithm 3.1).
We then invoke our multi-literal matcher (line 3 of Algorithm 3.1), which matches the
literal q(x) of C to the literal q(c) of D and selects the equality literal f(x, y) ≃ y of C as
the rewriting equality for subsumption demodulation over C and D. The matcher returns
the choice of rewriting equality and the partial substitution σ′ = {x ↦→ c}. We arrive at
the final substitution σ = {x ↦→ c, y ↦→ d} only when we match the instance f(x, y)σ′,
that is f(c, y), of the left-hand side of the rewriting equality to the literal f(c, d) of D.
Using σ, subsumption demodulation over C and D will derive p(d) ∨ q(c), after ensuring
that D becomes redundant (line 8 of Algorithm 3.1).

We further note that multi-literal matching is an NP-complete problem. Our multi-
literal matching problems may have more than one solution, with possibly only some (or
none) of them leading to successful applications of subsumption demodulation. In our
implementation, we examine all solutions retrieved by multi-literal matching. We also
experimented with limiting the number of matches examined after multi-literal matching
but did not observe relevant improvements. Yet, our implementation in Vampire also
supports an additional option allowing the user to specify an upper bound on how many
solutions of multi-literal matching should be examined.

Redundancy Checking. To ensure redundancy of the main premise D after the
subsumption demodulation inference, we need to check two properties. First, the instance
Eσ of the rewriting equality E must be oriented. This is a simple ordering check. Second,
the main premise D must be larger than the side premise C. Thanks to Theorem 3, this
latter condition is reduced to finding a literal among the unmatched part of the main
premise D that is bigger than the instance Eσ of the rewriting equality E.
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Example 13. In case of Example 12, the rewriting equality E is oriented and hence Eσ
is also oriented. Next, the literal p(f(c, d)) is bigger than Eσ, and hence D is redundant
w.r.t. C and D′.

3.4 Experiments
We evaluated our implementation of subsumption demodulation in Vampire on the
problems of the TPTP [Sut17, Sut24] (version 7.3.0) and SMT-LIB [BFT16] (release
2019-05-06) repositories. As described in Section 3.3, our implementation of subsumption
demodulation is available in the mainline version of Vampire and may be controlled
with command-line options. All our experiments were carried out on the StarExec
cluster [SST14].

Benchmark Setup. From the 22 686 problems in the TPTP benchmark set, Vampire
can parse 18 232 problems.2 Out of these problems, we only used those problems that
involve equalities as subsumption demodulation is only applicable in the presence of (at
least one) equality. As such, we used 13 924 TPTP problems in our experiments.

On the other hand, when using the SMT-LIB repository, we chose the benchmarks
from categories LIA, UF, UFDT, UFDTLIA, and UFLIA, as these benchmarks involve
reasoning with both theories and quantifiers and the background theories are the theories
that Vampire supports. These are 22 951 SMT-LIB problems in total, of which 22 833
problems remain after removing those where equality does not occur.

Comparative Experiments with Vampire. As a first experimental study, we
compared the performance of subsumption demodulation in Vampire for different values
of fsd and bsd, that is by using forward (FSD) and/or backward (BSD) subsumption
demodulation. To this end, we evaluated subsumption demodulation using the CASC
and SMTCOMP schedules of Vampire’s portfolio mode. In order to test subsumption
demodulation with the portfolio mode, we added the options fsd and/or bsd to all
strategies of Vampire. While the resulting strategy schedules could potentially be further
improved, it allowed us to test FSD/BSD with a variety of strategies.

Our results are summarized in Tables 3.1-3.2. The first column of these tables lists
the Vampire version and configuration, where Vampire refers to Vampire in its
portfolio mode (version 4.4). Lines 2-4 of these tables use our new Vampire, that
is our implementation of subsumption demodulation in Vampire. The column “Solved”
reports, respectively, the total number of TPTP and SMT-LIB problems solved by the
considered Vampire configurations. Column “New” lists, respectively, the number of
TPTP and SMT-LIB problems solved by the version with subsumption demodulation
but not by the portfolio version of Vampire. This column also indicates in parentheses
how many of the solved problems were satisfiable/unsatisfiable.

2The other problems contain features, such as higher-order logic, that have not been implemented in
Vampire yet.
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Table 3.1: Comparing Vampire with and without subsumption demodulation on TPTP,
using Vampire in portfolio mode.

Configuration Total Solved New (SAT+UNSAT)
Vampire 13 924 9 923 –
Vampire, with FSD 13 924 9 757 20 (3+17)
Vampire, with BSD 13 924 9 797 14 (2+12)
Vampire, with FSD and BSD 13 924 9 734 30 (6+24)

Table 3.2: Comparing Vampire with and without subsumption demodulation on SMT-
LIB, using Vampire in portfolio mode.

Configuration Total Solved New (SAT+UNSAT)
Vampire 22 833 13 705 –
Vampire, with FSD 22 833 13 620 55 (1+54)
Vampire, with BSD 22 833 13 632 48 (0+48)
Vampire, with FSD and BSD 22 833 13 607 76 (0+76)

While in total the portfolio mode of Vampire can solve more problems, we note that this
comes at no surprise as the portfolio mode of Vampire is highly tuned using the existing
Vampire options. In our experiments, we were interested to see whether subsumption
demodulation in Vampire can solve problems that cannot be solved by the portfolio
mode of Vampire. Such a result would justify the existence of the new rule because the
set of problems that Vampire can solve in principle is increased. In future work, the
portfolio mode should be tuned by also taking into account subsumption demodulation,
which then ideally leads to an overall increase in performance. The columns “New” of
Tables 3.1-3.2 give indeed practical evidence of the impact of subsumption demodulation:
there are 30 new TPTP problems and 76 SMT-LIB problems3 that the portfolio version
of Vampire cannot solve, but forward and backward subsumption demodulation in
Vampire can.

New Problems Solved Only by Subsumption Demodulation. Building upon
our results from Tables 3.1-3.2, we analysed how many new problems subsumption
demodulation in Vampire can solve when compared to other state-of-the-art reasoners.
To this end, we evaluated our work against the superposition provers E (version 2.4) and
Spass (version 3.9), as well as the SMT solvers CVC4 (version 1.7) and Z3 (version
4.8.7). We note however, that when using our 30 new problems from Table 3.1, we could
not compare our results against Z3 as Z3 does not natively parse TPTP. On the other
hand, when using our 76 new problems from Table 3.2, we only compared against CVC4
and Z3 as E and Spass do not support the SMT-LIB syntax.

Table 3.3 summarizes our findings. First, 11 of our 30 “new” TPTP problems can only
3The list of these new problems is available at

https://gist.github.com/JakobR/605a7b7db0101259052e137ade54b32c
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Table 3.3: Comparing Vampire with subsumption demodulation against other solvers,
using the “new” TPTP and SMT-LIB problems of Tables 3.1-3.2 and running Vampire
in portfolio mode.

Solver/configuration TPTP problems SMT-LIB problems
Baseline: Vampire, with FSD and BSD 30 76
E with --auto-schedule 14 -
Spass (default) 4 -
Spass (local contextual rewriting) 6 -
Spass (subterm contextual rewriting) 5 -
CVC4 (default) 7 66
Z3 (default) - 49
Only solved by Vampire (FSD+BSD) 11 0

be solved using forward and backward subsumption demodulation in Vampire; none of
the other systems were able solve these problems.

Second, while all our 76 “new” SMT-LIB problems can also be solved by CVC4 and
Z3 together, we note that out of these 76 problems there are 10 problems that CVC4
cannot solve, and similarly 27 problems that Z3 cannot solve.

Comparative Experiments without AVATAR. Finally, we investigated the effect
of subsumption demodulation in Vampire without AVATAR [Vor14]. We used the
default mode of Vampire (that is, without using a portfolio approach) and turned off the
AVATAR setting. While this configuration solves less problems than the portfolio mode of
Vampire, so far Vampire is the only superposition-based theorem prover implementing
AVATAR. Hence, evaluating subsumption demodulation in Vampire without AVATAR is
more relevant to other reasoners. Further, as AVATAR may often split non-unit clauses
into unit clauses, it may potentially simulate applications of subsumption demodulation
using demodulation. Table 3.4 shows that this is indeed the case: with both fsd and
bsd enabled, subsumption demodulation in Vampire can prove 190 TPTP problems and
173 SMT-LIB examples that the default Vampire without AVATAR cannot solve. Again,
the column “New” denotes the number of problems solved by the respective configuration
but not by the default mode of Vampire without AVATAR.
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Table 3.4: Comparing Vampire in default mode and without AVATAR, with and without
subsumption demodulation.

TPTP problems
Configuration Total Solved New (SAT+UNSAT)
Vampire 13 924 6 601 –
Vampire (FSD) 13 924 6 539 152 (13+139)
Vampire (BSD) 13 924 6 471 112 (12+100)
Vampire (FSD+BSD) 13 924 6 510 190 (15+175)

SMT-LIB problems
Configuration Total Solved New (SAT+UNSAT)
Vampire 22 833 9 608 –
Vampire (FSD) 22 833 9 597 134 (1+133)
Vampire (BSD) 22 833 9 541 87 (0+87)
Vampire (FSD+BSD) 22 833 9 581 173 (1+172)
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CHAPTER 4
Subsumption via SAT Solving

This chapter is based on the following publication:

[RBK22] Jakob Rath, Armin Biere, and Laura Kovács. First-Order Subsumption
via SAT Solving. In Proceedings of FMCAD, pages 160–169, 2022. doi:
10.34727/2022/ISBN.978-3-85448-053-2_22

Recall that a first-order clause C subsumes a clause D iff there exists a substitution σ
such that σ(C) ⊑ D, where ⊑ denotes multiset inclusion (Definition 4). In what follows,
we refer by clausal subsumption between C and D to the case when clause C subsumes
clause D. Similarly, literal subsumption between L and M refers to the case when a
first-order literal L subsumes a literal M .

We note that deciding literal subsumption amounts to checking whether the literal M is
an instance of the literal L, which can be done in almost linear time by constructing a
substitution (if it exists) σ such that σ(L) = M ; in this case, the value of σ(x) is uniquely
determined by L and M for each variable x occurring in L.

However, when working with arbitrary, and not necessarily unit, clauses C and D,
deciding clausal subsumption between C and D is NP-complete [KN86] for the following
reason: for each literal Li of C, one of the literals Mji of D needs to be chosen in such a
way that a substitution σ simultaneously matches each Li with its respective Mji ; that
is, σ(Li) = Mji for all i.

In this chapter, we first introduce substitution constraints (Section 4.1), allowing us
to then formulate clausal subsumption as a SAT problem over substitution constraints
(Section 4.2). Based on this SAT-encoding of subsumption, we present an effective
approach towards using subsumption in saturation in Section 4.3.
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4.1 Substitution Constraints
We first introduce substitution constraints as a key ingredient for our SAT encoding of
clausal subsumption.

Definition 7 (Substitution Constraint). A substitution constraint Γ is a partial function
from V to T , denoted as

(x1, . . . , xk) ▷ (t1, . . . , tk),
where k ≥ 0, xi ∈ V are pairwise different, and ti ∈ T . The set dom(Γ) := {x1, . . . , xk}
is called the domain of Γ. We further write Γ(xi) = ti for i ∈ {1, . . . , k}.

A substitution σ : V → T satisfies the substitution constraint Γ, written σ |= Γ, iff σ(xi) =
ti for all i ∈ {1, . . . , k}.

Two substitution constraints Γ1, Γ2 are compatible if there exists a substitution σ that
satisfies both Γ1 and Γ2, that is, if Γ1(x) = Γ2(x) for all variables x ∈ dom(Γ1)∩dom(Γ2).

As already discussed, literal subsumption between two literals L and M can easily be
determined (as there is only one literal L that needs to be matched to another single
literal M). The substitution constraint corresponding to the literal subsumption between
L and M is denoted by Γ(L, M) and is defined below.1

Definition 8 (Substitution Constraint for Literals). Let L and M be two literals. If
there exists a substitution σ such that σ(L) = M , the substitution constraint Γ(L, M)
for literals L and M is

Γ(L, M) := (x1, . . . , xk) ▷ (t1, . . . , tk),

where V(L) = {x1, . . . , xk} and σ(xi) = ti for all i ∈ {1, . . . , k}. Otherwise, L cannot be
matched to M and the substitution constraint Γ(L, M) for literals L and M is

Γ(L, M) := ⊥.

Example 14. Consider the following first-order literals:

L1 = p(x1, x2, x3) L2 = p(f(x2), x4, x4)
M1 = p(f(c), d, y1) M2 = p(f(d), c, c)

We obtain the following substitution constraints:

Γ(L1, M1) = (x1, x2, x3) ▷ (f(c), d, y1)
Γ(L1, M2) = (x1, x2, x3) ▷ (f(d), c, c)
Γ(L2, M1) = ⊥
Γ(L2, M2) = (x2, x4) ▷ (d, c)

1At this point, we ignore the symmetry of equality literals and match them purely syntactically,
i.e., the left-hand side is matched with the left-hand side and the right-hand side is matched with the
right-hand side (for a fixed but arbitrary ordering of equality literals). The treatment of equality literals
during encoding is explained in Remark 4.
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The constraints Γ(L1, M1) and Γ(L1, M2) are incompatible, as these constraints map, for
example, x1 to different values. The constraints Γ(L1, M1) and Γ(L2, M2) are compatible,
as both constraints require their only shared variable x2 to be mapped to d.

To encode clausal subsumption, we need to combine substitution constraints using
Boolean connectives, and Boolean variables. For this reason, we now define the semantics
of Boolean combinations of substitution constraints.

Definition 9 (Boolean Combination of Substitution Constraints). Let F be a formula
using standard Boolean connectives, whose atoms are Boolean variables and substitution
constraints. An interpretation I = (α, σ) for such a formula is a pair of a standard
Boolean assignment α : B → {⊤, ⊥} and a substitution σ : V → T .

For a Boolean variable b, we define I |= b iff α(b) = ⊤. For a substitution constraint Γ,
we define I |= Γ iff σ |= Γ. For formulas F with a top-level connective of ∧, ∨, →, or
¬, we define I |= F inductively in the standard way. For Boolean constants, I |= ⊤ and
I ̸|= ⊥.

Remark 1. The formula F can also be translated into an SMT formula using the
theory of equality and uninterpreted functions (EUF), where substitution constraints are
replaced by conjunctions of equality literals. Let T denote the set of terms t appearing
on the right-hand side of some substitution constraint in F . We then introduce fresh
constant symbols {ct | t ∈ T}, and replace each substitution constraint Γ = (x1, . . . , xk) ▷
(t1, . . . , tk) in F by x1 = c1 ∧ · · · ∧ xk = ck. To obtain correct semantics of substitution
compatibility, we also need to add⋀︂{︁

ct ≠ cu

⃓⃓
t, u ∈ T, t ̸= u

}︁
, (4.1)

asserting that constants representing different terms in F cannot be equal.

However, for clausal subsumption in a first-order theorem prover, it is vital that the
process of encoding subsumption in SAT, as well as the setting up of our SAT solver for
handling this encoding are as lightweight as possible (see Section 4.4). Hence, we did
not employ a standard SMT solver with the EUF-based encoding discussed above, but
instead opted to directly add support for substitution constraints to our SAT solver. The
advantage of our SAT-based approach is that we use less Boolean literals, and we avoid
using all-different constraints for terms, such as (4.1).

4.2 SAT-Encoding of Clausal Subsumption
We now present our formalization to express clausal subsumption between clauses C
and D as a SAT problem over substitution constraints. To this end, assume that clause C
is L1 ∨ L2 ∨ · · · ∨ Ln, whereas D is M1 ∨ M2 ∨ · · · ∨ Mm. Recall that deciding whether C
subsumes D reduces to the problem of deciding whether there exists a substitution σ
such that σ(C) ⊑ D, where “⊑” denotes multiset inclusion (over multisets of literals).
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For arbitrary literals Li and Mj , deciding the existence of a substitution σ with σ(Li) =
Mj can easily be done. Yet, for clausal subsumption we are left with the challenge
of finding a substitution σ such that, for each Li, we have one of the Mj such that
σ(Li) = Mj . To address this challenge, we introduce new Boolean variables bij to
encode possible matchings of Li to Mj . Intuitively, bij should be true iff we want to
match Li to Mj and enforce σ(Li) = Mj . Additionally, we use Definition 8 to derive the
substitution constraints Γ(Li, Mj). Based on the Boolean variables bij and substitution
constraints Γ(Li, Mj), we formalize clausal subsumption between C and D by ensuring
its three properties: (i) each literal Li in C is matched to a literal Mj in D, (ii) the same
substitution σ is used for each of these matchings, and (iii) Cσ ⊑ D is multiset inclusion.
Our formalization of clausal subsumption between C and D is given as follows.

(i) We first define the following clauses, capturing that each literal Li of C must be
matched to (at least one) literal Mj of D:

n⋀︂
i=1

bi1 ∨ bi2 ∨ · · · ∨ bim. (Completeness)

(ii) We connect the Boolean variables bij to the substitution constraints Γ(Li, Mj)
through the following clauses:

n⋀︂
i=1

m⋀︂
j=1

bij → Γ(Li, Mj). (Compatibility)

These clauses employ the substitution constraints Γ(Li, Mj) to ensure that the
same substitution σ is used for matching Li and Mj simultaneously, for all i, j.

(iii) As clausal subsumption uses multiset inclusion over the respective multisets of
literals of C and D, we encode the requirement that each literal of D may only be
matched at most once:

m⋀︂
j=1

AtMostOne(b1j , . . . , bnj), (Multiplicity Conservation)

where AtMostOne(b1j , . . . , bnj) is true iff zero or one of b1j , . . . , bnj are true.

Definition 10 (SAT-Encoding of Clausal Subsumption). The SAT encoding S of clausal
subsumption between clauses C and D is defined as the conjunction of (Completeness),
(Compatibility), and (Multiplicity Conservation):

S := (Completeness) ∧ (Compatibility) ∧ (Multiplicity Conservation).

Together, the constraints (Completeness), (Compatibility), (Multiplicity Conservation) fully
capture clausal subsumption, yielding the following result.
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Theorem 4 (Clausal Subsumption as SAT). Clausal subsumption between clauses C
and D is given by the formula S. That is, C subsumes D iff S is satisfiable.

Note that for deciding clausal subsumption between C and D, we only need to establish
satisfiability of S in Theorem 4: finding one substitution σ such that Cσ ⊑ D is sufficient
for deciding that C subsumes D, implying that D can be deleted from the clause database
during saturation. Hence, while clausal subsumption S captures all substitutions σ for
which Cσ ⊑ D, for deciding whether C subsumes D we are interested to find only one
satisfying instance of S. As a result, application of clausal subsumption in saturation
can be decided by solving the satisfiability of S.

Example 15. Consider the literals defined in Example 14 and clauses C = L1 ∨ L2 and
D = M1 ∨ M2. The encoding of clausal subsumption between C and D resulting from
Theorem 4 is the conjunction of the following clauses:

b11 ∨ b12

b21 ∨ b22

b11 → (x1, x2, x3) ▷ (f(c), d, y1)
b12 → (x1, x2, x3) ▷ (f(d), c, c)
b21 → ⊥
b22 → (x2, x4) ▷ (d, c)
¬b11 ∨ ¬b21

¬b12 ∨ ¬b22

This set of clauses is satisfiable, as witnessed by the model that assigns b11 and b22 to
true, b12 and b21 to false, and σ(x1) = f(c), σ(x2) = d, σ(x3) = y1, σ(x4) = c. We
conclude that the first-order clause C subsumes D.

Remark 2 (Subsumption Resolution). Our encoding of clausal subsumption can be
adjusted to also decide the application of other simplification rules in saturation, when
these rules implement variants of subsumption. To this end, we have extended the
SAT encoding S of clausal subsumption to the inference rule subsumption resolution
(Definition 5). In addition to clausal subsumption, subsumption resolution also uses
instances of binary resolution. Hence, for finding substitutions σ such that subsumption
resolution between clauses C and D can be applied (and D deleted from the clause
database), we extended the clauses S with additional constraints capturing application
of resolution, while also adjusting the encoding of S to set inclusion between literals of C
and D (instead of multiset inclusion from subsumption). The details have been worked
out in follow-up publications [CKRR23, CRR+24].

Remark 3 (At-Most-One Constraints). We conclude this section by noting that a correct
but naïve solution to encode AtMostOne(b1j , . . . , bnj) in (Multiplicity Conservation) would

37



4. Subsumption via SAT Solving

be the following: ⋀︂
1≤i1<i2≤n

¬bi1j ∨ ¬bi2j . (4.2)

More efficient encodings using at-most-one constraints (see, e.g., [FG10]) can be used
instead of (4.2). In our work however, we opted to add direct support for at-most-one
constraints when reasoning about (Multiplicity Conservation) (see Section 4.3).

Remark 4 (Equality Literals). Special care needs to be taken for symmetric predicates
such as equality, since pairs of such literals can be matched in two different ways.
As an example, consider the equality literals L := x ≃ f(y) and M := f(c) ≃ f(d).
Both {x ↦→ f(c), y ↦→ d} and {x ↦→ f(d), y ↦→ c} are possible matches of L to M , and
both have to be considered for subsumption.

Assume now that Li and Mj are equality literals that can be matched both ways. To
handle this situation, we create two separate boolean variables bij and b′

ij , with the
clauses bij → Γ(Li, Mj) and b′

ij → Γ(Li, M ′
j), where M ′

j is the symmetric variant of Mj

(i.e., M ′
j is obtained by swapping the left-hand side and right-hand side of Mj).

Note that Γ(Li, Mj) = Γ(Li, M ′
j) implies Mj = M ′

j , which means Mj is trivial and would
have been removed previously by other simplification rules (or alternatively, skip trivial
literals when performing the subsumption test). Because of this, we can assume Γ(Li, Mj)
and Γ(Li, M ′

j) are incompatible, which means bij and b′
ij cannot both be true. Thus, no

substantial changes are needed to adapt the SAT encoding to support equality predicates:
in (Completeness), we use bij ∨ b′

ij instead of the single bij , and (Multiplicity Conservation)
expands from AtMostOne(. . . , bij , . . . ) to AtMostOne(. . . , bij , b′

ij , . . . ).

4.3 Effective Subsumption via Lightweight SAT Solving
In Section 4.2 we showed that the application of subsumption, as an inference rule in
saturation, can be reduced to the satisfiability problem of the formula S using substitution
constraints (Theorem 4). In this section we describe our approach for solving S.

A straightforward approach towards handling S could be obtained by simply translating
S into purely propositional clauses. However, such a translation would either require
additional propositional variables to encode at-most-one constraints or would come with
a quadratic number of propositional clauses [FG10]; similarly for substitution constraints.

Due to the particular distribution of subsumption instances (see Section 4.4), the encoding
must be lightweight to be practically feasible. To overcome the increase in propositional
variables/clauses to be used for deciding clausal subsumption in an efficient manner,
we support substitution constraints as in (Compatibility) and at-most-one constraints
as in (Multiplicity Conservation) directly in SAT solving, and introduce a lightweight
SAT solving approach tailored to subsumption properties. In particular, we adjust unit
propagation and conflict resolution in CDCL-based SAT solving for handling propositional
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formulas with substitution constraints. This way, we integrate our lightweight SAT solving
methodology directly into the saturation process of first-order proving (Section 4.4),
instead of interfacing first-order proving with an existing off-the-shelf SAT solver. Such a
direct integration allows us to efficiently identify and apply subsumption during proof
search (see Section 4.5).

Using Substitution Constraints in SAT Solving. For handling substitution con-
straints in clausal subsumption, we attach a substitution constraint Γ(Li, Mj) to each
freshly introduced Boolean variable bij in (Completeness), which is equivalent to adding
the constraint bij → Γ(Li, Mj) of (Compatibility).

Unit Propagation with Substitution Constraints. Consider now the clauses
bij → Γ(Li, Mj) using substitution constraints, with i ∈ {1, . . . , n} and j ∈ {1, . . . , m},
from clausal subsumption S. Semantically, these constraints are equivalent to the
following set of binary clauses:{︂

¬bij ∨ ¬bi′j′
⃓⃓⃓

i, i′ ∈ {1 . . . n}, j, j′ ∈ {1 . . . m}, (i, j) ̸= (i′, j′),

∃x ∈ dom(Γ(Li, Mj)) ∩ dom(Γ(Li′ , Mj′))

s.t. Γ(Li, Mj)(x) ̸= Γ(Li′ , Mj′)(x)
}︂

,

(4.3)

which intuitively encodes that no two incompatible substitution constraints may be true
at the same time.

In our work, instead of creating the binary clauses of (4.3) explicitly, we introduce support
for substitution constraints as an additional propagator in SAT solving: whenever a
Boolean variable bij is assigned to true, our SAT solver processes the associated bindings for
the first-order variables from dom(Γ(Li, Mj)), and propagates all Boolean variables bi′j′

to false that are associated with conflicting bindings for variables dom(Γ(Li, Mj)) ∩
dom(Γ(Li′ , Mj′)); in other words, all bi′j′ whose associated substitution constraints are
incompatible with Γ(Li, Mj). This propagation is done exhaustively as soon as bij is
assigned to true and before standard unit propagation is performed. Thus we ensure that
no conflict can occur at this point: if there were a conflict, that would mean a bi′j′ with
conflicting bindings has already been assigned to true; in this case however, we would have
already propagated bij to false when assigning bi′j′ . An exception in handling conflicts
occurs with the initial propagation before starting the CDCL loop of SAT solving; in this
case, we may get a conflict if two unit clauses with conflicting substitution constraints
have been added, however, in that case the SAT solver is at decision level 0 and can
terminate with reporting unsatisfiability (Unsat) of S.

Conflict Resolution with Substitution Constraints. During conflict resolution in
our SAT engine, we proceed as if the binary clauses (4.3) were part of the clause database,
i.e., as if the binary clause ¬bij ∨ ¬bi′j′ were the reason for propagating bi′j′ . Therefore
we only need to store the literal bij as the reason for unit propagation. Substitution
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constraints during conflict resolution thus do not need specialized treatment in our SAT
solving approach.

At-Most-One Constraints. During unit propagation and conflict resolution, our
at-most-one constraints of (Multiplicity Conservation) are treated as if we had the corre-
sponding binary clauses from (4.2), saving the overhead from creating additional clauses
and variables.

Remark 5. While we presented our approach in the context of solving S, our SAT solving
approach naturally supports arbitrary Boolean clauses and at-most-one constraints, as
well as substitution constraints in the form b → Γ (where b is a Boolean variable and Γ a
substitution constraint).

4.4 SAT-Based Subsumption in Saturation-Based
Theorem Proving

We implemented our lightweight SAT-based approach of Section 4.3 as a new extension to
the theorem prover Vampire. While Vampire already had implemented highly optimized
algorithms for checking subsumption previously, these algorithms are built on a standard,
backtracking-based search procedure: using a static variable ordering and limited amount
of unit propagation, without learning from conflicts. Hence, the full power of SAT-based
reasoning with unit propagation and conflict resolution has not yet been supported for
subsumption. We have overcome this limitation by integrating our SAT-based approach for
clausal subsumption directly in Vampire. The SAT-based implementation of subsumption
(and subsumption resolution [CKRR23, CRR+24]) is available in the mainline version
of Vampire2 since commit ce340a081a5badfd8b04ba9fc64e38a6b5c192c3 and
is now the default approach for subsumption and subsumption resolution3.

Implementing Subsumption. When establishing satisfiability of S, we can observe
different types of subsumption instances:

(i) easy subsumption instances, where not much SAT-based search is required, i.e.,
very few or even no decisions/conflicts occur during the solving process. For such
instances the overhead of setting up the encoding S largely determines the total
running time of our SAT solver.

(ii) hard subsumption instances, whose application is determined by a significant
number of conflict resolution steps in SAT solving.

(iii) other instances may fall in between these extremes, but in the following discussion we
will focus on types (i) and (ii) to illustrate the design decisions of our implementation.

2Available at https://github.com/vprover/vampire
3The SAT-based implementation of subsumption has fully replaced the old backtracking-based

implementation with the linked commit. The last commit using the old backtracking-based subsumption
is c54b8ef3167b9e8372c04a2c8e504182a86791fd.
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4.5. Experiments

We recall that the overall goal of our work is to improve subsumption checking in first-
order theorem proving. For this, we complemented Vampire with a SAT-based approach
to decide application of subsumption. The majority of the subsumption instances
encountered during a typical first-order proving attempt are of type (i), with instances of
type (ii) appearing occasionally, depending on the input formula. Still, the total running
time is often dominated by type (ii) instances, and these are the target of our SAT-based
approach. We must however be careful to not become slower on type (i) instances, thus
motivating our choice of a lightweight, dedicated SAT-solver embedded into Vampire.

In many of the trivial instances of S, the unsatisfiabiliy of these instances can be discovered
already while setting up the encoding of S (i.e., whenever an empty clause would be
added). To save time on these instances, in our implementation we defer the construction
of watch lists and other data structures until entering the solving loop of our SAT engine
(which might not be entered at all).

We note that the number of subsumption instances, especially easy ones of type (i), during
first-order proving can become quite large, often in the order of millions of instances in
a 60 s run of a theorem prover. Allocating and deallocating a new SAT solver instance
for each SAT-based subsumption query can thus become expensive (see Section 4.5);
therefore, in our implementation we keep the same solver instance around, and re-use
it for different queries. In particular, we keep the memory for data structures (such as
clause storage, watch lists, trail, and others), instead of reallocating it for each query.

Unit Propagation. To achieve efficient unit propagation, our SAT solver for clausal
subsumption watches two literals of each clause [MMZ+01], as is the state of the art
in modern SAT solving. However, for at-most-one constraints the situation is different.
Consider the constraint AtMostOne(l1, . . . , lk) for some k ≥ 3 (note that for k ≤ 2 we
either drop the constraint or add a binary clause instead). As soon as any li is assigned
true, all lj with j ̸= i must be false to avoid violating the constraint, and are propagated
thus. Hence, the solver watches all literals of at-most-one constraints.

4.5 Experiments
We evaluated our new SAT-based implementation for clausal subsumption in Vampire
(see Section 4.4). In our experiments, we were interested (i) to measure the performance
improvements we gain through our approach, as well as (ii) to assess the advantage of
re-using our SAT solver objects, and thus having our SAT solver directly integrated the
first-order proving process of Vampire.

Benchmarks. The basis for our benchmarks is formed by the TPTP library [Sut17,
Sut24] (version 7.5.0), which is a standard benchmark library in the theorem proving com-
munity. The TPTP library contains altogether 24 098 problems in various languages, out
of which 16 312 problems have been included in our evaluation of SAT-based subsumption
in Vampire. The remaining TPTP problems that we did not use for our experiments
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either use features that Vampire currently does not support (e.g., higher-order logic
with theories), or did not involve subsumption checks.

Experimental Setup. All our experiments were carried out on a cluster at TU Wien,
where the compute nodes contain two AMD Epyc 7502 processors, each of which has
32 CPU cores running at 2.5 GHz. Each compute node is equipped with 1008 GiB of
physical memory that is split into eight memory nodes of 126 GiB each, with eight
logical CPUs assigned to each node. We used the tool runexec from the benchmarking
framework BenchExec [BLW17] to assign each benchmark process to a different CPU
core and its corresponding memory node, while aiming to balance the load evenly across
memory nodes. Further, we used GNU Parallel [Tan24] to schedule 32 benchmark
processes in parallel.

Experimental Results on Measuring Speed Improvements. We emphasize that
using a SAT-based approach for deciding clausal subsumption will, in theory, not prove
problems that were not provable before. If a problem is provable while using saturation
with redundancy, and hence with subsumption, then it is also provable using saturation
without redundancy, and vice versa. However, in practice, saturation with redundancy
(hence with subsumption) will improve the prover’s performance in finding a proof. As
such, the aim of our work is to speed up the application of subsumption in saturation.
For this reason, we set up our first experiment to measure the cost of subsumption checks
in isolation. A similar evaluation has previously been done for indexing techniques in
first-order provers [NHRV01].
In preparation for this experiment, we ran Vampire, using the original backtracking-
based subsumption implementation, with a timeout of 60 seconds on each TPTP problem
while logging each subsumption check into a file. Each of these files contains a sequence of
subsumption checks, which we call the subsumption log for a problem. This preparatory
step yielded a large number of benchmarks that are representative for the checks appearing
during actual proof search. These benchmarks occupy 1.75 TiB of disk space in compressed
form, and contain approximately 114 billion subsumption checks in total. About 0.5 % of
these subsumption checks are satisfiable (561 million), while the rest are unsatisfiable.
In addition to generating these benchmarks, we have profiled the portion of time spent
by subsumption in Vampire. Over the TPTP problems used for our experiments and a
time limit of 60 seconds, it ranges from 0 % (no subsumption checks) to more than 99 %
(hard subsumption check), with a mean of 46 % and the median at 53 %.
Next, we executed the checks listed in each subsumption log and measured the total
running times, once for the already existing subsumption algorithm of Vampire using
backtracking, and once for our SAT-based subsumption approach in Vampire. The
subsumption checks are benchmarked in a similar way as they would appear during a
regular prover run, i.e., with the same caching of intermediate results. For increased
reliability, we performed each measurement five times, and then took the arithmetic
mean of the measured running times.
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Table 4.1: Running time of subsumption checks
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4. Subsumption via SAT Solving

Figure 4.1: Total running time (in seconds) of backtracking-based vs. SAT-based sub-
sumption, with detailed information about outliers in Table 4.1. For marks below the
dashed line, our SAT-based approach was faster.
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The results of these experiments are given in Figure 4.1 and Table 4.1. Each mark in
Figure 4.1 represents one subsumption log from a TPTP problem, and compares the
total running times of executing all subsumption checks contained in the log with the
old backtracking-based algorithm vs. the new SAT-based algorithm. The dashed line
indicates equal runtime, hence, our SAT-based approach was faster for marks below the
line. In Table 4.1, we give the cumulative times needed to set up the subsumption checks,
to solve them, and the total time. Both the backtracking-based and our SAT-based
subsumption algorithm can naturally be split up into a setup stage and a separate solving
stage. The setup stage transforms the two input clauses into constraints while the solving
stage searches for a solution to these constraints. Additionally the table gives detailed
data for selected outliers (problems not in the bottom-left of Figure 4.1).

As shown in Figure 4.1 and Table 4.1, our SAT-based algorithm for clausal subsumption
gives a clear overall improvement of the running time of subsumption checks in Vampire
by a factor of 2.

Note that for some problems, the running time for the backtracking-based subsumption is
higher than the original timeout of 60 s that has been used when collecting subsumption
logs. The cause of this apparent discrepancy is that Vampire was working on a hard
subsumption instance when hitting the timeout, with the subsequent measurements in
Table 4.1 showing the true cost. Problems such as NLP023+1 are getting stuck in the
backtracking-based subsumption algorithm, while our SAT-based approach allows proof
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4.5. Experiments

search to continue much further within the same time limit.

We also evaluated the impact of our custom variable selection heuristic (see last para-
graph of Chapter 5) compared to the variable-move-to-front (VMTF) heuristic of SAT
solvers [BF15], as VMTF is conjectured to perform well for SAT problems that are
unsatisfiable, being part of the “unstable phase” described in [Bie19]. Given that almost
all subsumption instances are unsatisfiable, we were interested to see how our custom
variable selection heuristic performs compared to a VMTF heuristic. Our results in this
respect are listed in the last line of Table 4.1. While our custom heuristic shows slightly
better solving times than VMTF, the difference is rather small.

Experimental Results on the Advantage of Re-Using SAT Solver Objects. We
also assessed the importance of re-using the SAT solver object instead of re-allocating
the solver for every subsumption query. The results for not re-using SAT solver objects
are given in the second-to-last line of Table 4.1, confirming the significance of having
SAT-based subsumption directly integrated in Vampire.
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CHAPTER 5
Related Work

Subsumption Demodulation. While several approaches generalize demodulation
in superposition-based theorem proving, we argue that subsumption demodulation
improves existing methods either in terms of applicability and/or efficiency. The AVATAR
architecture of first-order provers [Vor14] splits general clauses into components with
disjoint sets of variables, potentially enabling demodulation inferences whenever some of
these components become unit equalities. Example 1 demonstrates that subsumption
demodulation applies in situations where AVATAR does not: in each clause of (1.4), all
literals share the variable i and hence none of the clauses from (1.4) can be split using
AVATAR. That is, AVATAR would not generate unit equalities from (1.4), and therefore
cannot apply demodulation over (1.4) to derive (1.5).

The local rewriting approach of [Wei01] requires rewriting equality literals to be maximal
in clauses w.r.t. the clause ordering. However, following [KV13], for efficiency reasons we
consider equality literals to be “smaller” than non-equality literals. In particular, the
equality literals of clauses (1.4) are “smaller” than the non-equality literals, preventing
thus the application of local rewriting in Example 1.

To the extent of our knowledge, the ordering restrictions on non-unit rewriting [Wei01]
do not ensure redundancy, and thus the rule is not a simplification inference rule.
Subsumption demodulation includes all necessary conditions and we prove it to be a
simplification rule. Furthermore, we show how the ordering restrictions can be simplified
which enables an efficient implementation, and then explain how such an implementation
can be realized.

We further note that the contextual rewriting rule of [BG94] is more general than our
rule of subsumption demodulation, and has been first implemented in the Saturate
system [NN93]. Yet, efficiently automating contextual rewriting is extremely challenging,
while subsumption demodulation requires no radical changes in the existing machinery
of superposition provers (see Section 3.3).
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5. Related Work

To the best of our knowledge, except Spass [WDF+09] and Saturate, no other state-
of-the-art superposition provers implement variants of conditional rewriting. Subterm
contextual rewriting [WW08] is a refined notion of contextual rewriting and is imple-
mented in Spass. A major difference of subterm contextual rewriting when compared to
subsumption demodulation is that in subsumption demodulation the discovery of the
substitution is driven by the side conditions whereas in subterm contextual rewriting the
side conditions are evaluated by checking the validity of certain implications by means of
a reduction calculus. This reduction calculus recursively applies another restriction of
contextual rewriting called recursive contextual ground rewriting, among other standard
reduction rules. While subterm contextual rewriting is more general, we believe that
the benefit of subsumption demodulation comes with its relatively easy and efficient
integration within existing superposition reasoners, as evidenced also in Section 4.5.

Local contextual rewriting [HPWW13] is another refinement of contextual rewriting
implemented in Spass. In our experiments it performed similarly to subterm contextual
rewriting.

Finally, we note that SMT-based reasoners also implement various methods to efficiently
handle conditional equalities [RWB+17, BGMR15]. Yet, the setting is very different as
they rely on the DPLL(T) framework [GHN+04] rather than implementing superposition.

SAT-Based Subsumption in Saturation. Subsumption is one of the most important
simplification rules in first-order theorem proving. While efficient literal- and clause-
indexing techniques have been proposed [Tam98, Sch13], optimizing the matching step
among multisets of literals, and hence clauses, has so far not been addressed. In our
work, we show that SAT solving methods can provide efficient solutions in this respect,
further improving first-order theorem proving.

A related approach that integrates multi-literal matching into indexing is given in [SRV01],
using code trees. Code trees organize potentially subsuming clauses into a trie-like data
structure with the aim of sharing some matching effort for similar clauses. However, the
underlying matching algorithm uses a fixed branching order and does not learn from
conflicts, and will thus run into the same issues on hard subsumption instances as the
standard backtracking-based matching.

The specialized subsumption algorithm DC [GL85b] is based on the idea of separat-
ing the clause C into variable-disjoint components and testing subsumption for each
component separately. However, the notion of subsumption considered in that work is
defined using subset inclusion, rather than multiset inclusion. For subsumption based on
multiset inclusion, the subsumption test for one variable-disjoint component is no longer
independent of the other components.

An improved version of that algorithm, called IDC [GL85a], tests on each recursion level
whether each literal of C by itself subsumes D under the current partial substitution,
which is a necessary condition for subsumption. The backtracking-based subsumption
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algorithm of Vampire uses this optimization as well, and our SAT-based approach also
implements it as propagation over substitution constraints.

SAT- and SMT-based techniques have previously been applied to the setting of first-order
saturation-based proof search, e.g., in form of the Avatar architecture [Vor14]. These
techniques are however independent from our work, as they apply the SAT- or SMT-solver
over an abstraction of the input problem, while in our work we use a SAT-solver to speed
up certain inferences.

Some solvers, such as the pseudo-Boolean solver MiniCard [LM12] and the ASP solver
Clasp [GKKS09], support cardinality constraints natively, in a similar way to our handling
of AtMostOne constraints. Our encoding, however, only requires AtMostOne constraints
instead of arbitrary cardinality constraints, thus simplifying the implementation.

We finally note that clausal subsumption can also be seen as a constraint satisfaction
problem (CSP). In this view, the Boolean variables bij in our subsumption encoding S
represent the different choices of a non-Boolean CSP variable, corresponding to the
so-called direct encoding of a CSP variable [Wal00]. A well-known heuristic in CSP
solving is the minimum remaining values heuristic: always assign the CSP variable that
has the fewest possible choices remaining. We adapted this heuristic to our embedded
SAT solver and use it to solve subsumption instances (see Section 4.4).

49





Part II

PolySAT – Word-Level Reasoning
for Bit-Vectors
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CHAPTER 6
Background

Part II of the thesis, i.e., Chapters 6–12, are based on the following publication:

[REK+24] Jakob Rath, Clemens Eisenhofer, Daniela Kaufmann, Nikolaj Bjørner,
and Laura Kovács. PolySAT: Word-level Bit-vector Reasoning in Z3, 2024.
Accepted for VSTTE 2024. arXiv:2406.04696

PolySAT integrates into the conflict-driven clause learning modulo theories (CDCL(T))
framework [BS97, MS99, MLM21], which is one of the main approaches to state-of-the-art
SMT solving. The core of such an SMT solver uses a SAT solver to work on the boolean
skeleton of the input formula. Furthermore, the core communicates with theory solvers,
who answer conjunctive queries within the respective theory they can handle. In the
remainder of the thesis, we introduce PolySAT, which is such a theory solver for the
theory of bit-vectors.

6.1 Bit-Vector Language
For a given number of bits w > 0, we consider bit-vectors of size w as elements of the
ring Z/2wZ (algebraic representation), or equivalently as strings of length w over {0, 1}
(binary representation). Throughout the remainder of the thesis, we write w for the size
of related bit-vectors, when it is clear from the context. In other cases, we denote the
size of a bit-vector x by |x| explicitly.

Definition 11 (Unsigned/signed Interpretation). For a bit-vector x, we write ⟨x⟩u for the
unsigned interpretation of x in Z, i.e., we choose the representatives ⟨x⟩u ∈ {0, 1, . . . , 2w −
1} for an element x ∈ Z/2wZ. Similarly, let ⟨x⟩s denote the signed interpretation in Z,
i.e., choose the representatives among {−2w−1, . . . , −1, 0, 1, . . . , 2w−1 − 1}.
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6. Background

|x| size (number of bits)
⟨x⟩u unsigned interpretation
⟨x⟩s signed interpretation
x + y, x − y addition, subtraction
xy or x · y multiplication
x ≤u y, x <u y unsigned inequality
x ≤s y, x <s y signed inequality
x[i] i-th bit of bit-vector x, w > i ≥ 0
x[i:j] extract sub-slice, w > i ≥ j ≥ 0
x ++ y concatenation
x << y left-shift
x >> y logical right-shift
x >>a y arithmetic right-shift
x / y unsigned division
x % y unsigned remainder

Figure 6.1: Summary of notation

In the following text, we will default to the unsigned interpretation, and translate signed
constraints into their unsigned counterparts where possible. In particular, note that
to intuitively understand many constraints and lemmas it is often helpful to mentally
replace negative bit-vector constants (such as −1) by their equivalent unsigned values
(such as 2w − 1).

We write x[i] for the i-th bit of the bit-vector x, where x[0] denotes the least significant bit
of x. Let x++y denote the concatenation of x and y. We write x[i:j] with w > i ≥ j ≥ 0 for
the sub-slice ranging from bit i to bit j inclusively, i.e., x[i:j] = x[i]++x[i−1]++ · · ·++x[j].
We call the sub-slices x[i:0] of x the prefixes1 of x.

In general, for the language and semantics of bit-vector operations and predicates, we
follow the definitions in the theory FixedSizeBitVectors and the logic QF_BV of
the SMT-LIB library [BFT16]. The notations used in this thesis are summarized in
Figure 6.1.

The basic building blocks of PolySAT constraints are polynomials, i.e., multiplica-
tions and additions of bit-vector variables and constants. We emphasize bit-vector
multiplication by writing · explicitly.

We write x ≃ y for equality constraints, x ≤u y for unsigned inequality of bit-vectors,
and x ≤s y for signed inequality of bit-vectors. By slight abuse of notation, we will
sometimes use constraints also as statements. Note that x ≤u y iff ⟨x⟩u ≤ ⟨y⟩u, where ≤
is the standard comparison over the integers. Similarly, x ≤s y iff ⟨x⟩s ≤ ⟨y⟩s.

1We choose the term prefix for consistency with other types of sequences, i.e., to denote a contiguous
subsequence starting at index 0. While bit-vectors are typically written in “reverse” order (with the most
significant bit at the front), the logical starting point of the sequence of bits is still the least significant
bit at index 0.

54



6.2. Useful Bit-Vector Lemmas

6.2 Useful Bit-Vector Lemmas
We next list several useful lemmas about bit-vector inequalities that have been useful
throughout this work. Some of these are inspired by related lemmas over the integers,
however, the bit-vector versions usually require additional side conditions. As a simple
sanity test of these lemmas, it is advisable to first check them with existing solvers based
on bit-blasting over low bit-widths. Only after this check passes, start working on a
general proof.

Lemma 1 (Inequality Equivalences). The following inequalities are equivalent, for
arbitrary bit-vectors p and q:

p ≤u q (6.1)
p ≤u p − q − 1 (6.2)

−q − 1 ≤u p − q − 1 (6.3)
−q − 1 ≤u −p − 1 (6.4)

q − p ≤u −p − 1 (6.5)
q − p ≤u q (6.6)

Note: for strict inequalities, use p <u q ⇐⇒ ¬(q ≤u p), i.e., the sides are swapped.

Proof. We only need to prove the two implications (6.1) =⇒ (6.2) and (6.1) =⇒ (6.6).
It is easy to check that by alternating these rewrite rules we get the circular implication
chain (6.1) =⇒ (6.2) =⇒ (6.3) =⇒ (6.4) =⇒ (6.5) =⇒ (6.6) =⇒ (6.1).

Let bit-vectors p, q such that p ≤u q holds, i.e., ⟨p⟩u ≤ ⟨q⟩u.

We first prove (6.2). By definition, we have 0 ≤ ⟨p⟩u ≤ 2w −1 and 0 ≤ ⟨q⟩u ≤ 2w −1, from
which we get ⟨p⟩u − ⟨q⟩u − 1 ≥ −2w. Since ⟨p⟩u ≤ ⟨q⟩u, we also have ⟨p⟩u − ⟨q⟩u − 1 < 0.
Thus

⟨p − q − 1⟩u =
(︁⟨p⟩u − ⟨q⟩u − 1

)︁
mod 2w by semantics of bit-vector operations

= ⟨p⟩u − ⟨q⟩u − 1 + 2w by the above
≥ ⟨p⟩u by ⟨q⟩u ≤ 2w − 1,

which implies p ≤u p − q − 1.

Next, we prove (6.6). Since ⟨p⟩u ≤ ⟨q⟩u, we have 0 ≤ ⟨q⟩u − ⟨p⟩u ≤ ⟨q⟩u ≤ 2w − 1, and
from this range restriction we also get ⟨q − p⟩u = ⟨q⟩u − ⟨p⟩u, thus q − p ≤u q.

Rewriting to one of these forms seems to be useful when p − q is simpler than at least
one of p or q.

Example 16. Consider the constraint −x ≤u −xy − x − 1.

• It is equivalent to x(y + 1) ≤u xy by rewriting (6.1) =⇒ (6.3).
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6. Background

• It is equivalent to −x ≤u xy by rewriting (6.1) =⇒ (6.2).

• It is equivalent to x(y + 1) ≤u x − 1 by rewriting (6.1) =⇒ (6.4).

Lemma 2 (Strict-to-Nonstrict). Since bit-vectors are discrete, we can represent strict
inequalities as non-strict ones in different ways. However, side constraints are required
due to overflow semantics.

p <u q ⇐⇒ p ̸≃ −1 ∧ p + 1 ≤u q (6.7)
p <u q ⇐⇒ q ̸≃ 0 ∧ p ≤u q − 1 (6.8)

Proof. We first show the direction from left to right of (6.7): we have ⟨p⟩u < ⟨q⟩u ≤ 2w −1,
from which we get both ⟨p⟩u ̸= 2w − 1 (i.e., p ̸≃ −1) as well as ⟨p + 1⟩u = ⟨p⟩u + 1 ≤ ⟨q⟩u
(i.e., p + 1 ≤u q).

In the other direction, we have p ̸≃ −1, i.e., ⟨p⟩u < 2w − 1, thus ⟨p⟩u + 1 ≤ 2w − 1, from
this ⟨p + 1⟩u = ⟨p⟩u + 1 ≤ ⟨q⟩u, and thus finally ⟨p⟩u < ⟨q⟩u.

The proof of (6.8) proceeds analogously.

Lemma 3 (Inequality Flip). The following implications hold:

p ̸≃ 0 ∧ p ≤u q =⇒ −q ≤u −p (6.9)
p ̸≃ 0 ∧ p <u q =⇒ −q <u −p (6.10)

Proof. To show (6.9), note that since ⟨p⟩u ≠ 0 and ⟨p⟩u ≤ ⟨q⟩u, we also have ⟨q⟩u ̸= 0
and thus ⟨−p⟩u = 2w − ⟨p⟩u ≥ 2w − ⟨q⟩u = ⟨−q⟩u.

(6.10) can be shown analogously.

Lemma 4 (Inequality Across Slicing). Consider concatenations of bit-vectors x1 ++ x2
and y1 ++ y2 with |x1| = |y1| and |x2| = |y2|. The inequality can be split across the
sub-slices:

x1 ++ x2 ≤u y1 ++ y2 ⇐⇒ x1 <u y1 ∨ (x1 ≃ y1 ∧ x2 ≤u y2)

Proof. The ordering ≤u amounts to a lexicographic ordering over sequences of bits.
Since x1 and y1 have the same size, we can obtain the result by grouping the bits
according to the split into sub-slices.

Lemma 5 (Inequality Constant Reduction). Consider an equality of the form

2kp + a ≤u 2kq + b,

where 0 ≤ k < w and a, b are constants with 0 ≤u a <u 2k and 0 ≤u b <u 2k (which is
not a restriction, because the higher bits of the constant terms may be moved into the
constant terms of p and q). We have

2kp + a ≤u 2kq + b ⇐⇒
{︄

2kp ≤u 2kq if a ≤u b,
2kp <u 2kq otherwise.
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Proof. Corollary of Lemma 4.

6.3 Intervals

Definition 12 (Wrapping Interval). We use half-open wrapping intervals [l; h[ over
bit-vectors, where the bit-vector l is the lower bound and the bit-vector h is the upper
bound, defined as follows:

[l; h[ :=
{︄

{n ∈ Z/2wZ | l ≤u n and n <u h} if l ≤u h,

{n ∈ Z/2wZ | l ≤u n or n <u h} if l >u h.

By this definition, if the endpoints are equal, the corresponding interval is empty: [l; l[ = ∅.
In general, the cardinality, or length, of an interval is

len([l; h[) = ⟨h − l⟩u =
{︄

⟨h⟩u − ⟨l⟩u if l ≤u h,

⟨h⟩u − ⟨l⟩u + 2w if l >u h.

A constraint of the form x ∈ [l; h[ is equivalent to the bit-vector inequality x − l <u h − l,
thus, no additional primitives are necessary to support such interval constraints in the
bit-vector language. We list several additional equivalences that are used throughout the
remainder of the thesis.

Lemma 6 (Wrapping Interval Equivalences). The following constraints are equivalent
for arbitrary bit-vectors x, l, h, a of the same size:

x − l <u h − l (6.11)
x ∈ [l; h[ (6.12)

x + a ∈ [l + a; h + a[ (6.13)
−x ∈ [1 − h; 1 − l[ (6.14)

If l ̸= h, the above constraints are also equivalent to

x ̸∈ [h; l[ (6.15)

Proof. We first show (6.12) ⇐⇒ (6.11). Intuitively, the distance of elements x from the
starting point l must be less than the length h − l of the interval.

Formally, let us first consider the case l ≤u h. Under this condition, we have ⟨h − l⟩u =
⟨h⟩u − ⟨l⟩u, and (6.12) is equivalent to l ≤u x ∧ x <u h. From l ≤u x and x <u h
we get ⟨x − l⟩u = ⟨x⟩u − ⟨l⟩u < ⟨h⟩u − ⟨l⟩u = ⟨h − l⟩u, thus (6.11) holds. In the other
direction, (6.11) is given. Towards a contradiction, assume l <u x. This means ⟨x − l⟩u =
⟨x⟩u − ⟨l⟩u + 2w, and thus (6.11) is equivalent to ⟨x⟩u − ⟨l⟩u + 2w < ⟨h⟩u − ⟨l⟩u, which
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simplifies to ⟨x⟩u+2w < ⟨h⟩u, contradicting the fact that the range of ⟨·⟩u is {0, . . . , 2w−1}.
We have shown l ≤u x. From this, (6.11) is equivalent to ⟨x⟩u − ⟨l⟩u < ⟨h⟩u − ⟨l⟩u,
simplifying to ⟨x⟩u < ⟨h⟩u, from which we can conclude x <u h.

Now consider the second case l <u h. Here, we have ⟨h − l⟩u = ⟨h⟩u −⟨l⟩u +2w, and (6.12)
is equivalent to l ≤u x ∨ x <u h. In the direction starting with (6.12), if we have l ≤u x,
then ⟨x − l⟩u = ⟨x⟩u − ⟨l⟩u, and ⟨x⟩u < ⟨h⟩u + 2w due to the range of ⟨·⟩u. If we instead
have x <u h, then also x <u l and ⟨x − l⟩u = ⟨x⟩u − ⟨l⟩u + 2w. In both cases we can
conclude ⟨x⟩u − ⟨l⟩u < ⟨h⟩u − ⟨l⟩u and thus (6.11). In the other direction, the case l ≤u x
is trivial. Otherwise, we have l >u x, which means together with l <u h that (6.11) is
equivalent to ⟨x⟩u − ⟨l⟩u + 2w < ⟨h⟩u − ⟨l⟩u + 2w, which simplifies to ⟨x⟩u < ⟨h⟩u, allowing
us to conclude (6.12).

For (6.13) ⇐⇒ (6.11), it is enough to apply some simplifications:

x + a ∈ [l + a; h + a[
⇐⇒ (x + a) − (l + a) <u (h + a) − (l + a) by (6.12) ⇐⇒ (6.11)
⇐⇒ x − l <u h − l by simplification

For (6.14) ⇐⇒ (6.11), we apply Lemma 1 to obtain the result:

− x ∈ [1 − h; 1 − l[
⇐⇒ h − x − 1 <u h − l by (6.12) ⇐⇒ (6.11)
⇐⇒ x − l <u h − l by (6.1) ⇐⇒ (6.2)

For (6.12) ⇐⇒ (6.15), note that since l ̸= h, the intervals [l; h[ and [h; l[ fall into
different cases of Definition 12, i.e., we have

x ∈ [l; h[ ⇐⇒ l ≤u x ∧ x <u h ⇐⇒ ¬(h ≤u x ∨ x <u l) ⇐⇒ x ̸∈ [h; l[

for l <u h, and analogous for the other case.
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CHAPTER 7
PolySAT in a Nutshell

PolySAT serves as a decision procedure for bit-vector constraints and is developed
as a theory solver within the SMT solver Z3 [dMB08]. An overview of the PolySAT
architecture is given in Figure 7.1, with further details on key ingredients in Chapters 8–10.

In a nutshell, PolySAT consists of two inter-connected components that interact for
theory solving in an SMT setting:

1. A bit-vector plugin to the e-graph (short for equality graph [DNS05, WNW+21]).
This plugin handles structural constraints that involve multiple bit-vector sizes
(concatenation, extraction) and determines canonical sub-slices of bit-vectors. The
PolySAT e-graph plugin also propagates assigned values across bit-vector slices.

2. A theory solver, which handles the remaining constraints by translating them into
polynomial constraints (Figure 7.2) and builds on information from the e-graph
plugin to search for a satisfiable assignment (Chapters 8–10).

From its e-graph, PolySAT receives Boolean assignments to bit-vector constraints, and
equality propagations between bit-vector terms. In return, the theory solver of PolySAT
produces a satisfying assignment, or a conflicting subset of the received constraints.
We next discuss these two components, and then focus on the theory solving aspects
of PolySAT in Chapters 8–10.

7.1 E-graph Plugin
In SMT solving, an e-graph [DNS05, WNW+21] is typically shared between theory solvers.
The primary purpose of the e-graph is to infer equalities that follow from congruence
reasoning. For PolySAT, the e-graph is extended with theory reasoning for bit-vectors.
Theory reasoning is dispatched when the e-graph merges two terms of bit-vector sort.
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Z3

PolySAT
e-graph plugin

PolySAT
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solver
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• Bit-vector slicing
• Fixed values

Search
• Trail Γ
• Bit-vector constraints

Viable Values
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• Saturation
• Incremental Linearization
• Bit-Blasting

Figure 7.1: Integration of PolySAT into the SMT Solver Z3

Certain types of constraints fix some or all bits of a variable (“fixed bits”); the simplest
example would be an equality such as x ≃ 0. The e-graph plugin of PolySAT determines
such fixed bits and performs constant propagation over bit-vector extraction and con-
catenation. Furthermore, the PolySAT e-graph establishes equalities between bit-vector
ranges. For example, it infers that x[5:4] = x[1:0] from the equation x[5:2] = x[3:0].

We note that congruence reasoning for bit-vectors was also considered in [MR98, BP98,
BS09]. Moreover, e-graphs are also used for constant propagation in [GJD20]. The
PolySAT integration of theory plugins to the e-graph structure is generic and not
specific to bit-vectors.

7.2 Theory Solver
In this section, we describe the theory solver component of PolySAT. Note that all
bit-vector extractions and concatenations have been handled by the e-graph before the
corresponding constraints reach the theory solver. The theory solver queries the e-graph
to find sub-slice relations when necessary.

7.2.1 Propositional Search
The propositional search is driven by the CDCL(T) core of the SMT solver [BS97, MS99,
MLM21]. PolySAT receives Boolean assignments to bit-vector constraints and equality
propagations between bit-vector terms. Both of them are internalized as PolySAT
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7.2. Theory Solver

p ≤u q unsigned inequality
Ω∗(p, q) multiplicative overflow
x ≃ p & q bit-wise and
x ≃ p | q bit-wise or
x ≃ p << q left shift
x ≃ p >> q logical right shift
x ≃ p >>a q arithmetic right shift
x ≃ p / q unsigned division
x ≃ p % q unsigned remainder

Figure 7.2: Primitive constraints

p <u q ⇝ ¬(q ≤u p)
p ≤s q ⇝ p + 2w−1 ≤u q + 2w−1

p ≃ q ⇝ p − q ≤u 0
Ω+(p, q) ⇝ p + q <u p
p[i] ⇝ 2w−1 ≤u 2w−i−1p
p − q ⇝ p + (2w − 1)q
∼p ⇝ −p − 1

Figure 7.3: Some of the derived constraints/expressions (w = |p| = |q|)

constraints (cf. Figure 7.2) and tracked by the trail Γ, which is a list of the currently
active PolySAT constraints. PolySAT maintains the invariant that each element of Γ
is justified by previous elements, and that each constraint and variable is assigned at
most once in Γ.

7.2.2 Constraints

As a whole, PolySAT fully supports the standardized bit-vector logic of SMT-LIB [BFT16].
Extraction and concatenation are handled by PolySAT’s e-graph plugin, as discussed
before (Section 7.1), while other bit-vector constraints are passed to PolySAT’s theory
solver. Figure 7.2 depicts the primitive constraints, where p, q are bit-vector polynomials
and x is a bit-vector variable. Other constraints are either reduced to primitive constraints
as shown in Figure 7.3, or axiomatized upfront.

Constraints of the form x ≃ n, where x is a variable and n is a bit-vector constant, are
called variable assignments. Bit-vector terms p and constraints c can be evaluated w.r.t.
the current trail Γ, that is, we substitute the variable assignments in Γ into p and c,
respectively, and simplify. As a shorthand, we write ˆ︁p for the evaluation of p under the
current trail.
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7. PolySAT in a Nutshell

7.2.3 Axiomatized Operations
As mentioned before, some operations are axiomatized upfront. For example, to internalize
the (unsigned) division x/y, PolySAT introduces fresh variables u := x/y and v := x % y
for the quotient and remainder, respectively. The main axiom is x ≃ uy + v, but for
correctness in bit-vector logic, four more axioms are required:

¬Ω∗(u, y) y ̸≃ 0 → v <u y

¬Ω+(uy, v) y ≃ 0 → u ≃ −1

where ¬Ω+(uy, v) means that the addition uy + v does not overflow, which can be
implemented, e.g., as the constraint uy ≤u −v − 1.

7.2.4 Simplifying Rewrites
The canonical form of an equality constraint p ≃ 0 within the PolySAT solver is
the unsigned inequality p ≤u 0. However, there are several other syntactic forms of
inequalities that constrain a term to a single value and thus effectively represent equalities.
Since equalities admit more reasoning than general inequalities, it is helpful to recognize
such cases. For example, 1 >u p, −1 ≤u p − 1, p ≤u p − 1, and p − 1 >u −2 are all
equivalent to p ≃ 0.

PolySAT applies the rewrite rules listed in Figure 7.4 to newly created inequality
constraints until fixpoint. The rewrite rules as listed in the table are applied from left
to right; however logically each rule must be a valid equivalence. Some of the rewrite
rules are somewhat cosmetic but still helpful to reduce different occurrences of equivalent
constraints (e.g., “−p” indicates that the sign bit of the leading coefficient is negative,
where the leading coefficient is arbitrarily but consistently chosen).

7.2.5 Constraint Solving
The PolySAT theory solver uses a waterfall model of refinements to generate lemmas
on demand, using the following steps:

1. Propagation: Value propagation is triggered when a variable is assigned a value
(Section 8.1).

2. Viable Interval Conflict: If propagation tightens the feasible intervals of a variable
to the empty set, the solver yields an interval conflict (Section 8.3).

3. Case Split on Viable Candidates: If no further propagation is possible, and there
are no interval conflicts, the solver picks a value for the next unassigned variable,
if any. It produces a literal x ≃ n for the CDCL solver to case split on, with a
preference to the phase x ≃ n over x ̸≃ n. The constant n is chosen to be outside
the ranges of infeasible intervals stored for x so far (Section 8.2).
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7.2. Theory Solver

4. Saturation Lemmas: Saturation lemmas let us propagate consequences from non-
linear constraints (Section 10.1).

5. Incremental Linearization: Our solver includes incremental linearization rules for
the cases where variables are 0, 1, −1, or powers of two (Section 10.2).

6. Bit-blasting: As a final resort, PolySAT admits bit-blasting rules (Section 10.3).

The first three steps above (steps 1, 2, 3) operate on linear constraints, or rather, a
linear abstraction of the original constraints, where non-linear monomials are treated as
variables themselves. If no conflicts arise from the linear abstraction, then any conflicting
non-linear constraints are handled by the latter stages (steps 4, 5, 6 above).

A conflict at any stage will cause PolySAT to return a conflict lemma to the SMT
solver core, which will then backtrack and continue with search. When control is passed
to PolySAT the next time, theory solving in PolySAT will begin again in the above
step 1 of constraint solving. If, on the other hand, all stages pass without conflict, a
model has been found and PolySAT returns Sat.
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7. PolySAT in a Nutshell

0 ≤u p ⇝ ⊤
p ≤u −1 ⇝ ⊤
p ≤u p ⇝ ⊤
n1 ≤u n2 ⇝ ⊤ if ⟨n1⟩u ≤ ⟨n2⟩u
n1 ≤u n2 ⇝ ⊥ if ⟨n1⟩u > ⟨n2⟩u
p ≤u q ⇝ p ≤u p − q − 1 if |V(p − q)| < |V(p)| ≤ |V(q)|
p ≤u q ⇝ q − p ≤u q if |V(p − q)| < |V(q)| < |V(p)|
−p + n ≤u n ⇝ p ≤u n
n ≤u p + n ⇝ p ≤u −n − 1
n ≤u −p ⇝ p − 1 ≤u −n − 1
−p ≤u n ⇝ −n − 1 ≤u p − 1
−p ≤u 0 ⇝ p ≤u 0
n ≤u 2w−1p + q + n − 1 ⇝ n ≤u 2w−1p − q
p − n ≤u −n − 1 ⇝ n ≤u p
n ≤u 2w−1p + q + n − 1 ⇝ n ≤u 2w−1p − q
−1 ≤u p ⇝ p + 1 ≃ 0
1 ≤u p ⇝ p ̸≃ 0
p ≤u −2 ⇝ p + 1 ̸≃ 0
2p + 1 ≤u 0 ⇝ ⊥
np + q ≤u 0 ⇝ p + n−1q ≤u 0 if n odd
2kp + n1 ≤u 2kq + n2 ⇝ 2kp ≤u 2kq if ⟨n1⟩u ≤ ⟨n2⟩u ≤ 2k

2kp + n1 ≤u 2kq + n2 ⇝ 2kp <u 2kq if ⟨n2⟩u < ⟨n1⟩u ≤ 2k

2kp ≤u n ⇝ ⊤ if ⟨n⟩u + 2k ≥ 2w

Figure 7.4: Rewrite Rules for Inequalities, where p, q are bit-vector polynomials and
n, n1, n2 are bit-vector values.
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CHAPTER 8
Tracking Viable Values

A crucial part of the PolySAT theory solver tracks for each bit-vector variable x an
over-approximation of the set of feasible values under the current trail Γ, which we call
the viable values of x. More precisely, we say a value n is viable for a variable x if the
assignment x ≃ n is feasible for the linear abstraction of the current set of constraints.
Specifically, the set of viable values is represented as a set of forbidden intervals, each
of which excludes a certain range of values of x, and is justified by constraints in the
current trail Γ.

In PolySAT, we adapt forbidden intervals from [GJD20] and use intervals for propagating
and querying viable values of variables (Sections 8.1–8.2), and resolving respective conflicts
(Section 8.3). Our approach extends [GJD20] by computing intervals when the coefficient
of x is not a power of two (Section 9.2), or when the coefficients are different on both
sides of an inequality (Section 9.3).

8.1 Value Propagation
PolySAT extracts forbidden intervals from inequalities and overflow constraints c that
are linear in x under the current trail Γ. Along with each such interval a bit-width k
is stored; k ̸= w means that the interval only constrains the lower k bits of x (e.g., the
constraint 8x + p ≤u q only affects the lower w − 3 bits of x, if x appears neither in p
nor q).

Definition 13 (Forbidden Interval). Formally, a forbidden interval for a constraint c
consists of an interval [l; h[, side conditions c1, . . . , cn that hold under Γ, and a bit-width k
such that

c ∧ c1 ∧ · · · ∧ cn =⇒ x[k − 1:0] ̸∈ [l; h[.
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8. Tracking Viable Values

Algorithm 8.1: PolySAT Viable Value Query
Input : Set of forbidden intervals I, set C of constraints
Output : Viable value x0, or a conflict

1 x0 ← xprev ▷ Start at previous viable value
2 J ← ⟨⟩ ▷ Justification (sequence of visited intervals)
3 loop
4 while ∃I ∈ I such that x0 ∈ I do
5 Choose such an I ∈ I with smallest bit-width
6 J ← ⟨J ; I⟩
7 x0 ← forward(x0, I)
8 if isConflict(J ) then return Conflict J
9 end

10 if x0 does not violate any c ∈ C then return x0
11 I ← I ∪ {computeInterval(C, x0)}
12 end

Intervals are ordered by their starting points, and we drop intervals that are fully contained
in other intervals. Chapter 9 explains how intervals are obtained from constraints.

Value propagation in PolySAT is triggered when a variable is assigned a value, or in other
words, the solver is presented with a literal x ≃ n, where x is a variable and n is a value.
Propagation is limited to linear occurrences of variables. For example, if x is assigned 2,
then from x + y ≥u 10, the forbidden intervals for y are updated to cover y ̸∈ [−2; 8[.
On the other hand, for xz + y ≥u 10, where x occurs in a non-linear term, there is no
propagation. Non-linear propagation in PolySAT is currently side-stepped because we
noticed that it produces very weak lemmas from viable interval conflicts. Non-linear
conflicts are therefore handled separately, see Chapter 10.

8.2 Viable Value Query
To find a viable value for variable x, we collect the forbidden intervals I over the
prefixes x[k:0] of x for 0 ≤ k < w. In this context, if an interval I ∈ I is an interval for
x[k:0], we say I has bit-width k + 1. In addition, we consider intervals for variables that
are equivalent to a prefix of x, as determined by the current state of PolySAT’s e-graph.

In addition to forbidden intervals, we keep track of the set C of constraints that are
linear in x. We then invoke Algorithm 8.1 to either find a value for x or detect a conflict.
We adjust [GJD20] by using intervals to track viable values and detecting conflicts in
Algorithm 8.1 as follows.

Algorithm 8.1 starts out with the previous viable value xprev of x, initially set to 0. Then,
in the loop of Algorithm 8.1, we check whether any of the known intervals I contain
the current candidate value x0 of x. If that is not the case, then the current value x0
is compatible with the intervals in I. We additionally test x0 for admissibility against
the set C of constraints (line 10 of Algorithm 8.1). If none of these constraints are
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8.2. Viable Value Query

violated, the candidate value x0 is returned as viable value for x. Otherwise (line 11
of Algorithm 8.1), computeInterval(C, x0) extracts a new interval that covers x0 (cf.
Chapter 9) and the search for a viable value of x continues. If, on the other hand, the
current value x0 of x is contained in some forbidden interval, we choose an interval I of
minimal bit-width among these (line 5 of Algorithm 8.1) and record it in the list J of
justifications (line 6 of Algorithm 8.1).

The candidate value x0 of x is updated to forward(x0, I), the first value after x0 that is
not covered by I (line 7 of Algorithm 8.1). If a conflict is detected (line 8 of Algorithm 8.1),
the justifications J are returned for further processing (see Section 8.3).

The following example illustrates Algorithm 8.1.

Example 17. Assume PolySAT needs to determine a viable value for the variable y
where the set of initially known intervals I is empty, the set of constraints C consists of
the three constraints c1, c2, c3 listed below, and the trail contains the assignment x ≃ 11.

Constraint Equivalent Interval Concrete Interval
c1 4 ≤u y y ̸∈ [0; 4[ y ̸∈ [0; 4[
c2 y ≤u 15 y ̸∈ [16; 0[ y ̸∈ [16; 0[
c3 x + 3 ≤u y + 5 y ̸∈ [−5; x − 2[ when x + 3 ̸≃ 0 y ̸∈ [−5; 9[

To find a viable value, PolySAT invokes Algorithm 8.1. As this is the first invocation,
we begin with y0 = 0. The condition of the while loop (line 4) is trivially false. Since
constraint c1 is false for y = 0, we extract the interval [0; 4[ as described in Chapter 9
and add it to I (line 11).

In the next iteration of the algorithm’s outer loop (line 3), we enter the while loop
body with the interval I = [0; 4[; advancing y0 to the value 4 and recording I in the
justifications J . This time, we find y0 violates constraint c3 (line 10). As before, we
extract the interval [−5; 9[ and store it in I.

In the third iteration of the outer loop (line 3), we advance y0 to 9 and record [−5; 9[ in
the set of justifications J . Further, we discover that y ≃ 9 does not contradict any of
the relevant constraints C (line 10) and the algorithm terminates. We conclude that 9 is
a viable value for y.

Consider now a subsequent invocation of Algorithm 8.1 for y with the additional con-
straint c4 (listed below), i.e., C = {c1, c2, c3, c4}. This situation may happen in PolySAT
if a conflict occurs in the branch with y ≃ 9 and c4 is then derived by conflict resolution.

Constraint Equivalent Interval Concrete Interval
c4 y − 12 ≤u y − x + 4 y ̸∈ [x − 4; 12[ y ̸∈ [7; 12[

Note that the previously discovered viable value now serves as starting point for the
search, i.e., the second invocation of Algorithm 8.1 begins with y0 = 9. We notice that c4
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is violated for this value of y, compute the interval [7; 12[, and advance to y0 = 12. Now,
none of the constraints are violated and the algorithm returns the viable value 12.

Finally, consider a third invocation of Algorithm 8.1 for y with the additional con-
straint c5 : y + 1 ≤u 11, which is equivalent to the interval y ̸∈ [11; −1[. This time, the
search starts at y0 = 12. We find, in the listed order, the intervals [11; −1[, [−5; 9[, [7; 12[
and finally, [11; −1[ again. At this point, a conflict is detected, justified by the listed
intervals. The algorithm terminates and returns the justification for the conflict for
further processing.

Note that, while constraint c2 is relevant for y, it has been skipped in the algorithm
because its interval has been covered by other constraints.

Remark 6. In the above Example 17, we obtained the intervals [0; 4[ and [−5; 9[. The
former is fully contained in the latter and thus unnecessary to determine the viable value.
In our implementation, we prune such subsumed intervals from the set I and from the
justifications J .

8.3 Interval Conflict
We detect conflicts by examining the list of justifications J after appending a new
interval I to J . The condition isConflict(J ) in Algorithm 8.1 is true iff the latest interval I
has already been visited previously, and no interval of larger bit-width has occurred in
between. Let I1, . . . , In+1 denote this subsequence of intervals, where I1 = In+1 = I, and
let Ii = [li; hi[. To block the current assignment to x, PolySAT creates a conflict lemma
from I1, . . . , In+1 and reports it to its SMT core.

The PolySAT conflict lemma is designed to capture the following fact: the union
of I1, . . . , In covers the full domain Z/wZ, and the intervals have been chosen such that
each upper bound hi is contained in the next interval Ii+1. In other words, as long as
hi ∈ Ii+1 holds, for all i, and the intervals are valid for x, there can be no feasible value
for x. The PolySAT conflict lemma is similar to the one of [GJD20], however, the
representation of constraints hi ∈ Ii+1 is different, because PolySAT currently tries to
avoid introducing new extract-expressions.

Since the constraints hi ∈ Ii+1 do not contain x itself, they are useful for formulating a
conflict lemma. Let Ci denote the set consisting of the constraint and side conditions
of Ii. Then, the PolySAT conflict lemma in its basic form is

n⋀︂
i=1

Ci ∧
n⋀︂

i=1
hi ∈ Ii+1 =⇒ ⊥. (8.1)

To illustrate the idea of conflict lemma generation in PolySAT, consider three intervals
[l1; h1[, [l2; h2[, [l3; h3[ whose concrete evaluation under the current trail Γ covers the full
domain by forming the following configuration:
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0 2w − 1ˆ︁ℓ1 ˆ︂h1 ˆ︂h2

ˆ︂h3

ˆ︁ℓ2

ˆ︁ℓ3

Assuming the three intervals are justified by constraints C1, C2, C3, respectively, the
PolySAT conflict lemma is⋀︂

C ∧ h1 ∈ [l2; h2[ ∧ h2 ∈ [l3; h3[ ∧ h3 ∈ [l1; h1[ =⇒ ⊥,

where C := C1 ∪ C2 ∪ C3.

An alternative to the linking constraint hi ∈ Ii+1 can be obtained from the dual version
using lower bounds, i.e., li+1 − 1 ∈ Ii.

Example 18. Consider a solver state where variables x, z are assigned and a conflict is
caused by the literals x+y −z ≃ 0 and x+y ≤u 1. Since x and z have been assigned first,
the two literals translate into the y-intervals y ̸∈ [z − x + 1; z − x[ and y ̸∈ [2 − x; −x[,
respectively (details about the translation into intervals are given in Section 9.2).

By processing the conflict as explained in this section, we obtain the linking constraints
z − x ∈ [2 − x; −x[ and −x ∈ [z − x + 1; z − x[. Translating into bit-vector language,
we obtain z − 2 <u −2 and −z − 1 <u −1, respectively. The conflict lemma generated
according to (8.1) is then

x + y − z ̸≃ 0 ∨ x + y >u 1 ∨ z − 2 ≥u −2 ∨ −z − 1 ≥u −1. (8.2)

8.4 Lemma Simplification by Subsumption
We say a conflict lemma is asserting if, after backtracking, exactly one literal in the
lemma is unassigned. In general, we want conflict lemmas to be asserting because such
lemmas clearly represent information learned from the conflict.

However, conflict resolution as discussed above may sometimes create non-asserting
lemmas. In some cases, we can reduce such lemmas by applying subsumption resolution
with a suitable theory clause, as illustrated in the following example.

Example 19. We continue Example 18. Note that the generated conflict lemma (8.2) is
not asserting when the solver backtracks to a level where z is unassigned. In general, the
SMT solver core (external to PolySAT) will choose one of the branches to proceed.

In this case, however, there is a simple way to reduce/strengthen the conflict lemma: note
that z − 2 ≥u −2 iff z ∈ {0, 1} and −z − 1 ≥u −1 iff z ∈ {0}, which means −z − 1 ≥u −1
implies z − 2 ≥u −2, thus the theory lemma

−z − 1 <u −1 ∨ z − 2 ≥u −2 (8.3)

is valid.
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8. Tracking Viable Values

We can now apply subsumption resolution (see Definition 5) with the theory lemma as
side premise to reduce the conflict clause (8.2) to

x + y − z ̸≃ 0 ∨ x + y >u 1 ∨ z − 2 ≥u −2,

which is asserting.

In the context of PolySAT, these theory lemmas are implicit. We say that literal
−z −1 ≥u −1 is subsumed by literal z −2 ≥u −2, and reduce conflict clauses by removing
subsumed literals. Simple theory implications of the same kind as (8.3) are easy to detect
by comparing the equivalent intervals. Further simplifications may be obtained from
lemmas such as Ω∗(x, y) =⇒ x >u 1, or by combining adjacent intervals into a single
constraint (e.g., as in x = 3 ∨ x >u 3 ⇐⇒ x ≥u 3).
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CHAPTER 9
Computing Intervals

We now describe how forbidden intervals are extracted from a constraint c ∈ C that is
linear in the variable x under consideration. Intervals may be computed on demand,
relative to a given candidate value (sample point) x0 of x: the goal is then to find a
maximal interval of x-values around x0 that are excluded by the constraint c. In practice,
we note the intervals are often not strictly maximal, but as large as reasonably possible
to compute.

9.1 Fixed Bits
The e-graph plugin of PolySAT tracks fixed values for variables and their sub-slices.
If the sample point x0 contradicts the sub-slice assignment x[h:l] = n, the forbidden
interval x[h:0] ̸∈ [2l(n + 1); 2ln[ is created. Note that fixed values for sub-slices may also
be encoded as inequalities, for example, as follows:

Fixed slice Equivalent Constraint
x[i] 2w−i−1x ≥u 2w−1

x[h:0] = n 2kx = 2kn k := w − h − 1
x[h:l] = n 2kx − 2k+ln <u 2k+l k := w − h − 1

Such (inequality) constraints are turned into appropriate intervals as described in Sec-
tion 9.2. We remark that it is not necessary to recover sub-slice assignments by recognizing
certain patterns of constraints.

9.2 Linear Inequality with Equal Coefficients
Consider the inequality constraint px + q ≤u rx + s that is linear in x. In the cases
where either p or r evaluate to 0 or both to the same value a, the inequality constraint
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is equivalent to an interval constraint [GJD20], according to the following table, and
subject to side conditions p = ˆ︁p and r = ˆ︁r:

Constraint under Γ Forbidden Interval Condition
ax + ˆ︁q ≤u ˆ︁s ax ̸∈ [s − q + 1; −q[ s ̸= −1ˆ︁q ≤u ax + ˆ︁s ax ̸∈ [−s; q − s[ q ̸= 0
ax + ˆ︁q ≤u ax + ˆ︁s ax ̸∈ [−s; −q[ q ̸= s

For the following, assume we have the interval constraint ax ̸∈ [l; h[. Yet, we want to
extract an interval on x, rather than on ax.

Case a = ±1. The case a = 1 trivially gives an interval on x. In the case a = −1
(i.e., 2w − 1), the transformation −x ∈ [l; h[ ⇔ x ∈ [1 − h; 1 − l[ from Lemma 6 is applied.

Case a = 2ka′ (reducing the bit-width). Consider the case where a is divisible
by 2k for some k > 0. Due to the factor 2k, the upper k bits of x do not influence the
value of the constraint. In this case, we consider an interval for the prefix x[w − k − 1:0]
of x:

2ka′x ̸∈ [l; h[ ⇐⇒
{︄

a′x[w − k − 1:0] ̸∈ [l′; h′[ if l′ ̸= h′

0 ̸∈ [l; h[ otherwise

where β′ := ⌈ β
2k ⌉ mod 2w−k for β ∈ {l, h}.

Other values of a. For other values of a, in general, multiple disjoint intervals
exist. We extract intervals around a sample point x0 on demand, i.e., given concrete
values a, x0, l, h ∈ Z/2wZ such that ax0 ∈ [l; h[, the task is to compute the maximal
x-interval [xl; xh[ such that ax ∈ [l; h[ for all x ∈ [xl; xh[. To compute xl and xh, we
move the problem into the integers Z and work with non-wrapping intervals. Operations
until the end of this section are therefore to be understood as operations in Z.
Let w be a fixed bit-width and let m := 2w. Assume values a, x0, l, h ∈ Z are given such
that 1 ≤ a < m, −m < l ≤ h < m, and ax0 mod m ∈ [l; h]. Furthermore, the length of
the interval should be less than m, i.e., h − l + 1 < m (otherwise the computation is
unnecessary because the corresponding modular interval covers the whole domain). The
goal is to find the minimal xl and the maximal xh such that ax mod m ∈ [l; h] for all
x ∈ [xl; xh].
Let k0 ∈ Z such that l ≤ ax0 + k0m ≤ h (this value exists and is unique under the
aforementioned conditions). To simplify notation, define ⟨x⟩ := x + k0m. The initial
configuration is illustrated by the following diagram:

0 m 2m

l h⟨ax0⟩
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Since we are ultimately interested in the modular interval [l; h] mod m over Z/mZ, we
consider the set of all representatives of elements of that interval, i.e., the union of
[l; h] + im for all i ∈ Z, as depicted in the following diagram.

0 m 2m

l h⟨ax0⟩

The underlying idea of our procedure is to look at each interval representative [l; h] + im
separately (intuitively, as a region where no overflow occurs) and take advantage of
periodicity after each overflow.

In the first step, we compute the minimal x′
l and the maximal x′

h such that l ≤ ⟨ax⟩ ≤ h
for all x ∈ [x′

l; x′
h]. Intuitively, [x′

l; x′
h] is the maximal x-interval around x0 such that no

overflow occurs among the corresponding multiples of a.

0 m 2m

l h⟨ax0⟩

⟨ax′
l⟩ ⟨ax′

h⟩
a

However, the interval [x′
l; x′

h] is often far from optimal, causing repeated queries over
the same constraint in Algorithm 8.1. In case of the upper bound, this means that
⟨a(x′

h + 1)⟩ is contained in the next interval representative [l; h] + m. The following
diagram illustrates the multiples of a across several interval representatives.

0 m 2m

⟨ax0⟩

⟨a(x′
h + 1)⟩ ⟨ax′′

h⟩

d d + α d + 2α

a

The situation in the second interval [l; h]+m is very similar to the initial setting. However,
the multiples of a (depicted by red diamonds) have shifted by some amount α relative to
the interval.

In the example illustrated in the diagrams we have α < 0, i.e., with each overflow, the
multiples of a drift to the left (relative to the interval). With different parameters, α = 0
(no drift) and α > 0 (drift to the right) are also possible.
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For α < 0, we accumulate intervals until the leftmost multiple of a drifts outside of the
interval. For α > 0, similarly for the rightmost multiple of a (in this case, the final
considered interval will be irregular in the sense that it contains one fewer multiple of a).

In case α = 0, the situation for each interval representative is exactly the same, and we
conclude no upper bound xh exists (which means the final x-interval over Z/mZ will be
the full domain).

We have described our method to compute the upper bound xh. The lower bound xl

can be computed analogously. In fact, PolySAT reduces the computation of xl to
the computation of xh by mirroring the initial configuration and the result across 0.
Let f denote the procedure for calculating xh, i.e., xh = f(x0, a, l, h, m). Then xl =
−f(−x0, a, −h, −l, m).

Even though this method works well in practice, some limitations remain. The interval
extension ends as soon as one of the red diamonds is outside the blue interval. This is by
specification, but it does mean that this method is only helpful when the gap between
blue intervals (i.e., m − (h − l)) is less than the distance between red diamonds (i.e., a).

9.3 Linear Inequality with Different Coefficients
Let us now consider the remaining case of linear inequalities, i.e., an inequality c of the
form px + q ≤u rx + s with ˆ︁p ̸= ˆ︁r. Again, the goal is to find the largest x-interval around
a sample point x0 where c is satisfied, however in this case, it is not possible to directly
convert the inequality into an equivalent interval constraint as in the previous cases. As
illustrated in Figure 9.1a with an example configuration, the corresponding problem
is easily solved over infinite domains, such as the rational numbers, by computing the
intersection point of the left- and right-hand side of the inequality. The interval (in that
example configuration) then extends from the intersection point towards infinity.

However, in modular arithmetic, the left-hand side and the right-hand side of c do not
represent continuous lines; instead, they wrap around at 2w as seen in Figure 9.1b. The
intervals extend from an intersection point to the next wraparound point. We compute
and return the interval containing x0.

We note that PolySAT computes only the intersection/wraparound points nearest to x0.
In some configurations, the gap between one interval to the next (i.e., between the
bold green lines in Figure 9.1b) does not contain an integer, which means the obtained
x-interval is not maximal. This method works best when the coefficients of x are near 0
or 2w.

Computing intersection and wraparound points. In order to work out the above
intuition more precisely, consider the inequality c of the form px + q ≤u rx + s with
p, q, r, s ∈ Z/2wZ such that p ̸= 0, r ̸= 0 and p ̸= r. Let x0 ∈ Z/2wZ be a sample value
that violates c, i.e., such that ⟨px0 + q⟩u > ⟨rx0 + s⟩u.
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0

(a) In Q.

0 2w − 1

(b) In Z/2wZ.

Figure 9.1: Example for extracting intervals from an inequality constraint px+q ≤u rx+s
with different variable coefficients. The blue dashed line plots ˆ︁px + ˆ︁q, and the red
continuous line is ˆ︁rx + ˆ︁s. The bold green lines indicate the desired intervals.

The goal is to find a maximal x-interval around x0 whose elements all violate the
constraint c, i.e., we want to find the minimal xl and the maximal xh such that xl ≤
x0 ≤ xh and ⟨px + q⟩u > ⟨rx + s⟩u for all x ∈ [xl; xh].

In the following, we explain our method for extracting such intervals, however in general,
we cannot yet guarantee to obtain a maximal interval in all cases. As illustrated in
Figure 9.1, we extrapolate the left-hand side (LHS) and the right-hand side (RHS) of
the constraint c using standard arithmetic until the next overflow point, and extract the
maximal interval that can be obtained without overflow.

Let us define the abbreviations a := ⟨px0 + q⟩u and b := ⟨rx0 + s⟩u. The following com-
putations are carried out over the rational numbers Q by choosing the representative ⟨p⟩u
for p and analogously for the remaining parameters.

To compute a safe upper bound xh = x0 + δh, we find the maximal δh ∈ Z satisfying the
following conditions:

• δh ≥ 0, i.e., it should be an upper bound,

• ∀x ∈ Z.(0 ≤ x ≤ δh → 2w > a + ⟨p⟩ux > b + ⟨r⟩ux ≥ 0), i.e., the LHS and RHS do
not overflow within the interval and the constraint is violated for all values,

• ⟨x0⟩u + δh < 2w, i.e., the upper bound does not overflow.
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After several transformations, we finally obtain the formula

δh = min
(︃{︂

2w − ⟨x0⟩u,
⌈︁2w − a

⟨p⟩u

⌉︁}︂
∪

{︂⌈︁ a − b

⟨r⟩u − ⟨p⟩u

⌉︁ ⃓⃓⃓
⟨r⟩u > ⟨p⟩u

}︂)︃
− 1.

Similarly, we obtain a safe lower bound xl = x0 − δl, by finding the maximal δl ∈ Z such
that:

• δl ≥ 0 (it should be a lower bound),

• δl ≤ ⟨x0⟩u (lower bound does not overflow),

• ∀x ∈ Z.(0 ≤ x ≤ δl → 2w > a − ⟨p⟩ux > b − ⟨r⟩ux ≥ 0).

A sequence of similar transformations then leads us to the formula

δl = min
(︃{︂

⟨x0⟩u + 1,
⌈︁b + 1

⟨r⟩u

⌉︁}︂
∪

{︂⌈︁ a − b

⟨p⟩u − ⟨r⟩u

⌉︁ ⃓⃓⃓
⟨p⟩u > ⟨r⟩u

}︂)︃
− 1.

Remark 7 (Strict Inequalities). Finally, if we want to compute such bounds for a strict
inequality px + q <u rx + s, we only have to change the strictness of one inequality in
our initial conditions, i.e., replace a ± ⟨p⟩ux > b ± ⟨r⟩ux by a ± ⟨p⟩ux ≥ b ± ⟨r⟩ux. In the
final formulas, this manifests as replacing a − b in the numerator by a − b + 1; otherwise,
the results are unchanged.

Remark 8 (Signed Interpretation of Coefficients). For the above computations, we
embedded the coefficients p, q from Z/2wZ into Q by choosing the representative ⟨p⟩u in
the interval [0; 2w[. However, for large coefficients p or q near 2w, we may obtain better
bounds by interpreting them as negative numbers, i.e., by choosing the representative in
the interval [−2w; 0[ instead of the default unsigned value. To obtain the corresponding
formulas for δl and δh, we can replace a + ⟨p⟩ux by a − (2w − ⟨p⟩u)x in the computation
above. Similarly, b + ⟨r⟩ux can be replaced by b − (2w − ⟨r⟩u)x. In total, this gives us
four different ways to estimate each bound. Since each of these computations finds a safe
bound, we choose the best among them.

The final formulas are listed below. The parts in red only apply if the inequality is strict
and should be ignored otherwise. The four versions of δh are as follows:

δh,1 = min
(︃{︂

2w − ⟨x0⟩u,
⌈︁2w − a

⟨p⟩u

⌉︁}︂
∪

{︂⌈︁ a − b + 1
⟨r⟩u − ⟨p⟩u

⌉︁ ⃓⃓⃓
⟨r⟩u > ⟨p⟩u

}︂)︃
− 1,

δh,2 = min
(︃{︂

2w − ⟨x0⟩u,
⌈︁2w − a

⟨p⟩u

⌉︁
,
⌈︁ b + 1
2w − ⟨r⟩u

⌉︁}︂)︃
− 1,

δh,3 = min
(︃{︂

2w − ⟨x0⟩u,
⌈︁ a − b + 1
2w − ⟨p⟩u + ⟨r⟩u

⌉︁}︂)︃
− 1,

δh,4 = min
(︃{︂

2w − ⟨x0⟩u,
⌈︁ b + 1
2w − ⟨r⟩u

⌉︁}︂
∪

{︂⌈︁ a − b + 1
⟨r⟩u − ⟨p⟩u

⌉︁ ⃓⃓⃓
⟨r⟩u > ⟨p⟩u

}︂)︃
− 1.
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The four corresponding versions of δl are:

δl,1 = min
(︃{︂

⟨x0⟩u + 1,
⌈︁b + 1

⟨r⟩u

⌉︁}︂
∪

{︂⌈︁ a − b + 1
⟨p⟩u − ⟨r⟩u

⌉︁ ⃓⃓⃓
⟨p⟩u > ⟨r⟩u

}︂)︃
− 1,

δl,2 = min
(︃{︂

⟨x0⟩u + 1,
⌈︁ a − b + 1
2w − ⟨r⟩u + ⟨p⟩u

⌉︁}︂)︃
− 1,

δl,3 = min
(︃{︂

⟨x0⟩u + 1,
⌈︁b + 1

⟨r⟩u

⌉︁
,
⌈︁ 2w − a

2w − ⟨p⟩u

⌉︁}︂)︃
− 1,

δl,4 = min
(︃{︂

⟨x0⟩u + 1,
⌈︁ 2w − a

2w − ⟨p⟩u

⌉︁}︂
∪

{︂⌈︁ a − b + 1
⟨p⟩u − ⟨r⟩u

⌉︁ ⃓⃓⃓
⟨p⟩u > ⟨r⟩u

}︂)︃
− 1.

Choosing the best of these bounds amounts to maximizing δh and δl, i.e.,

δh = max{δh,1, δh,2, δh,3, δh,4},

δl = max{δl,1, δl,2, δl,3, δl,4}.

9.4 Projecting Intervals to Sub-Slices
Since value assignments are propagated eagerly across bit-vector slices by the e-graph
component of PolySAT, in some cases, a bit-vector variable is assigned to a value that
contradicts an interval on a super-slice of the variable. Such contradictions may also
be caused by the e-graph, because it does not take into account intervals when merging
nodes.

Let x = y ++ z and define u := |y| and v := |z|. Given the forbidden interval x ̸∈ [l; h[,
then 2vy + z ̸∈ [l; h[. We can learn intervals for y and z via the following PolySAT
lemmas.

Lemma 7 (General Intervals). In case no fixed value is known for the other sub-slice, it
is possible to learn an interval as long as [l; h[ is big enough.

len([l; h[) ≥ 2u =⇒ y ̸∈ [ly; hy[ (9.1)
len([l; h[) > 2u+v − 2v =⇒ z ̸∈ [lz; hz[ (9.2)

where ly := ⌈ l
2v ⌉ mod 2v, hy := ⌊ h

2v ⌋, lz := l mod 2v, and hz := h mod 2v.

Lemma 8 (Specific Intervals). If the other sub-slice has a fixed value, a larger interval
can be projected [GJD20, Figure 1].

z = n ∧ ly ̸= hy =⇒ y ̸∈ [ly, hy[ (9.3)
z = n ∧ ly = hy ∧ hy2v + n ∈ [l; h[ =⇒ ⊥ (9.4)
y = n ∧ lz ̸= hz =⇒ z ̸∈ [lz; hz[ (9.5)
y = n ∧ lz = hz ∧ n2v ∈ [l; h[ =⇒ ⊥ (9.6)
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where we define the following for β ∈ {l, h}:

βy :=
⌈︂(β − n) mod 2u+v

2v

⌉︂
mod 2u,

βz :=
{︄

β mod 2v if ⌊ β
2v ⌋ = n,

0 otherwise.

These projections are applied iteratively in PolySAT to derive intervals for arbitrary
sub-slices. At each step, a choice is made between Lemmas 7–8, depending on whether a
fixed value is available at the required decision level.

Example 20. We can use the above to find an interval I such that

x ≃ 0 ++ y ++ z ∧ z[15:8] ≃ 123 ∧ x ̸∈ [300007; 0[ =⇒ y ̸∈ I,

where |x| = 64 and |y| = |z| = 16.

• First, apply (9.5) to obtain y ++ z ̸∈ [300007; 0[.

• Next, with (9.1) we obtain y ++ z[15:8] ̸∈ [1253; 0[.

• Finally, with (9.3) we obtain y ̸∈ [5; 0[.
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CHAPTER 10
Non-Linear Conflicts

Non-linear conflicts are handled in PolySAT by saturation, incremental linearization,
and bit-blasting. Saturation, incremental linearization and bit-blasting are postponed
until all variables are assigned values and there are no conflicts detected by propagating
bounds on linear constraints.

10.1 Saturation Lemmas

Saturation lemmas propagate consequences from non-linear constraints. The conse-
quences are considered “simpler”, when they are linear or if they contain fewer variables.
Saturation lemmas, given in Lemmas 9–12, are added by PolySAT if their non-linear
constraints are in the assertion trail Γ and they evaluate to false under the current
assignment in Γ.

Lemma 9 (Saturation Modulo Multiplication Inequalities). We list saturation rules over
inequalities that are applied in PolySAT.

px <u qx =⇒ p ̸≃ q
px <u qx =⇒ Ω∗(p, x) ∨ p <u q
px <u qx =⇒ Ω∗(−q, x) ∨ p <u q
px <u qx =⇒ Ω∗(q, −x) ∨ p >u q ∨ p ≃ 0
px <u qx =⇒ Ω∗(−p, −x) ∨ p >u q ∨ p ≃ 0
px ≤u qx =⇒ Ω∗(p, x) ∨ p ≤u q ∨ x ≃ 0
px ≤u qx =⇒ Ω∗(−q, x) ∨ p ≤u q ∨ x ≃ 0 ∨ q ≃ 0
px ≤u qx =⇒ Ω∗(q, −x) ∨ p ≥u q ∨ x ≃ 0 ∨ p ≃ 0
px ≤u qx =⇒ Ω∗(−p, −x) ∨ p ≥u q ∨ x ≃ 0 ∨ p ≃ 0
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px + s ≤u q =⇒ Ω∗(p, x) ∨ Ω+(px, s) ∨ pr ≤u q ∨ x <u r
p ≤u x ∧ qx ≤u r =⇒ Ω∗(q, x) ∨ pq ≤u r
p ≤u x ∧ qx <u r =⇒ Ω∗(q, x) ∨ pq <u r
p <u x ∧ qx ≤u r =⇒ Ω∗(q, x) ∨ pq <u r ∨ q ≃ 0
p <u x ∧ qx ≤u r =⇒ Ω∗(q, x) ∨ pq <u r ∨ r ≃ 0
p ≤u qx ∧ x ≤u r =⇒ Ω∗(q, r) ∨ p ≤u qr
p <u qx ∧ x ≤u r =⇒ Ω∗(q, r) ∨ p <u qr
p ≤u qx ∧ x <u r =⇒ Ω∗(q, r) ∨ p <u qr ∨ p ≃ 0
p ≤u qx ∧ x <u r =⇒ Ω∗(q, r) ∨ p <u qr ∨ q ≃ 0

Note that these rules do not require x ̸∈ p, q, r, s, so they can be applied even when the
degree of x is larger than 1.

Next, we can connect overflow constraints with multiplications or decompose them to
linear inequalities.

Lemma 10 (Overflow Saturation).

¬Ω∗(p, q) ∧ q ̸≃ 0 =⇒ p ≤u p · q
0̄p · 0̄q ≥u 2w =⇒ Ω∗(p, q)
Ω∗(p, q) ∧ ¬Ω∗(r, s) =⇒ p >u r ∨ q >u s

Ω∗(p, q) ∧ p ≥u q =⇒ p ≥u ⌈√
2w⌉

¬Ω∗(p, q) ∧ p ≥u q =⇒ q <u ⌊√
2w⌋

where 0̄p and 0̄q stands for a zero-extension with at least one bit of p and q, respectively.
Note that here w = |p| = |q| > 1, since multiplication overflow is impossible for w = 1.

Variables can in some cases be resolved, producing constraints that are free of resolved
variables.

Lemma 11 (Saturation Modulo Equalities).

ax + b ≃ 0 ∧ cx + d ≃ 0 =⇒ ad − bc ≃ 0
ax + b ≃ 0 ∧ c[x] =⇒ c[−b · a−1] if a is odd

where c[x] may be any constraint containing x. Note that the multiplicative inverse a−1

of a in Z/2wZ exists if and only if a is odd.

Definition 14 (Parity). The parity of a bit-vector x is the largest integer i ∈ {0, . . . , w}
such that 2i divides x. We write parity(x) for the parity of x.

A bit-vector has parity 0 if and only if it is odd. The parity of a bit-vector can be
constrained by a linear inequality, where

parity(p) ≥ i ⇐⇒ p2w−i ≃ 0

for 0 < i ≤ w.
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Lemma 12 (Parity Saturation). Parity inequalities can be used to constrain values of
multipliers.

p · q ≃ 0 =⇒ parity(p) + parity(q) ≥ w
p · q ≃ 1 =⇒ parity(p) = 0
p · q ≃ q =⇒ parity(p − 1) + parity(q) ≥ w
parity(p · q) = min(w, parity(p) + parity(q))

Obtaining Saturation Lemmas. Since bit-vector arithmetic does not match the
intuition of standard arithmetic, it is tedious and error-prone to come up with saturation
lemmas manually. We have therefore employed some automation to discover the rules
given in Lemma 9. We start with the constraint on the left-hand side of the rule that
triggers saturation (e.g., px <u qx) and generate a set of constraints that we want
to allow in the right-hand side of the rule. We then add the constraints for a small
fixed bit-width to Z3 and apply the MARCO algorithm [LPMM16] to find the minimal
unsatisfiable subsets (MUS). Each MUS corresponds to a valid lemma; however, to be
useful as saturation lemmas, we filter the candidates such that the right-hand side is
simpler in some sense. Finally, we verify manually that the lemmas generalize to arbitrary
bit-widths.

10.2 Incremental Linearization
PolySAT includes incremental linearization rules for the cases where variables are 0, 1,
−1, or powers of two. Note that our vocabulary of incremental linearization lemmas is
considerably smaller than what is used for non-linear integer arithmetic [CGI+18], but it
is also materially different as it operates over modular semantics of bit-vector operations.
Notably, we do not include here inferences for deriving ordering constraints, such as
a > b ∧ c > 0 =⇒ ac > bc, which holds for integers, but not for bit-vectors. Note that
Lemma 9 includes ordering constraints, but only for the cases where relevant uses of
multiplication do not overflow.

Lemma 13 (Incremental Linearization).

p ≃ 0 =⇒ p · q ≃ 0
p ≃ 1 =⇒ p · q ≃ q
p ≃ −1 =⇒ p · q ≃ −q
p ≃ 2k =⇒ p · q ≃ 2kq (k = 1, . . . , w − 1)
p · q ≃ 1 =⇒ p ≃ 1 ∨ Ω∗(p, q)
p · q ≃ q =⇒ p ≃ 1 ∨ q ≃ 0 ∨ Ω∗(p, q)

10.3 Bit-Blasting Rules
As a final resort, PolySAT admits bit-blasting. A product x := p · q can be equivalently
represented as ∑︁

i 2ip[i]q.
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The other primitive operations (bit-wise and, bit-wise or, left shift, logical and arithmetic
right shift) are unfolded using blasting as follows.

Lemma 14 (x := p & q). Bit-wise and (“&“) is handled using standard axioms that fall
back to bit-blasting at each index i if the basic algebraic properties hold, but x still does
not evaluate to the bit-wise and of p, q.

⊤ =⇒ x ≤u p
p ≃ 0 =⇒ x ≃ 0
p ≃ −1 =⇒ x ≃ q
p ≃ q =⇒ x ≃ p
p[i] ∧ q[i] =⇒ x[i] for each 0 ≤ i < w
x[i] =⇒ p[i] for each 0 ≤ i < w

Note that we do not list symmetric rules such as q ≃ 0 =⇒ x ≃ 0.

Lemma 15 (x := p | q). Bit-wise or (“|”) is handled similarly as bit-wise and.

⊤ =⇒ x ≥u p
p ≃ 0 =⇒ x ≃ q
p ≃ −1 =⇒ x ≃ −1
p ≃ q =⇒ x ≃ p
p[i] =⇒ x[i] for each 0 ≤ i < w
x[i] =⇒ p[i] ∨ q[i] for each 0 ≤ i < w

Lemma 16 (x := p << q). For shift operations, we split on the second argument.

q ≥u w =⇒ x ≃ 0
q ≃ 0 =⇒ x ≃ p
q ≃ i =⇒ x ≃ 2ip

for all constants i such that 0 < i < w.

Lemma 17 (x := p >> q). Logical right-shift is analogous.

q ≥u w =⇒ x ≃ 0
q ≃ 0 =⇒ x ≃ p
q ≃ i =⇒ 2ix ≤u p ≤u 2ix + 2i − 1 ∧ x <u 2w−i

for all constants i such that 0 < i < w.

Lemma 18 (x := p >>a q). The arithmetic right-shift must take the sign bit p[w − 1]
into account.

p[w − 1] ∧ q ≥u w =⇒ x ≃ −1
¬p[w − 1] ∧ q ≥u w =⇒ x ≃ 0
q ≥u w =⇒ x + 1 ≤u 1
q ≃ 0 =⇒ x ≃ p
q ≃ i =⇒ 2ix ≤u p ≤u 2ix + 2i − 1
p[w − 1] ∧ q ≃ i =⇒ x ≥u 2w − 2w−i−1

¬p[w − 1] ∧ q ≃ i =⇒ x <u 2w−i−1

82



10.3. Bit-Blasting Rules

for all constants i such that 0 < i < w.

PolySAT also performs partial bit-blasting for multiplication overflow predicates. It is
based on partitioning the conditions for overflow by using the sum of most significant
bits into three cases. To describe these, first let us define the shorthand msb(p) for the
one-based index of the most significant bit of p. For example, msb(1) = 1, msb(2) = 2. It
can be defined indirectly using the equivalence msb(p) ≥ i ⇐⇒ p ≥u 2i−1 for 1 ≤ i ≤ w.
The cases are

msb(p) + msb(q) ≥ w + 2 =⇒ Ω∗(p, q)
msb(p) + msb(q) ≤ w =⇒ ¬Ω∗(p, q)

msb(p) + msb(q) = w + 1 =⇒
(Ω∗(p, q) ⇐⇒ (0p) · (0q) ≥u 2w),

where 0p and 0q stand for the zero-extension by a single bit of p and q, respectively. In
other words, when the most significant bits add up to w, multiplication overflow affects
exactly one additional bit, so it suffices to extend p and q by a single bit to determine
overflow.
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CHAPTER 11
Experiments

We evaluated our PolySAT prototype1 against recent versions of several state-of-the-art
SMT solvers on the following four benchmark sets: the category QF_BV from SMT-
LIB [BFT16] (release 2023, non-incremental); the BV2SMV benchmarks featuring large
bit-widths [FKB13]; 14 benchmarks from smart contract verification related to the
Certora prover [AGR+20]; and a set of benchmarks from the Alive2 compiler verification
project [LLH+21]. Note that the solver STP [GD07] does not support the logic QF_UFBV
used by some of the Certora benchmarks.

Our experiments were performed on a cluster at TU Wien, where each compute node
contains two AMD Epyc 7502 processors, each of which has 32 CPU cores running at
2.5 GHz. Each compute node is equipped with 1008 GiB of physical memory that is split
into eight memory nodes of 126 GiB each, with eight logical CPUs assigned to each node.
We used runexec from the benchmarking framework BenchExec [BLW17] to assign
each benchmark process to a different CPU core and its corresponding memory node.
Further, we used GNU Parallel [Tan24] to schedule benchmark processes in parallel.

Our results are summarized in Table 11.1 and indicate that PolySAT is comparable to
the other word-level approaches on the BV2SMV benchmark set, however in general, more
work is needed. Concerning the Alive2 benchmarks that were solved by Yices2-mcsat
but not by PolySAT, we found that in all but three cases Yices2-mcsat did not use
any interval reasoning for conflicts/propagation; rather, Yices2-mcsat relied mostly on
a fallback to bit-blasting. As PolySAT does not yet have such a fallback, this result
suggests our bit-blasting rules (Section 10.3) alone are not enough.

Nevertheless, PolySAT complements Z3 with word-level bit-vector reasoning. Our
experimental analysis found that PolySAT solved 135 problems that Z3 did not solve

1Available at https://github.com/Z3Prover/z3/tree/poly. This chapter refers to commit
16fb86b636047fd79ad5827f768b6f26d8812948. To select PolySAT for bit-vector solving, add
the following options: sat.smt=true tactic.default_tactic=smt smt.bv.solver=1.
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SMT-LIB BV2SMV Smart
Contracts Alive2

sat unsat sat unsat sat unsat sat unsat
Bi

t-
bl

as
tin

g Bitwuzla [NP23] 17 745 27 203 32 115 1 3 39 3 954
cvc5 [BBB+22] 16 417 25 922 31 114 0 4 39 2 722
STP [GD07] 17 462 27 011 24 115 - - 39 2 893
Yices2 [Dut14] 17 589 26 600 24 107 0 3 39 1 519
Z3 [dMB08] 16 112 25 597 29 94 0 3 39 1 514

W
or

d-
lv

l cvc5-IntBlast [ZIM+22] 11 251 24 376 32 64 1 9 5 1 047
Yices2-mcsat [GJD20] 14 155 22 396 24 101 1 4 23 2 562
Z3-IntBlast 10 912 24 371 28 56 1 5 30 921
Z3-PolySAT 7 297 20 080 28 63 0 3 0 21
Total 46 191 192 14 12 951

Table 11.1: Number of problems solved within 60 s for several benchmark sets. The
upper five solvers are based on bit-blasting, while the lower four solvers use word-level
techniques.

and 404 problems that Z3-IntBlast did not solve (40 of which neither Z3 nor Z3-IntBlast
solved).
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CHAPTER 12
Related Work

Bit-vectors faithfully model the semantics of fixed-width integer types of common pro-
gramming languages and computer architectures. As such, the bit-vector logic is a popular
target for many tasks in formal verification applications, such as efficient bounded model
checking [CKL04], bit-precise memory handling [LLH+21], or proving the safety of
decentralized financial transactions [AGR+20].

The state of the art of solving bit-vector formulas in SMT solving is bit-blasting [KS08],
i.e., translating bit-vector formulas into propositional formulas that can then be solved
by ordinary SAT solvers. Practically all state-of-the-art SMT solvers supporting the
bit-vector theory contain a bit-blasting solver [GD07, BKO+07, dMB08, CGSS13, Dut14,
NPWB18, BBB+22, NP23]. While the core idea of translating bit-vector operations to
SAT formulas is quite natural, the different solvers vary considerably in the specifics
of this translation. and related techniques such as pre-processing and using over- and
under-approximations to simplify solving.

While bit-blasting is effective for many practical problems, it generally scales poorly to
large bit-widths, especially when multiplications are involved. In attempts to overcome
this issue, several different strategies have been investigated previously.

Layered techniques [BCF+07, HBJ+14] first apply several layers of cheap but incomplete
word-level procedures and then fall back to lazy bit-blasting; this way, only the relevant
parts of the input where none of the incomplete procedures apply needs to be bit-blasted.

Recently, an abstraction-refinement loop on top of a bit-blasting solver [NPZ24] has been
developed. The bit-vector multiplication, division, and remainder operations, often the
cause of poor scaling of bit-blasting, are abstracted as uninterpreted functions. The
abstracted operations are then refined incrementally by adding lemmas to the solver
(somewhat similar as done in Chapter 10), falling back to standard bit-blasting when
necessary.
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12. Related Work

In contrast, purely word-level techniques have been developed as well. In a method
called Int-Blasting [ZIM+22], bit-vector constraints are translated into non-linear integer
arithmetic, where the semantics of bit-vector operations are captured by range constraints
(0 ≤ x < 2w) and inserting modulo operations where needed.

The model-constructing satisfiability calculus (MCSAT) [dMJ13] has been proposed as
an alternative to CDCL(T). In MCSAT, Boolean and theory decisions are interleaved on
a shared trail. Propagation and conflict explanation is handled by theory-specific plugins.
Bit-vector plugins for MCSAT [ZWR16, GJD20] generate word-level explanations for
supported fragments of the bit-vector language and fall back to bit-level explanations
otherwise. Quantifier elimination algorithms [JC16] have been developed for certain
fragments of bit-vector logic, which may serve as a basis of conflict explanation. An
earlier version of PolySAT was internally based on MCSAT, while still being integrated
as a theory solver into the CDCL(T)-based solver Z3. However, handling full Boolean
clauses along with bit-vector slicing and translation of constraints turned out to be too
cumbersome and error-prone to maintain during ongoing development.

The solver Wombit [WSS19] uses a hybrid approach: it employs word-level propagation
during search, but then generates justifications based on individual bits during conflict
resolution.

Stochastic local search Z3 [FBWH15, NPB17, NP20] has been developed to quickly
find models for satisfiable instances, but in general, does not terminate for unsatisfiable
problems.

88



CHAPTER 13
Summary and Outlook

In the first part of the thesis, we presented improvements to subsumption and related
inferences within first-order theorem proving.

First, we introduced the simplifying inference rule subsumption demodulation to improve
support for reasoning with conditional equalities in superposition-based first-order theorem
proving. Subsumption demodulation builds on existing machineries of superposition
provers and can therefore be efficiently integrated in superposition reasoning. Still, the
rule remains expensive and does not pay off for all problems, leading to a decrease in
total number of solved problems by our implementation in Vampire. However, this is
justified because subsumption demodulation also solves many new examples that existing
tools, including first-order provers and SMT solvers, cannot handle.

Future work includes the design of more sophisticated approaches for selecting rewriting
equalities and improving the imperfect filtering of clauses indexes.

Next, we advocated the use of dedicated lightweight SAT solving to solve clauses sub-
sumption checks in first-order theorem proving. We introduced substitution constraints to
encode subsumption as a SAT instance. For solving such instances, we adjust unit propa-
gation and conflict resolution in SAT solving towards a tailored treatment of substitution
constraints. Crucially, our encoding together with our tailored solver enables efficient
setup of subsumption instances. Our experimental results indicate that SAT-based
subsumption significantly improves the performance of first-order proving.

The results on SAT-based subsumption have been extended successfully to subsumption
resolution [CKRR23, CRR+24]. Extending this work towards equality reasoning, and
hence also addressing subsumption demodulation is an interesting task for future work.
For doing so, we believe our substitution constraints would need to encode matching also
on the term level, and thus not only on the literal level, in order to find suitable terms to
rewrite.
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13. Summary and Outlook

In the second part of the thesis, we attempted to develop a new approach to word-level
bit-vector solving in the context of SMT solving.

We introduced PolySAT, a general purpose word-level bit-vector solver, to overcome the
scalability issue of bit-blasting over large bit-vectors. PolySAT integrates into CDCL(T)-
based SMT solving, generalizes interval-based reasoning, and performs saturation and
incremental linearization of constraints. As a minor connection to the first part of the
thesis, we apply subsumption resolution with certain theory lemmas to simplify conflict
clauses that arise from interval conflicts.

PolySAT is implemented in the SMT solver Z3. While the experimental results thus
far have been disappointing, PolySAT does complement bit-vector reasoning in Z3.

However, future work remains plentiful. First of all, the saturation lemmas to handle
non-linear conflicts are incomplete. Further study is required to determine the class of
problems covered by our saturation lemmas.

When discovering saturation rules automatically, we checked candidate rules for low
bit-widths (usually all w such that 1 ≤ w ≤ 16). Usually, one would expect lemmas
that pass checks for all low bit-widths to generalize to arbitrary bit-widths, but this step
involved a manual check. It would be an interesting direction to explore under what
conditions this generalization is guaranteed, or alternatively, replace the fully manual
check by setting up a suitable proof environment in an interactive theorem prover.

Further combinations of complementary approaches of word-level reasoning with bit-
blasting is another promising direction to explore. For instance, Z3 supports stochastic
local search for bit-vectors. This component could be valuable for getting candidate
variable values when making guesses in PolySAT.

Finally, limitations remain for the extraction of intervals from inequalities (Section 9.2).
We noticed periodic behaviour also in the cases that are not well-supported in our current
approach, but have so far not succeeded to fully work out the necessary results. It is also
unclear how to perform efficient intersections of periodically repeating intervals.
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Übersicht verwendeter Hilfsmittel

The German version of the abstract is based on an automated translation provided by
the free version of DeepL1, which required heavy editing. Otherwise, no generative AI
tools have been used in the preparation of this document.

1https://www.deepl.com
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