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Abstract
Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total
variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like
other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is
to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image
pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic
grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters
under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these
assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a
simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters,
and demonstrate its improved performance on some representative test images when compared with constant optimized
parameters.
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1 Introduction

Afundamental problem in image processing is the restoration
of a given “noisy” image. Images are often deteriorated due
to several factors occurring, for instance, in the process of
transmission or acquisition, such as blur caused by motion
or a deficient lens adjustment.

A well-established and successful approach for image
restoration is hinged on variational PDE methods, where
minimizers of certain energy functionals provide the sought
“clean” and “sharp” images. In the particular case where the
degradation consists of additive noise, these energy function-
als usually take the form

E(u) := ‖u − uη‖p
X + Rα(u) for u ∈ ˜X , (1.1)

where uη represents the given noisy image and ˜X is the class
of possible reconstructions of uη. The first term in (1.1),
‖u − uη‖p

X , is the fidelity or data fitting term that, in a mini-
mization process, controls the distance between u and uη in
some space X . The second term, Rα(u), is the so-called filter
term, and is responsible for the regularization of the images.
The parameter α is often called a tuning or regularization
parameter, and accounts for a balance between the fidelity
and filter terms.

A milestone approach in imaging denoising is due to
Rudin, Osher, and Fatemi [60], who proposed (in a discrete
setting, later extended to a function space framework in [1,
18]) an energy functional of the type (1.1) with X := L2(Q),
p := 2, ˜X := BV (Q), and Rα(u) := αT V (u, Q) with
α > 0, where Q ⊂ R

2 is the image domain and T V (u, Q)

is the total variation in Q of a function of bounded varia-
tion u ∈ BV (Q). Precisely, given an observed noisy version
uη ∈ L2(Q) of a true image, the ROF or TV model consists
in finding a reconstruction of the original clean image as the
solution of the minimization problem

min
u∈BV (Q)

{

‖u − uη‖2L2(Q)
+ αT V (u, Q)

}

. (1.2)

A striking feature of this model is that it removes noise while
preserving images’ edges. This model has been extended in
several ways, including higher-order and vectorial settings to
address color images, and gave rise to numerous related filter
terms seeking to overcome some of its drawbacks, such as
blurring and the staircasing effect (see, for instance, [4, 10,
22] for an overview).

In a nutshell, the TV model yields functions u that best
fit the data, measured in terms of the L2 norm, and whose
gradient (total variation) is low so that noise is removed. The
choice of the parameter α plays a decisive role in the success
of this and similar variational approaches, as it balances the
fitting and regularization features of such models. In fact,

higher values of α in (1.2) lead to an oversmoothed recon-
struction of uη because the total variation has to be “small” to
compensate for high values of α; conversely, lower values of
α in (1.2) inhibit noise removal and, in particular, the recon-
structed image provided by (1.2) converges to uη as α → 0
(see [34]).

In principle, the “optimal” parameter α needs to be chosen
individually for each noisy image, which makes such models
require additional information to be complete. To address this
issue, a partial automatic selection of an “optimal” parameter
α was proposed in [34, 35] (see also [23, 24, 39, 61]) in
the flavor of machine learning optimization schemes. This
automatic selection is based on a bilevel optimization scheme
searching for the optimal α that minimizes the distance, in
some space, between the reconstruction of a noisy image
and the original clean image. In this setting, both the noisy
image,uη, and the original clean image,uc, are knownapriori
and called the training data. The rationale is to use the same
parameterα to reconstruct noisy images that are qualitatively
similar to that of the training scheme and corrupted by a
similar type and amount of noise and are thus expected to
require a similar balance between fitting and regularization
effects.

In the context of the TV model in (1.2), one such bilevel
optimization scheme reads as follows. Here, and in the
sequel,R+ stands for the set of positive real numbers, (0,∞).
Moreover, for minimization problems over R+ or R+ ×R

+,
we write arginf instead of argmin to include the case where
the infimum would be attained at the boundary of these open
sets.

(LS)T V TV learning scheme (1.3)

Level 1. Find

ᾱ = arginf

{∫

Q
|uc − uα|2 dx : α ∈ R

+
}

;

Level 2. Given α ∈ R
+, find

uα = argmin

{∫

Q
|uη − u|2 dx + αT V (u, Q) : u ∈ BV (Q)

}

.

This approach yields a unified way of identifying the best
fitting parameters for every class of training data lying in
the same L2-neighborhood. However, the learning scheme
(1.3) does not address a major drawback of the TV and sim-
ilar models using scalar regularization parameters. In fact,
it does not take into account possible inhomogeneous noise
(occurring, e.g., in parallel acquisition inmagnetic resonance
imaging [38]) and other local features in a given deteriorated
image that would benefit from an adapted treatment.

A solution to this issue consists in resorting to adap-
tive methods and varying fitting parameters instead. The
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mathematical literature in this direction is vast, from which
we single out the following contributions: [49, 58] for results
in the finite-dimensional case and for optimal image filters,
[33] for bilevel learning in function spaces and development
of numerical optimization, [29, 30, 51–53] for a study of opti-
mal regularizers, [54] for a bilevel analysis of novel classes of
semi-norms, [55] for an approach via Young measures, and
[14, 26, 37, 42] and the references therein for an overview.

A relevant question in image reconstruction (as pointed
out in [50], among others) is the possibility of adapting the
fitting parameters to the specific features of a given class of
noisy images by performing, e.g., a stronger regularization
in areas which have been highly deteriorated and by tuning
down the filtering actions in portions that, instead, have been
left unaffected.

Here, starting from the ideas in [50], we propose space-
dependent learning schemes that locally search for the
optimal level of refinement and the optimal regularization
parameters. The optimal level of refinement translates into
finding an optimal partition of the noisy image’s domain
that takes into account its local features. Precisely, as before,
Q = (0, 1)2 represents the images’ domain.We say thatL is
an admissible partition of Q if it consists of dyadic squares,
each of which we often denote by L (see Sect. 2 for a more
detailed description of these partitions). Note that an admissi-
ble partitionmight bemore or less refined in different parts of
the domain. We denote byP the class of all such admissible
partitionsL of Q. Finally, let (uη, uc) ∈ BV (Q) × BV (Q)

be a training pair of noisy and clean images. The first space-
dependent learning scheme that we propose to restore uη,
based on the a priori knowledge of uc, is as follows.

(LS)T VωWeighted − TV learning scheme (1.4)

Level 3. (optimal local training parameter) Fix L ∈ P; for
each L ∈ L, find

αL := inf

{

arginf

{∫

L
|uc − uα,L |2 dx : α ∈ R

+
}}

,

(1.5)

where, for α ∈ R
+,

uα,L := argmin

{∫

L
|uη − u|2 dx + αT V (u, L)

: u ∈ BV (L)

}

.

(1.6)

Level 2. (space-dependent image denoising) For each L ∈
P, find

uL := argmin

{∫

Q
|uη − u|2 dx + T VωL

(u, Q)

: u ∈ BVωL
(Q)

}

, (1.7)

where we consider the piecewise constant weight ωL

defined by

ωL(x) :=
∑

L∈L
αLχL(x) with αL given by Level 3,

(1.8)

and BVωL
is the space of ωL-weighted BV -functions

(see Sect. 3.2).

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin

{∫

Q
|uc − uL|2 dx : L ∈ P

}

with uL given by Level 2.

Remark 1.1 (i) We observe that by taking the infimum in
(1.5), the corresponding parameterαL is alwayswell defined.
On the other hand, if T V (uη, L) > T V (uc, L) and ‖uη −
uc‖2L2(L)

< ‖[uη]L − uc‖2L2(L)
as in [34], with [uη]L :=

1
|L|

∫

L uη dx , we prove in Theorem 3.8 that there exists α̃L ∈
(0,∞) satisfying

α̃L ∈ argmin

{∫

L
|uc − uα,L |2 dx : α ∈ R

+
}

(see [34] for similar statements), in which case the infimum
on such α̃L as in (1.5) may be regarded as a choice criterium
on the optimal parameter.

(ii) We refer to Sect. 3.2 for the definition and discus-
sion of the space BVωL

of ωL-weighted BV -functions, as
introduced in [5]. In particular, using the results in [5] (and
also [15, 16]), we prove under appropriate conditions that
uL ∈ BV (Q) and

T VωL
(uL, Q) =

∫

Q
ωsc−
L (x) d|DuL|(x), (1.9)

where ωsc−
L denotes the lower-semicontinuous envelope of

ωL. We further mention the works in [3, 41] addressing the
study of inverse problems that include a weighted-T V model
of the form of the one in (1.7).

The existence of solutions to the learning scheme (LS)T Vω

in (1.4) is intimately related to the existence of a stopping
criterion for the refinement of the admissible partitions or, in
other words, a lower bound on the size of the dyadic squares
L ∈ L, with L ∈ P. This notion is made precise in the
following definition.

Definition 1.2 (stopping criterion for the refinement of the
admissible partitions) We say that a condition (S) on P is a
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stopping criterion for the refinement of the admissible parti-
tions if there exist κ ∈ N and L1, ...,Lκ ∈ P such that

argmin

{∫

Q
|uc − uL|2 dx : L ∈ P

}

= argmin

{∫

Q
|uc − uLi |2 dx : i ∈ {1, ..., κ}

}

provided that (S) holds, where uL and uLi are given by (1.7).
In this case, we write P̄ := ∪κ

i=1{Li }.
We refer to Sect. 3.4 for examples of stopping criteria as in

Definition 1.2, from which we highlight the box-constraint
that we discuss next.

Remark 1.3 (box constraint as a stopping criterion) To prove
the existence of a solution to the learning scheme (LS)T Vω in
(1.4), we adopt the usual box-constraint approach in which
we replace α ∈ R

+ by

α ∈
[

c0,
1

c0

]

for some c0 ∈ (0, 1). (1.10)

In this case, the analog of (1.5) becomes

ᾱL = inf

{

arginf

{∫

L
|uc − uα,L |2 dx : α ∈ [

c0,
1
c0

]

}}

.

(1.11)

Under some assumptions on the training data, we prove in
Subsect. 3.4 (see Theorem 1.4) that this box constraint is
equivalent to the existence of a stopping criterion for the
refinement of the admissible partitions as in Definition 1.2.

Theorem 1.4 (Equivalence between box constraint and stop-
ping criterion) Consider the learning scheme (LS)T Vω in
(1.4). The two following statements hold:

(a) If we replace (1.5) by (1.11), then there exists a stop-
ping criterion (S) for the refinement of the admissible
partitions as in Definition 1.2.

(b) Assume that there exists a stopping criterion (S) for the
refinement of the admissible partitions as inDefinition1.2
such that the training data satisfy for all L ∈ ∪L∈P̄L,
with P̄ as in Definition 1.2, the conditions

(i) T V (uc, L) < T V (uη, L);
(ii) ‖uη −uc‖2L2(L)

< ‖[uη]L −uc‖2L2(L)
, where [uη]L =

1
|L|

∫

L uη dx .

Then, there exists c0 ∈ R
+ such that the optimal solution

u∗ provided by (LS)T Vω withP replaced by P̄ coincides
with the optimal solution u∗ provided by (LS)T Vω with
(1.5) replaced by (1.11).

Next, we state our main theorem regarding existence of
solutions for the learning scheme (LS)T Vω in (1.4). We state
this result under the box-constraint condition. However, in
viewofTheorem1.4, this result holds true under any stopping
criterion for the refinement of the admissible partitions, and
in particular if the training data satisfies the conditions (i)
and (ii) above.

Theorem 1.5 (Existence of solutions to (LS)T Vω ) There
exists an optimal solution u∗ to the learning scheme (LS)T Vω

in (1.4), whenever (1.5) is replaced by (1.11) for some fixed
c0 ∈ (0, 1).

The proofs of Theorems 1.4 and 1.5 are presented in
Sect. 3, where we also explore alternative stopping criteria.

As shown in [47, Theorem 2.4.17], given a positive,
bounded, and Lipschitz continuous function ω : Q →
(0,∞)with∇ω ∈ BV (Q;R2), the solution of (1.7) withωL

replaced by ω may exhibit jumps inherited from the weight
ω that are not present in the data uη, see Fig. 2 for a numer-
ical example. Because ωL in Level 2 is constructed using
the local optimal parameters given by Level 3, we heuristi-
cally expect that, in most applications, these extra jumps do
not induce clearly visible artifacts. However, this possible
issue has led us to consider two alternative adaptive space-
dependent learning schemes.

First, we consider a learning scheme based on (LS)T Vω

in (1.4) with ωL replaced by a smooth regularization (ωε)L
(see the regularized weighted TV learning scheme (LS)T Vωε

in (1.12)). Second, using the fact that the minimizer in (1.6)
coincides with

argmin

{

1

α

∫

L
|uη − u|2 dx + T V (u, L) : u ∈ BV (L)

}

,

we consider the weighted-fidelity learning scheme
(LS)T V−Fidω in (1.16) below, where the weight appears in
the fidelity term.Let us point out that a detailed analysis of the
differences arising between weighted-fidelity and weighted-
regularization parameter for TV has been carried out in the
one-dimensional case in [44].

We begin by describing the regularized scenario.

(LS)T Vωε
Regularized weighted − TV learning scheme

(1.12)

Level 3. (optimal local training parameter) Fix L ∈ P; for
each L ∈ L, find

αL = inf

{

arginf

{∫

L
|uc − uα,L |2 dx : α ∈ R

+
}}

,

(1.13)
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where, for α ∈ R
+,

uα,L := argmin

{∫

L
|uη − u|2 dx + αT V (u, L)

: u ∈ BV (L)

}

.

Level 2. (space-dependent image denoising) For each L ∈
P and for ε > 0 fixed, find

uε
L := argmin

{∫

Q
|uη − u|2 dx + T Vωε

L
(u, Q)

: u ∈ BVωε
L
(Q)

}

,

where we consider a regularized weight ωε
L : Q → [0,∞)

of ωL in (1.8) such that

ωε
L ∈ C1(Q) and ωε

L ↗ ωL as ε → 0+

and a.e. in Q.
(1.14)

Level 1. (optimal partition and image restoration) Find

u∗
ε ∈ argmin

{∫

Q
|uc − uε

L|2 dx : L ∈ P

}

with uε
L given by Level 2.

For each ε > 0 fixed, similar results to those regarding
the learning scheme (LS)T Vω in (1.4) hold for the learning
scheme (LS)T Vωε

in (1.12). A natural question is whether a
sequence of optimal solutions of the latter, {u∗

ε }ε , converge
in some sense to an optimal solution of the former, u∗, as
ε → 0+. This turns out to be an interesting mathematical
question (see Remark 4.3), which we partially address in the
following proposition.

Proposition 1.6 (On the energies in (LS)T Vωε
as ε → 0+)

Under the setup of the learning schemes (LS)T Vω and
(LS)T Vωε

above, fix L ∈ P and let EL : L1(Q) → [0,∞]
and Eε

L : L1(Q) → [0,∞] be the functionals defined for
u ∈ L1(Q) by

EL[u] :=
{
∫

Q |uη−u|2 dx+T VωL(u, Q) if u ∈ BVωL(Q),

+∞ otherwise,

Eε
L[u] :=

{
∫

Q |uη−u|2 dx+T Vωε
L

(u, Q) if u ∈ BVωε
L

(Q),

+∞ otherwise.

If (1.14) holds, then

�(L1(Q)) − lim sup
ε→0+

Eε
L � EL. (1.15)

Inequality (1.15) states, roughly speaking, that the asymp-
totic behavior of the functionals Eε

L is bounded from above
by EL, for it can be equivalently expressed as

inf

{

lim sup
ε→0+

Eε
L[uε ] : uε → u strongly in L1(Q)

}

� EL[u]

for every u ∈ L1(Q). The proof of this proposition and
an analytical discussion of the learning scheme (LS)T Vωε

in (1.12) can be found in Sect. 4, while the corresponding
numerical scheme is detailed in Sect. 6.

Next, we study the weighted-fidelity learning scheme
(LS)T V−Fidω motivated above.

(LS)T V−FidωWeighted − fidelity learning scheme
(1.16)

Level 3. (optimal local training parameter) Fix L ∈ P; for
each L ∈ L, find

αL = inf

{

arginf

{∫

L
|uc − uα,L |2 dx : α ∈ R

+
}}

,

(1.17)

where, for α ∈ R
+,

uα,L := argmin

{∫

L

1

α
|uη − u|2 dx + T V (u, L)

: u ∈ BV (L)} .

(1.18)

Level 2. (space-dependent image denoising) For each L ∈
P, find

uL := argmin

{∫

Q

1

ωL
|uη − u|2 dx + T V (u, Q)

: u ∈ BVωL
(Q)

}

,

where, similarly to (1.8), ωL is defined by

ωL(x) :=
∑

L∈L
αLχL(x) with αL given by Level 3.

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin

{∫

Q
|uc − uL|2 dx : L ∈ P

}

with uL given by Level 2.

Once more, similar results to those regarding the learn-
ing scheme (LS)T Vω in (1.4) hold for the learning scheme
(LS)T V−Fidω in (1.16). In particular, the box constraint here
is essential to guarantee that Level 2 of the scheme is well
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posed. This analysis is undertaken in Sect. 4, while the cor-
responding numerical study is addressed in Sect. 6.

The last theoretical result of this paper concerns replacing
the T V term in our space-dependent bilevel learning schemes
with a higher-order regularizer. A well-known drawback of
the ROF model is the possible occurrence of staircasing
effects whenever two neighboring areas of an image are both
smoothed out and an abrupt spurious discontinuity is pro-
duced in the denoising process. To counteract this effect a
canonical solution (among others like the use of Huber-type
smoother approximations of the total variation as in [13])
consists in resorting to higher-order derivatives in the reg-
ularizer (see, e.g., [10, 21, 28, 56]). We consider here the
total generalized variation (TGV ) model introduced in [11],
which is considered to be one of the most effective image-
reconstruction models among those involving mixed first-
and higher-order terms, cf. [12, 46, 56, 59] for some theoret-
ical results about its solutions.

For a function u ∈ BV (Q) and α = (α0, α1) ∈ R
+ ×R

+,
the second-order TGV functional is given by

TGVα0,α1(u) := min
{

α0|Du −v|(Q) + α1|Ev|(Q)

: v ∈ BD(Q)
}

,

(1.19)

where, as before, Du denotes the distributional gradient of u,
|μ|(Q) is the total variation on Q of a Radon measure μ, E
is the symmetric part of the distributional gradient, and BD
indicates the space of vector-valued functions with bounded
deformation, cf. [62]. In this setting, our learning scheme
reads as follows.

(LS)TGVωWeighted − TGV learning scheme (1.20)

Level 3. (optimal local regularization parameter) Fix L ∈
P; for each L ∈ L, find

αL =(

(αL )0, (αL )1
) := inf

{

arginf

{∫

L
|uc−uα,L |2 dx

: α=(α0, α1) ∈ R
+×R

+
}}

,

(1.21)

where, for α = (α0, α1) ∈ R
+ × R

+,

uα,L := argmin

{∫

L
|uη − u|2 dx + TGVα0,α1(u, L)

: u ∈ BV (L)

}

,

(1.22)

and where the infimum in (1.21) is meant with respect to the
lexicographic order in R2.

Level 2. (space-dependent TGV image denoising) For each
L ∈ P, find

uL := argmin

{∫

Q
|uη − u|2 dx + TGVω0

L,ω1
L
(u, Q)

: u ∈ BVω0
L
(Q)

}

,

(1.23)

where, for i ∈ {0, 1}, the weight ωi
L is defined by

ωi
L(x) :=

∑

L∈L
(αL)i χL(x) with αL given by Level 3.

In the expression above,

TGVω0
L,ω1

L
(u, Q) :=

inf
v∈BD

ω1
L

(Q)

{

Vω0
L
(Du − v, Q) + Vω1

L
(Ev, Q)

}

, (1.24)

where the quantitiesVω0
L
andVω1

L
are weighted counterparts

to the classical total variation of Radon measures. We refer
to Sects. 2 and 5 for the precise definition and properties of
these quantities. In particular, we will prove that

Vω0
L
(Du − v, Q) =

∫

Q
(ω0

L)sc
−
d|Du − v|, (1.25)

and

Vω1
L
(Ev, Q) =

∫

Q
(ω1

L)sc
−
d|Ev|, (1.26)

where BVω0
L
is the space ofω0

L-weighted BV -functions (see

Subsect. 3.2) and BDω1
L
is the space of ω1

L-weighted BD-
functions (see Sect. 5).

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin

{∫

Q
|uc − uL|2 dx : L ∈ P

}

with uL given by Level 2.

Analogously to (LS)T V−Fidω , we can also consider a
weighted-fidelity TGV scheme, which we use in our numer-
ical results and describe next.

(LS)TGV−FidωTGV weighted − fidelity learning scheme
(1.27)

With α0, α1 ∈ R
+ fixed throughout:
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Level 3. (optimal local training parameter) Fix L ∈ P; for
each L ∈ L, find

λL = inf

{

arginf

{∫

L
|uc − uλ,L |2 dx : λ ∈ R

+
}}

,

(1.28)

where, for λ ∈ R
+,

uλ,L := argmin

{

λ

∫

L
|uη − u|2 dx + TGVα0,α1(u, L)

: u ∈ BV (L)

}

.

Level 2. (space-dependent image denoising) For each L ∈
P, find

uL := argmin

{∫

Q
ωL|uη − u|2 dx + TGVα0,α1(u, Q)

: u ∈ BVωL
(Q)

}

,

where ωL is defined by

ωL(x) :=
∑

L∈L
λLχL(x) with λL given by Level 3.

Level 1. (optimal partition and image restoration) Find

u∗ ∈ argmin

{∫

Q
|uc − uL|2 dx : L ∈ P

}

with uL given by Level 2.

As in the case of our learning schemes for the weighted
total variation, the analysis of (LS)TGVω and (LS)TGV

−Fidω is performed under a box-constraint assumption,
which for the first case reads as

α = (α0, α1) ∈
[

c0,
1

c0

]

×
[

c1,
1

c1

]

. (1.29)

Our main result for the weighted-TGV scheme is the fol-
lowing.

Theorem 1.7 (Existence of solutions to (LS)TGVω ) There
exists anoptimal solutionu∗ to the learning scheme (LS)TGVω

in (1.20) with the minimization in (1.21) restricted by (1.29).

Analogously, we infer the ensuing theorem for the TGV with
weighted fidelity.

Theorem 1.8 (Existence of solutions to (LS)TGV−Fidω ) For
every c ∈ (0, 1), there exists an optimal solution u∗ to the
learning scheme (LS)TGV−Fidω in (1.27) with theminimiza-
tion in (1.28) restricted by the box constraint λ ∈ [

c, 1
c

]

.

Also in the case of weighted-TGV learning schemes, we
provide a connection between stopping criteria and existence
of a box constraint. To be precise, we show that if (1.29) is
imposed, then a stopping criterion can be naturally imposed
on the schemes. Concerning the converse implication, we
show that if a suitable stopping criterion is enforced, then
(αL)0 and (αL)1 are both always bounded from below by a
positive constant and that they cannot simultaneously blow
up to infinity. The weaker nature of this latter implication is
due to one main reason: the upper bound established on the
optimal parameters for the weighted T V scheme is hinged
upon a suitable Poincaré inequality for the total variation
functional, cf. Proposition 3.5; in the TGV case, the anal-
ogous argument only provides a bound from above for the
minimum between (αL)0 and (αL)1 and thus does not allow
to conclude the existence of a uniform upper bound on either
component, cf. Proposition 5.11. We refer to Subsect. 5.3
for a discussion of this issue and for the details of this argu-
ment. For completeness, we mention that a result related to
Proposition 5.11 has been proven in [57, Proposition 6]. In
Proposition 5.11, we make this study quantitative and keep
track of the dependence on the cell size through the Poincaré
constant.

The results we present suggest a number of possible
directions and questions for future research. One possible
avenue is the formulation of similar schemes with piecewise
constant weights in the case of Mumford–Shah regulariza-
tions, relating to the Ambrosio–Tortorelli scheme of [40]
which explicitly allows for discontinuous weights. Another
is an investigation of the relation and apparent discrepancy
between our results concluding stopping of the refinement of
partitions, in which parameter variations at very fine scales
are not advantageous, and numerical results in the literature
wherewildly varying parametermaps appear in the optimiza-
tion, such as in [48].

The paper is organized as follows: in Sect. 2, we collect
some notation which will be employed throughout the paper.
The focus of Sects. 3 and 4 is on our weighted-T V scheme,
as well as on the two variants thereof, including a regular-
ization of the weight and a weighted fidelity, respectively.
Section5 is devoted to the study of ourweighted-TGV learn-
ing scheme and of the corresponding TGV scheme with
weighted fidelity. Section6 contains some numerical results
for the various learning schemes presented in the paper and
a comparison of their performances.

2 Glossary

Here we collect some notation that will be used throughout
the paper, and introduce some energy functionals that will be
studied.
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We start by addressing our admissible partitions of the
unit cube Q = (0, 1)2 into dyadic squares. For κ ∈ N0, let

Zκ :=
{

2−κ z ∈ [0, 1)2 : z ∈ Z
2
}

.

For instance, Z0 = {(0, 0)} and Z1 = {(0, 0), (0, 1
2 ), (

1
2 , 0),

( 12 ,
1
2 )}.Note that Zk has cardinality 2k ×2k , which allow us

to write Zκ = ∪4κ

ι=1z
(κ)
ι , where z(κ)

ι = 2−κ zι for a convenient
zι ∈ Z

2. Then, for each κ ∈ N0 and ι ∈ {1, ..., 4κ }, we
consider the dyadic square

Qκ
ι :=

(

z(κ)
ι +

(

0,
1

2κ

]2
)

∩ Q.

For each κ ∈ N0 fixed, we have that Qκ
ι1

∩ Qκ
ι2

= ∅ for every
ι1, ι2 ∈ {1, ..., 4κ } with ι1 = ι2; moreover, Q = ∪4κ

ι=1Q
κ
ι . In

particular, L := {Qκ
ι : ι ∈ {1, ..., 4κ }} provides an example

of an admissible partition of Q.More generally, recalling that
we denote by P the class of all admissible partitions L of
Q consisting of dyadic squares as above, then ifL ∈ P and
L ∈ L are arbitrary, there exist κ ∈ N0 and ι ∈ {1, ..., 4κ }
such that L = Qκ

ι .
The setting of our work is a two-dimensional one,

mainly due to the scale invariance of the constant in the
two-dimensional Poincaré–Wirtinger inequality in BV , as
discussed in the proof of Proposition 3.1. This invariance is
crucial to prove existence of solutions for our schemes (see,
for instance, Theorem3.6).However, there are some theoreti-
cal results concerning the weighted-BV and weighted-TGV
spaces that hold in any dimension n ∈ N, for which reason
we state such results in Rn .

In what follows, � ⊂ R
n is an open and bounded set and

X stands for either R, Rn, or Rn×n
sym , where the latter is the

space of all n× n symmetric matrices and n ∈ N. We denote
byM(�;X) the space of all finite Radonmeasures in�with
values on X, and by |μ| ∈ M(�;R+

0 ) the total variation of
μ ∈ M(�;X), which is defined for each measurable set
B ⊂ � by

|μ|(B) := sup

{ ∞
∑

i=1

|μ(Bi )| : {Bi }i∈N is a partition of B

}

.

Using the Riesz representation theorem, M(�;X) can be
identifiedwith the dual ofC0(�;X′), the closurewith respect
to the supremum norm of the set of all continuous functions
on � with compact support. In particular, the total variation
of a Radon measure μ ∈ M(�;X) is alternatively given by

|μ|(B) = sup

{ ∫

B
ϕ(x) · dμ(x) : ϕ ∈ C0(B;X′),

‖ϕ‖L∞(B;X′) � 1

}

, B ⊂ � measurable,

(2.1)

where · represents the duality product between an element
of X′ and an element of X. With the trivial identification of
column vectors with row vectors, we will often write X in
place of X′.

In the case in which μ = Du ∈ M(�;Rn) for some u ∈
BV (�), a density argument shows that (2.1) is equivalent to

|Du|(B) = sup

{∫

B
u(x) div ϕ(x) dx : ϕ ∈ Lipc(B;Rn),

‖ϕ‖L∞(B;Rn) � 1

}

,

(2.2)

and we often write T V (u, B) in place of |Du|(B). In
the preceding expression, and throughout this manuscript,
Lipc(B;X) represents the space of all X-valued Lipschitz
functions with compact support in B.

Similarly, in the case in which μ = Ev ∈ M(�;Rn×n
sym )

for some v ∈ BD(�) and E the symmetrical part of the
distributional derivative, then (2.1) is equivalent to

|Ev|(B) = sup

{∫

B
v(x) · div ϕ(x) dx : ϕ ∈ Lipc(B;Rn×n

sym ),

‖ϕ‖L∞(B;Rn×n
sym )

� 1

}

,

(2.3)

where (divϕ) j = ∑n
k=1

∂ϕ jk
∂xk

for each j ∈ {1, ..., n}.
At the core of the present manuscript are weighted ver-

sions of the spaces of bounded variation and of bounded
deformation. These weighted versions rely on a generaliza-
tion of (2.2) and (2.3) that cannot be derived directly from
the Riesz representation theorem, and thus need a careful
analysis to prove the variational identities stated in (1.9) and
(1.25)–(1.26), addressed in Sects. 3 and 5, respectively.

Given a Radon measure μ ∈ M(�;X) and a locally inte-
grable function ω : � → [0,∞), we define the ω-weighted
variation of μ on �, written Vω(μ,�), by

Vω(μ,�) := sup

{ ∫

�

ϕ(x) · dμ(x) :

ϕ ∈ Lipc(�;X′), |ϕ| � ω

}

.

(2.4)

As before, if μ = Du ∈ M(�;Rn) for some u ∈ BV (�),
then (2.4) is equivalent to

Vω(Du,�) = sup

{ ∫

�

u(x) div ϕ(x)

dx : ϕ ∈ Lipc(�;Rn), |ϕ| � ω

}

,
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which we often represent by T Vω(u,�), and we define

BVω(�) :=
{

u : �→R measurable:
∫

�

|u(x)| ω(x) dx<∞

and T Vω(u,�) < ∞
}

.

Also, ifμ = Du−v := Du−vLn�� ∈ M(�;Rn) for some
u ∈ BV (�) and v ∈ L1(�;Rn), then (2.4) is equivalent to

Vω(Du−v,�)=sup

{∫

�

(

u(x) div ϕ(x)+v(x) · ϕ(x)
)

dx

: ϕ∈Lipc(�;Rn), |ϕ|�ω

}

.

Moreover, ifμ = Ev ∈ M(�;Rn×n
sym ) for some v ∈ BD(�),

then (2.4) is equivalent to

Vω(Ev,�) = sup

{ ∫

�

v(x) · div ϕ(x) dx :

ϕ ∈ Lipc(�;Rn×n
sym ), |ϕ| � ω

}

,

and we define

BDω(�) :=
{

v : �→R measurable:
∫

�

|v(x)| ω(x) dx<∞

and Vω(Ev,�) < ∞
}

.

The energy functional associated with the analogue to the
ROF’s model, where we use a weighted-TV regularizer on
� ⊂ R

2 instead of the total variation (TV), is denoted by
(see Theorem 3.2)

E[u] :=
∫

�

|uη − u|2 dx + T Vω(u,�).

To highlight the dependence on a partition L of Q made of
dyadic cubes, the extension of the preceding functional (for
a weight ωL and � = Q) to L1(Q) is represented by

EL[u] :=
{
∫

Q |uη − u|2 dx + T VωL(u, Q) if u ∈ BVωL(Q),

+∞ otherwise.

Moreover, for the ε-dependent regularized weight ωε
L, intro-

duced in (1.14), the energy above is written as

Eε
L[u] :=

{
∫

Q |uη − u|2 dx + T Vωε
L

(u, Q) if u ∈ BVωε
L

(Q),

+∞ otherwise.

The two preceding functionals are introduced in Proposi-
tion 1.6, where we address the relationship between the

weighted-TV and the regularized weighted-TV learning
schemes in (1.4) and (1.12), respectively.

For a fixed image domain � ⊂ R
2, the optimal tuning

parameter α in Level 3 of any of the T V learning schemes
addressed here is found by minimizing the cost function I :
(0,∞) → R defined by

I (α) :=
∫

�

|uc − uα|2 dx for α ∈ (0,+∞), (2.5)

where uc is the clean image and uα is the reconstructed image
obtained as the minimizer of the denoising model in afore-
mentioned Level 3. In our analysis, we make use of the
extension ̂I : [0,+∞] → [0,+∞] of I to the closed inter-
val [0,+∞] defined for ᾱ ∈ [0,+∞] by

̂I (ᾱ) := inf
{

lim inf
j→∞ I (α j ) : (α j ) j∈N ⊂ (0,+∞), α j → ᾱ

in [0,+∞]
}

,

(2.6)

which can be seen as the lower-semicontinuous envelope of
I on the closed interval [0,+∞]. As it turns out,̂I is actually
a continuous function on [0,+∞] (cf. Corollary 3.11). The
study of existence of minimizers for I and the characteri-
zation of ̂I for the weighted-TV learning scheme in (1.4) is
addressed in Theorem 3.8, Lemma 3.10, and Corollary 3.11.
This study relies on the convergence of minimizers of the
family, parametrized by α ∈ (0,∞), of energy functionals
associated with ROF’s model,

Fα[u] :=
{
∫

�
|uη − u|2 dx + αT V (u,�) if u ∈ BV (�),

+∞ otherwise.

In turn, this convergence analysis naturally involves the
extreme points ᾱ = 0 and ᾱ = +∞, which are associated
with the energies

F0[u] :=
{
∫

�
|uη − u|2 dx if u ∈ L2(�),

+∞ otherwise,

and F∞[u] :=
{
∫

�
|uη − c|2 dx if u ≡ c ∈ R,

+∞ otherwise,

respectively (we remark that, since the local parameters in
each dyadic square are constant, this analysis also applies for
the weighted-TV learning scheme in (1.4)).

Regarding the TGV case, to obtain the existence of opti-
mal parameters for Level 3 of the schemes (1.20) and (1.27),
stated in Theorem 5.13, we are led to study �-convergence
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of the family of functionals, parametrized by α = (α0, α1) ∈
(0,+∞)2, defined as

Gα[u] :=
{

∫

� |uη − u|2 dx + TGVα0,α1 (u,�) if u ∈ BV (�),

+∞ otherwise.

In this case, the �-convergence result is more involved
because it includes different combinations of ᾱi = 0, ᾱi ∈
R

+, or ᾱi = +∞ for i = 0 and i = 1. The expressions for
the ensuing limits can be found in the statement of Lemma
5.15.

The characterization of the extension to the closed interval
[0,+∞]2 of the TGV analog of (2.5), denoted by J (α) for
α = (α0, α1), is contained in Lemma 5.18.

In the sequel, we use both the average of a function u :
� → R on a subdomain L ⊂ �,

[u]L := 1

|L|
∫

L
u(x) dx,

and its projection onto affine functions 〈u〉L , which is the
unique solution to the minimum problem

min

{∫

L
|u − v|2 dx : v is affine in L

}

,

where in both cases the subscript may be omitted when L =
�.

3 Analysis of theWeighted-TV Learning
Scheme (LS)TV!

Here, we prove existence of solutions to the weighted-TV
learning scheme, (LS)T Vω , introduced in (1.4). We analyze
each level in the three subsequent subsections. In particular,
we prove Theorem 1.5 in Subsect. 3.3. Then, in Subsect. 3.4,
we prove Theorem 1.4 and we provide different examples of
stopping criteria for the refinement of the admissible parti-
tions introduced in Definition 1.2.

3.1 On Level 3

In this section, we discuss the main features of Level 3, and
variants thereof, of the learning scheme (LS)T Vω in (1.4).

As wementioned in Remark 1.1, the parameter αL in (1.5)
is uniquely determined by definition, with αL ∈ [0,+∞].
Then, in view of Theorem 3.8 (see Subsect. 3.4), if L ∈ L is
such that

T V (uc, L) < T V (uη, L)

and ‖uη − uc‖2L2(L)
< ‖[uη]L − uc‖2L2(L)

,
(3.1)

then

arginf

{∫

L
|uc − uα,L |2 dx : α ∈ R

+
}

= argmin

{∫

L
|uc − uα,L |2 dx : α ∈ [

cL ,CQ‖uη‖L2(L)

]

}

,

where cL and CQ are positive constants, with cQ depending
onlyonQ. In particular,wehave thatαL∈[cL ,CQ‖uη‖L2(L)

]

.

Furthermore, because each partition L ∈ P is finite, it fol-
lows that if (3.1) holds for all L ∈ L, then

αL ∈ KL :=
[

min
L∈L cL ,CQ max

L∈L ‖uη‖L2(L)

]

⊂ (0,+∞)

for every L ∈ L, which yields a natural box constraint for a
fixed partition. Note, however, that the box constraint given
by the compact set KL may vary according to the choice of
the partitionL.

Finally, if we consider Level 3 with (1.5) replaced by
(1.11), then the minimum

min
α∈[c0, 1

c0
]

∫

L
|uc − uα,L |2 dx

exists as the minimum of a lower semicontinuous function
(see Corollary 3.11 in Subsect. 3.4) on a compact set. In
particular, ᾱL is uniquely determined, with

ᾱL ∈
[

c0,
1

c0

]

for all L ∈ L and L ∈ P.

3.2 On Level 2

Here, we discuss existence and uniqueness of solutions to the
minimization problem in (1.7).Akey step in this discussion is
the study of the space BVω(�) of ω-weighted BV -functions
in an open set � ⊂ R

n , where the weight ω : � → [0,∞)

is assumed to be a locally integrable function. We adopt the
approach introduced in [5], and further analyzed in [15, 16].

Given a ω-weighted locally integrable function in �, u ∈
L1

ω,loc(�), where

L1ω,loc(�) :=
{

v : �→R measurable:
∫

K
|v(x)|ω(x) dx < ∞

for all compact K ⊂ �

}

,

(3.2)

we define its ω-weighted total variation in �, T Vω(u,�),
by

T Vω(u,�) := sup

{∫

�

u div ϕ dx : ϕ ∈ Lipc(�;R2),

|ϕ| � ω

} (3.3)

123



1080 Journal of Mathematical Imaging and Vision (2024) 66:1070–1108

(see also Sect. 2). Accordingly, we define the space BVω(�)

of ω-weighted BV -functions in � by

BVω(�) := {

u ∈ L1
ω(�) : T Vω(u,�) < ∞}

,

endowed with the semi-norm

‖u‖BVω(�) := ‖u‖L1
ω(�) + T Vω(u,�),

where ‖u‖L1
ω(�) :=

∫

�

|u(x)| ω(x) dx .
(3.4)

Clearly, if ω ≡ 1, then we recover the usual space BV
of functions of bounded variation. Moreover, if ω > 0
(Lebesgue)-a.e. in � and ω belongs to the global Mucken-
houpt class A1, meaning that there is c > 0 such that for
(Lebesgue)-a.e. x ∈ � and for every ball B(x, r) ⊂ �, we
have

ω(x) � c[ω]B(x,r), (3.5)

then expression in (3.4) defines a norm in BVω(�). Next, we
collect some properties of BVω(�), proved in [5, 15, 16],
that will be used in our analysis.

Theorem 3.1 Let � ⊂ R
n be an open set and let ω : � →

[0,∞) be a locally integrable function. Then, the following
hold:

(i) The map u �→ T Vω(u,�) is lower-semicontinuous
with respect to the (strong) convergence in L1

ω,loc(�).

(ii) Given u ∈ L1
ω,loc(�), we have that T Vω(u,�) =

T V
ωsc− (u,�), whereωsc−

denotes the lower-semiconti-
nuous envelope of ω.

(iii) Assume that ω is lower-semicontinuous and strictly
positive everywhere in �. Then, we have that u ∈
L1
loc(�) and T Vω(u,�) < ∞ if and only if u ∈

BVloc(�) and ω ∈ L1(�; |Du|). If any of these two
equivalent conditions hold, then we have

T Vω(u, B) =
∫

B
ω(x) d|Du|(x)

for every Borel set B ⊂ �.

Proof The proof of (i)–(i i i) may be found in [5] under the
additional assumption that ω satisfies a Muckenhoupt A1

condition in (3.5) (see [5] for the details). Without assuming
this extra assumption on ω, the proof of (i) may be found
in [15, Proposition 1.3.1 and Remark 1.3.2]; the proof of
(i i) follows from [15, Proposition 2.1.1 and Theorem 2.1.2];
finally, (i i i) is shown in [15, Theorem 2.1.5]. ��

The existence and uniqueness of solutions of Level 2 of
the learning scheme (LS)T Vω in (1.4) with (1.5) replaced by
(1.11) are hinged on the following theorem.

Theorem 3.2 Let v ∈ L2(�) and let ω : � → (0,∞) be an
L∞ function with 0 < ess inf� ω � ess sup� ω < ∞. Then,
there exists a unique ū ∈ BVω(�) satisfying

∫

�

|v − ū|2 dx + T Vω(ū,�)

= min
u∈BVω(�)

{∫

�

|v − u|2 dx + T Vω(u,�)

}

.

Moreover, denoting by ωsc−
the lower-semicontinuous enve-

lope of ω, we have ū ∈ BVω(�) ∩ BV (�) ∩ BV
ωsc− (�)

and

T Vω(ū,�) =
∫

�

ωsc−
(x) d|Dū|(x).

Proof For u ∈ BVω(�), set

E[u] :=
∫

�

|v − u|2 dx + T Vω(u,�),

and let

m := inf
u∈BVω(�)

E[u].

Note that 0 � m � E[0] = ‖v‖2
L2(�)

, and consider
(un)n∈N ⊂ BVω(�) such that

m = lim
n→∞ E[un]. (3.6)

By hypothesis, there exist c1, c2 ∈ R
+ such that for

a.e. x ∈ �, we have

c1 � ω(x) � c2. (3.7)

Consequently, for all x ∈ �,

c1 � ωsc−
(x) � c2. (3.8)

Then, in view of (3.6) and Theorem 3.1 (i i)–(i i i), for all
n ∈ N sufficiently large, we have

m + 1 �
∫

�

|v − un|2 dx + T Vω(un,�)

=
∫

�

|v − un|2 dx + T V
ωsc− (un,�)

=
∫

�

|v − un|2 dx +
∫

�

ωsc−
(x) d|Dun|(x)

�
∫

�

|v − un|2 dx + c1|Dun|(�).

Thus, extracting a subsequence if necessary (not rela-
beled), there exists ū ∈ BV (�) such that

un
∗
⇀ū in BV (�), un⇀ū in L2(�), un → ū in L1(�).
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Moreover, by (3.7)–(3.8) and Theorem 3.1, we have also
ū ∈ BV (�) ∩ BV

ωsc− (�), with

T Vω(ū,�) =
∫

�

ωsc−
(x) d|Dū|(x),

and

m � E[ū] =
∫

�

|v − ū|2 dx + T Vω(ū,�)

� lim inf
n→∞

(∫

�

|v − un|2 dx + T V
ωsc− (un,�)

)

= lim
n→∞ E[un] = m.

Because | · |2 is strictly convex, ū is the unique minimizer of
E[·] over BVω(�). ��
Corollary 3.3 There exists a unique solution uL ∈ BVωL

(�)

∩ BV (�) ∩ BV
ωsc−
L

(�) to Level 2 of the learning scheme

(LS)T Vω in (1.4) with (1.5) replaced by (1.11), where ωsc−
L

denotes the lower-semicontinuous envelope ofωL.Moreover,

min

{∫

Q
|uη − u|2 dx + T VωL

(u, Q) : u ∈ BVωL
(Q)

}

=
∫

Q
|uη − uL|2 dx +

∫

�

ωsc−
L (x) d|DuL|(x).

Proof Using the analysis in Subsect. 3.1, the function ωL

in (1.8) satisfies the bounds c0 � ωL � 1
c0

in Q, which,
together with Theorem 3.2, concludes the proof. ��
Remark 3.4 Recalling once again the analysis in Subsect. 3.1,
the previous corollary still holds if we assume that (3.1) holds
for all L ∈ L instead of replacing (1.5) by (1.11).

3.3 On Level 1

Here, we prove that Level 1 of the learning scheme (LS)T Vω

admits a solution provided we consider a stopping criterion
as in Definition 1.2. We start by checking that the box con-
straint (1.10) yields such a stopping criterion, after which we
establish the converse statement. We then explore alternative
stopping criteria.

To prove that the box constraint (1.10) yields a stopping
criterion for the refinement of the admissible partitions, we
first recall the existence of a smallness condition on the tuning
parameter under which the restored image given by the TV
model is constant.

Proposition 3.5 There exists a positive constant,CQ, depend-
ing only on Q, such that for any dyadic cube L ⊂ Q and for
all α � CQ‖uη‖L2(L), the solution uα,L of (1.6) is constant,
with uα,L ≡ [uη]L .

Proof The proof is a simple consequence of [47, Propo-
sition 2.5.7] combined with the scaling invariance of the
constant in the 2-dimensional Poincaré–Wirtinger inequal-
ity in BV (see [2, Remark 3.50]). ��

Theorem 3.6 Consider the learning scheme (LS)T Vω in (1.4)
with (1.5) replaced by (1.11). Then, there exist κ ∈ N and
L1, ...,Lκ ∈ P such that

argmin

{∫

Q
|uc − uL|2 dx : L ∈ P

}

= argmin

{∫

Q
|uc − uLi |2 dx : i ∈ {1, ..., κ}

}

.

(3.9)

Proof We use Proposition 3.5 to prove that if a partition con-
tains dyadic squares of side length smaller than a certain
threshold, then it can be replaced by a partition of dyadic
squares of side length greater than that threshold without
changing the minimizer at Level 2.

Let ε̄ ∈ (0, 1)be such that for everymeasurable set E ⊂ Q
with |E | � ε̄, we have

‖uη‖L2(E) � c0
CQ

, (3.10)

where c0 is the constant in (1.11) and CQ is the constant
given by Proposition 3.5. Set

k̄ := min
{

k ∈ N : 1

4k
� ε̄

}

and

P̄ :=
{

L ∈ P : |L| � 1

4k̄
for all L ∈ L

}

.

Note that P̄ has finite cardinality. Finally, define

P∗ := P \ P̄.

FixL∗ ∈ P∗, and let

L∗− := {L∗ ∈ L∗ : |L̃∗| � |L∗| for all L̃∗ ∈ L∗}

be the collection of all dyadic squares with the smallest side
length in L∗. Then, there exists k∗ ∈ N, with k∗ > k̄, such
that |L∗| = 1

4k∗ for all L∗ ∈ L∗−. Moreover, by construction
of our admissible partitions, we can write

L∗− = ∪�
j=1{L∗

j,i }4i=1 for some � ∈ N,

where, for each j ∈ {1, ..., �},

∪4
i=1L

∗
j,i =: L̄∗

j is a dyadic square with |L̄∗
j | = 1

4k∗−1 .
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Note that k∗ − 1 � k̄. Then, for any α ∈ [c0, 1/c0],
Proposition 3.5 and (3.10) yield

∫

L∗
j,i

|uc − uα,L∗
j,i

| dx =
∫

L∗
j,i

|uc − [uη]L∗
j,i

| dx and

∫

L̄∗
j

|uc − uα,L̄∗
j
| dx =

∫

L̄∗
j

|uc − [uη]L̄∗
j
| dx

for all j ∈ {1, ..., �} and i ∈ {1, ..., 4}. Thus, by (1.11),

αL∗
j,i

= αL̄∗
j
= c0

for all j ∈ {1, ..., �} and i ∈ {1, ..., 4}. Consequently (see
Fig. 1), defining

L̄∗ := (L∗ \ L∗−) ∪ ∪�
j=1 L̄

∗
j ,

we have L̄∗ ∈ P and, recalling Level 2,

ωL̄∗ ≡ ωL∗ and uω
L̄∗ ≡ uωL∗ .

Note also that |L̄∗| � 1
4k∗−1 for all L̄

∗ ∈ L̄∗. If k∗−1 = k̄,

we conclude that L̄∗ ∈ P̄. Otherwise, if k∗−1 > k̄, we repeat
the construction above k∗ − 1− k̄ times to obtain a partition
L̂∗ ∈ P̄ for which

uω
L̂∗ ≡ uωL∗ .

Repeating this argument for eachL∗ ∈ P∗, and recalling
that P̄ has finite cardinality, we deduce (3.9). ��
Remark 3.7 We have shown in the previous proof that the
box-constraint condition yields a threshold on the minimum
side length of the dyadic squares of the possible optimal par-
titions L of Q. In other words, the box-constraint condition
yields the following stopping criterion for the refinement of
the admissible partitions:

(S) There exists κ ∈ N such that |L| � 1
4κ for all L ∈ L.

In the next subsection,we establish the converse of this impli-
cation (see the proof of Theorem 1.4).

We conclude this section by proving Theorem 1.5 that
shows the existence of an optimal solution to the learning
scheme (LS)T Vω .

Proof of Theorem 1.5 This result is an immediate conse-
quence of the results of Subsect. 3.1, Corollary 3.3, and
Theorem 3.6. ��

3.4 Stopping Criteria and Box Constraint

In this subsection, we provide different examples of stop-
ping criteria for the refinement of the admissible partitions,

which notion was introduced in Definition 1.2, and we prove
Theorem 1.4. The latter is based on the following theorem
that yields a natural box constraint for the optimal parameter
α associated with the TV model, provided the training data
satisfy some mild conditions. The proof of (3.11) in Theo-
rem 3.8 uses arguments from [31] that are alternative to those
in [34].

Theorem 3.8 Let � ⊂ R
2 be a bounded, Lipschitz domain

and, for each α ∈ (0,+∞), let uα ∈ BV (�) be given by
(1.6) with L replaced by �. Assume that the two following
conditions on the training data hold:

i) T V (uc,�) < T V (uη,�);
ii) ‖uη − uc‖2L2(�)

< ‖[uη]� − uc‖2L2(�)
.

Then, there exists α∗
� ∈ (0,+∞) such that

I (α∗
�) = min

α∈(0,+∞)
I (α), where

I (α) :=
∫

�

|uc − uα|2 dx for α ∈ (0,+∞).
(3.11)

Moreover, there exist positive constants c� and C�, such
that any minimizer, α∗

�, of I over (0,+∞) satisfies c� �
α∗

� < C�‖uη‖L2(�). Furthermore, if � = L with L ⊂ Q
a dyadic square, then there exists a positive constant cL
such that any minimizer, α∗

L of I over (0,+∞) satisfies
cL � α∗

L < CQ‖uη‖L2(L), where CQ is the constant given
by Proposition 3.5. In particular, α∗

L → 0 as |L| → 0.

Remark 3.9 The constants C� and CQ characterizing the
upper bound for the optimal parameters in Theorem 3.8
dependonlyon thedomains,� andQ, respectively (cf. Propo-
sition 3.5). On the other hand, the constants c� and cL
providing a lower bound depend not only on the correspond-
ing domain, but also on uc and uη.

The proof of Theorem 3.8 is hinged on the next lemma
of continuity with respect to the parameter in the ROF func-
tional, including the limit caseswhere the parameter vanishes
or tends to +∞.

Lemma 3.10 Let � ⊂ R
2 be a bounded, Lipschitz domain

and, for each α ∈ (0,+∞), let uα ∈ BV (�) be given by
(1.6)with L replaced by�. Consider the family of functionals
(Fᾱ)ᾱ∈[0,+∞], where Fᾱ : L2(�) → [0,+∞] is defined by

Fα[u] :=
{
∫

�
|uη − u|2 dx + αT V (u,�) if u ∈ BV (�),

+∞ otherwise,

for ᾱ = α ∈ (0,+∞),

F0[u] :=
∫

�

|uη − u|2 dx for ᾱ = 0,

F∞[u] :=
{
∫

�
|uη − c|2 dx if u ≡ c ∈ R,

+∞ otherwise,
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Fig. 1 Example of two partitions,L∗ and L̄∗, that yield the same solution at Level 2

for ᾱ = +∞,

and denote by uᾱ := argminu∈L2(�) Fᾱ[u] their unique min-
imizers, given by

uᾱ =

⎧

⎪

⎨

⎪

⎩

uα if ᾱ = α,

uη if ᾱ = 0,

[uη]� if ᾱ = +∞.

(3.12)

Let (α j ) j∈N ⊂ (0,+∞) and ᾱ ∈ [0,∞] be such that α j →
ᾱ in [0,+∞]. Then, we have that uα j → uᾱ strongly in
L2(�).

Proof We treat the cases ᾱ ∈ (0,+∞), ᾱ = 0, and ᾱ = +∞
separately.

Let us first assume that ᾱ ∈ (0,+∞). The proof
of this case essentially follows the computations in [47,
Thm. 2.4.20], but since our notation and focus are different,
we present a complete proof adapted to our setting. Being
uα j a minimizer of Fα j [u] and uᾱ a minimizer of Fᾱ[u], we
get that

uη − uᾱ = ᾱ pᾱ with pᾱ ∈ ∂T V [uᾱ],
uη − uα j = α j pα j with pα j ∈ ∂T V [uα j ],

where ∂T V denotes the subdifferential in L2(�) of T V
(extended to be +∞ on L2(�)\BV (�)). Multiplying the
first equality by α j/ᾱ and subtracting the second one from
it, we obtain

α j (pᾱ − pα j ) = α j

ᾱ
(uη − uᾱ) − (uη − uα j )

=
(α j

ᾱ
− 1

)

(uη − uᾱ) + uα j − uᾱ .

Multiplying the preceding identity by uᾱ − uα j , integrating
over �, and using the monotonicity of ∂T V , we obtain

0 �
(α j

ᾱ
− 1

)

∫

�

(uη − uᾱ)(uᾱ−uα j ) dx−‖uᾱ−uα j ‖2L2(�)
.

Consequently, using Cauchy–Schwarz’s inequality, and reor-
ganizing the terms, it follows that

‖uᾱ − uα j ‖L2(�) � |α j − ᾱ|
ᾱ

‖uη − uᾱ‖L2(�).

On the other hand, taking into account that uᾱ =
argminL2(�)

Fᾱ , we have that

‖uᾱ − uη‖2L2(�)
� ‖uᾱ − uη‖2L2(�)

+ ᾱT V (uᾱ, �)

= Fᾱ[uᾱ] � Fᾱ[0] = ‖uη‖2L2(�)
,

which, together with the preceding estimate, yields

‖uᾱ − uα j ‖L2(�) � |α j − ᾱ|
ᾱ

‖uη‖L2(�).

We now consider the ᾱ = 0 case. Because� is a bounded,
Lipschitz domain, we can find a sequence (ûκ)κ∈N ∈
C∞(�) ⊂ BV (�) such that ûκ → uη in L2(�). Since

(α j )
− 1

2 → ∞, we can modify (ûκ)κ∈N by repeating each
of its elements as (finitely) many times as necessary so
that the resulting sequence, denoted by (u j ) j∈N, satisfies
T V (u j ,�) � (α j )

− 1
2 for all j ∈ N large enough. Thus,

u j → uη in L2(�) and lim j→∞ α j T V (u j ,�) = 0. Using
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this sequence in the minimality of uα j results in

‖uα j − uη‖2L2(�)
+ α j T V (uα j )

� ‖u j − uη‖2L2(�)
+ α j T V (u j ),

Because both terms on the right-hand side converge to zero,
we conclude that (uα j ) j∈N converges to uη strongly in
L2(�), as well.

We are left to treat the ᾱ = +∞ case. First, we claim
that [uα j ]� = [uη]� for all j ∈ N. To see this, we use
uα j = argminu∈BV (�) Fα j [u] to get for any c ∈ R that

‖uα j − uη‖2L2(�)
+ α j T V (uα j ,�)

� ‖uα j − uη − c‖2L2(�)
+ α j T V (uα j ,�).

Thus, ‖uα j − uη‖2L2(�)
� ‖uα j − uη − c‖2

L2(�)
. Moreover,

we also know that

[uα j − uη]� = argminc∈R ‖uα j − uη − c‖2L2(�)

with only one minimizer by strict convexity, which would
lead to a contradiction with the previous inequality unless
[uα j −uη]� = 0. In otherwords,wemust have [uα j ] = [uη]�
for all j ∈ N. To conclude, we use the estimate Fα j [uα j ] �
‖uη‖2L2(�)

as above, which by the definition of Fα j implies
that

lim
j→∞ T V (uα j ,�) = 0.

Moreover, by the Poincaré inequality, we have that

‖uα j − [uη]�‖L2(�) = ‖uα j − [uα j ]�‖L2(�)

� C TV (uα j ,�).

Thus, (uα j ) j∈N converges to [uη]� strongly in L2(�). ��
From the preceding lemma, we immediately deduce the

following corollary.

Corollary 3.11 Let � ⊂ R
2 be a bounded, Lipschitz domain,

and let I : (0,+∞) → [0,+∞) be the function defined in
(3.11). Then, I can be extended continuously to a function
̂I : [0,+∞] → [0,+∞] defined for ᾱ ∈ [0,+∞] by

̂I (ᾱ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I (α) = ‖uα − uc‖2L2(�)
if ᾱ = α ∈ (0,+∞),

‖uη − uc‖2L2(�)
if ᾱ = 0,

‖[uη]� − uc‖2L2(�)
if ᾱ = +∞.

(3.13)

Remark 3.12 We observe that the only continuity condition
on ̂I needed for our analysis to hold is that of lower semi-
continuity of ̂I , as given by (2.6). However, because it is not

hard to prove continuity on the whole of [0,+∞] in the TV
case, we have done so in the results above, which we believe
to be of interest on their own.

Proof of Theorem 3.8 We will proceed in three steps.
Step 1.We prove that if condition i) in the statement holds

(i.e., T V (uη,�) − T V (uc,�) > 0), then there exists α ∈
(0,+∞) such that

‖uα − uc‖2L2(�)
< ‖uη − uc‖2L2(�)

. (3.14)

To show (3.14), we first recall (see [18]) that for any α ∈
(0,+∞), there exists a unique uα ∈ BV (�) ⊂ L2(�) such
that

uα = argminu∈L1(�) Fα[u] = argminu∈L2(�) Fα[u], (3.15)

which allow us to regard Fα as a sum of two convex func-
tionals on L2(�) with values in [0,+∞]. Precisely,

Fα[u] = F1
α [u] + F2

α [u],

where, for u ∈ L2(�),

F1
α [u] := ‖u − uη‖2L2(�)

and

F2
α [u] :=

{

αT V (u,�) if u ∈ BV (�),

+∞ otherwise.

Denoting by ∂F(v) ∈ (L2(�))′ ∼= L2(�) the subdif-
ferential of a convex functional F : L2(�) → [0,+∞] at
v ∈ L2(�), we conclude from (3.15) that

0 ∈ ∂Fα(uα) or, equivalently, 2(uη − uα) ∈ ∂F2
α (uα).

Consequently,

0 � F2
α [uα] − F2

α [uc] +
∫

�

2(uη − uα)(uc − uα) dx

� F2
α [uα] − F2

α [uc] +
∫

�

2(uη − uα)(uc − uα) dx

− ‖uα − uη‖2L2(�)

= α
(

T V (uα,�) − T V (uc,�)
) + ‖uα − uc‖2L2(�)

− ‖uη − uc‖2L2(�)
.

Hence,

‖uη − uc‖2L2(�)
− ‖uα − uc‖2L2(�)

� α
(

T V (uα,�) − T V (uc,�)
)

.
(3.16)
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We claim that

T V (uα,�) ↗ T V (uη,�) as α ↘ 0. (3.17)

Assuming that the preceding claim holds, the condition
T V (uη,�)−T V (uc,�) > 0 allows us to find α̃ ∈ (0,+∞)

for which the left-hand side of (3.16) with α = α̃ is strictly
positive. Thus, ‖uη − uc‖2L2(�)

> ‖uα̃ − uc‖2L2(�)
, which

proves (3.14).
To conclude Step 1, we are left to prove (3.17). Using

(3.15), for all α, β ∈ (0,+∞) with α < β, we have that

βT V (uβ,�) � Fβ [uβ ] � Fβ [uη] = βT V (uη,�)

and

‖uα − uη‖2L2(�)
+ αT V (uα,�)

� ‖uβ − uη‖2L2(�)
+ αT V (uβ,�)

=‖uβ − uη‖2L2(�)
+βT V (uβ,�) + (α − β)T V (uβ,�)

�‖uα − uη‖2L2(�)
+βT V (uα,�) + (α − β)T V (uβ,�),

from which we get that

βT V (uβ,�) � βT V (uη,�)

and

(α − β)T V (uα,�) � (α − β)T V (uβ,�).

Hence, recalling that β > 0 and α − β < 0, it follows that
T V (uβ,�) � T V (uη,�) and T V (uα,�) � T V (uβ,�).
Finally, using the first of these estimates and Lemma 3.10
with an arbitrary decreasing sequence (β j ) j∈N converging to
0, the lower-semicontinuity of the total variation with respect
to the strong convergence in L1 yields

T V (uη,�) � lim sup
j→∞

T V (uβ j ,�)

� lim inf
j→∞ T V (uβ j ,�) � T V (uη,�).

This concludes the proof of (3.17).
Step 2.Weprove that if condition ii) in the statement holds,

(i.e., ‖uη − uc‖2L2(�)
< ‖[uη]� − uc‖2L2(�)

), then there exits
α ∈ (0,+∞) such that

‖uα − uc‖2L2(�)
< ‖[uη]� − uc‖2L2(�)

. (3.18)

Using Corollary 3.11 with ᾱ = 0 together with ii), we
obtain

lim sup
j→∞

‖uα j − uc‖L2(�)

� lim sup
j→∞

(

‖uα j − uη‖L2(�) + ‖uη − uc‖L2(�)

)

= ‖uη − uc‖L2(�) < ‖[uη]� − uc‖L2(�),

from which (3.18) follows.
Step 3.We conclude the proof of Theorem 3.8.

Wefirst show (3.11).BecausêI is a lower- semicontinuous
function on the compact set [0,+∞], ̂I attains a minimum
on [0,+∞]. By (3.13), (3.14), and (3.18), we conclude that
̂I attains its minimum at some α∗ ∈ (0,+∞). Thus, using
(3.13) once more,

I (α∗) = ̂I (α∗) = min
ᾱ∈[0,+∞]

̂I (ᾱ)

= min
α∈(0,+∞)

̂I (α) = min
α∈(0,+∞)

I (α),
(3.19)

which yields (3.11).
Next, to prove the existence of c� as stated, assume that

there exist (α∗
j ) j∈N ⊂ (0,+∞) such that α∗

j → 0 and (3.19)
holds with α∗ = α∗

j . Then, using the lower semi-continuity

of ̂I on [0,+∞],

min
ᾱ∈[0,+∞]

̂I (ᾱ) � ̂I (0) � lim inf
j→∞

̂I (α∗
j ) = min

ᾱ∈[0,+∞]
̂I (ᾱ),

which is false by (3.14). This establishes the existence of the
constant c�.

On the other hand, as mentioned in the proof of Proposi-
tion 3.5, [47, Proposition 2.5.7] yields a positive constant,
C�, such that uα ≡ [uη]� for all α � C�‖uη‖L2(�).
This fact, (3.18), and (3.19) show that we must have α∗

� <

C�‖uη‖L2(�). Finally, the � = L case follows from Propo-
sition 3.5. ��

Next, we prove Theorem 1.4.

Proof of Theorem 1.4 In view of Theorem 3.6 (also see
Remark 3.7), the statement in (a) follows. Conversely, the
statement in (b) can be proved arguing as in Subsect. 3.1 and
defining

c0 := min

{

min
L∈L∈P̄

cL ,
(

cQ‖uη‖2L2(Q)

)−1
}

,

where cL and CQ are the constants given by Theorem 3.8.��
We conclude this section with some examples of stop-

ping criteria for the refinement of the admissible partitions
as defined in Definition 1.2.

123



1086 Journal of Mathematical Imaging and Vision (2024) 66:1070–1108

Example 3.13 Here, we give an example of a stopping cri-
terion that, heuristically, means that we only refine a given
dyadic square L , if the distance of the restored image in L to
the clean image is greater than or equal to the sum of the dis-
tances of the restored images in each of the subdivisions of
L to the clean image, modulo a threshold that is determined
by the user.

To make this idea precise, we introduce some notation.
Given a dyadic square L(1) ⊂ Q of side length 1

2k+1 ,
we can find three other dyadic squares, which we denote
by L(2), L(3), and L(4), of side length 1

2k+1 and such that

L := ∪4
i=1 L

(i) is a dyadic square of side length 1
2k
. We

observe further that L(2), L(3), and L(4) are uniquely deter-
mined by the requirement that L is a dyadic square. Using
this notation, and setting uL = uαL (see (1.5)), we fix δ > 0
and set up an admissible criteria as follows:

(S) (i) Q is admissible;

(i i) If L ⊂ Qis an admissible dyadic square,

then each dyadic square L(i) ⊂ L,

with i ∈ {1, ..., 4} and ∪4
i=1 L

(i) = L,

is admissible if

‖uc − uL‖2L2(L)
�

4
∑

i=1

‖uc − uL(i)‖2L2(L(i))
+ δ.

(3.20)

As we prove next,

P̄ := {

L ∈ P : L satisfies (S)for all L ∈ L
}

has finite cardinality, which shows that (S) as above pro-
vides a stopping criteria for the refinement of the admissible
partition.

To show that P̄hasfinite cardinality,wefirst observe that if
L satisfies (S), then we can find k dyadic squares, L1, ..., Lk ,
where k ∈ N is such that |L| = 1

4k
, satisfying

Q = L1 ⊃ .... ⊃ Lk ⊃ L, |Lk | = 1

4k−1 , Lk satisfies (S).

Then, using (3.20), we conclude that

‖uc − uQ‖2L2(Q)
= ‖uc − uL1‖2L2(L1)

� ck + kδ

for some positive constant ck , which can only hold true if k
is small enough. In other words, there exists kδ ∈ N such
that if L satisfies (S), then |L| � 1

4kδ
. Hence, P̄ has finite

cardinality.

4 Analysis of the RegularizedWeighted-TV
andWeighted-Fidelity Learning Schemes
(LS)TV!�

and (LS)TV−Fid!

The results proved in the preceding section for the weighted-
TV learning scheme can be easily adapted to the case of the
regularized weighted-TV and the weighted-fidelity learning
schemes, (LS)T Vωε

and (LS)T V−Fidω . For the former, we
prove here only Proposition 1.6 and provide an example of
a sequence of regularized weights satisfying the conditions
assumed in this result. Moreover, we highlight a question
that is intimately related to the convergence of the solu-
tions to (LS)T Vωε

as ε → 0+ (see Subsect. 4.1). Regarding
(LS)T V−Fidω , and for completeness, we state the analogue
existence and equivalence results for the weighted-fidelity
learning scheme (see Subsect. 4.2).

4.1 The (LS)TV!�
Learning Scheme

Next, we prove Proposition 1.6 and provide an example of a
sequence (ωε

L)ε as in (1.14).

Proof of Proposition 1.6 We show that

Eε
L[u] � EL[u] (4.1)

for all u ∈ L1(Q), from which (1.15) follows.
Let u ∈ L1(Q) be such that EL[u] < ∞. Then, u ∈

BVωL
(Q) and recalling the definition and properties of the

space of weighted BV -function discussed in Sect. 3.2, we
have that u ∈ BVωε

L
(Q) with T Vωε

L
(u, Q) � T VωL

(u, Q),
using the estimate ωε

L � ωL a.e. in Q in (1.14). Thus, (4.1)
holds. ��
Example 4.1 An example of a sequence (ωε

L)ε as in (1.14)
can be constructed combining a diagonalization argument
with a mollification of a Moreau–Yosida type approximation
of ωsc−

L . Precisely, for each k ∈ N, let ωk : Q → (0,∞) be
given by

ωk(x) := inf
{

ωsc−
L (y) + k|x − y| : y ∈ Q

}

for x ∈ Q.

(4.2)

We recall that each ωk is a k-Lipschitz function, and we have
(see [15, Theorem 2.1.2] for instance)

ωk ↗ ωsc−
L pointwise everywhere in Q. (4.3)

Moreover, as we show next,

lim
k→∞ ‖ωk − ωsc−

L ‖L∞(K ) = 0 (4.4)

for any compact set K such that K ⊂ int(L), where L ∈ L

is arbitrary.
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In fact, let L ∈ L and let K be a compact set such that
K ⊂ int(L). Fix τ > 0 and set δ := dist(K ,∂L)

2 . Note that
δ > 0 and

ωsc−
L (x) = αL for all x ∈ int(L) (4.5)

because ωL(x) = αL for all x ∈ L . Moreover, using (4.2),
given x̄ ∈ K we can find yk ∈ Q such that

ωk(x̄) + τ � ωsc−
L (yk) + k|x̄ − yk |. (4.6)

Hence, using (4.3) and nonnegativity of ωsc−
, we obtain

|x̄−yk | �
ωk(x̄) + τ − ωsc−

L (yk)

k
�

‖ωsc−
L ‖L∞(Q) + τ

k
< δ

for all k � k0 and for some k0 ∈ N that is independent of x̄ .
Then, yk ∈ int(L) for all k � k0. Consequently, (4.5)–(4.6)
then yield

ωk(x̄) + τ � ωsc−
L (yk) = αL = ωsc−

L (x̄)

for all k � k0. Hence,

0 � ωsc−
L (x̄) − ωk(x̄) � τ

for all k � k0. Taking the supremum on x̄ ∈ K in the pre-
ceding estimate yields (4.4).

On the other hand, for each k ∈ N, a standardmollification
argument yields a sequence (ω

(k)
ε )ε ⊂ C∞(Q) such that

lim
ε→0+ ‖ω(k)

ε − ωk‖L∞(Q) = 0. (4.7)

Finally, denoting by Q(x, δ) the open square centered at
x ∈ R

2 and side-length δ, we can write L = ∪�
i=1Li with

int(Li ) = Q(xi , δi ), for some � ∈ N, xi ∈ Li , and δi > 0.
Then, exploiting the countability of the family

K := ∪�
i=1{Ki := Q(xi , ri ) : ri ∈ Q ∩ (0, δi )} (4.8)

and a diagonalization argument together with (4.4) and (4.7),
we can find a sequence (ωε

L)ε such that

lim
ε→0+ ‖ωε

L − ωsc−
L ‖L∞(K ) = 0 (4.9)

for all compact sets K ∈ K. From the definition of K in
(4.8), we get that (4.9) also holds for all compact sets K ⊂
int(L) and for any L ∈ L. Furthermore, using the fact that
mollification preserves monotonicity, we deduce from (4.3)
and (4.7) that ωε

L ↗ ωsc−
L everywhere in Q.

To conclude that (1.14) also holds, it suffices to observe
thatωsc−

L � ωL in Q,ωsc−
L ≡ ωL in∪�

i=1 int(Li ), |Q\∪�
i=1

int(Li )| = 0.

Remark 4.2 [Existence of solutions to the learning scheme
(LS)T Vωε

] For fixed ε, we can apply the results proved in
Sect. 3. In particular, there exists an optimal solution u∗

ε to
the learning scheme (LS)T Vωε

in (1.12) with (1.13) replaced
by (1.11) (cf. Theorem 1.5).

Remark 4.3 An interesting question is whether condition
(1.14) yields the convergence

lim
ε→0+ T Vωε

L
(u, Q) = T VωL

(u, Q) (4.10)

for allu ∈ BVωL
(Q). Because sets of zeroLebesguemeasure

may not have zero |Du| measure, we do not expect (4.10) to
hold unless the almost everywhere pointwise convergence in
(1.14) is replaced by everywhere pointwise convergence.

To the best of our knowledge, the closest result in this
direction is [15, Lemma 2.1.4], which shows the following.
If ω̃ � 0 is lower semi-continuous in Q and u : Q →
R is measurable, then we can find a sequence of Lipschitz
weights, (ω̃

(u)
k )k∈N, depending on u, such that ω̃

(u)
k ↗ ω̃

pointwise everywhere in Q and (4.10) holds (with ωε
L and

ωL replaced by ω̃
(u)
k and ω̃, respectively).

4.2 The (LS)TV−Fid! Learning Scheme

Given a dyadic square L ⊂ Q and α ∈ (0,∞), we have

argmin

{

1

α

∫

L
|uη − u|2 dx + T V (u, L) : u ∈ BV (L)

}

= argmin

{∫

L
|uη − u|2 dx + αT V (u, L) : u ∈ BV (L)

}

.

Consequently, Proposition 3.5 and Theorem 3.8 remain
unchanged if we replace (1.6) by (1.18). These two results
are the main tools to prove Theorems 1.4 and 1.5. Using this
observation, the arguments used in Sect. 3 can be reproduced
here for the weighted-fidelity learning scheme to conclude
the two following theorems.

Theorem 4.4 (Existence of solutions to (LS)T V−Fidω ) There
exists anoptimal solutionu∗ to the learning scheme (LS)T V−Fidω

in (1.16) with (1.17) replaced by (1.11).

Asbefore, the previous existence theoremholds true under
any stopping criterion for the refinement of the admissible
partitions provided that the training data satisfies suitable
conditions, as stated in the next result.

Theorem 4.5 (Equivalence between box constraint and stop-
ping criterion) Consider the learning scheme (LS)T V−Fidω

in (1.16). The two following conditions hold:

(a) If we replace (1.17) by (1.11), then there exists a stop-
ping criterion (S) for the refinement of the admissible
partitions as in Definition 1.2.
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(b) Assume that there exists a stopping criterion (S) for the
refinement of the admissible partitions as inDefinition1.2
such that the training data satisfies for all L ∈ ∪L∈P̄L,
with P̄ as in Definition 1.2, the conditions

(i) T V (uc, L) < T V (uη, L);
(ii) ‖uη − uc‖2L2(L)

< ‖[uη]L − uc‖2L2(L)
.

Then, there exists c0 ∈ R
+ such that the optimal solu-

tion u∗ provided by (LS)T V−Fidω with P replaced by
P̄ coincides with the optimal solution u∗ provided by
(LS)T V−Fidω with (1.17) replaced by (1.11).

5 Analysis of theWeighted-TGV Learning
Scheme (LS)TGV!

This section is devoted to proving the existence of solutions
to the training scheme (LS)TGVω described in (1.20). We
begin by providing the precise definition of the quantities
Vω0

L
and Vω1

L
in (1.24), which are particular instances of

the general definition of the weighted variation of a Radon
measure introduced in Sect. 2 (see (2.4)).

Definition 5.1 Let � be an open set in R
n and ω : � →

[0,+∞) a locally integrable function. Given u ∈ L1
ω,loc(�)

and v ∈ L1
ω,loc(�;Rn) (see (3.2)), we set

Vω(Du − v,�) := sup

{∫

�

(u divϕ + v · ϕ) dx

: ϕ ∈ Lipc(�;Rn), |ϕ| � ω

}(5.1)

and

Vω(Ev,�) := sup

{∫

�

(v · div ξ) dx

: ξ ∈ Lipc(�;Rn×n
sym), |ξ |�ω

}

,

(5.2)

where (div ξ) j = ∑n
k=1

∂ξ jk
∂xk

for each j ∈ {1, ..., n}.
Remark 5.2 Recalling (2.4),we are using an abuse of notation
in the preceding definition as we are not requiring Du nor Ev

to be Radon measures. However, if u ∈ BV (�), then (5.1) is
the ω-weighted variation of the Radon measure Du − v :=
Du − vLn�� ∈ M(�;Rn) in the sense of (2.4). Similarly,
if v ∈ BD(�), then (5.2) is the ω-weighted variation of the
Radon measure Ev ∈ M(�;Rn×n

sym ) in the sense of (2.4).

Analogously to the (LS)T Vω case, we analyze each level
of (LS)TGVω in a dedicated subsection.

To prove existence of a solution to the learning scheme
(LS)TGVω in (1.20), we argue by a box-constraint approach

in which we replace the requirement α = (α0, α1) ∈ R
+ ×

R
+ by the stricter condition (1.29). In this case, we replace

(1.21) by

ᾱL = inf

{

argmin

{∫

L
|uc − uα,L |2 dx

: α ∈ [

c0,
1
c0

] × [

c1,
1
c1

]

}}

. (5.3)

Throughout this section, for u ∈ L2(�), we denote by
〈u〉� the affine projection of u given by the unique solution
to the minimization problem

min

{∫

�

|u − v|2 dx : v is affine in �

}

, (5.4)

which will play an analogous role to the average [u]� in the
T V case treated in Sect. 3. Note that we have the orthogo-
nality property

∫

�

(u − 〈u〉�)〈u〉� dx = 0 (5.5)

for every u ∈ L2(�), since 〈u〉� is the Hilbert projection of
u onto a finite dimensional subspace of L2(�).

5.1 On Level 3

We provide here an analysis of Level 3, and minor variants
thereof, of the learning scheme (LS)TGVω in (1.20).

As in the weighted T V -scheme case, the parameter αL

in Level 3 of (LS)TGVω (see (1.21)) is uniquely determined
by definition, and it satisfies αL ∈ [0,+∞]2. In view of
Theorem 5.13 (see Subsect. 5.4), if L ∈ L is such that

TGVα̂0,α̂1(uc, L) < TGVα̂0,α̂1(uη, L)

and

‖uη − uc‖2L2(L)
< ‖〈uη〉L − uc‖2L2(L)

(5.6)

for some α̂ = (α̂0, α̂1), then

arginf

{∫

L
|uc − uα,L |2 dx : α ∈ R

+ × R
+
}

= argmin

{∫

L
|uc − uα,L |2 dx : α ∈ R

+ × R
+

is s.t. cL � min{α0, α1} < CQ‖uη‖L2(L)

}

,

where cL and CQ are positive constants, with cQ depending
only on Q. Furthermore, because each partition L ∈ P is
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finite, it follows that if (5.6) holds for all L ∈ L, then

αL ∈
[

min
L∈L cL ,+∞

]

×
[

min
L∈L cL ,+∞

]

\ {(+∞,+∞)}.
(5.7)

Moreover, if we consider Level 3 with (1.21) replaced by
(5.3), then the minimum

min
α∈[c0, 1

c0
]×[c1, 1

c1
]

∫

L
|uc − uα,L |2 dx

exists as the minimum of a lower semicontinuous function
(see Lemma 5.18 in Subsect. 5.4) on a compact set. In par-
ticular, ᾱL in (5.3) is uniquely determined and belongs to the
set in (1.29).

5.2 On Level 2

In this subsection, we discuss the existence of solutions to
(1.23). In what follows, let � ⊂ R

n be an open set and
ω : � → [0,∞) a locally integrable function. Recalling the
definition of L1

ω,loc(�) and ‖ · ‖L1
ω(�) in Subsect. 3.2, as well

as (5.2), we define the space BDω(�) of ω-weighted BD
functions in � by

BDω(�) := {

v ∈ L1
ω(�;Rn) : Vω(Ev,�) < ∞}

,

and we endow it with the semi-norm

‖v‖BDω(�) := ‖v‖L1
ω(�;Rn) + Vω(Ev,�).

Note that if ess inf� ω > 0, the semi-norm above is actually a
norm, and that BDω with ω ≡ 1 coincides with the classical
space of functions with bounded deformation, cf. [62] for
instance. The instrumental properties of BDω for our analysis
are collected in the ensuing result.

Theorem 5.3 Let � ⊂ R
n be an open set and ω : � →

[0,∞) a locally integrable function. Then, the following
statements hold:

(i) If inf� ω > 0, then the map v �→ Vω(Ev,�) is lower-
semicontinuouswith respect to the (strong) convergence
in L1

ω,loc(�;Rn).

(ii) Given v ∈ L1
ω,loc(�;Rn), we have Vω(Ev,�) =

V
ωsc− (Ev,�), whereωsc−

denotes the lower-semiconti-
nuous envelope of ω.

(iii) Assumeω is lower-semicontinuous and strictly positive.
Then, we have v ∈ L1

loc(�;Rn) and Vω(Ev,�) < ∞
if and only if v ∈ BDloc(�) and ω ∈ L1(�; |Ev|). If
any of these two equivalent conditions hold, we have

Vω(Ev, B) =
∫

B
ω(x) d|Ev|(x)

for every Borel set B ⊂ �.
(iv) If ω ∈ L∞

loc(�) is lower-semicontinuous and strictly
positive, then all bounded sequences in BDω(�) are
precompact in the strong L1

ω,loc-topology.

Proof Accounting for the fact that test functions here take
values in R

n×n
sym , the proof of (i), (i i), and (i i i) may be

obtained by mimicking that of [15, Proposition 1.3.1], [15,
Proposition 2.1.1], and [15, Theorem 2.1.5], respectively.

To prove (iv), we observe that for each compact set K ⊂
�, there exists a positive constant cK such that 0< 1

cK
�

ω � cK in K because ω ∈ L∞
loc(�) and strictly positive

lower-semicontinuous functions are locally bounded away
from zero. Then, using (i i i), we have for every v ∈ BDω(�)

that

Vω(Ev, K ) =
∫

K
ω(x) d|Ev|(x)

{

� 1
cK

|Ev|(K ),

� cK |Ev|(K ),

‖v‖L1
ω(K ;Rn) =

∫

�

|v(x)| ω(x) dx

{

� 1
cK

‖v‖L1(K ;Rn),

� cK ‖v‖L1(K ;Rn).

The preceding estimates and the compact embedding of
BD(K ) into L1(K ;Rn) (cf. [62]) yield (iv). ��

Remark 5.4 If ω : � → (0,∞) is a lower-semicontinuous
function satisfying 0 < c � inf� ω � sup� ω � c−1 for
some positive constant c, then the arguments in the preceding
proof show that Theorem 5.3 (iv) holds globally in �. In
other words, bounded sequences in BDω(�) are precompact
in the strong L1

ω(�;Rn)-topology.

Remark 5.5 Differently from the weighted-TV case (cf. The-
orem 3.1), we need the weights ω in Theorem 5.3 to be
bounded frombelow away fromzero for item (i) to hold. This
is because one cannot resort to arguments based on coarea
formulas in the symmetrized gradient case, which prevents
us to adapt the arguments in [15, Remark 1.3.2 and Theorem
3.1.13] to this framework.

The next result collects some basic properties of the quantity
Vω(Du − v,�) given by (5.1).

Theorem 5.6 Let � ⊂ R
n be an open set and ω : � →

[0,∞) a locally integrable function. Let u ∈ BVω(�). Then,
the following statements hold:

(i) The map v → Vω(Du − v,�) is lower semicontinuous
with respect to the strong convergence in L1

ω,loc(�;Rn).

(ii) Given v ∈ L1
ω,loc(�;Rn), we have Vω(Du − v,�) =

V
ωsc− (Du − v,�), where ωsc−

denotes the lower-
semicontinuous envelope of ω.
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(iii) If v ∈ L1
ω,loc(�;Rn) and ω ∈ L1(�; |Du−v|) is lower-

semicontinuous and strictly positive, then

Vω(Du − v, B) =
∫

B
ω(x) d|Du − v|(x) (5.8)

for every Borel set B ⊂ �.

Proof To prove (i), let (vk)k∈N ⊂ L1
ω,loc(�;Rn) be a

sequence such that vk → v strongly in L1
ω,loc(�;Rn). Then,

by Definition 5.1,

Vω(Du − vk,�) �
∫

�

(

u div ϕ + vk · ϕ
)

dx

for every ϕ ∈ Lipc(�;Rn) with |ϕ| � ω in�. Moreover, for
all such ϕ,

∫

�

|vk−v||ϕ| dx �
∫

suppϕ

|vk − v| ω dx → 0 as k → +∞.

Hence,

lim inf
k→+∞ Vω(Du − vk,�) �

∫

�

(

u div ϕ + v · ϕ
)

dx,

from which the conclusion follows by taking the supremum
over all test functions ϕ ∈ Lipc(�;Rn) with |ϕ| � ω in �.

The proof of (i i) follows by Definition 5.1, observing that
every map ϕ ∈ Lipc(�;Rn) with |ϕ| � ω in � also satisfies
|ϕ| � (ωsc)− in �.

As we discuss next, the proof of (i i i) is an adaptation
of [15, Theorem 2.1.5]. In fact, because u ∈ BVω(�) and
strictly positive lower-semicontinuous functions are locally
bounded away from zero, we have u ∈ BVloc(�). Then, for
every ϕ ∈ Lipc(�;Rn) with |ϕ| � ω in �, we have that

∫

�

(

u div ϕ + v · ϕ
)

dx �
∫

�

ω d|Du − v|;

hence,Vω(Du−v,�) �
∫

�
ω d|Du−v|. Conversely, since

ω ∈ L1(�; |Du − v|), we infer that
∫

�

ω d|Du − v| = |ω(Du − v)|(�)

= sup

{∫

�

ωψ · d(Du − v) : ψ∈Lipc(�;Rn), |ψ |�1

}

.

(5.9)

Let (ωk)k∈N be an increasing sequence of k-Lipschitz func-
tions converging to ω in � as in Example 4.1 (see also
[15, Theorem 2.1.2]). Then, for every ψ ∈ Lipc(�;Rn)

with |ψ | � 1 in �, we have ωk ψ ∈ Lipc(�;Rn) with

|ωk ψ | � ωk � ω in �; thus, using the Lebesgue dominated
convergence theorem and recalling (5.1), we find that

∫

�

ω ψ · d(Du − v)

= lim
k→∞

∫

�

ωk ψ · d(Du − v)

= − lim
k→∞

∫

�

(

u div (ωk ψ) + ωk ψ · v
)

dx

� Vω(Du − v,�).

From this estimate and (5.9), we deduce that
∫

�
ω d|Du −

v| � Vω(Du − v,�), which concludes the proof of (5.8)
when B = �. The proof that this identity holds for every
Borel set B ⊂ � can be done exactly as in [15, Theorem
2.1.5]. ��

We proceed by showing that the infimum in

TGVω0,ω1(u, Q) := inf
v∈BDω1 (Q)

{

Vω0 (Du − v, Q)

+Vω1(Ev, Q)
}

,

(5.10)

where ω0, ω1 : Q → (0,+∞) are bounded functions and
u ∈ L1

ω0
(Q), is actually a minimum, and that the contribu-

tions due to Vω0 and Vω1 can be expressed in a simplified
way in terms of the lower semicontinuous envelopes of the
weights ω0 and ω1. We begin with a technical lemma.

Lemma 5.7 Let c0 > 0 be a positive constant. For i ∈ {0, 1},
let ωi : Q → (0,+∞) be such that c0 < infQ ωi <

supQ ωi < 1
c0
, and let u ∈ L1

ω0,loc
(Q). Then, for every

v ∈ L1
ω1

(Q;Rn), we have

‖v‖L1
ω1

(Q;Rn) � 1

c20

(

Vω0(Du − v, Q) + T Vω0(u, Q)
)

.

(5.11)

Proof Fix v ∈ L1
ω1

(Q;R2). Note that the uniform bounds on
ω1 yield

c0

∫

Q
|v(x)| dx �

∫

Q
ω1(x)|v(x)| dx = ‖v‖L1

ω1
(Q;Rn)

� 1

c0

∫

Q
|v(x)| dx .

(5.12)
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In particular, v ∈ L1(Q;R2); thus,

c0

∫

Q
|v(x)| dx

= c0 sup

{∫

Q
ψ(x) · v(x) dx : ψ ∈ Lipc(Q;R2),

‖ψ‖L∞(Q;R2) � 1

}

= sup

{∫

Q
ψ̃(x) · v(x) dx : ψ̃ ∈ Lipc(Q;R2),

‖ψ̃‖L∞(Q;R2) � c0

}

� sup

{∫

Q
ϕ(x) · v(x) dx :

ϕ ∈ Lipc(Q;R2), |ϕ| � ω0

}

� Vω0(Du − v, Q) + T Vω0(u, Q),

(5.13)

where we used Definition 5.1 together with the subaddi-
tivity of the supremum in the last estimate, and the bound
c0 � infQ ω0 in the preceding one. We then obtain (5.11) by
combining (5.12) and (5.13). ��

Under the same assumptions of Lemma 5.7, the infimum
problem in (1.24) is actually a minimum.

Lemma 5.8 Let c0 > 0 be a positive constant. For i ∈ {0, 1},
let ωi : Q → (0,+∞) be such that c0 < infQ ωi <

supQ ωi < 1
c0
, and let u ∈ L1(Q). Then, there exists

u∗ ∈ BDω1(Q) such that

TGVω0,ω1(u, Q) = Vω0(Du − u∗, Q) + Vω1(Eu∗, Q).

(5.14)

Proof We claim that TGVω0,ω1(u, Q) is finite if and only if
u ∈ BVω0(Q). In fact, choosing v = 0 as a competitor in
(5.10), we infer that TGVω0,ω1(u, Q) � T Vω0(u, Q). On the
other hand, recalling (3.3), we have for any v ∈ BDω1(Q)

that

T Vω0(u, Q) = sup

{∫

Q
(u divϕ + v · ϕ − v · ϕ) dx

: ϕ ∈ Lipc(�;R2), |ϕ| � ω0

}

� Vω0(Du − v, Q) + ‖v‖L1
ω0

(Q;R2)

� Vω0(Du − v, Q) + 1

c20
‖v‖L1

ω1
(Q;R2),

where we used the subadditivity of the supremum com-
bined with Definition 5.1 in the first inequality, and the
bounds on the two weights in the second inequality. Thus,

T Vω0(u, Q) � max{1, c−2
0 } TGVω0,ω1(u, Q), which con-

cludes the proof of the claim.
To show (5.14), we may assume without loss of generality

that TGVω0,ω1(u, Q) < ∞, in which case u ∈ BVω0(Q).
Moreover, we may find a sequence (vn) ⊂ BDω1(Q) such
that

TGVω0,ω1(u, Q) = lim
n→+∞

{

Vω0(Du − vn, Q)

+Vω1(Evn, Q)
}

� C (5.15)

for some positive constant C . From Lemma 5.7 and (5.15)
we infer that supn∈N ‖vn‖BDω1 (Q) < +∞. Using the uniform
bounds on ω1, which are inherited by its lower semicontinu-
ous envelope (ω1)

sc− , and Theorem 5.3 (i i), also

sup
n∈N

‖vn‖BD
(ω1)sc

− (Q) < +∞.

Moreover, by Theorem 5.3 (i), (i i), and (iv) (also see
Remark 5.4), there exists u∗ ∈ BDω1(Q) ∩ BD

(ω1)sc
− (Q)

such that

vn → u∗ strongly in L1
(ω1)sc

− (Q;R2),

Vω1(Eu∗,�) = V
(ω1)sc

− (Eu∗,�)

� lim inf
n→+∞ V

(ω1)sc
− (Evn,�) = lim inf

n→+∞ Vω1(Evn,�).

(5.16)

Using the uniform bounds on both weights once more, we
also have vn → u∗ strongly in L1

ω0
(Q;R2). The minimality

of u∗ is then a direct consequence of Theorem 5.6 (i), (5.16),
and (5.15). ��
The next result provides a characterization of the infimum
problem in Level 2 of our learning scheme.

Proposition 5.9 Let φ ∈ L2(Q), and let c0 > 0 be a positive
constant. For i ∈ {0, 1}, let ωi : Q → [0,+∞) be such that
c0 < infQ ωi < supQ ωi < 1

c0
. Then, there exists a unique

ū ∈ BVω0(Q) such that

∫

Q
|φ − ū| dx + TGVω0,ω1(ū, Q)

= min
u∈BVω0 (Q)

{∫

Q
|φ − u|2 dx + TGVω0,ω1(u, Q)

}

.

Moreover, denoting by (ωi )
sc− the lower semicontinuous

envelope of ωi , i ∈ {0, 1}, we have ū ∈ BV (Q) ∩
BV

(ω0)sc
− (Q), and

TGVω0,ω1(ū) =
∫

Q
(ω0)

sc− d|Dū − u∗| +
∫

Q
(ω1)

sc− d|Eu∗|,
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where u∗ ∈ BDω1(Q) ∩ BD
(ω1)sc

− (Q) is a minimizer of
(5.10) associated to ū.

Proof For u ∈ BVω0(Q), we define

H [u] :=
∫

Q
|φ − u|2 dx + TGVω0,ω1(u, Q),

and we set

μ := inf
u∈BVω0 (Q)

H [u].

We have 0 � μ � F[0] = ‖φ‖2
L2(Q)

, and we may take a
sequence (un)n∈N ⊂ BVω0(Q) such that

μ = lim
n→+∞ H [un].

Moreover, the boundedness assumptions on the weights ωi ,
i ∈ {0, 1}, yield for all x ∈ Q that

c0 � (ωi )
sc−(x) � 1

c0
.

Thus, by Lemma 5.8 and Theorems 5.3 and 5.6, we find for
all n ∈ N large enough that

μ + 1 � H [un] =
∫

Q
|φ − un |2 dx + Vω0 (Dun − u∗

n, Q)

+ Vω1(Eu∗
n, Q)

=
∫

Q
|φ − un |2 dx + V

(ω0)sc
− (Dun − u∗

n, Q) + V
(ω1)sc

− (Eu∗
n, Q)

=
∫

Q
|φ − un |2 dx +

∫

Q
(ω0)

sc− d|Dun − u∗
n |

+
∫

Q
(ω1)

sc− d|Eu∗
n |

�
∫

Q
|φ−un |2 dx + c0|Dun − u∗

n |(Q) + c0|Eu∗
n |(Q).

An argument by contradiction as in the classical TGV
case and variants thereof (see, e.g., [29, Proposition 5.3])
yields that the sequences (u∗

n)n∈N and (un)n∈N are uniformly
bounded in BD(Q) and BV (Q), respectively. Thus, there
exist ū∗ ∈ BD(Q) and u ∈ BV (Q) such that, up to extract-
ing a not relabelled subsequence,

un
∗
⇀ū weakly* in BV (Q),

u∗
n

∗
⇀ū∗ weakly* in BD(Q).

By theboundson theweights, and their lower-semicontinuous
envelopes, and Theorems 5.3 and 5.6, we deduce that
ū ∈ BV

(ω0)sc
− (Q) ∩ BVω0(Q) ∩ BV (Q) and ū∗ ∈

BD
(ω1)sc

− (Q) ∩ BDω1(Q) ∩ BD(Q), with

μ � H [ū] �
∫

Q
|φ − ū|2 dx + V

(ω0)sc
− (Dū − ū∗, Q)

+ V
(ω1)sc

− (E ū∗, Q) � lim
n→+∞ H [un] = μ.

(5.17)

Because of the strict convexity of the L2-norm, we infer the
uniqueness of ū. Finally, by (5.17),

TGVω0,ω1(ū, Q) = V
(ω0)sc

− (Dū − ū∗, Q)

+ V
(ω1)sc

− (E ū∗, Q).

The last part of the statement is then a consequence of The-
orems 5.3 and 5.6. ��

5.3 On Level 1

As we address next, and similarly to the (LS)T Vω case, the
box constraint provides a stopping criterion for the TGV -
learning scheme.

To proceed as inTheorem3.6,we need an analog to Propo-
sition 3.5, which we now prove. Recalling that L represents
a cell in a dyadic partition of Q, we will use the Sobolev
inequality in BV (L) yielding for every u ∈ BV (L) that

‖u − [u]L‖L2(L) � CBV
Q |Du|(L), (5.18)

where [u]L ∈ R is the average ofu in L , and the constantCBV
Q

depends only on the shape of Q because of scale invariance
of the embedding BV in L2 in dimension d = 2. Moreover,
we also have for any w ∈ BD(L) that

‖w − RMw − vw‖L2(L) � CBD
Q |Ew|(L), (5.19)

where vw ∈ R
2, Mw is a skew-symmetric matrix (that is,

with M� + M = 0, the set of which we denote by R
2×2
skew),

and RMw denotes the function defined for Mw ∈ R
2×2 by

RMw(x) = Mwx .

Lemma 5.10 Let L ⊂ Q be a dyadic square. Then, there is
a constant Crot

Q > 0 such that for every u ∈ BV (L) and for

every skew-symmetric matrix M ∈ R
2×2
skew, we have

Crot
Q |Du|(L) � |Du − RM |(L). (5.20)

Proof Suppose that (5.20) does not hold; then, we may find
functions un ∈ BV (L) with |Dun|(L) = 1 and skew-
symmetric matrices Mn ∈ R

2×2
skew for which

1

n
= 1

n
|Dun|(L) > |Dun − RMn |(L). (5.21)
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Then, in particular, ‖RMn‖L1(L) � 2; consequently, since

R
2×2
skew is a finite-dimensional set, we can assume that RMn →

RM∞ for some skew-symmetric matrix M∞, up to taking a
not relabelled subsequence.

On the other hand, recalling (5.18), there are constants
cn ∈ R satisfying

‖un − cn‖L2(L) � CBV
Q |Dun|(L);

thus, up to taking a not relabelled further subsequence, we

have that un − cn
∗
⇀ u∞ ∈ BV (L) for some u∞ ∈ BV (L).

Using (5.21) oncemore, wemust have Du∞ = RM∞ . At this
point, we can distinguish two cases, M∞ = 0 or M∞ = 0.

If M∞ = 0, then

1

n
= 1

n
|Dun|(L) > |Dun − RMn |(L) → 1,

which cannot be.
If M∞ = 0, then, using the antisymmetry of DRM∞ =

M∞, we again arrive at a contradiction, since

curl Du∞ = 0 but | curl RM∞| = √
2|M∞| > 0.

To see that the last equality holds, just notice that in the two
dimensional case under consideration we must have

M∞ =
(

0 a
−a 0

)

for some a = 0,

which implies curl RM∞ = −2a.

Thus, we have proved that there is a constantCL , possibly
depending on L , such that

CL |Du|(L) � |Du − RM |(L) for all M ∈ R
2×2
skew.

To see that CL is independent of the size of L , we just notice
that this inequality holds for all M and that upon rescaling
x �→ r x it is enough to replace M by M/r to maintain the
inequality. ��

The next proposition guarantees that if a dyadic square
L ⊂ Q is small enough, then a solution uα0,α1 of Level 3
of our TGV learning scheme in (1.20) is affine for every
(α0, α1) ∈ [

c0,
1
c0

] × [

c1,
1
c1

]

. Let us remark that a related
result is contained in [57, Proposition 6], which we make
quantitative and with a scaling that enables us to draw con-
clusions on the cell size.

Proposition 5.11 Fix c0, c1 > 0 and L ⊂ Q a dyadic square.
Let ᾱL be the optimal parameter given by (5.3), where uα,L

is defined by (1.22) and (1.19) (with Q replaced by L), and

let CBV
Q , CBD

Q , and Crot
Q be the constants in (5.18), (5.19),

and (5.20), respectively. If

‖uη‖L2(L) < min

(

c0,
c1

CBD
Q |L|1/2

)

Crot
Q

CBV
Q

, (5.22)

then ᾱL := (α0, α1) = (c0, c1) and uᾱL := u(α0,α1),L is
affine on L, with uᾱL = 〈uη〉L .
Proof To simplify the notation in the proof, we omit
the dependence of TGVα0,α1 and uα0,α1 on L by writ-
ing TGVα0,α1(·) in place of TGVα0,α1(·, L) and u(α0,α1),L ,
respectively.

Fix (α0, α1) ∈ [

c0,
1
c0

] × [

c1,
1
c1

]

. The optimality condi-
tion for (1.22) reads as

uη − uα0,α1 ∈ ∂TGVα0,α1(uα0,α1).

SinceTGVα0,α1 is positively one-homogeneous,wehave that

z ∈ ∂TGVα0,α1(uα0,α1) if and only if z ∈ ∂TGVα0,α1(0)

and
∫

L
z uα0,α1 dx = TGVα0,α1(uα0,α1).

Furthermore, by the definition of subgradient,

∗z ∈ ∂TGVα0,α1(0)

if and only

if
∫

L
z u dx � TGVα0,α1(u) for all u ∈ L2(L).

Now, given v ∈ R
2 and c ∈ R, we denote by Av,c the

affine function given by Av,c(x) = v · x + c. Because

TGVα0,α1(Av,c) = 0, (5.23)

we deduce from the above with z = uη − uα0,α1 and u =
±Av,c that

∫

L(uη − uα0,α1)Av,c dx = 0 for any v ∈ R
2 and

c ∈ R; moreover,

TGVα0,α1(uα0,α1)

=
∫

L
(uη − uα0,α1)uα0,α1 dx

=
∫

L
(uη − uα0,α1)(uα0,α1

− Av,c) dx � ‖uη − uα0,α1‖L2(L)‖uα0,α1 − Av,c‖L2(L).

Thus, taking the infimum over v ∈ R
2 and c ∈ R and recall-

ing (5.4), we conclude that

TGVα0,α1 (uα0,α1 )�‖uη−uα0,α1‖L2(L)‖uα0,α1 −〈uα0,α1 〉L‖L2(L).

(5.24)
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On the other hand, since the infimum in the definition of
TGVα0,α1 is attained, there is a wu ∈ BD(L) for which

TGVα0,α1(uα0,α1)

= inf
w∈BD(L)

{

α0|Duα0,α1 − w|(L) + α1|Ew|(L)
}

= α0|Duα0,α1 − wu |(L) + α1|Ewu |(L)

� α0|Duα0,α1 − wu |(L) + α1

CBD
Q

‖wu − RMwu
−vwu‖L2(L),

where we have used the inequality (5.19) for some skew-
symmetricmatrixMwu ∈ R

2×2 and vector vwu ∈ R
2. Setting

Ru := RMwu
and vu := vwu , we get that

TGVα0,α1(uα0,α1)

� α0|Duα0,α1 − wu |(L) + α1

CBD
Q

‖wu − Ru − vu‖L2(L)

� α0|Duα0,α1−wu |(L)+ α1

CBD
Q |L|1/2 ‖wu−Ru−vu‖L1(L)

� min

(

c0,
c1

CBD
Q |L|1/2

)

[

|Duα0,α1 − wu |(L)

+ ‖wu − Ru − vu‖L1(L)

]

� min

(

c0,
c1

CBD
Q |L|1/2

)

|Duα0,α1 − Ru − vu |(L)

= min

(

c0,
c1

CBD
Q |L|1/2

)

|D(uα0,α1 − Avu ,0) − Ru |(L).

Now, we can apply Lemma 5.10 to uα0,α1 − Avu ,0 and the
Sobolev inequality (5.18) to obtain for some cu ∈ R that

TGVα0,α1(uα0,α1)

� min

(

c0,
c1

CBD
Q |L|1/2

)

Crot
Q |D(uα0,α1 − Avu ,0)|(L)

� min

(

c0,
c1

CBD
Q |L|1/2

)

Crot
Q

CBV
Q

‖uα0,α1 − Avu ,cu‖L2(L)

� min

(

c0,
c1

CBD
Q |L|1/2

)

Crot
Q

CBV
Q

‖uα0,α1 − 〈uα0,α1〉L‖L2(L),

(5.25)

wherewe used (5.4) oncemore. Then, if uα0,α1 was not affine,
then ‖uα0,α1 − 〈uα0,α1〉L‖L2(L) > 0, so we could combine
(5.25) with the upper bound (5.24) and minimality of uα0,α1

in (1.22) to obtain

min

(

c0,
c1

CBD
Q |L|1/2

)

Crot
Q

CBV
Q

� ‖uη − uα0,α1‖L2(L) � ‖uη‖L2(L),

which contradicts (5.22). Thus, uα0,α1 must be affine.
Finally, using (5.23), (5.4), and 〈uη〉L as a competitor in

(1.22),we conclude thatuα0,α1 = 〈uα0,α1〉L = 〈uη〉L . Hence,
ᾱL = (c0, c1), and this concludes the proof. ��
Owing to Proposition 5.11, we are now in a position to reduce
the minimum problem in Level 1 of our training scheme to
a minimization over a finite set of admissible partitions.

Theorem 5.12 Consider the learning scheme (LS)TGVω in
(1.20) with (1.21) restricted by (1.29) (see (5.3)). Then, there
exist κ ∈ N and L1, ...,Lκ ∈ P such that

argmin

{∫

Q
|uc − uL|2 dx : L ∈ P

}

= argmin

{∫

Q
|uc − uLi |2 dx : i ∈ {1, ..., κ}

}

.

Proof The proof is analogous to that of Theorem 3.6, so we
only provide a sketch of the argument. The only difference
here is that instead of being a constant, the solution uα,L of
Level 1 is affine for any α := (α0, α1) ∈ [

c0,
1
c0

] × [

c1,
1
c1

]

on squares L on which (5.22) holds, due to Proposition 5.11.
Moreover, TGVα0,α1(uα,L , L) = 0 and, recalling (5.3), the
optimal parameter given by (5.3) is ᾱL = (c0, c1). As in the
proof of Theorem 3.6, this observation allows us to replace
any partition L∗ containing such small dyadic squares with
another partition L

∗
whose dyadic squares have all side

length above the threshold provided by (5.22) without affect-
ing theminimizer of Level 2.We refer to Fig. 1 for a graphical
idea of the argument and to Theorem 3.6 for the details of
the proof. ��

We conclude this section by proving existence of an opti-
mal solution to the learning scheme (LS)TGVω .

Proof of Theorem 1.7 The result follows directly by combin-
ing the analysis in Subsect. 5.1, Proposition 5.9, andTheorem
5.12. ��

5.4 Stopping Criteria and Box Constraint for TGV

In this subsection, we prove a TGV -counterpart to Theorem
3.8. Our result reads as follows.

Theorem 5.13 Let � ⊂ R
2 be a bounded, Lipschitz domain

and, for each α ∈ (0,+∞)2, let uα ∈ BV (�) be given by
(1.22) with L replaced by �. Assume that the two following
conditions on the training data hold:

i) There exists α̂ ∈ (0,+∞)2 such that TGVα̂0,α̂1(uc,�) <

TGVα̂0,α̂1(uη,�);
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ii) ‖uη − uc‖2L2(�)
< ‖〈uη〉 − uc‖2L2(�)

.

Then, there exists

α∗
� ∈ (0,+∞)2 ∪ ({+∞} × (0,+∞)

) ∪ (

(0,+∞) × {+∞})

(5.26)

such that

̂J (α∗
�) = min

α∈[0,+∞]2
̂J (α), (5.27)

where ̂J is a (lower semicontinuous) extension on [0,+∞]2
(see (5.36) in Lemma 5.18) of the function J : (0,+∞)2 →
[0,+∞) defined by

J (α) :=
∫

�

|uc − uα|2 dx for α ∈ (0,+∞)2. (5.28)

Additionally, there exist positive constants, c� and C�,
such that any minimizer, α∗

�, of ̂J over [0,+∞]2 satisfies
c� � min{(α∗

�)0, (α
∗
�)1} < C�‖uη‖L2(�).

In particular, if � = L with L ⊂ Q is a dyadic
square, then there exists a positive constant, cL , such that
any minimizer, α∗

L , of ̂J over [0,+∞]2 satisfies cL �
min{(α∗

L)0, (α
∗
L)1} < CQ‖uη‖L2(L), where CQ is a constant

given by Proposition 5.11.

Owing to the orthogonality property (5.5), condition i i)
in the statement of the theorem is equivalent to requiring that
‖uc − 〈uc〉 − uη + 〈uη〉‖2L2(�)

� ‖uc − 〈uc〉‖2L2(�)
. In other

words, i i) is satisfied provided that the perturbation which
the noise causes on the non-affine portion of uc is small in the
L2-sense compared to the original non-affine component of
uc. This is the case, for example, if η = uη − uc and η − 〈η〉
has a small L2-norm, regardless of the L2-norm of 〈η〉.

We remark that the conclusion of the theorem in the gen-
eral case is slightly weaker than the corresponding result for
the T V -setting. Indeed, while we can show that both entries
of optimal parametersmust be uniformly bounded away from
zero, we can only prove that their minimum is uniformly
bounded from above but cannot prevent that just one of the
entries blows up to infinity. This is due to the fact that, with-
out additional conditions, the maps uα are not necessarily
affine if just one of the entries of α becomes infinity, cf. also
[57, Proposition 6] for comparison.

However, as a direct consequence of our result, we find a
complete characterization for the case in which the analysis
of TGV reduces to a one-dimensional problem.

Corollary 5.14 Under the same assumption and with the
same notation of Theorem 5.13, setting uλ := uλ(α̂0,α̂1) for
every λ ∈ [0,+∞], there exists λ∗

� ∈ (0,+∞) such that

J (λ∗
�(α̂0, α̂1)) = min

λ∈(0,+∞)
J (λ(α̂0, α̂1)).

Additionally, there exist positive constants, c� and C�,
such that anyminimizerλ∗

� satisfies c� � λ∗
� < C�‖uη‖L2(�).

In particular, if � = L with L ⊂ Q is a dyadic square,
then there exists a positive constant, cL , such that any mini-
mizer λ∗

L satisfies cL � λ∗
L < CQ‖uη‖L2(L), where CQ is a

constant given by Proposition 5.11.

As in the case of the total variation, we proceed by first
studying the limiting behavior of the sum of fidelity and
TGV -seminorm in the sense of �-convergence. To describe
the situation inwhich the tuning coefficients approach+∞, it
is useful to recall thatMb(�;Rd) denotes the set of bounded
Radon measures on � with values in R

d and Ker E (�;Rd)

is the set of all maps � : � → R
d such that E� = 0.

In particular, � ∈ Ker E (�;Rd) if and only if there exists
M ∈ R

d×d
skew andm ∈ R

d such that�(x) = Mx+m for every
x ∈ �.

We also recall the function

mE : Mb(�;Rd) → Ker E (�;Rd),

introduced in [57, Proposition 3], and defined as the solution
to the minimum problem

|μ−mE (μ)|(�)=min{|μ−φ|(�) : φ∈Ker E (�;Rd)},
(5.29)

for every μ ∈ Mb(�;Rd). Recall that BH(�) denotes the
space of functions with bounded Hessian on�, namely maps
u ∈ BV (�) such that D2u ∈ Mb(�;Rd×d).

Lemma 5.15 Let � ⊂ R
2 be a bounded, Lipschitz domain

and, for each α ∈ (0,+∞)2, let uα ∈ BV (�) be given by
(1.22) and (1.19), with L and Q replaced by�. Consider the
family of functionals (Gᾱ)ᾱ∈[0,+∞]2 , where Gᾱ : L1(�) →
[0,+∞] is defined by
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Gα[u] :=
{
∫

�
|uη − u|2 dx + TGVα0,α1(u,�) if u ∈ BV (�),

+∞ otherwise,
for ᾱ =: α = (α0, α1) ∈ (0,+∞)2,

G0,ᾱ1 [u] :=
{
∫

�
|uη − u|2 dx if u ∈ L2(�),

+∞ otherwise,
for ᾱ0 = 0 and ᾱ1 ∈ [0,+∞],

G∞,α1 [u] :=
{
∫

�
|uη − u|2 dx + α1|D2u|(�) if u ∈ BH(�),

+∞ otherwise,
for ᾱ0 = +∞, ᾱ1 =: α1 ∈ (0,+∞),

Gᾱ0,0[u] :=
{
∫

�
|uη − u|2 dx if u ∈ BV (�),

+∞ otherwise,
for ᾱ0 ∈ (0,+∞] and ᾱ1 = 0,

Gα0,∞[u] :=
{
∫

�
|uη − u|2 dx + α0|Du − mE (Du)|(�) if u ∈ BV (�),

+∞ otherwise,
for ᾱ0 =: α0 ∈ (0,∞), ᾱ1 = +∞,

G∞,∞[u] :=
{
∫

�
|uη − u|2 dx if Du ∈ Ker E(�;Rd),

+∞ otherwise,
for ᾱ0 = ᾱ1 = +∞.

Let (α j ) j∈N ⊂ (0,+∞)2 and ᾱ ∈ [0,∞]2 be such that
α j → ᾱ in [0,+∞]2. Then, (Gα j ) j∈N �-converges to Gᾱ in
L1(�).

Proof Wefirst prove that if (u j ) j∈N ⊂ L1(�) andu ∈ L1(�)

are such that u j → u in L1(�), then

Gᾱ[u] � lim inf
j→∞ Gα j [u j ]. (5.30)

Without loss of generality, we work under the assumptions
that

lim inf
j→∞ Gα j [u j ] = lim

j→∞Gα j [u j ] < +∞
and

sup
j∈N

Gα j [u j ] < +∞.

Then, u j ∈ BV (�) for all j ∈ N, sup j∈N
∫

�
|uη−u j |2 dx <

+∞ and sup j∈N TGV(α j )0,(α j )1(u j ,�) < +∞. Hence, u ∈
L2(�) and u j⇀u weakly in L2(�). For each j ∈ N, let
u∗
j ∈ BD(�) be such that

TGV(α j )0,(α j )1(u j )=(α j )0|Du j −u∗
j |(�)+(α j )1|Eu∗

j |(�).

(5.31)

We now consider each limiting behavior of the sequence
(α j ) j∈N separately.

(i) If ᾱ = α ∈ (0,+∞)2, then an argument by contradic-
tion as the classical TGV case and variants thereof (see,
e.g., [29, Proposition 5.3]) yields uniform bounds for
sequences (u j ) j∈N and (u∗

j ) j∈N in BV (�) and BD(�),
respectively. Thus, u ∈ BV (�) and u j⇀u weakly-� in

BV (�). Additionally, there exists u∗ ∈ BD(�) such
that, up to extracting a further subsequence, u∗

j⇀u∗
weakly-� in BD(�), from which (5.30) follows.

(ii) If ᾱ0 = 0, then (5.30) holds by the lower-semicontinuity
of the L2-norm with respect to the weak convergence
in L2(�).

(iii) If ᾱ0 = +∞ and ᾱ1 ∈ (0,+∞), then (u∗
j ) j∈N

is bounded in BD(�). Thus, there exists u∗ ∈
BD(�) such that, up to extracting a further subse-
quence, u∗

j⇀u∗ weakly-� in BD(�). Additionally,
lim j→∞ |Du j − u∗

j |(�) = 0. Thus, u j → u strongly
in BV (�), u ∈ BH(�), and (5.30) holds by the lower-
semicontinuity of the L2-normwith respect to the strong
convergence in BV (�).

(iv) If ᾱ0 ∈ (0,∞] and ᾱ1 = 0, then the situation is analo-
gous to (ii).

(v) If ᾱ1 = +∞ and ᾱ0 ∈ (0,+∞), then there exists u∗
affine and such that u∗

j → u∗ strongly in BD(�) and

(u j ) j∈N is uniformly bounded in BV (�), so that u j
∗
⇀u

weakly-� in BV (�). The statement follows from the
lower semicontinuity of the total variation with respect
to the weak-� convergence of measures, as well as from
(5.29).

(vi) If ᾱ0 = ᾱ1 = +∞, then there existsu∗ ∈ Ker E(�;Rd)

such that u∗
j → u∗ strongly in BD(�) and Du j →

u∗ strongly in Mb(�;Rd). Thus, Du = u∗ and the
statement follows.
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Next, we show that for any u ∈ L1(�), there exists
(u j ) j∈N ⊂ L1(�) such that u j → u in L1(�) and

Gᾱ[u] � lim sup
j→∞

Gα j [u j ]. (5.32)

Again, we detail the argument in each case separately.

(i) If ᾱ = α ∈ (0,+∞)2, thenwe can assume,without loss
of generality, that u ∈ BV (�). The conclusion follows
then by a classical argument relying on the continuity
of TGV with respect to its tuning parameters (see, e.g.,
[29, Theorem 4.2]).

(ii) If ᾱ0 = 0, then we consider for every u ∈ L2(�) an
approximating sequence (uk)k∈N ⊂ C∞

c (�) such that
uk → u strongly in L2(�). Choosing the null function
as a competitor in the definition of TGV , we find that

TGV(α j )0,(α j )1(uk) � (α j )0|Duk |(�).

Thus,

lim
j→+∞Gα j [uk] = G0,ᾱ1 [uk]

for every ᾱ1 ∈ [0,+∞] and every k ∈ N. The thesis
follows then by a classical diagonalization argument.

(iii) If ᾱ0 = +∞ and ᾱ1 = α1 ∈ (0,+∞), then we can
assume, without loss of generality, that u ∈ BH(�). In
particular, ∇u ∈ BD(�) which we can then use as a
competitor in the definition of TGV to infer that

TGV(α j )0,(α j )1(u) � (α j )1|D2u|(�).

Thus,

lim sup
j→+∞

Gα j [u] � lim sup
j→+∞

(∫

�

|uη − u|2 dx

+(α j )1|D2u|(�)

)

= G∞,α1 [u].

(iv) If ᾱ0 ∈ (0,+∞] and ᾱ1 = 0, arguing by approximation
as in case (ii), we can assume without loss of generality
that u ∈ C∞

c (�). Then, choosing ∇u as a competitor
in the definition of TGV , we find that

TGV(α j )0,(α j )1(u) � (α j )1|∇2u|(�).

Hence, arguing as in case (ii) once more, yields (5.32).
(v) If ᾱ0 = α0 ∈ (0,+∞) and ᾱ1 = +∞, then we can

assume that u ∈ BV (�). Choosing mE (Du) in the
definition of TGV , yields

TGV(α j )0,(α j )1(u) � (α j )0|Du − mE (Du)|(�).

Hence, arguing as in case (ii), we infer (5.32).
(vi) If ᾱ0 = ᾱ1 = +∞, then, without loss of generality,

we can assume that Du ∈ Ker E(�;Rd). Choosing Du
as a competitor in the definition of TGV shows that
TGV(α j )0,(α j )1(u) = 0 for every j ∈ N, from which
(5.32) follows.

The �-convergence of (Gα j ) j∈N to Gᾱ in L1(�) is then a
direct consequence of (5.30) and (5.32). ��

As a consequence of the previous result, we provide a
characterization of the unique minimizer uᾱ of Gᾱ .

Corollary 5.16 Under the same assumptions of Lemma 5.15,
let uᾱ := argminu∈L1(�) Gᾱ[u] for ᾱ ∈ [0,+∞]2. Then,

uᾱ =

⎧

⎪

⎨

⎪

⎩

uα if ᾱ = α ∈ (0,+∞)2,

uη if ᾱ0 = 0 or ᾱ1 = 0,

〈uη〉� if ᾱ0 = ᾱ1 = +∞.

(5.33)

Additionally, when just one among ᾱ0 and ᾱ1 is infinite, then
〈uᾱ〉� = 〈uη〉�. In these regimes, if additionally uη = 〈uη〉�,
then uᾱ = 〈uᾱ〉�.
Proof The first claim follows directly from Lemma 5.15. We
show the second statement only in the case in which ᾱ0 = ∞
and ᾱ1 is finite, being the case in which ᾱ1 = ∞ analogous.
The characterization of minimizers is then a consequence of
the orthogonality property in (5.5) which, in turn, yields

G∞,ᾱ1(u) =
∫

�

|〈u − uη〉�|2 dx

+
∫

�

[

(u − 〈u〉�) − (

uη − 〈uη〉�
)]2 dx

+ ᾱ1|D2 (u − 〈u〉�) |

for every u ∈ BH(�). ��
Lemma 5.17 Let � ⊂ R

2 be a bounded, Lipschitz domain
and let (Gᾱ)ᾱ∈[0,+∞] be the family of functionals intro-
duced in Lemma 5.15. Given ᾱ ∈ [0,∞]2, set uᾱ :=
argminu∈L1(�) Gᾱ[u]. Then, there exists a sequence of pairs
of positive numbers, (α j ) j∈N ⊂ (0,+∞)2, such that α j →
ᾱ in [0,+∞]2 as j → ∞ and

lim
j→∞

∫

�

|uα j − uᾱ|2 dx = 0, (5.34)

where uα j := argminu∈L1(�) Gα j [u] for all j ∈ N.

Proof With the same notation as in the proof of Lemma 5.15,
we detail the argument for each case separately.

(i) If ᾱ = α ∈ (0,+∞)2, then the statement follows
directly by choosing α j = α for every j .
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(ii) If ᾱ0 = 0, then uᾱ = uη and Gᾱ[uᾱ] = Gᾱ[uη] =
0. In view of Lemma 5.15, there exists a sequence
(u j

η) j∈N ⊂ L1(�) such that

lim sup
j→+∞

Gα j [u j
η] � Gᾱ[uη].

Hence, for any sequence (α j ) j∈N ⊂ (0,+∞)2 satisfy-
ing α j → ᾱ, the minimality of uα j yields

lim sup
j→∞

(∫

�

|uα j − uη|2 dx + TGV(α j )0,(α j )1(uα j ,�)

)

= lim sup
j→∞

Gα j [uα j ]

� lim sup
j→∞

Gα j [u j
η] � Gᾱ[uη] = 0.

Thus, we infer (5.34).
(iii) If ᾱ0 = +∞ and ᾱ1 = α1 ∈ (0,+∞), then uᾱ ∈

BH(�). For every sequence (α
j
0 ) j∈N such that α

j
0 →

+∞ as j → +∞, setting α j := (α
j
0 , α1), from the

minimality of uα j and choosing ∇uᾱ as a competitor in
the definition of TGV , we find

Gα j [uα j ] � Gα j [uᾱ]
�
∫

�

|uᾱ − uη|2 dx
+ α1|D2uᾱ|(�) = Gᾱ[uᾱ].

By the fundamental theorem of �-convergence (see
[27, Corollary 7.20 and Theorem 7.8]), the equi-
coerciveness of the functionals Gα j together with the
uniqueness of minimizers yields that uα j ⇀uᾱ weakly
in L2(�). Property (5.34) follows then by arguing as in
item (i i i) in the first part of the proof of Lemma 5.15
and using the continuous embedding BV (�) ⊂ L2(�).

(iv) If ᾱ0 ∈ (0,+∞] and ᾱ1 = 0, then uᾱ = uη. Let
(ukη)k∈N ⊂ C∞

c (�) be such that ukη → uη strongly
in L2(�). For every sequence (α j ) j∈N ⊂ (0,+∞)2

satisfying α j → ᾱ, we obtain from the minimality of
uα j that

Gα j [uα j ] � Gα j [ukη] �
∫

�

|ukη − uη|2 dx + (α1) j

∫

�

|∇2ukη| dx,

where the latter inequality follows by choosing ∇ukη as
a competitor in the definition of TGV . Thus,

lim sup
j→+∞

Gα j [uα j ] �
∫

�

|uη − ukη|2 dx

for every k ∈ N. Passing to the limit as k → +∞, we
infer that

lim sup
j→+∞

Gα j [uα j ] = 0.

In turn, this implies (5.34).
(v) If ᾱ0 = α0 ∈ (0,+∞) and ᾱ1 = +∞, then uᾱ ∈

BV (�). For (α j
1 ) j∈N ⊂ (0,+∞) such thatα j

1 → +∞,

and setting α j := (α0, α
j
1 ), we deduce that

Gα j [uα j ] � Gα j [uᾱ] �
∫

�

|uᾱ − uη|2 dx
+ α0|Duᾱ − mE (Duᾱ)|(�) = Gᾱ[uᾱ].

By the fundamental theoremof�-convergence,we infer
that uα j → uᾱ strongly in L1(�) and that Gα j [uα j ] →
Gᾱ[uᾱ]. On the other hand, letting u∗

α j
be defined as in

(5.31) with u j replaced by uα j , the same argument as
in item (v) in the first part of the proof of Lemma 5.15

yields uα j

∗
⇀u weakly-� in BV (�), and u∗

α j
→ u∗

strongly in BD(�) with u∗ affine. By combining the
above convergences, we deduce

Gᾱ[uᾱ] �
∫

�

|uᾱ − uη|2 dx

+ α0|Duᾱ − u∗|(�) � lim inf
j→+∞

∫

�

|uα j − uη|2 dx
+ α0|Duα j − u∗

α j
|(�) � lim

j→+∞Gα j [uα j ]
= Gᾱ[uᾱ],

where the first inequality follows by the definition of
mE , cf. (5.29), whereas the second one is a consequence
of the lower semicontinuity of the L2-normwith respect
to the weak L2-convergence, as well as of the lower
semicontinuity of the total variation with respect to the
weak-� convergence of measures.

(vi) If ᾱ0 = ᾱ1 = +∞, then uᾱ is affine. Thus, for every
sequence (α j ) j∈N ⊂ (0,+∞)2 satisfying α j → ᾱ,

Gα j [uα j ] � Gα j [uᾱ] =
∫

�

|uᾱ − uη|2 dx = Gᾱ[uᾱ].

Property (5.34) is once again obtained arguing by the
fundamental theorem of �-convergence, as in (iii). ��

In view of the lemmas above, we obtain the following char-
acterization of the lower semicontinuous envelope of J .

Lemma 5.18 Let � ⊂ R
2 be a bounded, Lipschitz domain,

and let J : (0,+∞)2 → [0,+∞) be the function defined in
(5.28). Then, the extension ̂J : [0,+∞]2 → [0,+∞] of J
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to the closed interval [0,+∞]2 defined for ᾱ ∈ [0,+∞]2
by

̂J (ᾱ) := inf
{

lim inf
j→∞ J (α j ) : (α j ) j∈N ⊂ (0,+∞)2,

α j → ᾱ in [0,+∞]2
}

,

(5.35)

satisfies

̂J (ᾱ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

J (α) = ‖uα − uc‖2L2(�)
if ᾱ = α ∈ (0,+∞)2,

‖uη − uc‖2L2(�)
if ᾱ0 = 0 or ᾱ1 = 0,

‖〈uη〉 − uc‖2L2(�)
if ᾱ0 = ᾱ1 = +∞,

‖uᾱ − uc‖2L2(�)
with 〈uᾱ〉 = 〈uη〉 otherwise,

(5.36)

where uᾱ is the unique minimizer of Gᾱ , cf. Corollary 5.16.

Proof We first note that the function ̂J in (5.35) is lower-
semicontinuous on [0,+∞]2 and ̂J � J in (0,+∞)2. Next,
we denote by ˜J the function on [0,+∞]2 defined by the
right-hand side of (5.36), and observe that

˜J (ᾱ) = ‖uᾱ − uc‖2L2(�)
,

where uᾱ := argminu∈L1(�) Gᾱ(u) is given by (5.33). We
want to show that ̂J ≡ ˜J . By Lemma 5.17, for all ᾱ ∈
[0,+∞]2 there exists a sequence (α j ) j∈N ⊂ (0,+∞) such
that α j → ᾱ and for which we have

˜J (ᾱ) = ‖uᾱ − uc‖2L2(�)
= lim

j→∞ ‖uα j − uc‖2L2(�)

= lim
j→∞ J (α j ).

(5.37)

Thus, ˜J (ᾱ) � ̂J (ᾱ) for all ᾱ ∈ [0,+∞]2. It remains to prove
the opposite inequality. For this, we distinguish several cases
as in the proofs of Lemma 5.17:

(i) If ᾱ = α ∈ (0,+∞)2, let (α j ) j∈N ⊂ (0,+∞) be
any sequence such that α j → α. As argued before, we
observe that the uniform bounds in BV (�) proved in
Lemma 5.15 assert that (Gα j ) j∈N is an equi-coercive
sequence in L1(�). Thus, as before, by well-known
properties of �-convergence on the convergence of min-
imizing sequences and energies (see [27, Corollary 7.20
and Theorem 7.8]), together with the uniqueness of mini-
mizers ofGα j andGα , we have that uα j ⇀uα weakly-� in
BV (�) and lim j→∞ Gα j [uα j ] = Gα[uα]. In particular,
uα j ⇀uα weakly in L2(�). Hence,

˜J (α) = ‖uα − uc‖2L2(�)
� lim inf

j→∞ ‖uα j − uc‖2L2(�)

= lim inf
j→∞ J (α j ).

Taking the infimum of all such sequences (α j ) j∈N ⊂
(0,+∞), we conclude that ˜J (α) � ̂J (α).

(ii) If ᾱ0 = 0,we obtain by the corresponding case of Lemma
5.17 that for any sequence (α j ) j∈N ⊂ (0,+∞)2 such
that α j → ᾱ, we have

0 � lim sup
j→+∞

Gα j [uα j ] = 0, (5.38)

which implies uα j → uη strongly in L2(�), and in turn
lim j→∞ J (α j ) = ˜J (ᾱ). Thus, taking the infimum over
all such sequences, we conclude that ̂J (ᾱ) = ˜J (ᾱ).

(iii) If ᾱ0 = +∞ and ᾱ1 = α1 ∈ (0,+∞), the thesis follows
by observing that the same argument as in (iii) of Lemma
5.17 still holds for any sequence (α

j
0 , α

j
1 ) j∈N with α

j
0 →

+∞ and α
j
1 → α1 as j → +∞.

(iv) If ᾱ0 ∈ (0,+∞] and ᾱ1 = 0, we can proceed exactly
as in (ii) to conclude that for any sequence (α j ) j∈N ⊂
(0,+∞)2 such that α j → ᾱ, we again have (5.38) by
the corresponding case of Lemma 5.17.

(v) Analogously to (iii), if ᾱ0 = α0 ∈ (0,+∞) and ᾱ1 =
+∞, the statement is a consequence of the fact that the
same argument as in (v) of Lemma 5.17 still holds for any
sequence (α

j
0 , α

j
1 ) j∈N with α

j
0 → α0 and α

j
1 → +∞ as

j → +∞.
(vi) If ᾱ0 = ᾱ1 = +∞, by the proof item (vi) of Lemma 5.17,

we have for any sequence (α j ) j∈N ⊂ (0,+∞)2 with
α j → ᾱ thatGα j [uα j ] � Gᾱ[uᾱ], which, analogously to
item (iii) of Lemma 5.17, provides that uα j ⇀uα weakly
in L2(�), and this in turn allows us to conclude as in item
(i). ��

We are now in a position to prove Theorem 5.13.

Proof of Theorem 5.13 The proof is subdivided into three
steps.

Step 1.Weprove that if condition i) in the statement holds,
namely

TGVα̂0,α̂1(uη,�) − TGVα̂0,α̂1(uc,�) > 0

for some α̂ ∈ (0,+∞)2, then there exists ᾱ ∈ (0,+∞)2

such that

‖uᾱ − uc‖2L2(�)
< ‖uη − uc‖2L2(�)

. (5.39)

From the convexity of the TGV -seminorm, arguing as in the
proof of (3.14), we infer that

‖uη − uc‖2L2(�)
− ‖uα − uc‖2L2(�)

� TGVα0,α1(uα,�)

− TGVα̂0,α̂1(uc,�)
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for every α ∈ (0,+∞)2. Choosing α = λα̂, and denoting
uλ(α̂) by uλ, for simplicity, we find that

‖uη − uc‖2L2(�)
− ‖uλ − uc‖2L2(�)

� λ
(

TGVα̂0,α̂1(uλ,�)

−TGVα̂0,α̂1(uc,�)
)

for every λ ∈ (0,+∞). By the proof of case (ii) of
Lemma 5.17 and by Corollary 5.16, it follows that, up to
(non-relabelled) subsequences, uλ → uη strongly in L2(�)

as λ → 0. Fix ε > 0; by the lower-semicontinuity of the
TGV -seminormswith respect to the strong L2-convergence,
we conclude that

TGVα̂0,α̂1(uλ,�) � TGVα̂0,α̂1(uη,�) − ε(TGVα̂0,α̂1(uη,�)

− TGVα̂0,α̂1(uc,�))

for λ small enough. Thus,

|uη − uc‖2L2(�)
− ‖uλ − uc‖2L2(�)

� λ(TGVα̂0,α̂1(uη,�)

− TGVα̂0,α̂1(uc,�))(1 − ε)

for λ small enough. This implies that there exists λ̄ ∈
(0,+∞) for which

‖uη − uc‖2L2(�)
> ‖uλ − uc‖2L2(�)

.

The preceding estimate yields the thesis by choosing ᾱ =
λ̄(α̂0, α̂1).

Step 2.Weprove that if condition ii) in the statement holds,

(i.e., ‖uη − uc‖2L2(�)
< ‖〈uη〉 − uc‖2L2(�)

), then there exits

ᾱ ∈ (0,+∞)2 such that

‖uᾱ − uc‖2L2(�)
< ‖〈uη〉 − uc‖2L2(�)

. (5.40)

In view of Step 1,

lim
λ→0

‖uλ − uc‖L2(�) = ‖uη − uc‖L2(�) < ‖〈uη〉 − uc‖L2(�).

By the proof of case (vi) of Lemma 5.17 and by Corollary
5.16, we obtain the existence of λ̄ ∈ (0,+∞) for which

‖uλ̄ − uc‖L2(�) < ‖〈uη〉 − uc‖L2(�).

The claim follows by choosing ᾱ = λ̄(α̂0, α̂1).
Step 3.We conclude the proof by establishing the bounds

on the parameters stated in Theorem 5.13. From the lower
semicontinuity of ̂J , we infer that there existsα∗ ∈ [0,+∞]2
where the minimum value is attained. By Corollary 5.16 and
by the previous steps, α∗ satisfies (5.26) and

̂J (α∗) = min
ᾱ∈[0,+∞]2

̂J (ᾱ). (5.41)

To prove the existence of the lower bound c�, we argue
by contradiction.We first assume that there exists a sequence
(α∗

j ) j∈N ⊂ (0,+∞)2 such that α∗
j → 0 as j → +∞, and

(5.41) holds for α∗ = α∗
j for all j ∈ N. In view of the lower

semi-continuity of ̂J on [0,+∞]2,

min
ᾱ∈[0,+∞]2

̂J (ᾱ) � ̂J (0) � lim inf
j→∞

̂J (α∗
j ) = min

ᾱ∈[0,+∞]2
̂J (ᾱ),

which is false by (5.39). This proves the existence of a con-
stant ĉ� such that |α∗| � ĉ� for every minimizer α∗ of ̂J .
The existence of the constant c� as in the statement of the
theorem follows by observing that the above argument can
be repeated by considering sequences (α∗

j ) j∈N for which just
one of the entries converges to zero.

The bound from above onmin{α∗
0 , α

∗
1} follows directly by

Proposition 5.11. In fact, from (5.22), we infer the existence
of a constant C� such that uα∗ is affine if C�‖uη‖L2(�) <

min{α∗
0 , α

∗
1}. Now, assume by contradiction that there exists

a sequence (α∗
j ) j∈N ⊂ (0,+∞)2 such that both entries of α∗

j
blowup to infinity as j → +∞, and (5.41) holds forα∗ = α∗

j
for all j ∈ N. Using, once again, the lower semi-continuity
of ̂J on [0,+∞]2, we find that

min
ᾱ∈[0,+∞]2

̂J (ᾱ) � ̂J (+∞,+∞) � lim inf
j→∞

̂J (α∗
j )

= min
ᾱ∈[0,+∞]2

̂J (ᾱ),

which is false by Corollary 5.16 and (5.40). ��

5.5 The (LS)TGV−Fid! Learning Scheme

Given a dyadic square L ⊂ Q and λ ∈ (0,∞), we have

argmin

{

λ

∫

L
|uη − u|2 dx + TGV1,1(u, L) : u ∈ BV (L)

}

= argmin

{∫

L
|uη − u|2 dx + TGV 1

λ
, 1
λ
(u, L) : u ∈ BV (L)

}

.

Theanalysis inSubsects. 5.1–5.3 applies also to theweighted-
fidelity learning scheme and yields Theorem 1.8. As before,
the previous existence theorem holds true under any stop-
ping criterion for the refinement of the admissible partitions
provided that the training data satisfies suitable conditions.
We summarize the situation in the next result, which fol-
lows directly by the discussions in the previous subsection,
in particular Corollary 5.14.

Theorem 5.19 (Equivalence between box constraint and
stopping criterion) Consider the learning scheme
(LS)TGV−Fidω in (1.27). The two following conditions hold:

(a) If we replace (1.21) by (5.3), then there exists a stop-
ping criterion (S) for the refinement of the admissible
partitions as in Definition 1.2.
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(b) Assume that there exists a stopping criterion (S) for the
refinement of the admissible partitions as inDefinition1.2
such that the training data satisfies for all L ∈ ∪L∈P̄L,
with P̄ as in Definition 1.2, the conditions

(i) TGVα0,α1(uc, L) < TGVα0,α1(uη, L),
(ii) ‖uη − uc‖2L2(L)

< ‖〈uη〉L − uc‖2L2(L)
.

Then, there exist c0, c1 ∈ R
+ such that the optimal solu-

tion u∗ provided by (LS)TGV−Fidω with P replaced by
P̄ coincides with the optimal solution u∗ provided by
(LS)TGV−Fidω with (1.21) replaced by (5.3).

6 Numerical Treatment and Comparison of
the Learning Schemes (LS)TV! , (LS)TV!�

,
(LS)TV−Fid! , and (LS)TGV−Fid!

6.1 Common Numerical Framework for all Schemes

The focus of our article is on the use of space-dependent
weights and, from the numerical point of view, our schemes
require addressing weights that are piecewise constant on
dyadic partitions. This stands in contrast to most previ-
ous approaches for optimizing space-dependent parameters,
which in most cases hinge on H1-type penalizations of the
weights, as done in [25, 45] for TV, [43] for TGV and [55]
for some more general convex regularizers. The piecewise
constant setting makes it possible to work in a modular fash-
ion, building upon any numerical methods that are able to
compute solutions to denoising with a weight (Level 2) and
finding constant optimal regularization parameters (Level 3).

In our numerical examples, we have used a basic first-
order finite difference discretization of the gradient and
symmetrized gradient, on the regular grid arising from the
discrete input images. For solving T V regularized denois-
ing, either with constant or varying weights, we have opted
for the standard primal-dual hybrid gradient (PDHG) descent
schemeof [19]. Theoptimization for optimal constant param-
eters α of Level 3 is done with the ‘piggyback’ version of the
same algorithm, which has been proposed in [20] to learn
finite difference discretizations of T V with a high degree
of isotropy, and further analyzed under smoothness assump-
tions on the energies in [6]. Essentially, it consists in evolving
an adjoint state along with the main variables, to keep track
of the sensitivity of the solution with respect to parameters.
We remark that such sensitivity analysis in principle requires
not just first but second derivatives of the lower-level cost
functions involved, in our case TV or TGV denoising involv-
ing weighted �1 norms and their Fenchel conjugates, which
are only componentwise piecewise smooth. In any case, as
already observed in [20, Appendix A], we do achieve an
adequate performance in practice. It is worth mentioning that

other methods to handle the bilevel optimization problems of
Level 3 in a nonsmooth setting have been introduced in [8,
32, 36]. One could also use these in our subdivision scheme
within Algorithm 2, and in fact the authors of the cited papers
optimize for adaptive weights on regular dyadic grids refined
uniformly. In contrast, our focus here is on the adaptive sub-
division scheme.

These PDHG methods are based on considering the dis-
crete optimization problems

min
x∈X

G(x) + F(Ky)

through their corresponding saddle point formulation

max
y∈Y

min
x∈X

〈y, Kx〉�2 + G(x) − F∗(y),

with G representing the differentiable fidelity term and F∗
being the projection onto a convex set, arising as the Fenchel
conjugate of an �1-type norm. Denoting by W = R

nm the
space of discrete scalar-valued functions, these read in the
T V case as

X = W , Y = W 2, K = ∇, G(u) = λ
∑

i j

(

ui j − ui jη
)2

,

and F∗(p)=IQTV with

QTV={

p ∈ Y | (pi j1 )2 + (pi j2 )2 � α for all i, j
}

.

For the TGV case, following the approach used in [7] and
[9], we have used

X = W × W 2, Y = W 2 × W 3, K =
(∇u −Id

0 E
)

,

G(u, v)=λ
∑

i j

(

ui j−ui jη
)2

, and F∗(p)s =IQTGV , where

QTGV = {

(p, q) ∈ Y | (pi j1 )2 + (pi j2 )2 � α0,

(qi j11)
2 + 2(qi j12)

2 + (qi j22)
2 � α1

for all i, j
}

.

With this notation and denoting the subgradient by ∂ , the
PDHG algorithm [19, Algorithm 1] can be written as

⎧

⎪

⎨

⎪

⎩

yk+1 = (Id + σ∂F∗)−1(yk + σK x̄k),

xk+1 = (Id + τ∂G)−1(xk − τK ∗yk+1),

x̄ k+1 = xk+1 + θ(xk+1 − xk),

(6.1)

where the descent parameters satisfy στ‖K‖ � 1. In the
T V case, this operator norm of ∇ can be bounded by

√
8

(cf. [17, Theorem 3.1]), while in the TGV case, we have
‖K‖2 � (17+√

33)/2 (cf. [7, Section 3.2]). The piggyback
algorithm of [6, 20] introduces one adjoint variable for each
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Fig. 2 Oversmoothed denoising with a sharp change of weight and schemes corresponding to Level 2 of (LS)T Vω , (LS)T Vωε
, and (LS)T V−Fidω ,

from left to right. Top row: weights ω(x) = ω(x1). Bottom row: results with each denoising scheme and the corresponding (not optimal) weight

Fig. 3 Synthetic example. Top row: Clean and noisy images uc, uη.
Middle row, left to right: TV result with global parameter, partition
and spatially-dependent λ arising from Algorithm 2, and correspond-

ing result with weighted fidelity. Bottom row: TGV results, same order
as in the middle row and with α0 = 1, α1 = 10
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Fig. 4 Lighthouse example. Top row: Clean and noisy images uc, uη.
Middle row, left to right: TV result with global parameter, partition
and spatially-dependent λ arising from Algorithm 2, and correspond-

ing result with weighted fidelity. Bottom row: TGV results, same order
as in the middle row and with α0 = 1, α1 = 2

primal and dual variable above (denoted by X ∈ X , Y ∈ Y ,
U ∈ W , P ∈ W 2, Q ∈ W 3) and performs the same kind of
updates also on these new variables to optimize the values of
a loss function L , resulting in

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Y k+1 = D proxσF∗(yk + σK x̄k)

·[Y k + σK
(

X̄ k + Dx L(xk, yk)
)]

,

Xk+1 = D proxτG(xk − τK ∗yk+1)

·[Xk − τK ∗(Y k+1+DyL(xk, yk)
)]

,

X̄ k+1=Xk+1+θ(Xk+1 − Xk),

(6.2)

where proxτG = (Id + τ∂G)−1 and proxσ F∗ = (Id +
τ∂F∗)−1 as appearing in (6.1); the latter corresponds to a
projection onto QTV or QTGV which, as already remarked,
is not differentiable on the boundary of these sets.

In our case, we optimize the squared L2 distance to uc by
varying the fidelity parameter λ = 1/α, so that

L(u) = 1

2

∑

i j

(ui j − ui jc )2 and DλL(λ)

= λ
∑

i j

Û i j (ûi j − ui jη ) for L(λ) = L(û(λ)), (6.3)

where û, Û are the optimal image variable and correspond-
ing adjoint obtained after convergence of (6.1) and (6.2). We
have then used the derivative DλL to update λ with gradi-
ent descent steps. We have chosen to not use line search,
since with the piggyback algorithm evaluations of energy
and of gradient for the solution of the lower level problem
require a comparable amount of computational effort, that is,
either performing (6.1) alone or together with (6.2) for the
same number of lower level steps. We summarize this basic
approach in Algorithm 1.
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Fig. 5 Cameraman example. Top row: Clean and noisy images uc, uη.
Middle row, left to right: TV result with global parameter, partition
and spatially-dependent λ arising from Algorithm 2, and correspond-

ing result with weighted fidelity. Bottom row: TGV results, same order
as in the middle row and with α0 = 1, α1 = 10

Table 1 PSNR and SSIM
values for the examples of
Figs. 3, 4, 5, and 6

Noisy T V global T V adaptive TGV global TGV adaptive

Synthetic 26.05, 0.349 38.74, 0.946 39.41, 0.957 39.02, 0.949 39.80, 0.961

Lighthouse 24.64, 0.496 30.42, 0.853 30.82, 0.886 30.44, 0.855 30.90, 0.890

Cameraman 28.40, 0.642 32.86, 0.893 33.54, 0.925 32.86, 0.893 33.56, 0.925

Parrot 24.67, 0.447 31.86, 0.880 32.37, 0.898 32.10, 0.889 32.72, 0.909

It is worth noting that we are optimizing only on the
parameter λ in front of the fidelity term. For the TV case
and since this algorithm is applied to Level 3 with constant
parameters, only the balance between the two energy terms
is relevant and finding an optimal λL is equivalent to finding
an optimal αL = 1/λL , which can then be assembled over
all L into a weight ω for Level 2 of either (LS)T V−Fidω

or (LS)T Vω . In the TGV setting, optimizing only over one
parameter imposes a restriction, but we have chosen to do so
to keep the simple approach of Algorithm 1 and avoid more

complicated behaviors of the costs when varying both α0 and
α1 (or, equivalently, λ together with either α0 and α1).

6.2 Effect of parameter discontinuities in Level 2 of
(LS)TV! , (LS)TV!�

and (LS)TV−Fid!

In Fig. 2, we present an example using large regularization
parameters and a symmetric input image to demonstrate the
effect of parameter discontinuities in Level 2 of the schemes
(LS)T Vω , (LS)T Vωε

and (LS)T V−Fidω . In the weighted-T V
result, a jump in the weight results in a spurious discontinu-
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Fig. 6 Parrot example. Top row: Clean and noisy images uc, uη. Mid-
dle row, left to right: TV result with global parameter, partition and
spatially-dependent λ arising from Algorithm 2, and corresponding

result with weighted fidelity. Bottom row: TGV results, same order
as in the middle row and with α0 = 1, α1 = 2

Algorithm 1 Numerical approach to Level 3 of
(LS)T V−Fidω and (LS)TGV−Fidω

Input: Restrictions of noisy image uη and clean (training) image
uc to a dyadic square, initial parameter λ0, initial timestep ζ , damping
factor ν � 1, tolerance Tol.

1. Set k = 0.
while

(|λk − λk−1| > Tol or k = 0
)

do
2. Set k = k + 1.
3. Compute û, Û by running the Piggyback PDHG iterations (6.1)-
(6.2) to convergence.
4. Update λk = λk−1 − ζDλL(λk), with DλL from (6.3).
5. Set ζ = νζ .

end while

ity in the resulting image. Mollifying the weight smooths
the transition slightly, and it shifts it to the side with lower
weight. Using a weighted fidelity term does not introduce
discontinuities besides those present in the input, but still
creates visible artifacts near them.

6.3 Dyadic Subdivision Approach To Level 1

In Algorithm 2, we summarize our approach to numerically
treat Level 1. We remark that in comparison with the original
formulations (LS)T Vω and (LS)TGVω as formulated in the
introduction, we do not search the entire space of partitions
(which would be numerically intractable) and instead work
by subdivision as in Example 3.13. This means that for any
given cell L , we make a local decision whether to subdivide
it or not, based on the training costs arising from it before
and after subdividing it in four new cells. When performing
this subdivision, the parameter from the original cell is used
as initialization for the optimization on the newly created
ones. Even though this approach strongly restricts the number
of possible partitions considered, it still manages to achieve
reasonable performance in practice. On a heuristic level, this
indicates that if splitting one dyadic square once to add more
detail on the parameter does not lead to better performance,

123



1106 Journal of Mathematical Imaging and Vision (2024) 66:1070–1108

Algorithm 2 Numerical approach to Level 1
Input: Noisy image uη, clean (training) image uc, subdivision

tolerance ρ.

1. Set � = 0 and L = {(0, 1)2}.
2. Compute the constant optimal ω(0,1)2 ≡ λ(0,1)2 or ω(0,1)2 ≡
1/λ(0,1)2 using the numerical approach to Level 3 described in Sect.
6.1. Store the cost at the minimum as c(0,1)2 .
while � < �max do
for all L ∈ L with side(L) = 2−� do
2. Denote by Li for i = 1, . . . , 4 the cells obtained by one dyadic
subdivision of L .
for i = 1, . . . , 4 do
3. Compute λLi with the approach to Level 3 of Algorithm 1,
store local minimal training cost as CLi := ‖uc − uLi ‖2L2(Li )

.

end for
if CL1 + CL2 + CL3 + CL4 < ρ CL (cf. (3.20)) then

4. ReplaceL by
(

L \ {L})⋃4
i=1{Li }.

end if
end for
5. Set ωL to be ωL = λL or ωL = 1/λL on each L ∈ L.
6. Set � = � + 1.

end while
7. Compute uL with ωL and the numerical approach of Sect. 6.1 to
Level 2 of (LS)TGV−Fidω or (LS)T V−Fidω .

then in most cases it is also not advantageous to consider
further finer subdivisions of the same square.

6.4 Numerical Examples with the Complete Schemes
(LS)TV−Fid! and (LS)TGV−Fid!

In Figs. 3, 4, 5, and 6, we present some illustrative examples
resulting from the application of Algorithm 2 with �max = 4
to several images, for both T V and TGV regularization and
optimizing for one adaptive parameter in the fidelity term,
which is also shown along with the partitions overlaid on the
noisy input images. In these,wegenerally see that the adapted
fidelity parameter λ is higher in areas with finer details. Peak
signal to noise ratios and SSIM values for each case are sum-
marized in Table 1. In all cases, TGV with adaptive fidelity
produces the best results by these metrics, but there are sev-
eral instances where the gains are very marginal or there are
even ties with the corresponding adaptive T V results. Nev-
ertheless, it may be argued that even in these cases the TGV
results are more visually appealing due to reduced staircas-
ing.

For the simple example of Fig. 3, some more direct obser-
vations can be made. In it, we see that the spatially adaptive
results manage to better preserve the fine structures inside
the main object, while TGV greatly diminishes staircasing
in regions where the original image is nearly linear. Observe
that unlike the fine structures, the boundaries of the main
object consisting of a sharp discontinuity along an interface
with low curvature do not necessarily force further subdivi-
sion, as expected for T V or TGV regularization.

The synthetic image used in Fig. 3 was created by the
authors for this article. The lighthouse and parrot examples
in Figs. 4 and 6 have been cropped and converted to grayscale
from images in theKodak Lossless Image Suite. The camera-
man image of Fig. 5 is verywidely used, but to our knowledge
its origin is not quite clear.
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