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Abstract

This thesis sits at the intersection of three key research areas: (1) stochastic
calculus, (2) artificial intelligence, with an emphasis on deep learning, and
(3) financial and actuarial mathematics. In recent years, machine learning
has increasingly influenced quantitative finance and actuarial science, with
fascinating insights and applications. Topics such as the hedging of risky posi-
tions, synthetic scenario generation, and model calibration have all benefited
from machine learning, making it possible to study previously intractable
problems with remarkable precision and computational efficiency. The goal of
this thesis is to advance the existing literature by introducing new results in
the theory of neural networks from the point of view of financial and actuarial
mathematics, and to exemplify these contributions through interesting case
studies, which can be broadly grouped into the following three main thematic
areas.
The first theme, Deep Measure Projections, focuses on the optimal projection
of a given measure onto a set of algorithmically generated measures, a concept
that aligns well with the existing quantitative finance literature. Incomplete
financial markets typically require the choice of an appropriate pricing measure
for arbitrage-free pricing of financial derivatives. Similarly, variance reduction
techniques for Monte Carlo (MC) methods seek efficient sampling measures
for computing MC estimators. Chapter 1 addresses this by studying variance
reduction through changes in sampling measures that are calculated via
feedforward neural networks.
The second theme, Deep Surrogate Models, examines the use of deep neural
networks to approximate complex input-output maps, a method that is
theoretically justified by universal approximation theorems. This approach is
particularly useful when solving high-dimensional stochastic control problems,
often encountered in quantitative finance and actuarial science, by least-
squares Monte Carlo (LSMC) methods. Chapter 2 studies optimal insurance
purchases when bequest motives are age-varying and life insurance and life
annuities both carry loads, revealing up to two distinct periods of non-
participation. Chapter 3 then extends the application of the LSMC method
to complex stochastic climate-economy models, demonstrating how deep
neural networks can improve the accuracy and efficiency of optimal policy



derivation in uncertain, high-dimensional environments.
The final theme, Algorithmic Strategies, involves the use of neural networks
to approximate optimal decisions, such as those faced in dynamic trading,
hedging, or reinsurance strategies, in feedback form. This approach, particu-
larly deep hedging, has become a cornerstone method in quantitative finance
and actuarial science for generating computationally feasible algorithms that
identify optimal strategies. Chapter 4 introduces an application to algorithmic
reinsurance policies that optimize the expected utility of terminal wealth
perturbed by a modified Gerber–Shiu penalty function. Finally, Chapter 5
establishes universal approximation theorems for algorithmically generated
stochastic (integral) processes, demonstrating that a stochastic calculus can
be developed using algorithmic strategies.

Keywords: Deep learning; Universal approximation; Measure projection;
Importance sampling; Surrogate model; Deep annuity puzzle; Least-squares
Monte Carlo; Stochastic dynamic integrated climate-economy (DICE) model;
Algorithmic strategy; Reinsurance; Stochastic integration; No free lunch with
vanishing risk
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Background and Motivation

In 1676, Gottfried Wilhelm Leibniz introduced the chain rule for derivatives of composi-
tions of differentiable functions (Leibniz, 1676). More than one and a half centuries later,
Augustin–Louis Cauchy suggested an early form of the gradient descent method (Cauchy,
1847). Fast-forward to the 1940s and 1950s, Norbert Wiener laid the groundwork for
self-regulating mechanisms (Wiener, 1948), while Vladimir I. Arnold and Andrey N.
Kolmogorov demonstrated that any continuous multivariate function can be expressed as
a finite composition of continuous univariate functions and addition (Kolmogorov, 1956;
Arnold, 1957; Kolmogorov, 1957), thereby solving a version of David Hilbert’s thirteenth
problem. By the late 1980s and early 1990s, George Cybenko and Kurt Hornik solidified
the universal approximation property of feedforward neural networks (Cybenko, 1989;
Hornik, 1991), and Sepp Hochreiter introduced together with Jürgen Schmidhuber long
short-term memory (LSTM) networks soon thereafter (Hochreiter and Schmidhuber,
1997). It is without a doubt that, building on hundreds of years of dedicated research,
artificial intelligence (AI), and in particular deep learning, has evolved into a powerful
and pervasive tool in modern life.

The development of deep neural networks (DNNs) can be traced to the 1940s, when
McCulloch and Pitts (1943) proposed the perceptron, a model for linear classification
using a weighted sum of inputs and a step activation function. The 1970s and 1980s saw a
major breakthrough with the development of the backpropagation algorithm (Linnainmaa,
1970; Werbos, 1974; Rumerlhart et al., 1986), which allowed for efficient training of
multilayer networks through gradient descent and the chain rule. This period also saw the
mathematical formalization of the universal approximation theorem, demonstrating that
feedforward neural networks with a single hidden layer can approximate any continuous
function. Despite periods of decline in interest in AI during the so-called “AI winters”,
advances in computational power, particularly with GPUs, and large-scale datasets have
led to the resurgence and prominence of neural networks in recent years.

Given its computational strength, it was inevitable that deep learning would make
its way into finance and insurance. In finance, it is applied to tasks like predicting
stock market trends, credit risk assessment, and portfolio optimization. In insurance, it
enhances underwriting, risk evaluation, and fraud detection. Additionally, generative
models such as generative adversarial networks (GANs) are increasingly used to create
synthetic data for stress testing and other risk management purposes. Integrating deep
learning with traditional mathematical tools such as stochastic calculus allows for deeper
insights into neural networks within the context of financial and actuarial mathematics.



2 Background and Motivation

From a functional-analytic perspective, deep neural networks represent a simple class
of functions that can be trained efficiently using modern numerical methods. Stochastic
calculus, on the other hand, forms the backbone of much of quantitative finance and
actuarial science. This naturally motivates the study of neural networks from the point
of view of stochastic calculus, with the goal of deriving interesting case studies in the
domain of quantitative finance and insurance. This thesis aims to contribute to the
literature by introducing new theoretical results on neural networks in financial and
actuarial mathematics, and demonstrating these findings through interesting case studies.
We aim to contribute to three main thematic areas, which are described in the following
sections.

Deep measure projections
The concept of deep measure projections refers to the task of optimally projecting a given
probability measure onto a set of algorithmically generated measures using deep learning
techniques. The “projection” process typically involves training a neural network to
learn a mapping from a base probability measure to an optimal measure by minimizing a
relevant loss function related to pricing errors or other criteria, such as expected utility
or variance. Typically, the problem amounts to approximating the optimal density
process, which describes how to adjust probabilities between the base and target measure.
These approximations can be difficult to determine analytically or computationally via
traditional methods, especially in high-dimensional settings with complex dynamics.
Deep learning provides more efficient optimizations of these projections, offering solutions
to problems such as variance reduction in Monte Carlo simulations, pricing, and model
calibration.

In incomplete financial markets, the task of selecting an appropriate pricing measure
is crucial for arbitrage-free pricing, as infinitely many equivalent martingale measures
typically exist. Unlike in complete markets, where a unique risk-neutral measure defines
fair pricing, in incomplete markets, the optimal measure must be chosen based on
individual preferences while ensuring no arbitrage. Common approaches, such as the
minimal-entropy martingale measure or the minimal martingale measure, often rely
on minimizing a distance between the objective and risk-neutral probability measures.
However, finding these optimal measures can be computationally challenging, making
deep learning methods an attractive solution for such tasks.

Importance sampling, a variance reduction technique, is used to improve the efficiency
of Monte Carlo simulations by altering the sampling measure. In option pricing, the goal
is to sample those paths more frequently from scenarios that have a larger impact on
the payoff of the option, while maintaining unbiased estimates. The choice of optimal
sampling measures is particularly crucial for pricing out-of-the-money options, tail risk
estimation, and other rare-event-driven instruments, where traditional Monte Carlo
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methods struggle to capture low-probability but high-impact events. This technique is
frequently applied in pricing exotic options and modelling tail risk in large insurance
portfolios.

Chapter 1 extends the notion of deep measure projections to the importance sampling
problem for pricing complex, high-dimensional and path-dependent European options.
We model price processes X via stochastic differential equations (SDEs) of the form dXt =
at(X) d[M ]t + bt(X) dMt, where M is a continuous local martingale with deterministic
covariation [M ]. The covariation process defines a model-dependent Hilbert space Λ2,
extending the space of square-integrable functions to the vector-valued case. Upon proving
a universal approximation theorem in this generalized space, we construct algorithmically
generated functions that are dense in the Cameron–Martin space H of the Gaussian
measure that is induced by M on path space.

Once the universal approximation property in Cameron–Martin space has been estab-
lished, we focus on pricing path-dependent claims F (X) via Monte Carlo simulations. We
induce a change of the sampling measure using density processes represented by stochastic
exponentials E(f • M), where neural networks f are integrated with respect to M . By
Girsanov’s theorem, this measure change corresponds to adding a drift to M that belongs
to the algorithmically generated dense subset of H. By restricting the optimization
to drifts from H, we prove that algorithmically generated drifts can approximate the
optimal variance-minimizing drift arbitrarily well. These theoretical results are supported
by extensive numerical simulations in pricing path-dependent European options under
models that incorporate factors such as changing business activity, dynamic correlations,
knock-out barriers, and high-dimensional asset baskets.

Deep surrogate models
Deep surrogate models refer to the use of deep neural networks to approximate complex
input-output maps that arise in high-dimensional problems, such as pricing financial
derivatives or solving stochastic control problems. These models act as computationally
efficient substitutes for expensive numerical methods like Monte Carlo simulations or
partial differential equation solvers, which are often infeasible in real-time applications.
In essence, the surrogate model is trained on a large dataset of precomputed results
and, once trained, can be deployed to provide near-instantaneous predictions or policy
decisions, which is critical in real-time applications like hedging or portfolio management.
Additionally, deep surrogate models can be integrated into the least-squares Monte Carlo
(LSMC) method to approximate value functions and optimal control policies. This is
particularly useful in high-dimensional problems like dynamic asset allocation or climate-
economy models, where standard regression techniques may suffer from the curse of
dimensionality and thus be inefficient or intractable.

When solving stochastic control problems via dynamic programming, one of the
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main challenges arises from the recursive Bellman equation, which requires computing
conditional expectations of the value of a future state given the current state. In the
context of pricing American options, Longstaff and Schwartz (2001) addressed this issue
by proposing a least-squares Monte Carlo (LSMC) approach, where the conditional
expectation – referred to as the continuation value – represents the value of the option if
it is not exercised. The continuation value is approximated using polynomial regressions
based on simulated paths, which works well in low-dimensional settings where the state
is exogenous, i.e. not influenced by the control policy. However, this approach becomes
problematic as the dimension of the state space increases or when the control policy itself
influences the states, as the selection of appropriate basis functions becomes increasingly
difficult and subjective. Since the conditional expectation can be viewed as an orthogonal
projection in the Hilbert space of square-integrable random variables, neural networks,
due to their universal approximation properties, offer a robust alternative to classical
basis functions for high-dimensional, path-dependent, or complex control problems.

As a preliminary exercise in the field of optimal stochastic control, Chapter 2 explores
a life-cycle model of optimal insurance purchases. In practice, very few retirees choose to
annuitize a substantial portion of their wealth, even though rational choice models would
predict them to do so – a phenomenon commonly known as the “annuity puzzle”. By
introducing load factors on both life insurance and life annuities alongside age-varying
bequest motives, we demonstrate numerically that a thin market for annuities can coexist
with a thick market for life insurance. More precisely, our simulations reveal up to
two distinct periods of non-participation: one in midlife and the other adjoining the
maximum age. Since loads on life-contingent insurance products can be interpreted as a
form of illiquidity or transaction cost, the presence of non-participation periods aligns
with existing literature on investment in risky assets under transaction costs, where
similar non-transaction regions were identified.

Chapter 3 extends the LSMC method to stochastic climate-economy models, which
integrate the stochastic evolution of climate variables like temperature and emissions
with economic factors such as output, consumption and investment. These models are
typically used in policy analysis, guiding decisions on carbon pricing, emissions regulation,
and adaptation strategies to manage climate risks. However, their high dimensionality
and complex variable interactions make them computationally challenging, as they are
often formulated as stochastic dynamic programming problems. To overcome these
challenges, we replace standard regression techniques in the LSMC method with deep
neural network approximations, and demonstrate that the deep LSMC approach efficiently
derives optimal policies for climate-economy models in the presence of uncertainty.

Solving stochastic climate-economy models offers significant potential for quantitative
finance and actuarial science, particularly in the context of climate stress testing. In
finance, climate stress testing is increasingly important for evaluating the resilience of
portfolios through all channels of credit, market and liquidity risks, and pricing climate-
related risks. For actuarial science, these models can help assess the potential impact
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of climate events on insurance liabilities and mortality rates, guiding product design
and reserving. However, current methods for climate stress testing are inadequate, often
relying on deterministic scenarios that fail to capture the stochastic nature of both climate
and economic interactions. The results obtained in Chapter 3 therefore contribute to
resolving a clear research gap: the need for computational methods capable of handling
stochastic climate-economy models, and we leave the exploration of potential applications
to climate stress testing to future work.

Algorithmic strategies
Algorithmic trading refers to the use of algorithms to automatically execute trades based
on predefined rules and criteria. By automating the decision-making process, it aims
to minimize human intervention, reducing emotional biases and increasing the speed,
accuracy, and efficiency of trade executions. A prominent class of algorithmic strategies,
known as “statistical arbitrage”, exploits price inefficiencies or temporary imbalances
between related financial instruments to generate profit. Another widely used strategy,
“market making”, continuously quotes buy and sell prices, capturing the bid-ask spreads,
and providing liquidity to the market. However, poorly designed algorithms can cause
unintended market impact, such as excessive market volatility or even flash crashes which
– due to the widespread adaptation of algorithmic strategies – raises concerns about
market stability and systemic risk.

Buehler et al. (2019) provide a rigorous mathematical framework for the optimality of
algorithmic hedging strategies in a discrete-time setting, grounded in a simple yet profound
application of the Doob–Dynkin representation lemma. This lemma allows strategies to be
expressed as functions of the process generating the market information, i.e., the filtration
with respect to which all processes are assumed to be adapted. Neural networks offer a
natural tool for approximating these functions, with universal approximation theorems in
Lp-spaces over finite Borel measure spaces justifying their use in this context. While other
function classes could be used for these approximations, neural networks are particularly
efficient due to their optimization via stochastic approximation techniques like stochastic
gradient descent. Numerous simulation studies have demonstrated the efficiency with
which algorithmic strategies can find optimal trading and hedging decisions.

Chapter 4 extends the concept of deep hedging to the reinsurance domain. Optimal
reinsurance strategies are an active area of research with numerous publications studying
different model specifications and preference structures. We propose a general framework
that uses deep learning techniques to optimize reinsurance strategies by maximizing a
target functional comprising a utility function penalized by an extended Gerber–Shiu
function. This method allows the insurer to balance between maximizing the expected
utility of terminal wealth, and minimizing the probability of ruin. The framework includes
many classical models as special cases, and the theoretical results are illustrated by a
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numerical simulation, where the surplus process is given by a Cramér–Lundberg model
perturbed by a mean-reverting Ornstein–Uhlenbeck process.

Finally, Chapter 5 extends the concept of deep hedging from discrete- to continuous-time
settings. While discrete-time models are often computationally simpler, they can suffer
from discretization bias and may overlook critical intra-period dynamics, especially in
high-frequency trading. Continuous-time models offer a more refined and mathematically
elegant framework for option pricing and risk management, often yielding closed-form
solutions that are difficult to obtain in discrete time. Another significant benefit is
the ability to model jumps and sudden market movements via jump-diffusion or Lévy
processes, capturing more realistic market dynamics that are difficult to represent in
discrete-time frameworks. In short, studying algorithmic strategies in continuous time
allows for the application of advanced tools from continuous-time stochastic calculus,
which may potentially widen the scope of applicability of these strategies and motivate
new solution approaches to old problems.

In the same way that measure theory defines the integral of general functions through
limits of step functions, stochastic integrals of integrable processes are defined as limits
over integrals of simple processes. By proving that a large class of stochastic processes,
including simple processes, can be approximated by algorithmic strategies, it follows
that stochastic integral processes can also be approximated by integrals of algorithmic
strategies. This result highlights the fundamental role artificial neural networks play
in the theory of stochastic integration, and yields several interesting implications for
mathematical finance. Specifically, integrals of algorithmic strategies with respect to
square-integrable martingale price processes are topologically dense in the stable subspace
generated by these price processes, giving rise to the notion of deep mean-variance hedging
in continuous time. Moreover, a sufficient condition for the existence of an equivalent
martingale measure in the context of Stricker (1990, Theorem 3) can be linked to a no free
lunch with vanishing risk condition (NFLVR) for algorithmic strategies, thereby allowing
– for the first time – to discuss algorithmic strategies from a no-arbitrage perspective.



Part I.

Deep Measure Projections



1. Importance Sampling for Option
Pricing with Feedforward Neural
Networks

Monte Carlo methods are amongst the most essential tools for the numerical evaluation
of financial derivatives. Classical asset pricing theory often calls for the computation of
expectations of the form

EP[F (X)] =
�

Ω
F (X(ω))P(dω),

where F is a payoff functional, X is an asset price process solving a stochastic differential
equation (SDE) of the form dXt = a(X) dCt + b(X) dMt for t ∈ [0, T ] with a finite time
horizon T > 0 for some potentially path-dependent coefficients a, b, a continuous process
C of locally finite variation, and a continuous local martingale M , and P is a probability
measure on a measurable space (Ω, F). By averaging the payoffs over randomly sampled
trajectories of X, one can estimate the price in many cases where no analytic solution
for EP[F (X)] is available.

The variance of the Monte Carlo estimator is inversely proportional to the number
of trajectories simulated and proportional to the variance of the option payoff. The
square root of this variance is referred to as the standard error and in principle, it can
be made as small as needed by simulating a sufficiently high number of trajectories.
However, given limitations on computational time, the error can still be too large to be
acceptable, especially for further calculations of option price derivatives (the so-called
Greeks) required for hedging and risk management.

The usage of variance reduction methods can drastically reduce this error. There are
many different methods to reduce the variance of Monte Carlo estimators, one of which
is importance sampling. This method is based on changing the sampling measure from
which the trajectories are generated from P to some equivalent measure Ph, thereby
overweighting important scenarios to increase the numerical efficiency of the estimates.
Due to Girsanov’s theorem, this corresponds to adding a drift h ∈ H to the process
M , where H denotes a prescribed space of functions or processes from which the drift
adjustment is chosen. One then writes

EP[F (X)] = EPh
[F (X)Z−1

h ],
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where Zh denotes a Radon–Nikodým density of Ph with respect to P, which also depends
on the time-horizon T . Instead of simulating realizations of F (X) with respect to P, one
then simulates realizations of F (X)Z−1

h with respect to Ph, and chooses h ∈ H such that
the variance of F (X)Z−1

h is minimized.
While this method usually requires a lot of specific knowledge about the model at

hand, it has the potential to drastically reduce the variance of the corresponding Monte
Carlo estimator. In other words, importance sampling is a powerful method that involves
the complex optimization problem of choosing an appropriate sampling measure which
minimizes the variance of the Monte Carlo estimators.

Neural networks provide an algorithmically generated class of functions which on the
one hand enjoy the universal approximation property in many different topological spaces,
meaning that they are dense in these spaces, and on the other hand can be trained in a
numerically efficient way. Having recently entered the realm of mathematical finance,
neural networks are successfully used e.g. for model calibration, hedging and pricing. This
chapter develops a method that uses feedforward neural networks to perform importance
sampling for complex stochastic models, which applies in particular to the evaluation of
path-dependent derivatives. By optimizing over drifts from a dense subspace H(D) of
H that is generated by a set D of feedforward neural networks, we obtain a tractable
problem which is both theoretically justified and numerically efficient.

In Section 1.1, we characterize tractable spaces H from which the drift adjustments may
be chosen, and study their analytic properties. Whenever M is a vector-valued continuous
local martingale with deterministic covariation, it induces a Gaussian measure, to which
one can assign a Hilbert space H, the Cameron–Martin space. Due to the multivariate
nature of our study, we recall in Lemma 1.10 some concepts which originate from the
theory of stochastic integration with respect to vector-valued semimartingales. A detailed
characterization of the corresponding Cameron–Martin space H that is induced by M
is provided in Proposition 1.18, where the general formulation allows us to specifically
incorporate complex and time-inhomogeneous covariance patterns for M into our models.
Theorem 1.24 then yields the essential approximation result that characterizes dense
subspaces H(D) of H which are generated by prescribed sets of functions D in an abstract
and general setting, and in particular applies to sets D of feedforward neural networks as
a special case.

In Section 1.2, we focus our attention on feedforward neural networks, where we
distinguish between neural networks of deep, narrow and shallow kind. Propositions 1.28
and 1.29 yield two approximation results which provide a theoretical justification for
considering sets D that consist of feedforward neural networks. Example 1.31 then shows
in a classical setting that the set H(D) which is generated by a set D of feedforward
neural networks has an explicit and tractable characterization. As a direct consequence
of Theorem 1.24, Subsection 1.2.1 then discusses a result which in particular implies that
every smooth function can, up to an isometry, be approximated by feedforward neural
networks arbitrarily well with respect to Hölder type topologies, which are stronger than
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the topology of uniform convergence.
Section 1.3 contains a detailed study of the importance sampling problem, where

we aim to minimize the variance of F (X)Z−1
h with respect to Ph by approximating

the optimal drift h with a feedforward neural network. Theorem 1.38 proves that
the functional V : H → R+ which needs to be minimized is, under suitable generic
assumptions, continuous and admitting a minimizer h∗ ∈ H , which can be approximated,
up to an isometry, arbitrarily well by feedforward neural networks. Here, we not only
prove convergence to the optimal drift h∗, but we moreover show that the corresponding
Radon–Nikodým densities converge to Zh∗ . To this end, we prove that feedforward neural
networks induce equivalent probability measures, whose densities with respect to the
original measure converge in Lp-spaces, see Lemma 1.37. Moreover, Subsection 1.3.1
contains a discussion of a classical importance sampling approach that utilizes results
from the theory of large deviations, where we show that feedforward neural networks
can be employed to solve the corresponding variational problem which appears in this
approach. Let us note that, while the results from Sections 1.1 and 1.2 are applied to
importance sampling in Section 1.3, they are also of independent interest.

Section 1.4 contains a comprehensive numerical study pricing path-dependent European
options for asset price models that incorporate factors such as changing business activity,
knock-out barriers, dynamic correlations, and high-dimensional baskets. Section 1.5
contains a brief glimpse at the theory of Gaussian measures and collects the proofs of all
results.

The line of research which eventually lead up to the present work originates from
Glasserman et al. (1999). The authors study the problem of pricing path dependent
options by using techniques from the theory of large deviations to perform a change of
sampling measure that reduces the standard error of the Monte Carlo estimator. Moreover,
the authors use stratified sampling in order to further improve their simulations, and
while we will not be using this technique, the interested reader might try to add stratified
sampling on top of the method which we outline below.

The main motivation for this work was provided by Guasoni and Robertson (2008).
As in Glasserman et al. (1999), the authors employ methods from the theory of large
deviations to obtain a variational problem whose solution yields an asymptotically optimal
drift adjustment. The main difference to the present work is that we do not pass to a
small noise limit. However, as it turns out, our method also complements the method
presented in Guasoni and Robertson (2008), see Subsection 1.3.1 for further details.

An extension of the methods used in Guasoni and Robertson (2008) to the study of
importance sampling for stochastic volatility models has been provided in Robertson
(2010). Note that our method does apply to these types of models as well, see Example 1.34
in Section 1.3 and Section 1.4, where we provide simulation results for several stochastic
volatility models.

Another interesting contribution is dos Reis et al. (2023), where the authors study
importance sampling for McKean–Vlasov SDEs. Similarly as in Guasoni and Robertson
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(2008); Robertson (2010) methods from the theory of large deviations yield an asymptot-
ically optimal drift adjustment, and the authors discuss two different methods for the
simulation of the solution to the McKean–Vlasov SDE under a change of measure.

The idea to use methods from the theory of stochastic approximation for the purpose
of importance sampling has been studied extensively in Lemaire and Pagès (2010). This
paper heavily influenced Section 1.3, especially the proof of Theorem 1.38 relies partially
on a straightforward extension of the proof of Lemaire and Pagès (2010, Proposition 4).
Let us also note that, while the setting of Lemaire and Pagès (2010, Section 3) could
be extended to our setting below, it might be of particular interest to understand how
the algorithm proposed in Lemaire and Pagès (2010, Theorem 4) could be adapted to
the setting of Section 1.3 below in order to yield convergence of the stochastic gradient
descent algorithm when training feedforward neural networks.

Finally, one very original contribution that studies measure changes which are induced
by neural networks for the purpose of Monte Carlo simulations is Müller et al. (2019).
The authors also study importance sampling and apply their results to light-transport
simulations. The main difference to Müller et al. (2019) is that our method applies to the
pricing of financial derivatives in a mathematically more natural way by using methods
from the theory of stochastic calculus. Here, we focus on neural networks that are of
feedforward type. For more details on the studied neural networks architectures and
related literature, see Section 1.2.

Notation for this chapter

Unless stated otherwise, we endow Rd for each d ∈ N with the corresponding Euclidean
norm | · |. Id denotes the identity matrix in Rd×d, and we write R+ = R+ ∪ {+∞}. Given
two vectors x, y of the same dimension, we denote by x � y their Hadamard product. If Σ
is a matrix, we denote by ΣT its transpose. For x ∈ Rd

+ and p > 0, we understand xp to
hold componentwise, and write

√
x if p = 1/2. Let us also convene that inf{∅} = ∞. For

each linear operator A between normed spaces, we denote by �A�op its operator norm. If
E1, E2 denote two metric spaces and D is a subset of E1, we say that D is dense in E2 up
to an isometry, if there exists an isometry J : E1 → E2, such that J(D) is dense in E2. If
H denotes a Hilbert space, the notation H∗ ∼= H is to indicate that we identify H∗ with
H via the isometric isomorphism given by the Fréchet–Riesz representation theorem.

Given a topological space (S, T ), we denote by S∗ and S� the topological and algebraic
dual spaces, respectively, and write (f, x) = f(x) for (f, x) ∈ S∗ × S as well as BS for
the Borel σ-algebra on S. Given F ∈ T , we denote by F ◦ and F the interior and closure
of F , respectively. Whenever ν denotes a Borel measure on S, we say that f : S → Rd

is locally ν-essentially bounded, if (ν-)ess supx∈K |f(x)| < ∞ for each compact K ⊂ S.
Given an interval [0, T ], the space C0([0, T ];Rd) consists of all Rd-valued, continuous
functions on [0, T ] that vanish at the origin.

Whenever (S, S) is a measurable space, where S denotes a set and S denotes a σ-algebra
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on S, we denote by L0(S;Rd) the space of Rd-valued, S-measurable functions on S. If µ
is a measure on S and f ∈ L0(S) = L0(S;R), we denote by f · µ the Lebesgue integral of
f with respect to µ, provided that it exists. For p > 0, we further denote by Lp(µ) the
space of equivalence classes of p-integrable functions from L0(S). The law of a random
variable Z is denoted by L(Z). If M is an Rd-valued semimartingale, and H ∈ L(M),
we denote by HT • M the stochastic integral of H with respect to M . We denote by
N (m, Σ) the normal distribution with expected value m ∈ Rd and covariance matrix
Σ ∈ Rd×d. Finally, we denote for each p ≥ 1 by Hp the Banach space of continuous
Lp-integrable martingales, where the dependency on the underlying filtered probability
space is implicit.

1.1. Universal approximation in Cameron–Martin space
In this section, we study a tractable space H whose elements will be used to adjust the
drift of M for the purpose of importance sampling in Sections 1.3 and 1.4 below. Moreover,
we identify dense linear subspaces of H and obtain an explicit characterization of the
Cameron–Martin spaces of a large class of Gaussian measures, which is of independent
interest. For details about Gaussian measures, we refer to Subsection 1.5.1.

Let (Ω, F ,F,P) with F = (Ft)t∈[0,T ] denote a filtered probability space, such that F
contains all P-null sets of F . As index set for the time parameter, we consider [0, T ] with
a finite time horizon T > 0. Without loss of generality, we may assume that FT = F .
We denote by λ the restriction of the Lebesgue–Borel measure to [0, T ], and fix two
dimensions d, n ∈ N. Let M = (Mt)t∈[0,T ] be an Rd-valued continuous local martingale
with M0 = 0. Unless stated otherwise, we assume all stochastic processes to be F-adapted.

Let us start with a classical example that highlights the main concepts which are of
importance in this section, before extending the study to a more general setting.
Example 1.1. Let (E, H, γ) denote the classical Wiener space, i.e. E = C0([0, T ];Rd),
H = {h(t) = (1[0,t]fh) · λ, t ∈ [0, T ] : fh ∈ L2(λ;Rd)} is the space of Rd-valued, absolutely
continuous functions on [0, T ] that admit a square-integrable density with respect to λ,
and γ is the classical Wiener measure on E, which is the Borel probability measure on E
that is induced by Rd-valued standard Brownian motion B = (Bt)t∈[0,T ].

Endowed with the inner product �g, h�H = �fg, fh�L2(λ;Rd), one can show that (H, �·, ·�H)
is a real separable Hilbert space, which is continuously embedded into E as a dense linear
subspace. The operator J : L2(λ;Rd) → H, fh (→ h(·) = (1[0,·]fh) · λ is a linear isometry
by construction and thus continuous. Whenever D is a dense linear subspace of L2(λ;Rd),
it follows that J(D) is a dense linear subspace of H and thus densely embedded into E.
In other words, J(D) = H and J(D) = E, where the closure of J(D) is taken in H and
E, respectively.

Section 1.1 is dedicated to a refined study of the identity J(D) = H in a generalized
setting. To this end, let us state an assumption which allows us to study the process M
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as a Gaussian process, and simplifies the proofs of Section 1.3. Moreover, it leads to a
natural candidate for the space H of drift adjustments, which consists of deterministic
functions (see Definition 1.13 below).

General Assumption 1.2. The covariation process [M ] is, up to indistinguishability,
deterministic, and tr([M ])T > 0 outside a P-null set.

In what follows, we disregard the evanescent- and P-null sets on which the two
conditions from Assumption 1.2 are violated, and consider equalities between stochastic
processes and (in)equalities between random variables to hold up to indistinguishability
and P-almost surely, respectively.

Definition 1.3. The quadratic variation process C := tr([M ]), being increasing and of
finite variation, induces a finite Lebesgue–Stieltjes measure on ([0, T ], B[0,T ]), which we
denote µ.

Remark 1.4. Due to Lévy’s characterization (cf. Schmock (2024, Theorem 7.1)), the
increments Mt − Ms are independent of Fs with L(Mt − Ms) = N (0, [M ]t − [M ]s) for
all s < t in [0, T ]. Therefore, M is a centered Gaussian process, and Kallenberg (2021,
Theorem 11.5) shows that M is an F-Markov process. Moreover, M is a martingale, since
E[Mt − Ms|Fs] = E[Mt − Ms] = 0 for s < t in [0, T ]. Note that Cov(Mt, Ms) = [M ]s∧t

for s, t ∈ [0, T ] since, assuming without loss of generality that s < t,

Cov(Mt, Ms) = E[MtM
T
s ] = E[(Mt − Ms)MT

s ] + Cov(Ms, Ms) = [M ]s.

Remark 1.5. Assumption 1.2 implies that µ([0, T ]) > 0.
We write µ = µa + µs for the Lebesgue decomposition of µ with respect to λ into an

absolutely continuous measure µa = fλ · λ and a singular measure µs, where fλ denotes a
Radon–Nikodým density of µa with respect to λ, and both µa and µs are finite measures.
Note that µ has no atoms, since [M ] and therefore also C are continuous.

We now proceed in line with Cohen and Elliott (2015, Section 12.5). The covariation
process [M i, M j ], being of finite variation, induces a finite signed (and due to the
continuity of [M i, M j ] atomless) measure µi,j on ([0, T ], B[0,T ]) for all i, j ∈ {1, 2, . . . , d}.
It follows from the Kunita–Watanabe inequality for Lebesgue–Stieltjes integrals (cf.
Schmock (2024, Lemma 5.91)), that the total variation measure |µi,j | is absolutely
continuous with respect to µ, hence an application of the Radon–Nikodým theorem for
signed measures (cf. Cohen and Elliott (2015, Section 1.7.14)) yields the existence of a
real-valued density dµi,j/dµ =: πi,j , that is in L1(µ) since µi,j is finite.

We collect (πi,j)i,j=1,...,d into a measurable function π that assumes, due to the symmetry
of [M ], values in the space of symmetric matrices in Rd×d, and write

[M ]t =
�
π • C

"
t

= (1[0,t]π) · µ, t ∈ [0, T ], (1.1)
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where the notation is to be understood componentwise. Let (ηk)k∈N be dense in Rd. For
each k ∈ N, set Ak = {s ∈ [0, T ] : ηT

k π(s)ηk ≥ 0} and moreover A = �
k∈N Ak. Note that

A = {s ∈ [0, T ] : ηTπ(s)η ≥ 0, ∀η ∈ Rd} and� t

0
ηT

k π(s)ηk µ(ds) =
�
(ηT

k πηk) • C
"

t
= [ηT

k M ]t ≥ 0, k ∈ N, t ∈ [0, T ],

which implies that each Ac
k is a µ-null set, and therefore Ac, being the countable union

of all sets Ac
k, is a µ-null set, too. We conclude that π is positive semi-definite µ-almost

everywhere. Note that we could, in the spirit of Cherny and Shiryaev (2002); Jacod
(1979, 1980); Memin (1980) and without loss of generality, replace π by π̃ = π1A, and
thus assume that it is positive semi-definite for each t ∈ [0, T ]. For the purpose of this
chapter, this step is not necessary though.
Remark 1.6. The decomposition of [M ] into a matrix-valued function π and an increasing
process C is not unique. For example, take C̃ = *d

i=1 ηi[M i], where η ∈ Rd is chosen
such that ηi > 0 for all i ∈ {1, 2, . . . , d}. More generally, take C̃ = *d

i=1 fi • [M i],
with fi: [0, T ] → R+ \ {0} in L1(µi,i) for each i ∈ {1, 2, . . . , d}. In both cases, the
corresponding function π̃ is then constructed as in Remark 1.5, and generally differs from
π. Lemma 1.10(e) below will show that the non-uniqueness of (π, C) is not a problem
though.

Example 1.7. If π ≡ Id and µ = λ, then M is, by Lévy’s characterization, an Rd-valued
standard Brownian motion.

Example 1.8. An example that holds relevance for practitioners is the multivariate
Heston model, which we will briefly describe.

Let d = 2n for some n ∈ N. We consider a dynamic diffusion matrix given by
[0, T ] . t (→ Σ(t) ∈ Rd×d, a vector of appreciation rates r ∈ Rn, an n-dimensional
vector of positive mean-reversion levels m, and an n × n-dimensional diagonal matrix
with positive entries Θ representing mean-reversion speeds. To avoid degeneracy, we
assume that for each k ∈ {1, 2, . . . , n} and t ∈ [0, T ], (Σk,·(t))T is not the zero vector. Let
Mt = Σ(t)Bt, where B denotes a standard Brownian motion with values in Rd. Note that
[M ]t = Cov(Mt, Mt) =

� t
0 Σ(s)ΣT(s) ds for each t ∈ [0, T ]. Hence, in light of Remark 1.5

above, we may choose µ = λ and π(t) = Σ(t)ΣT(t).
Fix two n-dimensional initial value vectors s, v with positive entries. For simplicity,

we write M (1) = (M1, M2, . . . , Mn)T as well as M (2) = (Mn+1, Mn+2, . . . , M2n)T such
that M = (M (1), M (2))T. Let X = (S, V )T, and let the asset price follow the SDE
dSt = (r�St) dt+(St�

√
Vt)�dM

(1)
t , subject to S0 ≡ s. The n-dimensional instantaneous

variance process V follows the Cox–Ingersoll–Ross (CIR) type SDE dVt = Θ(m − Vt) dt +√
Vt � dM

(2)
t , subject to V0 ≡ v. Here, we see that asset price models whose dynamics

are driven by multivariate Brownian motions with dynamic variance-covariance matrices
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fall within the scope of our setting. More generally, one could think of replacing Bt by a
time-changed Brownian motion Bf(t) for a given deterministic time-change f .

In Section 1.4, we will study special cases of this model, where we will impose either
a time-change to model changing levels of business activity, or a dynamic correlation
structure.

Example 1.9. Set T = 1, and let B be a standard Rd-valued (G,P)-Brownian motion,
where G = (Gt)t∈[0,T ] denotes a filtration of F . Let f : [0, T ] → [0, T ] be either Cantor’s
ternary function or Minkowski’s question-mark function, and let Σ ∈ Rd×d be a diffusion
matrix. Recall that Cantor’s ternary function is continuous, monotonically increasing,
has derivative zero on a set of Lebesgue measure zero, but is not absolutely continuous.
Likewise, Minkowski’s question-mark function has the same properties, while being even
strictly increasing. Set Mt := ΣBf(t) for t ∈ [0, T ], and note that M is an Rd-valued
continuous (F,P)-martingale with M0 = 0 and [M ]t = f(t)ΣΣT for t ∈ [0, T ], where the
filtration F = (Ft)t∈[0,T ] is given by Ft = Gf(t) for t ∈ [0, T ]. The corresponding Lebesgue–
Stieltjes measure µ is singular with respect to λ, and while tr([M ]) is increasing when f
is Cantor’s ternary function, tr([M ]) is even strictly increasing when f is Minkowski’s
question-mark function. See Salem (1943) for further examples of functions f that can
be used for constructions of this kind.

Based on the pair (π, µ), we define a weighted L2-space, which we denote Λ2, which is
a generalization of the space L2(λ;Rd) in the context of Example 1.1, and recall some
elementary properties. In Section 1.3, where we study importance sampling, functions
f from Λ2 will be used to construct equivalent measures via the Doléans exponential
E(fT • M). As we will argue in Section 1.2, feedforward neural networks are dense in Λ2

under suitable assumptions which, due to Theorem 1.38, provides a theoretical justification
for using feedforward neural networks in order to calibrate an optimal sampling measure
that minimizes the variance of the Monte Carlo estimators in Sections 1.3 and 1.4. The
definition of the space Λ2 is inspired by the concept of vector stochastic integration, see
Cherny and Shiryaev (2002); Jacod (1979); Memin (1980), and in particular Jacod (1979,
Chapitre IV), for further details and generalizations.

Lemma 1.10. Let Λ2 denote the set of all f ∈ L0(B[0,T ];Rd) with

�f�Λ2 :=
� � T

0
fT(s)π(s)f(s) µ(ds)

 1/2
< ∞,

where we identify f, g ∈ Λ2 if (f − g)Tπ(f − g) = 0 µ-almost everywhere, and write f ∼ g
in this case. We further set �f, g�Λ2 :=

� T
0 fT(s)π(s)g(s) µ(ds) for f, g ∈ Λ2. Then:

(a) (Λ2, �·, ·�Λ2) is a real separable Hilbert space;
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(b) To each F ∈ (Λ2)∗ there corresponds a unique function g ∈ Λ2, such that

F (f) =
� T

0
gT(s)π(s)f(s) µ(ds), f ∈ Λ2,

and �F�op = �g�Λ2. Therefore, (Λ2)∗ is isometrically isomorphic to Λ2;
(c) We denote by Λ2,0 the set of all f ∈ L0(B[0,T ];Rd) that satisfy fi ∈ L2(µi,i) for each

i ∈ {1, 2, . . . , d}, where we identify functions in the same manner as above. Then:

(1) (Λ2,0, �·, ·�Λ2) is a separable inner product space with Λ2,0 ⊂ Λ2;
(2) Λ2,0 is dense in Λ2, hence Λ2 is the completion of Λ2,0 with respect to � · �Λ2 ;

(d) (C([0, T ];Rd), � · �∞) is continuously embedded into (Λ2,0, � · �Λ2) as a dense linear
subspace, where �f�∞ := supt∈[0,T ] |f(t)| for f ∈ C([0, T ];Rd);

(e) Λ2 and Λ2,0 do not depend on the specific choice of (π, µ) that satisfy (1.1).

Example 1.11. According to Jacod (1979, Lemme 4.30) and the discussion thereafter,
a sufficient condition for Λ2,0 = Λ2 to hold is if there exists a constant c > 0 such that
for all f ∈ Λ2, *d

i=1 πi,if
2
i ≤ cfTπf holds µ-almost everywhere. Examples where this

applies are when π is a diagonal or uniformly strictly elliptic matrix, where the latter
condition means that there exists a constant c > 0 such that c|η|2 ≤ ηTπη holds for all
η ∈ Rd.

Example 1.12. Let us state one example, which is a deterministic version of Cohen
and Elliott (2015, Example 12.5.1), where Λ2,0 ,= Λ2. To this end, let B denote a real-
valued standard Brownian motion. Set M = (B, −B)T and note that M is an R2-valued
continuous martingale with covariation

[M ]t =
�

t −t
−t t

!
, hence π ≡

�
1 −1

−1 1

!
,

where we choose µ = λ.
π is positive semi-definite, since for each η ∈ R2, ηTπη = (η1 − η2)2, which is zero

precisely when η1 = η2, and positive otherwise. Let f : [0, T ] → R be measurable and
such that f ,∈ L2(λ). Consider the function g: [0, T ] → R2 given by g = (f, f)T. By
construction, we then have g ,∈ Λ2,0, but since �g�Λ2 = 0, we have g ∈ Λ2.

For f ∈ Λ2, we have f ∈ L2(M) in the sense of vector stochastic integration (see also
Lemma 1.51 in Subsection 1.5.2). Since [fT • M ]T = �f�2

Λ2 is deterministic and finite,
Novikov’s criterion shows that Z = E(fT • M) is a strictly positive uniformly integrable
martingale. Girsanov’s theorem shows that under the measure Q with dQ/dP = Zt on Ft

for each t ∈ [0, T ], the finite variation part in the semimartingale decomposition of M is
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given by [fT • M, M ] = h, where h(t) = (1[0,t]πf) · µ for t ∈ [0, T ]. These considerations
motivate the following definition.

Definition 1.13. We denote by H the set of all h: [0, T ] → Rd with the representation

h(t) = J(fh)(t) :=
� t

0
π(s)fh(s) µ(ds), t ∈ [0, T ], (1.2)

for some fh ∈ Λ2, where the integral in (1.2) is to be understood componentwise as a
Lebesgue–Stieltjes integral.

As Proposition 1.18 below will show, upon being endowed with an appropriate inner
product, H becomes the Cameron–Martin space of the Gaussian measure γM which is
induced by M on C0([0, T ];Rd). To the best of our knowledge, there exists no explicit
characterization of the Cameron–Martin space of γM at the present level of generality
in the literature so far, as one usually assumes M to be a Brownian motion, which is a
special case of our setting (see Example 1.7).

Example 1.14. In the context of Example 1.7, H coincides with the set of absolutely
continuous functions whose densities are square-integrable with respect to λ.

Remark 1.15. The Cameron–Martin space of fractional Brownian motion is not contained
in our framework, except for the special case of a Brownian motion. The matrix-valued
function π is not to be confused with the square-integrable but singular kernel which
appears in integral representations of fractional Brownian motion and, more generally,
Volterra type Gaussian processes. However, our framework can be extended to multi-
variate versions of these processes with representations of the form M̃t =

� T
0 k(t, s) dMs,

where k denotes an Rd×d-valued kernel function, for which, under suitable assumptions
on k, the corresponding Cameron–Martin space consists of functions of the form

h̃(t) =
� T

0
k(t, s)π(s)fh(s) µ(ds), t ∈ [0, T ],

for some fh ∈ Λ2. This formulation gives rise to the study of refined versions of
multivariate Volterra type Gaussian processes as well as multivariate fractional stochastic
volatility models, as one can now distinguish more explicitly between time-inhomogeneous
volatility patterns which are induced by µ (or equivalently, by the quadratic variation
C), the dependency structure of the components of M , which is modeled by the function
π, and the path irregularities of M̃ , which are induced by the matrix-valued kernel k.
Remark 1.16. Eq. (1.2) suggest a generalization, where the functions fh assume values in
a (possibly infinite-dimensional) Hilbert space H̃, and π assumes µ-almost everywhere
values in the set of positive semi-definite operators on H̃ . In this case, the integral in (1.2)
is to be understood as a Lebesgue–Stieltjes–Bochner integral.
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Example 1.17. Let w: [0, T ] → [1, ∞) be a function in L1(λ;R) that is non-decreasing,
set Σ = Id, and define the measure µ through µ(A) =

�
A w(s) λ(ds) for A ∈ B[0,T ]. In

line with Example 1.9, we can then construct a process M by means of the increasing
and continuous function f : [0, T ] → R+ given by f(t) := µ([0, t]) for t ∈ [0, T ]. In the
context of Definition 1.13, the corresponding space H then has similarities to the forward
curve space Hw (cf. Filipović (2001, Chapter 5)) that is used in interest rate modelling.

Since elements from H will be precisely those which we consider for the drift adjustment
of M in Sections 1.3 and 1.4, we need to collect some useful properties which will be
needed later on (in particular for Theorem 1.24). The following proposition collects
these properties and further deepens the connections to the process M . As it turns
out, being endowed with a suitable inner product, H is not only the isometric image of
the space Λ2 whose definition was inspired by the representation (1.1) of [M ], but H is
also the Cameron–Martin space of the Gaussian measure γM which is induced by M on
C0([0, T ];Rd).

Proposition 1.18. Consider the mapping �·, ·�H given by �g, h�H := �fg, fh�Λ2 for
g, h ∈ H. Then:

(a) The integral in (1.2) is well defined for all fh ∈ Λ2 and t ∈ [0, T ];
(b) (H, �·, ·�H) is a real separable Hilbert space;
(c) J : Λ2 → H is a linear isometry, and (H0, �·, ·�H) is an inner product space whose

completion is (H, �·, ·�H), where we set H0 := J(Λ2,0) ⊂ H;
(d) To each F ∈ H∗ there corresponds a unique function gF ∈ H, such that

F (h) = �gF , h�H =
� T

0
fT

gF
(s)π(s)fh(s) µ(ds), h ∈ H,

and �F�op = �gF �H . Therefore, H∗ is isometrically isomorphic to H;
(e) H is the Cameron–Martin space of the centered Gaussian measure γM that is

induced by M on E = C0([0, T ];Rd).

Remark 1.19. Unless H = E, where the closure is taken in E, the measure γM will be
degenerate (see Remark 1.44). The identity H = E holds in some special cases, e.g. if
µ = λ and π ≡ Id, where the proof builds on the fact that continuous functions can be
uniformly approximated by piecewise linear functions.

For the purpose of the next result, we introduce the function I: E → R+,

I(g) =
�1

2
� T

0 fT
g (s)π(s)fg(s) µ(ds) for g ∈ H,

∞ otherwise.
(1.3)
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Example 1.20. In the context of Example 1.8, π takes the form π(t) = Σ(t)ΣT(t). On
the other hand, in the context of Example 1.9, the measure µ could be the Lebesgue–
Stieltjes measure that is induced by Cantor’s ternary function and thus singular with
respect to λ. The setting typically discussed in the literature, where M is a standard
Brownian motion, does not encompass either of these examples.

In Subsection 1.3.1 we will discuss an importance sampling method that uses methods
from the theory of large deviations. To this end, one needs to understand the asymptotic
behavior of the scaled process

√
εM as ε � 0. If M is a Brownian motion, then the corre-

sponding result is referred to as Schilder’s theorem (cf. Bogachev (1998, Corollary 4.9.3),
Lifshits (2012, Theorem 8.3) and Stroock (2011, Theorem 8.4.1)). As a consequence of
Proposition 1.18(e) and Proposition 1.48, we obtain the following result, whose novelty is
the explicit characterization of the function I (also referred to as rate function) in (1.3)
at the presented level of generality.

Proposition 1.21. In the context of Proposition 1.18(e) we have, for each F ∈ BE,

− inf
g∈F ◦ I(g) ≤ lim inf

ε�0
ε logP

�√
εM ∈ F

� ≤ lim sup
ε�0

ε logP
�√

εM ∈ F
� ≤ − inf

g∈F
I(g)

where the function I: E → R+ is specified in (1.3).

For notational convenience, we introduce the following convention.

General Convention 1.22. Henceforth we denote by D a dense subset of Λ2.

Example 1.23. We have already encountered two admissible candidates for the set D:
Λ2,0 and C([0, T ];Rd), see Lemma 1.10(c) and 1.10(d).

The following theorem helps us to identify dense subsets and subspaces of H, and
shows how these relate to the topological support (see Remark 1.44 in Subsection 1.5.1)
of the measure γM which we encountered in Proposition 1.18.

Theorem 1.24. Let H(D) denote the set of all h ∈ H with fh ∈ D. Then:

(a) H(D) is a dense subset of H which is separable when endowed with the subspace
topology;

(b) If D is also a linear subspace of Λ2, then:

(1) (H(D), �·, ·�H) is an inner product space, whose completion is H;
(2) There exists a countable orthonormal basis of H which consist of elements

from H(D);
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(c) In the context of Proposition 1.18(e), the topological support of γM coincides with
H(D), where the closure is taken in E. In other words,

γM

�
C0([0, T ];Rd) \ H(D)

"
= P

�
M ∈ C0([0, T ];Rd) \ H(D)

�
= 0,

hence outside a P-null set, paths of M can be uniformly approximated by sequences
from H(D).

In Section 1.2, we will discuss classes of feedforward neural networks that are also
dense subsets of Λ2, thereby satisfying Convention 1.22. Together with Theorem 1.24,
this will show that we can approximate any element from H, up to the isometry J , by
feedforward neural networks, which will be essential for Sections 1.3 and 1.4, where we
will approximate the drift adjustment of M which minimizes the variance of the Monte
Carlo estimator with feedforward neural networks.

1.2. Approximation capabilities of neural networks
In this section, we study feedforward neural networks as elements of the space Λ2 and
show how they generate, under suitable assumptions on the activation function, dense
subspaces of H, thereby providing a first theoretical justification for approximating the
optimal drift adjustment with feedforward neural networks when studying importance
sampling in Sections 1.3 and 1.4 below.

We know from Lemma 1.10(d) that C([0, T ];Rd) is continuously embedded into Λ2,0

as a dense linear subspace. Moreover, Lemma 1.10(c) shows that Λ2,0 is dense in
Λ2. Consequently, every dense linear subspace D of C([0, T ];Rd) is densely embedded
into Λ2, thereby satisfying Convention 1.22, in which case H(D) is dense in H by
Theorem 1.24(a). For this reason, we first focus our attention on finding dense linear
subspaces of C([0, T ];Rd) in Proposition 1.28, before relaxing the continuity assumption
in Proposition 1.29 below.

Neural networks are one particular class of functions which is of interest to us. On the
one hand it satisfies the required density in C([0, T ];Rd), and on the other hand it gives
rise to efficient numerical optimization procedures which have led to fascinating results
in the domain of financial and actuarial mathematics in recent years. When studying
neural networks, the property of being dense in a topological space is referred to as the
universal approximation property (UAP; cf. Kratsios (2021, Definition 2)). Theorems
which establish the density of neural networks in a topological space are referred to as
universal approximation theorems (UAT).

There are many different neural network architectures for which the universal approxi-
mation property has been shown to hold in various topological spaces (cf. Cybenko (1989);
Funahashi (1989); Hornik (1991); Hornik et al. (1989); Kidger and Lyons (2020); Leshno
et al. (1993); Liao et al. (2003); Mhaskar and Micchelli (1992); Park and Sandberg (1991,
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1993); Pinkus (1999); Zhang et al. (1995)). For ease of presentation, we will discuss the
class of feedforward neural networks, also called multilayer perceptrons or multilayer
feedforward neural networks. Note that our discussion is limited to architectures that
yield universal approximation theorems in C([0, T ];Rd) and Λ2 (see also Subsection 1.2.1
for a UAT with respect to Hölder norms). There are many architectures for which the
UAP has been established in other topological spaces, but which we will not discuss in
this chapter.

Definition 1.25. Given k ∈ N, l ∈ N and ψ: R → R, we denote by N N d
k,l(ψ) the set of

feedforward neural networks with one neuron in the input layer, d neurons with identity
activation function in the output layer, k hidden layers, and at most l hidden nodes with
ψ as activation function in each hidden layer (cf. Kidger and Lyons (2020, Definition 3.1)).

Remark 1.26. Functions from N N d
k,l(ψ) can be represented as follows. Consider affine

functions W1: R → Rl, Wk+1: Rl → Rd and W2, . . . , Wk: Rl → Rl. For i = 1, 2, . . . , k,
denote Fi = ψ ◦ Wi, where the activation function ψ is applied componentwise. Then, an
element from N N d

k,l(ψ) is given by t (→ Wk+1 ◦ Fk ◦ · · · ◦ F1(t).

If the number of nodes in the hidden layers can be arbitrarily large, we write N N d
k,∞(ψ).

Likewise, we write N N d
∞,l(ψ) if the number of hidden layers can be arbitrarily large.

Finally, the notation N N d
∞,∞(ψ) = .

k∈N N N d
k,∞(ψ) is to be understood in an analogous

way. For the purpose of Example 1.31 below, let us also introduce the following notation:
If A is a finite set of functions f : R → R, then N N d

k,l(A) denotes the set of feedforward
neural networks, where the hidden nodes are endowed with either of the functions from
A. As a special case, we then have N N d

k,l(A) = N N d
k,l(ψ) for A = {ψ}.

Functions in N N d
1,∞(ψ) are called shallow feedforward neural networks, while functions

in N N d
∞,∞(ψ) are generally referred to as deep feedforward neural networks. The set

N N d
∞,l(ψ) ⊂ N N d

∞,∞(ψ) of deep narrow networks, where l ∈ N is fixed, is also of special
interest (cf. Kidger and Lyons (2020)).

In the context of Definition 1.25, the function ψ is sometimes also called squashing
function, sigmoid function or ridge activation function. Different terms have been chosen
based on the properties of ψ, which in general differ based on which topological spaces
we are studying the UAP in. For the sake of simplicity, we call ψ an activation function
throughout this chapter, and impose necessary properties on ψ wherever needed. In light
of Lemma 1.10(d), we are particularly interested in the UAP in C([0, T ];Rd). At this
point however, we need to discuss a technicality first.

For a given Borel measure ν on [0, T ] and f, g ∈ C([0, T ];Rd), we write f ∼ν g if
f = g outside a ν-null set. Note that ∼ν is a binary relation on C([0, T ];Rd) which
is reflexive, symmetric and transitive, hence ∼ν is an equivalence relation. We can
thus consider the quotient space Cν([0, T ];Rd) of C([0, T ];Rd) under ∼ν , on which the
ν-essential supremum � · �L∞([0,T ],ν) is a norm, making (Cν([0, T ];Rd), � · �L∞([0,T ],ν)) a
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normed vector space. A modification of Lemma 1.10(d) shows that Cν([0, T ];Rd) is
continuously embedded into Λ2,0 as a dense linear subspace, provided that µ is absolutely
continuous with respect to ν.

Let us collect classical versions of the universal approximation theorem which are
concerned with the (almost everywhere) uniform approximation of continuous functions
(cf. Hornik (1991); Kidger and Lyons (2020); Leshno et al. (1993)), as we will be referring
to them in the proofs of the subsequent results.

Theorem 1.27. Given ψ: R → R, consider the assumptions:

(1) ψ is continuous, bounded and non-constant;
(2) ψ is continuous and nonaffine, and there exists a point x ∈ R at which ψ is

continuously differentiable with ψ�(x) ,= 0;
(3) ψ is locally λ-essentially bounded. Moreover, ψ is λ-almost everywhere not an

algebraic polynomial, and the set of points of discontinuity of ψ is a λ-null set.

Then:

(a) If 1.27(1) holds, then N N d
1,∞(ψ) is dense in C([0, T ];Rd);

(b) If 1.27(2) holds, then N N d
∞,d+3(ψ) is dense in C([0, T ];Rd);

(c) If 1.27(3) holds, then N N d
1,∞(ψ) is dense in Cλ([0, T ];Rd).

The following two Propositions 1.28 and 1.29 yield dense subsets of Λ2 which consist
of feedforward neural networks. We can therefore consider these sets as admissible for
the set D in the context of Convention 1.22. Consequently, due to Theorem 1.24 and
under suitable assumptions on ψ, feedforward neural networks are, up to the isometry J ,
dense in H.

Proposition 1.28 below is a consequence of Theorem 1.27 and Lemma 1.10(d). For
simplicity, we only formulate it for N N d

1,∞(ψ), where the case for N N d
∞,d+3(ψ) can

be argued analogously. Since N N d
1,∞(ψ) is a subset of N N d

k,∞(ψ) for every k ∈ N,
Propositions 1.28 and 1.29 below do hold for N N d

k,∞(ψ), k ∈ N, too.

Proposition 1.28. In the context of Theorem 1.27, assume either that Condition 1.27(1)
holds, or that Condition 1.27(3) holds and µ is absolutely continuous with respect to λ.
Then N N d

1,∞(ψ) is a dense linear subspace of Λ2,0.

By looking at the proof of Proposition 1.28 (which is presented in Subsection 1.5.2) it
becomes clear that we cannot impose Assumption 1.27(3) in case that µ is not absolutely
continuous with respect to λ. This is relevant in particular for Example 1.9, where
we would need to impose either Assumption 1.27(1) or Assumption 1.27(2). Moreover,
assuming ψ to be (λ-almost everywhere) continuous is also rather restrictive, given that
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functions in Λ2 need not be continuous. By arguing along the lines of Cybenko (1989);
Hornik (1991), we can actually drop the continuity assumption on ψ, at the cost of
requiring boundedness, which is not required in Assumptions 1.27(2) and 1.27(3).

Proposition 1.29. If ψ is bounded, measurable and non-constant, then N N d
1,∞(ψ) is a

dense linear subspace of Λ2,0.

For notational simplicity, let us convene that the activation function ψ satisfies sufficient
conditions such that either Proposition 1.28 or 1.29 is applicable.

General Convention 1.30. Henceforth we assume that either Condition 1.27(1), 1.27(3)
or the assumptions from Proposition 1.29 hold, depending on whether µ is absolutely
continuous with respect to λ or not, and whether we need to require ψ to be (λ-almost
everywhere) continuous.

Example 1.31. Fix d = 1 as well as µ = λ. Note that in this case we have π ≡ 1. Set
D = N N 1

1,∞(ψ) = span{[0, T ] . t (→ ψ(αt + η) : α, η ∈ R}, where ψ = tanh. Since every
f ∈ D is continuous and thus bounded on [0, T ], we may replace the Lebesgue by the
Riemann integral.

If α = 0 and η ∈ R, then
� t

0 ψ(η) ds = ψ(η)t for t ∈ [0, T ]. On the other hand, if α ,= 0
and η ∈ R then, by substitution,� t

0
ψ(αs + η) ds = 1

α

�
ψ̃(αt + η) − ψ̃(η)

"
, t ∈ [0, T ],

where ψ̃(·) = log(cosh(·)). Similarly, if ψ is the standard sigmoid (logistic) function, then
the same applies with ψ̃(·) = log(1 + exp(·)), which is also called softplus function. To
sum up, we see that

H(D) = span
�
id : [0, T ] . t (→ t, N N 1

1,∞(ψ̃)
�

= N N 1
1,∞({id, ψ̃}).

Provided that ψ is Riemann integrable, Example 1.31 shows that, compared to the set
D = N N 1

1,∞(ψ), the set H(D) can be obtained by modifying the activation function,
and adding the identity function into the set of admissible activation functions. This
can be helpful when optimizing over functions in H(D), because one avoids having to
implement integral operations. What is more, functions in H(D) enjoy the property of
being absolutely continuous, provided that µ is absolutely continuous with respect to λ,
while this is not always the case for functions from N N 1

1,∞(ψ), e.g. if ψ is not continuous.
Note that we formulated Propositions 1.28 and 1.29 for shallow feedforward neural

networks. However, as already mentioned above, Propositions 1.28 and 1.29 do hold for
the set of deep neural networks, too. For a discussion on the topic of depth vs. width,
see for example Lu et al. (2017); Ronen and Ohad (2016).
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1.2.1. Interlude: Universal approximation in Hölder norm
In Theorem 1.27, we cited classical versions of the universal approximation theorem which
are concerned with (almost everywhere) uniform approximation of continuous functions.
Note that this is, in essence, a topological statement, and we may seek for refined
approximation results that hold with respect to stricter topologies. Natural candidate
topologies with respect to which we may seek to derive a universal approximation theorem
are Hölder type topologies.

Given α ∈ (0, 1), we denote by Eα = Cα
0 ([0, T ];Rd) ⊂ C0([0, T ];Rd) the vector space

of Rd-valued, α-Hölder continuous functions on [0, T ] that are zero at the origin. The
space Eα is also referred to as α-Hölder space. We endow this space with the topology
which is induced by the norm

Eα . f (→ �f�α := sup
s,t∈[0,T ]
0<t−s≤1

|f(t) − f(s)|
(t − s)α

.

The Kolmogorov–Chentsov continuity theorem shows that all paths of Rd-valued
standard Brownian motion are α-Hölder continuous for every α ∈ (0, 1/2), hence it would
be desirable to use Eα as the space on which to consider the restriction of the classical
Wiener measure (see Example 1.1 and Definition 1.42). Although (Eα, � · �α) is indeed a
real Banach space, it does not contain a countable dense subset and is thus not separable
(cf. Schmock (2024, Exercise 2.126)).

We need to pass to the little α-Hölder space, i.e. the subspace Eα,0 of all f ∈ Eα that
satisfy |f(t) − f(s)| = o(|t − s|α) as |t − s| � 0. Then (Eα,0, � · �α) is a real Banach
space. Eα,0 is also referred to as the space of α-Hölder paths with vanishing Hölder
oscillation (cf. Friz and Hairer (2020, Exercise 2.12)). Note that Eα,0 has a very useful
characterization: It is the closure of C∞

0 ([0, T ];Rd), the vector space of Rd-valued smooth
functions on [0, T ] that are zero at the origin, where the closure is taken with respect
to the topology induced by � · �α. Moreover, we have the inclusion Eβ ⊂ Eα,0 for all
0 < α < β < 1.

In the context of Gaussian measures and large deviations theory, the space Eα,0 has
been studied in great detail (cf. Andresen et al. (2013); Baldi et al. (1992); Ciesielski
(1960)). In particular, the following important property has been shown to hold: If we
fix π = Id and µ = λ, then H is continuously embedded into Eα,0 for each α ∈ (0, 1/2),
and there exists a countable family of functions in H (the Faber–Schauder system) that
constitutes a Schauder basis of (Eα,0, � · �α). While on the one hand this implies the
separability of Eα,0, more importantly, we see that H is not only continuously, but
also densely embedded into Eα,0. In conjunction with Theorem 1.24, and as a direct
consequence to this observation, we obtain the following result.

Proposition 1.32. Fix µ = λ, π = Id and α, β ∈ (0, 1/2) with β < α. Then, in the
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context of Propositions 1.28 and 1.29, for each f ∈ Eα,0, there exists a sequence (fn)n∈N
in N N d

1,∞(ψ) such that
lim

n→∞ �f − J(fn)�α = 0.

In particular, every smooth function f ∈ C∞
0 ([0, T ];Rd) and every α-Hölder continuous

function f ∈ Eα can be approximated, up to the linear isometry J (see Definition 1.13),
by sequences from N N d

1,∞(ψ) with respect to � · �α and � · �β, respectively.

Let us conclude this subsection with several remarks. First, note that, based on
Ciesielski et al. (1993), Proposition 1.32 should extend to certain Besov–Orlicz type
norms, which induce stricter topologies than the Hölder norms. Moreover, it should be
possible to relax the assumption µ = λ by considering a modified Hölder norm with
denominator µ((s, t])α instead of (t − s)α. Finally, note that the universal approximation
property of neural networks in topological spaces with topologies that are stricter than
the one induced by the uniform norm have already been studied in the literature. See
e.g. Gühring et al. (2020), which studies the UAP in Sobolev spaces.

1.3. Importance sampling with feedforward neural
networks

Upon having studied the tractable space H of drift adjustments which coincides with the
Cameron–Martin space of the Gaussian measure γM , and having proved that feedforward
neural networks are, up to the isometry J , dense in H by combining Theorem 1.24
and Propositions 1.28 resp. 1.29, we now turn our attention to importance sampling.
To this end, we first write down the basic setting. In Subsection 1.3.1, we then study
how our method complements a classical approach which employs ideas from large
deviations theory, before finally studying the full problem in Subsection 1.3.2. Most
notably, Theorem 1.38 below provides a theoretical justification for our simulations in
Section 1.4, see also Remark 1.39.

Let C denote the vector space of Rn-valued, continuous and F-adapted processes. Let
a: Ω × [0, T ] × C → Rn and b: Ω × [0, T ] × C → Rn×d be non-anticipative coefficients (cf.
Cohen and Elliott (2015, Definition 16.0.3)), such that the stochastic differential equation

dXt = at(X) dCt + bt(X) dMt, t ∈ [0, T ], (1.4)

subject to X0 ≡ x ∈ Rn, admits a unique weak solution. For ease of notation, we
write at(X), bt(X) instead of a(ω, t, X), b(ω, t, X), and understand Eq. (1.4) to hold
componentwise, i.e. Xi

t = xi + (a(X)i • C)t + (b(X)i,· • M)t for each i ∈ {1, 2, . . . , n} and
t ∈ [0, T ].

Let F be a real-valued random functional on Ω × C([0, T ];Rn), such that the mapping
Ω . ω (→ F (ω, X(ω)) is FT -measurable. For simplicity we write F (·, X) = F (X), and
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call F (X) a random payoff. We are interested in obtaining a Monte Carlo estimate of its
expectation under P,

EP[F (X)] =
�

Ω
F (ω, X(ω))P(dω), (1.5)

provided that (1.5) is a real number.
Remark 1.33. If EP[F (X)] is to denote an option price, then we would require P to
be a risk-neutral measure. However, the results in this section do not require P to be
risk-neutral. Actually, we do not need to assume EP[F (X)] to be an option price, as long
as X follows the SDE (1.4) and F (X) ∈ L0(FT ).

Example 1.34. The SDE (1.4) can model the evolution of asset prices within stochastic
volatility models. Thus, our method complements Robertson (2010), where the author
employs methods from the theory of large deviations in order to derive asymptotically
optimal drift adjustments (see Subsection 1.3.1, where we discuss asymptotic optimality
in the context of Guasoni and Robertson (2008)) for pricing stochastic volatility models,
very much in the spirit of Guasoni and Robertson (2008).

Let (Xi)i∈N denote a sequence of independent copies of solutions to (1.4). By the
strong law of large numbers, the sample means Zk = *k

i=1 F (Xi)/k converge P-almost
surely to m = EP[F (X)]. Moreover, if F (X1) has a finite variance σ2 > 0 then, according
to the central limit theorem, as k → ∞, the law of

√
k(Zk − m) converges weakly to

N (0, σ2). We therefore see that Zk − m is approximately normally distributed with mean
zero and standard deviation σ/

√
k. In practice, the standard error σ/

√
k can be quite

large even for large values of k, which calls for the application of variance reduction
methods.
Remark 1.35. For each f ∈ Λ2, we have that fT • M is a real-valued continuous local
martingale with [fT • M ]t =

� t
0 fT(s)π(s)f(s) µ(ds) for t ∈ [0, T ]. As a consequence,

similarly as argued in Remark 1.4, fT • M is a Gaussian F-Markov process with

L
�
(fT • M)t − (fT • M)s

 
= N

�
0,

� t

s
fT(u)π(s)f(u)µ(du)

 
,

for s < t in [0, T ], which shows how one can simulate increments of fT • M , provided
that the integrals

� t
s fT(u)π(s)f(u)µ(du) can be explicitly computed.

Recall that, whenever Y is a real-valued continuous semimartingale, the Doléans
exponential E(Y ) is the strictly positive continuous semimartingale that is, up to indis-
tinguishability, the unique solution in L(Y ) to the stochastic integral equation

E(Y ) = exp (Y0) +
� ·

0
E(Y )s dYs,

and is given by E(Y ) = exp (Y − [Y ]/2) (cf. Schmock (2024, Theorem 6.61)). By a
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generalization of the functional equation of the exponential function, E(Y )−1 = E(−Y +
[Y ]). We refer to Rheinländer (2010) for a survey on stochastic exponentials.

Since M is a continuous local martingale and [fT
h

• M ]T = �h�2
H < ∞ for each h ∈ H,

fT
h

• M is a square integrable martingale (see also Lemma 1.51 in Subsection 1.5.2),
and E(fT

h
• M) is a non-negative continuous local martingale, hence a supermartingale.

Moreover, since EP[exp (k
2 [fT

h
• M ]T )] = exp (k

2 �h�2
H) < ∞ for every k > 1, Cohen and

Elliott (2015, Theorem 15.4.6) and Lépingle and Mémin (1978) show that E(fT
h

•M) ∈ Hp

for every p = k/(2
√

k − 1) > 1 with upper bound

�E(fT
h • M)�Hp ≤ p

p − 1 exp
�√

k − 1
2 �h�2

H

 
.

An application of de la Vallée Poussin’s criterion (see e.g. Cohen and Elliott (2015,
Corollary 2.5.5)) further shows that E(fT

h
• M) ∈ Hp implies the uniform integrability of

E(fT
h

• M).
By a change of measure, Eq. (1.5) can now be rewritten as

EP[F (X)] = EPh
[F (X)(E(fT

h • M)−1)T ], (1.6)

where Ph is defined by dPh = E(fT
h

• M)t dP on Ft for all t ∈ [0, T ]. If we denote by
Fh(X) := F (X)(E(fT

h
• M)−1)T the modified random payoff, then the P-expectation of

F (X) and the Ph-expectation of Fh(X) are identical. Provided that F (X) has a finite
second moment with respect to P, the variance of Fh(X) under Ph is given by

EPh
[F 2

h (X)] − EPh
[Fh(X)]2 = EP[F 2(X)(E(fT

h • M)−1)T ] − EP[F (X)]2. (1.7)

Therefore, we can compute (1.6) under the measure Ph and try to find h ∈ H such
that (1.7) is minimized. Note that the second term on the right-hand side of (1.7) does
not depend on h, so that we focus on minimizing the first term, which for each h ∈ H is
given by

V (h) := EP[F 2(X)(E(fT
h • M)−1)T ] = EP

�
F 2(X) exp

� − (fT
h • M)T + �h�2

H/2
"�

.

To sum up, our problem reads
min
h∈H

V (h), (1.8)

provided that a minimizer of V exists (see Theorem 1.38 for sufficient conditions).

1.3.1. Approximating the asymptotically optimal sampling measure
Before we turn our attention to solving (1.8), let us first discuss the classical approach
presented in Guasoni and Robertson (2008), that uses methods from the theory of large
deviations, and show how our method complements it. Note that the setting of Guasoni
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and Robertson (2008) is a special case of the setting of Section 1.3. To this end, set d = 1,
let M be a standard Brownian motion and let F be the augmented natural filtration
of M (which satisfies the usual hypotheses). Set X = M and assume that the payoff
F : C0([0, T ];R) → R+ is continuous, where C0([0, T ];R) is endowed with the topology of
uniform convergence.

In Guasoni and Robertson (2008), the authors argue that (1.8) is in general intractable.
Rather than minimizing (1.8), the authors consider for each h ∈ H the small-noise limit

L(h) := lim sup
��0

$ logEP
�

exp
�1

$

�
2F̃ (

√
$M) − �

(
√

$fh) • M
"
)T + �h�2

H/2
" �

, (1.9)

where F̃ := log F . The limit (1.9) corresponds to approximating V (h) ≈ exp(L(h)).
Assume that F̃ : C0([0, T ];R) → R∪ {−∞} is continuous. Moreover, assume that there

exist constants K1, K2 > 0 as well as α ∈ (0, 2) such that F̃ (x) ≤ K1 + K2�x�α∞ for
each x ∈ C0([0, T ];R). As Guasoni and Robertson (2008, Theorem 3.6) shows, one can
invoke a version of Varadhan’s integral lemma to rewrite (1.9) as a variational problem,
provided that h is an element of Hbv, the space of all h ∈ H such that fh ∈ Λ2 = L2(λ) is
of bounded variation, and aim to solve minh∈Hbv L(h), provided that a minimizer exists.

For the proof of the central result Guasoni and Robertson (2008, Theorem 3.6),
the following functional is important: For M > 0 and h ∈ H let F̃h,M : H . g (→
2F̃ (g) − M�g + h�2

H + �h�2
H . By Guasoni and Robertson (2008, Lemma 7.1), there exists

a maximizer gh,M ∈ H of F̃h,M . Together with Proposition 1.28, we then obtain

Proposition 1.36. Assume that ψ: R → R is continuously differentiable, bounded and
non-constant, and set D = N N 1

1,∞(ψ). Then H(D) ⊂ Hbv, and for each M > 0 and
h ∈ H, there exists a sequence (hn)n∈N in H(D) such that

lim
n→∞ F̃h,M (hn) = F̃h,M (gh,M ) = max

g∈H

�
2F̃ (g) − M�g + h�2

H + �h�2
H

"
.

According to Guasoni and Robertson (2008, Theorem 3.6) and the discussion thereafter,
the strategy for finding a minimizer of L is as follows: Find a maximizer gh,1 to F̃h,1 for
h ≡ 0. Verify whether gh,1 is actually an element of Hbv and, if this is the case, then gh,1
minimizes L provided that L(gh,1) = F̃h,1(gh,1) holds true. Since the evaluation of L at
gh,1 involves having to find a maximizer of F̃gh,1,1/2, checking whether L(gh,1) = F̃h,1(gh,1)
might only be feasible by a numerical approximation which introduces an error. However,
if one could establish said identity, then gh,1 would be a minimizer of L, in which case
we say that gh,1 is asymptotically optimal.

Let us assume that there exists a maximizer gh,1 to F̃h,1 for h ≡ 0 that is indeed
asymptotically optimal. In light of Proposition 1.36, we can then approximate gh,1
by a sequence (hn)n∈N from H(N N 1

1,∞(ψ)) such that F̃h,1(hn) converges to F̃h,1(gh,1).
Theorem 1.38(b) below then implies that V (hn) converges to V (gh,1). To sum up, rather
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then trying to find a minimizer of V , one might instead study

max
g∈H

F̃h,1(g) = max
g∈H

�
2F̃ (g) − �g�2

H

"
(1.10)

and solve the modified problem (1.10) with feedforward neural networks.

1.3.2. Approximating the optimal sampling measure
In what follows, we consider the full problem (1.8) and propose to solve it with feedforward
neural networks. One advantage of this approach is that we do not, in contrast to
Subsection 1.3.1, seek to find an asymptotically optimal drift adjustment by minimizing
(1.9), but rather stay within the full problem (1.8). Moreover, Theorem 1.38(d) and
Remark 1.39 provide a theoretical justification for employing the tractable class of shallow
feedforward neural networks for this optimization problem. The numerical simulations
in Section 1.4 will demonstrate that indeed, we obtain substantial reductions in the
variance of the Monte Carlo estimators for several multivariate asset price processes and
path-dependent payoff functionals.

In the following lemma, we consider a nonlinear operator which maps elements from
Cameron–Martin space to probability densities. This result is essential, as it will imply
in Theorem 1.38 below that the optimal sampling measure can be approximated by
measures which are generated by feedforward neural networks.

Lemma 1.37. The operator Ap : H . h (→ (E(fT
h

• M)−1)T ∈ Lp(P) is continuous for
each p ∈ [1, ∞). Moreover, Ap is not quasi-bounded, meaning that

lim sup
	h	H→∞

�Ap(h)�Lp(P)
�h�H

= ∞.

Finally, we formulate Theorem 1.38. The proof (which is presented in Subsection 1.5.2)
complements Lemaire and Pagès (2010, Proposition 4) and not only shows, under
rather weak assumptions, that the functional V does indeed admit a minimizer, but
Theorem 1.38(d) applied to a dense subset D of Λ2 which consists of feedforward neural
networks provides the theoretical justification for the simulations in Section 1.4, see also
Remark 1.39 below.

Theorem 1.38. Assume that P[F 2(X) > 0] > 0, and that there exists some ε > 0 such
that F (X) ∈ L2+�(P). Then:

(a) V is R+-valued;
(b) V is continuous;
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(c) There exists a minimizer of V , i.e.

arg min
h∈H

V (h) =
�
g ∈ H : V (g) ≤ V (h), ∀h ∈ H

� ,= ∅;

(d) There exists a sequence (hn)n∈N in H(D) such that limn→∞ V (hn) = minh∈H V (h).

Remark 1.39. In the context of Theorem 1.38(d), we may seek to find a minimizer of
V by performing measure changes which are induced by Doléans exponentials of the
form E(fT • M), where f ∈ N N d

1,∞(ψ). In Section 1.4, we pursue this approach for
several different asset price models, achieving substantial reductions in the variance of
the corresponding Monte Carlo estimators.
Remark 1.40. Theorem 1.38(d) shows that neural network-induced changes of the sampling
measure can approximate the optimal sampling measure arbitrarily well in the sense that
the second moment of the modified payoff under the optimal measure can be approximated
up to an arbitrarily small $ > 0. However, the proof is not constructive, it does not deliver
a recipe how to actually obtain such a sequence (hn) of neural network-induced elements
from Cameron–Martin space that converges to the optimum. In Section 5 below, we use
stochastic gradient descent to train our neural networks. This procedure builds on the
method of stochastic approximation, which was pioneered in Robbins and Monro (1951).
Stochastic approximation for importance sampling for option pricing in continuous-time
models has been studied in Lemaire and Pagès (2010). We refer to their Section 3 for
details on how to construct convergent sequences of functions based on the method of
stochastic approximation.
Remark 1.41. Let us assume that the SDE (1.4) depends on a set of parameters α ∈ Rm

for some m ∈ N. Fix i ∈ {1, 2, . . . , m}, and let us further assume that we can exchange
the order of differentiation and integration, i.e. ∂

∂αi
EP[F (X)] = EP[ ∂

∂αi
F (X)]. If we

wanted to jointly reduce the standard error of the Monte Carlo estimators of the expected
random payoff and of its sensitivity with respect to αi, we could modify the definition of
V :

Ṽ (h) = EP
��

w1F 2(X) + w2
� ∂

∂αi
F (X)

"2"
(E(fT

h • M)−1)T

�
, h ∈ H,

where w1, w2 ∈ (0, 1) are weights that sum up to 1. If there exists some ε > 0 such that
w1F 2(X) + w2( ∂

∂αi
F (X))2 ∈ L1+ε(P) and P[w1F 2(X) + w2( ∂

∂αi
F (X))2 > 0] > 0, then

Theorem 1.38 applies correspondingly. Analogous considerations hold for higher-order
sensitivities as well as for the joint reduction of standard errors for more than one
sensitivity. We refer the reader to Glasserman (2003, Section 7.2) for details on the
computation of pathwise derivatives for some classical models and payoffs.
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1.4. Numerical study
In this section, we provide a range of carefully chosen numerical examples to showcase
the various strengths of our method. Additionally, we will compare our approach to
other methods that have been proposed in the literature. All computational tasks were
performed using Python, leveraging the Keras deep learning API for the construction and
training of our neural networks. All codes that were used for the simulations are available
on Github, see https://github.com/aarandjel/importance-sampling-with-feedforward-
neural-networks.

Let us provide a brief overview of the examples appearing in the subsequent subsec-
tions. In Subsection 1.4.2, we explore a time-change instance that deviates from the
conventional assumption of µ = λ to better represent phases of changing business activity.
Subsection 1.4.3 considers a knock-out option and discusses the occurrence of multiple
rare events. Moving on to Subsection 1.4.4, we examine a stochastic volatility model
with an imposed dynamic correlation structure, which directly influences the norm on
Cameron–Martin space. Lastly, in Subsection 1.4.5, we investigate the feasibility of utiliz-
ing neural networks for importance sampling in a high-dimensional model. Throughout
all of our examples, we consider arithmetic Asian (basket) call options with strike K and
basket weights w as the chosen payoffs,

F (X) =
� 1

T

� T

0
�w, Xt� dt − K

 +
,

while Subsection 1.4.3 additionally incorporates knock-out barriers for further analysis.
To establish a solid basis for comparison, we have selected the methodologies proposed

by Glasserman et al. (1999), Guasoni and Robertson (2008), Capriotti (2008), Arouna
(2003), Su and Fu (2000), as well as Lemaire and Pagès (2010). To underscore the
versatility of our approach in handling more general models than those presented in
the literature, we will initially present results for the models discussed in the previous
paragraph. Subsequently, we will report results from simulations performed for the
models studied in the literature mentioned above.

To train a feedforward neural network, our approach is as follows. First, we simulate
N trajectories Xi, i = 1, . . . , N of the asset price using the Euler–Maruyama method,
based on a pre-defined time-grid. Then, we decide on a set N N d

k,l(ψ) from which we
seek to identify the optimal function, by selecting the number of hidden layers k, the
number of hidden nodes l, and the activation function ψ. The output dimension d of
the neural networks aligns with the dimension of the process M . We approximate V by
computing an average over the N trajectories,

V (θ) = 1
N

N)
i=1

F 2(Xi) exp
�−(fT

θ • M i)T + �fθ�2
Λ2/2

"
, (1.11)

https://github.com/aarandjel/importance-sampling-with-feedforward-neural-networks
https://github.com/aarandjel/importance-sampling-with-feedforward-neural-networks
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where θ represents the vector encompassing all trainable parameters of the neural network
fθ, and all quantities on the right-hand side of Eq. (1.11) are appropriately discretized.
We therefore consider V as a function of the finite parameter vector θ, and aim to find
the optimal θ∗ and thus the optimal element fθ∗ from N N d

k,l(ψ).
To achieve this, we employ stochastic gradient descent, a technique originally pioneered

in Robbins and Monro (1951). Specifically, we adopt the mini-batch variant of this method,
which replaces the mean over all N trajectories with means over smaller sub-batches.
Starting from an initial guess, the parameter-vector θ is then iteratively updated with a
scaled version of the gradient of V over those sub-batches, i.e. θm+1 = θm−γm∇batchV (θm)
with learning rate γm and ∇batchV denoting the gradient of V over one specific batch.
Upon completing a full iteration through all batches, we consider the neural network
to have completed one epoch of training. For each subsequent epoch, the trajectories
contained in the individual batches can then be randomly shuffled around, and the
parameter θ is updated until a stopping criterion is reached. One notable advantage of
neural networks lies in their ability to efficiently compute gradients through the back-
propagation method. Additionally, we utilize a popular modified version of this training
routine known as Adam (cf. Kingma and Ba (2017)), which incorporates the first and
second moments of the gradient estimates to enhance performance.

In all of our subsequent examples, we train the neural networks using 100 batches,
each consisting of 1,024 trajectories. For validation purposes, we employ an additional
100 batches, also comprising 1,024 trajectories, and stop the training process when the
loss, V (θ), ceases to reduce on the validation set. The results presented in the following
tables are derived from simulations performed on separate test datasets, each containing
105 trajectories. Throughout the training, validation, and testing phases, we maintain
a fixed learning rate of 10−3 for the stochastic gradient descent, and we fix the time
horizon to T = 1 to consider the time interval [0, 1]. Unless otherwise specified, we
utilize a step size of Δt = 1/250. However, in Subsection 1.4.5, we deviate from this
convention. We employ a step size corresponding to Δt = d/104 during the training and
validation process, where d denotes the dimension of the asset price process. For example,
when d = 200 then Δt = 1/50. This adjustment is only implemented for dimensions
ranging from d = 100 to d = 1,000, while the step size always remains Δt = 1/100 for the
testing dataset, as well as for the training and validation datasets in case d < 100. In all
simulations described below, we train shallow feedforward neural networks with a single
hidden layer, using ψ(x) = tanh(x) as activation function. The number of hidden nodes
used for the various examples is reported beneath the tables. The tables below present
results for different choices of model parameters, presenting mean estimates, standard
errors, relative standard errors as a percentage of the mean, and variance ratios. The
variance ratios were obtained by comparing the variance of the mean estimate from both
a Monte Carlo and a Monte Carlo with importance sampling run, dividing the former by
the estimate of the latter.
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1.4.1. Stratified sampling with feedforward neural networks
In addition to importance sampling, stratified sampling is a widely used variance reduction
method. Stratified sampling involves constraining the fraction of trajectories sampled
from specific subsets of the sample space. To implement this method effectively, suitable
subsets of the sample space need to be chosen, covering the entire sample space, along
with the desired fractions of the overall sample falling within each subset. It is important
to note that stratification typically generates dependent sequences of random variables,
which affects the calculation of the standard error and variance of the Monte Carlo
estimator. For further information on this approach, we refer to Glasserman (2003).

In Glasserman et al. (1999), the authors investigate importance sampling and stratifi-
cation techniques for pricing path-dependent options. Similar to Guasoni and Robertson
(2008), they employ large deviations techniques to determine asymptotically optimal drift
adjustments in a discrete-time framework. In order to overcome the computational effort
that might be required to perform optimal stratification, the authors propose utilizing
the drift identified for importance sampling to perform further stratification. In the
following examples, we will augment our results based on importance sampling with the
stratified sampling approach.

More precisely, let us consider the estimation of E[F (X)]. Having discretized the
time interval into m points, assume that F (X) can be expressed as a function of Z,
with Z being a m-dimensional vector of independent standard normal variables. If f
denotes the optimal element from Cameron–Martin space, sampled at ti as a vector,
and appropriately re-scaled such that adjusting the drift of M corresponds to adding
f to Z in the discrete time case, then we want to sample Z conditional on fTZ ∈ Ai,
where Ai denotes a stratum, which is a subset of the sample space. In our case, Ai

is chosen to correspond to the interval between the (i − 1)/N and the i/N quantile of
the standard normal distribution, where N denotes the number of strata. We maintain
an equal number of replications for each stratum. For further details on simulating Z
conditional on fTZ ∈ Ai, we refer readers to Section 4 in Glasserman et al. (1999).

In Subsections 1.4.2-1.4.4, we extend our analysis beyond importance sampling by
additionally using the trained neural networks to implement stratified sampling. By com-
bining these two techniques, we demonstrate the significant potential for further variance
reduction. It is crucial to emphasize that using the optimal importance sampling drift
for stratification may not always result in optimal stratification in general. Furthermore,
it is worth noting that the setting of Glasserman et al. (1999) is discrete in time. There
is ample scope to explore optimal stratified sampling in continuous time using neural
networks.
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1.4.2. Changing business activity
Methods typically employed for importance sampling based on continuous stochastic
processes for asset prices often assume that the dynamics of the asset price are governed
by an SDE driven by a Brownian motion. Here, we aim to deviate from the conventional
framework where µ = λ, and explore an example involving a time-changed Brownian
motion. It is important to note that in this case, the time-change directly affects the
definition of the Cameron–Martin norm through the Lebesgue–Stieltjes measure µ. The
utilization of a deterministic time-change can be interpreted as a means of modelling
periods characterized by varying business activity, thus incorporating effects such as
seasonality. See Li et al. (2016) for an example where this has been done.

Let us consider the asset X governed by the dynamics dXt = rXt d[M ]t + σXt dMt,
where X0 = x and M = BCt for B representing a standard Brownian motion. Motivated
by Li et al. (2016), we make the assumption that Ct =

� t
0 ν(s) ds, where the activity rate

function ν takes the form

ν(s) =

��������������

1 + κ(s − 0.2)/0.1, s ∈ [0.2, 0.3),
1 + κ(0.4 − s)/0.1, s ∈ [0.3, 0.4),
1 + 2κ(s − 0.6)/0.1, s ∈ [0.6, 0.7),
1 + 2κ(0.8 − s)/0.1, s ∈ [0.7, 0.8),
1, else,

where κ denotes the level of business activity. Moreover, we normalize ν such that
C1 =

� 1
0 ν(s) ds = 1. In this case, µ is absolutely continuous with respect to λ with

Radon–Nikodým density ν, and [M ] = C.
Figure 1.1 illustrates a representative trajectory of X under the assumption of an

activity rate function modeled by κ = 10. The trajectory exhibits two distinct phases
characterized by heightened volatility, which can be interpreted as periods of increased
business activity. Table 1.1 below presents results obtained for various values of κ. Note
that the special case of κ = 0 corresponds to the classical Black–Scholes model.

From Table 1.1 it is evident that both importance sampling and the combined approach
of importance- and stratified sampling exhibit substantial variance reduction across all
values of κ. Notably, the combination of importance- and stratified sampling demonstrates
a remarkable enhancement in variance reduction compared to using importance sampling
alone.

In Guasoni and Robertson (2008), the authors study asymptotically optimal importance
sampling in continuous time following a large deviations approach. In Table 2 of their
work, the authors present variance ratios for an arithmetic Asian call option within a
Black–Scholes model across various values of volatility (sigma) and strike (K). We refer
to Guasoni and Robertson (2008, Section 5) for details about the model and the selected
parameters. We replicated their Table 2 using neural networks to induce optimal measure
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Figure 1.1. Typical sample path for the model described above with κ = 10, along
with the corresponding activity rate function ν. Other model parameters are
X0 = 50, r = 0.05 and σ = 0.25.

Table 1.1. Variance ratios for different levels κ of business activity.
Param. Importance Sampling IS and Stratification

κ Mean Std. err. Var. ratio Mean Std. err. Var. ratio
0 5.945 0.019 (0.32%) 129 5.9337 0.0018 (0.03%) 14,525
1 4.675 0.015 (0.32%) 154 4.6672 0.0023 (0.05%) 6,714
2 3.987 0.013 (0.33%) 167 3.9860 0.0026 (0.07%) 4,191
5 3.053 0.010 (0.33%) 207 3.0495 0.0016 (0.05%) 8,139
10 2.5286 0.0086 (0.34%) 235 2.5304 0.0016 (0.06%) 7,110

Note: Option prices and standard errors are quoted in cents. Only significant digits are reported.
Number of hidden nodes is 2. Other model parameters are X0 = 50, r = 0.05, σ = 0.25 and K = 70.
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changes and subsequently compared the obtained variance ratios. On average, employing
neural networks resulted in a 20% increase in the variance ratio. For instance, when
considering a volatility of 30% and a strike of 70, Guasoni & Robertson report a variance
ratio of 56, while our method yielded a variance ratio of 67.

In Capriotti (2008), the author studies importance sampling based on a least-squares
optimization procedure. The author presents variance ratios for various combinations
of volatility σ and strike K in Table 6, specifically for an arithmetic Asian call option
within a Black–Scholes model. Additionally, the table includes variance ratios obtained
using an adaptive Robbins–Monro procedure as proposed in Arouna (2003) for the same
set of model parameters. We replicated Table 6 in Capriotti (2008) using our method
and compared the resulting variance ratios. As it turns out, our method yields average
variance ratios that are 10% and 95% higher than the values reported by Capriotti (2008)
and Arouna (2003), respectively.

Finally, in Table 7, Capriotti provides the results for a partial average Asian call option,
as previously investigated in Su and Fu (2000). For detailed definitions of the models
and parameters utilized in the simulations, we refer to Section 5 in Capriotti (2008). We
implemented this particular model using our method. On average, our approach yielded
variance ratios that were 10% and 50% higher than the values reported by Capriotti
(2008) and Su and Fu (2000), respectively.

1.4.3. Multiple rare events
In Glasserman and Wang (1997), the authors emphasize that rare events often consist of
unions of meaningful events that represent different ways in which the rare event can
occur. In this context, we aim to examine an example where the rare event is formed
by the intersection of two rare events. We will also discuss the case of the union of rare
events later on. An illustrative example is provided by knock-out call options, which
exhibit a classical scenario where the payoff is discontinuous with respect to the asset
price trajectory. In this case, two potentially rare events can arise: (1) the arithmetic
average X̄t =

� t
0�w, Xs� ds must be above the strike at the terminal time, and (2) the

option must not be knocked out.
Consider an asset price X that follows a classical Black–Scholes model, characterized

by the SDE dXt = rXt dt + σXt dBt, with an initial value of X0 = x, where B denotes
a Brownian motion. In contrast to the previous subsection, we introduce knock-out
barriers L, U that satisfy 0 < L < X0 < K < U . The option is considered knocked out
if the arithmetic average X̄t breaches either of the two barriers at any given point in
time before or at maturity. In our example, there is a delicate balance which needs to
be achieved between giving the asset a positive drift such that X̄1 > K with sufficiently
high probability, and making sure that the option is not knocked out.

In Figure 1.2 we provide a graphical representation of the learning process of the neural
network. On a fixed dataset, we calculate the probability of the arithmetic average ending
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up above the strike K, the probability of it remaining between the knock-out barriers
at all times, as well as the variance ratio after each epoch that the neural network was
trained. Table 1.2 provides a comprehensive overview of the variance ratios corresponding
to different values of strikes K and upper knock-out barriers U .
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Figure 1.2. A visual representation of the learning process of the neural network.

Figure 1.2 highlights an interesting observation: increasing the variance ratio does not
simply result from an indiscriminate rise in the probabilities of both rare events occurring.
Instead, it becomes evident that a delicate balance between the occurrence of both rare
events is crucial to increase the variance ratio. As demonstrated in Figure 1.2, neural
networks exhibit the capability to learn and navigate this balancing act. Table 1.2 shows
again that the neural network-induced change of measure is able to reduce the variance
to varying degrees. We note that compared to the example of the previous subsection,
adding stratification does not yield such a dramatic increase in variance ratio, however
the improvement is still notable in most cases.

The model which we studied in this subsection has also been explored in Glasserman
et al. (1999). In their paper, the authors report in Table 5.2 variance ratios for different
values of the volatility, the strike as well as the knock-out barrier U (setting the lower
knock-out barrier L to zero). In contrast to our model, the knock-out occurs in case the
asset price breaches the knock-out barrier U at terminal time, i.e. in case X1 > U . We
replicated their model using our methodology and compared the achieved variance ratios.
Our method on average achieved 20% higher variance ratios for the case of importance
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Table 1.2. Variance ratios for different strikes K, volatilities σ and knock-out barriers U .
Parameters Importance Sampling IS and Stratification

K σ U Mean Std. err. VR Mean Std. err. VR

60

0.2
70 0.763 0.013 (1.70%) 7 0.779 0.012 (1.54%) 7
80 12.605 0.067 (0.53%) 10 12.588 0.049 (0.39%) 18
90 22.607 0.078 (0.35%) 18 22.673 0.032 (0.14%) 112

0.3
70 0.1826 0.0082 (4.49%) 3 0.1816 0.0080 (4.41%) 3
80 13.65 0.12 (0.88%) 4 13.60 0.11 (0.81%) 4
90 42.86 0.22 (0.51%) 5 42.89 0.16 (0.37%) 9

70

0.2
80 0.000775 0.000041 (5.29%) 356 0.000760 0.000041 (5.39%) 357
90 0.1917 0.0018 (0.94%) 144 0.1921 0.0016 (0.83%) 189
100 0.6473 0.0035 (0.54%) 203 0.6449 0.0021 (0.33%) 537

0.3
80 0.00070 0.00014 (20%) 36 0.00068 0.00014 (20.59%) 37
90 0.724 0.011 (1.52%) 17 0.733 0.010 (1.36%) 18
100 4.513 0.034 (0.75%) 18 4.507 0.029 (0.64%) 25

Note: Option prices and standard errors are quoted in cents. Only significant digits are reported.
Number of hidden nodes is 2. Other model parameters are X0 = 50, r = 0.05 and L = 40.

sampling without stratification. However, when incorporating stratified sampling, our
method on average achieved variance ratios that were 10% lower compared to those
reported in Glasserman et al. (1999, Table 5.2). Note that the setting of Glasserman
et al. (1999) is discrete in time, and that the authors consider asymptotically optimal
drift adjustments. These findings suggest that there might be ample scope to further
investigate optimal neural-network induced stratification for continuous-time models.

Let us now revisit the method proposed by Capriotti (2008). In Section 5 of his
work, the author presents an example in the form of a European straddle: F (X) =
(X1 − K)+ + (K − X1)+. Capriotti (2008) argues that in this case, the optimal sampling
density would need to be bi-modal, a property that cannot be effectively captured by a
normal distribution. As we attempted to implement this example, it became evident that
the neural network struggled to determine the appropriate drift direction. This particular
instance highlights the challenges associated with relying solely on drift adjustments for
variance reduction. It serves as an example where the rare event can be characterized as
the union of two events, shedding light on the limitations of such an approach.

1.4.4. Dynamic correlation
The generality of our approach builds on the decomposition [M ] =

�
π(s) µ(ds). While

Subsection 1.4.2 deviates from the conventional Brownian setting where µ = λ, we also
aim to present an example that diverges from the typical scenario examined in the existing
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literature, where π ≡ id, representing the identity matrix. To this end, we consider a
Heston model with a dynamic variance-covariance matrix.

We assume that the price process X follows the dynamics given by the SDE dXt =
rXt dt +

√
VtXt dBt. The instantaneous variance V follows CIR-type dynamics described

by dVt = κ(θ − Vt) dt + ξ
√

Vt dWt. B and W are correlated Brownian motions related
through d[B, W ]t = ρ(t) dt, where the correlation function takes the form ρ(x) =
ρ̄ + ρ̄A sin(2πfx). In other words, we deviate from the constant correlations regime by
means of the multiple of a sine wave with amplitude A and frequency f . We present the
results for various combinations of amplitude and frequency choices in Table 1.3 below.

Table 1.3. Variance ratios for different values of amplitude A frequency f .
Param. Importance Sampling IS and Stratification

A f Mean Std. err. Var. ratio Mean Std. err. Var. ratio
0 0 2.2145 0.0085 (0.38%) 171 2.2308 0.0063 (0.28%) 311

0.2
1 1.9378 0.0076 (0.39%) 178 1.9517 0.0058 (0.30%) 304
2 2.0807 0.0082 (0.39%) 171 2.0938 0.0062 (0.30%) 297
4 2.1498 0.0085 (0.40%) 165 2.1651 0.0065 (0.30%) 283

0.5
1 1.5544 0.0062 (0.40%) 203 1.5666 0.0048 (0.31%) 338
2 1.8926 0.0077 (0.41%) 173 1.9037 0.0059 (0.31%) 289
4 2.0553 0.0081 (0.38%) 168 2.0691 0.0062 (0.30%) 289

1
1 1.0147 0.0041 (0.39%) 268 1.0239 0.0032 (0.31%) 443
2 1.6117 0.0064 (0.40%) 202 1.6230 0.0047 (0.29%) 369
4 1.9048 0.0078 (0.41%) 165 1.9160 0.0060 (0.31%) 277

Note: Option prices and standard errors are quoted in cents. Only significant digits are reported.
Number of hidden nodes is 5. Other model parameters are X0 = 50, r = 0.05, V0 = 0.04, κ = 2,
θ = 0.09, ξ = 0.2, ρ̄ = −0.5 and K = 70.

1.4.5. Basket option
So far, we have presented results in scenarios with low dimensions. However, the multi-
dimensional formulation of our setting suggests investigating whether we can achieve
satisfactory levels of variance reduction for higher-dimensional models. Inspired by
Jourdain and Lelong (2009), we study a multi-dimensional Black–Scholes model.

Consider the d-dimensional asset price X governed by the SDE dXt = r � Xt dt + Xt �
dMt, where Mt = ΣBt represents a d-dimensional standard Brownian motion Bt with
variance-covariance matrix ΣΣT. We sample the initial value X0 of X uniformly from the
range of 10 to 200. Moreover, we sample the vector r of appreciation rates and the vector
σ of volatilities uniformly between 1% and 9% as well as 10% and 30%, respectively. The
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weight vector w is then computed as wi = ri/σ2
i and further normalized to sum to 1.

To define the matrix ΣΣT, it is necessary to specify the correlation matrix. In order to
ensure a valid correlation matrix that remains positive definite even in high dimensions,
we adopt the approach proposed by Davies and Higham (2000). Firstly, we sample a
d-dimensional vector y uniformly between 0 and 1. We then re-scale the vector y such that
the sum of its elements equals the dimension d. The algorithm proposed in Davies and
Higham (2000) then generates a valid correlation matrix, whose eigenvalues correspond
to the values in the re-scaled vector y. Finally, we still need to specify the strike. To
this end, we sample 104 observations of the arithmetic average X̄ at maturity, and then
choose the strike K to approximately be above the 90th percentile of the distribution of
X̄1. Note that the choice of K is highly dependent on the previously sampled parameters.

Table 1.4. Variance ratios for different dimensions d.
Parameters Importance Sampling
d K Mean Std. err. Var. ratio P[F (X) > 0] Q[F (X) > 0]
10 88 3.7557 0.0118 (0.31 %) 62 3.24 % 70.83 %
20 115 1.3252 0.0049 (0.37 %) 124 1.22 % 65.42 %
50 126 6.4457 0.0189 (2.93 %) 28 6.96 % 72.36 %
100 106 1.6995 0.0056 (0.33 %) 54 3.36 % 70.69 %
200 112 2.1373 0.0067 (0.31 %) 36 5.17 % 72.04 %
500 110 1.1352 0.0042 (0.37 %) 30 4.46 % 74.99 %

1,000 110 2.327 0.011 (0.47 %) 6 10.87 % 84.72 %
Note: Option prices and standard errors are quoted in cents. Only significant digits are reported.
Number of hidden nodes corresponds to the dimension d. P[F (X) > 0] represents the proportion
of trajectories in the test dataset where the payoff is positive, without incorporating a drift adjust-
ment. Q[F (X) > 0] denotes the proportion of trajectories in the test dataset where the payoff is
positive under the drift adjustment.

Table 1.4 presents variance ratios obtained for various dimensions d ranging from
d = 10 up to d = 1,000. Moreover, we also compared our method to the approach
presented in Jourdain and Lelong (2009). In their study, the authors considered the
40-dimensional case, and all volatilities, appreciation rates, and weights were chosen
uniformly across all assets in the basket. We refer to Section 3 in Jourdain and Lelong
(2009) for further details about the model as well as model parameters in their Table 1.
As it turns out, our method achieves variance ratios that are, on average, comparable to
those reported by Jourdain and Lelong (2009). It is important to note that the strikes
which were chosen are relatively close to the initial value. In previous examples, we can
observe that the obtained variance ratios tend to grow as the strike is increased. In
contrast to Jourdain and Lelong (2009), we present in Table 1.4 results for dimension up
to d = 1,000, which we believe is a distinctive aspect worth highlighting.
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Conclusions
We presented a method that uses feedforward neural networks for the purpose of reducing
the variance of Monte Carlo estimators. To this end, we studied the class of Gaussian
measures which are induced by vector-valued continuous local martingales with determin-
istic covariation. Building on the theory of vector stochastic calculus, we identified the
Cameron–Martin spaces of those measures, and proved universal approximation theorems
that establish, up to an isometry, topological density of feedforward neural networks in
these spaces. We then applied our results to a classical importance sampling approach
which seeks for an optimal drift adjustment of the processes which are driving the asset
prices. Finally, we presented the results of a numerical study, which clearly indicate the
potential of this approach.

Let us also remark that our approach comes with several challenges. In principle,
one needs to train separate feedforward networks for different models and model param-
eters. In light of Remark 1.41, one could train a feedforward network to minimize a
weighted average standard error over several models or model parameters. Complex, high-
dimensional models might call for the need of using complex neural network architectures
in order to achieve a sufficient variance reduction, which might lead to a considerable
computational effort for training the feedforward networks. On the other hand, the
competing approaches Guasoni and Robertson (2008); Robertson (2010) involve having
to solve a potentially complex, high-dimensional variational problem, whose solution
might involve a numerical procedure which might induce a considerable computational
effort, too. Finally, while Theorem 1.38 and the simulations of Section 1.4 show that
one can obtain a sufficient variance reduction with shallow feedforward networks, the
model-dependent choice of optimal architecture has not been discussed at all, which
highlights the potential for a further improvement of this method.

Outlook on further research
Throughout this chapter, we assumed for the process M to be a continuous local
martingale with deterministic covariation, such that it is a Gaussian process and induces
a Gaussian measure on path space. Clearly, there are Gaussian processes which cannot
be local martingales, e.g. fractional Brownian motion with Hurst index ,= 1/2. In line
with Remark 1.15, Section 1.1 can be extended to the study of multivariate Volterra
type Gaussian processes of the form M̃t =

� T
0 k(t, s) dMs with a matrix-valued kernel k.

While Section 1.3 makes use of the semimartingale property of M by applying Girsanov’s
theorem and studying convergence of stochastic exponentials, the Cameron–Martin
theorem (see Theorem 1.46) can still be applied to the Gaussian measure that is induced
by M̃ on path space. These considerations in particular motivate the study of a refined
class of multivariate (fractional) stochastic volatility models, their small-time asymptotics
as well as importance sampling methods for the numerical evaluation of derivatives for
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these models, which is subject to a follow-up work.
In Section 1.3, we required F (X) to be FT -measurable and Lp-integrable for some

p > 2. However, the properties that we imposed on the process X were rather weak. In
particular, Theorem 1.38 only considered F (X) as a random variable, where we used the
SDE for X only when performing a measure change and applying Girsanov’s theorem
in order to understand the semimartingale decomposition of X under a new sampling
measure. Therefore, the methods from Section 1.3 should extend to the case where X is
the solution to a McKean–Vlasov SDE, provided that we understand how the dynamics
of the process change under a change of measure. We leave it to a follow-up work to
combine our methods with ideas from dos Reis et al. (2023), which should lead to a
tractable importance sampling framework for the evaluation of derivatives on solutions to
McKean–Vlasov SDEs under weaker assumptions then those imposed on dos Reis et al.
(2023).

The setting of this chapter does naturally apply to the evaluation of European options
and asset price processes with continuous paths. More generally, reducing the standard
error of Monte Carlo estimators with neural networks when pricing American options
based on the popular algorithm proposed by Longstaff and Schwartz (cf. Clément et al.
(2002); Longstaff and Schwartz (2001)) and models with jumps, very much in the spirit of
Genin and Tankov (2020) as well as Kawai (2009), provides another interesting challenge
that is reserved for follow-up work.

Finally, the measure changes which we studied in Section 1.3 were induced by density
processes of the form E(fT •M), where f ∈ Λ2 is a deterministic function. The reason why
we did not consider the more general class of processes U ∈ L2(M) for which E(UT • M)
is a martingale is twofold. While the proof of Theorem 1.38 would become more involved,
one would need to use neural network architectures which are more complex then the
ones which we discussed in Section 1.2. For this reason, we argue that the problem of
considering deterministic functions f ∈ Λ2 provides a tractable, numerically efficient
method to reduce the variance in Monte Carlo simulations, and reserve the extension to
processes U ∈ L2(M) and their approximation with neural networks for future work.

1.5. Supplementary material
1.5.1. Gaussian measures
In this subsection, we collect for the readers’ convenience some classical definitions and
results about Gaussian measures, for which we mostly rely on the excellent monographs
Bogachev (1998); Lifshits (2012); Stroock (2011). Let (E, � · �E) denote a real separable
Banach space, γ a Borel probability measure on E and M = (Mt)t∈[0,T ] an Rd-valued
process on a probability space (Ω, F ,P). Given h ∈ E, we further denote by γh the
measure on E that is induced by the translation E . x (→ x + h.
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Definition 1.42. The measure γ is called Gaussian, if each f ∈ E∗ induces a Gaussian
distribution on (R, BR). The process M = (Mt)t∈[0,T ] is called Gaussian, if (Mti)n

i=1 is
jointly Gaussian for each n ∈ N and 0 ≤ t1 < t2 < . . . < tn ≤ T .

A Gaussian measure γ is centered, if each f ∈ E∗ induces a centered Gaussian
distribution. Similarly, a Gaussian process M = (Mt)t∈[0,T ] is centered, if (Mti)n

i=1 is
jointly centered Gaussian for each n ∈ N and 0 ≤ t1 < t2 < . . . < tn ≤ T . Since Section
1.1 only considers centered Gaussian processes and measures, we will from now on restrict
to this special case.

In the context of Definition 1.42, we have the natural embedding j: E∗ → E∗
γ , where

E∗
γ denotes the reproducing kernel Hilbert space of γ, which is defined as the closure of

E∗ in L2(γ). We further define the covariance operator of γ by the map

Rγ : E∗ → (E∗)� : f (→
�

g (→
�

E
f(x)g(x)γ(dx)

#
,

and implicitly consider its extension to E∗
γ , i.e. Rγ : E∗

γ → (E∗)�.
Given f ∈ E∗

γ , note that Rγ(f): E∗ → R is a linear operator. If we endow E∗ with the
Mackey topology, then Bogachev (1998, Lemma 3.2.1) shows that Rγ(f) is continuous.
Mackey’s theorem (cf. Bogachev (1998, Theorem A 1.1)) yields the existence of xf ∈ E,
such that Rγ(f)(g) = g(xf ) for each g ∈ E∗. We then also denote by Rγ the map
E∗

γ . f (→ xf .

Definition 1.43. Given a centered Gaussian measure γ on E, the Cameron–Martin
space H(γ) of γ is defined as the range of Rγ in E, i.e. H(γ) := Rγ(E∗

γ) ⊂ E. We equip
H(γ) with the inner product

�h, k�H(γ) := �ĥ, k̂�L2(γ) =
�

E
ĥ(x)k̂(x)γ(dx), h, k ∈ H(γ),

where h = Rγ(ĥ) and k = Rγ(k̂) for some ĥ, k̂ ∈ E∗
γ .

The space (H(γ), �·, ·�H(γ)) is a real separable Hilbert space that is continuously
embedded into E (cf. Bogachev (1998, Proposition 2.4.6 and Theorem 3.2.7)). Moreover,
Bogachev (1998, Theorem 2.4.7) shows that H(γ) is of γ-measure zero, whenever E∗

γ is
infinite dimensional.
Remark 1.44. Given a centered Gaussian measure γ on E, the topological support of
γ is defined as the smallest closed subset S ⊂ E with γ(E \ S) = 0, and is given by
H(γ), where the closure is taken in E (cf. Bogachev (1998, Theorem 3.6.1)). We call
γ nondegenerate, if H(γ) = E, or equivalently, if H(γ) is densely embedded into E. If
H(γ) is a strict subspace of E, then we call γ degenerate.
Remark 1.45. If γ and γ̃ are two centered Gaussian measures on E with H(γ) = H(γ̃) and
�·�H(γ) = �·�H(γ̃), then γ and γ̃ coincide (cf. Bogachev (1998, Corollary 3.2.6)). Moreover,
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if E is continuously and linearly embedded into another real separable Banach space Ẽ
with embedding i and induced Gaussian measure ν = γ ◦ i−1, then Ẽ ⊃ H(ν) = i(H(γ))
(cf. Bogachev (1998, Lemma 3.2.2)).

The Cameron–Martin space has another useful characterization, which is stated in
the following theorem (cf. Bogachev (1998, Theorem 2.4.5), Cameron and Martin (1944,
Theorem 1)).

Theorem 1.46. Given a centered Gaussian measure γ on E and h ∈ E, the measures γ
and γh are equivalent precisely when h ∈ H(γ), and singular otherwise. In particular,

H(γ) = Rγ(E∗
γ) =

�
h ∈ E : γh ∼ γ

�
.

Whenever γ is Gaussian, the measure γh is Gaussian for each h ∈ E (cf. Bogachev
(1998, Lemma 2.2.2)). Consequently, Theorem 1.46 characterizes a set of Gaussian
measures which are equivalent to γ. The following theorem (cf. Bogachev (1998, Theorem
2.7.2)) is another central result, which in particular implies that γh and γ are singular
whenever h ∈ E \ H(γ).

Theorem 1.47. Any two Gaussian measures on E are either equivalent or mutually
singular.

In order to quantify the (exponential) decline of the probability of certain tail events,
the following result is often times useful (cf. Bogachev (1998, Corollary 4.9.3)).

Proposition 1.48. Let γ denote a centered Gaussian measure on E. Moreover, for
ε > 0, let γε denote the pushforward measure of γ under the map E . f (→ √

εf . Then,
(γε)ε>0 satisfies the large deviation principle with rate function Iγ : E → R+, where

Iγ(f) =

1
2�f�2

H(γ) for f ∈ H(γ),
∞ otherwise.

In other words, for each F ∈ BE,

− inf
f∈F ◦ Iγ(f) ≤ lim inf

ε�0
ε log γε(F ) ≤ lim sup

ε�0
ε log γε(F ) ≤ − inf

f∈F
Iγ(f).

Before we finish this section, we state a result that allows us in many cases to obtain a
tractable representation of (H(γ), �·, ·�H(γ)) (cf. Bogachev (1998, Section 3.3) and Lifshits
(2012, Section 4.2)).

Theorem 1.49. Given a centered Gaussian measure γ on E, assume that there exists
a Hilbert space H̃ and a continuous linear operator J : H̃ → E such that Rγ admits the
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factorization Rγ = J ◦ J∗, where J∗: E∗ → H̃∗ ∼= H̃ denotes the adjoint of J . Then H(γ)
coincides with J(H̃). If J is moreover injective, then

�f, g�H(γ) = �J−1(f), J−1(g)�H̃ , f, g ∈ H(γ).

1.5.2. Proofs
Proof of Lemma 1.10(a). The proof of Cherny and Shiryaev (2002, Lemma 3.2) reveals
that � · �Λ2 satisfies the triangle inequality, which shows that Λ2 is a real vector space. In
order to see that �·, ·�Λ2 is an inner product on Λ2, note that, by construction, �·, ·�Λ2 is
symmetric and linear in both arguments, and recall that π is positive semidefinite µ-almost
everywhere, hence fTπf ≥ 0 µ-almost everywhere and therefore

� T
0 fT(s)π(s)f(s) µ(ds) ≥

0 for each measurable f : [0, T ] → Rd. If �f, f�Λ2 = 0 for some f ∈ Λ2, then fTπf = 0
µ-almost everywhere, hence f ∼ 0, which implies that �·, ·�Λ2 is positive definite and
therefore an inner product on Λ2.

Completeness of (Λ2, C2), where C2 denotes the translation invariant metric induced
by � · �Λ2 , follows from Jacod (1979, Lemme 4.29), and separability can be argued by
adapting the proofs of Billingsley (2012, Theorem 19.2) and Cherny and Shiryaev (2002,
Lemma 3.2). We conclude that (Λ2, �·, ·�Λ2) is a real separable Hilbert space.

Lemma 1.10(b) is a direct consequence of the Fréchet–Riesz representation theorem,
since we know by Lemma 1.10(a) that Λ2 is a Hilbert space.

Proof of Lemma 1.10(c). Λ2,0 is clearly a real vector space. Given f ∈ Λ2,0 and i, j ∈
{1, 2, . . . , d}, by a version of the Kunita–Watanabe inequality for Lebesgue–Stieltjes
integrals (cf. Schmock (2024, Lemma 5.91)),�000 � T

0
fi(s)fj(s)µi,j(ds)

000#2
≤

� � T

0
|fi(s)fj(s)||µi,j |(ds)

#2

≤
� T

0
f2

i (s)µi,i(ds)
� T

0
f2

j (s)µj,j(ds) < ∞,

(1.12)

hence Λ2,0 ⊂ Λ2, and (Λ2,0, �·, ·�Λ2) is therefore an inner product space.
The fact that Λ2,0 is dense in Λ2 has been shown in Jacod (1979, Lemme 4.29),

which also implies the separability of Λ2,0. From Lemma 1.10(a) we further know that
(Λ2, �·, ·�Λ2) is a Hilbert space and in particular complete. This shows 1.10(c).

Proof of Lemma 1.10(d). The continuity of the embedding follows from the inequali-
ties (1.12) and (1.15). The remaining assertion follows from a multivariate version of
Kallenberg (2021, Lemma 1.37).

Proof of Lemma 1.10(e). Let (π̃, µ̃) be another pair that satisfies the representation (1.1),
and let f ∈ Λ2,0. Then dµi,j/dµ = πi,j as well as dµi,j/dµ̃ = π̃i,j for all i, j ∈ {1, 2, . . . , d},
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hence, using (1.12),

� T

0
fT(s)π(s)f(s) µ(ds) =

d)
i,j=1

� T

0
fi(s)fj(s)µi,j(ds) =

� T

0
fT(s)π̃(s)f(s)µ̃(ds),

which extends to all f ∈ Λ2 using the density of Λ2,0 in Λ2, and we see that � · �Λ2 does
not depend on the specific choice of (π, µ) satisfying (1.1). Moreover, for f, g: [0, T ] → Rd

measurable, (f −g)Tπ(f −g) = 0 µ-almost everywhere holds precisely when �f −g�Λ2 = 0
which is equivalent to (f − g)Tπ̃(f − g) = 0 µ̃-almost everywhere.

Proof of Proposition 1.18(a). By a variant of the Cauchy–Schwarz inequality, for h ∈ H ,
i ∈ {1, 2, . . . , d} and t ∈ [0, T ], it holds that (Cherny and Shiryaev, 2002, Lemma 4.17)

� t

0

0000 d)
j=1

πi,j(s)fh,j(s)
0000 µ(ds) ≤

'
µi,i([0, t])�fh�Λ2 ≤

'
µ([0, T ])�h�H , (1.13)

which shows that the integral in (1.2) is well defined.

Proof of Proposition 1.18(b). H is clearly a real vector space and �·, ·�H is symmetric
and linear in both arguments. In order to show that �·, ·�H is positive definite, note that
�h, h�H = �fh�2

Λ2 ≥ 0 for each h ∈ H. If h ∈ H satisfies �h, h�H = 0, then fT
h πfh = 0

µ-almost everywhere, hence fh ∼ 0. An application of inequality (1.13) shows that
(πfh)i = 0 µ-almost everywhere for each i ∈ {1, 2, . . . , d}, hence h = 0. (H, �·, ·�H) is
therefore an inner product space.

We obtain a norm � · �H on H by setting �h�H :=
(�h, h�H and thus also a metric

CH on H by setting CH(f, g) := �f − g�H . In order to see that (H, CH) is complete, let
(hn)n∈N be a Cauchy sequence in H. Then (fhn)n∈N is a Cauchy sequence in Λ2. From
Lemma 1.10(a) we know that Λ2 is complete. Consequently, there exists some f ∈ Λ2

such that fhn → f in Λ2. If we set h = J(f), then h ∈ H and hn → h in H.
Finally, in order to see that H is separable, note first that Λ2 is separable by Lemma

1.10(a). But this already shows that H is separable as well, because a countable dense
subset of H is given by {h ∈ H : fh ∈ B}, where B is a countable dense subset of Λ2.

Proof of Proposition 1.18(c). By construction, J : Λ2 → H is a linear isometry. Since
Λ2,0 is a linear subspace of Λ2 by Lemma 1.10(c), we see that (H0, �·, ·�H) is an inner
product subspace of H . If (hn)n∈N is a Cauchy sequence in H0, then (fhn)n∈N is a Cauchy
sequence in Λ2,0. By Lemma 1.10(c) there exists an f ∈ Λ2 such that fhn → f as n → ∞.
Denoting h = J(f) ∈ H, it follows that hn → h in H, as n → ∞.

Proposition 1.18(d) is a direct consequence of the Fréchet–Riesz representation theorem,
since we know by Proposition 1.18(b) that H is a Hilbert space.
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Remark 1.50. For the proof of Proposition 1.18(e), we use a multivariate version of
the Riesz–Markov–Kakutani representation theorem, which states that every F ∈
(C([0, T ];Rd))∗ can be identified with an Rd-valued function ν = (ν1, ν2, . . . , νd)T on
B[0,T ], where every entry is a signed Borel measure of finite total variation, such that

F (f) =
d)

j=1

� T

0
fj(s)νj(ds) =:

� T

0
fT(s)ν(ds), f ∈ C([0, T ];Rd).

Given f : [0, T ] → Rn×d such that (fi,·)T ∈ C([0, T ];Rd) for each i ∈ {1, 2, . . . , n}, we
write � T

0
f(s)ν(ds) =

� � T

0
f1,·(s)ν(ds), . . . ,

� T

0
fn,·(s)ν(ds)

#T
.

For generalizations to infinite-dimensional domains and image spaces, see Gowurin (1936);
Singer (1957).

Proof of Proposition 1.18(e). We argue in line with Lifshits (2012, Example 4.4) and
use Theorem 1.49. First, we note that every h ∈ H is continuous and satisfies h(0) = 0,
hence H ⊂ E. Let us consider J as a linear operator onto E, i.e. J : Λ2 → E, which is
continuous due to (1.13). In the context of Remark 1.50, E∗ is given as the quotient
space, where we identify those ν ∈ (C([0, T ];Rd))∗ that annihilate E.

For f ∼ σ and g ∼ ν in E∗,

Rγ(f)(g) =
�

E
f(x)g(x)γM (dx) = E[f(M)g(M)] = E

� � T

0
MT

s σ(ds)
� T

0
MT

s ν(ds)
�

=
d)

i,j=1

� T

0

� T

0
E[M i

sM j
t ]σi(ds)νj(dt) =

d)
i,j=1

� T

0

� T

0
[M ]i,js∧tσi(ds)νj(dt)

=
d)

j=1

� T

0

d)
i=1

� T

0
[M ]i,js∧tσi(ds)νj(dt) =

d)
j=1

� T

0

� � T

0
[M ]s∧tσ(ds)

#
j

νj(dt)

=
� T

0

� � T

0
[M ]s∧tσ(ds)

#T
ν(dt) =

�
g,

� T

0
[M ]s∧·σ(ds)

#
.

We can therefore identify Rγ(f) with
� T

0 [M ]s∧·σ(ds).
Next, let us find the adjoint of J . Given f ∈ Λ2 and g ∼ ν in E∗,

�
g, J(f)

"
=

d)
i=1

� T

0
Ji(f)(t)νi(dt) =

d)
i=1

� T

0

� t

0
πi,·(s)f(s) µ(ds)νi(dt)
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=
d)

i=1

� T

0

� T

0
1[0,t](s)πi,·(s)f(s) µ(ds)νi(dt)

=
d)

i=1

� T

0

� T

0
1[0,t](s)νi(dt)πi,·(s)f(s) µ(ds)

=
d)

i=1

� T

0
νi

�
[s, T ]

"
πi,·(s)f(s) µ(ds)

=
� T

0
ν

�
[s, T ]

"T
π(s)f(s) µ(ds) = �ν([·, T ]), f�Λ2 ,

hence the adjoint J∗: E∗ → (Λ2)∗ ∼= Λ2 is given by g ∼ ν (→ ([0, T ] . s (→ ν([s, T ])).
Finally, the covariance operator admits for g ∼ ν in E∗ the factorization

Rγ(g)i(t) =
� T

0
[M ]i,·s∧tν(ds) =

d)
j=1

� T

0
[M ]i,js∧tνj(ds)

=
d)

j=1

� T

0

� s∧t

0
πi,j(w)µ(dw)νj(ds)

=
d)

j=1

� T

0
πi,j(w)

� T

0
1[0,s∧t](w)νj(ds)µ(dw)

=
d)

j=1

� t

0
πi,j(w)νj

�
[w, T ]

"
µ(dw)

=
� t

0
πi,·(w)ν

�
[w, T ]

"
µ(dw)

=
� t

0
πi,·(w)J∗(g)(w)µ(dw) = (J ◦ J∗)(g)i(t),

where i ∈ {1, 2, . . . , d} and t ∈ [0, T ].
Let us show that J is injective. Let f1, f2 ∈ Λ2 be such that J(f1) = J(f2), i.e.

�J(f1) − J(f2)�∞ = 0, which implies in particular for g = f1 − f2 that�
A

π(s)g(s) µ(ds) = 0 ∈ Rd (1.14)

for all A ∈ B[0,T ] of the form A = (s, t] for s < t in [0, T ]. Since the half-open intervals
generate B[0,T ], Dynkin’s theorem shows that (1.14) extends to all A ∈ B[0,T ].

We now show that g ∼ 0, i.e. gTπg = 0 µ-almost everywhere. If this were not the
case, then we would have, without loss of generality, µ({gTπg > 0}) > 0. We claim that
{gTπg > 0} ⊂ {πg ,= 0}. To see this, pick s ∈ [0, T ] such that gT(s)π(s)g(s) > 0, and
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assume that π(s)g(s) = 0. In other words, for each i ∈ {1, 2, . . . , d}, we would have*d
j=1 πi,j(s)gj(s) = 0. But this can’t be the case, since we would then have

0 < gT(s)π(s)g(s) =
d)

i=1
gi(s)

� d)
j=1

πi,j(s)gj(s)
#

= 0.

Now µ({gTπg > 0}) > 0 implies that µ({πg ,= 0}) > 0. Since {πg ,= 0} = .d
i=1{(πg)i ,=

0}, there exists i ∈ {1, 2, . . . , d} such that µ({(πg)i ,= 0}) > 0.
Without loss of generality, we may assume that µ({(πg)i > 0}) > 0. Note that the set

A = {(πg)i > 0} can be written as

A =
-

n∈N

�
(πg)i ≥ 1

n

�
=

-
n∈N

�
(πg)i

"−1([ 1
n

, ∞)),

where every An := ((πg)i)−1([ 1
n , ∞)) and therefore also A is B[0,T ]-measurable. Now

µ(A) > 0 implies that µ(An) > 0 for some n ∈ N, hence n
�

An
(πg)i(s) µ(ds) ≥ µ(An),

which yields a contradiction to (1.14).
We may therefore conclude that f1 − f2 = g ∼ 0 in Λ2, which shows that the operator

J : Λ2 → E is injective. Theorem 1.49 now implies that the Cameron–Martin space of
γM is given by J(Λ2) = H.

Proof of Theorem 1.24. The property of H(D) being a dense subset of H follows from
Convention 1.22 and the definition of the norm on H that is induced by the inner product
�·, ·�H . Being a dense subset of a separable metric space implies the remaining assertion
of 1.24(a).

If D is also a linear subspace of Λ2, then H(D) is clearly an inner product space, whose
completion is H by 1.24(a). We now follow a standard argument, a version of which can
be found e.g. in Mercer (1986, Proposition 1). Since H(D) is dense in H by 1.24(a) and
H is separable due to Proposition 1.18(b), there exists a countable subset of H(D) that
is also dense in H . Upon applying the Gram–Schmidt process to this subset, one obtains
a countable set of orthonormal vectors, which are in H(D), whose linear span is dense in
H.

We know from Proposition 1.18(e) that H is the Cameron–Martin space of γM . By
standard theory for Gaussian measures we know that the topological support of γM

then coincides with H, where the closure is taken in E (see Remark 1.44). But since
H(D) is dense in H by 1.24(a), and the canonical injection from H to E is continuous
by Bogachev (1998, Proposition 2.4.6), we have H = H(D), which yields 1.24(c).

Proof of Proposition 1.28. For the purpose of the proof, we denote by � · �∞;[0,T ] either
the supremum or the λ-essential supremum over [0, T ], depending on which of the two
conditions in the statement of Proposition 1.28 holds.
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The affine functions R . x (→ αx + η with α, η ∈ R are continuous over [0, T ] and
therefore bounded. Since ψ is (locally λ-essentially) bounded, each f ∈ N N d

1,∞(ψ) is
(λ-essentially) bounded, hence� T

0
f2

i (s)µi,i(ds) ≤ �fi�2
∞;[0,T ]

� T

0
πi,i(s) µ(ds) < ∞ (1.15)

for each i ∈ {1, 2, . . . , d}. Note that in (1.15), we implicitly used the fact that µ is
absolutely continuous with respect to λ in the case of Condition 1.27(3), since in this
case each f ∈ N N d

1,∞(ψ) is µ-essentially bounded. We conclude that N N d
1,∞(ψ) is a

linear subspace of Λ2,0.
For f ∈ Λ2,0, let $ > 0. For each η ∈ Rd and s ∈ [0, T ], we have the inequality

ηTπ(s)η ≤ |η|2 tr(π(s)) (cf. Cherny and Shiryaev (2002, Section 3)). By Lemma 1.10(d),
the continuous functions C([0, T ];Rd) are dense in Λ2,0, hence there exists some f� ∈
C([0, T ];Rd) such that �f − f��Λ2 < $/2. By Theorem 1.27, there exists some g ∈
N N d

1,∞(ψ) such that �f� − g�∞;[0,T ] < $/(2
'

� tr(π)�L1(µ)), hence

�f − g�Λ2 ≤ �f − f��Λ2 + �f� − g�Λ2 < $/2 + �f� − g�∞;[0,T ]
'

� tr(π)�L1(µ) < $,

which concludes our proof.

Proof of Proposition 1.29. Since ψ is bounded, one can show precisely as in the proof
of Proposition 1.28 that N N d

1,∞(ψ) is a linear subspace of Λ2,0. If N N d
1,∞(ψ) were

not dense in Λ2,0, then there would exist by the geometric version of the Hahn–Banach
theorem a functional F ∈ (Λ2,0)∗ such that F ,= 0 and F (f) = 0 for each f ∈ N N d

1,∞(ψ).
Let N denote the subspace of all G ∈ (Λ2)∗ that annihilate Λ2,0, i.e. for which G(f) = 0
for each f ∈ Λ2,0 holds. (Λ2,0)∗ can then be identified with the quotient space (Λ2)∗/N .

From Lemma 1.10(b), we know that there exists a function g ∈ Λ2, such that F (f) =� T
0 fT(s)π(s)g(s) µ(ds) for each f ∈ Λ2,0. By linearity of the Lebesgue–Stieltjes integral,

F (f) =
d)

i=1

� T

0
fi(s)

d)
j=1

πi,j(s)gj(s) µ(ds) = 0, f ∈ N N d
1,∞(ψ), (1.16)

and by a variant of the Cauchy–Schwarz inequality (cf. Cherny and Shiryaev (2002,
Lemma 4.17)), for each i ∈ {1, 2, . . . , d} and A ∈ B[0,T ], it holds that

�
A

0000 d)
j=1

πi,j(s)gj(s)
0000 µ(ds) ≤

'
µi,i(A)�g�Λ2 ≤

'
µ(A)�g�Λ2 , (1.17)

hence νi(A) :=
�

A

*d
j=1 πi,j(s)gj(s) µ(ds) defines a signed Borel measure on [0, T ] that is

of finite total variation.
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Exactly as in Cybenko (1989); Hornik (1991), we arrive at the question whether there
exists a signed Borel measure ν ,= 0 on [0, T ] that is of finite total variation, such that� T

0 ψ(αx + η)ν(dx) = 0 holds for all α, η ∈ R. As we know from Cybenko (1989, Lemma
1), this is not the case if ψ is bounded, measurable and sigmoidal (meaning that ψ(t) → 0
as t → −∞ and ψ(t) → 1 as t → ∞), and Hornik (1991, Theorem 5) then generalized
this finding to show that this is not the case if ψ is bounded, measurable and nonconstant.
In other words, (1.16) implies that F ≡ 0, which yields a contradiction.

Proof of Proposition 1.36. Since each f ∈ D is a linear combination of compositions of
ψ and affine functions, both of which are continuously differentiable, if follows that f
is continuously differentiable, hence of bounded variation, which shows that H(D) is a
subspace of Hbv.

By Proposition 1.28, there exists a sequence (hn)n∈N in H(D) that converges to gh,M

in H . From the proof of Theorem 1.24(c) we know that the canonical injection from H to
C0([0, T ];R) is continuous, which implies that (hn)n∈N converges to gh,M in C0([0, T ];R).
Since F̃ : C0([0, T ];R) → R ∪ {−∞} is assumed to be continuous, it follows that F̃ (hn)
converges to F̃ (gh,M ). Moreover, since � · �H : H → R+ is Lipschitz-continuous, we can
conclude that F̃h,M (hn) converges to F̃h,M (gh,M ).

The following lemma follows from standard arguments.

Lemma 1.51. For all h ∈ H and p ∈ [1, ∞), we have fh ∈ Lp(M), which implies that
fT

h
• M ∈ Hp. Moreover, if (hn)n∈N denotes a sequence that converges to h in H, then

fT
hn

• M → fT
h

• M in Hp for each p ∈ [1, ∞).

Proof. Since fh is deterministic it is, being interpreted as a stochastic process, predictable
(cf. Schmock (2024, Exercise 7.103)). Moreover, since

�fh�Lp(M) = E
�
[fT

h • M ]p/2
T

�1/p = E
��

(fT
h πfh) • C

"p/2
T

�1/p = �h�H < ∞, (1.18)

we have that fh ∈ Lp(M), and an application of the Burkholder–Davis–Gundy (BDG)
inequality implies that fT

h
• M ∈ Hp. Keeping in mind (1.18), an application of the BDG

inequality then yields the existence of a positive constant cp such that

�(fhn − fh)T • M�Hp ≤ cp�hn − h�H ,

where the right-hand side converges to zero, as n → ∞.

Before we prove Lemma 1.37 let us recall for convenience a technical result, which
follows e.g. from Elstrodt (2018, Satz 5.4) or by combining the proofs of Kallenberg (2021,
Lemma 1.34) and Cohen and Elliott (2015, Theorem 1.3.39).
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Lemma 1.52. Fix p > 0, and let (fn)n∈N be a sequence in Lp(P) such that fn → f in
probability, where f ∈ Lp(P). Then

�fn − f�Lp(P) → 0 ⇔ �fn�Lp(P) → �f�Lp(P).

Proof of Lemma 1.37. Since both H and Lp(P) are metric spaces, it suffices to prove the
sequential continuity of Ap. Given h ∈ H, let (hn)n∈N be a sequence that converges to h
in H, and set Yn = (Ap(hn))p for n ∈ N. We will now show that (Yn)n∈N converges to
Y = (Ap(h))p in L1(P). To this end, we apply Vitali’s convergence theorem. Let us first
collect some important properties.

(a) (convergence in probability) By Lemma 1.51, we have fT
hn

• M → fT
h

• M in H2,
hence (fT

hn
• M)T → (fT

h
• M)T in L2(P) and thus also in probability. By the reverse

triangle inequality, we have �hn�H → �h�H as n → ∞. An application of the
continuous mapping theorem implies that exp (−p(fT

hn
• M)T + p�hn�2

H/2) = Yn

converges to exp (−p(fT
h

• M)T + p�h�2
H/2) = Y in probability.

(b) (boundedness in L1(P)) For each n ∈ N,

E[Yn] = E
�
exp

� − p(fT
hn

• M)T − p2�hn�2
H/2

"�
exp

�
(p + p2)�hn�2

H/2
"

= E
�
Zn

T

�
exp

�
(p + p2)�hn�2

H/2
"
,

(1.19)

where Zn := E(−p(fT
hn

• M)) is, by Novikov’s criterion, a martingale. As a conse-
quence, we have E[Zn

T ] = E[Zn
0 ] = 1, hence the sequence (Yn)n∈N is bounded in

L1(P), since we have already established that �hn�H converges to �h�H , which
implies that exp ((p + p2)�hn�2

H/2) converges to exp ((p + p2)�h�2
H/2).

(c) (uniform integrability) Fix ε > 0 and note that, by the same arguments that we
used for Part (b),

sup
n∈N

E[(Yn)1+ε] < ∞.

De la Vallée Poussin’s criterion implies that the set {Yn : n ∈ N} ⊂ L1(P) is
uniformly integrable.

By Vitali’s convergence theorem, we now have that Yn → Y in L1(P). If we repeat
the arguments laid out in Part (a) for p = 1, we see that Ap(hn) → Ap(h) in probability.
Moreover,

�Ap(hn)�p
Lp(P) = �Yn�L1(P) → �Y �L1(P) = �Ap(h)�p

Lp(P),

hence, Lemma 1.52 implies that Ap(hn) → Ap(h) in Lp(P). Finally, Eq. (1.19) shows
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that �Ap(h)�Lp(P) = exp((1 + p)�h�2
H/2), hence

lim sup
	h	→∞

�Ap�Lp(P)
�h�H

= lim
	h	→∞

exp
�
(1 + p)�h�2

H/2
"

�h�H
= ∞,

which yields the remaining assertion.

Proof of Theorem 1.38. As in the proof of Lemaire and Pagès (2010, Proposition 4),
Hölder’s inequality yields:

V (h) = EP
�
F 2(X) exp

� − (fT
h • M)T + �h�2

H/2
"�

≤ EP
�|F (X)|2+ε�1/pEP

�
exp

� − q(fT
h • M)T + q�h�2

H/2
"�1/q

= EP
�|F (X)|2+ε�1/pEP

�E� − q(fT
h • M)

"
T

�1/q exp
�
(1 + q)�h�2

H/2
"

= EP
�|F (X)|2+ε�1/p exp

�
(1 + q)�h�2

H/2
"
, h ∈ H,

for p = (2 + ε)/2 and q = (2 + ε)/ε, where the last equality follows from the fact
that E(−q(fT

h
• M)) is actually a martingale, which implies that EP[E(−q(fT

h
• M))T ] =

EP[E(−q(fT
h

• M))0] = 1. This shows that V is R+-valued.
Next, let us show that V is convex. To this end, pick η ∈ (0, 1) and g, h ∈ H such

that g ,= h. By the triangle inequality and positive homogeneity, we have the inequality
�ηg + (1 − η)h�H ≤ η�g�H + (1 − η)�h�H . By the linearity of the vector stochastic
integral and the convexity of R . x (→ x2, we thus have

−�
(ηfg + (1 − η)fh)T • M

"
T

+ �ηg + (1 − η)h�2
H/2

≤ η
� − (fT

g • M)T + �g�2
H/2

"
+ (1 − η)

� − (fT
h • M)T + �h�2

H/2
"
.

Together with the convexity and monotonicity of R . x (→ exp x, this shows that V is
convex.

Given h ∈ H, let (hn)n∈N be a sequence that converges to h in H. Due to Lemma
1.37, Zn := Aq(hn) converges to Z := Aq(h) in Lq(P). Note that F 2(X) ∈ Lp(P)
by assumption. By Riesz’s representation theorem, the topological dual of Lq(P) is
isometrically isomorphic to Lp(P), where the isomorphism is given by

Lp(P) . g (→
�

Lq(P) . f (→
�

Ω
g(ω)f(ω)P(dω)

#
,

hence the map Lq(P) . Y (→ E[F 2(X)Y ] ∈ R is continuous, which yields

lim
n→∞ V (hn) = lim

n→∞E[F 2(X)Zn] = E[F 2(X)Z] = V (h).

Since H is in particular a metric space, continuity of V is equivalent to sequential
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continuity, which shows 1.38(b).
In order to prove existence of a minimizer of V , we borrow some tools from convex

optimization, see Zălinescu (2002) for a textbook treatment about this topic. First, we
show that V is proper, meaning that {h ∈ H : V (h) < ∞} ,= ∅ and V (h) > −∞ for
all h ∈ H. The latter condition is clearly satisfied, as V is nonnegative. For h ≡ 0, we
further have V (h) = E[F 2(X)] < ∞, which implies the former condition (which also
follows from 1.38(a)). Moreover, since V is continuous as argued above, it is in particular
lower semicontinuous.

Let us show that V is coercive, i.e. that V (h) → ∞, as �h�H → ∞. Since we assume
that P[F 2(X) > 0] > 0, there exists a constant δ > 0 such that P[F 2(X) ≥ δ] > 0. An
application of the reverse Hölder inequality along the lines of the proof of Lemaire and
Pagès (2010, Proposition 4) reveals the inequality

V (h) ≥ δ P
�
F 2(X) ≥ δ

�3 exp
��h�2

H/4
"
, h ∈ H,

which shows that V is coercive.
Consequently, Zălinescu (2002, Proposition 2.5.6) shows that arg minh∈H V (h) is a

convex set. Moreover, upon noting that H, being a Hilbert space, is reflexive, Zălinescu
(2002, Theorem 2.5.1) shows that arg minh∈H V (h) is not empty, which shows 1.38(c).

For δ > 0 choose hδ ∈ H such that V (hδ) < minh∈H V (h) + δ. By Theorem 1.24(a),
there exists a sequence (hn)n∈N in H(D) that converges to hδ in H. By 1.38(b) we then
obtain limn→∞ V (hn) = V (hδ) < minh∈H V (h) + δ. A diagonalization argument yields
1.38(d).



Part II.

Deep Surrogate Models



2. Life Cycle Insurance, Bequest
Motives and Annuity Loads

In this chapter we investigate numerically the optimal purchases of insurance products in
life cycle settings when bequest motives vary with age and life insurance and life annuities
both carry loads. Our main research question is the “deep” annuity puzzle whereby a
thin market for life annuities co-exists with a thick market for life insurance. The regular
version of this puzzle restricts attention to the fact of a thin annuities market.

The life cycle model integrates an individual’s life insurance phase with her life annuity
phase, recognizing that buying a life annuity is like selling life insurance. This symmetry
is evident when all life-contingent insurance is of the instantaneous-term variety, as is
generally the case in the literature under discussion. The annuity buyer’s estate makes a
payment to the seller if and when the buyer dies. Likewise, the seller of life insurance
makes a payment to the buyer’s estate, contingent on the buyer’s death. Yaari (1965),
Hakansson (1969) and Merton (1971) led the way. Bequests were assumed to be normal
goods without being either necessities or luxuries. In particular, constant relative risk
aversion (i.e. power utility) was assumed whenever bequest utility had a specific functional
form. Insurance was initially assumed to be actuarially fair.

Many subsequent contributions do incorporate loads. They generally specify loads
in terms of markups over actuarially fair insurance. For this purpose, life cycle models
typically introduce a single load parameter that can be interpreted as the ask price of life
insurance. The parameter does double duty, for the life annuity phase as well as the life
insurance phase. Early examples include the influential contributions of Fischer (1973)
and Richard (1975). However, it turns out that the assumptions of a single-parameter
model of loads and normal bequests both act to exaggerate the symmetry between the
demand for life insurance and the demand for life annuities.

In the case of loads, we show below that the single-parameter load model of these
early contributions (and many subsequent ones) entails negative annuity loads. As
a consequence, the demand for annuities is artificially inflated. This is unhelpful for
resolving the annuity puzzle, deep or otherwise. Moreover, it turns out that bid-ask
spreads in the market for life-contingent insurance are effectively tied to zero. This
implicit assumption leads to a counterfactual prediction that people will participate
continuously in the market for life-contingent insurance.

Loads on life-contingent insurance products can be seen as a form of illiquidity or
transaction cost. Such frictions have been studied in the context of risky securities. See
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for example Magill and Constantinides (1976), Davis and Norman (1990) and Shreve
and Soner (1994). These contributions analyze positive bid-ask spreads, in contrast to
the existing literature on life-contingent insurance over the life cycle.

We introduce a second load parameter that can be interpreted as the bid price of life
insurance. It ensures non-negative annuity loads and enables positive bid-ask spreads.
Moreover, we assume bequests are necessities during child-rearing years. This is a natural
assumption for people with dependents, notably, children at home. By contrast, bequests
are luxuries during retirement years, consistent with a substantial recent body of research.
Our main contribution, then, is to show numerically that a two-parameter load model
and a specification of bequest motives that allows for age variation can jointly resolve the
deep annuity puzzle. Previous contributions have not sought to account for the disparity
between the demand for life insurance and the demand for life annuities.

Much of the life cycle literature is primarily concerned with life insurance. However,
the dynamic programming principle suggests that parameters determining the demand
for life annuities could feed forward onto the demand for life insurance. For completeness,
we investigate this possibility. As it turns out, our computations suggest that changes in
annuity loads have no effect on the demand for life insurance. Likewise, changes in life
insurance loads have no effect on the demand for annuities.

The remainder of this chapter is organized as follows. Section 2.1 sets out an op-
timization problem. Section 2.2 compares and contrasts our approach with previous
contributions to the 21st century literature. Section 2.3 presents a methodology that
obtains reasonable estimates for loads. Subsection 2.4.1 reports results of our compu-
tations for the post-retirement phase and Subsection 2.4.2 reports results for the full
life cycle. Subsection 2.5.1 reports results for the case of a truncated life cycle and
Subsection 2.5.2 calibrates a Gompertz mortality model to data. Subsection 2.5.3 gives
details of the age-earnings profile and the age-varying bequest parameter assumed here.
Subsection 2.5.4 explains the dynamic programming approach used for the numerical
solution of the optimization problem.

2.1. Model description
Consider a market for life-contingent insurance. The individual has the opportunity to
purchase and sell term insurance on her own life, where the sale of insurance corresponds
to the purchase of a life annuity. Life-contingent insurance is offered continuously, and the
individual enters a contract by paying the premium rate p(t), which buys life insurance
in the amount p(t)/η(t) or p(t)/θ(t) dollars for the next instant, depending on whether
p(t) > 0 or p(t) < 0. The mortality rate, λ(t), represents the instantaneous death
rate for the individual surviving up to time t. Hence insurance is actuarially fair when
θ(t) = λ(t) = η(t) for all t, and it is loaded when θ(t) ≤ λ(t) ≤ η(t), with at least one
of those inequalities being strict for some time t. Under our two-parameter model of
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insurance loads, then, an individual with financial wealth W (t) who dies at age t leaves
a legacy Z(t) given by

Z(t) =

����
W (t) + p(t)

η(t) , if p(t) > 0,

W (t), if p(t) = 0,

W (t) + p(t)
θ(t) , if p(t) < 0,

(2.1)

according as whether she is long, not invested or short in life insurance, the last case
corresponding to being long in life annuities.

Bequest utility B is of hyperbolic absolute risk aversion (HARA) form with age-varying
shift parameter cb(t),

B(t, z) =
� φ

1 − φ

 σ
� φ

1−φcb(t) + z
"1−σ

1 − σ
, (2.2)

where φ ∈ (0, 1) is the marginal propensity to bequeath, and σ > 0 is the coefficient of
relative risk aversion for consumption utility. The parameter cb(t) varies with age as
described in Figure 2.1 below, where cb(t) is described as the age-dependency profile
and is shown alongside y(t), the age-earnings profile (or income function), which is
standard; see e.g. Mincer (1974). Following Lockwood (2012, 2018) and others, the
age-earnings profile incorporates an annuity component, reflecting a Social Security
entitlement. Equations specifying the age-dependency profile and age-earnings profile
are set out in Subsection 2.5.3.

Recent research finds that power utility is not a good model of the bequest utility
of elderly individuals, especially affluent ones. Rather, bequests by the elderly tend to
be luxury goods (Carroll, 1998; De Nardi et al., 2010; Lockwood, 2012, 2018). These
contributions model the bequest motives of the elderly by means of a fixed positive value
of cb(t) in Eq. (2.2). We extend their parametric model of bequest motives, into the
individual’s work years, which typically overlap substantially with child-rearing years.
The additive shift parameter has a negative sign during that time. In more detail,
bequests are necessities rather than luxuries during most of the individual’s working life,
becoming more essential in the event the family grows further, but eventually transiting
to luxuries as dependents progressively attain independence. For example, Figure 2.1
postulates that cb(t) rises smoothly in value from about −$7, 600 at around age 40
(the assumed age of maximum dependency within the household) to $32,900 at age 65.
Following Lockwood (2018), we assume cb(t) is constant in time thereafter.

Since human capital has no closed-form solution here, necessities and luxuries must be
characterized by the sign of the additive shift parameter in the bequest utility function
rather than the proportionate response of planned bequests to a given increase in the sum
of financial wealth and human capital. This alternative characterization is standard in
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Figure 2.1. Age-earnings profile and age-dependency profile.

the literature on luxury bequests by the elderly. It readily extends to the pre-retirement
phase. For comparison, we also report numeric results for the traditional life-cycle case
of power bequest utility.

Assume that the individual’s remaining lifetime, τ , is a random variable with known
probability density function f . We introduce a finite planning horizon T > 0. The
individual’s maximum remaining lifespan need not coincide with T . For example, T
could denote the time to retirement, as in Pliska and Ye (2007). The survival function
F̄ (t) modelling the probability of survival up to time t is F̄ (t) = exp(− � t

0 λ(s) ds). We
assume a Gompertz model for λ(t). For a functional form of λ(t), see Table 2.1. The
model was calibrated to mortality rates from the G12 countries; details are available in
Subsection 2.5.2.

The individual consumes at rate c(t). Instantaneous utility from consumption is of
constant relative risk aversion (CRRA) form,

U(c) = c1−σ − 1
1 − σ

.

Given a pair (c, p) of consumption and insurance plans, the individual’s financial wealth
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W (t) evolves according to

W (t) = w +
� t

0

�
rW (s) + y(s) − c(s) − p(s)

"
ds, t ∈ [0, τ ∧ T ], (2.3)

where w denotes the initial level of financial wealth, r denotes the risk-free rate, and
τ ∧ T = min{τ, T}. In case of death at time t ≤ T , the total legacy Z(t) is given by
Eq. (2.1). If the individual survives beyond the planning horizon T , the legacy equals the
financial wealth W (t). As in previous contributions, we assume that the individual cannot
leave a negative legacy. Given an initial level of financial wealth w, the individual’s
problem is to choose a consumption and insurance plan (c∗, p∗) that maximizes the
expected utility of discounted consumption and bequest,

sup
(c,p)

E
�� τ∧T

0
e−βtU

�
c(t)

"
dt

+ e−βτ B
�
τ, Z(τ)

"
1{τ≤T } + e−βT B

�
T, W (T )

"
1{τ>T }

�
,

(2.4)

where β denotes the rate of time preference, E[ · ] denotes the expectation with respect to
the randomness generated by the uncertain lifetime τ , and 1{·} denotes the indicator func-
tion. This is a problem that can be solved via dynamic programming; see Subsection 2.5.4.
The model parameters are summarized in Table 2.1 below.

Table 2.1. Model parameters.
Model parameter Value
Initial age of the individual x = 25 years
Risk-free rate r = 3.2%
Risk-aversion coefficient σ = 2
Rate of time preference β = − ln(0.975)
Propensity to bequeath φ = 0.95
Mortality rate λ(t) = 1

b exp
�

x+t−m
b

"
Modal age at death m = 88.23
Scale parameter b = 9.38

Note: Values for the risk-free rate, risk-aversion coeffi-
cient, rate of time preference and propensity to bequeath
are from Lockwood (2018). Parameters for the mortality
rate were calibrated to data from the G12 countries; see
Subsection 2.5.2 below.
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2.2. Comparison with recent literature
Pliska and Ye (2007) make a leading theoretical and numeric contribution to this century’s
literature on life cycle insurance. Their theory offers a particularly clear exposition of
that literature’s single-parameter model of insurance loads. We therefore draw upon
Pliska and Ye (2007) to explain how the ubiquitous single-parameter model gives rise to
an implicit assumption of negative annuity loads and zero bid-ask spreads. They define
η(t) ≥ λ(t) as the “premium-insurance ratio”, that being the single load parameter in
question. As in the preceding section, life-insurance premiums paid at the rate p(t) secure
for the upcoming instant a sum insured equal to p(t)/η(t). Note that the parameter in
the denominator can be interpreted as the ask price of life insurance. By assumption,
life insurance carries a positive load whenever the inequality η(t) ≥ λ(t) is strict. So
far so good. However, the single-parameter load model goes on to assume or imply
that annuity income at the rate p(t) entails an outlay of p(t)/η(t) if the annuitant dies
during the upcoming instant, payable by the annuitant’s estate to the provider. If the
inequality η(t) ≥ λ(t) is strict, this annuity is cheaper than an actuarially fair one.
Annuities are implicitly subsidized. They make losses for insurance companies and will
be in artificially high demand. For this reason, the preceding section introduced a second
premium-insurance ratio, θ(t), 0 < θ(t) ≤ λ(t), for life annuities. If the individual dies
at time t, her estate pays the provider an amount p(t)/θ(t). The parameter in the
denominator can now be interpreted as the bid price of life insurance. Loads now remain
non-negative when the individual goes long in life annuities. In this way, a two-parameter
model of the (additive) bid-ask spread in the insurance market, namely η(t) − θ(t), can
ensure that the spread is positive rather than zero.

Zero spreads in the context of a one-parameter model enable what is in effect a complete-
markets solution, even when life insurance loads are positive. There is continuous
participation in the market for life-contingent insurance. The reason is that although life
insurance is more expensive than the actuarially-fair benchmark, this is just offset by
life annuities being cheaper. Insurance demands, human capital amounts and the value
function all have closed-form solutions. In these ways, relinquishing zero bid-ask spreads
comes at the cost of reduced tractability. Once the bid-ask spread is positive, we lose
effective market completeness and there is no longer continuous participation. We need
to fall back on numerical computations.

Huang and Milevsky (2008) consider the case of HARA consumption utility whereby
a state-varying shift parameter helps motivate the demand for life insurance. Bequests
are effectively lifelong necessities. This life cycle setup is investigated both theoretically
and numerically. The demand for annuities is found to be positive well before retirement,
under either zero loads or loads described by a one-parameter model. People participate
continuously in the market for life-contingent insurance.

Lockwood (2012, 2018) confines attention to the retirement phase. He addresses
the annuity puzzle, combining luxury bequest utility with positive annuity loads. He
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estimates the relevant shift parameter in the bequest utility function, and goes on to
show numerically that the demand for annuity-type products is weak when there are
luxury bequests in conjunction with realistic loads.

The calibrations reported by Pashchenko (2013) also deal exclusively with the retirement
phase. She reports that only 5% of the singles aged 70 in her sample own a life annuity.
By the same token, there is considerable dispersion in annuity purchases across income
quintiles. An “administrative load” of 10% applies to annuity income. Loads also
arise from adverse selection. There is a calibrated model of this source of loads on
annuities, although the resulting total loads are not spelled out. Other factors depressing
demand are luxury bequests, medical expenses, public annuity-like income, illiquid housing
wealth, minimum purchase requirements and preannuitised wealth. Pashchenko’s headline
calibrated model predicts that 20% of singles aged 70 will participate in the market.
In this way, Pashchenko (2013) accounts for most of her sample’s non-participation in
annuity markets. No single factor dominates the others as a prime cause of weak demand.

The classic overlapping generations model considers social welfare in an economy where
bequests are not merely luxuries but provide no utility for the legator. Put another
way, bequest motives are “inoperative”. Even if the proceeds of unintended bequests
are recycled by the government, the relative price of delayed consumption is too high,
social saving is suboptimal, and capital formation is too low. Recent investigations of
this scenario include Feigenbaum et al. (2013) and Heijdra et al. (2014). Our notion
of necessity bequests during child-rearing years suggests that there may be offsetting
tendencies at work. However, we leave this question to future research.

Peijnenburg et al. (2016) investigate the annuity puzzle in the context of a full (adult)
life cycle. They show numerically that if (i) bequests are lifelong normal goods and (ii)
insurance is actuarially fair, then the annuity puzzle persists under various circumstances
that had previously been regarded as lessening it. By way of comparison, we show
numerically that if (i) bequests evolve from being necessities to luxuries and (ii) all
life-contingent insurance products carry a moderate positive load (e.g. 18% at age 65),
then the annuity puzzle disappears, including the “deep” version of it.

2.3. Loads
Following Brown and Finkelstein (2007) and others, we specify loads as fixed markups
over the benefits that would be payable were insurance actuarially fair. For example,
Brown and Finkelstein (2007) find that a typical care insurance policy purchased by a 65
year old carries an 18% load. This means that for every dollar the individual pays in
premiums, she expects care benefits worth 82 cents in present-value terms. Loads applying
at age 65 together with Gompertz mortality serve to pin down lifelong load schedules.
For this purpose we need to generalize the Brown–Finkelstein approach to incorporate
life insurance. That turns out to be straightforward. For robustness, we consider a range
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of loads for both life insurance and, especially, life annuities. We highlight the case of a
single lifelong load schedule pinned down by an 18% load on both products when bought
by individuals aged 65. This setup enables a parsimonious numeric resolution of the deep
annuity puzzle.

Brown and Finkelstein (2007) confine attention to long-term care insurance policies
covering home health care, assisted living and nursing home residence. That we treat
their reported 18% load as our base case for term life annuities is in line with the estimate
of Lockwood (2018). A load of 14% at age 65 is also noteworthy, as it turns out to be
just sufficient to extinguish the demand for life annuities. A range of loads and their
implications for the model parameters are shown in Figure 2.2 and Table 2.2 below.

Next, we present a methodology that allows us to obtain reasonable estimates for η(t)
and θ(t), starting from the assumption of an 18% load on insurance benefits for a 65 year
old. For clarity, we henceforth use the subscripts ins and ann, depending on whether we
are studying life insurance or life annuity loads.

2.3.1. Life annuity loads
Consider the expected net present value of a loaded, perpetual life annuity contract with
continuous $1 of payments, ā(κann). Here, κann ≥ 1 denotes the mortality loading factor,
with 1/κann being applied as a multiplicative factor to the mortality rate λ(t). The case
κann = 1 corresponds to no load, while κann > 1 decreases mortality risk by reducing the
mortality rate, thereby extending longevity and increasing the value of the life annuity
contract.

Assuming a Gompertz model for λ(t) with parameters from Table 2.1,

ā(κann) =
� ∞

0
exp

�
−rt −

� t

0
1

κann
λ(s) ds

 
dt

= exp(C)
� ∞

0
exp

�
−rt − C exp

�
t
b

" 
dt,

where C = exp((x − m)/b)/κann. In order to bring the last integral into a more tractable
form, we substitute u = exp(t/b),

ā(κann) = b exp(C)
� ∞

1
u−(1+rb) exp(−Cu) du

= b exp(C)E1+rb(C),

where Es(z) denotes the generalized integro-exponential function (Milgram, 1985).
Assume that the individual purchases a life annuity contract by paying a single upfront

premium P . For every $1 of premium paid, the insurance company will only pay
$(1 − Lann) of benefits, where Lann ∈ (0, 1) denotes a load. Given a load Lann, we are
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thus looking for a mortality loading factor κann, such that

(1 − Lann) ā(κann) = ā(1), (2.5)

where ā(1) is the expected net present value of benefits to be paid to the individual, and
P = ā(κann) is the premium that is charged by the insurance company.

Provided that Eq. (2.5) admits a solution, we define our premium-insurance ratio for
the purchase of life annuities as θ(t) = λ(t)/κann and observe that, by construction, the
inequality θ(t) ≤ λ(t) is always satisfied. Moreover, note that

θ(t) = 1
b

exp
�x + t − (m + ln(κb

ann))
b

 
.

In other words, charging the premium-insurance ratio θ(t) corresponds to increasing the
modal age at death from m to m + ln(κb

ann) in our model for the mortality rate λ(t).

2.3.2. Life insurance loads
Consider the expected net present value of a loaded, perpetual life insurance contract
with a payment of $1 at the moment of death, Ā(κins). The mortality loading factor
κins is now being applied directly as a multiplicative factor to the mortality rate λ(t).
The case κins = 1 corresponds to no load, while κins > 1 increases mortality risk by
increasing the mortality rate, thereby shortening longevity and increasing the value of
the life insurance contract.

Assuming a Gompertz model for λ(t) with parameters from Table 2.1,

Ā(κins) =
� ∞

0
exp

�
−rt −

� t

0
λ(s)κins ds

 
λ(t)κins dt

= C

b
exp(C)

� ∞

0
exp

�
−(r − 1

b ) t − C exp
�

t
b

" 
dt,

where C = exp((x − m)/b)κins. In order to bring the last integral into a more tractable
form, we again substitute u = exp(t/b),

Ā(κins) = C exp(C)
� ∞

1
u−rb exp(−Cu) du

= C exp(C)Erb(C).

Assume that the individual buys a life insurance contract by paying a single upfront
premium P . Given a load Lins, we are thus looking for a mortality loading factor κins,
such that

(1 − Lins) · Ā(κins) = Ā(1), (2.6)
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where Ā(1) is the expected net present value of benefits to be paid to the individual, and
P = Ā(κins) is the premium that is charged by the insurance company.

Provided that Eq. (2.6) admits a solution, we define our premium-insurance ratio for
the purchase of life insurance as η(t) = λ(t)κins and observe that, by construction, the
inequality λ(t) ≤ η(t) is always satisfied. Moreover, note that

η(t) = 1
b

exp
�x + t − (m − ln(κb

ins))
b

 
.

In other words, charging the premium-insurance ratio η(t) corresponds to decreasing the
modal age at death from m to m − ln(κb

ins) in our model for the mortality rate λ(t).

2.3.3. Calibrating loads
We aim to find reasonable values of η(t) and θ(t). Brown and Finkelstein (2007) estimate
that the load for a policy purchased by a 65 year old is 18% if held until death. For this
reason, we fix x = 65 as well as Lins = Lann = 18%. Furthermore, we set 2% for the
risk-free rate r used for discounting, a value that has also been used by Lockwood (2018)
for calculating insurance premiums and benefits.

We solve Eq. (2.5) and Eq. (2.6) numerically via a root-finding algorithm, resulting in
κann = 2.0377 for life annuities, corresponding to an increase of the modal age at death
to mann = 94.91, and κins = 4.7446 for life insurance, corresponding to a decrease of the
modal age at death to mins = 73.63.

Having fixed the mortality loading factors κann and κins to the values above, we compute
the implied loads for ages other than x = 65 by solving Eq. (2.5) and Eq. (2.6) for Lins
and Lann respectively. The evolution of those loads over time is presented in Figure 2.2.
Fixed markups over fair insurance together with Gompertz mortality entail loads that
vary with the buyer’s age, as noted by Brown and Finkelstein (2007), among others. The
curve for life annuities qualitatively resembles Figure 1 in Brown and Finkelstein (2007).
While the differences between the two figures might be explained by differing assumptions
about the risk-free rate r (we use r = 2% to match the setting of Lockwood (2018), while
Brown and Finkelstein (2007) use the term structure of yields of U.S. Treasury strips), we
conclude that our model for premium-insurance ratios is broadly consistent with practice.

The choice of load L has a direct impact on the premium-insurance ratios η(t) and
θ(t). Table 2.2 sets out mortality loading factors and their implied modal ages at death
which were calibrated at the age 65 for different loads L. These are inputs to Table 2.3,
which sets out annuity demands corresponding to different loads and ages.
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Figure 2.2. Insurance loads Lann and Lins by age of purchase, with fixed mortality
loads κann = 2.0377 and κins = 4.7446.

Table 2.2. Mortality loading factors κins, κann and corresponding implied modal ages at
death mins, mann for different choices of load L.

L κins mins κann mann

0% 1.0000 88.23 1.0000 88.23
2% 1.1482 86.93 1.0678 88.85
4% 1.3264 85.58 1.1434 89.49
6% 1.5426 84.16 1.2280 90.16
8% 1.8081 82.67 1.3232 90.86
10% 2.1381 81.10 1.4306 91.59
12% 2.5547 79.43 1.5527 92.36
14% 3.0903 77.65 1.6921 93.16
16% 3.7941 75.72 1.8523 94.01
18% 4.7446 73.63 2.0377 94.91
20% 6.0742 71.31 2.2537 95.85



2.4. Numerical study 67

2.4. Numerical study
2.4.1. After retirement
Consider financial plans made (or remade) at the age of retirement, assumed here to be
65. Fischer (1973) showed that CRRA bequest utility generates substantial demand for
annuities, even before retirement. Annuity loads were (implicitly) negative in that study.

Figure 2.3 shows results of our computations in the case of an 18% load and financial
wealth of $500,000 at the time of retirement. It suggests the following observations.
CRRA bequest utility and fair annuities together generate a strong demand for annuities
that begins before retirement (consistent with previous contributions) and lasts for as
long as the maximum lifespan of the retiree. The demand is particularly strong at
advanced ages. Luxury bequest utility and fair annuities together see a considerable fall
in the demand for annuities, although demand still begins before retirement and lasts
for as long as the maximum lifespan of the retiree. CRRA bequest utility and an 18%
load on annuities together see not only a further fall in the demand for annuities, but
non-participation in the market, beginning at age 97. Intuition for non-participation is
given in the next section. Finally, luxury bequest utility and an 18% load see negligible
participation in the market for annuities, in line with the findings of Lockwood (2012,
2018).
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Figure 2.3. Optimal life insurance and life annuity purchase after retirement.

A more granular approach reveals the load value that just suffices to extinguish annuity
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demand in the case of luxury bequests and positive loads. In particular, Table 2.3 shows
that a 14% load just extinguishes annuity demand in this case. The table also shows
that, as we progressively reduce loads below 14%, the demand for annuities at advanced
ages rises to substantial levels, even with luxury bequests. Demand is sensitive to loads.
As a robustness check, we also calibrated annuity demands when wealth at the time of
retirement is either reduced to $400,000 or increased to $600,000. Broadly speaking,
there are commensurate falls and rises in annuity demands. For example, when the load
is 10% and wealth falls from $500,000 to $400,000, annuity demand by an individual
aged 65 falls from $480 per year to $400 per year.

Table 2.3. Load-dependent annuity demand (in $100s) at different ages when financial
wealth at the time of retirement is $500,000 and bequests are luxuries.

L 65 70 75 80 85 90
0% 22.1 32.4 46.0 62.9 82.4 102.8
2% 18.3 26.2 35.7 45.9 54.2 56.0
4% 14.7 20.2 25.9 29.8 28.0 13.8
6% 11.2 14.5 16.6 14.8 4.0 0.0
8% 7.9 9.1 7.9 0.9 0.0 0.0
10% 4.8 4.0 0.0 0.0 0.0 0.0
12% 1.9 0.0 0.0 0.0 0.0 0.0
14% 0.0 0.0 0.0 0.0 0.0 0.0

2.4.2. Full life cycle
Consider financial plans made at the outset of working life and family formation, assumed
for simplicity to coincide at age 25. Fischer (1973) pioneered numeric studies of life
cycle models of the demand for life insurance and life annuities when loads are of the
one-parameter variety.

Bequest utility here is either CRRA (normal bequests) or HARA with an age-varying
shift parameter (necessity bequests that transition to luxury bequests). Figure 2.4
portrays the case of an 18% load on both life insurance and life annuities, and compares
it to the case of zero loads. Positive annuity loads and age-varying bequest jointly
modify the demand for life-contingent insurance over the life cycle, to the point where
decades-long spans of non-participation open up. In more detail, fair insurance ensures
continuous participation regardless of whether bequest utility is CRRA or age-varying
HARA.

A load of 18% combined with CRRA utility sees two periods of non-participation, one
running from age 41 to 44, and the other beginning at age 97. Intuition for the midlife
non-participation period can be gained from observing that fair insurance combined
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with CRRA utility sees the crossover from life insurance to life annuities occur between
ages 41 and 44. Once the load is introduced, non-participation seeps out from either
side of the fair-insurance cutpoint. Similarly, for the late-life non-participation period,
non-participation spreads to the left from the maximum-lifespan cut-point, namely, age
110.

Loaded insurance and age-varying bequests together see lifelong non-participation from
age 51. It is evident that realistic loads can have strong effects, especially on annuity
demands in conjunction with luxury bequests for retirees. Moreover, the demand for life
insurance is weak when insurance is not a necessity during some working years. The
figure also shows that age-varying bequest motives combine with loads to explain the
deep annuity puzzle.
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Figure 2.4. Optimal life insurance and life annuity purchase over the full life
cycle.

Next, we examine the effects of annuity loads on the demand for life insurance, see
Figure 2.5. In particular, we consider loads of either 6%, 12% or 18% while holding the
life insurance load fixed at 12%. Bequest utility is age-varying HARA. Our computations
suggest that there is no effect of changes in annuity loads on the demand for life insurance.
For example, when the annuity load is raised from 12% to 18%, there is a fall in the
demand for life annuities accompanied by a lengthening of the midlife non-participation
period. However, the age at which non-participation begins remains unchanged at age
53. Likewise, there is no change in the life-insurance profile. Part of the intuition is that
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life-contingent insurance here is of the instantaneous-term variety, so that individuals
only look an instant ahead when making insurance decisions.
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Figure 2.5. Effects of different annuity loads on the demand for life insurance.

Finally, consider the effects of changes in life insurance loads on the demand for life
annuities. Bequest utility is again age-varying HARA. Paralleling the results portrayed
in Figure 2.5, there is no feedback effect, regardless of life insurance loads, see Figure 2.6.
Take the case of a 12% load. The corresponding annuitization phase begins at age 64
and ends at age 70. It is not affected by changes in life insurance loads. This figure also
shows that the demand for life insurance is not highly sensitive to loads, in contrast to
the demand for annuities.

Conclusions
Numerous previous investigations have examined the optimal demand for life insurance
and life annuities in life cycle settings and under insurance loads. Loads have been
modelled by means of a single parameter that effectively eliminates bid-ask spreads in
insurance markets. This helps explain why numeric investigations have typically predicted
continuous participation in insurance markets along with strong demand for annuities.
A two-parameter model can restore positive bid-ask spreads. Positive spreads render
markets incomplete, making it necessary to examine optimal insurance purchases by
means of computations.
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Figure 2.6. Effects of different insurance loads on the demand for life annuities.

Our computations suggest that positive annuity loads induce up to two periods of
non-participation, one in midlife and the other adjoining the maximum age at death.
Luxury bequests are not a necessary condition for two (rather than one) non-participation
periods.

When bequests are luxuries, loads can have big effects on annuity demands. According
to our computations for someone retiring at age 65, if the load is 14% or more of premiums
then the demand for annuities is negligible. More generally, our computations suggest
that the demand for loaded annuities is comparatively weak around age 65 even when
bequests are not luxuries. By contrast, the demand for fair annuities is comparatively
strong even when bequests are luxuries, especially in advanced old age.

To the extent bequests are necessities, loads no longer have large negative effects on
insurance demands. Life insurance is a case in point. According to our computations for a
25 year old, for whom bequests are a necessity (while in gradual transit to being luxuries),
the demand for life insurance (calibrated by reference to an 18% load at age 65) is strong.
Moreover, compared to fair insurance, a life insurance load of 18% (calibrated to age 65)
sees a higher peak demand for life insurance. This peak occurs at age 45. In other words,
life insurance is a Giffen good in mid working life. This echoes a numeric finding due to
Pliska and Ye (2007) – see their Figures 5 and 6. According to our Figure 2.6, an 18%
load sees the demand for life insurance peter out at age 51. Moreover, the same load on
annuities sees a negligible demand for them. A maximum lifespan of 110 years therefore
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implies that the period of non-participation in the market for life-contingent insurance
could be up to 59 years in length.

Our life-cycle computations suggest that changes in annuity loads do not affect life insur-
ance decisions, although such changes do alter the age at which midlife non-participation
ends. Likewise, changes in life insurance loads do not affect the demand for annuities.

Our computations need to be interpreted with caution. First, post-retirement param-
eters were based on Lockwood (2018), who derives his estimates from the Health and
Retirement Study. As a consequence of Social Security, there is some pre-annuitization
of retirement wealth. Second, adverse-selection issues make instantaneous-term products
difficult for annuity providers, especially in the case of potential customers at advanced
ages. Finally, there is ample scope for further investigation of bequest motives during
working life. These will vary from one household to the next. For example, our assumed
age-dependency profile attained a minimum at age 40, corresponding to a maximum
desire to provide for dependents. Yet this aspect of preferences is highly idiosyncratic
across households. Estimating the bequest-utility parameters of working-age people is a
topic we leave to future research.

2.5. Supplementary material
2.5.1. Truncated life cycle
Some investigators focusing on life insurance collapse the retirement phase into a single
point in time. Numeric studies with single-parameter models of loads and financial plans
terminating with the individual’s retirement (rather than her maximum lifespan) were
pioneered by Pliska and Ye (2007). They found that (subsidized) annuity demands over
this truncated horizon were modest, though discernible. Participation was found to be
continuous. We redo their Figure 6, including here the case of positive (rather than
negative) annuity loads.

In Figure 2.7, the planning horizon can be seen from the horizontal axis to be 40
years. Demands for life insurance and life annuities are shown on the vertical axis. The
dotted line portrays the base case of Pliska and Ye’s numeric analysis: loads are zero,
the coefficient of relative risk aversion is 4, the rate of time preference is 3% per year,
and the discount rate is 4% per year. The hazard rate is assumed to be a simple linear
function of age – see Pliska and Ye (2007) for details. There is no annuity phase in
the base case. The dashed line shows demands under a single-parameter model of the
premium-insurance ratio. That case corresponds to κins = 4 and κann = 1/4. Introducing
subsidized annuities (along with loaded life insurance) induces a positive annuity phase. It
is about one year in length. Finally, the solid line shows demands under a two-parameter
model, thereby ensuring that life insurance and life annuities both carry loads. The
premium-insurance ratio corresponds to κins = 4 during the insurance phase and κann = 4
thereafter. In place of an annuity phase there is a non-participation period. It is about
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Figure 2.7. Positive annuity loads in the Pliska–Ye model.

one year in length and adjoins the retirement time T = 40. As with zero loads, there is
no annuity phase in this case.

2.5.2. Estimating a Gompertz mortality model
We calibrate a model for the mortality rate λ(t) to data. Our sample consists of life tables
from the 2019 cohort of the G12 countries (Australia, Belgium, Canada, France, Germany,
Italy, Japan, Netherlands, Spain, Sweden, Switzerland, UK and USA), which was obtained
from the Human Mortality Database (2022). For each country i = 1, 2, . . . , 13, and age
x = 25, 26, . . . , 110, we have data on lix, the number of survivors at age x, and di

x, the
number of deaths within the subsequent year from those survivors aged x years. The
age 110 is not a single-year age, being treated as a cemetery state with li110 = di

110. We
aggregate both the number of survivors and the number of deaths over all countries, and
denote the corresponding age-dependent aggregates lx and dx, respectively.

We aim to estimate the parameters b and m of the mortality model set out in Table 2.1.
We proceed as follows:

• Approximate the survival function via the Levenberg–Marquardt nonlinear least-
squares method;

• Calibrate the mortality rate via the maximum likelihood method.
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Both the survival function as well as the mortality rate enter directly into the definition of
the value function V according to the dynamic programming principle in Subsection 2.5.4
below, so that it is important to have a good estimate for both functions.

Fitting the survival function

Under the parametric model for λ(t) set out in Table 2.1, the survival function F̄ (t) takes
the form

F̄ (t) = exp
�
− exp

�25−m
b

"�
exp

�
t
b

" − 1
" 

.

It admits the representation F̄ (t) = l25+t/l25. We have information about the aggregated
number of survivors l25+t for t = 0, 1, . . . , 85. We thus have 86 training points and aim
to find parameters b̂ and m̂ such that the error

1
2

85)
t=0

�
F̄ (t) − l25+t

l25

 2

is minimized. This is done via the Levenberg–Marquardt nonlinear least squares method;
see Table 2.4 for the estimated coefficients.

Maximum likelihood estimation

We follow Lenart (2014) and assume d25+t follows a Poisson distribution,

d25+t ∼ Poisson(E25+t λ(25 + t)),

where E25+t denotes the total number of person-years exposed to death at age 25 + t,
defined analytically via E25+t =

� 1
0 l25+t+u du. By construction it follows that l25+t ≥

E25+t ≥ l25+t+1 for all t. E25+t accounts for the fact that not all l25+t lives are exposed
to mortality risk throughout the whole period [25+ t, 25+ t+1), but only for a sub-period
until death.

For simplicity, we assume that

E25+t = l25+t − (1 − a25+t)d25+t, t = 0, 1, ..., 84,

where a25+t denotes the average number of years lived within the age-interval [25 + t, 25 +
t + 1) for those people dying at that age, which we set to a25+t = 0.5 for t = 0, 1, ..., 84.
This is in line with the methodology used for the construction of life tables in the Human
Mortality Database (2022).

As already mentioned, the age x = 110 is special in our sample, because it is not a
single-year age, but a cemetery state, where l110 = d110. In order to avoid introducing a
special treatment and therefore a modelling bias, we exclude this state for the remainder
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of this subsection, and estimate our parameters only based on the ages x = 25, 26, ..., 109.
Note that using the cemetery age x = 110 for approximating the survival function in
the previous subsection is not a problem though, because l110 still gives the proper
interpretation of those lived at the beginning of the cemetery age.

We re-parameterize the mortality rate,

λ(t) = 1
b exp

�25−m
b

"
exp

�
t
b

"
= α exp(βt),

where α = exp((25 − m)/b)/b and β = 1/b. Following Lenart (2014), the maximum
likelihood estimator α̂ for α is

α̂ =
*84

t=0 d25+t*84
t=0 E25+t exp(βt)

,

and the maximum likelihood estimator β̂ for β is the root of the function

f(y) =
*84

t=0 d25+tt*84
t=0 d25+t

−
*84

t=0 E25+t exp (yt)t*84
t=0 E25+t exp (yt)

.

Conveniently, this representation allows for a straightforward calculation of the first
derivative,

f �(y) =
�*84

t=0 E25+t exp (yt)t*84
t=0 E25+t exp (yt)

!2

−
*84

t=0 E25+t exp (yt)t2*84
t=0 E25+t exp (yt)

,

and we can find the root of f numerically, as suggested by Lenart (2014), via the
Newton–Raphson method; see Table 2.4 for the estimated coefficients.

Numerical calibration

We estimate the Gompertz mortality parameters b and m via both the Levenberg–
Marquardt and the maximum likelihood method. For the final model coefficients, we
choose a weighted average, where 25% of the weight is allocated to the first method
(fitting the survival function), and 75% is allocated to the second method (maximum
likelihood estimation). The reason for this weighting is that for our optimal control
problem, both the survival function and the mortality rate appear in the definition of
the value function. However, since the mortality rate λ(t) plays a more prominent role
through the definition of the premium-insurance ratios η(t) and θ(t), we overweight the
second set of estimated parameters.

Figure 2.8 portrays our estimated model, the aggregated mortality rate, and the
mortality rates of each individual constituent country of the G12 group. The mortality
rates are defined via mi

x = di
x/Ei

x and mx = dx/Ex, where Ei
x, the country-level total
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Table 2.4. Estimated Gompertz mortality model parameters.

Method b̂ m̂

Levenberg–Marquardt 9.45 88.79
Maximum likelihood 9.35 88.05

Weighted average 9.38 88.23
Note: Reported values are rounded to
two decimal places.

number of person-years exposed to death at age x were obtained similarly as above by
replacing the aggregate values by country-level values.
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Figure 2.8. Mortality rates of G12 countries, their aggregate and Gompertz
model fit.

2.5.3. Age-earnings and age-dependency profiles
We follow Mincer (1974), who discusses a quadratic form of the income function fit to the
logarithm of weekly earnings. All dollar values in this section were rounded generously.

The average income of single retirees in Lockwood’s (2018) sample is $18,360, expressed
in constant 2010 dollars using the Consumer Price Index for Urban Wage Earners and
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Clerical Workers (CPI-W). The annual average CPI-W stood at 213.967 points in 2010
and 283.926 points in 2022 (average over the first half of the year). This corresponds to
an increase of approximately 32.69%. Adjusting Lockwood’s income figure, we therefore
assume a post-retirement income of $24,360. At the moment of retirement, we postulate a
drop in income of 60%, which implies that income immediately pre-retirement is $60,900.

To generate more data points, we assume that income grows by 35% in the first 10
years in the labor market, by 25% in the next 15 years, and declines by 15% in the final
15 years (Murphy and Welch, 1990). We thus arrive at the following data points:

• The initial income is $42,460;

• After 10 years in the labor market, the income is $57,320;

• The peak occurs after 25 years with an income of $71,650;

• Immediately before retirement, the income is $60,900.
We fit an age-income profile y(t) to these data points, leading to

y(t) = exp
�−0.000763 t2 + 0.0398 t + 10.65

"
.

Turning to the age-dependency profile, Lockwood estimates cb(t) post-retirement to be
$24,800. Adjusting Lockwood’s value to constant 2022 dollars yields the value of $32,900.
Our post-retirement income is $24,360. Therefore, cb(t) post-retirement is approximately
35% larger than post-retirement income. For symmetry reasons, we postulate that pre-
retirement, minimum bequest after 20 years in the labor market should be approximately
35% larger than the income at that time. Note that, due to our choice of utility function
B(t, z) for the case cb(t) < 0, the minimum bequest is −φ/(1 − φ)cb(t), so we have to
account for the scaling with φ̄ = φ/(1 − φ). We thus arrive at the following data points:
cb(0) = 0, cb(20) = −1.35 y(20)/φ̄, and cb(40) = 32,900.

We fit piecewise cubic splines over the intervals [0, 20] and [20, 40] with natural boundary
conditions, meaning that the first derivatives are set to zero at the boundaries of those
two intervals. This yields approximately the following specification for cb(t), where for
ease of presentation we rounded the coefficients to two decimal places:

cb(t) =

��������
4.31 t3 − 98.42 t2 t ∈ [0, 20),
− 6.36 (t − 20)3 + 160.11 (t − 20)2

+ 1,233.75 (t − 20) − 4,897.43
t ∈ [20, 40),

32,900 t ∈ [40, 85].

2.5.4. Dynamic programming
For completeness, we set out the dynamic program, leading to a numerical algorithm that
can be used to compute optimal solutions; see Algorithm 1. Here we treat a problem of
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deterministic optimal control. For a textbook treatment, see Fleming and Soner (2006).
In assuming a Gompertz mortality model for λ(t) as specified in Table 2.1, the density

f of the individual’s remaining lifetime τ has the form

f(t) = λ(t)F̄ (t) = 1
b

exp
�
C + ln(C) + t

b − C exp
�

t
b

" 
,

where C = exp((25 − m)/b). From this we can see that f(t) → 0 as t → ∞, because the
term C exp(t/b) dominates the term t/b inside the exponent. However, for each t > 0, we
also have f(t) > 0 as well as F̄ (t) > 0. In other words, assuming a Gompertz mortality
model for λ(t) implies that for any time t > 0, there is a positive probability that the
individual will survive up to this time.

Richard (1975) avoided this case by assuming that the support of the distribution of
τ is bounded from above by a finite constant, say T̃ > 0. Choosing T = T̃ would then
yield a proper life cycle model. One disadvantage of this approach is that one cannot use
the Gompertz law of mortality, which is popular in actuarial practice. Alternatively, one
could truncate the distribution of τ to a finite interval [0, T̃ ] by replacing the density f(t)
above with f̃(t) = f(t)/F (T̃ )1[0,T̃ ](t), where F (t) denotes the cumulative distribution
function of τ . In that case, we would have

P({τ ≤ T̃}) =
� T̃

0
f̃(t) dt = F (T̃ )

F (T̃ )
= 1.

It would be possible to replace the Gompertz mortality model by another model
satisfying F̄ (t) = 0 for all t above a reasonable time T̃ , say T̃ = 85, or by truncating
the model as described above to obtain a distribution over [0, T̃ ]. However, we note
that for the chosen model parameters as specified in Table 2.1, the probability that a
25 year old individual survives past the year 110 is F̄ (85) ≈ 3.78 · 10−5. Therefore, the
Gompertz mortality model with parameters as described in Table 2.1 and with T = 85 is
an adequate approximation to optimal consumption and premium plans over the full life
cycle. This approximation omits only survival scenarios with a negligible probability of
occurrence.

Given an initial level of wealth w, time s < T as well as a pair (c, p) of consumption
and insurance plans, let

J(s, w; c, p) = E
�� τ∧T

s
e−β(t−s)U(c(t)) dt + e−β(τ−s)B(τ, Z(τ))1{τ≤T }

+ e−β(T −s)B(T, W (T ))1{τ>T }
00 τ > s

�
,

where E[ · | τ > s] denotes the expectation conditional on {τ > s}. The only source of
randomness is the uncertain lifetime τ . Following an approach pioneered by Yaari (1965),
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J(s, w; c, p) can be rewritten:

J(s, w; c, p) =
� T

s
e−β(t−s)�F̄ (t, s)U(c(t)) + f(t, s)B(t, Z(t))

"
dt

+ e−β(T −s)F̄ (T, s)B(T, W (T )),

where F̄ (t, s) = F̄ (t)/F̄ (s) denotes the conditional survival probability, and f(t, s) =
f(t)/F̄ (s) denotes the conditional probability density.

We can now use deterministic dynamic programming over the fixed time horizon [0, T ].
We assume that y(t) is integrable (which is the case for the age-income profile specified
in Subsection 2.5.3). Moreover, we restrict our attention to consumption and premium
plans (c, p) which are bounded and measurable. Then Eq. (2.3) is well defined. To further
assure admissibility, for each w and s ∈ [0, T ), let A(s, w) denote the set of all pairs (c, p)
of consumption and premium plans on [s, T ], with

(a) c(t) > 0 for all t ∈ [s, T ];

(b) Z(t) > max{0, − φ
1−φcb(t)} for all t ∈ [s, T );

(c) W (T ) > max{0, − φ
1−φcb(T )}.

The value function is then defined via V (s, w) = sup(c,p)∈A(s,w) J(s, w; c, p) and the
optimization problem (2.4) can equivalently be written as V (w) = V (0, w). Note that we
do not need to define the set A(T, w) because the terminal boundary condition is known:
V (T, w) = B(T, w).

We now formulate the dynamic programming principle (DPP). For all s < t in [0, T ]
and w,

V (s, w) = sup
(c,p)∈A(s,w)

�
e−β(t−s)F̄ (t, s)V (t, W (t))

+
� t

s
e−β(u−s)�F̄ (u, s)U(c(u)) + f(u, s)B(u, Z(u))

"
du

 
.

The DPP gives rise to a numerical algorithm which we use to solve the optimization
problem, see Algorithm 1 below.
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Algorithm 1 Dynamic programming
1: Select a time grid 0 = t0 < t1 < . . . < tN−1 < tN = T with steps Δt;
2: Select (possibly time-dependent) nodes for the state variable W (t): wj , j = 1, . . . , J ;
3: Initialise V̂ (tN , wj) = B(tN , wj) for j = 1, . . . , J ;
4: for i = N − 1, . . . , 0 do
5: Interpolate/extrapolate V̂ (ti+1, wj), j = 1, . . . , J to approximate V̂ (ti+1, w)
6: for any w (for i = N − 1 the maturity condition is known: V̂ (T, w) = B(T, w));
7: Calculate a

(1)
i =

� ti+1
ti

e−β(s−ti)F̄ (s, ti) ds, a
(2)
i =

� ti+1
ti

e−β(s−ti)f(s, ti) ds

8: and a
(3)
i = e−β(ti+1−ti)F̄ (ti+1, ti), e.g. via numerical integration procedure;

9: for j = 1, . . . , J do
10: V̂ (ti, wj) = sup(c,p)

�
a

(1)
i U(c) + a

(2)
i B(ti, Z(ti)) + a

(3)
i V̂ (ti+1, w̃)

 
,

11: where w̃ = wj(1 + rΔt) + (y(ti) − c − p)Δt;
12: end for
13: end for
14: Calculate forward in time optimal trajectory
15: Set initial wealth, e.g. W (0) = 0
16: for i = 0, . . . , N − 1 do
17: Find optimal controls
18: (c∗(ti), p∗(ti)) = arg sup(c,p)

�
a

(1)
i U(c) + a

(2)
i B(ti, Z(ti)) + a

(3)
i V̂ (ti+1, w̃)

 
,

19: where w̃ = W (ti)(1 + rΔt) + (y(ti) − c − p)Δt;
20: Find wealth at the next time: W (ti+1) = W (ti)(1 + rΔt) + (y(ti) − c∗(ti) − p∗(ti))Δt.
21: end for
22: Calculated (c∗(ti), p∗(ti)) and W (ti) are optimal trajectories for consumption, insurance and wealth.



3. Solving Stochastic Climate-Economy
Models: A Deep Least-Squares
Monte Carlo Approach

The analysis of climate-economy policies is typically performed using Integrated Assess-
ment Models (IAMs) that describe the complex interplay between the climate and the
economy via deterministic equations. In order to account for stochastic shocks when
finding optimal mitigation policies adapted to climate and economic variables that are
evolving stochastically over time, a recursive dynamic programming implementation of
integrated assessment models is required. This is a significantly harder computational
problem to solve compared to the deterministic case. Seminal contributions to solving
IAMs as optimal decision making problems in the presence of uncertainty include Kelly
and Kolstad (1999), Kelly and Kolstad (2001), Leach (2007), Traeger (2014), and Cai
and Lontzek (2019). All these studies are based on variants of the so-called dynamic
integrated climate-economy (DICE) model extended to include stochastic shocks to the
economy and climate. The DICE model is one of the three main IAMs (the other two
being FUND and PAGE) used by the United States government to determine the social
cost of carbon; see on Social Cost of Greenhouse Gases (2016). It has been regularly
revised over the last three decades, with the first version dating back to Nordhaus
(1992). It balances parsimony with realism and is well documented with all published
model equations; in addition, its code is publicly available, which is an exception rather
than the rule for IAMs. At the same time, it is important to note that IAMs, and
the DICE model in particular, have significant limitations (in the model structure and
model parameters), which have been criticized and debated in the literature (see the
discussions in Ackerman et al. (2009); Pindyck (2017); Grubb et al. (2021); Weitzman
(2011)). Despite the criticism, the DICE model has become the iconic typical reference
point for climate-economy modelling, and is used in our study.

The original deterministic DICE model is solved as a global optimization problem using
the General Algebraic Modeling Language (GAMS), a high-level programming language
for mathematical modelling. Its stochastic extensions mentioned in the above-mentioned
studies require implementations of recursive dynamic programming to find optimal
climate policies under uncertainty (if required, the deterministic DICE model can be
solved as a recursive dynamic programming problem, too). This is subject to the curse of
dimensionality, and these studies are limited to only one or two stochastic variables. Even
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in this case, computations take several million core hours on a modern supercomputer
(see, for instance, Cai and Lontzek (2019)). Therefore, simulation methods are needed to
handle models with many state variables and multiple shocks to reduce the computational
burden.

The least-squares Monte Carlo (LSMC) method for solving multi-dimensional stochas-
tic control problems has gained popularity in recent years due to its effectiveness in
dealing with high dimensional problems and because it imposes fewer restrictions on
the constraints and allows for flexibility in the dynamics of the underlying stochastic
processes. The idea is based on simulating random paths of the underlying stochastic
variables over time and replacing the conditional expectation of the value function in the
Bellman backward recursive solution of the stochastic control problem with an empirical
least-squares regression estimate. The transition density of the underlying process is
not even required to be known in closed form; one just needs to be able to simulate
the underlying processes. The LSMC method was originally developed in Longstaff and
Schwartz (2001) and Tsitsiklis and Van Roy (2001). The convergence properties of this
method are examined in Belomestny et al. (2010); Belomestny (2011), and Aïd et al.
(2014). The LSMC method was originally developed for pricing American options where
the state variables are not affected by the control. Later, an extension of the LSMC
method with control randomisation was developed in Kharroubi et al. (2014) to handle
endogenous state variables (i.e. state variables that are affected by controls). When
applied to stochastic control problems that aim to optimize an expected utility, some
further extensions are needed as proposed in Andréasson and Shevchenko (2022) and
Andréasson and Shevchenko (2024) to achieve a stable and accurate solution.

In this chapter, we demonstrate how the LSMC method can be adapted to solve
the recursive dynamic programming problem of stochastic IAMs. We exemplify this
approach with an application to the DICE model with uncertainties in: (1) the equilibrium
temperature sensitivity, (2) the damage function coefficient, (3) the growth rate of total
factor productivity, (4) the growth rate of decarbonization, and (5) the equilibrium carbon
concentration in the upper strata. These five uncertainties were identified in Nordhaus
(2018) as being major sources of uncertainty for the evolution of climate-economic
state variables. Typically, polynomial regression is used in LSMC to approximate the
corresponding conditional expectations with respect to state variables and controls.
However, for models such as the stochastic DICE model, this leads to the need of too
many covariates and simulations, making the method not practical. To overcome this
problem, we use deep neural network approximations for the required regressions and
provide detailed explanations.

The DICE model is a deterministic approach that combines a Ramsey–Cass–Koopmans
neoclassical model of economic growth (also known as the Ramsey growth model) with
a simple climate model. It involves six state variables (economic capital; temperature
in atmosphere and lower oceans; carbon concentration in atmosphere, upper and lower
oceans) evolving deterministically in time, two control variables (savings and carbon
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emission reduction rates) to be determined for each time period of the model, and several
exogenous processes (e.g. population size and technology level). The uncertainty about
the future of the climate and economy is then typically assessed by treating some model
parameters as random variables (because we do not know the exact true value of the
key parameters) using a Monte Carlo analysis (see Nordhaus (2018); Gillingham et al.
(2015)).

Modelling aleatoric uncertainty owing to the stochastic nature of the state variables (i.e.
owing to the process uncertainty that is present even if we know the model parameters
exactly) requires the development and solution of the DICE model as a dynamic model
of decision-making under uncertainty, where we calculate the optimal policy response
under the assumption of continuing uncertainty throughout the time frame of the model.
Few attempts have been made to extend the DICE model to incorporate stochasticity
in the underlying state variables and solve it as a recursive dynamic programming
problem. For example, Kelly and Kolstad (1999) and Leach (2007) formulated the DICE
model with stochasticity in the temporal evolution of temperature, and solved this as
a recursive dynamic programming problem. These studies are seminal contributions to
the incorporation of uncertainty in the DICE model (although their numerical solution
approach is difficult to extend to a higher dimensional space and time-frequency). Cai and
Lontzek (2019) formulate DICE as a dynamic programming problem with a stochastic
shock on the economy and climate. In addition, Traeger (2014) developed a reduced
DICE model with a smaller number of state variables, whereas Lontzek et al. (2015)
studied the impact of climate tipping points, and Shevchenko et al. (2022) considered
the DICE model with discrete stochastic shocks to the economy. To our best knowledge,
the only attempt to solve the stochastic DICE model using an LSMC-type approach is
Ikefuji et al. (2020). Their study handles only one uncertainty at a time, and the setup
of the regression type Monte Carlo algorithm omits the integration for the conditional
expectation in the Bellman equation, assuming the randomness is known in the transition
of state variables (in principle, in this case, the required integration can be performed
by using deterministic quadrature methods, but this will be subject to the curse of
dimensionality).

The primary contributions of this chapter are as follows:

(a) We introduce an efficient approach for modelling stochastic climate-economy models
by combining the least-squares Monte Carlo method with deep learning techniques.
It provides flexibility in handling various types of uncertainties, including both
parametric and stochastic process uncertainties.

(b) We formulate a stochastic version of the DICE model using the sources of uncertainty
as identified by Nordhaus (2018). Notably, it does not rely on discretizing the
underlying probability distributions that is usually performed in Monte-Carlo type
analyses for the sake of model tractability.
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(c) We perform comprehensive numerical experiments and discuss numerical techniques
to significantly reduce the computational burden and address several peculiarities
of the model. Moreover, we demonstrate how to perform uncertainty quantification
(UQ) to understand how uncertainties in the model propagate and affect outputs
(such as projections for the evolution of atmospheric temperature).

The chapter is organized as follows. Section 3.1 gives a description of the considered
model. Section 3.2 describes the numerical method used to solve the model. Section 3.3
provides a comprehensive numerical study.

3.1. Model description
In this section, we present the DICE-2016R2 model as a classical example of a recursive
climate-economy model. This version of the DICE model was used in Nordhaus (2018).
It includes parameter uncertainties in equilibrium temperature sensitivity, the damage
function coefficient and the equilibrium carbon concentration in the upper strata, as well
as process uncertainties in the growth rate of total factor productivity and the growth
rate of decarbonization.

The original deterministic DICE model seeks to find policies π that maximize a social
welfare function, which models the discounted sum of population-weighted utility of per
capita consumption:

V = sup
π

∞)
t=0

ρtLt u(ct), (3.1)

where ρ is a discount factor, Lt is the world population, ct denotes per capita consumption,
and the time index t = 0, 1, . . . corresponds to Δ = 5-year steps. The policy π = (πt)t=0,1,...

consists of two control variables, per capita consumption ct and a carbon mitigation rate
µt. The utility function u has constant elasticity with respect to per capita consumption,
u(c) = (u1−α − 1)/(1 − α), with a risk-aversion parameter α ≥ 0 (the case α = 1
corresponds to logarithmic utility).

The model features six state variables: economic capital Kt, the concentration of carbon
in the atmosphere, the upper oceans, and the lower oceans, Mt = (MAT

t , MUP
t , MLO

t )T,
and the global mean temperature of the Earth’s surface and the deep oceans, Tt =
(T AT

t , T LO
t )T. The evolution of the economic and geophysical sectors is governed by the

dynamics described below.
The economic system: Gross output is modeled by a Cobb–Douglas production

function of capital, labor, and technology, Yt = AtK
γ
t L1−γ

t , where γ ∈ (0, 1) and 1 − γ
are the output elasticities of capital and labor, respectively. Here, At denotes total factor
productivity (see Subsection 3.1.1), representing technological progress and efficiency
improvements over time.

The DICE model incorporates economic damages from climate change, represented
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by a damage function that is quadratic in the global mean surface temperature, dt =
π2 × (T AT

t )2, where π2 is the damage coefficient (see Subsection 3.1.1). These damages
can be mitigated by emission reduction, controlled by the policy µt. Reducing emissions
incurs abatement costs Λt (see Table 3.1 for their specification).

Net output is then given by gross output reduced by damages and abatement costs,
Qt = (1 − Λt)Yt/(1 + dt), and economic capital Kt evolves according to the following
dynamics:

Kt+1 = (1 − δK)ΔKt + Δ × (Qt − Ct), (3.2)

where Ct is total consumption, and δK is the rate of depreciation of economic capital.
The carbon cycle: The carbon cycle is modeled by three reservoirs, which follow the

dynamics:
Mt+1 = ΦMt + (Δ × βEt, 0, 0)T, (3.3)

where Φ is a coefficient matrix, Et is total CO2 emissions (in billions of tons per year),
and β is the conversion factor of CO2 mass into the equivalent mass of carbon. Emissions
Et are equal to uncontrolled industrial emissions, given by a level of carbon intensity (see
Subsection 3.1.1) σt times gross output, reduced by the emission reduction rate µt, plus
exogenous land-use emissions +Et, i.e. Et = σt(1 − µt)Yt + +Et.

The temperature module: The relationship between greenhouse gas accumulation
and increased radiative forcing is described by the function:

Ft = η log2
�
MAT

t / ,MAT"
+ +Ft,

which models the change in total radiative forcings from anthropogenic sources such as
CO2. It consists of exogenous forcings +Ft plus forcings due to atmospheric concentrations
of CO2. Here, ,MAT is the preindustrial atmospheric carbon concentration. The evolution
of global mean temperatures follows the dynamics:

Tt+1 = ΨTt +
�

ψ1Ft+1
0

#
, (3.4)

where Ψ is a coefficient matrix, and ψ1 is a model parameter. It is important to note that
Tt is measured in terms of the absolute increase in temperature relative to the year 1900.

In DICE-2016R2, µt is assumed to be non-negative with an upper bound of 1, i.e. no
negative industrial emissions are allowed. Table 3.1 summarizes the main coefficients of
the model. Note that the number of time steps N is chosen such that t = 0 corresponds
to the year 2015, while t = N corresponds to the year 2500.

The social cost of carbon (SCC): The social cost of carbon (SCC) is a measure
of the economic harm caused by emitting one additional ton of carbon dioxide (CO2)
into the atmosphere. It represents the present value of the damages associated with a
marginal increase in CO2 emissions in a given year. The SCC is typically expressed in
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monetary terms (e.g. dollars per ton of CO2) and is used to help policymakers evaluate
the benefits of reducing emissions and compare the costs of different climate policies or
regulatory actions aimed at mitigating climate change. The SCC can be calculated in
the DICE model by:

SCCt = −1000β
∂Vt/∂MAT

t

∂Vt/∂Kt
, (3.5)

where Vt denotes the value function at time t, and β represents the CO2 to carbon mass
transformation coefficient.

Table 3.1. Parameters for the base model.
N = 97 time steps of Δ = 5 years
Lt+1 = Lt(11.500/Lt)0.134, L0 = 7.403 (in billions)
At+1 = At/(1 − gA(t)), gA(t + 1) = gA(t) exp(−0.005Δ), A(0) = 5.115, gA(0) = 0.076
σt+1 = σt exp(gσ(t)Δ), gσ(t + 1) = gσ(t)(1 − 0.001)Δ, σ0 = 35.85

105.5(1−0.03) , gσ(0) = −0.0152
Λt = 550(1 − 0.025)t/(1000θ2)σtµ

θ2
t+Et = 2.6(1 − 0.115)t, +Ft = (0.5 + t/34)1t<17 + 1t≥17

K0 = 223, MAT
0 = 851, MUP

0 = 460, MLO
0 = 1740, T AT

0 = 0.85, T LO
0 = 0.0068

α = 1.45, β = 1/3.666, γ = 0.3, ρ = 0.015, δK = 0.1

Φ =

� φ11 φ12 0
φ21 φ22 φ23
0 φ32 φ33

%, Ψ =
�

1 − ψ1ψ2 − ψ1ψ3 ψ1ψ3
ψ4 1 − ψ4

!
φ21 = 0.12, φ32 = 0.007, φ11 = 1 − φ21, φ12 = φ21588/360
φ22 = 1 − φ12 − φ32, φ23 = φ32360/1720, φ33 = 1 − φ23
ψ4 = 0.025, ψ1 = 0.1005, ψ3 = 0.088, ψ2 = 3.6813/3.1
η = 3.6813, ,MAT = 588, π2 = 0.00236, θ2 = 2.6

3.1.1. Modelling uncertainty
The dynamics presented in the DICE model so far are purely deterministic, assuming
precise knowledge of the future evolution of all exogenous variables for centuries ahead.
This approach is an unrealistic simplification. A reasonable way to address this issue is
to introduce probabilistic distributions into the model to account for uncertainties about
future outcomes. Here, we distinguish between two types of uncertainties: stochastic
process uncertainty, and initial parameter uncertainty.

Stochastic process uncertainty refers to the uncertainty in the evolution of future
trajectories of exogenous variables. A classical example from quantitative finance is
Brownian motion, B = (Bt)t≥0, modeled by B0 = 0 and Bt+h − Bt ∼ N (0, h) for t ≥ 0
and h ≥ 0, where N (0, h) denotes the normal distribution with expected value 0 and
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variance h. Incorporating stochastic process uncertainties is challenging because the
uncertainty propagates over time, increasing the volatility of the variable’s distribution.
The LSMC method we present below is highly sensitive to introduced volatility, making
this incorporation a significant challenge that few contributions in the climate-economy
literature have successfully addressed.

Initial parameter uncertainty refers to uncertainty about one or more parameters in
the system that remain fixed over time. A common method to study this uncertainty
is a perturbation analysis, where parameters are sampled, the model is solved, and the
process is repeated. However, this approach does not accurately depict the model’s
evolution over time, as an agent in the model would consider overall outcome uncertainty,
not individual instances of the uncertain parameter. Another related concept is Bayesian
learning (Kelly and Kolstad, 1999), where the parameter distribution evolves over time as
more information about the system is revealed. This type of uncertainty can be treated
by the LSMC approach presented in this chapter, but we chose not to include this in the
current study, leaving it for future work.

Identifying reasonable uncertainties to include in the model is challenging, as some
uncertainties might be more significant than others. Advanced statistical analyses are
required to make educated assumptions about probability distributions for the climate
and economc system. Here, we incorporate five uncertainties into the DICE model, as
identified by Nordhaus (2018). These include stochastic process uncertainties in the
growth rates of total factor productivity A and the rate of decarbonization σ, as well
as initial parameter uncertainties in the temperature-sensitivity coefficient, the damage
coefficient, and the carbon cycle coefficient. We emphasize that our method is not limited
to these specific uncertainties, and we now explain our choices in more detail.

Productivity growth. Assuming a Cobb-Douglas production function, the growth in
total factor productivity A models the growth in output that is not explained by growth
in inputs of labor and capital used in production. The DICE model assumes A evolves
according to At+1 = At/(1 − gA(t)), where gA(t) is the deterministic growth rate which is
specified in Table 3.1. Nordhaus (2018) assumes gA(0) is normally distributed with mean
0.076 and standard deviation 0.056. But in this case, using the dynamics for the growth
rate, we can model gA(t) as normally distributed with mean gA(0) exp(−0.005tΔ) and
standard deviation 0.056 exp(−0.005tΔ). In order to remove extreme cases, we truncate
this distribution at the mean ± two standard deviations. The evolution of At is shown
in Figure 3.1.

The rate of decarbonization. Uncontrolled industrial CO2 emissions are given by
a level of carbon intensity, σt, times gross output. The DICE model assumes σ evolves
according to σt+1 = σt exp(gσ(t)Δ), with a deterministic growth rate gσ(t) which is
specified in Table 3.1. Nordhaus (2018) assumes gσ(0) is normally distributed with mean
−0.0152 and standard deviation 0.0032. We therefore model gσ(t) as normally distributed
with mean gσ(0)(1 − 0.001)tΔ and standard deviation 0.0032(1 − 0.001)tΔ, truncating the
distribution at the mean ± two standard deviations in order to remove extreme cases.
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Figure 3.1. Uncertain evolution of total factor productivity A under the
assumption that the growth rate gA is uncertain.

The evolution of σt is shown in Figure 3.2.
Equilibrium temperature sensitivity (ETS). The equilibrium temperature sensi-

tivity measures how much the Earth’s surface will warm in response to a doubling of
atmospheric CO2. The DICE model assumes the ETS is equal to 3.1°C for an equilibrium
CO2 doubling. In Table 3.1, the ETS corresponds to the denominator in the definition
of ψ2. Nordhaus (2018) models the ETS as a log-normal distribution, exp(X) with
X ∼ N (1.1060, 0.26462). We do the same, truncating at the mean ± two standard
deviations.

The damage function. The DICE model assumes climate-induced economic damages
are a quadratic function of the increase in atmospheric temperature. It is modeled as a
fractional loss of global output from greenhouse warming, d(t) = π2 × (T AT

t )2, where π2
denotes a damage coefficient representing the severity of the economic impact of global
warming. The DICE model assumes π2 to be equal to 0.00236. Nordhaus (2018) models
the π2 by a normal distribution with mean 0.00236 and standard deviation 0.00118. We
use the same distribution but truncate it at the mean minus one standard deviation (in
order to avoid realizations of the damage coefficient that are too close to zero), and at
the mean plus two standard deviations.

The carbon cycle. The carbon cycle coefficient models the equilibrium concentration
of carbon in the biosphere and upper level of the oceans. The DICE model assumes it to
be equal to 360 gigatonnes of carbon (GtC). In Table 3.1, it corresponds to the value
360 appearing in the definitions of φ12 and φ23. Nordhaus (2018) models this coefficient



3.1. Model description 89

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

0.10

0.15

0.20

0.25

0.30

0.35 DICE model

Range of sample paths (1% to 99%)

10% and 90% quantiles

25% and 75% quantiles

Figure 3.2. Uncertain evolution of carbon intensity σ under the assump-
tion that the growth rate gσ is uncertain.

as a log-normal distribution, exp(X) with X ∼ N (5.8510, 0.26492) We do the same,
truncating at the mean ± two standard deviations.

2 3 4 5 0.002 0.003 0.004 200 300 400 500 600
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Figure 3.3. Density plots of the parameter distributions of equilibrium temperature
sensitivity (left panel), the damage coefficient (middle panel), and carbon cycle
coefficient (right panel).

Remark 3.1.
• Another type of uncertainty is parametric uncertainty, where the value of a coefficient

can change over time as it is re-drawn at each point in time. This type of uncertainty
lies between the stochastic process and the initial parameter uncertainty. Although
we did not include it in our study, it is straightforward to incorporate and solve
using our method.
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• Assuming π2 ∼ N (0.00236, 0.001182) implies a roughly 2.3% probability of π2 being
negative. This is a non-negligible scenario. Given that the DICE model aims to
combine equations for the economy and climate, it is highly questionable to assume
the damage coefficient could be below or just above zero. Moreover, the assumption
of a log-normal distribution for the equilibrium temperature sensitivity and the
carbon cycle coefficient also entails a non-negligible probability of those coefficients
being close to zero.
Nordhaus (2018) avoids this issue by discretizing the distributions, separating them
into quintiles, and then calculating the expected values of the random variables
within those quintiles. These expected values are taken as realizations of discrete
uncertain variables, yielding sufficiently positive lowest realizations for the coeffi-
cients. Inspired by this approach, we also truncate the distributions of the random
variables, however, without discretizing them. This avoids issues with too low
damage coefficients and temperature sensitivities, as well as extreme growth rates
for total factor productivity and carbon intensity.

3.2. The deep least-squares Monte Carlo method
The numerical solution of the model is achieved using the endogenous state least-squares
Monte Carlo (LSMC) algorithm with control randomization, as introduced by Kharroubi
et al. (2014) and adapted for expected utility optimal stochastic control problems
by Andréasson and Shevchenko (2022). This method approximates the conditional
expectation of the value function in the Bellman equation using regression with a
quadratic loss function applied to the transformed value function. Typically, regression
basis functions are ordinary polynomials of the state and control variables, usually up
to the third order. However, with growing dimension of the state space, the usage of
polynomials becomes increasingly difficult. Therefore, in our implementation, we use
deep neural networks to approximate the regression predictor. To mitigate transformation
bias in the regression estimate of the conditional expectation, we employ the smearing
estimate as proposed by Andréasson and Shevchenko (2022). Below is a brief description
of the LSMC algorithm.

Let t = 0, 1, . . . , N correspond to time points in the interval [0, T ]. Consider the
standard discrete dynamic programming problem with the objective to maximize the
expected value of the utility-based total reward function

V0(x) = sup
π

E
� N−1)

t=0
ρtRt(Xt, πt) + ρN RN (XN )

0000 X0 = x; π

�
, (3.6)

where π = (πt)t=0,1,...,N−1 is a control, X = (Xt)t=0,1,...,N is a controlled state variable,
RN and Rt are reward functions, ρ is a time discount factor, and the expectation is
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conditional on the initial state X0 = x and following the policy π. The evolution of the
state variable is specified by a transition function Tt(·) such that

Xt+1 = Tt(Xt, πt, Zt), (3.7)

where Z0, Z1, . . . , ZN−1 are independent disturbance terms, i.e. the state of the next
period depends on the current state’s value, the current period’s control decision, and
the realisation of the disturbance term.

This problem can be solved using the backward recursion of the Bellman equation,
starting from VN (x) = RN (x) and then solving recursively:

Vt(x) = sup
πt∈At

�
Rt(x, πt)+E

�
ρVt+1(Xt+1)

00 Xt = x; πt
�


, t = N −1, N −2, . . . , 0, (3.8)

where the expectation is conditional on the state Xt = x and the policy πt at time t. For
further details on dynamic programming, we refer the interested reader to the excellent
monograph by Fleming and Soner (2006) on the subject.

Using Equation (3.8), the optimal control can be found by solving:

π∗
t (x) = arg sup

πt∈At

�
Rt(x, πt) + E

�
ρVt+1(Xt+1)

00 Xt = x; πt
�


. (3.9)

Here, At denotes a set of admissible values of πt, which may depend on x. When
the number of state variables is more than three, it usually becomes computationally
infeasible to use quadrature-based methods to evaluate the conditional expectation in
(3.8), making simulation methods like LSMC preferable.

The LSMC method approximates the conditional expectation in Eq. (3.8):

Φt(Xt, πt) = E
�
ρVt+1(Xt+1)

00 Xt; πt
�

(3.10)

using a regression scheme with the states Xt and randomized policies πt as independent
variables, and ρVt+1(Xt+1) as the response variable. The approximation function is
denoted �Φt. The method is implemented in two stages:

(a) Forward simulation: For t = 0, 1, . . . , N − 1, the random state, control, distur-
bance variables as well as the transitioned state are simulated as Xm

t , πm
t , Zm

t , and+Xm
t+1 = Tt(Xm

t , πm
t , Zm

t ), m = 1, 2, . . . , M , where πt is sampled independently from
Xt.

(b) Backward recursion: Starting from the boundary condition VN (x) = RN (x),
the optimal stochastic control problem in Eq. (3.6) is solved using the recursion in
Eq. (3.8), as detailed in Algorithm 2.
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3.2.1. Transformation bias and heteroskedasticity
To mitigate challenges in approximating the value function due to the extreme curvature
of utility functions, one can introduce a transformation H(x) that mirrors the shape of
the value function. In our implementation, we use:

H(x) = 1
1 − α

ex(1−α). (3.11)

At each time t < T , the transformed value function is approximated using the least-
squares regression:

H−1(ρVt+1(Xm
t+1)) = fθ(Xm

t , πm
t ) + $m

t , m = 1, 2, . . . , M, (3.12)

where $m
t , m = 1, 2, . . . , M are zero mean and independent error terms, {fθ : θ ∈ Θt} is a

parametrized family of predictor functions, and H−1 the inverse of the transformation
function. Then,

Φt(Xt, πt) =
�

H
�
fθ(Xt, πt) + y

"
dFt(y), (3.13)

where Ft is the distribution of the error term $t.
In the absence of a closed-form solution for the integral in Eq. (3.13), the empirical

distribution of the residuals:

�$m
t = H−1(ρVt+1(Xm

t+1)) − fθ(Xm
t , πm

t ) (3.14)

can be used to approximate this integral. Consequently, the estimate of Φt(Xt, πt)
becomes:

Φ̂t(Xt, πt) = 1
M

M)
m=1

H
�
fθ(Xt, πt) + �$m

t

"
. (3.15)

For the chosen transformation H(x) in (3.11), Eq. (3.15) simplifies to:

Φ̂t(Xt, πt) = H
�
fθ(Xt, πt)

" 1
M

M)
m=1

e��m
t (1−α). (3.16)

In Eq. (3.16), the mean of the transformed residuals does not depend on (Xt, πt),
simplifying the function evaluation of Φ̂t(Xt, πt), as the mean can be precomputed and
reused.

If heteroskedasticity is present in the regression with respect to the state and control
variables, a method that accounts for heteroskedasticity is required. In this case, the
conditional variance can be modelled as a function of covariates:

var
�
$t | Xt; πt

"
= gθ(Xt, πt), (3.17)
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where {gθ : θ ∈ �Θt} is another parametrized family of predictor functions. There are
various standard methods to estimate gθ and the smearing estimate with controlled
heteroskedasticity can then be used as discussed in Andréasson and Shevchenko (2022).
Remark 3.2.

• The method presented in Algorithm 2 is called the regression surface approach. A
common alternative is the realized value approach, where the value function Vt(x) in
Eq. (3.8) is not computed by using the approximation of the conditional expectation
(which was needed to find the optimal policy according to Eq. (3.9)), but rather by
computing the discounted sum of rewards along one trajectory starting from the
state x at time t. While promising greater numerical stability than the regression
surface approach, the realized value approach requires calculating optimal decisions
along the individual trajectories, which comes at a significant computational cost.
For details on this approach, we refer to Andréasson and Shevchenko (2022) and
references therein. Originally, we also implemented the realized value approach,
however, we found that the regression surface approach provided a sufficiently
accurate solution for the number of sample points chosen in our numerical study in
Section 3.3.

• Another approach worth mentioning is the regress later LSMC method. Here, the
value function is approximated directly rather than the conditional expectation:
Vt+1(x) ≈ fθ(x). Finding the optimal policy in (3.9) then requires the explicit
calculation of the conditional expectation:

E
�
fθ(Xt+1)

00 Xt = x; πt
�

either analytically or numerically with quadrature methods. However, as mentioned
earlier, this approach becomes infeasible in the case of many simultaneous shocks
due to the high dimensionality of the required integration.

3.2.2. Neural networks
Here, we choose for the parametrized family of functions {fθ : θ ∈ Θ} the class of deep
neural networks. This algorithmically generated class of functions has found tremendous
success in all fields of science. Over the years, it has been shown that neural networks
can act as surrogate functions in many models, due to their far reaching approximation
capabilities.

Theorems that establish approximations are referred to as universal approximation
theorems (UAT); notable contributions include Cybenko (1989) and Hornik (1991). These
theorems establish the topological density of sets of neural networks in various topological
spaces. One speaks of the universal approximation property (Kratsios, 2021) of a class
of neural networks. Unfortunately, these theorems are usually non-constructive. To
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numerically find optimal neural networks, one typically combines backpropagation (see,
for example, Rumerlhart et al. (1986)) with ideas from stochastic approximation (Robbins
and Monro, 1951; Kiefer and Wolfowitz, 1952; Dvoretzky, 1956).

Assuming sufficient integrability, the conditional expectation in Eq. (3.10) is the
orthogonal projection of ρVt+1(Xt+1) onto the subspace spanned by (Xt, πt) in the space
of square-integrable random variables. The universal approximation property of neural
networks in this space (see, for instance, Hornik (1991, Theorem 1)) then justifies the
approximation of Φt(Xt, πt) by fθ(Xt, πt) for a suitably chosen neural network fθ.

Algorithm 2 LSMC (regression surface)
[Forward simulation]

1: for t = 0 to N − 1 do
2: for m = 1 to M do
3: sample Xm

t in the domain of its possible values J State
4: sample πm

t in the domain of its possible values At J Control
5: sample Zm

t from the distribution specified by the model J
Disturbance

6: Compute +Xm
t+1 := Tt(Xm

t , πm
t , Zm

t ) J Evolution of state
7: end for
8: end for

[Backward recursion]
1: for t = N to 0 do
2: if t = N then
3: �Vt( +Xt) := RN ( +Xt)
4: else

[Regression of transformed value function]
5: �θt := arg minθ∈Θt

*M
m=1

�
fθ(Xm

t , πm
t ) − H−1(ρ �Vt+1( +Xm

t+1))
�2

Approximate conditional expectation �Φt(Xt, πt) using Eq. (3.15)
6: for m = 1 to M do

[Find optimal control]
7: π∗

t ( +Xm
t ) := arg supπt∈At

�
Rt( +Xm

t , πt) + �Φt( +Xm
t , πt)

�
[Update value function]

8: �Vt( +Xm
t ) := Rt( +Xm

t , π∗
t ( +Xm

t )) + �Φt( +Xm
t , π∗

t ( +Xm
t ))

9: end for
10: end if
11: end for
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3.2.3. Uncertainty quantification
Uncertainty quantification (UQ) is a research field focused on understanding how un-
certainties in model inputs, parameters, and other factors propagate through models to
affect their outputs. This understanding is crucial for making informed decisions based
on model predictions, particularly in complex systems where such decisions can have
significant consequences. A key tool in UQ are Sobol’ indices (Sobol’, 2001), which are
quantitative measures used in sensitivity analysis to apportion the variance of a model
output to different input variables or combinations of input variables. By identifying the
most important input variables and their interactions, Sobol’ indices guide efforts to sort
out the main factors which should be studied with care in complex models.

Sobol’ indices provide a comprehensive view of how input variables and their interactions
influence model outputs. They can be applied to any type of model, regardless of its
complexity or the nature of its inputs and outputs. They are particularly valuable
because they capture the effects of nonlinear interactions among input variables, which is
critical for understanding complex systems. However, calculating Sobol’ indices requires a
large number of model evaluations, which can be computationally expensive for complex
models. The accurate estimation of Sobol’ indices also depends on efficient and adequate
sampling of the input space.

Denote our stochastic DICE model by G, which maps model inputs X (such as the
temperature-sensitivity coefficient) to model outputs Y = G(X) (such as the projection
of the global mean surface temperature in the year 2100). There are two main types of
Sobol’ indices.

First-order Sobol’ indices Si: These indices represent the contribution of a single
input variable Xi to the output variance V(Y ), ignoring interaction effects with other
variables:

Si = VXi(EX∼i [Y | Xi])
V(Y ) ,

where EX∼i [Y | Xi] denotes the conditional expectation of Y given Xi with respect to all
inputs X except for Xi, and VXi(·) denotes the variance with respect to Xi.

Total-order Sobol’ indices STi: These indices represent the contribution of an input
variable to the output variance, including all interactions with other variables. They are
defined as:

STi = 1 − VX∼i(EXi [Y | X∼i])
V(Y ) ,

where EXi [Y | X∼i] denotes the conditional expectation of Y with respect to Xi given all
inputs X except for Xi, and VX∼i(·) denotes the variance with respect to all inputs X
except for Xi.

First- and total-order Sobol’ indices help determine which input variables are the most
influential. Variables with high first-order indices have a strong direct effect, while those
with high total-order indices are significant due to their interactions with other variables.
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In Section 3.3, we will compute Sobol’ indices for our five identified uncertainties and
examine their effect on the most important model parameters. It is important to note
that computing Sobol’ indices in conjunction with the LSMC method involves solving the
model with the backwards recursion (3.8) only once, and then generating a sufficiently
large amount of forward trajectories to estimate the indices Si and STi .

3.2.4. Comparison with other methods and contributions
Jensen and Traeger (2014) analyze long-term economic growth uncertainty in a DICE-
based assessment model with an infinite-horizon. They express uncertainty in terms of
stochastic shocks to the growth rate of total factor productivity. The value function is
approximated by Chebyshev polynomials, and the system is solved by value function
iteration. The base model has only 3 physical state variables: capital Kt, atmospheric
carbon Mt, and technology level At.

Nordhaus (2018) considers the same DICE model version as the one used in this
chapter. Five uncertainties are identified, the same as those explained in Subsection 3.1.1.
These uncertainties are treated as initial parameter uncertainties. The distributions are
discretized to reduce the computational burden, thereby reducing the number of possible
scenarios from an uncountably infinite amount to just a few thousand. A Monte-Carlo
based parameter perturbation analysis is performed, where parameters are sampled, and
then the corresponding deterministic version of the DICE model is solved. In contrast to
Nordhaus (2018), we don’t need to discretize the distributions, and we need to solve the
model only once.

Cai and Lontzek (2019) also study a stochastic version of the DICE model, extending the
deterministic 6-dimensional model to a stochastic 9-dimensional model. Two additional
model dimensions are due to uncertainty in the evolution of total factor productivity,
and one additional dimension is due to a stochastic tipping point process. The stochastic
processes are discretized, and the resulting model is solved by value function iteration,
where the value function is approximated by Chebychev polynomials. The model is solved
with the Blue Waters supercomputer, using 110,688 cores in parallel, with computation
times of up to 8 hours. While we do not include a tipping point process, our simulation
based method drastically reduces the computational burden by solving our 11-dimensional
(in contrast to the 9-dimensional version of Cai and Lontzek (2019)) model formulation
on a 64 core machine within around 18 hours of computation time, depending on the
amount of numerical precision that is required for the solutions. Expressed in terms of
pure core hours (i.e. number of cores multiplied by total computing time), this amounts
to a reduction in computing time of more than 99%.

Ikefuji et al. (2020) formulate a stochastic version of the DICE model considering one
uncertainty at a time: a) uncertainty in the damage-abatement fraction, b) uncertainty in
the damage parameter, c) uncertainty in the emissions-to-output ratio, and d) uncertainty
in total factor productivity. These uncertainties are introduced by multiplying the
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corresponding deterministic DICE variables by stochastic disturbances. Thus, the
number of state variables is the same as in the deterministic DICE (6). To the best of our
knowledge, this is the only attempt to solve a stochastic version of the DICE model by
using an LSMC type approach. They use least-squares regression with polynomial basis
functions to approximate the value function, i.e. in the spirit of regress later LSMC. Here,
we note that their regression type Monte Carlo algorithm setup omits the integration for
the conditional expectation in the Bellman equation, assuming the random disturbance is
known in the transition of state variables. In principle, the standard regress later LSMC
can be implemented here to handle this type of uncertainty but it will be a subject of
the curse of dimensionality in the case of more than one shock.

Friedl et al. (2023) present a method for solving integrated assessment models and
performing uncertainty quantification. They exemplify their approach on a version of
the DICE model with uncertainties in equilibrium temperature sensitivity (that contains
a Bayesian learning component), and the damage function (represented by a stochastic
tipping process). First, a deep neural network is trained to output, in particular, the
optimal policies and value function at a given point in time, and then a Gaussian process-
based model is trained to approximate quantities of interest such as the social cost of
carbon in order to speed up the evaluation when calculating UQ metrics. In contrast to
Friedl et al. (2023), our method approximates the conditional expectation rather than
the policy functions, and then finds those by running an optimizer to solve Eq. (3.9).
Approximating µt by a regression scheme is a challenging task, since the presence of
the bounds (i.e. 0 ≤ µt ≤ 1) require a very careful choice of an appropriate regression
scheme that can effectively interpolate the optimal policy, especially in the presence of
extended periods when the policy is on the boundary. Our approach avoids this issue by
finding the optimal policy through an optimizer which, once the conditional expectation
has been approximated, can be performed with a high degree of numerical precision and
speed. Moreover, the deep LSMC method requires performing a least-squares regression,
where the loss function is the squared distance between the object of interest and the
neural network prediction. This choice of loss function is significantly simpler, as it avoids
the eleven individual components that enter the loss function based on an elaborate set
of first-order conditions that are needed in the solution of Friedl et al. (2023). Finally,
in contrast to Friedl et al. (2023), we find that there is no need to train an additional
Gaussian process-based surrogate model to perform UQ for the quantities of interest
(such as the social cost of carbon). Once the backward recursion (Eq. (3.8)) has been
performed, a large amount of optimal trajectories for different realizations of uncertainties
can be computed easily in order to perform UQ for the quantities of interest.
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3.3. Numerical study
In this section, we present the numerical results from applying the least-squares Monte
Carlo method with transformation bias adjustment and neural network approximation of
conditional expectations. For clarity, we emphazise that our state vector Xt consists of
11 variables: the six variables from the deterministic formulation of the DICE model (Kt,
Mt, Tt), the two stochastic processes At and σt, as well as the three parameters discussed
in Subsection 3.1.1 (temperature-sensitivity coefficient, damage coefficient and carbon
cycle coefficient).

For the backward recursion and least-squares approximation of the value function, we
use 223 sample points in the 11-dimensional state space. Figure 3.6 is based on 5 × 105

forward trajectories, while the statistics reported in Table 3.2 are based on a sample
of size 106. To find the optimal policies in (3.9), we use the limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm with box constraints (L-BFGS-B). On a 64 core
machine, it took between 9 hours (for 222 samples) and 18 hours (for 223 samples) to
perform the backward recursion. Computing optimal forward trajectories then typically
took around 15 minutes for 105 trajectories, and 1 hour for 5 × 105 trajectories.

The initial year for the version of DICE model used in Nordhaus (2018) is 2015, not
2020. For illustration purposes, during calculation of the optimal forward trajectories, we
made the first policy decision (c0, µ0) deterministic and equal to the optimal decision in
the deterministic version of the model. This amounts to starting the forward trajectories
in the year 2020 with initial values that correspond to the optimal deterministic DICE
states identified in Nordhaus (2018). Moreover, the original DICE model is formulated
as an infinite-horizon control problem, see Eq. (3.1). However, our formulation of the
LSMC method as discussed in Section 3.2 assumes a finite time horizon with N time
steps (N = 97 in our case corresponding to t = 0 being the year 2015, and t = N being
the year 2500). Imposing a finite time horizon corresponds to a truncation of the problem,
and one needs to choose an appropriate boundary reward function RN (x). Similarly,
as in Cai and Lontzek (2019), our terminal reward function is computed by assuming
that after 2500 the policies are fixed to µt = 1, ct = 0.78, and that the system evolves
deterministically. The reward is then equal to the discounted sum of population-weighted
utility of per-capita consumption from following the fixed policies for another 100 time
steps. Due to discounting and the large amount of time steps, it is assumed that a
different choice of boundary reward that far ahead in the future should have a negligible
impact on results for the twenty-first century.

For approximating conditional expectations, we use deep feedforward neural networks
with two hidden layers, each containing 32 hidden nodes with hyperbolic tangent (tanh)
as activation function, and a linear readout in the output layer. Neural network training is
performed using minibatch stochastic gradient descent with the Adam optimizer (Kingma
and Ba, 2017). The initial learning rate is set to 10−3 and reduced to a minimum of 10−5

during training. Early stopping is implemented to avoid overfitting. During the backward
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recursion, the trained neural network from one step (e.g. step t + 1) is used as the initial
neural network for the next step’s training (step t), which reduces computation time.

For this version of the stochastic DICE model, the transition equation (3.7) can be
separated into two transitions:

Xt+1 = +Tt(F (Xt, πt), Zt), (3.18)

where the deterministic transition to the post-decision variable X̂t = F (Xt, πt) precedes
the transition Xt+1 = +Tt(X̂t, Zt). This allows the conditional expectation in (3.8) to be
simplified to:

E
�
ρVt+1(Xt+1)

00 Xt; πt
�

= E
�
ρVt+1(Xt+1)

00 X̂t
�
.

This method offers two main advantages: (1) dimension reduction in the covariates
needed for the least-squares approximation of the conditional expectation, and (2) an
increase in sampling efficiency by sampling only the post-decision states X̂t rather than
both Xt and πt. Our method benefits significantly from using post-decision variables,
and we found a notable improvement in numerical precision.

Economic capital Kt and total factor productivity At can grow quite rapidly over time,
especially in scenarios where large growth in At meets a low consumption rate ct. This
poses an important numerical challenge, since an appropriate domain for sampling the
state variables needs to be chosen with care. A popular solution to this issue, having been
applied successfully in Jensen and Traeger (2014), is to normalize economic capital as
follows. First, we re-write output to express it in terms of labor-augmenting technology:
Yt = AtK

γ
t L1−γ

t = Kγ
t ( +AtLt)1−γ , where +At = A

1/(1−γ)
t . Let +Adet

t denote the deterministic
trajectory of +At, where gA(t) is fixed to be equal to the expected value. Economic capital
and output are then expressed in terms of units of effective labor: kt = Kt/( +Adet

t Lt),
and yt = Yt/( +Adet

t Lt). The state variable At can also be substituted by +At and further
normalized to at = +At/ +Adet

t . In our simulations, we found that these normalization steps
had a favorable impact on the precision of the numerical results.

Calculating the social cost of carbon (3.5) requires knowledge of partial derivatives
of the value function with respect to atmospheric carbon concentration and economic
capital. Since we do not have an analytic representation of the value function, we
follow an approximation approach that was discussed in Traeger (2014), where Chebychev
polynomials were used to approximate the value function. At each time t, we approximate
the value function Vt by a neural network:

Vt(x) ≈ gθ(x), (3.19)

for a suitable parameter vector θ. This approach strikes a balance between numerical
precision and analytical tractability, applicable even in the presence of uncertainty. Note
that the idea of approximating the value function by a neural network has already been
carried out in Kelly and Kolstad (2001) where, however, the neural network approximation
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was not used for computing the social cost of carbon.
The post-decision variables X̂t, representing the states Xt after decision πt, have the

same dimension as Xt. The sampling step in Algorithm 2 requires choosing an effective
sampling distribution. One standard approach would be to put a high-dimensional grid
of uniformly drawn points around the deterministic DICE solution. However, in order
to improve numerical precision, low-discrepancy grids are favourable in order to keep
the number of sample points needed to a reasonable amount. Latin hypercube sampling
offers a more favourable distribution of grid points compared to uniform sampling. We
chose to use Sobol’ grid points (Sobol’, 1967), which offer even higher numerical precision
compared to Latin hypercube samples. Figure 3.4 shows the point distribution of a
uniform and of a Sobol’ grid for comparison. We found that using a low-discrepancy grid
improved the numerical precision of the results.
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Figure 3.4. Comparison of uniform grid (left panel) and low-discrepancy Sobol’
grid (right panel). In both cases, 1024 points were drawn in 11 dimensions. The
plots depict the point distributions from the 11-dimensional grid projected on
the first two components.

A major challenge in solving the model was to obtain stable estimates of the optimal
emission mitigation rate µt. Estimating the optimal consumption rate ct was straightfor-
ward, but estimating µt required very precise estimates in the least-squares approximation
of the conditional expectation. Figure 3.5 offers a partial explanation. It illustrates a
typical optimization surface when trying to find the optimal policies (ct, µt) in Eq. (3.9),
showing a steep curvature for ct and a much flatter surface for µt, indicating the need for
precise numerical approximations and small tolerance values in the optimizer. We see
this issue as a consequence of the model setup. For example, a low carbon intensity σt

for times after 2100 leads to low emissions and mitigation costs, resulting in an almost
negligible effect of the mitigation rate on the value Vt. In order to resolve this issue, very
precise numerical approximations of conditional expectations based on a large number of
well-spaced sample points as well as small tolerance values in the optimizer for (ct, µt)
were required.
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Figure 3.5. Typical optimization surface over (ct, µt) encountered during
backward recursion.
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Each point x in the state space can be optimized independently in Eq. (3.9). In other
words, when solving (3.9) over a high-dimensional grid in state space, the individual opti-
mization steps for each grid point can be executed in parallel. This parallel optimization
is implemented using Python’s multiprocessing package over 64 cores, significantly
reducing computation time and allowing for the usage of a reasonably large sample size
without excessive computational costs.

Figure 3.6 presents the evolution of the six most important variables over time if the
optimal strategy is used, based on 500,000 independently simulated trajectories. These
six variables are the social cost of carbon SCCt, the global mean surface temperature
T AT

t , the carbon concentration in the atmosphere MAT
t , the emission mitigation rate

µt, total CO2 emissions Et, and damages π2 × (T AT
t )2. The panels include the median

trajectory (bold solid line), expected trajectory (dash-dotted line), the 25% and 75%
quantiles (dashed lines), the 10% and 90% quantiles (solid lines) as well as the range
of sampling paths between the 1% and 99% quantiles (shaded area). We can observe a
significant amount of uncertainty in all variables. Most notably, a significant fraction
of scenarios sees full mitigation (i.e. µt = 1) well before the year 2100 in the optimal
case, though the median trajectory is a bit below the full mitigation in 2100. We also
observe that for temperature, the 1% quantile is approximately at 2.5◦C, while the 99%
quantile is approximately at 4.5◦C. The SCC is about US$200 in 2100 under the median
trajectory, and between $150 and $300 for the 10% and 90% quantiles. For all variables
the median trajectory and deterministic DICE solution are virtually indistinguishable
and very close to the expected trajectory.

Figure 3.7 shows the first- and total-order Sobol’ indices for various model outputs in
relation to the 5 sources of uncertainty which we considered in the model. The analyzed
outputs are the social cost of carbon in 2020 (SCC), the mean surface temperature in the
atmosphere in 2100 (TATM), the carbon concentration in the atmosphere in 2100 (MAT),
output in 2100 (OUT), emissions in 2100 (EMI) as well as damages in 2100 (DAM). The
first-order Sobol’ indices (left panel) illustrate the individual contribution of each input
to the variance of the outputs, while the total-order Sobol’ indices (right panel) capture
the overall contribution, including interactions with other inputs. Note that first-order
indices do not sum up to 100%, as we have not taken into account higher order indices
(second order, third order etc.).

From Figure 3.7, it is evident that output is predominantly impacted by total factor
productivity, with both first-order and total-order indices close to 100%, indicating a
strong direct influence. In contrast, the overall impact of the carbon intensity is negligible,
with the indices being below 1% throughout. Uncertainty in σt could potentially be
excluded to simplify the model without sacrificing accuracy. The temperature-sensitivity
and damage coefficients exhibit high indices across all remaining outputs, implying
their large influence on the model outputs. Both of these coefficients moreover show
a significant difference between their first-order and total-order indices for emissions,
suggesting substantial interaction effects with other inputs. Notably, the almost negligible



3.3. Numerical study 103

1000

1200

1400

1600

Carbon concentration

1

2

3

4

Temperature

0.0

0.2

0.4

0.6

0.8

1.0

Emission control rate

0

10

20

30

40

50

60

Emissions

2020 2040 2060 2080 2100

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Damages

2020 2040 2060 2080 2100

0

100

200

300

400

500

600

Social cost of carbon

Figure 3.6. Evolution of the six most important variables over time.
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first- and total-order indices for the carbon cycle coefficient with respect to emissions
is contrasted by significant indices for damages, as well as atmospheric temperatures
and carbon concentrations. Finally, we observe that uncertainty in the social cost of
carbon in 2020 is largely due to temperature-sensitivity and damage coefficients. This
does not come as a surprise, as the uncertainty in At and σt propagates through time
and is therefore not very pronounced in the year 2020 (compared to, for instance, the
year 2100).

Overall, Figure 3.7 highlights that:

(a) Productivity has a strong influence on output, but neither on damages nor on
temperatures.

(b) The carbon intensity has a completely negligible impact on the model.

(c) The temperature-sensitivity and damage coefficients have very strong impacts on
the model.
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Figure 3.7. First-order (left) and total-order (right) Sobol’ indices for various
model outputs with respect to uncertainty in total factor productivity (TFP), car-
bon intensity (SIG), temperature-sensitivity coefficient (TSC), damage coefficient
(DC) and carbon cycle coefficient (CC).

Figure 3.8 shows the evolution of first-order Sobol’ indices for our main variables over
time, up to the year 2150. It highlights the fact that the impact of the uncertain variables
on the outputs changes over time. Most notably, the changes appear not to follow a
linear pattern, especially when looking at emissions. There, the impact of total factor
productivity At peaks around the year 2035, but declines rapidly afterwards. In contrast,
the impact of At on the social cost of carbon gradually rises from 0% in the year 2020, to
around 25% in the year 2150. This does not come as a surprise, as it highlights the effect
of the large initial uncertainty about parameters such as the temperature-sensitivity and
damage coefficients, which combines with a negligible initial uncertainty in total factor
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productivity that grows over time. Another interesting effect that can be observed is
that the total sum of all first-order indices declines for emissions from above 95% in the
year 2020 to slightly below 40% in the year 2150. This motivates the insight that the
impact due to interactions between the uncertain variables grows over time.
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Figure 3.8. First-order Sobol’ indices for main variables over time.

Table 3.2 shows the key statistics for the major variables. In terms of the coefficient of
variation (CV), we can observe the highest degree of uncertainty in emissions, followed
by the social cost of carbon, damages, and output. Most importantly, the interquartile
range (IQR) of 0.64°C for temperature and 1.4% for damages highlights the importance
of considering the notable variations in projections due to the presence of uncertainty.
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Moreover, we can re-confirm the presence of noticeable differences between the mean,
median and best guess values for some variables, which is in line with the observations of
Nordhaus (2018). Differences between the mean and median values hint at the presence
of skewness in the distribution of the variables, which can also be visually confirmed from
Figure 3.6. Finally, differences between the best guess estimates and the mean and median
values show that in some cases, the best guess provides a reasonable approximation of
the complex dynamics, whereas in other cases it does not, which again highlights the
importance of explicitly including stochastic dynamics into climate-economy models.

Table 3.2. Statistics for major variables.
Variable Mean BG Median SD IQR CV
Social cost of carbon, 2020 30.9 28.3 28.7 12.5 16.7 0.40
Temperature, 2100 (°C) 3.42 3.49 3.40 0.46 0.64 0.13
Carbon concentration, 2100 (ppm) 1,342 1,344 1,339 156 217 0.12
World output, 2100 (trillions, 2015$) 833.6 795.9 811.2 203.6 271.9 0.24
Emissions, 2100 14.0 13.1 12.0 13.3 23.6 0.95
Damages, 2100 (percent output) 3.0 2.9 2.9 1.0 1.4 0.34

SD, IQR and CV refer to standard deviation, interquartile range and coefficient of variation, respec-
tively. BG refers to best guess, which is the value calculated along the expected trajectory, assuming
that uncertainties are set to their respective means.

Conclusions
Climate-economy models are essential tools for informed decision-making, risk manage-
ment, and strategic planning in the face of climate change. These models provide a
structured framework for analyzing the economic implications of climate policies and
developing sustainable solutions to mitigate and adapt to climate change impacts. Incor-
porating stochastic models into climate-economy analyses is crucial for capturing the
full spectrum of uncertainties, improving risk assessment, designing resilient policies,
and enhancing the overall robustness and reliability of the models and their predictions.
However, the complexity of capturing the intricate, multifaceted, and probabilistic nature
of climate and economic systems, coupled with the computational challenges of han-
dling large-scale, high-dimensional, and stochastic models, poses significant challenges in
deriving efficient solutions in the presence of uncertainty.

We present an advanced approach to modelling recursive stochastic climate-economy
models using a deep least-squares Monte Carlo (LSMC) method. The method’s flexibility
allows for the application to various types of uncertainties, including parametric and
stochastic process uncertainties. The integration of deep neural networks enables the
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handling of high-dimensional models in a tractable manner and within a reasonable
computational budget, thus making stochastic climate-economy models more accessible
to researchers and policymakers. The methodology and findings presented here provide a
solid foundation for future work in this vital area of research.

Future research should explore the incorporation of Bayesian learning mechanisms
to update probabilities as more information becomes available over time. Since our
approach can manage high-dimensional stochastic shocks, a natural next step is to study
the impact of multi-dimensional probability distributions whose marginals are correlated.
Additionally, we aim to apply our method to the study of climate tipping points as well as
the Regional Integrated model of Climate Change and the Economy (RICE) of Nordhaus
and Yang (1996). These future steps could further refine the model’s predictions and
enhance its policy relevance.

It is important to note that IAMs, and the DICE model in particular, have limitations
in the model structure and model parameters which are debated in the literature, see
e.g. discussions in Pindyck (2017). The incorporation of uncertainties into these models
is an important improvement. Our approach demonstrates significant advancements in
modelling and solving complex stochastic climate-economy models. By capturing a wide
range of uncertainties and using advanced computational techniques, we contribute to the
development of more robust and reliable tools for climate policy analysis. The continued
evolution of these models will be critical in supporting effective and sustainable climate
action in the years to come, and the deep least-squares Monte Carlo method provides a
useful tool to solve stochastic climate-economy models.
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Algorithmic Strategies



4. Reinsurance with Neural Networks

In 1903 Filip Lundberg suggested to model the surplus of an insurance company by
a constant drift minus a compound Poisson process with iid almost positive jumps
(Lundberg, 1903). The drift is interpreted as the premium rate, the jumps represent the
claim sizes, whereas the Poisson process counts the claims. This setting, widely known as
the classical risk model or Cramér–Lundberg model, gives a clear but simplified picture
of the insurer’s balance.

For an insurance company, claims are not the only source of uncertainty. For example,
the increase or decrease in the number of customers (see Braunsteins and Mandjes
(2023)) or a random interest rate (see Eisenberg (2015)) will impact the risk process.
Also, reputational considerations, investments in positively correlated financial markets,
and correlations between different business branches and collectives of insured will play
a considerable role. Recently, one started to consider models involving a dependence
between the actuarial business and financial markets offering investment possibilities, see,
for instance, Ceci et al. (2022), Leimcke (2020) and references therein.

An important modification of the classical risk model is due to Gerber (1970), who
suggested to include an additional source of uncertainty – a Brownian motion. This
new, perturbed classical risk model can better account for reality while still being a
one-dimensional Markov process. The latter property makes the perturbed process a
popular model for the surplus of an insurance company, see, for instance, Dufresne and
Gerber (1991), Tsai (2001), Cheung and Liu (2023) and references therein.

However, by adding an additional source of uncertainty, in many optimisation settings,
the calculations and proofs become much more complicated, resulting in the use of the
viscosity approach, see for instance Eisenberg (2015). The viscosity approach allows to
find the optimal strategy numerically, since the corresponding Hamilton–Jacobi–Bellman
equation can be tackled using the finite difference method. To avoid this approach, one
may discretize the surplus process, thereby allowing controls only at discrete time points.
In particular, for a finite time horizon, this method has the advantage that all control
strategies can be written in feedback form, i.e. depending on the finite number of the
observed state values.

In actuarial control theory, after the model for the surplus has been chosen, the
question arises which risk measure will be considered as a target to optimize. The most
famous and extensively studied risk measure, suggested by Lundberg (1903), is the ruin
probability, i.e. the probability that the surplus becomes negative in finite time. A vast
number of results have appeared over the last century concerning the minimisation of
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the ruin probability in different settings. We refer the interested reader to Schmidli
(2008), Asmussen and Albrecher (2010) and references therein. Alternative risk measures
that have been considered over the last decades include in particular expected dividends,
expected utility of terminal wealth, and expected capital injections, see, for instance,
Albrecher et al. (2017), Avanzi (2009), Albrecher and Thonhauser (2009) and references
therein.

Measuring the utility of the terminal wealth was first suggested by Borch (1961) and
had since become one of the most important risk indicators in insurance mathematics.
The wealth at some finite time T – for instance, the time of a regulatory check – can
provide useful clues about the company’s wellbeing. Including the ruin probability into
the target functional has been considered for instance in Hipp (2018), where the main
target is to maximize dividends, or in Thonhauser and Albrecher (2007), where the time
value of ruin is taken into account. However, the multi-objective goal of simultaneously
optimizing a risk measure (such as, in our case, the expected utility of terminal wealth)
along with the ruin probability remains largely unexplored.

In the present manuscript, we look at a very general extension of the perturbed risk
model that has not been considered before. The surplus of an insurance company is
modelled by a jump process perturbed by a general diffusion (not necessarily a Brownian
motion) on an interval [0, T ] with a deterministic time horizon T . This implies that the
problem we consider is 3-dimensional and depends on the time to maturity, on the state
of the jump process and on the state of the diffusion. The functional to maximize is
given by the expected utility of terminal wealth perturbed by a modified Gerber–Shiu
(Gerber and Shiu, 1998) penalty function. It is optimized over the class of reinsurance
policies, which are arguably the most popular type of controls in the literature (with
investments, dividends and capital injections being common alternatives). A substantial
body of literature exists on utility maximization and ruin minimization with reinsurance
strategies, with notable contributions including Schmidli (2002), Promislow and Young
(2005), Bai and Guo (2008), Schmidli (2001) and Taksar and Markussen (2003).

The role of the penalty function here is twofold. It rewards the insurer if the surplus
remains positive at all times (i.e. in the case of no ruin), while a negative surplus is
penalised. In addition, one can opt for different weights for the expected utility and for
the penalty function, depending on the individual preferences of the insurer. It means,
we allow the insurer to prioritize their immediate needs: higher utility of the terminal
surplus with higher risk, or a more safer play.

As it seems unlikely that this problem can be solved explicitly, we seek for the optimal
strategy in the class of feedback controls using machine learning techniques. More
specifically, we use neural networks. Neural networks have become a popular tool in
actuarial risk management, having been applied to mortality modelling, claims reserving,
non-life insurance pricing and telematics. For a survey on recent advances of artificial
intelligence in actuarial science, see Richman (2021) and references therein.

The task of finding optimal reinsurance (and dividend) strategies with neural networks
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has been studied in Cheng et al. (2020) and Jin et al. (2021). There, the authors develop a
hybrid Markov chain approximation-based iterative deep learning algorithm to maximize
expected dividends under consideration of the time value of ruin. In contrast to Cheng
et al. (2020) and Jin et al. (2021), we include the ruin probability explicitly as a risk
measure (besides the expected utility of terminal wealth) that is optimized. Moreover,
we formulate our optimization problem as an empirical risk minimization problem, which
can be solved efficiently by stochastic gradient descent methods, even in highly complex
model settings.

The primary contributions of this chapter are as follows:

(a) We introduce a novel framework for optimizing reinsurance strategies using deep
learning techniques in order to maximize a target functional comprising a utility
function penalized by an extended Gerber–Shiu function. The proposed method
allows the insurer to balance between maximizing the expected utility of terminal
wealth, and minimizing the probability of ruin.

(b) By drawing connections to binary classification problems and surrogate loss func-
tions, we demonstrate how the optimization problem can be solved by empirical
risk minimization, a method that, when combined with stochastic gradient descent,
is particularly useful for optimizing neural networks.

(c) We illustrate our proposed methodology by a numerical example, where the surplus
process is given by a Cramér–Lundberg model perturbed by a mean-reverting
Ornstein–Uhlenbeck process. Our findings demonstrate the effectiveness of our
method in finding optimal reinsurance strategies, and highlight the large scope of
the approach.

The chapter is organized as follows. Section 4.1 gives a mathematical description of
the considered model. Section 4.2 introduces algorithmic reinsurance strategies. Section
4.3 exemplifies our approach with numerical experiments.

4.1. Model description
We consider an insurer with a deterministic finite planning horizon T > 0. The insurer
manages a portfolio of risks that generate premium payments. To mitigate potential large
financial losses from unexpectedly high claim frequencies or sizes, the insurer can enter
into reinsurance agreements. For a given number of time steps n ∈ N, these agreements
are re-negotiated at time points (ti)n

i=0, 0 = t0 < t1 < . . . < tn−1 < T for the coverage
period (ti, ti+1], where we set tn = T .

Our study is based on a probability space (Ω, F ,P). The flow of information is modeled
by an Rr-valued stochastic process Y , where r ∈ N is a fixed dimension. The process
Y induces a filtration F = (Fi)n

i=0 of F , allowing for the possibility that Fn ,= F . That
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is, there might be some information that does not reveal itself even at maturity T . We
assume that Rr is endowed with the Borel-σ-algebra BRr . All stochastic processes are
indexed via the discrete time points (ti)n

i=0.
Let p = (pi)n

i=0 denote the F-adapted premium process. The payment pi ensures insur-
ance coverage over the period (ti, ti+1]. As in our numerical illustrations in Section 4.3,
pi might be computed according to the expected value principle with a positive safety
loading. Alternatively, pi can be calculated using any other known premium calculation
principle such as, for instance, the standard deviation or zero-utility principle. The
premium may also depend on the number and size of the previously occurred claims.
However, for the sake of clarity, we concentrate on the expected value principle in order to
better explain the features of our model, and leave further extensions to future research.
Since the time horizon T is assumed to be finite, we may assume, without loss of generality,
that pn = 0.

Inspired by the Cramér–Lundberg model, let N = (Ni)n
i=0 be an F-adapted, N0-valued

and increasing process with N0 = 0, and Ni represents the number of claims up to
time ti. The R+-valued insurance claims are denoted by (Zi)i≥1. We also consider a
real-valued, F-adapted process L = (Li)n

i=0 which represents random fluctuations, such
as small claims and variations in premium income.
Remark 4.1. A distinguishing feature is that p, N , (Zi)i≥1 and L are not assumed to be
independent.

The reinsurance agreement is characterized by a reinsurance strategy b = (bi)n
i=0.

For illustrative purposes, we assume the agreement to be proportional, that is, b is an
F-adapted process with values in [0, 1]. Here, bi represents the retention level, and (1 − bi)
is the proportion of claims covered by the reinsurer during the period (ti, ti+1]. For
notational convenience, we set bn = 1. The reinsurance premium is given by the process
c = (ci)n

i=0. We assume that ci = fi(bi) for some continuous cost function fi: [0, 1] → R.
For each reinsurance strategy b, the surplus process Xb = (Xb

i )n
i=0 is defined by Xb

0 = x,
and

Xb
i+1 = Xb

i + pi − ci + Li − bi

Ni+1)
j=Ni+1

Zj , i = 0, 1, . . . , n − 1, (4.1)

where x ∈ R is the initial capital. The surplus process without reinsurance is denoted
X = (Xi)n

i=0.
The insurer’s preference is described by a continuous utility function u: R → R. Here,

we assume that the utility function is chosen such that E[u(Xn)] is finite. For example, in
Section 4.3 we will choose an exponential utility function in conjunction with exponentially
distributed claims. If one were to choose Pareto-distributed claims – a popular choice in
the literature – then another utility function is required due to the heavy tails of the
Pareto distribution.

Definition 4.2. A reinsurance strategy b is called admissible, if E[u(Xb
n)] is finite. The
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set of all admissible reinsurance strategies is denoted by A.

In our model, the insurer aims to optimize the expected utility of terminal wealth
while considering the probability of ruin across all admissible reinsurance strategies. This
is done by incorporating a penalty term whose strength is expressed by a parameter
β ∈ [0, 1]. That way, the target is to solve the following optimization problem

sup
b∈A

�
β · E[u(Xb

n)] − (1 − β) · P( min
0≤i≤n

Xb
i < 0)



. (4.2)

Remark 4.3. In (4.2), the two boundary cases β = 1 and β = 0 correspond to the pure
expected utility maximization and ruin probability minimization problems, respectively.
More generally, the convex combination in (4.2), is a linear scalarization of a multi-
objective optimization problem, i.e. the original problem with two objectives – the
expected utility of terminal wealth and the ruin probability – is transformed into a single-
objective optimization problem. Our approach can also accommodate other objectives
alongside those discussed in this chapter; we leave the investigation of other objectives
to future research. We also refer to Feinstein and Rudloff (2024), where the efficient
frontier, i.e. the set of all optimal solutions for a multi-objective optimization problem, is
approximated via neural networks.

Our problem formulation is kept very general, so that various notable models can be
considered as special cases. For example, N might be a self-exciting process observed at
discrete time points. As in Section 4.3, L could be (the discretization of) an Ornstein–
Uhlenbeck process. Additionally, let us note that the formulation of this section extends
naturally to the multi-dimensional case with, for instance, multiple correlated business
lines.

We aim to solve the optimization problem (4.2) using empirical risk minimization and
stochastic approximation, a classical concept in statistical learning theory which can
be outlined as follows. Given a set of training data points {(Y j , Zj) | j = 1, 2, . . . , m}
that are independent and identically distributed, and a parametrized family of predictor
functions {fθ : θ ∈ Θ}, the goal is to minimize the empirical loss,

θ∗ = arg min
θ∈Θ

1
m

m)
j=1

2(fθ(Y j), Zj),

where 2 denotes a loss function. If 2(fθ(Y j), Zj) is differentiable with respect to θ, the
gradient descent method can be used to minimize the empirical loss starting from an
initial guess θ0 and iteratively updating

θk+1 = θk − η

m

m)
j=1

∇θk
2(fθk

(Y j), Zj), k = 1, 2, . . . ,



114 Reinsurance with Neural Networks

until a pre-determined termination criterion is reached. Here, η > 0 denotes a learning
rate, and ∇θ2(fθ(Y j), Zj) denotes the gradient of 2(fθ(Y j), Zj) with respect to θ.

For very large sample sizes, where computing the average gradient is numerically
expensive, stochastic gradient descent (SGD) is a more efficient alternative, updating
parameters based on individual gradients ∇θ2(fθ(Y j), Zj). However, due to the noisy
nature of single-gradient updates, mini-batch stochastic gradient descent is often preferred.
This method updates parameters based on the average gradient over a subset of the
training points, balancing computational efficiency and stability.

Note that the loss 2(fθ(Y j), Zj) is assumed to be differentiable with respect to θ. How-
ever, in our optimization problem, the ruin probability imposes numerical challenges due
to the non-smooth nature of the indicator function. To address this issue, Subsection 4.1.1
explores connections to binary classification by replacing the indicator function with a
surrogate loss function. This substitution makes the problem tractable via empirical risk
minimization. Our surrogate loss model can be interpreted as a generalized (and to the
best of our knowledge, never used before) version of a Gerber–Shiu penalty function.

4.1.1. Ruin probability and binary classification problems
Ruin probabilities can be expressed in terms of expectations. To this end, given b ∈ A,
consider the map Fb defined by Fb(Y ) = min0≤i≤n Xb

i . Then, one writes:

P( min
0≤i≤n

Xb
i < 0) = P(Fb(Y ) < 0) = E[1(−∞,0)(Fb(Y ))], (4.3)

where 1A(x) denotes the indicator function over the set A, i.e. 1A(x) = 1 for x ∈ A and
1A(x) = 0 otherwise.

Minimizing the ruin probability in (4.3) then amounts to finding the optimal b ∈ A,
such that the mapping Fb classifies as many data points Y (ω) as possible not as ruin.
In other words, finding the optimal reinsurance strategy b ∈ A can be identified with
the equivalent task of finding the optimal classifier Fb∗ ∈ {Fb : b ∈ A} for the binary
classification problem where one seeks to map all data points {Y (ω) : ω ∈ Ω} to a non-ruin
event. Using Y as an argument to Fb is justified by the Doob–Dynkin representation
theorem, which states that all F-adapted processes can be written as functions of Y .

The main issue with the indicator function is that it is neither convex nor smooth.
Therefore, optimizing (4.3) by using deep learning tools and empirical risk minimization,
particularly minibatch stochastic gradient descent, becomes quite challenging. A remedy
to this issue is to employ a surrogate loss function g instead of the indicator function:

E[1(−∞,0)(Fb(Y ))] ≈ E[g(Fb(Y ))]. (4.4)

The surrogate loss function gγ(x) = 0.5 + 0.5 tanh(−γx) for γ ∈ {1, 10, 100} is presented
in Figure 4.1. This function will be also used (with γ = 10) in the numerical study in



4.2. Algorithmic reinsurance policies 115

Section 4.3. For theory on surrogate loss functions for binary classification problems, see
Bartlett et al. (2006); Nguyen et al. (2009); Reid and Williamson (2010).
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Figure 4.1. Surrogate loss functions gγ for various choices of γ.

Replacing the ruin probability in (4.2) by the expected surrogate loss of Fb(Y ) with
respect to gγ imposes a penalty on the expected utility, which can be seen as a generalized
Gerber–Shiu function (Gerber and Shiu, 1998). Indeed, our surrogate loss function allows
for an approximation of the ruin probability under mild assumptions.

Proposition 4.4. Given b ∈ A, let (gn)n∈N be a uniformly bounded sequence of functions
such that, P-almost surely, gn(Fb(Y )) → 1(−∞,0)(Fb(Y )). Then,

lim
n→∞E[gn(Fb(Y ))] = P( min

0≤i≤n
Xb

i < 0).

Proof. This is a direct consequence of Lebesgue’s dominated convergence theorem.

Remark 4.5. For our choice gγ of surrogate loss function as presented in Figure 4.1,
Proposition 4.4 is applicable as γ → ∞ if we assume that Fb(Y ) does not have a point
mass in zero, i.e. we require P(Fb(Y ) = 0) = 0. The reason for that is that gγ(0) = 1/2,
which is the only point where gγ does not converge to the indicator function 1(−∞,0).

4.2. Algorithmic reinsurance policies
We propose to solve (4.2) numerically via algorithmic reinsurance policies. These policies
determine retention levels using neural networks that observe information to generate
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decisions. This approach is inspired by recent successful applications in quantitative
finance and actuarial science. Popular use-cases are hedging, optimal stopping, model
calibration, and scenario generation (Buehler et al., 2019; Becker et al., 2019; Horvath
et al., 2021; Wiese et al., 2020).

Theorems that establish approximations in function space via neural networks are
usually referred to as universal approximation theorems (UAT); notable contributions
include Cybenko (1989) and Hornik (1991). These theorems establish the topological
density of sets of neural networks in various topological spaces. One speaks of the universal
approximation property (Kratsios, 2021) of a class of neural networks. Unfortunately,
these theorems are usually non-constructive. To numerically find optimal neural networks,
one typically combines backpropagation (see for example Rumerlhart et al. (1986)) with
ideas from stochastic approximation (Robbins and Monro, 1951; Kiefer and Wolfowitz,
1952; Dvoretzky, 1956).

Definition 4.6 (Deep feedforward neural network). Let ψ: R → R be a bounded,
measurable and non-constant map. Given k, l, n ∈ N, we denote by N N k,l,n(ψ) the
set of neural networks with an n-dimensional input layer, one neuron with identity
activation function in the output layer, k hidden layers, and at most l nodes with ψ as
activation function in each hidden layer (cf. Kidger and Lyons (2020, Definition 3.1)). We
call elements from N N k,l,n(ψ) deep feedforward neural networks, or simply deep neural
networks.

Definition 4.7 (Algorithmic reinsurance policy). We denote by Ann the set of all
proportional reinsurance strategies b that satisfy bi = σ ◦ f(Y0, Y1, . . . , Yi) for some
f ∈ N N ki,li,(i+1)r(ψ) with ki, li ∈ N, for each i = 0, 1, . . . , n. Here, σ: R → (0, 1) denotes
the logistic function given by σ(x) = exp(x)/(1 + exp(x)).

Definition 4.6 provides one example of a class of neural networks we can use, but
other choices are possible. In light of Definition 4.7, one could consider for example
recurrent neural networks or long short-term memory (LSTM) networks (see for example
Hochreiter and Schmidhuber (1997)). We also refer to UATs for deep, narrow networks
(Kidger and Lyons, 2020) and for randomized neural networks (Huang et al., 2006).
Note that feedforward neural networks are usually defined with a linear readout map
(as in Definition 4.6). In order to ensure that algorithmic reinsurance policies are valid
proportional reinsurance policies assuming values in [0, 1], we opt for the composition
with the logistic function σ in Definition 4.7.

In this chapter, we restrict ourselves to proportional reinsurance strategies. However,
the same techniques can be applied to other types of reinsurance strategies. For example,
excess-of-loss (XL) policies could be written as bi(Z) = min{Z, f(Y0, Y1, . . . , Yi)} for some
deep neural network f . We leave the investigation and comparison of results for various
algorithmic reinsurance treaties to future research.
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For the sake of notational simplicity, given b ∈ A, β ∈ [0, 1] and a smooth surrogate
loss function g, let

uβ(Y, b) = βu(Xb
n) − (1 − β)g(Fb(Y )). (4.5)

From a numerical perspective, solving the optimization problem (4.2) via algorithmic
reinsurance policies motivates the use of Monte Carlo methods. Here, we first generate a
finite amount of data points (Y j)m

j=1 and replace, for each b ∈ A, the expectation and
probability appearing in (4.2) by the empirical average

1
m

m)
j=1

uβ(Y j , b). (4.6)

The summation over a finite number m ∈ N of data points allows us to re-interpret
Eq. (4.6) as the expectation of uβ(Y, b) over a measure which assigns equal probability
1/m to every outcome. This motivates the assumption that the underlying probability
space Ω is finite, in which case all reinsurance strategies, including all algorithmic
reinsurance policies, are admissible, i.e. in particular Ann ⊂ A. Moreover, since in this
case every singleton set {ω} for each ω ∈ Ω is measurable (for otherwise we could not
assign the probability 1/m to it), it is also natural to assume that Ω is endowed with the
power set P(Ω) to form a measurable space.

Theorem 4.8. Assume that Ω is a finite set, and that F = P(Ω). Then, for every
β ∈ [0, 1] and ε > 0, there exists an algorithmic reinsurance policy bnn ∈ Ann such that

E[uβ(Y, bnn)] > sup
b∈A

E[uβ(Y, b)] − ε. (4.7)

Proof. The proof relies on some ideas from the proof of Buehler et al. (2019, Proposi-
tion 4.3). Let b∗ ∈ A be an ε/2-optimal strategy, i.e. E[uβ(Y, b∗)] > supb∈A E[uβ(Y, b)] −
ε/2. Fix one time point ti. Since b∗ is F-adapted, we have that b∗

i is Fi-measurable.
Recall that Fi is the smallest σ-algebra that makes Y0, Y1, . . . , Yi measurable. An ap-
plication of Doob–Dynkin’s lemma implies the existence of a Borel-measurable map
fi: Rr×(i+1) → [0, 1] such that b∗

i = fi(Y0, Y1, . . . , Yi).
Let µ be the Borel probability measure that is induced by Y0, Y1, . . . , Yi on Rr×(i+1).

Since b∗
i is bounded (as it assumes values in [0, 1]), we have b∗

i ∈ Lp(P) for every p > 0
and thus, in particular, fi ∈ L2(µ).

Consider the sequence (fk
i )k∈N of functions given by fk

i (x) = 1 − 1/k if fi(x) = 1,
fk

i (x) = 1/k if fi(x) = 0, and fk
i (x) = fi(x) otherwise. Clearly, fk

i → fi pointwise
and thus, fk

i (Y0, Y1, . . . , Yi) → fi(Y0, Y1, . . . , Yi) = b∗
i pointwise. We repeat the same

construction for all time points, and construct a sequence (b̂k)k∈N of reinsurance policies,
where b̂k

i = fk
i (Y0, Y1, . . . , Yi) for each i = 0, 1, . . . , n − 1. Since Ω is finite,

E[uβ(Y, b̂k)] → E[uβ(Y, b∗)], k → ∞.
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We may therefore assume, without loss of generality, that fi takes values in a closed
subset [1/k, 1 − 1/k] of [0, 1] that does neither contain 0 nor 1, for a sufficiently large
k ∈ N.

The sigmoid function σ, being a continuous bijection with continuous inverse σ−1:
(0, 1) → R, establishes a homeomorphism between R and (0, 1). Since fi ∈ [1/k, 1 − 1/k],
it follows that σ−1 ◦ fi is bounded, and thus σ−1 ◦ fi ∈ L2(µ).

The universal approximation theorem (Hornik, 1991) ensures the existence of a sequence
(f̃k

i )k∈N of shallow feedforward neural networks (i.e. feedforward neural networks with
one hidden layer), such that f̃k

i → σ−1 ◦ fi in L2(µ), as k → ∞. But this implies,
denoting b̃k

i = f̃k
i (Y0, Y1, . . . , Yi), that b̃k

i → σ−1 ◦ b∗
i in Lp(P), as k → ∞, and thus also

in probability. Upon passing to a subsequence, which we also denote (b̃k
i )k∈N, we may

assume that convergence holds outside of a P-null set, in which case σ ◦ b̃k
i → b∗

i , P-almost
surely.

If we repeat the above arguments for every ti, we obtain a sequence of processes (bk)k∈N
given by bk

i = σ ◦ b̃k
i , such that bk

i → b∗
i for every i = 0, 1, . . . , n, where convergence holds

outside a P-null set.
This implies that Xbk

i → Xb∗
i for every i = 0, 1, . . . , n, where convergence holds outside

a P-null set, and consequently Fbk(Y ) → Fb∗(Y ), P-almost surely, which implies that
u(Xbk

n ) → u(Xb∗
n ) and g(Fbk(Y )) → g(Fb∗(Y )), P-almost surely as k → ∞. Since Ω is

finite,
E[uβ(Y, bk)] → E[uβ(Y, b∗)], k → ∞.

We can thus find k∗ large enough, such that |E[uβ(Y, b∗)] − E[uβ(Y, bk∗)]| < ε/2, and set
bnn = bk∗ .

Remark 4.9. Theorem 4.8 provides theoretical justification for solving the optimization
problem (4.2) via algorithmic reinsurance policies. However, it is non-constructive in the
sense that it does not shed any light on the way how the policy bnn can be found. In
order to solve the problem via empirical risk minimization in the next section, we will
proceed in two steps:

(a) Approximate the indicator function used to form the ruin probability by a surrogate
loss function. This step is justified by Proposition 4.4.

(b) Solve the surrogate problem by stochastic approximation over the set Ann of
algorithmic policies. This step is justified by Theorem 4.8.

The final result is subject to two sources of numerical error: (1) the approximation of the
indicator function, and (2) the approximation of the solution to the surrogate problem
with algorithmic policies. However, both of these two errors can be made arbitrarily
small.
Remark 4.10. Classical universal approximation theorems which are formulated for
feedforward neural networks usually assume a linear readout, which is not bounded. In
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order to obtain a valid proportional reinsurance policy, we need to guarantee that our
algorithmic strategies assume values in [0, 1]. In Theorem 4.8 we were able to do this
with some simple tricks for our specific model setting. For a more general treatment of
non-Euclidean universal approximation, see Kratsios and Bilokopytov (2020).

4.3. Numerical study
In this section, we present a numerical example where the surplus is modeled by a
Cramér–Lundberg model perturbed by an Ornstein–Uhlenbeck (OU) process. Including
the OU process adds complexity, making the problem more challenging and realistic.
The OU process may, for instance, represent the fluctuations in the number of clients or
in premium payments.

We assume that the claims Z are iid, exponentially distributed with mean µ, N
represents a discretized Poisson process with intensity λ, and Z and N are independent.
The insurer charges premia according to the expected value principle with safety loading
η > 0, i.e. pi = (1 + η)λµ(ti+1 − ti). Similarly, the reinsurer charges premia according to
the expected value principle with safety loading θ > η, i.e. ci = (1+θ)λµ(1−bi)(ti+1 − ti).
The process L follows the dynamics

Li+1 = Li + ξ(κ − Li)(ti+1 − ti) + ν(ti+1 − ti)εi, (4.8)

where εi are iid shocks with L(εi) = N (0, 1). We assume that the initial capital is positive
to avoid starting in ruin. For our simulations, we take an arbitrarily chosen initial value
of 1.

The utility function is of exponential type, u(x) = exp(−αx), with risk-aversion
coefficient α. Table 4.1 summarizes the parameters for our base model. The values
for λ, µ, η and θ are taken from Schmidli (2001). For the neural network, we chose a
two-hidden-layer topology with hyperbolic tangent (tanh) as activation function in the
hidden layers and logistic activation σ in the output layer. The hidden layers contain 32
nodes each. The neural network takes the surplus as input; additional inputs were tested
but provided negligible improvements. All computations were performed using Python,
using the Keras deep learning API for constructing and training the neural networks.

Neural network training was performed on 2000 batches, each with a batch size of
214, using the Adam optimizer (Kingma and Ba, 2017) with an initial learning rate
of 10−3. The learning rate was decreased by a factor of 10 after 10 epochs without
improvement, with a minimum learning rate of 10−5. Early stopping was employed after
20 epochs without improvement. Distributions, expected utilities, and ruin probabilities
were computed on a test set of size 225.

First, we want to numerically verify that the expected surrogate loss indeed approxi-
mates the ruin probability. To achieve this, we compute the ruin probability for our model
without reinsurance (i.e. setting b ≡ 1) and compare the obtained value (≈ 34.1%) with
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Table 4.1. Parameters for the base model.
Model parameter Value
Initial wealth x = 1
Time horizon T = 10
Number of time steps n = 10
Claim arrival intensity λ = 1.0
Expected claim size µ = 1.0
Safety loading of insurer η = 0.50
Safety loading of reinsurer θ = 0.70
Risk aversion coefficient α = 0.30
Tuning parameter β = 0.40
Surrogate loss parameter γ = 10
OU mean-reversion level κ = 0
OU mean-reversion speed ξ = 0.20
OU volatility coefficient ν = 0.05

the expected surrogate loss E[gγ(Fb(Y ))] for various values of γ. As shown in Figure 4.2,
the expected surrogate loss approximates the ruin probability well when γ is sufficiently
large. Based on these results, we fix γ = 10 for the subsequent analysis.

The parameter β, given in (4.2), significantly influences the optimal retention level as
a function of the surplus. For instance, in Schmidli (2001), where the ruin probability is
minimized in a continuous-time setting, the optimal reinsurance strategy turns out to be
constantly 1 until a certain surplus level is reached. After that, the retention level drops
to a much lower value and converges to a constant as the surplus goes to infinity. In our
model, by incorporating the ruin probability as an additional objective, the reinsurance
policy must penalize scenarios where the insurer’s wealth becomes negative at any point
in time up to maturity T .

In our simulations, we noticed that it sufficed to optimize over those feedback strategies
b = (bi)n

i=0 that do not depend on time, i.e. bi(x) = b(x) for i = 0, 1, . . . , n − 1 (with
bn ≡ 1) and for some function b: R → [0, 1], as using time-dependent strategies did not
improve the solution. Therefore, we can interpret our obtained strategies as functions
depending on the initial capital. Figure 4.3 shows the optimal retention levels depending
on the initial capital for the base case β = 0.4 and the boundary cases β = 1 (no
penalisation through ruin probability, only utility maximization) and β = 0 (pure ruin
probability minimization, no utility in the target functional).

One can check that the strategy corresponding to the case of pure ruin probability
minimization has the same form (on the positive real line) as the strategy in the continuous
time setting for the classical risk model, see Schmidli (2008, p. 53). In the base model, the
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Figure 4.2. Expected surrogate loss E[gγ(Fb(Y ))] for various
parametrizations of the surrogate loss function in the case of no
reinsurance (b ≡ 1). The dotted horizontal line corresponds to the
ruin probability (≈ 34.1%).

4 2 0 2 4 6 8 10

INITIAL WEALTH

0.0

0.2

0.4

0.6

0.8

1.0

R
E
T
E
N
T
IO
N
L
E
V
E
L

Base model

beta=1

beta=0
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presence of the utility function in the target functional enforces an increase in the optimal
retention level starting from approximately x = 3. In the tradeoff between more safety (a
smaller retention level) and more utility, the utility wins in the long run. Obviously, by
maximizing exponential utility with no consideration of the ruin probability, the optimal
strategy does not depend on the surplus (dotted line in Figure 4.3).

Recall that our objective contains two components: the expected utility of terminal
wealth, and the expected surrogate loss approximating the ruin probability. By varying β,
we can generate optimal reinsurance strategies that approximately achieve Pareto-efficient
solutions, where any improvement in one objective requires a compromise in the other.
It is important to note that our results are subject to numerical errors due to:

(a) The surrogate loss function for the ruin probability,

(b) The finite size of training and test datasets, and

(c) The fact that neural networks can in general only approximate optimal policies up
to some ε.

Figure 4.4 demonstrates the trade-off between expected utility of terminal wealth
and ruin probability. Each individual point represents an approximate Pareto-efficient
solution for different choices of β ∈ [0, 1], where improving one objective comes at the
expense of the other. The star indicates the values obtained without reinsurance (i.e.
b ≡ 1), highlighting the benefits of optimal reinsurance strategies. In particular, the
figure highlights that, for our choice of parameters, reinsurance is always more favourable
than non-reinsurance.

Conclusions
We introduce a novel framework for optimizing reinsurance strategies using a deep learning
approach. The target functional consists of the expected utility of terminal wealth
perturbed by a modified Gerber–Shiu penalty function. It allows to balance between
maximizing the expected utility of terminal wealth, and minimizing the probability of
ruin, depending on the individual preferences of the insurer.

We draw connections to concepts from binary classification and surrogate loss func-
tions. This enables the problem to be addressed using empirical risk minimization
methods. Combined with stochastic gradient descent, it allows for efficient optimization
of algorithmic reinsurance policies, even in complex model settings.

Our numerical findings highlight the ability of our method to interpolate between the
problems of maximizing expected utility of terminal wealth, and minimizing the proba-
bility of ruin. Future research could explore other optimization targets and reinsurance
forms as well as more complex, higher-dimensional models with correlated business lines.
Moreover, it would be interesting to explore optimal algorithmic reinsurance strategies
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Figure 4.4. Trade-off between expected utility of terminal wealth
and survival probability obtained through optimal algorithmic rein-
surance polices for different choices of β ∈ [0, 1]. The star denotes
the corresponding values obtained when no reinsurance is available.

that are robust with respect to parameter uncertainties, such as the intensity of the
Poisson process, or the expected claim size. Finally, another interesting topic would be
to optimize algorithmic reinsurance polices under distributional constraints on the wealth
process.



5. Algorithmic Strategies in
Continuous-Time Hedging and
Stochastic Integration

The starting point for this chapter is Buehler et al. (2019). In that work, the authors
present a tractable framework for constructing ε-optimal hedging strategies via machine
learning technology. One of the key innovations is a simple yet profound application
of Doob’s functional representation lemma which allows to represent trading strategies
via neural networks. The framework is formulated in great generality, allowing for
the consideration of transaction costs and liquidity constraints. However, by choosing
a discrete-time rather than a continuous-time setting, the authors circumvent many
technicalities such as semimartingale properties of the asset price process, predictability
of the trading strategies, and necessary properties of the filtration which carries all market
information.

Around the late 80s and early 90s, it has been shown that neural networks are a class of
universal approximators. Some notable contributions include Cybenko (1989), Funahashi
(1989), Hornik et al. (1989), Hecht-Nielsen (1989), Hornik (1991) and Leshno et al. (1993),
see Schmidhuber (2015) for an extensive survey. What these works showed in particular,
is that neural networks constitute topologically dense subsets of C(K) and Lp(µ), the
spaces of real-valued continuous functions on a compact domain K, and real-valued
Lp(µ)-integrable functions with respect to a finite Borel measure µ, respectively. This
functional analytic insight means that every function in C(K) and Lp(µ) can – in theory
– be approximated arbitrarily well by a neural network with respect to the respective
notion of distance on these spaces, namely uniform- and Lp(µ)-distance. Results like
these are commonly referred to as universal approximation theorems, and one also speaks
of the universal approximation property of neural networks (Kratsios, 2021).

The spaces C(K) and Lp(µ) have their natural counterparts in the theory of stochastic
calculus. Here, one speaks of ucp- or Sp-convergence of stochastic processes, depending
whether the uniform distance – either uniformly over all time points in case the index set
is bounded, or uniformly over any arbitrary compact time interval in case the index set is
unbounded – to a given process converges to zero, in probability or in a given Lp-space,
respectively. Usually, one restricts to a subclass of stochastic processes that carry special
properties, like being semimartingales, or having paths with certain regularity properties.
We refer to the excellent textbooks by He et al. (1992), Protter (2005), Cohen and Elliott
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(2015) and Kallenberg (2021) for precise definitions and many results centred around
with ucp- and Sp-convergence.

At this point it is only natural to ask whether the universal approximation theorems
and approximations of optimal trading and hedging strategies as discussed in Buehler
et al. (2019) can be transferred to spaces of stochastic processes in continuous time, and
this is precisely our goal. To this end, we consider algorithmic strategies, which are linear
combinations of algorithmic buy-and-hold strategies,

f(τi, Yt1∧τi , . . . , Ytn∧τi)1(τi,τi+1].

At (random) times τi, a neural network f observes finitely many realizations of the
available and past market information, Yt1∧τi , . . . , Ytn∧τi , and enters into a buy-and-hold
trade over the amount f(τi, Yt1∧τi , . . . , Ytn∧τi) that is executed until some later (random)
time τi+1 > τi. In that way, algorithmic strategies form subset of so called simple
predictable step processes, which play a fundamental role in the construction of stochastic
integrals.

In the same way that measure theory uses step functions to define an elementary
integral, and then extend this notion to the integral of more general functions by passing
to a limit, stochastic integrals of integrable processes are commonly defined as limits over
sequences of stochastic integrals of simple processes. By proving that a large class of
stochastic processes – including simple processes – can be approximated by algorithmic
strategies in terms of ucp- and Sp-convergence, we obtain as a consequence that stochastic
integral processes can be approximated by integrals of algorithmic strategies too (see
Section 5.3 for a proof):

Theorem 5.1. Let X be a càdlàg semimartingale, and V a càglàd process. Then, there
exists a sequence (V n)n∈N of algorithmic strategies that converges to V , and such that�

V n dX →
�

V dX, n → ∞,

where convergence in both cases holds in the topology of ucp-convergence.

Theorem 5.1 highlights the fundamental role that neural networks – through algorithmic
strategies – play for the theory of stochastic integration, extends the setting of Buehler
et al. (2019) to the continuous-time domain, and yields several interesting implications
from the point of view of mathematical finance.

Integrals of algorithmic strategies with respect to square-integrable martingale price
processes are topologically dense in the stable subspace generated by these price processes.
As such, algorithmic strategies can replicate the performance of mean-variance optimal
hedging strategies (Kunita and Watanabe, 1967; Ansel and Stricker, 1993; Rheinländer
and Schweizer, 1997) arbitrarily well, giving rise to the notion of deep mean-variance
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hedging in continuous time, and extending the corresponding result of Buehler et al.
(2019) from the discrete- to the continuous-time domain (see Theorem 5.35 below).

Stricker (1990); Delbaen (1992); Delbaen and Schachermayer (1994) have linked the
existence of an equivalent martingale measure for a price process to the question whether
trading with simple processes allows for a free lunch. By refining Stricker (1990, Theo-
rem 4), we show that a sufficient condition for the existence of an equivalent martingale
measure for the price process can be linked to the absence of a free lunch with vanishing
risk for algorithmic strategies (see Theorem 5.37 below).

To summarize, the primary contributions of this chapter are as follows:

(a) Theorem 5.16 extends the approximation capabilities of neural networks (Hornik,
1991, Theorem 1) from Lp-spaces to the more general class of Orlicz spaces of
real-valued functions over domains that are general locally convex spaces.

(b) Theorem 5.23 demonstrates that, in case the underlying σ-algebra is generated by
an (uncountable) family of random variables, neural networks – through functional
representations – can approximate functions in these Orlicz spaces arbitrarily well.

(c) By representing algorithmic strategies as simple predictable processes, Theo-
rems 5.29 and 5.32 establish their approximation capabilities in spaces of stochastic
(integral) processes.

(d) Theorem 5.35 extends the notion of deep mean-variance hedging to the continuous-
time setting, by demonstrating that algorithmic strategies can approximate mean-
variance optimal hedging strategies arbitrarily well.

(e) Finally, Theorem 5.37 establishes a no free lunch with vanishing risk condition for
algorithmic strategies.

The structure of the chapter is as follows: Section 5.1 discusses universal approx-
imation in Orlicz spaces. Section 5.2 introduces algorithmically generated random
variables. Section 5.3 introduces the corresponding algorithmic strategies and discusses
their approximation capabilities.

5.1. Neural networks on locally convex spaces
One of the most prominent features of neural networks is their universal approximation
property. In Hornik (1991, Theorem 1), a universal approximation theorem in Lp(µ)-
spaces of real-valued functions with p ∈ [1, ∞) for finite Borel measures µ on the Euclidean
space Rd with d ∈ N was proved. In this section, we extend Hornik (1991, Theorem 1)
to Orlicz spaces with respect to finite measures on locally convex Hausdorff topological
vector spaces (for brevity, locally convex spaces), see Theorem 5.16 below.
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In order to introduce the concept of a neural network, let (X, A) be a measurable
space, and Γ a non-empty set of real-valued A-measurable functions. For example,
X might be a complete separable metric space with Borel σ-algebra A = BX , and
Γ could be a set of real-valued BX -measurable functions that is point-separating for
X. In that case, Bogachev (2007, Theorem 6.8.9) ensures that Γ generates BX , i.e.
BX = σ(f : f ∈ Γ). In locally convex Hausdorff topological vector spaces, there always
exists a point-separating set Γ, as the Hahn–Banach theorem (Rudin, 1991, Theorem 3.4)
shows that X∗, the continuous dual space, is point-separating for X. However, for the
time being, we do not restrict the measurable space (X, A), only later will we impose
Standing Assumption 5.13(a) for purpose of proving Theorem 5.16.

Definition 5.2 (Neural network). Let ψ: R → R be a Borel-measurable function. We
define N N (Γ, ψ) as the R-linear span of functions of the form

x (→ ψ
�
f(x) + β

"
, (5.1)

where f ∈ Γ, and β ∈ R. The elements of N N (Γ, ψ) are referred to as (shallow
feedforward) neural networks with activation function ψ.

Neural networks according to Definition 5.2 are real-valued A-measurable functions
on X. We briefly describe the extension to neural networks with values in an infinite-
dimensional Banach space. Let Y be a real Banach space with a Schauder basis (ei)i∈N,
meaning that for each y ∈ Y , there exists a unique sequence (ai)i∈N of real coefficients,
such that y = *∞

i=1 aiei, where the series converges in Y with respect to the topology
induced by the norm on Y . The set N N (Γ, ψ; Y ) of Y -valued neural networks on X is
then defined as the R-linear span of functions of the form

x (→
)
i∈I

ψ
�
fi(x) + βi

"
ei,

where I ⊂ N is a finite index set, fi ∈ Γ and βi ∈ R for all i ∈ I. By construction, elements
of N N (Γ, ψ; Y ) assume values in finite-dimensional subspaces of Y . This definition is
also consistent with the case where Y = Rn with n ∈ N, in which case the Schauder basis
(ei)i∈N is replaced by a basis {e1, . . . , en} of Rn, and the index set I is constrained to the
finite set {1, . . . , n}.
Remark 5.3. Let g ∈ N N (Γ, ψ). Then, it admits a representation of the form

g(x) =
n)

i=1
αiψ

�
fi(x) + βi

"
, (5.2)

where n ∈ N is the number of hidden nodes, α1, . . . , αn are real weights, β1, . . . , βn

are real biases, and f1, . . . , fn ∈ Γ. For the moment, let us assume that the activation
function ψ is bounded, that X is a real separable Banach space, and that Γ = X∗. Let µ
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be a finite signed Borel measure on Θ := Γ × R. If we assume Γ to be separable (when
endowed with the topology induced by the operator norm), then Θ equipped with the
product topology is separable, too, and the product σ-algebra BΓ ⊗ BR is equal to BΘ
(Schmock, 2024, Theorem 15.54). We then extend g in Eq. (5.2) to an infinite-width
neural network

g(x) =
�

Θ
ψ

�
f(x) + β

"
µ(df, dβ), (5.3)

and we recover the representation (5.2) by choosing µ = *n
i=1 αiδzi , with zi = (fi, βi).

Remarkably, fitting infinite-width neural networks to data via an infinite-dimensional
convex optimization problem subject to a penalty on the total-variation norm of µ can
result in sparse minimizers of the form µ = *n

i=1 αiδzi , with n ∈ N and zi = (fi, βi) ∈ Θ
for i = 1, . . . , n (Bach, 2017). Moreover, the integral representation (5.3) can further be
related to the Radon transform (Unser, 2023).
Remark 5.4. In the context of Remark 5.3, it is not always the case that Γ is separable;
there are non-trivial examples of real separable Banach spaces whose topological dual is not
separable. For instance, consider the probability space ([0, 1], B[0,1], λ), where λ denotes
the Lebesgue–Borel measure on [0, 1]. We know that (L1(λ))∗ 5 L∞(λ) (Billingsley,
2012, Theorem 19.3), that both L1(λ) and L∞(λ) are Banach spaces (Billingsley, 2012,
Theorem 19.1), and – since B[0,1] is countably generated – that L1(λ) is separable
(Billingsley, 2012, Theorem 19.2). However, L∞(λ) is not separable. For ε ∈ (0, 1],
let fε = 21[0,ε]. The set {fε : ε ∈ (0, 1]} contains uncountably many bounded, B[0,1]-
measurable functions, and �fε − fε̃�L∞(λ) = 2 for all ε, ε̃ ∈ (0, 1] with ε ,= ε̃. This implies
that the open balls (B1(fε))ε∈(0,1] of unit radius are pairwise disjoint, hence there cannot
exist a countable dense subset of L∞(λ).

Besides interpreting Eq. (5.2) as a discretization of the integral representation in
Eq. (5.3), it has also become popular in the literature to consider the limit as n → ∞
in Eq. (5.2), where the coefficients αi, fi and βi are randomly sampled in such a way
that a central limit theorem is applicable. In some cases, one obtains in the limit that
(g(x))x∈X becomes a Gaussian process, while in other cases more general distributions
are possible. We refer the interested reader to Neal (1996) for the Gaussian case, and to
Der and Lee (2005) for the general case.

We now discuss several examples for X, Γ and the corresponding sets N N (Γ, ψ) of
neural networks. In particular, Example 5.8 demonstrates how one can define neural
networks on spaces of stochastic processes.

Example 5.5. Let K denote a compact Hausdorff topological vector space, and X =
C(K), the Banach space of real-valued continuous functions on K, endowed with the
supremum norm �f� = supx∈K |f(x)|. Let Mr(K) denote the set of all signed Radon
measures on K. The Riesz representation theorem shows that X∗ can be identified
with Mr(K) (Bogachev, 2007, Theorem 7.10.4). More precisely, for each F ∈ X∗, there
exists a unique µ ∈ Mr(K), such that F (f) =

�
K f(x) µ(dx) for each f ∈ X. Let
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Γ = X∗ 5 Mr(K). The set N N (Γ, ψ) of neural networks on C(K) is then defined as
the R-linear span of functions of the form

f (→ ψ
� �

K
f(x) µ(dx) + β

 
,

where µ ∈ Mr(K) and β ∈ R.

Example 5.6. Let X = C(R+), the space of real-valued continuous functions on R+.
For a null sequence (cn)n∈N in (0, ∞), let

C(f, g) = max
n∈N

�
cn ∧ sup

t∈[0,n]
|f(t) − g(t)|", f, g ∈ X.

Then C is a metric for the topology of uniform convergence on compact subsets of
R+, and (X, C) is a Polish space (Schmock, 2024, Exercise 2.121). The coordinate
projections πt given by πt(f) = f(t) for t ∈ R+ are point-separating and generate BX .
Let Γ = {πt : t ∈ R+}. The set N N (Γ, ψ) of neural networks on C(R+) is then defined
as the R-linear span of functions of the form

f (→ ψ
�
f(t) + β

"
,

where t ∈ R+ and β ∈ R.

Example 5.7. Let T > 0 be a fixed time horizon, and (Ω, F ,P) be a probability
space endowed with filtration F = (Ft)t∈[0,T ], such that F0 contains all P-null sets
of F . Let M = (Mt)t∈[0,T ] be a continuous Rd-valued local (F,P)-martingale with
deterministic covariation process [M ]. Then there exists a B[0,T ]-measurable function
π: [0, T ] → Rd×d with values in the positive semi-definite matrices of Rd×d, and a finite
Lebesgue–Stieltjes measure µ on B[0,T ], such that [M ]t =

� t
0 π(s) µ(ds) for t ∈ [0, T ]

(Jacod, 1979, Section IV.2). Let Λ2 denote the set of all equivalence classes of B[0,T ]-
measurable functions f : [0, T ] → Rd with

� T
0 f�(s)π(s)f(s) µ(ds) < ∞, where we identify

two such functions f and g if (f − g)�π(·)(f − g) = 0 up to a set of µ-measure zero.
Endowed with the inner product �f, g� =

� T
0 f(s)π(s)g(s) µ(ds), Λ2 is a real separable

Hilbert space that does not depend on the specific choice of (π, µ) that satisfy the integral
representation of the covariation process (Arandjelović et al., 2025, Lemma 2.11). By the
Fréchet–Riesz representation theorem (Schmock, 2024, Theorem 14.16), the continuous
dual (Λ2)∗ is isometrically isomorphic to Λ2. More precisely, to each F ∈ (Λ2)∗, there
corresponds a unique function g ∈ Λ2, such that F (f) =

� T
0 g�(s)π(s)f(s) µ(ds) for each

f ∈ Λ2. Let Γ = (Λ2)∗ 5 Λ2. The set N N (Γ, ψ) of neural networks on Λ2 is then defined
as the R-linear span of functions of the form

f (→ ψ
� � T

0
g�(s)π(s)f(s) µ(ds) + β

 
,
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where g ∈ Λ2 and β ∈ R.

Example 5.8. Let (Ω, F ,P) be a complete probability space endowed with a right-
continuous filtration F = (Ft)t∈R+ , such that F0 contains all P-null sets of F , and
let F∞ = �

t∈R+ Ft. In that case, every (F,P)-martingale has a càdàg modification
(Cohen and Elliott, 2015, Corollary 5.1.9), and we shall always implicitly consider such a
version when speaking of an (F,P)-martingale. Moreover, let us identify those processes
which are indistinguishable. For a càdlàg process M = (Mt)t∈R+ and t ∈ [0, ∞], let
M∗

t := sups∈[0,t]∩R+ |Ms|.
Given p ∈ [1, ∞), let X = Hp, the Banach space of all real-valued (F,P)-martingales

M with �M�Hp := �M∗∞�p < ∞ (Cohen and Elliott, 2015, Lemma 10.1.5). If p ∈ (1, ∞),
then �M�Hp is equivalent to �M∞�p on Hp (Cohen and Elliott, 2015, Lemma 10.1.3),
where M∞ denotes the a.s. existing limit of M . Therefore, Hp can be identified with
the Banach space Lp(P) by the map which associates M ∈ Hp with its F∞-measurable
limit M∞ ∈ Lp(P). Moreover, if F∞ is countably generated, then Lp(P) and thus Hp are
separable (Billingsley, 2012, Theorem 19.2).

Fix q = p/(p − 1). Since (Lp(P))∗ is isometrically isomorphic to Lq(P) (Billingsley,
2012, Theorem 19.3), it follows that (Hp)∗ can be identified with Hq. More precisely, to
each F ∈ (Hp)∗ there corresponds a unique N ∈ Hq, such that F (M) = E[M∞N∞] for
every M ∈ Hp. Let Γ = (Hp)∗ 5 Hq. The set N N (Γ, ψ) of neural networks on Hp is
then defined as the R-linear span of functions of the form

M (→ ψ
�
E[M∞N∞] + β

"
,

where N ∈ Hq and β ∈ R.
Note that the case p = 1 is not covered by this construction. This is because (H1)∗

cannot be identified with H∞ (the space of real-valued (F,P)-martingales that are almost
surely uniformly bounded), but rather with the space HBMO of BMO-martingales. We
refer the interested reader to Section 2 and Theorem 2.6 in Kazamaki (1994) for further
details about BMO-martingales and the property (H1)∗ 5 HBMO.

We have now introduced neural networks as functions on general measurable spaces.
As a next step, we aim to investigate the universal approximation property of neural
networks in the Orlicz space LΦ(µ) and Orlicz heart MΦ(µ) for finite measures µ on A
and R+-valued Young functions Φ (Theorem 5.16). To this end, recall our measurable
space (Ω, A), and let µ ,= 0 be a finite measure on A.

A function Φ: R → R+ is called a Young function, if it is convex, even, lower semicontin-
uous and non-trivial (i.e. Φ(x) ∈ R+ for some x > 0) with Φ(0) = 0 and limx→∞ Φ(x) = ∞.
Given a Young function Φ, the convex conjugate (also referred to as Fenchel conjugate,
or Legendre–Fenchel conjugate) is defined by Ψ(y) = supx≥0(x|y| − Φ(x)) for every
y ∈ R. Since the operation of convex conjugation preserves both convexity and lower
semicontinuity (Schmock, 2024, Remark 14.23), it follows that Ψ is a Young function
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too, and we call (Φ, Ψ) a complementary pair of Young functions.
Every R+-valued Young function Ψ is continuous and admits an integral representation,

Φ(x) =
� |x|

0 ϕ(t) dt, where ϕ: R+ → R+ is nondecreasing and left-continuous with ϕ(0) = 0
(Rao and Ren, 1991, Corollary 1.3.2). In addition, if (Ω, F ,P) is a probability space, then
for any random variable ξ ≥ 0, an application of Fubini’s theorem shows that

E[Φ(ξ)] =
� ∞

0
P(ξ > t)ϕ(t) dt =

� ∞

0
P(ξ ≥ t)ϕ(t) dt,

which partially generalizes Kallenberg (2021, Lemma 4.4) from Φ(x) = |x|p for p ≥ 1 to
all R+-valued Young functions Φ such as, for example, Φ(x) = ex2 − 1, where ϕ(t) = 2tet2 .

Given a complementary pair (Φ, Ψ) of Young functions, LΦ(µ) consists of all A-
measurable f : X → R, such that

�
X Φ(αf) dµ < ∞ for some α > 0, and the Orlicz space

LΦ(µ) consists of all equivalence classes of functions from LΦ(µ), where we identify f
and g if f − g = 0 up to a set of µ-measure zero. Let AΨ denote the set of all g ∈ LΨ(µ)
such that

�
X Ψ(g) dµ ≤ 1. We then define the Orlicz norm � · �Φ on LΦ(µ) as

�f�Φ = sup
g∈AΨ

�
X

|fg| dµ,

and note that (LΦ(µ), � · �Φ) is a Banach space (Rao and Ren, 1991, Proposition 3.3.11).
Let us mention that besides � · �Φ, there exists an equivalent norm on LΦ(µ) that is
also popular in the literature, the Luxemburg norm; we refer to Rao and Ren (1991,
Section 3.2) for details. The set MΦ(µ) consists of all A-measurable f : X → R, such that�

X Φ(αf) dµ < ∞ for all α > 0, and the Orlicz heart MΦ(µ) consists of all equivalence
classes of functions from MΦ(µ), where we again identify f and g if f − g = 0 up to a
set of µ-measure zero.

A Young function Φ is said to satisfy the Δ2-condition (Φ ∈ Δ2), if Φ(R) ⊂ R+,
and there exists x0 > 0 and K > 0, such that Φ(2x) ≤ KΦ(x) for all x ≥ x0. In that
case, MΦ(µ) = LΦ(µ), and simple functions are dense in LΦ(µ) (Rao and Ren, 1991,
Corollary 3.4.5). In particular, if Φ ∈ Δ2, then (MΦ(µ), � · �Φ) is a Banach space. Some
(negative) examples of such Young functions Φ are:

• For each p ∈ [1, ∞) and a > 0, the function Φ(x) = a|x|p satisfies Φ ∈ Δ2.

• The function Φ(x) = e|x| − 1 does not satisfy Δ2, i.e. Φ ,∈ Δ2.

• The function Φ(x) = x2/ log(e + |x|) satisfies Φ ∈ Δ2.

• The function Φ(x) = (1 + |x|) log(1 + |x|) − |x| satisfies Φ ∈ Δ2.

Lemma 5.9. For every Young function Φ, we have LΦ(µ) ⊂ L1(µ).

Proof. We first claim that there exist a > 0 and b ≥ 0, such that Φ(x) ≥ ax − b for
every x ∈ R+. To see this, note that the definition of the convex conjugate Ψ implies
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the Fenchel–Young inequality: Φ(x) + Ψ(y) ≥ xy for all x, y ∈ R+. There are now two
possible cases to consider:

(a) There exists y∗ > 0 such that Ψ(y∗) < ∞. Then Φ(x) ≥ y∗x − Ψ(y∗) for every
x ∈ R+ (regardless of whether Φ(x) ∈ R+ or Φ(x) = ∞), and setting a = y∗ and
b = Ψ(y∗) gives the claim.

(b) The effective domain of Ψ is a singleton, i.e. {y ∈ R : Ψ(y) < ∞} = {0}. Consider
the function f : R → R+ given by f(x) = 0 for every x ∈ R. Then f is both convex
and lower semicontinuous, and the convex conjugate of f is Ψ. The Fenchel–Moreau
theorem (Schmock, 2024, Theorem 14.24) states that a function is convex and lower
semicontinuous if an only if it is equal to its convex biconjugate, i.e. the convex
conjugate of its convex conjugate. But this implies that the only convex and lower
semicontinuous function whose convex conjugate is Ψ is given by f . Since f is not
a Young function, we can disregard this case.

For f ∈ LΦ(µ), let c > 0 be such that
�

X Φ(cf) dµ < ∞. Then, by the claimed inequality,
ac|f | ≤ Φ(c|f |) + b = Φ(cf) + b, hence

�f�1 ≤ 1
ac

� �
X

Φ(cf) dµ + bµ(X)
 
,

where the right-hand side is finite.

We next recall a result that will be needed later, which helps to establish convergence
with respect to � · �Φ (Rao and Ren, 1991, Theorem 3.4.12).

Theorem 5.10. Let Φ ∈ Δ2, and (fn)n∈N be a sequence in LΦ(µ) and f ∈ LΦ(µ). Then,

�fn − f�Φ → 0 ⇐⇒
�

X
Φ(fn − f) dµ → 0,

i.e. there is equivalence between norm convergence and mean convergence. A sufficient
condition for mean convergence is if fn → f in measure and

�
X Φ(fn) dµ → �

X Φ(f) dµ.

Recall that for f ∈ L2(µ) and a sub-σ-algebra Ã ⊂ A, the conditional expectation
Eµ[f | Ã] is defined as the orthogonal projection in L2(µ) of f onto the closed subspace
of all g ∈ L2(µ) that are Ã-measurable (Schilling, 2017, Definition 27.3). Moreover, for
every p ∈ [1, ∞], the operator L2(µ) . f (→ Eµ[f | Ã] has an extension mapping Lp(µ)
onto the subspace of all g ∈ Lp(µ) that are Ã-measurable (Schilling, 2017, Theorem 27.5).
In particular, by choosing p = 1, we see that for every Young function Φ, every sub-σ-
algebra Ã ⊂ A, and every f ∈ LΦ(µ), a combination of Lemma 5.9 and Schilling (2017,
Theorem 27.5) implies that the conditional expectation Eµ[f | Ã] is well defined.

With the help of Theorem 5.10, we can formulate and prove a convergence theorem
in Orlicz spaces for conditional expectations. This generalizes Kallenberg (2021, The-
orem 9.24) from L1-spaces over probability spaces (Ω, F ,P) to Orlicz spaces LΦ over
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finite measure spaces (X, A, µ). See also Krickeberg (1964, Theorem 2) for a further
generalization to convergence of nets in Orlicz spaces LΦ over probability spaces.

Theorem 5.11. Let (An)n∈N be a filtration of A and A∞ := �
n∈N An. If Φ ∈ Δ2, then

for every g ∈ LΦ(µ), we have

Eµ[g | An] → Eµ[g | A∞], n → ∞,

where convergence holds µ-almost everywhere and in LΦ(µ).

Proof. Let c > 0 be such that
�

X Φ(cg) dµ < ∞, and let Mn = Eµ[g | An] for n ∈ N∪{∞}.
Then, for every n ∈ N ∪ {∞}, Mn is well defined by Lemma 5.9 and Schilling (2017,
Theorem 27.5). By the conditional Jensen inequality (Schilling, 2017, Theorem 27.16) and
the elementary properties of the conditional expectation (Schilling, 2017, Theorem 27.11),�

X
Φ(cMn) dµ ≤

�
X
Eµ[Φ(cg) | An] dµ =

�
X

Φ(cg) dµ < ∞,

which shows that Mn ∈ LΦ(µ) for every n ∈ N ∪ {∞}.
By Doob’s martingale convergence theorem (Schilling, 2017, Theorem 27.19(i)), M

converges to M∞ both µ-almost everywhere, and in L1(µ). According to Theorem 5.10,
convergence in norm follows if we can show that

�
X Φ(Mn) dµ converges to

�
X Φ(M∞) dµ.

By Vitali’s convergence theorem (Schmock, 2024, Theorem 4.60), this is certainly the
case if the set {Φ(Mn) : n ∈ N} is uniformly integrable.

Uniform integrability is implied by the condition (Schilling, 2017, Theorem 22.9(ix))

lim
c→∞ sup

n∈N

�
{Φ(Mn)>c}

Φ(Mn) dµ = 0.

By Markov’s inequality and Jensen’s inequality for conditional expectations,

µ(Φ(Mn) > c) ≤ 1
c

�
X

Φ(Mn) dµ ≤ 1
c

�
X

Φ(g) dµ.

Since Φ ∈ Δ2, we have that LΦ(µ) = MΦ(µ), and therefore
�

X Φ(g) dµ is finite. This
shows that µ(Φ(Mn) > c) converges to 0 as c → ∞, uniformly in n.

Since Φ(g) ∈ L1(µ), the measure ν(A) :=
�

A Φ(g) dµ is absolutely continuous with
respect to µ on A with Radon–Nikodým density Φ(g). By Williams (1991, Lemma 13.1(a)),
there exists for each ε > 0 some δ > 0, such that µ(A) < δ for A ∈ A implies ν(A) < ε.
Let c∗ > 0 be such that µ(Φ(Mn) > c∗) < δ for all n ∈ N. Then, for every c ≥ c∗,

sup
n∈N

�
{Φ(Mn)>c}

Φ(Mn) dµ ≤ sup
n∈N

�
{Φ(Mn)>c}

Φ(g) dµ = sup
n∈N

ν(Φ(Mn) > c) ≤ ε.

This shows that {Φ(Mn) : n ∈ N} is uniformly integrable, which concludes the proof.
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Before we finally formulate and prove the universal approximation theorem in Orlicz
spaces, we recall the following representation of the continuous dual spaces of MΦ(µ)
and of LΦ(µ) (Rao and Ren, 1991, Theorem 4.1.6).

Theorem 5.12. Let (Φ, Ψ) be a complementary pair of Young functions. To each
F ∈ (MΦ(µ))∗ there corresponds a unique g ∈ LΨ(µ), such that

F (f) =
�

X
fg dµ, f ∈ MΦ(µ),

and �F�op = �g�Ψ, where �F�op denotes the operator norm of F . Thus, (MΦ(µ))∗ is
isometrically isomorphic to LΨ(µ), i.e. (MΦ(µ))∗ 5 LΨ(µ). Moreover, if Φ ∈ Δ2, then
(LΦ(µ))∗ 5 LΨ(µ).

General Assumption 5.13. For the remainder of this section, let us assume that

(a) X is a locally convex Hausdorff topological vector space, Γ = X∗ and A = σ(Γ).

(b) The activation function ψ: R → R is bounded, measurable and sigmoidal, meaning
that limx→−∞ ψ(x) = 0, and limx→+∞ ψ(x) = 1.

Remark 5.14. Assumption 5.13(b) follows Cybenko (1989). The conditions that Hornik
(1991) imposed on ψ are less restrictive, requiring ψ to be non-constant in place of
sigmoidal. We leave a potential relaxation of Assumption 5.13(b) to future work.

The following proposition complements Cybenko (1989, Lemma 1) in two ways. It
extends the setting from signed measures on BRd with d ∈ N to signed measures on σ(Γ)
for general locally convex Hausdorff topological vector spaces X with Γ = X∗. Moreover,
we provide an alternative proof using a monotone class-type argument.

Proposition 5.15. The activation function ψ is discriminatory, meaning that there
cannot exist a real-valued signed measure ν ,= 0 on A such that

�
X ψ(f(x) + β) ν(dx) = 0

for every f ∈ Γ and β ∈ R.

Proof. Let us assume to the contrary that there exists such a signed measure, and let
ν = ν+ −ν− be the Hahn–Jordan decomposition of ν into two finite and mutually singular
measures on A. We aim to show that ν+ = ν−. By (Bogachev, 2007, Lemma 7.13.5), this
is certainly the case if the characteristic functions +ν+, +ν− of ν+, ν− agree on Γ. Given
f ∈ Γ, an application of Euler’s formula shows that

+ν+(f)− +ν−(f) =
�

X
exp(if(x)) ν(dx) =

�
X

cos(f(x)) ν(dx)+i
�

X
sin(f(x)) ν(dx), (5.4)

so we must show that both integrals on the right-hand side of Eq. (5.4) are zero. Note
that both the sine and cosine function are bounded, Borel-measurable functions.
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We aim to invoke the monotone class theorem (Schmock, 2024, Theorem 15.69). To
this end, let H denote the set of all bounded, Borel-measurable functions h: R → R such
that

�
X h(f(x)) ν(dx) = 0 for all f ∈ Γ.

(a) By construction, H is a real vector space.
(b) The constant function 1R is contained in H, since for every f ∈ Γ,�

X
1R(f(x)) ν(dx) = ν(X) = 1

ψ(β)

�
X

ψ(0 + β) ν(dx) = 0,

where β is any real constant such that ψ(β) ,= 0 (which we can always find since ψ
is sigmoidal), and f = 0 is trivially contained in Γ.

(c) If (hn)n∈N is a pointwise increasing sequence of R+-valued functions in H that is
uniformly bounded by a constant C ∈ R+, then the pointwise limit function is also
contained in H by the dominated convergence theorem applied to ν+ and ν−.

Let E denote the intersection-stable system of half-open intervals of the form (a, b] for
−∞ < a ≤ b < ∞, where we convene that (a, b] = ∅ for a = b. Then E generates BR, i.e.
BR = σ(E). If we can show that 1E ∈ H for every E ∈ E , then we are done. Fix θ ∈ R,
and let (sn)n∈N be an increasing sequence of positive scalars with limn→∞ sn = ∞. Using
the assumption on Γ and the fact that ψ is sigmoidal, an application of the dominated
convergence theorem yields�

X
1(θ,∞)(f(x)) ν(dx) = ν(f(x) > θ)

= lim
γ→−∞

�
ν(f(x) > θ) + ψ(γ)ν(f(x) = θ)

"
= lim

γ→−∞ lim
n→∞

�
X

ψ(sn(f(x) − θ) + γ) ν(dx) = 0,

for all f ∈ Γ. By taking linear combinations of 1(θ,∞) for θ ∈ R, we see that 1E ∈ H
for every E ∈ E . The monotone class theorem (Schmock, 2024, Theorem 15.69) now
shows that H contains all bounded, σ(E) = BR-measurable functions h: R → R, and in
particular the sine and cosine function. But in this case, the right-hand side of Eq. (5.4)
is zero for each f ∈ Γ, which shows that ν+ must be equal to ν−, hence ν ≡ 0.

The following theorem generalizes Theorem 1 in Hornik (1991) in two ways. First, we
move from Lp-spaces to the more general class of Orlicz spaces. Moreover, we only require
X to be a locally convex Hausdorff topological vector space, rather than the Euclidean
space Rd with d ∈ N. Recall Standing Assumption 5.13, that µ ,= 0 is assumed to be a
finite measure on A = σ(Γ), and (Φ, Ψ) be a complementary pair of Young functions.

Theorem 5.16 (Universal approximation in Orlicz spaces). Let Φ be an R+-valued
Young function. Then the set N N (Γ, ψ) of neural networks is dense in the Orlicz heart
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MΦ(µ). Moreover, if in addition Φ ∈ Δ2, then N N (Γ, ψ) is dense in the Orlicz space
LΦ(µ).

Proof. We claim that L∞(µ) ⊂ MΦ(µ). To see this, note that Φ is R+-valued and
non-decreasing in the sense that |x| ≤ |y| implies Φ(x) ≤ Φ(y). Therefore, for every
α > 0, we have that Φ(αf) is µ-almost everywhere bounded by Φ(α�f�∞), hence�

X Φ(αf) dµ ≤ Φ(α�f�∞)µ(X) < ∞.
Since ψ is bounded, N N (Γ, ψ) ⊂ L∞(µ) and therefore N N (Γ, ψ) ⊂ MΦ(µ). If

N N (Γ, ψ) were not dense in MΦ(µ) then, as a consequence of the Hahn–Banach theorem
(Rudin, 1987, Theorem 5.19), there exists F ∈ (MΦ(µ))∗ such that F ,≡ 0 and F (f) = 0
for each f ∈ N N (Γ, ψ). By Theorem 5.12, there exists a unique g ∈ LΨ(µ) such that
F (f) =

�
X fg dµ for every f ∈ MΦ(µ).

Let ν denote the absolutely continuous signed measure ν(A) :=
�

A g dµ on A. By
Hölder’s inequality (Rao and Ren, 1991, Proposition 3.3.1), we have for each A ∈ A,

|ν(A)| ≤
�

X
1A|g| dµ ≤ �1A�Φ�g�Ψ < ∞,

hence ν is a finite signed measure on A. Since F ,≡ 0 and F (f) =
�

X f(x) ν(dx) it follows
that ν ,≡ 0. Recall that F vanishes on N N (Γ, ψ), hence�

X
ψ

�
f(x) + β

"
ν(dx) = 0, f ∈ Γ, β ∈ R. (5.5)

Proposition 5.15 shows that ψ is discriminatory, hence (5.5) implies that ν ≡ 0, which
further implies that F ≡ 0, yielding a contradiction.

Finally, if Φ ∈ Δ2, then LΦ(µ) = MΦ(µ), and N N (Γ, ψ) is dense in LΦ(µ) as well.

In this section, we have seen that the approximation capabilities of neural networks
extend to very general spaces. In particular, we have studied neural networks on
general locally convex Hausdorff topological vector spaces and introduced several abstract
examples. Note that we have only covered the case of approximating real-valued functions;
we leave the extension to higher- or infinite-dimensional codomains to future work.
Likewise, the motivation for studying approximation capabilities in Orlicz spaces stems
from the goal to study optimal algorithmic hedging with respect to risk measures on Orlicz
hearts (Cheridito and Li, 2009); while Section 5.3 only covers the case of algorithmic
mean-variance hedging, we leave the extension to Orlicz spaces to future work. In
Section 5.2 we will see how the results from this section translate to the approximation
of optimal trading decisions in financial markets.
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5.2. Algorithmically generated random variables
The results from Section 5.1 have demonstrated useful approximation capabilities of neural
networks in very general classes of function spaces. Taking a step towards mathematical
finance, we now transfer the results from the previous section to a probabilistic setting
that is suitable for studying algorithmic trading strategies in financial markets. This
section aims to demonstrate approximation capabilities in spaces of random variables.
The key element here will be to impose measurability with respect to a σ-algebra that
is generated by a collection of random variables which represent observable market
information that can be processed in order to perform informed trading decisions.

Our next result demonstrates that even in case that there is an uncountable amount of
random variables that generates the observable information, it is in many cases possible
to restrict to the countable case. For an application of the following proposition, it may
be useful to recall that in separable metric spaces, the Borel σ-algebra is always countably
generated.

Proposition 5.17. Let (Ω, F) and (S, S) be measurable spaces. Let I be a non-empty
set, and (Fi)i∈I be an indexed family of sub-σ-algebras of F . For each J ⊂ I, denote
FJ = σ(.

j∈J Fj). Let g: Ω → S be an FI-S-measurable function, such that the trace-σ-
algebra of S on g(Ω), which we denote Sg, is countably generated. Then there exists a
countable set J ⊂ I such that g is FJ -S-measurable.

Proof. Without loss of generality, we may assume I to be an uncountable set. Let
(Sn)n∈N be a sequence of elements of S, such that Sg = σ(Sn ∩ g(Ω): n ∈ N). For every
n ∈ N, let Fn = g−1(Sn) ∈ FI , and Fg := σ(Fn : n ∈ N). Then g is Fg-S-measurable, Fg

is countably generated, and Fg ⊂ FI .
Next, we claim that

FI =
-

J⊂I
J countable

FJ . (5.6)

To this end, let us first verify that the right-hand side of Eq. (5.6), which we denote G,
is indeed a σ-algebra. For every countable J ⊂ I, clearly Ω ∈ FJ , and thus Ω ∈ G. If
B ∈ G, then there exists a countable J ⊂ I, such that B ∈ FJ and thus Bc ∈ FJ , which
implies that Bc ∈ G. Finally, let (Bn)n∈N be a sequence in G. For each n ∈ N, there
exists a countable Jn ⊂ I, such that Bn ∈ FJn . The set J = .

n∈N Jn is countable, and
Bn ∈ FJ for each n ∈ N, hence .

n∈N Bn ∈ FJ and thus .
n∈N Bn ∈ G.

This shows that G is indeed a σ-algebra. In order to show equality in Eq. (5.6),
note that .

i∈I Fi generates FI . Let F ∈ .
i∈I Fi. Then, there exists i ∈ I such that

F ∈ F{i} ⊂ G, which implies FI ⊂ G. On the other hand, for each countable J ⊂ I,
obviously FJ ⊂ FI and thus G ⊂ FI .

In order to conclude the proof, recall that g is measurable with respect to the countably
generated σ-algebra Fg = σ(Fn : n ∈ N), and that Fg ⊂ FI . For each n ∈ N, Eq. (5.6)
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implies the existence of a countable Jn ⊂ I, such that Fn ∈ FJn . Setting J := .
n∈N Jn

yields the assertion.

The proof of Proposition 5.17 used the fact that we can identify g as Fg-measurable,
where Fg is countably generated. If S is a metric space, an alternative argument can be
made via simple functions. Recall that a function f : Ω → S is simple, if f(Ω) ⊂ S is a
finite set.

Lemma 5.18. Let (Ω, F) be a measurable space, (S, C) be a separable metric space and
BS its Borel σ-algebra. Let g: Ω → S be measurable. Then, there exists a sequence
(gn)n∈N of F-BS-measurable simple functions, such that limn→∞ gn(ω) = g(ω) for every
ω ∈ Ω. Moreover, there exists a countably generated sub-σ-algebra Fg ⊂ F , such that g
is Fg-BS-measurable.

Proof. Let {sn : n ∈ N} be a countable dense subset of S, and Sn = {s1, . . . , sn}, n ∈ N.
For every n ∈ N, let

gn(ω) = arg min
s∈Sn

C(s, g(ω)), ω ∈ Ω.

If several s ∈ Sn realize the minimum, then we choose the one with the lowest index.
By construction, gn is simple and F-BS-measurable. Moreover, for each ω ∈ Ω and

ε > 0, there exists m ∈ N such that C(sm, g(ω)) < ε. But then C(gn(ω), g(ω)) < ε
for every n ≥ m, which proves the pointwise convergence. Each gn, being simple, is
measurable with respect to a finitely generated σ-algebra σ(F n

1 , . . . , F n
mn

) for some sets
F n

j ∈ F . Since the countable union of finite sets is again countable, we can consider all F n
j

to be contained in one common sequence, which we denote (Fn)n∈N. Since measurability
carries over to the pointwise limit (Kallenberg, 2021, Lemma 1.11), g is measurable with
respect to the countably generated σ-algebra Fg = σ(Fn : n ∈ N).

For the remainder of this chapter, let (Ω, F ,P) denote a complete probability space.
Moreover, let Y = (Yt)t≥0 be an Rd-valued stochastic process for some dimension d ∈ N.
In analogy to Buehler et al. (2019), the process Y represents all market information. We
denote by F0 = (F0

t )t≥0 the natural filtration generated by Y , i.e. F0
t = σ(Ys : 0 ≤ s ≤ t)

for t ∈ R+, and set F0∞ = σ(.
t≥0 F0

t ) = σ(Ys : s ∈ R+). As it is common in the
literature to assume the usual hypotheses to hold, it will also be necessary to consider the
enlargement of F0 with P-null sets. To this end, let NP denote the set of all P-null sets of
F . Let F = (Ft)t≥0, where Ft := σ(NP ∪ F0

t ) for every t ∈ R+, and F∞ = σ(NP ∪ F0∞).
Then, F is an enlargement of F0, and F0 contains all P-null sets of F .
Remark 5.19. Compared to Proposition 5.17, a somewhat more direct statement can be
obtained under additional assumptions (Cohen and Elliott, 2015, Exercise 3.4.13). To
this end, assume that Y is P-almost surely càdlàg. For t > 0, let Dt denote a countable
dense subset of [0, t) such as, for example, the set of all dyadic rational numbers in [0, t).
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In that case,
F0

t = σ(Yt) ∨ σ
� -

s∈Dt

σ(Ys)
" ∨ NP. (5.7)

Besides representations as in Eq. (5.7), it will be useful to describe σ-algebras at F0-
and at F-stopping times. In the latter case, we will assume Y to be a Lévy process
(although stationarity of increments will not be required) in the context of He et al. (1992,
Chapter 13.4), while in the former case, we need to impose an additional assumption
on Ω, which has been suggested by Shiryaev (2008, Section 1.2), but also appears in He
et al. (1992, Problem 3.16) as well as Stroock and Varadhan (2006, Lemma 1.3.3) and
Karatzas and Shreve (1998, Lemma 5.4.18) for some special cases.

Definition 5.20. We say that Ω is sufficiently rich, if for each t ≥ 0 and ω ∈ Ω, there
exists ω̃ ∈ Ω, such that Ys(ω̃) = Ys∧t(ω) for each s ≥ 0.

Proposition 5.21. In the context of Proposition 5.17, and for our complete probability
space (Ω, F ,P) with filtrations F0 and F,

(a) Fix t ∈ [0, ∞], and let g: Ω → R be F0
t -measurable. Then, there exists a countable

set J ⊂ [0, t] ∩ R+ such that, denoting FJ = σ(Yt : t ∈ J), g is FJ -measurable.

(b) Assume that Ω is sufficiently rich. Let τ : Ω → R+ be an F0-stopping time, and let
g: Ω → R be Fτ -measurable. Then, there exists a countable set J ⊂ R+ such that,
denoting FJ = σ(Y τ

t : t ∈ J), g is FJ -measurable.

(c) Assume that Y is a Lévy process. Let τ : Ω → R+ be an F-stopping time, and let
g: Ω → R be Fτ -measurable. Then, there exists a countable set J ⊂ R+ such that,
denoting FJ = σ(τ) ∨ σ(Y τ

t : t ∈ J) ∨ NP, g is FJ -measurable.

Proof. The first claim follows from Proposition 5.17 with I = [0, t] ∩ R+ and Fi = σ(Yi),
i ∈ I.

The assumption of Ω being sufficiently rich implies that Fτ = σ(Y τ
t : t ∈ R+) (Shiryaev,

2008, Section 1.2, Theorem 6). The second claim then follows from Proposition 5.17 with
I = R+ and Fi = σ(Y τ

i ), i ∈ I.
Finally, the assumption of Y being a Lévy process implies that Fτ = σ(τ) ∨ σ(Y τ

t : t ∈
R+) ∨ NP (He et al., 1992, Theorem 13.45). The last claim then follows from Propo-
sition 5.17 with I = R+ ∪ {a, b} and Fi = σ(Y τ

i ), i ∈ R+ as well as Fa = σ(τ) and
Fb = σ(NP), which concludes the proof.

Definition 5.22. Motivated by Proposition 5.21, we distinguish the following three
cases:

• Let t ∈ [0, ∞]. We call an Ft-measurable ϕ: Ω → R algorithmically generated, if
there exists n ∈ N, deterministic times 0 ≤ t1 < . . . < tn in [0, t] ∩ R+ and a neural
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network f ∈ N N ((Rd×n)∗, ψ), such that

ϕ = f(Yt1 , . . . , Ytn). (5.8)

• If Ω is sufficiently rich, and τ : Ω → R+ an F0-stopping time, then we call an Fτ -
measurable ϕ: Ω → R algorithmically generated, if there exists n ∈ N, deterministic
times 0 ≤ t1 < . . . < tn < ∞ and a neural network f ∈ N N ((Rd×n)∗, ψ), such that

ϕ = f(Y τ
t1 , . . . , Y τ

tn
). (5.9)

• If Y is a Lévy process, and τ : Ω → R+ an F-stopping time, then we call an Fτ -
measurable ϕ: Ω → R algorithmically generated, if there exists n ∈ N, deterministic
times 0 ≤ t1 < . . . < tn < ∞ and a neural network f ∈ N N ((R1+d×n)∗, ψ), such
that

ϕ = f(τ, Y τ
t1 , . . . , Y τ

tn
). (5.10)

We denote by N N t(ψ) and N N τ (ψ) the corresponding sets of algorithmically generated
random variables. For notational simplicity, we implicitly distinguish between the latter
two cases depending on whether τ is an F0- or F-stopping time.

Recall that Section 5.1 dealt with approximation capabilities of neural networks in Orlicz
spaces. The following theorem combines the universal approximation property established
in Theorem 5.16 with the refined treatment of measurability from Proposition 5.21. It
extends Øksendal (2003, Lemma 4.3.1). Recall Standing Assumption 5.13(b). For purpose
of the next Section 5.3, the last case will be of particular importance.

Theorem 5.23. Let (Φ, Ψ) be a complementary pair of Young functions, where Φ ∈ Δ2.

(a) Let I be a non-empty set, and (Zi)i∈I an indexed family of F-measurable random
variables Zi: Ω → Rd. Let +F = σ(NP ∪ σ(Zi : i ∈ I)), and g ∈ LΦ(P) be +F-
measurable. Then, for every ε > 0, there exists n ∈ N, a finite set J = {j1, . . . , jn} ⊂
I, and a neural network f ∈ N N ((Rd×n)∗, ψ), such that

�g − f(Zj1 , . . . , Zjn)�Φ < ε.

(b) Let t ∈ [0, ∞] and g ∈ LΦ(P) be Ft-measurable. Then, for every ε > 0, there exists
f ∈ N N t(ψ), such that �g − f�Φ < ε.

(c) Assume that Ω is sufficiently rich. Let τ : Ω → R+ be an F0-stopping time, and
g ∈ LΦ(P) be Fτ -measurable. Then, for every ε > 0, there exists f ∈ N N τ (ψ),
such that �g − f�Φ < ε.
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(d) Assume that Y is a Lévy process. Let τ : Ω → R+ be an F-stopping time, and
g ∈ LΦ(P) be Fτ -measurable. Then, for every ε > 0, there exists f ∈ N N τ (ψ),
such that �g − f�Φ < ε.

Proof. In order to show the first part, note that g = E[g | +F ] = E[g | σ(Zi : i ∈ I)] =: +g,
where the equalities are to be understood P-almost surely. Since +g is σ(Zi : i ∈ I)-
measurable, an application of Proposition 5.17 shows that there exists a countable set
J = {jn : n ∈ N} ⊂ I such that, denoting FJ = σ(Zjn : n ∈ N), we have that +g is
FJ -measurable, whence +g = E[+g | FJ ].

For each n ∈ N, let Fn = σ(Zj1 , . . . , Zjn). Then, (Fn)n∈N is a filtration of FJ with.
n∈N Fn = FJ . Consider the process M = (Mn)n∈N given by Mn = E[+g | Fn] for n ∈ N.

By Theorem 5.11, M converges to E[+g | FJ ] = +g both P-almost surely and in LΦ(P). Let
n ∈ N be large enough, such that �g −Mn�Φ = �+g −Mn�Φ < ε/2. By construction, Mn is
Fn-measurable. Therefore, by the Doob–Dynkin factorization lemma (Kallenberg, 2021,
Lemma 1.14), Mn = f(Zj1 , . . . , Zjn) for some Borel-measurable function f : Rdn → R,
where we identify Rd×n 5 Rdn.

Let µ denote the Borel probability measure that is induced by (Zj1 , . . . , Zjn) on Rdn.
Since Mn ∈ LΦ(P), it follows that f ∈ LΦ(µ). By Theorem 5.16, there exists a sequence
(fm)m∈N of neural networks that converges to f in LΦ(µ). Now choose m ∈ N large
enough such that �f − fm�Φ < ε/2. After applying the triangle inequality, we obtain

�g − fm(Zj1 , . . . , Zjn)�Φ ≤ �g − Mn�Φ + �f − fm�Φ < ε,

which concludes the proof for the first case.
In using Proposition 5.21(b), the second part can be shown precisely as the first part,

with the indexed family (Ys)s∈I and I = [0, t] ∩ R+. Using Proposition 5.21(c), the third
part can also be shown precisely as the first part, with the indexed family (Y τ

s )s∈I and
I = R+. Finally, the last part can be shown using Proposition 5.21(c) using the family
{Ys : s ∈ R+} ∪ {τ}.

Remark 5.24. Recall that we assumed (Ω, F ,P) to be a complete probability space, and
F0 contains all P-null sets of F . We aim to work with the filtered complete probability
space (Ω, F ,F,P) under the usual hypotheses. In order for this to work, we need to ensure
F to be right-continuous. We are therefore looking for sufficient conditions which turn F
into a right-continuous filtration of F . According to Schmock (2024, Remark 3.23), the
filtration F is right-continuous, provided that Y is right-continuous w.r.t. the Euclidean
norm on Rd, and Y has independent future increments w.r.t. F0. This means that
Brownian motion and, more generally, Lévy processes are admissible processes for Y .

Motivated by Remark 5.24 and Proposition 5.21(d), we introduce the

General Assumption 5.25. The process Y is a Lévy process, which implies that the
filtered probability space (Ω, F ,F,P) is complete and satisfies the usual hypotheses.
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In what follows, we denote by M(ψ) the set of all real-valued (F,P)-martingales M
that are closable by some ϕ ∈ N N ∞(ψ). Due to Standing Assumption 5.25, every (F,P)-
martingale has a càdlàg modification (Cohen and Elliott, 2015, Corollary 5.1.9), and we
shall always implicitly consider such a version when speaking of an (F,P)-martingale.

Corollary 5.26. In the setting of Example 5.8 and Theorem 5.23, for every p ∈ (1, ∞),
the set M(ψ) is dense in Hp.

Proof. First, we will show that M(ψ) ⊂ Hp. Let M ∈ M(ψ). Then M is closable by
some ϕ ∈ N N ∞(ψ). By definition, ϕ is bounded (because the activation function ψ is
bounded), hence ϕ ∈ Lp(P). But since Hp can be identified with those elements from
Lp(P) that are F∞-measurable, we have M ∈ Hp.

Next, let N ∈ Hp, and let N∞ denote its P-almost surely existing limit in Lp(P).
Then, N∞ is F∞-measurable, and by Theorem 5.23(b), for every ε > 0, there exists
ϕ ∈ N N ∞(ψ), such that �N∞ − ϕ�p < ε/q, where 1/p + 1/q = 1. Let M ∈ M(ψ) be
closable by ϕ, such that M∞ = E[ϕ | F∞] = ϕ. An application of Cohen and Elliott
(2015, Lemma 10.1.3) shows that

�N − M�Hp ≤ q�N∞ − M∞�p < ε,

which concludes the proof.

5.3. Applications in mathematical finance
5.3.1. Universal approximation of stochastic integral processes
Definition 5.27. Let us define some processes.

• A stochastic process V is said to be simple, if V has a representation

Vt = ϕ01{0}(t) +
n)

i=1
ϕi1(τi,τi+1](t), (5.11)

where 0 = τ1 ≤ . . . ≤ τn+1 < ∞ is a finite sequence of F-stopping times, and
ϕi ∈ L∞(Fτi ,P) for i = 0, 1, . . . , n. We denote by S the set of all simple processes,
and call elements of S simple strategies.

• A stochastic process V is said to be elementary, if V has a representation (5.11),
where the stopping times τi are deterministic. We denote by E the set of all
elementary processes, and call elements of E elementary strategies.

• We denote by S(ψ) the set of all simple strategies V ∈ S that admit a represen-
tation (5.11), where ϕi ∈ N N τi(ψ) for i = 0, 1, . . . , n, and call elements of S(ψ)
simple algorithmic strategies.
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• We denote by E(ψ) the set of all elementary strategies V ∈ E that admit a
representation (5.11), where ϕi ∈ N N τi(ψ) for i = 0, 1, . . . , n, and call elements of
E(ψ) elementary algorithmic strategies.

Proposition 5.28. Let (Φ, Ψ) be a complementary pair of Young functions, where Φ ∈
Δ2. Then, for each V ∈ E and ε > 0, there exists U ∈ E(ψ), such that �(V − U)∗∞�Φ < ε.
In particular, E(ψ) is dense in E for the topology of ucp-convergence. Moreover, for each
V ∈ S and ε > 0, there exists U ∈ S(ψ), such that �(V − U)∗∞�Φ < ε. In particular,
S(ψ) is dense in S for the topology of ucp-convergence.

Proof. We argue both cases simultaneously. Let V be given by a representation (5.11),
either with deterministic times τi or with F-stopping times τi. Fix i ∈ {0, 1, . . . , n}, and
note that ϕi ∈ L∞(P) ⊂ LΦ(P). By Theorem 5.23(b) and (d), there exists a sequence
(ϕi,m)m∈N of elements in N N τi(ψ) that converges to ϕi with respect to � · �Φ.

Let (V m)m∈N be the sequence given by

V m = ϕ0,m1{0}(·) +
n)

i=1
ϕi,m1(τi,τi+1](·), m ∈ N.

By construction, it holds that (V − V m)∗∞ ≤ *n
i=0 |ϕi − ϕi,m|. By Rao and Ren (1991,

Proposition 3.3.4), the Orlicz norm � · �Φ is monotone in the sense that 0 ≤ f1 ≤ f2
implies �f1�Φ ≤ �f2�Φ, hence

�(V − V m)∗
∞�Φ ≤ // n)

i=0
|ϕi − ϕi,m|//Φ ≤

n)
i=0

�ϕi − ϕi,m�Φ,

where the right-hand side converges to zero as m → ∞. Therefore, we can find m ∈ N
such that �(V − V m)∗∞�Φ < ε, and the required process U is found by setting U = V m.

In order to prove the last claim, assume Φ to be strictly increasing, e.g. Φ(x) = xp for
p ∈ [1, ∞), or Φ(x) = x2/ log(e + x). An application of Chebychev’s inequality (Schmock,
2024, Lemma 16.1) yields for every ε > 0,

P
�
(V − V m)∗

∞ > ε
" ≤ 1

Φ(ε)

�
Ω

Φ
�
(V − V m)∗

∞
"

dP. (5.12)

We have already shown that �(V − V m)∗∞�Φ converges to zero as m → ∞. In recalling
that norm convergence implies mean convergence by Theorem 5.10, if follows that the
right-hand side of (5.12) converges to zero as m → ∞. Therefore, V m converges to V
uniformly on R+ in probability, which concludes the proof.

Elements of S(ψ) – or, more generally, in S – are simple enough to allow for a
canonical definition of a stochastic integral. Denote by (L, Tucp) resp. (D, Tucp) the spaces
of real-valued càglàd resp. càdlàg F-adapted processes endowed with the topology of
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ucp-convergence. For any X ∈ D and V ∈ S(ψ), we set

I(V, X) =
�

V dX := f0(τ0, Y τ0
0 )X0 +

n)
i=1

fi(τi, Y τi

ti
0

, . . . , Y τi

ti
mi

)(Xτi+1 − Xτi),

where f0, . . . , fn are neural networks. The corresponding process in D is then given by
the mapping R+ . t (→ I(V, Xt). If X is a semimartingale, then a stochastic integral�

V dX can be defined for a more general class of processes V , namely for all V ∈ L, see
e.g. Protter (2005, Chapter II.4).

It is now a consequence of the Bichteler–Dellacherie theorem (Bichteler, 1979; Del-
lacherie and Meyer, 1980; Bichteler, 1981), that we can prove our main theorem, which
we restate for convenience.

Theorem 5.29. Let X be a càdlàg semimartingale, and V ∈ L. Then, there exists a
sequence (V n)n∈N in S(ψ) that converges to V , and such that�

V n
s dXs →

�
Vs dXs, n → ∞,

where convergence in both cases holds in the topology of ucp-convergence.

Proof. We know from Protter (2005, Theorems II.4.10 and II.4.11) that the linear map

S . V (→ I(V, X) =
�

Vs dXs ∈ D (5.13)

is continuous between (S, Tucp) and (D, Tucp), and that it can be extended to a continuous
map between (L, Tucp) and (D, Tucp). Proposition 5.28 shows that S(ψ) is dense in
(S, Tucp), which concludes the proof.

Remark 5.30. Theorem 5.29 is our main result. If we interpret elements of S(ψ) as
trading strategies that use neural networks which map as an input past market data
(τ, Y τ

t0 , . . . , Y τ
tm

) to a random output ϕ that represents a trading decision, then Theo-
rem 5.29 tells us that we can approximate any other strategy V ∈ L and the corresponding
wealth process

�
V dX when trading with respect to a semimartingale X arbitrarily well

with respect to Tucp, see also Remark 5.31 below. In this sense algorithmic strategies
can be seen as universal approximators for a large class of stochastic (integral) processes
which are relevant for mathematical finance. A version of Theorem 5.29 for predictable
integrands ins provided below.
Remark 5.31. Note that convergence of a sequence with respect to Tucp implies the
existence of a subsequence, such that P-almost surely, sample paths converge uniformly
over compact time intervals. We may therefore pass to subsequences in Theorem 5.29
to obtain P-almost surely pathwise convergence uniformly over compact time intervals.
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This statement can be seen as a stochastic process version of the statement that neural
networks can approximate continuous functions uniformly on compacts.

For p ∈ [1, ∞), we denote by Hp
0 ⊂ Hp the set of all M ∈ Hp with M0 = 0. For

M ∈ Hp
0, denote by Lp(M) the set of predictable processes V with

E
�� � ∞

0
V 2

s d[M ]s
"p/2�

< ∞,

which we endow with the seminorm V (→ �V �Lp(M) := E[(V 2 • [M ])p/2
∞ ]1/p.

Theorem 5.32. Let p ∈ [1, ∞), and assume that there exists ε > 0 such that M ∈ Hp+ε
0 .

Then the set E(ψ) of elementary algorithmic strategies is dense in Lp(M) with respect to
the topology induced by the seminorm � · �Lp(M). Moreover, for every U ∈ Lp(M), there
exists a sequence (Un)n∈N of elementary algorithmic strategies, such that

lim
n→∞

�
Un

s dMs =
�

Us dMs,

where convergence holds in Hp.

Proof. Let V ∈ Lp(M) and V n = V 1|V |≤n for n ∈ N. Using the dominated convergence
theorem, we have V n → V in Lp(M). Now let V ∈ Lp(M) be bounded. Using
the functional monotone class theorem (Protter, 2005, Theorem 1.2.8), V may be
approximated in Lp(M) by a sequence from E , since E generates the predictable σ-
algebra, i.e. the σ-algebra generated by all left-continuous and F-adapted processes.

What remains to be shown is that E(ψ) is dense in Lp(M) ∩E . Let V ∈ Lp(M) ∩E and
ε > 0. By Proposition 5.28, there exists U ∈ E(ψ), such that �(V − U)∗∞�q < ε1/p, where
q = p(p + ε)/ε. Using the monotonicity of [M ] and Hölder’s inequality with p̃ = (p + ε)/ε
and q̃ = (p + ε)/p,

E
�� � ∞

0
(Vs − Us)2 d[M ]s

"p/2�
≤ E

�
((V − U)∗

∞)p[M ]p/2
∞

� ≤ �((V − U)∗
∞)p�p̃�[M ]p/2

∞ �q̃.

An application of the Burkholder–Davis–Gundy (BDG) inequality (Cohen and Elliott,
2015, Theorem 11.5.5) and Doob’s Lp-inequality (Cohen and Elliott, 2015, Theorem 5.1.3)
yields

�((V − U)∗
∞)p�p̃�[M ]p/2

∞ �q̃ � �(V − U)∗
∞�p

q�M∗
∞�p

p+ε � ε�M�p
Hp+ε ,

which shows that E(ψ) is dense in Lp(M) ∩ E .
In order to show the last claim, note that for each U ∈ Lp(M), we have

�
U dM ∈

Hp (Cohen and Elliott, 2015, Corollary 12.3.6). Given U ∈ Lp(M), there exists by
Theorem 5.32 a sequence (Un)n∈N from E(ψ) that converges to U with respect to
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� · �Lp(M). Using the fact that [U • M ] = U2 • [M ] as well as the BDG inequality, we have

// �
Us dMs −

�
Un

s dMs

//
Hp � �U − Un�Lp(M),

which concludes the proof.

5.3.2. Deep mean-variance hedging
For M ∈ H2

0, let K(M) ⊂ H2 denote the stable subspace generated by M . We know that
K(M) = {V • M : V ∈ L2(M)} (Cohen and Elliott, 2015, Theorem 12.2.7), and that (by
definition) K(M) is closed in H2, hence (K(M), � · �H2) is a Banach space.

The proof of the following proposition is a straightforward consequence of the results
from the previous subsection.

Proposition 5.33. In the context of Theorem 5.32 applied to the case p = 2, the set

Kψ(M) := {V • M : V ∈ E(ψ)}

is dense in K(M).

As an alternative to the proof of Theorem 5.32, it is remarkable that there is another
proof, which closely follows the proof of Theorem 1 in Hornik (1991).

Alternative proof of Proposition 5.33. Let us assume to the contrary that Kψ(M) is
not dense in K(M). As a consequence of the Hahn–Banach theorem (Rudin, 1987,
Theorem 5.19), there exists an F ∈ (K(M))∗ such that F ,= 0 and F (V • M) = 0 for each
V ∈ E(ψ). Recall that (H2)∗ 5 H2, and that K(M) is a closed subset of H2. Let N0
denote the subspace of all F ∈ (H2)∗ that annihilate K(M), i.e. for which F (V • M) = 0
for each V ∈ L2(M). The space (K(M))∗ can then be identified with the quotient space
(H2)∗/N0. Let N ∈ (H2)∗/N0 be such that F (X) = E[X∞N∞] for each X ∈ K(M).

If V ∈ E , then

0 ≤ |F (V • M)| = |E[(V • M)∞N∞]| ≤
n)

i=1
|E[ϕi(Mti+1 − Mti)N∞]|

≤
n)

i=1
|E[(ϕi − ϕm

i )(Mti+1 − Mti)N∞]| +
n)

i=1
|E[ϕm

i (Mti+1 − Mti)N∞]� �� �
=0 since F =0 on Kψ(M)

|

≤
n)

i=1
�ϕi − ϕm

i �q�Mti+1 − Mti�2+ε�N∞�2 → 0, m → ∞,

where for i ∈ {1, . . . , n} the sequence (ϕm
i )m∈N consists of elements from N N ti(ψ) that

converge to ϕi in Lq(P), where q is chosen such that 1/(2 + ε) + 1/q = 1. The last
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inequality follows by first applying the Cauchy–Schwarz inequality to separate �N∞�L2(P),
and then Hölder’s inequality.

Similarly as in the proof of Theorem 5.32, an application of the functional monotone
class and dominated convergence theorems shows that F (V • M) = 0 extends from V ∈ E
to V ∈ L2(M), which yields a contradiction.

Remark 5.34. Here, one could say that elementary algorithmic strategies are “discrimi-
natory” (see Proposition 5.15), in the sense that there cannot exist F ∈ (K(M))∗ with
F ,= 0 and F (V • M) = 0 for every V ∈ E(ψ).

Theorem 5.35 (Deep mean-variance hedging). In the context of Theorem 5.32 applied
to the case p = 2, let H ∈ L2(P) be a real-valued F∞-measurable claim, and assume F0
to be trivial. Then:

min
c∈R, U∈L2(M)

E
��

H −c−
� ∞

0
Ut dMt

 2�
= inf

c∈R, U∈E(ψ)
E

��
H −c−

� ∞

0
Ut dMt

 2�
. (5.14)

More precisely, if U∗ ∈ L2(M) denotes the mean-variance hedging strategy that minimizes
the quadratic hedging error on the left-hand side of Eq. (5.14), and c∗ ∈ R is the optimal
initial capital, then, for each δ > 0, there exists U ∈ E(ψ), such that

E
��

H − c∗ −
� ∞

0
Ut dMt

 2�
< E

��
H − c∗ −

� ∞

0
U∗

t dMt

 2�
+ δ.

Proof. Let V ∈ H2 be the martingale that is closable by H, i.e. Vt = E[H | Ft] for every
t ∈ R+. It follows from the Kunita–Watanabe decomposition, that there exists a unique
U∗ ∈ K(M) such that, denoting c∗ = E[H], V admits the orthogonal decomposition
V = c∗ + U∗ • M + N , where N ∈ (K(M))⊥, and such that c∗ and U∗ minimize the
quadratic hedging error (Rheinländer and Sexton, 2011, Theorem 6.2).

By Proposition 5.33, we can find U ∈ E(ψ) such that �U∗ • M − U • M�H2 < δ, hence

�H − c∗ − (U • M)∞�2 ≤ �H − c∗ − (U∗ • M)∞�2 + �(U∗ • M)∞ − (U • M)∞�2

≤ �H − c∗ − (U∗ • M)∞�2 + �U∗ • M − U • M�H2

< �H − c∗ − (U∗ • M)∞�2 + δ,

which concludes the proof.

5.3.3. No free lunch with vanishing risk for algorithmic strategies
We recall Théorème 3 from Stricker (1990). We restrict all processes to the time-index
set [0, 1], fix p ∈ [1, ∞), and let q be such that 1/p + 1/q = 1 (if p = 1 then take q = ∞).
Let X = (Xt)t∈[0,1] denote a continuous, Rd-valued and adapted process with Xt ∈ Lp(P)
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for every t ∈ [0, 1]. Note that in this case, the set Ke(X) = {V • X : V ∈ E} consists of
well-defined processes.

Theorem 5.36. There exists an equivalent probability measure Q ∼ P with dQ/dP ∈
Lq(P) such that X is an (F,Q)-martingale if and only if Ke(X) ∩ Lp

+(P) = {0}, where
the closure Ke(X) is taken in Lp(P), and Lp

+(P) = {f ∈ Lp(P) : f ≥ 0}.

The condition Ke(X) ∩ Lp
+(P) = {0} may be referred to as no free lunch with vanishing

risk (NFLVR) for elementary integrands, see also Delbaen and Schachermayer (1994).
Combining this theorem with our results gives rise to a NFLVR condition for algorithmic
strategies.

Theorem 5.37. Assume that there exists ε > 0 such that Xt ∈ Lp+ε(P) for every
t ∈ [0, 1]. Then there exists an equivalent probability measure Q ∼ P with dQ/dP ∈ Lq(P)
such that X is an (F,Q)-martingale if and only if Kψ(X) ∩ Lp

+(P) = {0}.

Proof. We just need to show that Ke(X) ⊂ Kψ(X). Let V ∈ E have a representation
V = *n

i=1 ϕi1(ti,ti+1], such that V • M = *n
i=1 ϕi(Mti+1 − Mti). Let r > 1 be sufficiently

large and, for every i ∈ {1, . . . , n}, let (ϕi,m)m∈N be a sequence from N N ti(ψ) that
converges to ϕi in Lr(P). Let V m = *n

i=1 ϕi,m1(ti,ti+1]. An application of Hölder’s
inequality shows that

�V • X − V m • X�p ≤
n)

i=1
�ϕi − ϕi,m�r�Xti+1 − Xti�p+ε,

where the right-hand side converges to zero as m → ∞.

Conclusions
In this chapter, we have established the fundamental role of algorithmic trading strategies
in continuous-time hedging and stochastic integration. By interpreting algorithmic
strategies as simple predictable step processes, we derived a universal approximation
theorem for stochastic (integral) processes. We also demonstrated that algorithmic
strategies can be used for continuous-time mean-variance hedging, and presented a no
free lunch with vanishing risk condition. The theoretical framework developed here
provides a foundation for future explorations into the applications of machine learning in
financial mathematics from a theoretical and continuous-time point of view.



Conclusions and Outlook on Future
Research Directions

This thesis explored connections between machine learning and financial and actuarial
mathematics, and showed that there is ample scope for fascinating use cases. The results
are categorized into three parts covering both quantitative finance and actuarial science,
as well as theory and practical applications. The first part demonstrated how deep
learning can help to find optimal measures, here exemplified through the concept of
importance sampling. In the second part we used the approximation capabilities of neural
networks to tackle complex input-output maps in the context of a high-dimensional
stochastic control problem. Finally, the third part demonstrated the ability of neural
networks to process information in order to make informed decisions, and we used this to
study a novel reinsurance problem as well as stochastic integration in continuous-time.

Besides importance sampling, we have seen that there is potential for applying neural
networks in the context of stratified sampling. Moreover, the results presented in Chapter 1
suggest an extension to the field of McKean–Vlasov equations. Another idea would be
the application of the concept of deep measure projections to the field of arbitrage-free
pricing in incomplete financial markets.

The results presented in Chapter 3 demonstrate that the deep LSMC method is
useful for solving complex, high-dimensional stochastic control problems. A follow-up
to Chapter 3 could see an extension to a stochastic version of the regional variant of
the DICE model, the RICE model. Insights into the impact of uncertainty on climate-
economy models could become useful for performing actuarial or credit-risk stress testing.
Neural networks could also be used to approximate the pricing map for some liquid
products on the life insurance and annuity market, which could allow an extraction of
market-implied mortality rates.

The idea of using algorithmic strategies to study optimal reinsurance could be extended
to the optimal choice of premium rates subject to a premium-dependent insurance demand.
Moreover, Chapter 5 has seen deep mean-variance hedging as an application, and the
results from Chapter 5 suggest a further extension to hedging in Orlicz spaces. Finally
the continuous-time nature of Chapter 5 motivates the joint study of optimal algorithmic
trades and optimal trading times, thereby combining the concepts of deep hedging and
deep optimal stopping.
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