
H
e
E
I

A

M
4
7
7
7
7

K
F
𝛤
H
H
T

1

g
e
s
i
i
t
h

r
s

t
t
b
f
a

h
R

Nonlinear Anal. RWA 81 (2025) 104198 

A
1
(

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

omogenization of high-contrast media in finite-strain
lastoplasticity
lisa Davoli, Chiara Gavioli, Valerio Pagliari ∗

nstitute of Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

R T I C L E I N F O

SC:
9J45
4B20
4C15
4E30
4Q05

eywords:
inite-strain elastoplasticity
-convergence
omogenization
igh-contrast
wo-scale convergence

A B S T R A C T

This work is devoted to the analysis of the interplay between internal variables and high-
contrast microstructure in inelastic solids. As a concrete case-study, by means of variational
techniques, we derive a macroscopic description for an elastoplastic medium. Specifically, we
consider a composite obtained by filling the voids of a periodically perforated stiff matrix by
soft inclusions. We study the 𝛤 -convergence of the related energy functionals as the periodicity
tends to zero, the main challenge being posed by the lack of coercivity brought about by the
degeneracy of the material properties in the soft part. We prove that the 𝛤 -limit, which we
compute with respect to a suitable notion of convergence, is the sum of the contributions
resulting from each of the two components separately. Eventually, convergence of the energy
minimizing configurations is obtained.

. Introduction

The present paper is concerned with the variational analysis of some integral functionals that model the stored energy of materials
overned by finite-strain elastoplasticity with hardening. Our goal is to derive, by means of 𝛤 -convergence, the effective macroscopic
nergy of a special class of heterogeneous materials, those with a so called high-contrast microstructure. The interest in such media
tems from the experimental observation of an infinite number of band gaps in their mechanical behavior: high-contrast materials,
ndeed, exhibit infinitely many interval of frequencies in which wave propagation is not allowed. This, in turn, makes them extremely
nteresting for possible cloaking applications. Some recent ones in civil engineering, for example in seismic waves cloaking, and in
he modeling of advanced sensor and actuator devices call for advancements in the mathematical modeling of those classes of
igh-contrast materials that have not been fully studied yet, like the ones we consider here.

The mathematical literature on high-contrast materials is vast. To keep our presentation concise, we only point out that, besides
esults for stratified elastoplastic composites [1–4], the only additional available contributions in the inelastic setting concern the
tudy of brittle fracture problems [5–7]. For the modeling of nonlinear elastic high-contrast composites we single out the works [8,9].

When undertaking the analysis of high-contrast media beyond the elastic purview, hurdles are posed by the mathematical
reatment of possible internal variables and dissipative effects, as well as by their interplay with the high-contrast microstructure. In
his paper we initiate such task by focusing on the case-study of finite elastoplasticity (see, e.g., [10]). At this first stage we neglect
oth the difficulties due to possible lack of coercivity for the dissipative effects and those associated with time evolution. Thus, we
ocus here on a static model for a single time-step with a global regularization on the gradient of the plastic strain, and leave the
nalysis of different regimes and the passage to the limit in the quasistatic evolutions for future investigations.
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Nonlinear Analysis: Real World Applications 81 (2025) 104198 
The present study grounds on a previous result that we obtained in [11], where we addressed the static homogenization of
lastoplastic microstructures in the large strain regime. As in that work, our starting point is the description of the medium at the
icroscopic level. We let 𝛺 ⊂ R3 be an open, bounded, connected set with Lipschitz boundary, and we suppose it to be the reference

onfiguration of an elastoplastic body that exhibits the following microstructure: denoting by 𝜀 > 0 the microscale, we suppose that
stiff perforated matrix 𝛺1

𝜀 sits in 𝛺 and that its pores are filled by soft inclusions, which form the set 𝛺0
𝜀 (see Fig. 2). Let us

denote by 𝖲𝖫(3) the group of 3 × 3 real matrices with determinant equal to 1. When the matrix and the inclusions exhibit the same
plastic-hardening 𝐻 , the functionals encoding the stored energy associated with the deformation 𝑦 ∈ 𝑊 1,2(𝛺;R3) and the plastic
strain 𝑃 ∈ 𝑊 1,𝑞(𝛺;𝐾), with 𝑞 > 3 and 𝐾 ⊂ 𝖲𝖫(3) a given compact set, read

𝜀(𝑦, 𝑃 ) ∶= ∫𝛺0
𝜀

𝑊 0
𝜀
(

𝜀∇𝑦(𝑥)𝑃−1(𝑥)
)

d𝑥 + ∫𝛺1
𝜀

𝑊 1 (∇𝑦(𝑥)𝑃−1(𝑥)
)

d𝑥 + ∫𝛺
𝐻
(

𝑃 (𝑥)
)

d𝑥 + ∫𝛺
|∇𝑃 (𝑥)|𝑞 d𝑥, (1.1)

here {𝑊 0
𝜀 }𝜀>0 and 𝑊 1 are, respectively, the elastic energy densities of the inclusions and of the matrix.

Let us briefly comment on some modeling choices underlying (1.1). The factor 𝜀 multiplying the argument of 𝑊 0
𝜀 encodes the

igh-contrast between the two components, and it results in a loss of coercivity in the problem. From a modeling perspective, this
euristically means that very large deformations of the inclusions are allowed or, in other words, that the inclusions are very soft

whence the expression high-contrast to describe the difference between the phases.
As for the hardening term, note that also additional hardening variables have been taken into account in the literature, see [12,13]

or a modeling overview. Here, for the purpose of putting the high-contrast behavior to the foreground, we give up full generality
nd restrict ourselves to the case in which only a hardening dependence on the plastic strain is given. A discussion on alternative
odeling choices is also presented in Remark 2.3.

Our main result describes the asymptotics of the functionals 𝜀, and it is presented in Theorem 2.7. The precise mathematical
ramework of our analysis is described in Section 2, where further details on the definitions and on the roles of the terms in 𝜀 may
e found.

We work under the classical assumption that the elastic behavior of our sample 𝛺 is independent of preexistent plastic distortions.
hen, the deformation gradient ∇𝑦 associated with a deformation 𝑦∶𝛺 → R3 of the body decomposes into an elastic strain and a
lastic one. In the framework of linearized elastoplasticity the decomposition would take an additive form. In the case at stake,
hat of finite plasticity [12–15], the existence of an intermediate configuration determined by purely plastic distortions is instead
ssumed, and it is then supposed that elastic deformations are applied to such intermediate configuration. Mathematically, these
ypotheses amount to a multiplicative decomposition of the gradient of a deformation 𝑦 ∈ 𝑊 1,2(𝛺;R3):

∇𝑦(𝑥) = 𝐹el(𝑥)𝑃 (𝑥) for a. e. 𝑥 ∈ 𝛺,

or a suitable elastic strain 𝐹el ∈ 𝐿2(𝛺;R3×3) and a plastic strain 𝑃 ∈ 𝐿2(𝛺; SL(3)). On the one hand, such multiplicative structure has
ecently found an atomistic validation in the framework of crystal plasticity by means of a discrete-to-continuum analysis [16,17].
n the other hand, alternative models for finite plasticity have been proposed. However, since a discussion of fine modeling issues
oes beyond the scopes of our work, we do not dwell here on a comparison of the various modeling theories. We refer the reader
nterested in this topic to, e.g., [18–21].

Finally, we comment on the regularizing term in ∇𝑃 in the energy (1.1). As mentioned before, at this stage we assume it to
rovide coercivity of the energy with respect to the plastic-strain variables on the whole set 𝛺. From a modeling point of view,
e note that this regularization is common in engineering models, for it prevents the formation of microstructures, see [22,23].
lternative higher order regularizations are discussed in [24].

Let us conclude our introduction with a few words on the proofs. A delicate point is choosing a suitable notion of convergence
hat ensures effective compactness properties. Indeed, the fact that the energy contribution in the soft inclusions is evaluated in
erms of 𝜀∇𝑦 leads to a loss of coercivity, and, subsequently, to the loss of compactness in classical weak Sobolev topologies. On
he other hand, using the strong two-scale convergence of the gradients (as in [9]) does not guarantee convergence of minimizers
f 𝜀 to minimizers of the limiting functional. To cope with this difficulty, we adapt the approach of [25] and introduce an ad hoc
otion of convergence for deformations, to which we refer as convergence in the sense of extensions. Roughly speaking, a sequence
f deformations converges in the sense of extensions if it is bounded in 𝐿2 and can be extended in 𝑊 1,2 in such a way that the
xtensions are weakly compact in the Sobolev sense, cf. Definition 2.4 and Remarks 2.5 and 2.6 for the precise definition and some
asic properties. For the plastic strains, we argue instead by using the uniform convergence. This choice is motivated by the fact
hat sequences of deformations and plastic strains with uniformly bounded energies are precompact with respect to the convergence
esulting from pairing the two mentioned above. Thus our 𝛤 -convergence analysis directly entails convergence of minimizers. We
bserve that this result can easily be extended to functionals which take into account also plastic dissipation. We refer to Section 6
or a more detailed discussion on this point.

Our approach to the proofs resorts to extension results on perforated domains, to two-scale convergence and periodic unfolding
echniques, as well as to equiintegrability arguments used to control the behavior of the microstructure close to the boundary of
he set 𝛺. A key step is a splitting procedure that allows to treat the soft and the stiff parts separately.

utline of the paper

The setup of our analysis and the main result, Theorem 2.7, are presented in Section 2. Section 3 contains some useful
reliminaries. In Section 4 we discuss the equicoercivity of the energy functionals under consideration and the splitting procedure.
he asymptotic behavior of the soft inclusions is characterized in Section 5. The ground is then laid for the proof of Theorem 2.7,
hich is contained in Section 6 together with a variant including plastic dissipation and a comparison with the aforementioned
esult from [9].
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Nonlinear Analysis: Real World Applications 81 (2025) 104198 
Fig. 1. The periodicity cell 𝑄 and its partition into the soft inclusion 𝑄0 (white) and the stiff matrix 𝑄1 (gray).

. Mathematical setting and results

Hereafter, 𝛺 is an open, bounded, and connected set with Lipschitz boundary in R3. Working in the 3-dimensional space is not
ssential, and our analysis can be easily adapted to the setting of R𝑑 with 𝑑 = 2 or 𝑑 > 3. The spaces of real-valued 3 × 3 and
× 3 × 3 tensors are denoted by R3×3 and by R3×3×3, respectively. We adopt the symbol 𝐼 for the identity matrix. By | ⋅ | we denote

ndiscriminately the Euclidean norms in R3, R3×3 and R3×3×3. To deal with plastic strains, we recall the classical notation

𝖲𝖫(3) ∶= {𝐹 ∈ R3×3 ∶ det 𝐹 = 1}.

If 𝐴 ⊂ R3 is a measurable set, we denote by 3(𝐴) its three-dimensional Lebesgue measure. Finally, we simply write ‖ ⋅ ‖𝐿𝑝 for
he norm of a function in 𝐿𝑝(𝛺;R3), 𝐿𝑝(𝛺;R3×3), or 𝐿𝑝(𝛺;R3×3×3) when no ambiguity arises, and we specify the integration domain
nly when necessary.

A fundamental role in our study is played by the following notion of variational convergence, see the monograph [26] for a
horough treatment:

efinition 2.1. Let 𝑋 be a set endowed with a notion of convergence. We say that a family of functionals {𝜀}, with 𝜀 ∶𝑋 →
−∞,+∞], 𝛤 -converges as 𝜀 → 0 to ∶𝑋 → [−∞,+∞] if for all 𝑥 ∈ 𝑋 and all infinitesimal sequences {𝜀𝑘}𝑘∈N the following holds:

(1) for every sequence {𝑥𝑘}𝑘∈N ⊂ 𝑋 such that 𝑥𝑘 → 𝑥, we have

(𝑥) ≤ lim inf
𝑘→+∞

𝜀𝑘 (𝑥𝑘);

(2) there exists a sequence {𝑥𝑘}𝑘∈N ⊂ 𝑋 such that 𝑥𝑘 → 𝑥 and

lim sup
𝑘→+∞

𝜀𝑘 (𝑥𝑘) ≤ (𝑥).

When 𝑋 is equipped with a topology 𝜏, we write e.g. 𝛤 (𝜏)-convergence to stress what the underlying convergence for sequences in
is. In what follows, for notational convenience, we indicate the dependence on 𝜀𝑘 by means of the subscript 𝑘 alone, e.g., 𝑘 ∶= 𝜀𝑘 .
Our aim is to study elastoplastic media with high-contrast periodic microstructure in the case of soft inclusions inserted in a

erforated stiff matrix. Letting 𝑄 ∶= (0, 1)3 be the periodicity cell, in order to describe the geometry in precise terms, we start by
onsidering a set 𝐸1 ⊂ R3 that is open, connected, 𝑄-periodic, and has Lipschitz boundary, cf. [27] or [28, Chapter 19]. We recall
hat the set 𝐸1 ⊂ R3 is 𝑄-periodic if 𝐸1 + 𝑡 = 𝐸1 for all 𝑡 ∈ Z3. The set 𝐸1 is then employed to define the microstructure as follows.

First, at the scale level 𝜀 = 1, we define

𝑄1 ∶= 𝑄 ∩ 𝐸1 and 𝑄0 ∶= 𝑄 ⧵𝑄1,

where the sets 𝑄0 and 𝑄1 represent, respectively, the inclusion and the matrix of the unit cell 𝑄 (see Fig. 1). Note that, according
to the definition of 𝑄1, it holds that

𝐸1 ∶=
⋃

𝑡∈Z3

(𝑡 +𝑄1). (2.1)

Second, 𝑄0 is translated and rescaled to describe the set of soft inclusions. Precisely, given a (small) 𝜆 > 0, we define the collection
of inclusions at a scale 𝜀 > 0 as

𝛺0
𝜀 ∶=

⋃

𝑡∈𝑇𝜀

𝜀(𝑡 +𝑄0), where 𝑇𝜀 ∶=
{

𝑡 ∈ Z3 ∶ dist
(

𝜀(𝑡 +𝑄0), 𝜕𝛺
)

> 𝜆𝜀
}

. (2.2)

Since 𝛺 represents the region of space occupied by the whole composite, the stiff matrix is then given by

𝛺1
𝜀 ∶= 𝛺 ⧵𝛺0

𝜀 , (2.3)

ee Fig. 2. Note that the set 𝛺1
𝜀 is connected and Lipschitz, and that (2.2) ensures that the inclusions are compactly contained in 𝛺,

ince they are separated from the boundary by a strip of width 𝜆𝜀. Our assumptions allow for some flexibility on the geometry of
3 
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Fig. 2. The microstructure of the composite in 𝛺. The soft inclusions that form 𝛺0
𝜀 correspond to the white holes, while the gray region represents the matrix

1
𝜀 . Note that the perforations do not intersect the boundary.

Fig. 3. In the 3-dimensional space, interconnected soft fibers do not disconnect the matrix. A simple case is depicted here: the cylindrical perforation 𝑄0 runs
through the periodicity cell and its complement 𝑄1 is connected.

the inclusions, which could for instance form interconnected fibers (see Fig. 3). Indeed, differently from other works (e.g. [9]), we
do not prescribe that the unit perforation 𝑄0 is compactly contained in 𝑄. Therefore, the geometry considered in this paper is on
the one hand less restrictive than that in the seminal contributions on perforated domains, but on the other hand it is less general
than that in [27].

Our 𝛤 -convergence result deals with the asymptotic behavior, as 𝜀 tends to 0, of the family {𝜀} defined by (1.1). Before stating
he result, we collect the hypotheses we use in the following lines.

The elastic energy density of the stiff matrix 𝑊 1 ∶R3×3 → [0,+∞] satisfies the following:

E1: It is 2-coercive and has at most quadratic growth, that is, there exist 0 < 𝑐1 ≤ 𝑐2 such that for all 𝐹 ∈ R3×3

𝑐1|𝐹 |
2 ≤ 𝑊 1(𝐹 ) ≤ 𝑐2

(

|𝐹 |2 + 1
)

.

E2: It is 2-Lipschitz: there exists 𝑐3 > 0 such that for all 𝐹1, 𝐹2 ∈ R3×3

|𝑊 1(𝐹1) −𝑊 1(𝐹2)| ≤ 𝑐3
(

1 + |𝐹1| + |𝐹2|
)

|𝐹1 − 𝐹2|.

The assumptions on the soft energy densities 𝑊 0
𝜀 ∶R3×3 → [0,+∞] are analogous:

E3: There exist 0 < 𝑐1 ≤ 𝑐2 such that for all 𝐹 ∈ R3×3, and all 𝜀 > 0,

𝑐 |𝐹 |2 ≤ 𝑊 0(𝐹 ) ≤ 𝑐
(

|𝐹 |2 + 1
)

.
1 𝜀 2

4 
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Nonlinear Analysis: Real World Applications 81 (2025) 104198 
E4: There exists 𝑐3 > 0 such that for all 𝐹1, 𝐹2 ∈ R3×3, and all 𝜀 > 0,
|

|

|

𝑊 0
𝜀 (𝐹1) −𝑊

0
𝜀 (𝐹2)

|

|

|

≤ 𝑐3
(

1 + |𝐹1| + |𝐹2|
)

|𝐹1 − 𝐹2|.

E5: There exists 𝑊 0 ∶R3×3 → [0,+∞] such that for all 𝐹 ∈ R3×3

lim
𝜀→0

𝑊 0
𝜀 (𝐹 ) = 𝑊 0(𝐹 ).

emark 2.2. The function 𝑊 0 possesses the same growth and regularity properties of 𝑊 0
𝜀 .

Our assumptions rule out non-impenetrability constraints at the level of the energy. A blow-up of the energy on matrices with
on-positive determinant is desirable from a modeling point of view, but at the same time very difficult to handle and yet to be
one in the context of homogenization. Frame indifference is instead compatible with our hypotheses, and up to adding a constant,
onditions fulfill the physical requirement that rigid motions have zero elastic energy. We also note that the choice of considering
family {𝑊 0

𝜀 } instead of a fixed 𝑊 0 for the soft stored elastic energy is somehow standard in the literature, see, e.g., [9, Remark 2]
or a motivational example in the context of solid mechanics.

Next, we list the assumptions on the hardening 𝐻 ∶R3×3 → [0,+∞].

H1: Assume that a Finsler structure on 𝖲𝖫(3) is assigned. 𝐻(𝐹 ) is finite if and only if 𝐹 ∈ 𝐾, where 𝐾 ⊂ 𝖲𝖫(3) is a geodesically
convex, compact neighborhood of 𝐼 .

H2: The restriction of 𝐻 to 𝐾 is Lipschitz continuous.

he requirement that 𝐾 is geodesically convex with respect to the Finsler structure assigned on 𝖲𝖫(3) is the crucial ingredient to
nvoke [11, Theorem 2.2], which in our context is employed to capture the asymptotic behavior of the stiff matrix, see Theorem 3.8.

e refer to [11] for a discussion on the role of the Finsler geometry for the homogenization of elastoplastic media, and to Section 3.5
or a summary of the tools from that theory that we need here. In particular, the existence of a set 𝐾 complying with H1 is settled
n Lemma 3.10 below.

Requirement H1 prescribes that the effective domain of 𝐻 coincides with a compact set 𝐾 containing 𝐼 . Then it follows that
here exists 𝑐𝐾 > 0 such that

|𝐹 | + |𝐹−1
| ≤ 𝑐𝐾 for every 𝐹 ∈ 𝐾, (2.4)

ecause 𝖲𝖫(3) is by definition well separated from 0. As a consequence, plastic strains with finite hardening are uniformly bounded
n 𝐿∞, and, in particular, we infer that for any 𝐹 ∈ 𝐾 and 𝐺 ∈ R3×3

|𝐺| = |

|

|

𝐺𝐹−1𝐹 ||
|

≤ 𝑐𝐾
|

|

|

𝐺𝐹−1|
|

|

. (2.5)

emark 2.3. Note that in principle it would be reasonable to suppose that the soft and the stiff components feature different
ardening behaviors. For instance, it could be imposed that the soft hardening is evaluated on an 𝜀-rescaling of the plastic stress,
hus replicating the structure of the elastic contribution. As the only available tool to deal with periodic homogenization at finite
trains is [11, Theorem 2.2], we leave such scenarios for possible future investigation and restrict ourselves to a simpler setting,
amely we choose to model both hardening terms by a single function satisfying . We point out that under these assumptions making
distinction between 𝐻 𝑖 = 𝐻 𝑖(𝑃 ), 𝑖 = 0, 1 would not require any substantial change in our approach, therefore we dispense with it.
ualitatively, keeping the soft hardening contribution of order 1 amounts to the situation in which, for small 𝜀, elastic deformations
uch larger than the plastic ones are allowed.

We can now state the homogenization result for high-contrast elastoplastic media. Since we want our analysis to yield
onvergence of minima and minimizers of 𝜀 to the ones of the limiting energy, we need to introduce a convergence that is compliant
ith the degeneracy of the soft inclusions. For shortness, we refer to it as convergence in the sense of extensions, even though the
ame is not at all standard.

efinition 2.4. Let {𝜀𝑘} be an infinitesimal sequence. We say that {𝑦𝑘} ⊂ 𝑊 1,2(𝛺;R3) converges to 𝑦 ∈ 𝑊 1,2(𝛺;R3) in the sense
of extensions with respect to the scales 𝜀𝑘 if the following hold:

(1) {𝑦𝑘} is bounded in 𝐿2(𝛺;R3);
(2) there exists a sequence {�̃�𝑘} ⊂ 𝑊 1,2(𝛺;R3) such that 𝑦𝑘 = �̃�𝑘 in 𝛺1

𝑘 ∶= 𝛺1
𝜀𝑘

and �̃�𝑘 ⇀ 𝑦 weakly in 𝑊 1,2(𝛺;R3).

Remark 2.5. Let �̃�𝑘 = �̃�′𝑘 a.e. in 𝛺1
𝑘. Let as well �̃�𝑘 → 𝑦 and �̃�′𝑘 → 𝑦′ strongly in 𝐿2(𝛺;R3) (e.g., 𝑦 and 𝑦′ are 𝑊 1,2(𝛺;R3)-weak

limits of the respective sequences). Then, recalling (2.1) and (2.3), and observing that 𝛺 ∩ 𝜀𝑘𝐸1 ⊂ 𝛺1
𝑘, we get

0 = lim
𝑘→+∞∫𝛺1

𝑘

|�̃�𝑘 − �̃�′𝑘| d𝑥 ≥ lim
𝑘→+∞∫𝛺

𝜒𝜀𝑘𝐸1 (𝑥)|�̃�𝑘 − �̃�′𝑘| d𝑥 = 3(𝑄1)∫𝛺
|𝑦 − 𝑦′| d𝑥.

′
From this, we conclude that 𝑦 = 𝑦 a.e. in 𝛺. In particular, if the limit in the sense of extensions exists, then it is unique.

5 
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Remark 2.6. By (2.2), there exists a neighborhood 𝑂𝑘 of 𝜕𝛺 in 𝛺 such that 𝛺1
𝑘 ∩ 𝑂𝑘 ≡ 𝛺 ∩ 𝑂𝑘. Therefore, if 𝑦 and �̃� coincide in

𝛺1
𝑘, their traces on 𝜕𝛺 are also equal.

Bearing in mind that we set 𝑞 > 3, the asymptotic behavior of the family {𝜀} is described in the next theorem:

Theorem 2.7. Let {𝑊 1} and {𝑊 0
𝜀 } satisfy E1–E5, and let 𝐻 satisfy H1–H2. For all 𝑦 ∈ 𝐿2(𝛺;R3) and 𝑃 ∈ 𝐿𝑞(𝛺; 𝖲𝖫(3)) there exists a

unctional

 (𝑦, 𝑃 ) ∶= 𝛤 - lim
𝜀→0

𝜀(𝑦, 𝑃 ),

where the underlying convergences are the one in the sense of extensions and the uniform one, respectively for the first and for the second
argument. The 𝛤 -limit is characterized as follows:

 (𝑦, 𝑃 ) =  0(𝑃 ) +  1(𝑦, 𝑃 ),

 0(𝑃 ) ∶=

⎧

⎪

⎨

⎪

⎩

3(𝑄0)∫𝛺

[

′𝑊 0(0, 𝑃−1(𝑥)
)

+𝐻
(

𝑃 (𝑥)
)

]

d𝑥 if 𝑃 ∈ 𝑊 1,𝑞(𝛺;𝐾),

+∞ otherwise in 𝐿𝑞(𝛺; 𝖲𝖫(3)),
(2.6)

and

 1(𝑦, 𝑃 ) ∶=

⎧

⎪

⎨

⎪

⎩

∫𝛺

[

𝑊 1
hom

(

∇𝑦(𝑥), 𝑃 (𝑥)
)

+ 3(𝑄1)𝐻
(

𝑃 (𝑥)
)

+ |∇𝑃 (𝑥)|𝑞
]

d𝑥 if (𝑦, 𝑃 ) ∈ 𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾),

+∞ otherwise in 𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3)).
(2.7)

Here, for 𝐹 ,𝐺 ∈ R3×3,

′𝑊 0(𝐹 ,𝐺) ∶= inf
{

∫𝑄
𝑊 0

(

(

𝐹 + ∇𝑣(𝑧)
)

𝐺
)

d𝑧 ∶ 𝑣 ∈ 𝑊 1,2
0 (𝑄;R3)

}

, (2.8)

while

𝑊 1
hom(𝐹 ,𝐺) ∶= lim

𝜆→+∞
1
𝜆3

inf

{

∫(0,𝜆)3∩𝐸1
𝑊 1

(

(

𝐹 + ∇𝑦(𝑥)
)

𝐺−1
)

d𝑥 ∶ 𝑦 ∈ 𝑊 1,2
0 ((0, 𝜆)3;R3)

}

.

The formula defining ′𝑊 0 provides a variant of the classical quasiconvex envelope of 𝑊 0. We refer to Section 5 for further
iscussion on this point.

emark 2.8. In principle, it cannot be excluded that some nontrivial energy densities 𝑊 0
𝜀 do not contribute to the elastic

omogenized energy, in the sense that, when finite, for the corresponding  0 we have

 0(𝑃 ) = 3(𝑄0)∫𝛺
𝐻
(

𝑃 (𝑥)
)

d𝑥.

s an instance of this phenomenon, we consider the following example. For any 𝐹 ∈ R3×3, we let 𝑊 0
𝜀 (𝐹 ) = 𝑊 0(𝐹 ) ∶= |𝐹 |2.

onditions E3–E5 are satisfied by definition. Since for any fixed 𝐺 ∈ R3×3 the function 𝐹 ↦ 𝑊 0
𝐺 (𝐹 ) ∶= 𝑊 0(𝐹𝐺) is convex, it is, in

articular, also quasiconvex. Hence, ′𝑊 0(0, 𝐺) = 𝑊 0(0, 𝐺) = 𝑊 0(0) = 0.

As a byproduct of our asymptotic analysis, we are in a position to infer convergence of the minimization problems associated
ith the energy functionals and of the related (quasi) minimizers.

orollary 2.9. Let the assumptions and notation of Theorem 2.7 hold, and let {(𝑦𝑘, 𝑃𝑘)} ⊂ 𝑊
1,2
0 (𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾) be a sequence of

lmost minimizers, that is,

lim
𝑘→+∞

(

𝑘(𝑦𝑘, 𝑃𝑘) − inf 𝑘(𝑦, 𝑃 )
)

= 0,

here the infimum is taken over 𝑊 1,2
0 (𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾). Then, there exists a minimizer (𝑦, 𝑃 ) ∈ 𝑊 1,2

0 (𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾) of  such
hat, up to subsequences, 𝑦𝑘 → 𝑦 in the sense of extensions and 𝑃𝑘 → 𝑃 uniformly. Moreover,

inf 𝑘 → min .

emark 2.10. The conclusion of the previous corollary is not affected if the homogeneous boundary conditions on {𝑦𝑘} are replaced
y more general (and physical) ones, for example 𝑦𝑘 = 𝑢 on a non negligible subset of 𝜕𝛺 for a given 𝑢 ∈ 𝑊 1,2(𝛺;R3).

Note, instead, that global forcing terms such as

 ext (𝑦) ∶= − 𝑓 ⋅ 𝑦 d𝑥 for a given 𝑓 ∈ 𝑊 1,2(𝛺;R3)
∫𝛺
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cannot be added to the functionals 𝑘 without need of further analysis. Indeed, the functional  ext is not continuous with respect to
the convergence in Definition 2.4, and therefore standard results about continuous perturbations in the context of 𝛤 -convergence
cannot be invoked.

The proof of Theorem 2.7 consists of three steps. First, we study the compactness properties of sequences {(𝑦𝜀, 𝑃𝜀)} satisfying
sup𝜀 𝜀(𝑦𝜀, 𝑃𝜀) ≤ 𝐶 and characterize their limits. Second, we show that the two components of the material can be studied
independently. Finally, we perform the analysis of each component separately. In view of this approach, it is useful to introduce
the functionals that account for the two different contributions, namely

0
𝜀 (𝑦, 𝑃 ) ∶= ∫𝛺

𝜒0
𝜀 (𝑥)

[

𝑊 0
𝜀
(

𝜀∇𝑦(𝑥)𝑃−1(𝑥)
)

+𝐻
(

𝑃 (𝑥)
)

]

d𝑥, (2.9)

1
𝜀 (𝑦, 𝑃 ) ∶= ∫𝛺

𝜒1
𝜀 (𝑥)

[

𝑊 1 (∇𝑦(𝑥)𝑃−1(𝑥)
)

+𝐻
(

𝑃 (𝑥)
)

]

d𝑥, (2.10)

where, for 𝑖 = 0, 1, 𝜒 𝑖𝜀(𝑥) denotes the characteristic function of 𝛺𝑖
𝜀 (i.e., 𝜒 𝑖𝜀(𝑥) = 1 if 𝑥 ∈ 𝛺𝑖

𝜀 and 𝜒 𝑖𝜀(𝑥) = 0 otherwise). We also
decompose the functional 𝜀 accordingly:

𝜀 =  0
𝜀 +  1

𝜀 ,

with

 0
𝜀 (𝑦, 𝑃 ) ∶=

{

0
𝜀 (𝑦, 𝑃 ) if (𝑦, 𝑃 ) ∈ 𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾),

+∞ otherwise in 𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3)),
(2.11)

 1
𝜀 (𝑦, 𝑃 ) ∶=

{

1
𝜀 (𝑦, 𝑃 ) + ‖∇𝑃‖𝑞

𝐿𝑞 (𝛺;R3×3×3)
if (𝑦, 𝑃 ) ∈ 𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾),

+∞ otherwise in 𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3)).
(2.12)

In contrast to  1
𝜀 (𝑦, 𝑃 ), whose asymptotic behavior is derived from [11, Theorem 2.2], the soft part requires a dedicated treatment.

This happens already in the setting of nonlinear elasticity (see [9]). We obtain the following proposition, whose proof is given in
Section 5.4.

Proposition 2.11. For an infinitesimal sequence {𝜀𝑘}, consider  0
𝑘 and  0 as in (2.6) and (2.11), respectively. Let also 𝑃 ∈

𝑊 1,𝑞(𝛺; 𝖲𝖫(3)).

(1) For every sequence {(𝑣𝑘, 𝑃𝑘)} ⊂ 𝑊 1,2
0 (𝛺0

𝑘;R
3) ×𝑊 1,𝑞(𝛺; 𝖲𝖫(3)) such that {𝜀𝑘∇𝑣𝑘} is 2-equiintegrable and that 𝑃𝑘 → 𝑃 uniformly,

we have

 0(𝑃 ) ≤ lim inf
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘).

(2) There exists a bounded sequence {𝑣𝑘} ⊂ 𝐿2(𝛺;R3), with {𝑣𝑘} ⊂ 𝑊
1,2
0 (𝛺0

𝑘;R
3) for each 𝑘, such that

lim sup
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘) ≤  0(𝑃 ),

provided 𝑃𝑘 → 𝑃 uniformly.

In the statement above, the space 𝑊 1,2
0 (𝛺0

𝜀 ;R
3) is regarded for each 𝜀 as a subset of 𝑊 1,2(𝛺;R3) by extending its elements to 0 on

𝛺1
𝜀 . The reason why we are only interested in functions with null traces roots in the splitting procedure, cf. (4.11) in Proposition 4.3.

Remark 2.12. Let 𝛺 ⊂ R3 be bounded Lipschitz domain and, for 𝑝 > 1, let us consider the local integral functionals on 𝑊 1,𝑝(𝛺;R3)

𝑣 ↦ ∫𝛺
𝑊𝑘(∇𝑣) d𝑥.

If the energy densities {𝑊𝑘} satisfy standard 𝑝-growth conditions, as a consequence of Rellich–Kondrachov theorem, the 𝛤 -limits
with respect to the strong 𝐿𝑝-convergence and with respect to the weak 𝑊 1,𝑝-convergence coincide (if they exist).

For the sequence of functionals

𝑣 ↦ ∫𝛺
𝑊𝑘(𝜀𝑘∇𝑣) d𝑥, (2.13)

again under standard growth conditions for {𝑊𝑘}, the analysis is more delicate. The natural bound that follows from the 𝑝-coercivity
is ‖𝜀𝑘∇𝑣𝑘‖𝐿𝑝 ≤ 𝐶, and it suggests the use of weak two-scale convergence (see Section 3.3). However, this estimate alone is not enough
to deduce convergence of the sequence {𝑣𝑘}: a further control on the 𝜀-difference quotients is required to guarantee that a two-scale
variant of Rellich–Kondrachov theorem holds (see [29, Theorem 4.4]).

In other words, in our degenerate setting, compactness of sequences of gradients, say {𝜀𝑘∇𝑣𝑘}, does not bring compactness of
{𝑣𝑘}. This explains why we need to exploit the specific geometry of the perforated medium to recover the bound on ‖𝑣𝑘‖𝐿2 , see the
proof of item (2) in Proposition 2.11.

We note incidentally that, by means of Lemma 3.6(4) below, it can be shown that the 𝛤 -limit of the functionals (2.13) with respect
𝑝
to the strong two-scale convergence in 𝐿 of {𝑣𝑘} is the same as the one computed by combining the latter convergence and the

7 
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weak two-scale convergence of {𝜀𝑘∇𝑣𝑘}. Those are not suitable choices for our goals, though, because, as we commented above, they
do not match the natural compactness of the problem. This explains why in [9], where strong two-scale convergence is considered,
the asymptotic behavior of minimum problems is not immediately determined by the 𝛤 -convergence (see [9, Section 10]). We also
refer to Section 6 for a comparison between our findings and the ones in [9].

3. Preliminaries

We gather in this section the technical tools to be employed in the sequel.

3.1. A decomposition lemma

In our analysis of heterogeneous media it will be often desirable to disregard the energy contributions arising from the region
close to 𝜕𝛺, for the composite fails to be periodic there (recall definitions (2.2)–(2.3)). To this aim, it is natural to resort to 𝑝-
equiintegrability arguments, because such boundary strip has small measure. We recall that a family  ⊂ 𝐿𝑝(𝛺;R3) is said to be
𝑝-equiintegrable if for all 𝛿 > 0 there exists 𝑚 > 0 such that

sup
𝑢∈ ∫𝐸

|𝑢|𝑝 d𝑥 < 𝛿 whenever 𝐸 ⊂ 𝛺 satisfies 3(𝐸) < 𝑚.

The ensuing lemma grants that for any bounded sequence in 𝐿𝑝 we can always find another one which is 𝑝-equiintegrable and
‘‘does not differ too much’’ from the given one.

Lemma 3.1 (Theorem 2.20 in [30]; see also Lemma 1.2 in [31]). Let 𝛺 be as in Section 2. For any sequence {𝑣𝑘} ⊂ 𝑊 1,2(𝛺;R3) such
that 𝑣𝑘 ⇀ 𝑣 weakly in 𝑊 1,2(𝛺;R3) there exist a subsequence {𝑘𝑗} and a sequence {𝑢𝑗} ⊂ 𝑊 1,2(𝛺;R3) satisfying the following:

(1) 𝑢𝑗 ⇀ 𝑣 weakly in 𝑊 1,2(𝛺;R3);
(2) 𝑢𝑗 = 𝑣 in a neighborhood of 𝜕𝛺;
(3) {∇𝑢𝑗} is 2-equiintegrable;
(4) lim𝑗→+∞ 3({𝑥 ∈ 𝛺 ∶ 𝑣𝑘𝑗 (𝑥) ≠ 𝑢𝑗 (𝑥)}) = 0.

Property (4) yields lim𝑗→+∞ 3({∇𝑣𝑘𝑗 ≠ ∇𝑢𝑗}) = 0, because by standard properties of Sobolev functions (see, e.g., [32,
Lemma 7.7]) the inclusion {𝑣𝑘𝑗 ≠ 𝑢𝑗} ⊇ {∇𝑣𝑘𝑗 ≠ ∇𝑢𝑗} holds true.

3.2. A couple of tools to deal with periodic heterogeneous media

The periodic geometry of the composite calls for an extension result for Sobolev maps on perforated domains. Since the
perforations of the matrix are well detached from the boundary, by applying [28, Lemma B.7] the following can be proved:

Lemma 3.2 (Lemma 8 in [9]). Let 𝛺 be open and bounded, and let 𝛺1
𝜀 be as in Section 1. There exists a linear and continuous extension

operator

𝖳𝜀 ∶𝑊 1,2(𝛺1
𝜀 ;R

3) → 𝑊 1,2(𝛺;R3)

such that for all 𝑦 ∈ 𝑊 1,2(𝛺1
𝜀 ;R

3)

𝖳𝜀𝑦 = 𝑦 a. e. in 𝛺1
𝜀 ,

‖𝖳𝜀𝑦‖𝐿2(𝛺;R3) ≤ 𝑐 ‖𝑦‖𝐿2(𝛺1
𝜀 ;R3),

‖∇(𝖳𝜀𝑦)‖𝐿2(𝛺;R3×3) ≤ 𝑐 ‖∇𝑦‖𝐿2(𝛺1
𝜀 ;R3×3),

where 𝑐 is independent of 𝜀 and 𝛺.

Remark 3.3. Even though the lemma above is a classical result, it is worth clarifying the way we employ it.
In the sequel, we always work with sequences which are already defined on the whole 𝛺. When we apply Lemma 3.2 to such

a sequence, say {𝑦𝜀} ⊂ 𝑊 1,2(𝛺;R3), it is tacitly understood that the functions that are extended are the restrictions 𝑦𝜀⌞𝛺1
𝜀 . So, in a

sense, the process modifies 𝑦𝜀 on the region occupied by the soft inclusions rather than extending it. Note that the modification is
a true one, because 𝖳𝜀 cannot be the identity. The two crucial points for our analysis are that

(1) if {𝑦𝜀⌞𝛺1
𝜀} and {∇𝑦𝜀⌞𝛺1

𝜀} are bounded in 𝐿2, then {𝖳𝜀𝑦𝜀} is bounded in 𝑊 1,2(𝛺;R3);
(2) if {𝑦𝜀} is bounded in 𝐿2(𝛺;R3) and {∇𝑦𝜀} is a 2-equiintegrable sequence, then {∇(𝖳𝜀𝑦𝜀)} is 2-equiintegrable as well.

The second property follows from the construction of 𝖳𝜀, which is modeled on the proof of [28, Lemma B.8] by patching together
the extensions from 𝑊 1,2(𝑄1;R3) to 𝑊 1,2(𝑄;R3) given by [28, Lemma B.7] via partitions of unity (this is also the reason why the
constant 𝑐 above depends only on 𝑄1). The extensions in [28, Lemma B.7] preserve equiintegrability, because they rely on the

classical reflection procedure.
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The first application of the extension lemma is the following Poincaré inequality on periodic heterogeneous media (cf. for-
ula (4.5) in [33] where, however, the proof is not provided).

roposition 3.4. Let 𝛺, 𝛺0
𝜀 and 𝛺1

𝜀 be as in Section 1. There exists a constant 𝑐 independent of 𝜀 and such that for every 𝑦 ∈ 𝑊 1,2
0 (𝛺;R3)

‖𝑦‖𝐿2(𝛺;R3) ≤ 𝑐
(

𝜀‖∇𝑦‖𝐿2(𝛺0
𝜀 ;R3×3) + ‖∇𝑦‖𝐿2(𝛺1

𝜀 ;R3×3)

)

.

roof. For 𝜀 fixed, we use the extension operator 𝖳𝜀 from Lemma 3.2 to obtain

‖𝑦‖𝐿2(𝛺) ≤ ‖𝑦 − 𝖳𝜀𝑦‖𝐿2(𝛺) + ‖𝖳𝜀𝑦‖𝐿2(𝛺)

= ‖𝑦 − 𝖳𝜀𝑦‖𝐿2(𝛺0
𝜀 )
+ ‖𝖳𝜀𝑦‖𝐿2(𝛺).

(3.1)

bserve that 𝖳𝜀𝑦 ∈ 𝑊 1,2
0 (𝛺;R3), as 𝖳𝜀𝑦 = 𝑦 a. e. in 𝛺1

𝜀 and there exists a tubular neighborhood 𝑂 of 𝜕𝛺 such that 𝛺1
𝜀 ∩ 𝑂 ≡ 𝛺 ∩ 𝑂.

hen, by the standard Poincaré’s inequality,

‖𝖳𝜀𝑦‖𝐿2(𝛺) ≤ 𝑐‖∇(𝖳𝜀𝑦)‖𝐿2(𝛺) ≤ 𝑐‖∇𝑦‖𝐿2(𝛺1
𝜀 )
. (3.2)

bserve also that 𝑦− 𝖳𝜀𝑦 ∈ 𝑊 1,2
0 (𝛺0

𝜀 ;R
3). In view of the periodic structure of 𝛺0

𝜀 and of Poincaré inequality on each cube, we infer

‖𝑦 − 𝖳𝜀𝑦‖
2
𝐿2(𝛺0

𝜀 )
=

∑

𝑡∈𝑇𝜀

‖𝑦 − 𝖳𝜀𝑦‖
2
𝐿2(𝜀(𝑡+𝑄0))

=
∑

𝑡∈𝑇𝜀

𝜀3 ∫𝑄0

|𝑦(𝜀(𝑡 + 𝑧)) − 𝖳𝜀𝑦(𝜀(𝑡 + 𝑧))|
2 d𝑧

≤ 𝑐
∑

𝑡∈𝑇𝜀

𝜀5 ∫𝑄0

|∇(𝑦 − 𝖳𝜀𝑦)(𝜀(𝑡 + 𝑧))|
2 d𝑧

= 𝑐𝜀2‖∇(𝑦 − 𝖳𝜀𝑦)‖2𝐿2(𝛺0
𝜀 )
,

where 𝑐 depends only on 𝑄0. By applying again Lemma 3.2 we find

‖𝑦 − 𝖳𝜀𝑦‖𝐿2(𝛺0
𝜀 )
≤ 𝑐𝜀

(

‖∇𝑦‖𝐿2(𝛺0
𝜀 )
+ ‖∇𝑦‖𝐿2(𝛺1

𝜀 )

)

.

This, together with (3.1) and (3.2), yields the result. □

3.3. Two-scale convergence and the unfolding method

From a mathematical perspective, the high-contrast structure of the functional 𝜀 results in the absence of uniform bounds in 𝐿2

for sequences with equibounded energy; indeed, only bounds on {𝜀∇𝑦𝜀𝑃−1
𝜀 } are available. Such degenerate bounds are conveniently

dealt with by means of two-scale convergence [33,34], whose definition we recall next. Hereafter, the subscript per denotes spaces
of 𝑄-periodic functions, e.g.

𝑊 1,2
per (R

3) ∶= {𝑢 ∈ 𝑊 1,2
loc (R

3) ∶ 𝑢(𝑥 + 𝑡) = 𝑢(𝑥) a.e. for all 𝑡 ∈ Z3}.

Definition 3.5. Let {𝜀𝑘} ⊂ (0,+∞) be infinitesimal. A sequence {𝑦𝑘} ⊂ 𝐿2(𝛺;R3) weakly two-scale converges in 𝐿2 to a function
𝑦 ∈ 𝐿2(𝛺;𝐿2

per (R
3;R3)) (notation: 𝑦𝑘

2
⇀ 𝑦) if for every 𝑣 ∈ 𝐿2(𝛺;𝐶per (R3;R3))

lim
𝑘→+∞∫𝛺

𝑦𝑘(𝑥) ⋅ 𝑣
(

𝑥, 𝑥
𝜀𝑘

)

d𝑥 = ∫𝛺 ∫𝑄
𝑦(𝑥, 𝑧) ⋅ 𝑣(𝑥, 𝑧) d𝑧 d𝑥.

A sequence {𝑦𝑘} ⊂ 𝐿2(𝛺;R3) strongly two-scale converges in 𝐿2 to 𝑦 ∈ 𝐿2(𝛺;𝐿2
per (R

3;R3)) (notation: 𝑦𝑘
2
→ 𝑦) if 𝑦𝑘

2
⇀ 𝑦 in 𝐿2 and

‖𝑦𝑘‖𝐿2(𝛺;R3) → ‖𝑦‖𝐿2(𝛺×𝑄;R3).

Recalling that for 𝑖 = 0, 1 𝜒 𝑖𝑘(𝑥) = 1 if 𝑥 ∈ 𝛺𝑖
𝑘 and 𝜒 𝑖𝑘(𝑥) = 0 otherwise, an example of strong two-scale convergence is provided

by the sequences {𝜒0
𝑘} and {𝜒1

𝑘}. Indeed,

𝜒 𝑖𝑘
2
→ 𝜒 𝑖 strongly two-scale in 𝐿2, (3.3)

where 𝜒 𝑖(𝑥, 𝑧) ∶= 𝜒𝑄𝑖 (𝑧) for all (𝑥, 𝑧) ∈ 𝛺 ×𝑄.
We collect in the next lemma some basic properties of two-scale convergence which we will resort to in the following. Proofs

nd more details can be found in [29,33,35].

emma 3.6. Let {𝜀 } ⊂ (0,+∞) be infinitesimal and consider {𝑦 } ⊂ 𝐿2(𝛺;R3).
𝑘 𝑘

9 
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(1) If {𝑦𝑘} is weakly two-scale convergent, then it is bounded in 𝐿2(𝛺;R3); conversely, if {𝑦𝑘} is bounded in 𝐿2(𝛺;R3), then it admits
a weakly two-scale convergent subsequence.

(2) If 𝑦𝑘
2
⇀ 𝑦 weakly two-scale in 𝐿2, then 𝑦𝑘 ⇀ ∫𝑄 𝑦( ⋅ , 𝑧) d𝑧 weakly in 𝐿2(𝛺;R3).

(3) If 𝑦𝑘
2
⇀ 𝑦 weakly two-scale in 𝐿2 and if {𝜒𝑘} ⊂ 𝐿∞(𝛺) is a bounded sequence that converges to 𝜒 ∈ 𝐿∞(𝛺) in measure, then

𝜒𝑘𝑦𝑘
2
⇀ 𝜒𝑦 weakly two-scale in 𝐿2.

(4) Suppose that {𝑦𝑘} ⊂ 𝑊 1,2(𝛺;R3) and that {𝑦𝑘} and {𝜀𝑘∇𝑦𝑘} are bounded in 𝐿2. Then, there exists 𝑦 ∈ 𝐿2(𝛺;𝑊 1,2
per (R3;R3)) such

that, up to subsequences, 𝑦𝑘
2
⇀ 𝑦 and 𝜀𝑘∇𝑦𝑘

2
⇀ ∇𝑧𝑦 weakly two-scale in 𝐿2.

Two-scale convergence in 𝐿2 can be related to 𝐿2 convergence by means of unfolding operator, which, for 𝜀 > 0, is the map
𝖲𝜀 ∶𝐿2(𝛺) → 𝐿2(R3 ×𝑄;R3) defined as

𝖲𝜀𝑦(𝑥, 𝑧) ∶= �̂�
(

𝜀
⌊𝑥
𝜀

⌋

+ 𝜀𝑧
)

, (3.4)

here �̂� denotes the extension of 𝑦 by 0 outside 𝛺 and ⌊ ⋅ ⌋ is the floor function.

emma 3.7. If {𝑦𝜀} ⊂ 𝐿2(𝛺;R3) is bounded, the following hold:

(1) 𝑦𝜀
2
⇀ 𝑦 weakly two-scale in 𝐿2 if and only if 𝖲𝜀𝑦𝜀 ⇀ 𝑦 weakly in 𝐿2(R3 ×𝑄;R3);

(2) 𝑦𝜀
2
→ 𝑦 strongly two-scale in 𝐿2 if and only if 𝖲𝜀𝑦𝜀 → 𝑦 strongly in 𝐿2(R3 ×𝑄;R3).

n addition, if {𝑦𝜀} is 2-equiintegrable, the family of unfoldings {𝖲𝜀𝑦𝜀} is also 2-equiintegrable on R3 ×𝑄. Lastly, if 𝑦 ∈ 𝑊 1,2(𝛺;R3), then

𝖲𝜀(𝜀∇𝑦)(𝑥, 𝑧) = ∇𝑧(𝖲𝜀𝑦)(𝑥, 𝑧) a.e. in R3 ×𝑄.

For a proof of Lemma 3.7 and for further reading on the unfolding operator we refer to [29,35–37].

.4. Homogenization of connected media in finite plasticity

We present a variant of [11, Theorem 2.2] that is instrumental in dealing with the analysis of the stiff matrix. Its proof is an
daptation of the one in [11], the most substantial difference being the use of [28, Theorem 19.1] instead of [28, Theorem 14.5].

Recalling that we chose 𝑞 > 3, we work in the space 𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾) endowed with the topology 𝜏 characterized by

(𝑦𝑘, 𝑃𝑘)
𝜏
→ (𝑦, 𝑃 ) if and only if

⎧

⎪

⎨

⎪

⎩

𝑦𝑘 → 𝑦 strongly in 𝐿2(𝛺;R3),

𝑃𝑘 → 𝑃 uniformly.
(3.5)

heorem 3.8. Let 𝐸 be an open and connected set that is 𝑄-periodic and that has Lipschitz boundary. For every (𝑦, 𝑃 ) ∈ 𝑊 1,2(𝛺;R3) ×
1,𝑞(𝛺;𝐾), let

𝑊 (𝑥, 𝐹 ) ∶= 𝜒𝐸 (𝑥)𝑊 1(𝐹 ), �̃�(𝑥, 𝑃 ) ∶= 𝜒𝐸 (𝑥)𝐻(𝑃 ),

nd define

𝜀(𝑦, 𝑃 ) ∶= ∫𝛺
𝑊

(𝑥
𝜀
,∇𝑦(𝑥)𝑃−1(𝑥)

)

d𝑥 + ∫𝛺
�̃�

(𝑥
𝜀
, 𝑃 (𝑥)

)

d𝑥 + ∫𝛺
|∇𝑃 (𝑥)|𝑞 d𝑥, (3.6)

hich we extend by setting

𝜀(𝑦, 𝑃 ) = +∞ on
[

𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3))
]

⧵
[

𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾)
]

.

f 𝑊 1 and 𝐻 satisfy E1–E2 and H1–H2, respectively, then for all (𝑦, 𝑃 ) ∈ 𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3)) the 𝛤 -limit

 (𝑦, 𝑃 ) ∶= 𝛤 (𝜏)- lim
𝜀→0

𝜀(𝑦, 𝑃 )

xists and we have that

 (𝑦, 𝑃 ) =

⎧

⎪

⎨

⎪

⎩

∫𝛺

(

𝑊hom(∇𝑦(𝑥), 𝑃 (𝑥)) + �̃�hom(𝑃 (𝑥)) + |∇𝑃 (𝑥)|𝑞
)

d𝑥 if (𝑦, 𝑃 ) ∈ 𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾),

+∞ otherwise in 𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3)),

where 𝑊hom ∶R3×3 ×𝐾 → [0,+∞) and �̃�hom ∶𝐾 → [0,+∞) are defined as

𝑊hom(𝐹 ,𝐺) ∶= lim
𝜆→+∞

1
𝜆3

inf
{

∫(0,𝜆)3
𝑊

(

𝑥, (𝐹 + ∇𝑦(𝑥))𝐺−1) d𝑥 ∶ 𝑦 ∈ 𝑊 1,2
0 ((0, 𝜆)3;R3)

}

,

�̃�hom(𝐹 ) ∶= �̃�(𝑧, 𝐹 ) d𝑧.
∫𝑄

10 



E. Davoli et al.

h

w

w
t

w

3

s
t

Nonlinear Analysis: Real World Applications 81 (2025) 104198 
We observe that the theorem above is similar in spirit to homogenization results for perforated domains. The case at stake is
owever different, in that later we will deal with functions defined on the nonperforated domain 𝛺. This simplifies the analysis,

because it spares us the need to extend Sobolev maps valued at 𝖲𝖫(3).
Thanks to Lemma 3.1, we are able to refine the choice of recovery sequences for  . This will come in handy in the proof of

Corollary 2.9.

Corollary 3.9. Under the assumptions of Theorem 3.8, for any (𝑦, 𝑃 ) ∈ 𝑊 1,2(𝛺;R3)×𝑊 1,𝑞(𝛺;𝐾) there exists a recovery sequence (𝑦𝑘, 𝑃𝑘)
for  (𝑦, 𝑃 ) satisfying the following:

(1) 𝑦𝑘 ⇀ 𝑦 weakly in 𝑊 1,2(𝛺;R3);
(2) 𝑦𝑘 = 𝑦 in a neighborhood of 𝜕𝛺;
(3) {∇𝑦𝑘} is 2-equiintegrable.

Proof. Let {(𝑤𝑘, 𝑃𝑘)} be a recovery sequence for  (𝑦, 𝑃 ) as provided by Theorem 3.8. We apply Lemma 3.1 to {𝑤𝑘}. We deduce
the existence of sequences {𝑘𝑗} and {𝑢𝑗} ⊂ 𝑊 1,2(𝛺;R3) such that the sequence defined by

𝑦𝑘 ∶=

{

𝑢𝑗 if 𝑘 = 𝑘𝑗 for some 𝑗 ∈ N,
𝑦 otherwise

satisfies properties (1)–(3) and (𝑦𝑘, 𝑃𝑘)
𝜏
→ (𝑦, 𝑃 ). Moreover

lim
𝑗→+∞

3(𝑁𝑗 ) = 0,

here 𝑁𝑗 ∶= {𝑥 ∈ 𝛺 ∶ 𝑤𝑘𝑗 (𝑥) ≠ 𝑢𝑗 (𝑥)}.
We are left to prove that {(𝑦𝑘, 𝑃𝑘)} satisfies the upper limit inequality. Loosely speaking, this is a consequence of the fact that

passing to a 2-equiintegrable sequence ‘‘does not increase the energy’’. Upon passing to a subsequence, which we do not relabel, we
can assume that {𝑘(𝑦𝑘, 𝑃𝑘)} is convergent. We first focus on the elastic and hardening parts of the energy 𝑘𝑗 . It holds that

∫𝛺

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑤𝑘𝑗𝑃
−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥

= ∫𝑁𝑗

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑤𝑘𝑗𝑃
−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥 + ∫𝛺⧵𝑁𝑗

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑢𝑗𝑃−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥

≥ ∫𝛺⧵𝑁𝑗

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑢𝑗𝑃−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥,

so that

lim sup
𝑗→+∞ ∫𝛺

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑤𝑘𝑗𝑃
−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥 ≥ lim sup
𝑗→+∞ ∫𝛺⧵𝑁𝑗

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑢𝑗𝑃−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥

= lim sup
𝑗→+∞ ∫𝛺

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑢𝑗𝑃−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥,

here the equality follows from the growth condition E1 and from the 2-equiintegrability of {∇𝑢𝑗} (recall that sup𝑘∈N ‖𝑃−1
𝑘 ‖∞ ≤ 𝐶),

ogether with the boundedness of 𝐻 . Therefore, coming back to the full functional 𝑘𝑗 ,

lim
𝑗→+∞

𝑘𝑗 (𝑤𝑘𝑗 , 𝑃𝑘𝑗 )

≥ lim sup
𝑗→+∞ ∫𝛺

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑤𝑘𝑗𝑃
−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥 + lim inf
𝑗→+∞ ∫𝛺

|∇𝑃𝑘𝑗 |
𝑞 d𝑥

≥ lim sup
𝑗→+∞ ∫𝛺

[

𝑊

(

𝑥
𝜀𝑘𝑗

,∇𝑢𝑗𝑃−1
𝑘𝑗

)

+𝐻

(

𝑥
𝜀𝑘𝑗

, 𝑃𝑘𝑗

)]

d𝑥 + lim inf
𝑗→+∞ ∫𝛺

|∇𝑃𝑘𝑗 |
𝑞 d𝑥

≥ lim
𝑗→+∞

𝑘𝑗 (𝑢𝑗 , 𝑃𝑘𝑗 ).

(3.7)

Recalling that {(𝑤𝑘, 𝑃𝑘)} is a recovery sequence and that we can assume {𝑘(𝑦𝑘, 𝑃𝑘)} to be convergent, we find

lim
𝑘→+∞

𝑘(𝑦𝑘, 𝑃𝑘) = lim
𝑗→+∞

𝑘𝑗 (𝑢𝑗 , 𝑃𝑘𝑗 ) ≤ lim
𝑗→+∞

𝑘𝑗 (𝑤𝑘𝑗 , 𝑃𝑘𝑗 ) =  (𝑦, 𝑃 ),

hich in turn yields that {(𝑦𝑘, 𝑃𝑘)} is also a recovery sequence. □

.5. Finsler structure on 𝖲𝖫(3)

In order to apply the results on homogenization of elastoplastic media in [11], we endow 𝖲𝖫(3) with a Finsler structure. In doing
o, we follow [12], whose approach is based on the notion of plastic dissipation. Such line of thought links the geometry of 𝖲𝖫(3) to
he physics of the system under consideration, and allows to conveniently include dissipation effects in the model, see Section 6.3.
11 
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We start from the observation that 𝖲𝖫(3) is a smooth manifold with respect to the topology induced by the inclusion in R3×3.
For every 𝐹 ∈ 𝖲𝖫(3) the tangent space at 𝐹 is characterized as

T𝐹 𝖲𝖫(3) = 𝐹 𝗌𝗅(3) ∶= {𝐹𝑀 ∈ R3×3 ∶ tr𝑀 = 0},

nd, in particular, T𝐼𝖲𝖫(3) coincides with 𝗌𝗅(3) ∶= {𝑀 ∈ R3×3 ∶ tr𝑀 = 0}. To the purpose of endowing 𝖲𝖫(3) with a Finsler structure,
e consider a function 𝛥𝐼 ∶ 𝗌𝗅(3) → [0,+∞) on which we make the following assumptions (cf. [38, Section 1.1] and [12, Section 1]):

D1: It is 𝐶2 on 𝗌𝗅(3) ⧵ {0};
D2: It is positively 1-homogeneous: 𝛥𝐼 (𝑐𝑀) = 𝑐𝛥𝐼 (𝑀) for all 𝑐 > 0 and 𝑀 ∈ 𝗌𝗅(3);
D3: The function 𝛥2𝐼∕2 is strongly convex;
D4: It is 1-coercive and has at most linear growth: there exist 0 < 𝑐4 ≤ 𝑐5 such that for all 𝑀 ∈ 𝗌𝗅(3)

𝑐4|𝑀| ≤ 𝛥𝐼 (𝑀) ≤ 𝑐5|𝑀|.

Note that we consider more restrictive regularity assumptions than the ones in [12] because we appeal to results of differential
geometry, where smoothness is customarily required. The drawback of this choice is that in our analysis we cannot encompass
some models, such as single crystal plasticity. However, on the positive side, our assumptions cover Von Mises plasticity, see [12,39]
and [11, Example 3.6].

Let T𝖲𝖫(3) denote the tangent bundle to 𝖲𝖫(3). We can ‘‘translate’’ 𝛥𝐼 to the tangent spaces other than 𝗌𝗅(3) by setting

𝛥∶ T𝖲𝖫(3) → [0,+∞)
(𝐹 ,𝑀) ↦ 𝛥𝐼 (𝐹−1𝑀).

(3.8)

Then, it can be proved that (𝖲𝖫(3), 𝛥) is a 𝐶2 Finsler manifold. For an introduction to Finsler geometry we refer to the mono-
graph [38].

Next, we introduce the family (𝐹0, 𝐹1) of piecewise 𝐶2 curves 𝛷∶ [0, 1] → 𝖲𝖫(3) such that 𝛷(0) = 𝐹0 and 𝛷(1) = 𝐹1. We set

𝐷(𝐹0, 𝐹1) ∶= inf

{

∫

1

0
𝛥
(

𝛷(𝑡), �̇�(𝑡)
)

d𝑡 ∶ 𝛷 ∈ (𝐹0, 𝐹1)

}

, (3.9)

where �̇� is the velocity of the curve. The function 𝐷 provides a non-symmetric distance on 𝖲𝖫(3): it is positive, attains 0 if and only
if it is evaluated on the diagonal of 𝖲𝖫(3) × 𝖲𝖫(3), and satisfies the triangular inequality; in general, however, 𝐷(𝐹0, 𝐹1) ≠ 𝐷(𝐹1, 𝐹0).

Note that under assumptions D1–D3 it follows that 𝛥 is subadditive (see [38, Theorem 1.2.2]), hence convex. Therefore, by an
application of the direct method of the calculus of variations (cf. [12, Theorem 5.1]) it can be proved that for every 𝐹0, 𝐹1 ∈ 𝖲𝖫(3)
there exists a curve 𝛷 ∈ 𝐶1,1([0, 1]; 𝖲𝖫(3)) such that 𝛷(0) = 𝐹0, 𝛷(1) = 𝐹1 and

𝐷(𝐹0, 𝐹1) = ∫

1

0
𝛥
(

𝛷(𝑡), �̇�(𝑡)
)

d𝑡. (3.10)

We call such a 𝛷 a shortest path between 𝐹0 and 𝐹1.
A geodesic between 𝐹0 and 𝐹1, instead, is a path that is a critical point of the length functional under variations that do not alter

the endpoints. When for any couple of points in a given subset 𝑆 of a Finsler manifold there is a unique shortest path contained in
𝑆 joining those points, we say that 𝑆 is geodesically convex.

The existence of a compact set 𝐾 meeting the requirements in H1 is guaranteed by the following lemma, whose proof is the
content of [11, Remark 3.5].

Lemma 3.10. Assume that a 𝐶2 Finsler structure on 𝖲𝖫(3) is assigned. Then, there exists a geodesically convex, compact neighborhood of
𝐼 .

4. Compactness and splitting

We now turn to the analysis of the high-contrast energy in (1.1). We investigate in this section the compactness properties of
sequences with equibounded energy. We will see that, as a consequence of the behavior of the hardening functional 𝐻 , we can
reduce the problem to the case of pure elasticity addressed by K. Cherdantsev & M. Cherednichenko [9], and we adapt their approach.

Lemma 4.1 (Compactness). Let {𝜀𝑘} be an infinitesimal sequence. We suppose that {(𝑦𝑘, 𝑃𝑘)}𝑘∈N ⊂ 𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3)) satisfies

‖𝑦𝑘‖𝐿2(𝛺;R3) ≤ 𝐶, 𝑘(𝑦𝑘, 𝑃𝑘) ≤ 𝐶

for some 𝐶 ≥ 0, uniformly in 𝑘. Let us denote by �̃�𝑘 the extension of 𝑦𝑘 in the sense of Remark 3.3 above. Then, there exist subsequences
of {𝜀𝑘}, {𝑦𝑘}, and {𝑃𝑘}, which we do not relabel, as well as 𝑦 ∈ 𝐿2(𝛺;𝑊 1,2

per (R3;R3)), 𝑦1 ∈ 𝑊 1,2(𝛺;R3), 𝑣 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3)), and

𝑃 ∈ 𝑊 1,𝑞(𝛺;𝐾) such that the following hold:

𝑦(𝑥, 𝑧) = 𝑦1(𝑥) + 𝑣(𝑥, 𝑧) for a. e. (𝑥, 𝑧) ∈ 𝛺 ×𝑄, (4.1)

𝑦
2
⇀ 𝑦 weakly two-scale in 𝐿2, (4.2)
𝑘

12 
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𝜀𝑘∇𝑦𝑘
2
⇀ ∇𝑧𝑣 weakly two-scale in 𝐿2, (4.3)

�̃�𝑘 ⇀ 𝑦1 weakly in 𝑊 1,2(𝛺;R3), (4.4)
𝑃𝑘 → 𝑃 , 𝑃−1

𝑘 → 𝑃−1 weakly in 𝑊 1,𝑞(𝛺; 𝖲𝖫(3)) and uniformly in 𝐶(�̄�; 𝖲𝖫(3)),

∇�̃�𝑘𝑃−1
𝑘 ⇀ ∇𝑦1𝑃−1 weakly in 𝐿2(𝛺;R3×3). (4.5)

Proof. From the definition of 𝑘, for all 𝑘 ∈ N

‖

‖

∇𝑃𝑘‖‖𝐿𝑞 ≤ 𝐶. (4.6)

Besides, for all 𝑘, hypothesis E3, the definition of 𝐻 and the bound (2.4) imply
‖

‖

‖

𝜀𝑘𝜒
0
𝑘∇𝑦𝑘𝑃

−1
𝑘

‖

‖

‖𝐿2 +
‖

‖

‖

𝜒1
𝑘∇𝑦𝑘𝑃

−1
𝑘

‖

‖

‖𝐿2 ≤ 𝐶, (4.7)

‖

‖

𝑃𝑘‖‖𝐿∞ + ‖

‖

‖

𝑃−1
𝑘

‖

‖

‖𝐿∞ ≤ 𝐶. (4.8)

Thanks to (2.5), from the first estimate we deduce
‖

‖

‖

𝜀𝑘𝜒
0
𝑘∇𝑦𝑘

‖

‖

‖𝐿2 +
‖

‖

‖

𝜒1
𝑘∇𝑦𝑘

‖

‖

‖𝐿2 ≤ 𝐶, (4.9)

which is precisely formula (21) in [9]. Thus, for what concerns the sequence of deformations, the same bounds as the purely elastic
case are retrieved. While referring to [9] for details, here we limit ourselves to sketch how (4.9) entails two-scale compactness.

The boundedness of {𝑦𝑘} in 𝐿2 and Lemma 3.6(4) yield the existence of a function 𝑦 ∈ 𝐿2(𝛺;𝑊 1,2
per (R3;R3)) such that, up to

subsequences, (4.2) holds and

𝜀𝑘∇𝑦𝑘
2
⇀ ∇𝑧𝑦 weakly two-scale in 𝐿2. (4.10)

Thanks to (3.3) and Lemma 3.6(3), we also infer that

𝜒1
𝑘𝑦𝑘

2
⇀ 𝜒1𝑦, 𝜀𝑘𝜒

1
𝑘∇𝑦𝑘

2
⇀ 𝜒1∇𝑧𝑦 weakly two-scale in 𝐿2.

Moreover, there exist 𝑦1 ∈ 𝑊 1,2(𝛺;R3) and 𝑣 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3)) such that the decomposition (4.1) and the convergence (4.4)

hold. By combining (4.1) and (4.10), (4.3) follows.
We now turn to the sequence of plastic strains. By (4.6) and (4.8), we see that {𝑃𝑘} is bounded in 𝑊 1,𝑞(𝛺;𝐾). Since 𝑞 > 3,

Morrey’s embedding yields the uniform convergence of (a subsequence of) {𝑃𝑘} to some 𝑃 ∈ 𝑊 1,𝑞(𝛺;𝐾) (note that the uniform
convergence of {𝑃𝑘} ⊂ 𝑊 1,𝑞(𝛺;𝐾) yields that 𝑃 attains values in 𝐾 as well). Therefore, by definition of the inverse matrix

𝑃−1
𝑘 =

(

cof𝑃𝑘
)𝑇

det 𝑃𝑘
=
(

cof𝑃𝑘
)𝑇 ,

we also deduce that 𝑃−1
𝑘 → 𝑃−1 uniformly.

Finally, we observe that, thanks to (4.4) and the uniform convergence of {𝑃−1
𝑘 }, (4.5) is also inferred. □

It is well-known that 𝛤 -limits are not additive. In our case, however, we are able to show that the asymptotic behavior of the
unctionals 𝜀 is given exactly by the sum of the 𝛤 -limits of the soft and of the stiff contributions. Such splitting will enable us to
reat the 𝛤 -limits of  0

𝜀 and of  1
𝜀 separately. We premise a simple lemma, which deals with the hardening part of the energy. We

ecall that, for 𝑖 = 0, 1, 𝜒 𝑖𝑘 is the characteristic function of 𝛺𝑖
𝑘.

emma 4.2. Under assumptions H1–H2, for any sequence {𝑃𝑘} ⊂ 𝑊 1,𝑞(𝛺;𝐾) converging uniformly to 𝑃 ∈ 𝑊 1,𝑞(𝛺;𝐾) it holds that

lim
𝑘→+∞∫𝛺

𝜒 𝑖𝑘(𝑥)𝐻
(

𝑃𝑘(𝑥)
)

d𝑥 = 3(𝑄𝑖)∫𝛺
𝐻
(

𝑃 (𝑥)
)

d𝑥 for 𝑖 = 0, 1.

Proof . Let us focus on the case 𝑖 = 0 first. We set

𝐸0 ∶=
⋃

𝑡∈Z3

(𝑡 +𝑄0) = R3 ⧵ 𝐸1,

y definition of 𝛺0
𝑘 (see (2.2)), we have

𝛺 ∩ (𝜀𝑘𝐸0 ⧵𝛺0
𝑘) ⊂ {𝑥 ∈ 𝛺 ∶ dist(𝑥, 𝜕𝛺) ≤ 𝜆𝜀𝑘}.

Since {𝐻(𝑃𝑘)} is uniformly bounded by , we see that

lim
𝑘→+∞∫𝛺

𝜒0
𝑘 (𝑥)𝐻

(

𝑃𝑘(𝑥)
)

d𝑥

= lim
𝑘→+∞∫𝛺

𝜒𝜀𝑘𝐸0 (𝑥)𝐻
(

𝑃𝑘(𝑥)
)

d𝑥 − lim
𝑘→+∞∫𝛺

(

𝜒𝜀𝑘𝐸0 (𝑥) − 𝜒0
𝑘 (𝑥)

)

𝐻
(

𝑃𝑘(𝑥)
)

d𝑥

= lim 𝜒𝜀 𝐸0 (𝑥)𝐻
(

𝑃𝑘(𝑥)
)

d𝑥.

𝑘→+∞∫𝛺 𝑘

13 
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Then, by the Lipschitz continuity of 𝐻 on its domain,

lim
𝑘→+∞∫𝛺

𝜒𝜀𝑘𝐸0 (𝑥)𝐻
(

𝑃𝑘(𝑥)
)

d𝑥 = lim
𝑘→+∞∫𝛺

𝜒𝜀𝑘𝐸0 (𝑥)𝐻
(

𝑃 (𝑥)
)

d𝑥 = 3(𝑄0)∫𝛺
𝐻
(

𝑃 (𝑥)
)

d𝑥.

The case 𝑖 = 1 follows from the previous one by the identities 𝜒1
𝑘 = 𝜒𝛺 − 𝜒0

𝑘 and 3(𝑄1) = 1 − 3(𝑄0). □

The splitting process is explained by the ensuing proposition.

Proposition 4.3 (Splitting). Let {𝜀𝑘} be an infinitesimal sequence, and let {(𝑦𝑘, 𝑃𝑘)}𝑘∈N ⊂ 𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺; 𝖲𝖫(3)) be a sequence
satisfying

‖𝑦𝑘‖𝐿2(𝛺;R3) ≤ 𝐶, 𝑘(𝑦𝑘, 𝑃𝑘) ≤ 𝐶

for some 𝐶 ≥ 0, uniformly in 𝑘. Let �̃�𝑘 be the extension of 𝑦𝑘 in the sense of Remark 3.3, and let 𝑣 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3)) be as in

Lemma 4.1. Then, defining 𝑣𝑘 ∶= 𝑦𝑘 − �̃�𝑘, the following hold:

{𝑣𝑘} ⊂ 𝑊
1,2
0 (𝛺0

𝑘;R
3), (4.11)

‖𝑣𝑘‖𝐿2(𝛺;R3) ≤ 𝐶,

𝜀𝑘∇𝑣𝑘
2
⇀ ∇𝑧𝑣 weakly two-scale in 𝐿2, (4.12)

lim inf
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘) + lim inf

𝑘→+∞
 1
𝑘 (�̃�𝑘, 𝑃𝑘) ≤ lim inf

𝑘→+∞
𝑘(𝑦𝑘, 𝑃𝑘), (4.13)

lim sup
𝑘→+∞

𝑘(𝑦𝑘, 𝑃𝑘) ≤ lim sup
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘) + lim sup

𝑘→+∞
 1
𝑘 (�̃�𝑘, 𝑃𝑘). (4.14)

Moreover, in (4.13), {𝑣𝑘} may be replaced with another sequence {𝑤𝑘} ⊂ 𝑊 1,2
0 (𝛺0

𝑘;R
3) such that {𝜀𝑘∇𝑤𝑘} is 2-equiintegrable and

𝜀𝑘∇𝑤𝑘 ⇀ 0 weakly in 𝐿2(𝛺;R3×3).

Proof. We first prove that (4.12)–(4.14) hold for the sequence {𝑣𝑘}. Afterwards, we will show how to recover the equiintegrability
for the sequence of gradients.

We split the functional 𝑘 evaluated on (𝑦𝑘, 𝑃𝑘) as follows:

𝑘(𝑦𝑘, 𝑃𝑘) =  0
𝑘 (𝑦𝑘, 𝑃𝑘) +  1

𝑘 (𝑦𝑘, 𝑃𝑘) =  0
𝑘 (𝑣𝑘, 𝑃𝑘) +  1

𝑘 (�̃�𝑘, 𝑃𝑘) +𝑘, (4.15)

where  0
𝑘 and  1

𝑘 are as in (2.11) and (2.12), while

𝑘 ∶=  0
𝑘 (𝑦𝑘, 𝑃𝑘) −  0

𝑘 (𝑣𝑘, 𝑃𝑘) = ∫𝛺
𝜒0
𝑘
[

𝑊 0
𝜀
(

𝜀𝑘∇𝑦𝑘𝑃−1
𝑘

)

−𝑊 0
𝜀
(

𝜀𝑘∇𝑣𝑘𝑃−1
𝑘

)]

d𝑥.

e next show that 𝑘 is asymptotically negligible.
Hypothesis E4 yields

|

|

𝑘
|

|

≤ 𝑐3 ∫𝛺
𝜒0
𝑘

(

1 + |

|

|

𝜀𝑘∇𝑦𝑘𝑃−1
𝑘

|

|

|

+ |

|

|

𝜀𝑘∇𝑣𝑘𝑃−1
𝑘

|

|

|

)

|

|

|

𝜀𝑘∇�̃�𝑘𝑃−1
𝑘

|

|

|

d𝑥. (4.16)

ince {(𝑦𝑘, 𝑃𝑘)} is equibounded in energy, the sequences {𝜀𝑘𝜒0
𝑘∇𝑦𝑘𝑃

−1
𝑘 }, {𝜒1

𝑘∇𝑦𝑘𝑃
−1
𝑘 }, and {𝑃−1

𝑘 } are bounded in suitable Lebesgue
paces (see (4.7) and (4.8)). By the properties of the extension operator 𝖳𝜀 in Lemma 3.2, we deduce that

∫𝛺
|

|

|

∇�̃�𝑘𝑃−1
𝑘

|

|

|

2
d𝑥 ≤ 𝑐 ∫𝛺

|

|

∇�̃�𝑘||
2 d𝑥 ≤ 𝑐 ∫𝛺

|

|

|

𝜒1
𝑘∇𝑦𝑘

|

|

|

2
d𝑥 ≤ 𝑐 ∫𝛺

|

|

|

𝜒1
𝑘∇𝑦𝑘𝑃

−1
𝑘

|

|

|

2
d𝑥 ≤ 𝐶

recall estimate (2.5)). So, thanks to (4.3), we deduce that

𝜀𝑘∇𝑣𝑘 = 𝜀𝑘∇𝑦𝑘 − 𝜀𝑘∇�̃�𝑘
2
⇀ ∇𝑧𝑣 weakly two-scale in 𝐿2,

n particular, by Lemma 3.6(1), {𝜀𝑘𝜒0
𝑘∇𝑣𝑘𝑃

−1
𝑘 } is bounded in 𝐿2(𝛺;R3×3). By applying Hölder’s inequality to the right-hand side of

4.16), we then find 𝑘 = 𝑂(𝜀𝑘). Owing to (4.15) we conclude that (4.13) and (4.14) hold.
To complete the proof, we are only left to establish the existence of the sequence {𝑤𝑘}. Upon extraction of a subsequence, which

e do not relabel, we may assume that in (4.13) the lower limit involving  0
𝑘 is a limit. From the equiboundedness of the energy,

y arguing as in the lines before (4.9), we get

‖𝜀𝑘∇𝑦𝑘‖𝐿2 ≤ 𝐶, ‖𝜒1
𝑘∇𝑦𝑘‖𝐿2 ≤ 𝐶. (4.17)

hen, (4.3) holds and, by Lemma 3.6(2), we obtain

𝜀𝑘∇𝑦𝑘 ⇀ 0 weakly in 𝐿2(𝛺;R3×3).

emma 3.1 applied to the sequence {𝜀𝑘∇𝑦𝑘} yields two sequences, {𝑘𝑗} and {𝑢𝑗} ⊂ 𝑊 1,2(𝛺;R3), such that {𝜀𝑘𝑗∇𝑢𝑗} is 2-
quiintegrable,

2 3×3
𝜀𝑘𝑗∇𝑢𝑗 ⇀ 0 weakly in 𝐿 (𝛺;R ), (4.18)
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lim
𝑗→+∞

3(𝑁𝑗 ) = 0, with 𝑁𝑗 ∶= {𝑥 ∈ 𝛺 ∶ 𝑦𝑘𝑗 (𝑥) ≠ 𝑢𝑗 (𝑥)}.

Besides, we have

𝜀𝑘𝑗𝜒
1
𝑘𝑗
∇𝑢𝑗 → 0 strongly in 𝐿2(𝛺;R3×3). (4.19)

Indeed, it holds that

‖𝜀𝑘𝑗𝜒
1
𝑘𝑗
∇𝑢𝑗‖𝐿2(𝛺) = ‖𝜀𝑘𝑗𝜒

1
𝑘𝑗
∇𝑢𝑗‖𝐿2(𝑁𝑗 ) + ‖𝜀𝑘𝑗𝜒

1
𝑘𝑗
∇𝑦𝑘𝑗 ‖𝐿2(𝛺⧵𝑁𝑗 )

≤ ‖𝜀𝑘𝑗∇𝑢𝑗‖𝐿2(𝑁𝑗 ) + 𝜀𝑘𝑗 ‖𝜒
1
𝑘𝑗
∇𝑦𝑘𝑗 ‖𝐿2(𝛺),

and the conclusion follows by the 2-equiintegrability of {𝜀𝑘𝑗∇𝑢𝑗} and from (4.17).
We now define �̃�𝑗 ∶= 𝖳𝑘𝑗 𝑢𝑗 , with 𝖳𝑘𝑗 as in Lemma 3.2. From Remark 3.3 it follows that {𝜀𝑘𝑗∇�̃�𝑗} is 2-equiintegrable as well.

Thus, the sequence defined by

𝑤𝑘 ∶=

{

𝑢𝑗 − �̃�𝑗 if 𝑘 = 𝑘𝑗 for some 𝑗 ∈ N,
0 otherwise

has the properties that 𝑤𝑘 ∈ 𝑊 1,2
0 (𝛺0

𝑘;R
3) and {𝜀𝑘∇𝑤𝑘} is 2-equiintegrable. Moreover,

𝜀𝑘∇𝑤𝑘 ⇀ 0 weakly in 𝐿2(𝛺;R3×3).

To see this, we write

𝜀𝑘𝑗∇𝑤𝑘𝑗 = 𝜀𝑘𝑗∇𝑢𝑗 − 𝜀𝑘𝑗∇�̃�𝑗 .

The first term converges to 0 weakly in 𝐿2(𝛺;R3×3), as stated in (4.18). Additionally, Lemma 3.2 entails

‖𝜀𝑘𝑗∇�̃�𝑗‖𝐿2 ≤ 𝑐‖𝜀𝑘𝑗𝜒
1
𝑘𝑗
∇𝑢𝑗‖𝐿2 ,

and the weak convergence of {𝜀𝑘∇𝑤𝑘} follows from (4.19).
We are now ready to prove the validity of (4.13) when {𝜀𝑘∇𝑣𝑘} is replaced by the 2-equiintegrable sequence {𝜀𝑘∇𝑤𝑘}. By the

definition of the sequence at stake, we have

𝜀𝑘𝑗 (∇𝑣𝑘𝑗 − ∇𝑤𝑘𝑗 ) = 𝜀𝑘𝑗 (∇𝑦𝑘𝑗 − ∇𝑢𝑗 ) − 𝜀𝑘𝑗 (∇�̃�𝑘𝑗 − ∇�̃�𝑗 ) a. e. in 𝛺. (4.20)

Lemma 3.2 yields

𝜀𝑘𝑗 ‖∇�̃�𝑘𝑗 − ∇�̃�𝑗‖𝐿2(𝛺) = 𝜀𝑘𝑗 ‖∇
(

𝖳𝑘𝑗 (𝑦𝑘𝑗 − 𝑢𝑗 )
)

‖𝐿2(𝛺)

≤ 𝑐𝜀𝑘𝑗 ‖𝜒
1
𝑘𝑗
∇(𝑦𝑘𝑗 − 𝑢𝑗 )‖𝐿2(𝛺)

= 𝑐𝜀𝑘𝑗 ‖𝜒
1
𝑘𝑗
(∇𝑦𝑘𝑗 − ∇𝑢𝑗 )‖𝐿2(𝑁𝑗 )

≤ 𝑐
(

𝜀𝑘𝑗 ‖𝜒
1
𝑘𝑗
∇𝑦𝑘𝑗 ‖𝐿2(𝛺) + ‖𝜀𝑘𝑗∇𝑢𝑗‖𝐿2(𝑁𝑗 )

)

.

Thus, (4.17) and the 2-equiintegrability of {𝜀𝑘𝑗∇𝑢𝑗} entail

𝜀𝑘𝑗
(

∇�̃�𝑘𝑗 − ∇�̃�𝑗
)

→ 0 strongly in 𝐿2(𝛺;R3×3). (4.21)

Therefore, using (4.20) and the fact that the densities 𝑊 0
𝑘𝑗

are bounded from below, we have

∫𝛺
𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑣𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥

= ∫𝑁𝑗
𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑣𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥

+ ∫𝛺⧵𝑁𝑗
𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

(

𝜀𝑘𝑗∇𝑤𝑘𝑗 (𝑥) − 𝜀𝑘𝑗 (∇�̃�𝑘𝑗 (𝑥) − ∇�̃�𝑗 (𝑥))
)

𝑃−1
𝑘𝑗

(𝑥)
)

d𝑥

− ∫𝛺⧵𝑁𝑗
𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑤𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥 + ∫𝛺⧵𝑁𝑗
𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑤𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥

≥ −𝑐

(

∫𝛺⧵𝑁𝑗
|𝜀𝑘𝑗 (∇�̃�𝑘𝑗 (𝑥) − ∇�̃�𝑗 (𝑥))|

2 d𝑥

)1∕2

+ ∫𝛺⧵𝑁𝑗
𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑤𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥,

where the Lipschitz regularity E4 and Hölder’s inequality were employed to derive the last bound (recall that sup𝑘∈N ‖𝑃−1
𝑘 ‖∞ ≤ 𝐶).

We now take the limit in the inequality above. According to Lemma 4.2, the hardening term has a limit. Therefore, also the elastic
contribution is convergent, and it satisfies

lim  0(𝑣𝑘, 𝑃𝑘) = lim 𝜒0 (𝑥)𝑊 0 (𝜀𝑘 ∇𝑣𝑘 (𝑥)𝑃−1(𝑥)
)

d𝑥 + 3(𝑄0) 𝐻
(

𝑃 (𝑥)
)

d𝑥.

𝑘→+∞ 𝑘 𝑗→+∞∫𝛺 𝑘𝑗 𝑘𝑗 𝑗 𝑗 𝑘𝑗 ∫𝛺
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The strong converge (4.21) implies

lim
𝑗→+∞∫𝛺

𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑣𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥 ≥ lim inf
𝑗→+∞ ∫𝛺⧵𝑁𝑗

𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑤𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥

= lim inf
𝑗→+∞ ∫𝛺

𝜒0
𝑘𝑗
(𝑥)𝑊 0

𝑘𝑗

(

𝜀𝑘𝑗∇𝑤𝑘𝑗 (𝑥)𝑃
−1
𝑘𝑗

(𝑥)
)

d𝑥,

here the equality follows from the growth condition E3 and from the equiintegrability of {𝜀𝑘𝑗∇𝑤𝑘𝑗 }. We thereby infer

lim inf
𝑘→+∞

 0
𝑘 (𝑤𝑘, 𝑃𝑘) ≤ lim inf

𝑗→+∞
 0
𝑘𝑗
(𝑤𝑘𝑗 , 𝑃𝑘𝑗 ) ≤ lim

𝑘→+∞
 0
𝑘 (𝑣𝑘, 𝑃𝑘),

nd this concludes the proof. □

. 𝜞 -Limit of the soft component

We devote this section to the study of the asymptotics of the functional  0
𝜀 in (2.11), which encodes the energy of the inclusions.

fter some observations on the limiting functional  0 in (2.6), in the second and third subsections we deal respectively with the
ower and with the upper limit inequality for the elastic part of the energy. The other contributions will be taken into account in
ection 5.4, where we prove Proposition 2.11.

.1. The limiting functional

The definition of ′𝑊 0 in (2.8), which encodes the limiting elastic contribution of the soft inclusions, may be regarded as a
ariant of the well known Dacorogna’s formula for the quasiconvex envelope [40, Theorem 6.9]. As such, the infimum in (2.8) does
ot depend on 𝑄, and we may rewrite ′𝑊 0 as follows:

′𝑊 0(𝐹 ,𝐺) = inf
{

⨏𝑄0
𝑊 0

(

(

𝐹 + ∇𝑣(𝑧)
)

𝐺
)

d𝑧 ∶ 𝑣 ∈ 𝑊 1,2
0 (𝑄0;R3)

}

. (5.1)

Note that here quasiconvexification occurs just with respect to the first argument, since a very strong convergence is considered
or the second one (cf. Proposition 5.4 below). The fact that different variables in a problem may call for different relaxation
rocedures has been already observed. As an example, we mention the concept of cross-quasiconvexity introduced by Le Dret &
aoult [41] to deal with dimension reduction problems in elasticity.

For the sake of completeness, we explicitly mention some basic properties of ′𝑊 0. Note that in the following lemma we use
he symbol 𝑊 0 to denote a generic function rather than the specific one in E5.

emma 5.1. Let 𝑊 0 ∶R3×3 → R, and assume there exist 0 < 𝑐1 ≤ 𝑐2 such that for all 𝐹 ∈ R3×3

𝑐1|𝐹 |
2 ≤ 𝑊 0(𝐹 ) ≤ 𝑐2

(

|𝐹 |2 + 1
)

.

et ′𝑊 0 be as in (2.8).

(1) For all 𝐹 ,𝐺 ∈ R3×3

𝑐1|𝐹𝐺|
2 ≤ ′𝑊 0(𝐹 ,𝐺) ≤ 𝑐2

(

|𝐹𝐺|2 + 1
)

,

and for all 𝐺 ∈ R3×3 there exists 𝑐 ∶= 𝑐(𝐺) > 0 such that for all 𝐹1, 𝐹2 ∈ R3×3

|

|

|

′𝑊 0(𝐹1, 𝐺) −′𝑊 0(𝐹2, 𝐺)
|

|

|

≤ 𝑐
(

1 + |𝐹1| + |𝐹2|
)

|𝐹1 − 𝐹2|.

uppose further that there exists 𝑐3 > 0 such that for all 𝐹1, 𝐹2 ∈ R3×3

|

|

|

𝑊 0(𝐹1) −𝑊 0(𝐹2)
|

|

|

≤ 𝑐3
(

1 + |𝐹1| + |𝐹2|
)

|𝐹1 − 𝐹2|. (5.2)

(2) Then, ′𝑊 0(𝐹 , ⋅ ) is continuous for all 𝐹 ∈ R3×3.
(3) If {𝑃𝑘} ⊂ 𝑊 1,𝑞(𝛺; 𝖲𝖫(3)) converges weakly to 𝑃 ∈ 𝑊 1,𝑞(𝛺; 𝖲𝖫(3)), then for any 𝑉 ∈ 𝐿2(𝛺;R3×3)

lim
𝑘→+∞∫𝛺

′𝑊 0(𝑉 (𝑥), 𝑃−1
𝑘 (𝑥)

)

d𝑥 = ∫𝛺
′𝑊 0(𝑉 (𝑥), 𝑃−1(𝑥)

)

d𝑥.

roof. The growth conditions on ′𝑊 0 are an immediate consequence of the ones on 𝑊 0 and of the definition of ′𝑊 0.
For what concerns the 2-Lipschitz property, let us set 𝑊 0

𝐺 (𝐹 ) ∶= 𝑊 0(𝐹𝐺) for any fixed 𝐺 ∈ R3×3. Then, ′𝑊 0( ⋅ , 𝐺) coincides
ith the quasiconvex envelope of 𝑊 0

𝐺 . By [40, Remark 5.4(iii)] it follows that ′𝑊 0( ⋅ , 𝐺) is separately convex, and hence, in view
f the growth assumptions on 𝑊 0, the proof of item (1) is concluded by [40, Proposition 2.32].

As for assertion (2), let 𝐺𝑘 → 𝐺 in R3×3. In view of (5.2), for every 𝛿 > 0 there exists 𝑐𝛿 > 0 such that
′ 0 ′ 0
 𝑊 (𝐹 ,𝐺𝑘) − 𝑊 (𝐹 ,𝐺) ≤ 𝑐𝛿|𝐺𝑘 − 𝐺| + 𝛿.
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Similarly, for any 𝑘 ∈ N there exists 𝑣𝑘 ∈ 𝑊 1,𝑝
0 (𝑄;R3×3) such that

′𝑊 0(𝐹 ,𝐺𝑘) −′𝑊 0(𝐹 ,𝐺) ≥ −𝑐3|𝐺𝑘 − 𝐺|∫𝑄

(

1 + |(𝐹 + ∇𝑣𝑘)𝐺𝑘| + |(𝐹 + ∇𝑣𝑘)𝐺|
)

|𝐹 + ∇𝑣𝑘| d𝑥 −
1
𝑘
.

Thanks to the coercivity of the integrand, it follows that {∇𝑣𝑘} is bounded in 𝐿2, whence

′𝑊 0(𝐹 ,𝐺𝑘) −′𝑊 0(𝐹 ,𝐺) ≥ −𝑐 |𝐺𝑘 − 𝐺| −
1
𝑘

for a constant 𝑐 independent of 𝑘. The continuity of ′𝑊 0(𝐹 , ⋅ ) is then proved by letting first 𝑘 → +∞ and then 𝛿 → 0.
Finally, taking into account properties (1) and (2), as well as the compact embedding of 𝑊 1,𝑞(𝛺) into 𝐶(�̄�), we can employ the

ominated convergence theorem to obtain the continuity property in (3). □

We now exhibit an alternative expression for the soft limiting elastic energy, which is to be exploited in the proof of
roposition 5.7.

emma 5.2. For every couple (𝑉 , 𝑃 ) ∈ 𝐿2(𝛺;R3×3) ×𝑊 1,𝑞(𝛺; 𝖲𝖫(3)) we have

∫𝛺
′𝑊 0(𝑉 (𝑥), 𝑃−1(𝑥)

)

d𝑥 = inf
{

∫𝛺 ⨏𝑄0
𝑊 0

(

(

𝑉 (𝑥) + ∇𝑧𝑤(𝑥, 𝑧)
)

𝑃−1(𝑥)
)

d𝑧 d𝑥 ∶ 𝑤 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3))

}

. (5.3)

The identity above rests on a measurable selection criterion that we recall next.

emma 5.3 (Lemma 3.10 in [42]). Let 𝑆 be a multifunction defined on the measurable space 𝑋 and taking values in the collection of
ubsets of the separable metric space 𝑌 . If 𝑆(𝑥) is nonempty and open in 𝑌 for every 𝑥 ∈ 𝑋, and if the set {𝑥 ∈ 𝑋 ∶ 𝑦 ∈ 𝑆(𝑥)} is measurable
or every 𝑦 ∈ 𝑌 , then 𝑆 admits a measurable selection, that is, there exists a measurable function 𝑠∶𝑋 → 𝑌 such that 𝑠(𝑥) ∈ 𝑆(𝑥) for all
∈ 𝑋.

The previous lemma is a variant of [43, Theorem III.6], and we refer to that monograph for a comprehensive treatment of
easurable selection principles.

roof of Lemma 5.2. The argument follows the one proposed in [42, Corollary 3.2].
Let us fix 𝑤 ∈ 𝐿2(𝛺;𝑊 1,2

0 (𝑄0;R3)), so that, for almost every 𝑥 ∈ 𝛺, 𝑤(𝑥, ⋅ ) ∈ 𝑊 1,2
0 (𝑄0;R3). Hence, according to (5.1), we have

′𝑊 0(𝑉 (𝑥), 𝑃−1(𝑥)
)

≤ ⨏𝑄0
𝑊 0

(

(

𝑉 (𝑥) + ∇𝑧𝑤(𝑥, 𝑧)
)

𝑃−1(𝑥)
)

d𝑧 for a. e. 𝑥 ∈ 𝛺,

hence, after integration over 𝛺, we deduce that in (5.3) the left-hand side is smaller that the right-hand one.
In order to establish the opposite inequality, we first observe that, by (5.1), for every 𝑥 ∈ 𝛺 and every 𝛿 > 0 there exists

𝑥,𝛿 ∈ 𝑊 1,2
0 (𝑄0;R3) such that

⨏𝑄0
𝑊 0

(

(

𝑉 (𝑥) + ∇𝑣𝑥,𝛿(𝑧)
)

𝑃−1(𝑥)
)

d𝑧 −′𝑊 0(𝑉 (𝑥), 𝑃−1(𝑥)
)

< 𝛿. (5.4)

e introduce the multifunction 𝑆 defined for 𝑥 ∈ 𝛺 by

𝑆(𝑥) ∶=
{

𝑣 ∈ 𝑊 1,2
0 (𝑄0;R3) ∶ (5.4) holds for 𝑣𝑥,𝛿 = 𝑣

}

.

e show that it admits a measurable selection. To this purpose observe that, as a consequence of the growth assumptions on 𝑊 0

nd the dominated convergence theorem, 𝑆(𝑥) is a nonempty, open subset of 𝑊 1,2
0 (𝑄0;R3) for every 𝑥 ∈ 𝛺. Second, for every

∈ 𝑊 1,2
0 (𝑄0;R3) the set {𝑥 ∈ 𝛺 ∶ 𝑣 ∈ 𝑆(𝑥)} is measurable, because it is the sublevel set of a measurable function.

Thanks to Lemma 5.3, for every 𝛿 > 0 we retrieve a measurable function 𝑤𝛿 ∶𝛺 → 𝑊 1,2
0 (𝑄0;R3) that satisfies

∫𝛺 ⨏𝑄0
𝑊 0

(

(

𝑉 (𝑥) + ∇𝑧𝑤𝛿(𝑥, 𝑧)
)

𝑃−1(𝑥)
)

d𝑧 d𝑥 ≤ ∫𝛺
′𝑊 0(𝑉 (𝑥), 𝑃−1(𝑥)

)

+ 𝑂(𝛿).

In particular, by the growth conditions on 𝑊 0, 𝑤𝛿 must belong to 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3)). Therefore, since 𝛿 is arbitrary, we conclude

that the left-hand side in (5.3) bounds from above the right-hand one. □

5.2. Lower bound for the elastic energy

The goal of this subsection is to prove the ensuing:

Proposition 5.4. Let {𝑊 0
𝑘 }𝑘 satisfy assumptions E3–E5, and let 𝑃 ∈ 𝑊 1,𝑞(𝛺; 𝖲𝖫(3)). For every sequence {(𝑣𝑘, 𝑃𝑘)} ⊂ 𝑊 1,2

0 (𝛺0
𝑘;R

3) ×
𝑊 1,𝑞(𝛺; 𝖲𝖫(3)) such that {𝜀𝑘∇𝑣𝑘} is 2-equiintegrable and 𝑃𝑘 → 𝑃 uniformly, it holds that

3(𝑄0) ′𝑊 0(0, 𝑃−1(𝑥)
)

d𝑥 ≤ lim inf 𝜒0(𝑥)𝑊 0(𝜀𝑘∇𝑣𝑘(𝑥)𝑃−1(𝑥)
)

d𝑥. (5.5)
∫𝛺 𝑘→+∞ ∫𝛺 𝑘 𝑘 𝑘
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At a first glance, it may look bizarre that no convergence for the sequence {𝜀𝑘∇𝑣𝑘} is prescribed. The statement becomes clearer

nce we recall that if 𝑓 is the quasiconvex envelope of 𝑓 ∶R3×3 → R, then

𝑓 (0) ≤ ⨏𝛺
𝑓
(

∇𝑣(𝑥)
)

d𝑥

or any 𝑣 ∈ 𝑊 1,∞
0 (𝛺;R3).

In order to establish (5.5), it is convenient to unfold the elastic energy.

emma 5.5. Let {𝑊 0
𝑘 }𝑘 satisfy assumptions E3–E5. For any (𝑣, 𝑃 ) ∈ 𝑊 1,2(𝛺;R3) ×𝑊 1,𝑞(𝛺; 𝖲𝖫(3)) it holds that

∫𝛺
𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣(𝑥)𝑃−1(𝑥)
)

d𝑥 =
∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄0

𝑊 0
𝑘
(

∇𝑧�̂�(𝑥, 𝑧)𝑃−1(𝑥, 𝑧)
)

d𝑧 d𝑥, (5.6)

here �̂� ∶= 𝖲𝑘𝑣, 𝑃 ∶= 𝖲𝑘𝑃 and 𝖲𝑘 ∶= 𝖲𝜀𝑘 is the unfolding operator introduced in Lemma 3.7.

roof. According to the definition of 𝛺0
𝑘 in (2.2), the left-hand side of (5.6) equals

𝜀3𝑘
∑

𝑡∈𝑇𝑘
∫𝑄0

𝑊 0
𝑘

(

𝜀𝑘∇𝑣
(

𝜀𝑘(𝑡 + 𝑧)
)

𝑃−1(𝜀𝑘(𝑡 + 𝑧)
)

)

d𝑧.

We use the unfolding operator to rewrite this quantity as a double integral. Recalling Lemma 3.7, we first observe that for every

𝑡 ∈ 𝑇𝑘 and 𝑧 ∈ 𝑄0 we have the identities

𝖲𝑘(𝜀𝑘∇𝑣)(𝜀𝑘𝑡, 𝑧) = 𝜀𝑘∇𝑣
(

𝜀𝑘(𝑡 + 𝑧)
)

, 𝖲𝑘𝑃
−1(𝜀𝑘𝑡, 𝑧) = 𝑃−1(𝜀𝑘(𝑡 + 𝑧)

)

.

hen, we also have

𝖲𝑘(𝜀𝑘∇𝑣) = ∇𝑧
(

𝖲𝑘𝑣
)

= ∇𝑧�̂�, 𝖲𝑘𝑃
−1 = (𝖲𝑘𝑃 )−1 = 𝑃−1.

e obtain

∫𝛺
𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣(𝑥)𝑃−1(𝑥)
)

d𝑥 = 𝜀3𝑘
∑

𝑡∈𝑇𝑘
∫𝑄0

𝑊 0
𝑘
(

𝖲𝑘(𝜀𝑘∇𝑣)(𝜀𝑘𝑡, 𝑧)𝖲𝑘(𝑃−1)(𝜀𝑘𝑡, 𝑧)
)

d𝑧

=
∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄0

𝑊 0
𝑘

(

∇𝑧�̂�
(

𝜀𝑘

⌊

𝑥
𝜀𝑘

⌋

, 𝑧
)

𝑃−1
(

𝜀𝑘

⌊

𝑥
𝜀𝑘

⌋

, 𝑧
))

d𝑧 d𝑥,

ecause ⌊𝑥∕𝜀𝑘⌋ = 𝑡 for all 𝑥 ∈ 𝜀𝑘(𝑡 +𝑄). Since, in general, it holds that

𝖲𝑘𝑢
(

𝜀𝑘

⌊

𝑥
𝜀𝑘

⌋

, 𝑧
)

= 𝑢
(

𝜀𝑘

⌊

𝑥
𝜀𝑘

⌋

+ 𝜀𝑘𝑧
)

= 𝖲𝑘𝑢(𝑥, 𝑧),

identity (5.6) follows. □

A crucial ingredient in the proof of Proposition 5.4 is a sort of lower semicontinuity result for the elastic contribution to the

energy.

Lemma 5.6. Let {𝑊 0
𝑘 }𝑘 satisfy assumptions E3–E5. Let also {𝑤𝑘} ⊂ 𝐿2(𝛺;𝑊 1,2

0 (𝑄0;R3)) be such that {∇𝑧𝑤𝑘} is 2-equiintegrable. Then,

for all 𝑃 ∈ 𝑊 1,𝑞(𝛺; 𝖲𝖫(3)),
18 
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3(𝑄0)∫𝛺
′𝑊 0(0, 𝑃−1(𝑥)

)

d𝑥 ≤ lim inf
𝑘→+∞ ∫𝛺 ∫𝑄0

𝑊 0
𝑘
(

∇𝑧𝑤𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥,

henever 𝑃𝑘 → 𝑃 uniformly.

roof. From (5.1) it follows that for all 𝑘 ∈ N

3(𝑄0)∫𝛺
′𝑊 0(0, 𝑃−1

𝑘 (𝑥)
)

d𝑥 ≤ ∫𝛺 ∫𝑄0
𝑊 0(∇𝑧𝑤𝑘(𝑥, 𝑧)𝑃−1

𝑘 (𝑥)
)

d𝑧 d𝑥. (5.7)

Next, relying on the pointwise convergence of {𝑊 0
𝑘 } to 𝑊 0, we adapt the argument in the proof of [26, Theorem 5.14] to pass

rom 𝑊 0 to 𝑊 0
𝑘 on the right-hand side (see also [25, Lemma 5.2] for a similar result in the context of 𝒜 -quasiconvexity). Fix 𝛿 > 0.

f {∇𝑧𝑤𝑘} is 2-equiintegrable, then so is {∇𝑧𝑤𝑘𝑃−1
𝑘 }. Therefore, since the 2-growth assumptions on {𝑊 0

𝑘 } transfer to the pointwise
imit 𝑊 0, there exists 𝑟 > 0 such that

sup
𝑘∈N∫{(𝑥,𝑧)∈𝛺×𝑄0∶|∇𝑧𝑤𝑘(𝑥,𝑧)𝑃−1

𝑘 (𝑥)|>𝑟}
𝑊 0(∇𝑧𝑤𝑘(𝑥, 𝑧)𝑃−1

𝑘 (𝑥)
)

d𝑧 d𝑥 ≤ 𝛿. (5.8)

wing to assumption E4 and Remark 2.2, we can find 𝜌 > 0 such that for every 𝐹 ,𝐺 ∈ R3×3 contained in the open ball 𝐵(0, 𝜌)

sup
𝑘∈N

|𝑊 0
𝑘 (𝐹 ) −𝑊

0
𝑘 (𝐺)| + |𝑊 0(𝐹 ) −𝑊 0(𝐺)| ≤ 𝛿. (5.9)

et now 𝐹1,… , 𝐹𝑛 ∈ 𝐵(0, 𝑟) be such that

𝐵(0, 𝑟) ⊂
𝑛
⋃

𝑖=1
𝐵
(

𝐹𝑖, 𝜌
)

. (5.10)

Due to the pointwise convergence of 𝑊 0
𝑘 to 𝑊 0, for any such 𝐹𝑖 there exist �̄�𝑖 ∈ N such that |𝑊 0

𝑘 (𝐹𝑖) −𝑊
0(𝐹𝑖)| ≤ 𝛿 if 𝑘 > �̄�𝑖. Letting

̄ ∶= max{�̄�1,… , �̄�𝑛}, it follows that for any 𝑖 = 1,… , 𝑛

|𝑊 0
𝑘 (𝐹𝑖) −𝑊

0(𝐹𝑖)| ≤ 𝛿 if 𝑘 > �̄�. (5.11)

y (5.10), for every 𝐺 ∈ 𝐵(0, 𝑟) there exists 𝑖 ∈ {1,… , 𝑛} such that 𝐺 ∈ 𝐵(𝐹𝑖, 𝜌). For this particular 𝑖, the combination of the triangle
nequality, (5.9) and (5.11) yields

|𝑊 0
𝑘 (𝐺) −𝑊

0(𝐺)| ≤ |𝑊 0
𝑘 (𝐺) −𝑊

0
𝑘 (𝐹𝑖)| + |𝑊 0

𝑘 (𝐹𝑖) −𝑊
0(𝐹𝑖)| + |𝑊 0(𝐺) −𝑊 0(𝐹𝑖)| ≤ 3𝛿, (5.12)

or every 𝐺 ∈ 𝐵(0, 𝑟) and every 𝑘 > �̄�.
Thanks to Lemma 5.1(3) and (5.7) we deduce

3(𝑄0)∫𝛺
′𝑊 0(0, 𝑃−1(𝑥)

)

d𝑥

= 3(𝑄0) lim
𝑘→+∞∫𝛺

′𝑊 0(0, 𝑃−1
𝑘 (𝑥)

)

d𝑥

≤ lim inf
𝑘→+∞ ∫𝛺 ∫𝑄0

𝑊 0(∇𝑧𝑤𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥

≤ lim inf
𝑘→+∞ ∫{(𝑥,𝑧)∈𝛺×𝑄0∶|∇𝑧𝑤𝑘(𝑥,𝑧)𝑃−1

𝑘 (𝑥)|≤𝑟}
𝑊 0(∇𝑧𝑤𝑘(𝑥, 𝑧)𝑃−1

𝑘 (𝑥)
)

d𝑧 d𝑥 + 𝛿

≤ lim inf
𝑘→+∞ ∫𝛺 ∫𝑄0

𝑊 0
𝑘
(

∇𝑧𝑤𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥 + 3𝛿6(𝛺 ×𝑄0) + 𝛿,

here the second inequality is due to (5.8), and the last one to (5.12). The arbitrariness of 𝛿 > 0 yields the conclusion. □

We are now ready to prove the lower bound for the elastic contribution of the soft part.

roof of Proposition 5.4. Let �̂�𝑘 ∶= 𝖲𝑘𝑣𝑘. In view of the 2-equiintegrability of the sequence {𝜀𝑘∇𝑣𝑘} and of Lemma 3.7, {∇𝑧�̂�𝑘} is
-equiintegrable as well, and it is hence a fortiori bounded in 𝐿2. From Lemma 5.5, restricting the summation in (5.6) to the set of
ranslations

�̂�𝑘 ∶=
{

𝑡 ∈ Z3 ∶ dist
(

𝜀(𝑡 +𝑄), 𝜕𝛺
)

> 𝜆𝜀
}

⊂ 𝑇𝑘,

we deduce

lim inf
𝑘→+∞ ∫𝛺

𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣𝑘(𝑥)𝑃−1
𝑘 (𝑥)

)

d𝑥 ≥ lim inf
𝑘→+∞ ∫�̂�𝑘 ∫𝑄0

𝑊 0
𝑘
(

∇𝑧�̂�𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥,

here

�̂�𝑘 ∶=
⋃

𝜀𝑘(𝑡 +𝑄). (5.13)

𝑡∈�̂�𝑘
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We rewrite the right-hand side of the previous inequality as the difference between the integrals

𝐼 ′𝑘 ∶= ∫𝛺 ∫𝑄0
𝑊 0
𝑘
(

∇𝑧�̂�𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥,

𝐼 ′′𝑘 ∶= ∫𝛺⧵�̂�𝑘
∫𝑄0

𝑊 0
𝑘
(

∇𝑧�̂�𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥.

Being that {∇𝑧�̂�𝑘} 2-equiintegrable, the sequence {∇𝑧�̂�𝑘𝑃−1
𝑘 } is also 2-equiintegrable. Thus, by the growth condition E3 and the fact

that 𝛺 ⧵ �̂�𝑘 ⊂ {𝑥 ∈ 𝛺 ∶ dist(𝑥, 𝜕𝛺) ≤ (𝜆 +
√

3)𝜀}, we obtain

lim
𝑘→+∞

𝐼 ′′𝑘 = 0.

aking into account Lemma 5.6 we conclude

lim inf
𝑘→+∞ ∫𝛺

𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣𝑘(𝑥)𝑃−1
𝑘 (𝑥)

)

d𝑥 ≥ lim inf
𝑘→+∞

𝐼 ′𝑘 ≥ 3(𝑄0)∫𝛺
′𝑊 0(0, 𝑃−1(𝑥)

)

d𝑥. □

.3. Upper bound for the elastic energy

In this subsection we address the proof of upper 𝛤 -limit inequality for the elastic contribution of the soft component. Differently
rom the previous subsection, in order to establish the desired inequality we perform an analysis that is genuinely two-scale, in the
ense that we interpret 0 as the average with respect to the periodic variable of the two-scale limit of the sequence {𝜀𝑘∇𝑣𝑘}.

roposition 5.7. Let {𝑊 0
𝑘 }𝑘 satisfy assumptions E3–E5, and let 𝑃 ∈ 𝑊 1,𝑞(𝛺; 𝖲𝖫(3)). For all 𝛿 > 0 there exists a sequence {𝑣𝑘} ⊂

1,2
0 (𝛺0

𝑘;R
3) such that 𝜀𝑘∇𝑣𝑘 ⇀ 0 weakly in 𝐿2(𝛺;R3×3) and that

lim sup
𝑘→+∞ ∫𝛺

𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣𝑘(𝑥)𝑃−1
𝑘 (𝑥)

)

d𝑥 < 3(𝑄0)∫𝛺
′𝑊 0(0, 𝑃−1(𝑥)

)

d𝑥 + 𝛿, (5.14)

henever 𝑃𝑘 → 𝑃 uniformly.

We begin with a lemma that provides a strong two-scale approximation of any sufficiently regular function. The result has already
ppeared in [9, Lemma 22] where, however, the proof is just sketched. In Section 6 we state and prove a more detailed version of
his lemma (i.e., Lemma 6.1) and compare our result with the one in [9].

emma 5.8. Let 𝑤 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3))∩𝐶2(𝛺×𝑄0;R3). Then, there exists a sequence {𝑣𝑘} ⊂ 𝐿2(𝛺;R3) such that, letting �̂�𝑘 ∶= 𝖲𝑘𝑣𝑘,

it holds that

∇𝑧�̂�𝑘 → ∇𝑧𝑤 strongly in 𝐿2(𝛺 ×𝑄;R3×3). (5.15)

We are now ready to prove the 𝛤 -limsup inequality for the soft inclusions functional.

Proof of Proposition 5.7. According to Lemma 5.2, for every 𝛿 > 0 there exists 𝑤𝛿 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3)) satisfying

∫𝛺 ∫𝑄0
𝑊 0(∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1(𝑥)

)

d𝑧 d𝑥 < (𝑄0)∫𝛺
′𝑊 0(0, 𝑃−1(𝑥)

)

d𝑥 + 𝛿 (5.16)

We would like to apply Lemma 5.8 which, however, requires 𝑤𝛿 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3)) ∩𝐶2(𝛺 ×𝑄0;R3). We therefore establish the

inequality first for a sufficiently regular 𝑤𝛿 , and we then extend the result by a density argument.

Case 1: 𝑤𝛿 regular
Let 𝑤𝛿 ∈ 𝐿2(𝛺;𝑊 1,2

0 (𝑄0;R3)) ∩ 𝐶2(𝛺 × 𝑄0;R3). We consider the recovery sequence {𝑣𝑘} coming from Lemma 5.8. Lemmas 3.7
and 3.6(2) yield 𝜀𝑘∇𝑣𝑘 ⇀ 0 weakly in 𝐿2(𝛺;R3×3). Assumption E4 and Hölder’s inequality entail

∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄0

|

|

|

𝑊 0
𝑘
(

∇𝑧�̂�𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

−𝑊 0
𝑘
(

∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

|

|

|

d𝑧 d𝑥

≤ 𝑐
∑

𝑡∈𝑇𝑘

(

∫𝜀𝑘(𝑡+𝑄) ∫𝑄0
|

|

∇𝑧�̂�𝑘(𝑥, 𝑧) − ∇𝑧𝑤𝛿(𝑥, 𝑧)||
2 d𝑧 d𝑥

)1∕2

,

here the constant 𝑐 bounds ‖𝑃−1
𝑘 ‖𝐿∞ . Thanks to the strong convergence of {∇𝑧�̂�𝑘}, we obtain that the term above is infinitesimal

hen 𝑘→ +∞. From Lemma 5.5 we then deduce

lim sup
𝑘→+∞ ∫𝛺

𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣𝑘(𝑥)𝑃−1
𝑘 (𝑥)

)

d𝑥

= lim sup
∑

∫ ∫ 0
𝑊 0
𝑘
(

∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥

𝑘→+∞ 𝑡∈𝑇𝑘 𝜀𝑘(𝑡+𝑄) 𝑄
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= lim sup
𝑘→+∞

∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄0

𝑊 0
𝑘
(

∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1(𝑥)
)

d𝑧 d𝑥

= lim sup
𝑘→+∞

∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄0

𝑊 0 (∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1(𝑥)
)

d𝑧 d𝑥,

where the second identity follows from E4 and the last one from E5. Note also that, by absolute continuity of the Lebesgue integral,

lim sup
𝑘→+∞

∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄0

𝑊 0 (∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1(𝑥)
)

d𝑧 d𝑥 = ∫𝛺 ∫𝑄0
𝑊 0 (∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1(𝑥)

)

d𝑧 d𝑥.

Therefore, combining the equalities that we have just found with (5.16), we achieve the conclusion in the case under consideration.

Case 2: 𝑤𝛿 generic
Let now 𝑤𝛿 ∈ 𝐿2(𝛺;𝑊 1,2

0 (𝑄0;R3)). By density, we retrieve a function �̃�𝛿 ∈ 𝐶∞
𝑐 (𝛺;𝐶∞

𝑐 (𝑄0;R3)) such that

∫𝛺 ∫𝑄0
𝑊 0(∇𝑧�̃�𝛿(𝑥, 𝑧)𝑃−1(𝑥)

)

d𝑧 ≤ ∫𝛺 ∫𝑄0
𝑊 0(∇𝑧𝑤𝛿(𝑥, 𝑧)𝑃−1(𝑥)

)

d𝑧 + 𝛿.

o achieve the conclusion, it only suffices to repeat the argument in Case 1 for �̃�𝛿 . □

.4. Proof of Proposition 2.11

We are eventually in a position to reap the fruits of the previous subsections.

roof of Proposition 2.11. Let us start with the lower limit inequality. If the lower limit of  0
𝑘 (𝑣𝑘, 𝑃𝑘) is not finite, there is nothing

o prove. Otherwise, statement (1) in Proposition 2.11 follows by combining Proposition 5.4 and Lemma 4.2.
As for the upper bound, Proposition 5.7 provides for all 𝛿 > 0 a sequence {𝑣𝑘} ⊂ 𝑊 1,2

0 (𝛺0
𝑘;R

3) such that 𝜀𝑘∇𝑣𝑘 ⇀ 0 weakly in
2(𝛺;R3×3) and (5.14) holds. By the Poincaré inequality on perforated media (see Proposition 3.4), it follows that {𝑣𝑘} is bounded

n 𝐿2(𝛺;R3). We employ again Lemma 4.2 to deduce that

lim sup
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘) <  0(𝑃 ) + 𝛿.

his inequality is actually equivalent to the desired one (cf. [44, Section 1.2]), and the proof is therefore concluded. □

. Conclusions and a variant of the problem with plastic dissipation

We devote this final section to the proof of the homogenization result for high-contrast composites and to the discussion of a
ariant of the problem featuring plastic dissipation.

.1. Proof of Theorem 2.7 and convergence of minimum problems

As we outlined before, the proof of Theorem 2.7 is achieved by combining the splitting procedure in Proposition 4.3 with
heorem 3.8 and Proposition 2.11, which account for the asymptotics of the stiff and the soft components, respectively. Once
he homogenization theorem is on hand, the convergence of the minimum problems and of their minimizers will follow thanks to
he compactness result in Lemma 4.1.

roof of Theorem 2.7. Let {𝜀𝑘} be an infinitesimal sequence and let us fix 𝑦 ∈ 𝐿2(𝛺;R3) and 𝑃 ∈ 𝐿𝑞(𝛺; 𝖲𝖫(3)). We separate the
roof of the lower and of the upper limit inequalities.

ower bound
We consider a sequence {(𝑦𝑘, 𝑃𝑘)} ⊂ 𝐿2(𝛺;R3) × 𝐿𝑞(𝛺; 𝖲𝖫(3)) such that 𝑦𝑘 → 𝑦 in the sense of extensions and that 𝑃𝑘 → 𝑃

uniformly. The only case to discuss is the one in which the lower limit of 𝑘(𝑦𝑘, 𝑃𝑘) is finite, and we may thus assume that {𝑘(𝑦𝑘, 𝑃𝑘)}
is bounded. Keeping in force the notation of Definition 2.4, we let {�̃�𝑘} ⊂ 𝑊 1,2(𝛺;R3) be a sequence such that 𝑦𝑘 = �̃�𝑘 in 𝛺1

𝑘 and
̃𝑘 ⇀ 𝑦 weakly in 𝑊 1,2(𝛺;R3). In the light of (4.4) and Remark 2.5, we may without loss of generality assume that �̃�𝑘 ∶= 𝖳𝑘𝑦𝑘, with
𝖳𝑘 as in Lemma 3.2.

We now apply Proposition 4.3, which yields {𝑣𝑘} ⊂ 𝑊
1,2
0 (𝛺0

𝑘;R
3) satisfying (4.13) and such that {𝑣𝑘} is bounded in 𝐿2 and that

{𝜀𝑘∇𝑣𝑘} is 2-equiintegrable. In particular, 𝜀𝑘𝑣𝑘 → 0 strongly in 𝐿2, and hence (𝜀𝑘𝑣𝑘, 𝑃𝑘)
𝜏
→ (0, 𝑃 ). Besides, Proposition 2.11 yields

 0(𝑃 ) ≤ lim inf
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘).

At this stage, recalling (4.13), the proof of the lower bound is concluded as soon as we show that

 1(𝑦, 𝑃 ) ≤ lim inf
𝑘→+∞

 1
𝑘 (�̃�𝑘, 𝑃𝑘) = lim inf

𝑘→+∞
 1
𝑘 (𝑦𝑘, 𝑃𝑘) (6.1)

1
with  (𝑦, 𝑃 ) given by (2.7). This is what we prove next.

21 



E. Davoli et al.

I

S

U

Nonlinear Analysis: Real World Applications 81 (2025) 104198 
Let us set

𝑊 1(𝑥, 𝐹 ) ∶= 𝜒𝐸1 (𝑥)𝑊 1(𝐹 ), �̂�(𝑥, 𝑃 ) ∶= 𝜒𝐸1 (𝑥)𝐻(𝑃 ),

̂ 1
𝑘 (𝑦, 𝑃 ) ∶= ∫𝛺

[

𝑊 1
(

𝑥
𝜀𝑘
,∇�̃�𝑃−1

)

+ �̂�
(

𝑥
𝜀𝑘
, 𝑃

)

+ |∇𝑃 |𝑞
]

d𝑥. (6.2)

t holds

lim inf
𝑘→+∞

̂ 1
𝑘 (�̃�𝑘, 𝑃𝑘) ≤ lim inf

𝑘→+∞
 1
𝑘 (�̃�𝑘, 𝑃𝑘).

ince (�̃�𝑘, 𝑃𝑘)
𝜏
→ (𝑦, 𝑃 ), by applying Theorem 3.8 to the left-hand side of the previous inequality, (6.1) is deduced.

pper bound
If 𝑃 ∉ 𝑊 1,𝑞(𝛺;𝐾) there is nothing to prove; let us then assume that 𝑃 ∈ 𝑊 1,𝑞(𝛺;𝐾).
As we have already observed, {̂ 1

𝑘 } satisfies the requirements of Theorem 3.8. In view of Corollary 3.9, for any (𝑦, 𝑃 ) ∈
𝑊 1,2(𝛺;R3) × 𝑊 1,𝑞(𝛺;𝐾) there exists a sequence {(𝑢𝑘, 𝑃𝑘)} ⊂ 𝑊 1,2(𝛺;R3) × 𝑊 1,𝑞(𝛺;𝐾) such that {∇𝑢𝑘} is 2-equiintegrable,
(𝑢𝑘, 𝑃𝑘)

𝜏
→ (𝑦, 𝑃 ), and

lim sup
𝑘→+∞

̂ 1
𝑘 (𝑢𝑘, 𝑃𝑘) ≤  1(𝑦, 𝑃 ).

Note that

0 ≤  1
𝑘 (𝑢𝑘, 𝑃𝑘) − ̂ 1

𝑘 (𝑢𝑘, 𝑃𝑘)

= ∫𝛺

(

𝜒1
𝑘 (𝑥) − 𝜒𝜀𝑘𝐸1 (𝑥)

)(

𝑊 1(∇𝑢𝑘𝑃−1
𝑘 ) +𝐻(𝑃𝑘)

)

d𝑥

≤ 𝑐 ∫𝛺

(

𝜒1
𝑘 (𝑥) − 𝜒𝜀𝑘𝐸1 (𝑥)

)(

|∇𝑢𝑘|
2 + 1

)

d𝑥

for all 𝑘 ∈ N. Thanks to the 2-equiintegrability of {∇𝑢𝑘}, we deduce

lim sup
𝑘→+∞

 1
𝑘 (𝑢𝑘, 𝑃𝑘) = lim sup

𝑘→+∞
̂ 1
𝑘 (𝑢𝑘, 𝑃𝑘) ≤  1(𝑦, 𝑃 ). (6.3)

We now focus on the soft part. Proposition 2.11 grants the existence of a bounded sequence {𝑣𝑘} ⊂ 𝐿2(𝛺;R3) such that
{𝑣𝑘} ⊂ 𝑊

1,2
0 (𝛺0

𝑘;R
3) and

lim sup
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘) ≤  0(𝑃 ), (6.4)

where {𝑃𝑘} is as in (6.3). Notice that if 𝑦𝑘 ∶= 𝑢𝑘+𝑣𝑘, then {𝑘(𝑦𝑘, 𝑃𝑘)} is bounded and {𝑦𝑘} converges to 𝑦 in the sense of extensions
(recall Remark 2.5). Letting �̃�𝑘 ∶= 𝖳𝑘𝑦𝑘, thanks to (4.14) we conclude the proof of the upper limit inequality:

lim sup
𝑘→+∞

𝑘(𝑦𝑘, 𝑃𝑘) ≤ lim sup
𝑘→+∞

 0
𝑘 (𝑦𝑘 − �̃�𝑘, 𝑃𝑘) + lim sup

𝑘→+∞
 1
𝑘 (�̃�𝑘, 𝑃𝑘)

= lim sup
𝑘→+∞

 0
𝑘 (𝑣𝑘, 𝑃𝑘) + lim sup

𝑘→+∞
 1
𝑘 (𝑢𝑘, 𝑃𝑘)

≤  (𝑦, 𝑃 ).

In the previous lines, the equality is a consequence of the facts that {∇𝑢𝑘} and {∇�̃�𝑘} are bounded and that 𝑢𝑘 = 𝑦𝑘 on 𝛺1
𝑘, whereas

the last bound is accounted for by (6.3) and (6.4). □

Finally, we are only left to establish the convergence of the minimum problems associated with the energy functionals 𝜀. What
we need is an adaptation of the 𝛤 -convergence statement that we have just proved so as to make it comply with Dirichlet boundary
conditions. To this aim, as it is customary (see, e.g., [28, Proposition 11.7]), we could employ the fundamental estimate derived
in [11] on the functionals {̂ 1

𝑘 } in (6.2); indeed, boundary data concern only the stiff part, cf. Remark 2.6. In the light of Corollary 3.9
we can adopt an alternative strategy.

Proof of Corollary 2.9. Since {(𝑦𝑘, 𝑃𝑘)} is a sequence of almost-minimizers, there exists 𝐶 such that 𝑘(𝑦𝑘, 𝑃𝑘) ≤ 𝐶. The 2-
growth condition from below, together with Proposition 3.4, provides a bound on ‖𝑦𝑘‖𝐿2 . By Lemma 4.1, there exists (𝑦, 𝑃 ) ∈
𝑊 1,2

0 (𝛺;R3) × 𝑊 1,𝑞(𝛺;𝐾) such that, up to subsequences, 𝑦𝑘 → 𝑦 in the sense of extensions and 𝑃𝑘 → 𝑃 uniformly. Theorem 2.7
ensures that

 (𝑦, 𝑃 ) ≤ lim inf
𝑘→+∞

𝑘(𝑦𝑘, 𝑃𝑘).

We now prove the existence of a recovery sequence meeting the boundary conditions. As suggested by Remark 2.6, we focus on
the stiff part. Let us consider again the functional ̂ 1

𝑘 in (6.2). Since the sequence {̂ 1
𝑘 } falls within the scopes of Theorem 3.8, for

any (𝑦, 𝑃 ) ∈ 𝑊 1,2
0 (𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾) Corollary 3.9 provides a sequence {(𝑢𝑘, 𝑃𝑘)} ⊂ 𝑊 1,2

0 (𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾) such that {∇𝑢𝑘} is
2-equiintegrable, (𝑢𝑘, 𝑃𝑘)

𝜏
→ (𝑦, 𝑃 ) and

lim sup ̂ 1
𝑘 (𝑢𝑘, 𝑃𝑘) ≤  1(𝑦, 𝑃 ).
𝑘→+∞
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By reasoning as in the proof of the upper bound in Theorem 2.7 we retrieve a sequence {𝑦𝑘, 𝑃𝑘} ∈ 𝑊 1,2
0 (𝛺;R3) ×𝑊 1,𝑞(𝛺;𝐾) such

that 𝑦𝑘 → 𝑦 in the sense of extensions, 𝑃𝑘 → 𝑃 uniformly and

lim sup
𝑘→+∞

𝑘(𝑦𝑘, 𝑃𝑘) ≤  (𝑦, 𝑃 ),

whence

lim sup
𝑘→+∞

(inf 𝑘) ≤ inf  .

Recalling that {(𝑦𝑘, 𝑃𝑘)} is a sequence of almost minimizers, we conclude

inf  ≤  (𝑦, 𝑃 ) ≤ lim inf
𝑘→+∞

𝑘(𝑦𝑘, 𝑃𝑘) = lim inf
𝑘→+∞

inf 𝑘 ≤ inf  ,

as desired. □

6.2. A non degenerate upper bound for the soft component

We proved in Section 5 that the limiting behavior of the soft inclusions is described by a degenerate functional. However, under
our assumptions, a non-degenerate upper bound may still be established, as we prove in the remainder. The argument follows [9],
where Cherdantsev & Cherednichenko derived the effective energy of high-contrast nonlinear elastic materials. Differently from us,
the 𝛤 -limit that they retrieve keeps track of both the macro- and the microscopic variable, and this roots in the choice of a stronger
notion of convergence. The drawback of such an approach is the lack of compactness for sequences with equibounded energy. It was
shown in [25, Example 2.12] that, when weaker topologies are considered, the quasiconvex envelope does not provide the correct
limiting energy density for the lower 𝛤 -limit.

We start by proving a more detailed version of Lemma 5.8.

Lemma 6.1 (cf. Lemma 22 in [9]). Let 𝑤 ∈ 𝐿2(𝛺;𝑊 1,2
0 (𝑄0;R3)) ∩ 𝐶2(𝛺 × 𝑄0;R3). Then, there exists a sequence {𝑤𝑘} ⊂

𝐿2(𝛺;𝑊 1,2
per (R3;R3)) such that ∇𝑧𝑤𝑘 → ∇𝑧𝑤 strongly in 𝐿2(𝛺 ×𝑄;R3×3). Besides, setting for 𝑥 ∈ 𝛺

𝑣𝑘(𝑥) ∶= 𝑤𝑘

(

𝑥, 𝑥
𝜀𝑘

)

, (6.5)

𝑣𝑘} converges strongly two-scale to 𝑤 in 𝐿2 and (5.15) holds.

roof. We extend 𝑤 by setting it equal to 0 on 𝑄 ⧵ 𝑄0, so as to obtain a function in 𝐿2(𝛺;𝑊 1,2
per (R3;R3)) which, by a slight abuse

of notation, we denote again by 𝑤.
Keeping in mind the definition of �̂�𝑘 (see (5.13)), for (�̄�, �̄�) ∈ 𝛺 × R3 we define 𝑤𝑘(�̄�, �̄�) in terms of the averages of 𝑤( ⋅ , �̄�) on

he cubes that form �̂�𝑘:

𝑤𝑘(�̄�, �̄�) ∶=

⎧

⎪

⎨

⎪

⎩

⨏𝜀𝑘(𝑡+𝑄)
𝑤(𝑥, �̄�) d𝑥 if �̄� ∈ 𝜀𝑘(𝑡 +𝑄) for some 𝑡 ∈ �̂�𝑘,

0 for any other �̄� ∈ 𝛺.
(6.6)

y definition, 𝑤𝑘( ⋅ , 𝑧) is piecewise constant for all 𝑧 ∈ �̄�. Moreover, for almost every 𝑥 ∈ 𝛺, 𝑤𝑘(𝑥, ⋅ ) is 𝑄-periodic as well as weakly
ifferentiable, and ∇𝑧𝑤𝑘 → ∇𝑧𝑤 strongly in 𝐿2(𝛺 ×𝑄;R3×3). Indeed, from (6.6) and Jensen’s inequality, we have that

∫𝛺 ∫𝑄
|

|

∇𝑧𝑤𝑘(𝑥, 𝑧) − ∇𝑧𝑤(𝑥, 𝑧)||
2 d𝑧 d𝑥

= ∫�̂�𝑘 ∫𝑄
|

|

∇𝑧𝑤𝑘(𝑥, 𝑧) − ∇𝑧𝑤(𝑥, 𝑧)||
2 d𝑧 d𝑥 + ∫𝛺⧵�̂�𝑘

∫𝑄
|

|

∇𝑧𝑤(𝑥, 𝑧)||
2 d𝑧 d𝑥

=
∑

𝑡∈�̂�𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄

|

|

∇𝑧𝑤𝑘(𝑥, 𝑧) − ∇𝑧𝑤(𝑥, 𝑧)||
2 d𝑧 d𝑥 + 𝑜(1)

≤
∑

𝑡∈�̂�𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄 ⨏𝜀𝑘(𝑡+𝑄)

|

|

|

∇𝑧𝑤(𝜉, 𝑧) − ∇𝑧𝑤
(

𝑥, 𝑧
)

|

|

|

2 d𝜉 d𝑧 d𝑥 + 𝑜(1),

and the last term is infinitesimal for 𝑘 → +∞ (recall that 𝑤 ∈ 𝐶2 and the mean value theorem applies).
We now turn to the functions 𝑣𝑘 given by (6.5). First of all we point out that, thanks to the regularity of 𝑤, 𝑣𝑘 is measurable

because it is 𝐶2 in the second argument (see [33, Section 5]), and vanishes on 𝛺1
𝑘. Besides, it belongs to 𝑊 1,2

0 (𝛺0
𝑘;R

3). Second, we
show that {𝑣𝑘} converges weakly two-scale to 𝑤 in 𝐿2. To this aim, let us fix 𝜙 ∈ 𝐶(�̄�;𝐶per (R3;R3)). We find

∫𝛺
𝑣𝑘(𝑥) ⋅ 𝜙

(

𝑥, 𝑥
𝜀𝑘

)

d𝑥 = ∫𝛺0
𝑘

𝑤𝑘

(

𝑥, 𝑥
𝜀𝑘

)

⋅ 𝜙
(

𝑥, 𝑥
𝜀𝑘

)

d𝑥

=
∑

∫ 0
𝑤𝑘

(

𝑥, 𝑥
𝜀

)

⋅ 𝜙
(

𝑥, 𝑥
𝜀

)

d𝑥

𝑡∈𝑇𝑘 𝜀𝑘(𝑡+𝑄 ) 𝑘 𝑘
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= 𝜀3𝑘
∑

𝑡∈𝑇𝑘
∫𝑄0

𝑤𝑘
(

𝜀𝑘(𝑡 + 𝑧), 𝑧
)

⋅ 𝜙
(

𝜀𝑘(𝑡 + 𝑧), 𝑧
)

d𝑧

=
∑

𝑡∈�̂�𝑘
∫𝑄0 ∫𝜀𝑘(𝑡+𝑄)

𝑤(𝑥, 𝑧) ⋅ 𝜙
(

𝜀𝑘(𝑡 + 𝑧), 𝑧
)

d𝑥 d𝑧

= ∫�̂�𝑘 ∫𝑄0
𝑤(𝑥, 𝑧) ⋅ 𝜙𝑘(𝑥, 𝑧) d𝑧 d𝑥,

here 𝜙𝑘(𝑥, 𝑧) ∶= 𝜙(𝜀𝑘(𝑡 + 𝑧), 𝑧) if 𝑥 ∈ 𝜀𝑘(𝑡 +𝑄) with 𝑡 ∈ �̂�𝑘. By the dominated convergence theorem, we infer

lim
𝑘→+∞∫𝛺

𝑣𝑘(𝑥) ⋅ 𝜙
(

𝑥, 𝑥
𝜀𝑘

)

d𝑥 = ∫𝛺 ∫𝑄0
𝑤(𝑥, 𝑧) ⋅ 𝜙(𝑥, 𝑧) d𝑧 d𝑥,

that is, 𝑣𝑘
2
⇀ 𝑤 weakly two-scale in 𝐿2 (recall that 𝑤(𝑥, 𝑧) = 0 if 𝑧 ∈ 𝑄1).

In order to prove that strong two-scale convergence actually holds, we study the limiting behavior of the 𝐿2 norm of {𝑣𝑘}. On
the one hand, the weak two-scale convergence yields

‖𝑤‖𝐿2(𝛺×𝑄) ≤ lim inf
𝑘→+∞

‖𝑣𝑘‖𝐿2(𝛺). (6.7)

On the other hand, from the properties of {𝑤𝑘} and a change of variables we have the identities

∫𝛺
|𝑣𝑘(𝑥)|

2 d𝑥 = ∫𝛺0
𝑘

|

|

|

|

|

𝑤𝑘

(

𝑥, 𝑥
𝜀𝑘

)

|

|

|

|

|

2

d𝑥 =
∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄0)

|

|

|

|

|

𝑤𝑘

(

𝑥, 𝑥
𝜀𝑘

)

|

|

|

|

|

2

d𝑥

=
∑

𝑡∈𝑇𝑘

𝜀3𝑘 ∫𝑄0

|

|

|

𝑤𝑘
(

𝜀𝑘(𝑡 + 𝑧), 𝑧
)

|

|

|

2
d𝑧 =

∑

𝑡∈�̂�𝑘

𝜀3𝑘 ∫𝑄0

|

|

|

|

|

⨏𝜀𝑘(𝑡+𝑄)
𝑤(𝑥, 𝑧) d𝑥

|

|

|

|

|

2

d𝑧.

hanks to Jensen’s inequality we deduce

∫𝛺
|

|

𝑣𝑘(𝑥)||
2 d𝑥 ≤

∑

𝑡∈�̂�𝑘

𝜀3𝑘 ∫𝑄0 ⨏𝜀𝑘(𝑡+𝑄)
|𝑤(𝑥, 𝑧)|2 d𝑥 d𝑧 = ∫𝑄0 ∫�̂�𝑘

|𝑤(𝑥, 𝑧)|2 d𝑥 d𝑧.

his, combined with (6.7), ensures that

lim
𝑘→+∞

‖𝑣𝑘‖𝐿2(𝛺) = ‖𝑤‖𝐿2(𝛺×𝑄).

n view of Definition 3.5 the conclusion is achieved.
Finally, the strong convergence (5.15) follows by observing that, if 𝑥 ∈ 𝜀𝑘(𝑡 +𝑄), it holds that

∇𝑧�̂�𝑘(𝑥, 𝑧) = ∇𝑧𝑤𝑘
(

𝜀𝑘(𝑡 + 𝑧), 𝑧
)

. □

We are now in a position to prove a non-degenerate upper 𝛤 -limit inequality that is the counterpart of the one in Proposition 5.7
nder the current stronger convergence assumptions.

roposition 6.2. Let {𝑊 0
𝑘 }𝑘 satisfy assumptions E3–E5. For any (𝑤, 𝑃 ) ∈ 𝐿2(𝛺;𝑊 1,2

0 (𝑄0;R3)) ×𝑊 1,𝑞(𝛺; 𝖲𝖫(3)). there exists a sequence
𝑣𝑘} ⊂ 𝑊

1,2
0 (𝛺0

𝑘;R
3) such that:

(1) 𝑣𝑘
2
→ 𝑤 strongly two-scale in 𝐿2;

(2) 𝜀𝑘∇𝑣𝑘
2
⇀ ∇𝑧𝑤 weakly two-scale in 𝐿2;

(3) whenever 𝑃𝑘 → 𝑃 uniformly, it holds that

lim sup
𝑘→+∞ ∫𝛺

𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣𝑘(𝑥)𝑃−1
𝑘 (𝑥)

)

d𝑥 ≤ ∫𝛺 ∫𝑄0
′𝑊 0(∇𝑧𝑤(𝑥, 𝑧), 𝑃−1(𝑥)

)

d𝑧 d𝑥,

where ′𝑊 0 is given by (2.8).

The conclusion is not a straightforward consequence of Lemma 6.1, because along the sequence {𝑣𝑘} in (6.5) we would not end
p with the correct limiting energy density. Therefore, the actual recovery sequence is obtained by adding a ‘‘correction’’ to 𝑣𝑘.

roof of Proposition 6.2. The proof consists of several steps. At first, to circumvent measurability issues, it is convenient to consider
sufficiently regular 𝑤. Under such assumption, we are able to construct a recovery sequence of the form 𝑣𝑘 = �̃�𝑘 + �̃�𝑘, where {�̃�𝑘}

s provided by Lemma 6.1 and {�̃�𝑘} allows to pass from the densities 𝑊 0
𝑘 to ′𝑊 0

𝑘 . The definition of �̃�𝑘 is given in Step 1, while
tep 2 deals with the upper limit inequality in the regular case. The general statement is eventually retrieved by approximation.

tep 1: construction of �̃�𝑘 for a regular 𝑤
Let us assume that 𝑤 ∈ 𝐿2(𝛺;𝑊 1,2

0 (𝑄0;R3)) ∩𝐶2(𝛺 ×𝑄0;R3). We consider a cover of 𝑄0 made of cubes whose edge length is 𝜀𝑘.
We set �̂�𝑘 ∶= {𝑠 ∈ Z3 ∶ 𝜀𝑘(𝑠 +𝑄) ⊂ 𝑄0} and, for all (𝑡, 𝑠) ∈ �̂�𝑘 × �̂�𝑘, we introduce the averages

𝐴𝑘(𝑡, 𝑠) ∶= ∇𝑧𝑤(𝑥, 𝑧) d𝑧 d𝑥 (6.8)
⨏𝜀𝑘(𝑡+𝑄) ⨏𝜀𝑘(𝑠+𝑄)
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and the piecewise constant functions

𝐴𝑘(𝑥, 𝑧) ∶=

{

𝐴𝑘(𝑡, 𝑠) if (𝑥, 𝑧) ∈ 𝜀𝑘(𝑡 +𝑄) × 𝜀𝑘(𝑠 +𝑄), (𝑡, 𝑠) ∈ �̂�𝑘 × �̂�𝑘,
0 otherwise.

We record here for later use that, by means of Lebesgue differentiation and dominated convergence theorems, it follows

lim
𝑘→+∞

‖𝐴𝑘 − ∇𝑧𝑤‖2𝐿2(𝛺×𝑄)

= lim
𝑘→+∞

∑

𝑡∈�̂�𝑘

∑

𝑠∈�̂�𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝜀𝑘(𝑠+𝑄)

|

|

𝐴𝑘(𝑡, 𝑠) − ∇𝑧𝑤(𝑥, 𝑧)||
2 d𝑧 d𝑥

= 0.

(6.9)

By the definition of ′𝑊 0
𝑘 , for all 𝑘 ∈ N there exists 𝜓𝑘 ∈ 𝑊 1,2

0 (𝑄;R3) such that

∫𝑄
𝜒0(𝑧)𝑊 0

𝑘

(

(

𝐴𝑘(𝑡, 𝑠) + ∇𝜓𝑘(𝑧)
)

𝑃−1
𝑘 (𝑥)

)

d𝑧 ≤ ′𝑊 0
𝑘
(

𝐴𝑘(𝑡, 𝑠), 𝑃−1(𝑥)
)

+ 1
𝑘
. (6.10)

ote that, due to the smoothness of 𝑤, the averages 𝐴𝑘 are bounded uniformly in 𝑘, 𝑡 and 𝑠. In the light of Lemma 5.1, the values
′𝑊 0

𝑘
(

𝐴𝑘(𝑡, 𝑠), 𝑃−1(𝑥)
)

are uniformly bounded as well. Therefore, by combining (6.10) with assumption E3, we deduce that {𝜓𝑘} is
bounded in 𝑊 1,2

0 (𝑄;R3).
A change of variables in (6.10) yields

∫𝜀𝑘(𝑠+𝑄)
𝜒0

(

𝑧
𝜀𝑘

− 𝑠
)

𝑊 0
𝑘

((

𝐴𝑘(𝑡, 𝑠) + ∇𝜓𝑘

(

𝑧
𝜀𝑘

− 𝑠
))

𝑃−1(𝑥)
)

d𝑧 ≤ 𝜀3𝑘
(

′𝑊 0
𝑘
(

𝐴𝑘(𝑡, 𝑠), 𝑃−1(𝑥)
)

+ 1
𝑘

)

, (6.11)

and that suggests us to introduce the functions

�̃�𝑘(𝑥, 𝑧) ∶=

⎧

⎪

⎨

⎪

⎩

𝜀𝑘𝜓𝑘

(

𝑧
𝜀𝑘

− 𝑠
)

if (𝑥, 𝑧) ∈ 𝜀𝑘(𝑡 +𝑄) × 𝜀𝑘(𝑠 +𝑄), (𝑡, 𝑠) ∈ �̂�𝑘 × �̂�𝑘,

0 otherwise.

Note that, for each 𝑘 and 𝑥 ∈ 𝛺, �̃�𝑘(𝑥, ⋅ ) admits a weak derivative with respect to 𝑧; thus, by summing over (𝑡, 𝑠) ∈ �̂�𝑘 × �̂�𝑘, from
(6.11) we may write

∑

(𝑡,𝑠)∈�̂�𝑘×�̂�𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝜀𝑘(𝑠+𝑄)

𝜒0
(

𝑧
𝜀𝑘

− 𝑠
)

𝑊 0
𝑘

(

(

𝐴𝑘(𝑥, 𝑧) + ∇𝑧�̃�𝑘(𝑥, 𝑧)
)

𝑃−1(𝑥)
)

d𝑧 d𝑥

≤
∑

(𝑡,𝑠)∈�̂�𝑘×�̂�𝑘
∫𝜀𝑘(𝑡+𝑄)

𝜀3𝑘
(

′𝑊 0
𝑘
(

𝐴𝑘(𝑡, 𝑠), 𝑃−1
𝑘 (𝑥)

)

+ 1
𝑘

)

d𝑥.

(6.12)

We also observe that, since {𝜓𝑘} is bounded, �̃�𝑘 → 0 strongly in 𝐿2(𝛺×𝑄;R3). Then, given that {∇𝑧�̃�} is bounded 𝐿2(𝛺×𝑄;R3×3),
it must converge weakly in 𝐿2 to 0. It follows that, if 𝑤𝑘 is as in Lemma 6.1 and if (𝑥, 𝑧) ∈ 𝜀𝑘(𝑡+𝑄) × 𝜀𝑘(𝑠+𝑄) with (𝑡, 𝑠) ∈ �̂�𝑘 × �̂�𝑘,

∇𝑧(𝑤𝑘 + �̃�𝑘) ⇀ ∇𝑧𝑤 weakly in 𝐿2(𝛺 ×𝑄;R3×3). (6.13)

We further notice that

�̃�𝑘(𝑥) ∶= �̃�𝑘

(

𝑥, 𝑥
𝜀𝑘

)

=
∑

(𝑡,𝑠)∈�̂�𝑘×�̂�𝑘

𝜀𝑘𝜓𝑘

(

𝑥
𝜀2𝑘

− 𝑠

)

𝜒𝜀𝑘(𝑡+𝑄)(𝑥)𝜒𝜀𝑘(𝑠+𝑄)

(

𝑥
𝜀𝑘

)

is a measurable function. A quick application of the definition of weak derivative proves also that �̃�𝑘 belongs to 𝑊 1,2
0 (𝛺0

𝑘;R
3).

Step 2: 𝑤 regular
We now turn to the proof of the limsup inequality along the sequence {𝑣𝑘} defined as

𝑣𝑘 ∶= �̃�𝑘 + �̃�𝑘, (6.14)

here

�̃�𝑘(𝑥) ∶= 𝑤𝑘

(

𝑥, 𝑥
𝜀𝑘

)

ith 𝑤𝑘 as in Lemma 6.1, and where {�̃�𝑘} was introduced in Step 1. We have

�̂�𝑘(𝑥, 𝑧) ∶= 𝖲𝑘𝑣𝑘(𝑥, 𝑧) = 𝑤𝑘

(

𝜀𝑘

⌊

𝑥
𝜀𝑘

⌋

+ 𝜀𝑘𝑧, 𝑧
)

+ �̃�𝑘

(

𝜀𝑘

⌊

𝑥
𝜀𝑘

⌋

+ 𝜀𝑘𝑧, 𝑧
)

,

o that if (𝑥, 𝑧) ∈ 𝜀𝑘(𝑡 +𝑄) × 𝜀𝑘(𝑠 +𝑄)

∇𝑧�̂�𝑘(𝑥, 𝑧) = ∇𝑧𝑤𝑘
(

𝜀𝑘(𝑡 + 𝑧), 𝑧
)

+ ∇𝜓𝑘

(

𝑧 − 𝑠
)

. (6.15)

𝜀𝑘
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Taking into account (6.13), (6.15) and Lemma 3.7(1), it follows that

𝜀𝑘∇𝑣𝑘
2
⇀ ∇𝑧𝑤 weakly two-scale in 𝐿2.

Recalling Lemma 5.5, we have that

lim sup
𝑘→+∞ ∫𝛺

𝜒0
𝑘 (𝑥)𝑊

0
𝑘
(

𝜀𝑘∇𝑣𝑘(𝑥)𝑃−1
𝑘 (𝑥)

)

d𝑥 = lim sup
𝑘→+∞

∑

𝑡∈𝑇𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝑄0

𝑊 0
𝑘
(

∇𝑧�̂�𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥

= lim sup
𝑘→+∞

𝐼𝑘,

here

𝐼𝑘 ∶=
∑

(𝑡,𝑠)∈�̂�𝑘×�̂�𝑘
∫𝜀𝑘(𝑡+𝑄) ∫𝜀𝑘(𝑠+𝑄)

𝑊 0
𝑘
(

∇𝑧�̂�𝑘(𝑥, 𝑧)𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥.

ndeed, �̂�𝑘 vanishes if 𝑥 ∈ 𝛺 ⧵ �̂�𝑘 or if 𝑧 ∈ 𝑄0 ⧵ ∪{𝜀𝑘(𝑠 + 𝑄) ∶ 𝑠 ∈ �̂�𝑘}, and the sequence {𝑊 0
𝑘 (0)} is bounded by virtue of E3.

Therefore, since the measure of 𝛺 ⧵ �̂�𝑘 and of 𝑄0 ⧵ ∪{𝜀𝑘(𝑠 +𝑄) ∶ 𝑠 ∈ �̂�𝑘} vanish for 𝑘 → +∞, the second equality holds.
Being the value of ∇𝑧�̂�𝑘 (𝑥, 𝑧) expressed by formula (6.15), we introduce

𝐼 ′𝑘 ∶=
∑

𝑡,𝑠 ∫𝜀𝑘(𝑡+𝑄) ∫𝜀𝑘(𝑠+𝑄)
𝑊 0
𝑘

((

𝐴𝑘(𝑡, 𝑠) + ∇𝜓𝑘

(

𝑧
𝜀𝑘

− 𝑠
))

𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥,

here the summation runs over �̂�𝑘 × �̂�𝑘. By exploiting assumption E4 and Hölder’s inequality, we obtain the estimate

|

|

|

𝐼𝑘 − 𝐼 ′𝑘
|

|

|

≤ 𝑐
∑

𝑡,𝑠 ∫𝜀𝑘(𝑡+𝑄) ∫𝜀𝑘(𝑠+𝑄)

|

|

|

|

(

∇𝑧𝑤𝑘
(

𝜀𝑘(𝑡 + 𝑧), 𝑧
)

− 𝐴𝑘(𝑡, 𝑠)
)

𝑃−1
𝑘 (𝑥)

|

|

|

|

2
d𝑧 d𝑥.

n view of Lemma 6.1 and (6.9) we deduce

lim
𝑘→+∞

|

|

|

𝐼𝑘 − 𝐼 ′𝑘
|

|

|

= 0. (6.16)

Next, let us set

𝐼 ′′𝑘 ∶= ∫�̂�𝑘 ∫𝑄0
′𝑊 0

𝑘
(

𝐴𝑘(𝑥, 𝑧), 𝑃−1
𝑘 (𝑥)

)

d𝑧 d𝑥.

ccording to (6.12), the difference between the integrands of 𝐼 ′𝑘 and 𝐼 ′′𝑘 is of order 𝑘−1:

lim
𝑘→+∞

|

|

|

𝐼 ′𝑘 − 𝐼
′′
𝑘
|

|

|

= 0. (6.17)

Finally, we compare 𝐼 ′′𝑘 and the limiting functional. We have

|

|

|

|

|

𝐼 ′′𝑘 − ∫𝛺 ∫𝑄0
′𝑊 0(∇𝑧𝑤(𝑥, 𝑧), 𝑃−1(𝑥)

)

d𝑧 d𝑥
|

|

|

|

|

≤ ∫�̂�𝑘 ∫𝑄0

|

|

|

′𝑊 0
𝑘
(

𝐴𝑘(𝑥, 𝑧), 𝑃−1
𝑘 (𝑥)

)

−′𝑊 0
𝑘
(

∇𝑧𝑤(𝑥, 𝑧), 𝑃−1
𝑘 (𝑥)

)

|

|

|

d𝑧 d𝑥

+ ∫�̂�𝑘 ∫𝑄0

|

|

|

′𝑊 0
𝑘
(

∇𝑧𝑤(𝑥, 𝑧), 𝑃−1
𝑘 (𝑥)

)

−′𝑊 0
𝑘
(

∇𝑧𝑤(𝑥, 𝑧), 𝑃−1(𝑥)
)

|

|

|

d𝑧 d𝑥

+ ∫�̂�𝑘 ∫𝑄0

|

|

|

′𝑊 0
𝑘
(

∇𝑧𝑤(𝑥, 𝑧), 𝑃−1(𝑥)
)

−′𝑊 0(∇𝑧𝑤(𝑥, 𝑧), 𝑃−1(𝑥)
)

|

|

|

d𝑧 d𝑥

+ ∫𝛺⧵�̂�𝑘
∫𝑄0

′𝑊 0(∇𝑧𝑤(𝑥, 𝑧), 𝑃−1(𝑥)
)

d𝑧 d𝑥.

ll the terms on the right-hand side vanish as 𝑘 → +∞. Indeed, by using the Lipschitz continuity of ′𝑊 0
𝑘 (see Lemma 5.1(1)) and

he uniform bound on {𝑃𝑘}, the first summand is controlled by the norm of 𝐴𝑘 − ∇𝑧𝑣, which, according to (6.9), is infinitesimal.
or what concerns the second term, Lemma 5.1(2) and the uniform convergence of {𝑃𝑘} imply that the integrand is infinitesimal
or 𝑘 → +∞. The third quantity vanishes because {′𝑊 0

𝑘 } pointwise converges to ′𝑊 0 (recall that they are just variants of the
uasiconvex envelopes). Lastly, the fourth summand is negligible since 3(𝛺 ⧵ �̂�𝑘) tends to 0.

On the whole, taking into account (6.16) and (6.17), we conclude

lim
𝑘→+∞

𝐼𝑘 = ∫𝛺 ∫𝑄0
′𝑊 0(∇𝑧𝑤(𝑥, 𝑧), 𝑃−1(𝑥)

)

d𝑧 d𝑥.

tep 3: 𝑤 generic
The argument follows the one of Case 2 in the proof of Proposition 5.7. □
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6.3. A variant with plastic dissipation

With a view to applying Theorem 2.7 to time-dependent problems, it is useful to modify the functionals 𝜀 by adding a
term that encodes the plastic dissipation mechanism of the system. Precisely, we take into account the non-symmetric distance
𝐷∶R3×3 × R3×3 → [0,+∞] in (3.9) and we define the dissipation between 𝑃0, 𝑃1 ∶𝛺 → 𝖲𝖫(3) as

(𝑃0;𝑃1) ∶= ∫𝛺
𝐷(𝑃0, 𝑃1) d𝑥.

From a physical viewpoint, if 𝑃0, 𝑃1 ∶𝛺 → 𝖲𝖫(3) are admissible plastic strains, (𝑃0, 𝑃1) is interpreted as the minimum amount of
energy that is dissipated when the system moves from a plastic configuration to another. Then, assuming that 𝑃 ∈ 𝑊 1,𝑞(𝛺; 𝖲𝖫(3))
represents a pre-existent plastic strain of the body, we set

 diss
𝜀 (𝑦, 𝑃 ) ∶= 𝜀(𝑦, 𝑃 ) +(𝑃 ;𝑃 ) + ‖∇𝑃‖𝑞

𝐿𝑞 (𝛺;R3×3×3)
. (6.18)

In the same spirit of (2.9) and (2.10), we distinguish between the dissipation of the inclusions and the one of the matrix, respectively

0
𝜀(𝑃 ;𝑃 ) ∶= ∫𝛺

𝜒0
𝜀 (𝑥)𝐷(𝑃 , 𝑃 ) d𝑥, 1

𝜀(𝑃 ;𝑃 ) ∶= ∫𝛺
𝜒1
𝜀 (𝑥)𝐷(𝑃 , 𝑃 ) d𝑥.

For what concerns the compactness of sequences with equibounded energy, we notice that the presence of the dissipation  does
ot affect Lemma 4.1: the same conclusions hold if the bound on 𝑘(𝑦𝑘, 𝑃𝑘) is replaced by a bound on  diss

𝑘 (𝑦𝑘, 𝑃𝑘).
Also our 𝛤 -convergence results easily extend to the family { diss

𝜀 }. The dissipation is indeed a continuous perturbation:

emma 6.3. Let 𝑃 , 𝑃 ∈ 𝐶(𝛺;𝐾) be given. If {𝑃𝑘} ⊂ 𝐶(𝛺;𝐾) converges uniformly to 𝑃 , then

lim
𝑘→+∞

𝑖
𝑘(𝑃 ;𝑃𝑘) = 3(𝑄𝑖)(𝑃 ;𝑃 ) for 𝑖 = 0, 1.

roof. We first observe that if 𝑃𝑘 → 𝑃 pointwise, then

𝐷
(

𝑃𝑘(𝑥), 𝑃 (𝑥)
)

→ 0, 𝐷
(

𝑃 (𝑥), 𝑃𝑘(𝑥)
)

→ 0. (6.19)

o see this, let 𝛾 be such that for all (𝑡, 𝐹 , 𝐺) ∈ [0, 1]×𝖲𝖫(3)×𝖲𝖫(3), 𝛾(𝑡, 𝐹 , 𝐺) is the evaluation at 𝑡 of the unique minimizing geodesic
connecting 𝐹 and 𝐺, cf. Lemma 3.10. Then, by (3.9) and the definition of 𝛾,

𝐷
(

𝑃𝑘(𝑥), 𝑃 (𝑥)
)

= ∫

1

0
𝛥
(

𝛾
(

𝑡, 𝑃𝑘(𝑥), 𝑃 (𝑥)
)

, �̇�
(

𝑡, 𝑃𝑘(𝑥), 𝑃 (𝑥)
)

)

d𝑡

≤ 𝑐 ∫

1

0
|�̇�
(

𝑡, 𝑃𝑘(𝑥), 𝑃 (𝑥)
)

| d𝑡,

where the inequality follows from the definition of 𝛥 in (2.4) and (3.8). Since �̇� is continuous and bounded, by dominated
convergence we deduce that the last term vanishes as 𝑘→ +∞. In a similar fashion, we show that 𝐷(𝑃 , 𝑃𝑘) → 0 as well.

As second step, we notice that

𝐷
(

𝑃 (𝑥), 𝑃𝑘(𝑥)
)

→ 𝐷
(

𝑃 (𝑥), 𝑃 (𝑥)
)

. (6.20)

Indeed, the triangular inequality yields

𝐷
(

𝑃 (𝑥), 𝑃 (𝑥)
)

−𝐷
(

𝑃𝑘(𝑥), 𝑃 (𝑥)
)

≤ 𝐷
(

𝑃 (𝑥), 𝑃𝑘(𝑥)
)

≤ 𝐷
(

𝑃 (𝑥), 𝑃 (𝑥)
)

+𝐷
(

𝑃 (𝑥), 𝑃𝑘(𝑥)
)

,

and the assertion follows as a consequence of (6.19).
Finally, we observe that (6.20) grants that

lim
𝑘→+∞

𝑖
𝑘(𝑃 ;𝑃𝑘) = lim

𝑘→+∞∫𝛺
𝜒 𝑖𝑘(𝑥)𝐷

(

𝑃 (𝑥), 𝑃 (𝑥)
)

d𝑥,

and the conclusion is achieved by arguing as in Lemma 4.2. □
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