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Abstract: Despite various interventions in road safety work, fatal and severe road traffic accidents 
(RTAs) remain a significant challenge, leading to human suffering and economic costs. Understand-
ing the multicausal nature of RTAs, where multiple conditions and factors interact, is crucial for 
developing effective prevention measures in road safety work. This study investigates the multivar-
iate statistical analysis of co-occurring conditions in RTAs, focusing on single-vehicle accidents with 
single occupancy and personal injury on Austrian roads outside built-up areas from 2012 to 2019. 
The aim is to detect recurring combinations of accident-related variables, referred to as blackpatterns 
(BPs), using the Austrian RTA database. This study proposes Fisher’s exact test to estimate the rela-
tionship between an accident-related variable and fatal and severe RTAs  (severe casualties). In 
terms of pattern recognition, this study develops the maximum combination value (MCV) of acci-
dent-related variables, a procedure to search through all possible combinations of variables to find 
the one that has the highest frequency. The accident investigation proceeds with the application of 
pattern recognition methods, including binomial logistic regression and a newly developed method, 
the PATTERMAX method, created to accurately detect and analyse variable-specific BPs  in RTA 
data. Findings indicate significant BPs contributing to severe accidents. The combination of bino-
mial logistic regression and the PATTERMAX method appears to be a promising approach to inves-
tigate severe accidents, providing both insights into detailed variable combinations and their impact 
on accident severity. 

Keywords: accident analysis; statistical methods; road safety; pattern recognition; accident  
prevention 
 

1. Introduction 
1.1. Relevance and Problem Statement 

Road traffic accidents (RTAs) with personal injuries result in substantial material and 
immaterial costs. According to the Austrian Accident Cost Accounting from 2022, the eco-
nomic costs of a single fatal RTA are estimated at 4,801,407 Euros, with accidents resulting 
in severe injuries costing 593,479 Euros each [1]. Despite various interventions, fatal RTAs 
remain a significant challenge worldwide. Austria experienced a peak in fatal RTAs in 
1972, with 2948 fatalities. Since then, numerous safety interventions, such as speed limits 
and mandatory seatbelt use, have significantly reduced the number of fatal accidents [2]. 
However, Austria still ranks 11th in the EU with 47 traffic fatalities per million inhabitants 
in 2019 [3]. The Austrian Ministry of the Interior [4] identifies several major accident 
causes, including speeding, distraction, and priority violations. These causes are deter-
mined subjectively by police officers at the scene, leading to potential biases. Besides the 
definition of accident causes, road safety work also focuses on the identification of 
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accident blackspots. Blackspots are road sections where accidents frequently occur. Iden-
tifying these points is crucial for implementing targeted safety measures. However, going 
beyond the definition of a major accident cause and the identification of blackspots, this 
study aims to identify blackpatterns (BPs), which we define as recurring combinations of 
accident-related variables [5]. We conduct a detailed examination of recorded accident 
conditions, regardless of the officially designated accident cause. Understanding the mul-
ticausal nature of RTAs, where multiple conditions and factors interact, is crucial for de-
veloping effective prevention measures. This study addresses the gap in multivariate sta-
tistical investigation and pattern analysis approaches of RTAs, proposing that accidents 
are influenced by a complex interplay of driver, vehicle, roadway, and situational varia-
bles. Single-vehicle accidents involving a single occupant and personal injury were chosen 
for this study to eliminate the complexity introduced by interactions between multiple 
vehicles and drivers. By focusing solely on these incidents, we aim to isolate and analyse 
the factors contributing to severe outcomes without the confounding variables associated 
with vehicle-to-vehicle crashes. This approach allows for a more controlled examination 
of the conditions leading to personal injury, ensuring that this study captures the direct 
relationships between driver, vehicle, roadway, and environmental factors without exter-
nal influences from other traffic participants. It is also important to note that the PATTER-
MAX method proposed in this paper has already been rigorously compared with other 
pattern recognition techniques in previous research. In [5], PATTERMAX was systemati-
cally evaluated against Bayesian networks, decision trees, and logistic regression in terms 
of its ability to identify complex multivariate accident patterns. The results of that analysis 
demonstrated that PATTERMAX excels in detecting high-dimensional, non-linear inter-
actions between accident-related variables, making it particularly suited for the analysis 
of road traffic accidents. Given that this validation has already been carried out, the cur-
rent study focuses on applying PATTERMAX to the specific context of single-vehicle acci-
dents rather than revalidating it. Future work may further expand the scope by applying 
the method to different accident types and datasets. 

1.2. Literature Review 
RTAs are a significant public health concern, influenced by a complex interplay of 

factors. Various studies emphasise the need for a multidimensional approach to under-
stand and prevent RTAs. One such study reviewed various data sources and techniques 
for accident analysis, emphasising the benefits of combining multiple analytical methods 
[6]. Another study employed system dynamics to model the complexity of RTAs, high-
lighting the importance of considering non-linear interactions between variables [7]. A 
multidimensional and multi-period analysis of road safety, incorporating various criteria 
such as human factors, accident causes, and road characteristics, was proposed in previ-
ous research [8]. The multifactorial nature of accidents involving human, vehicular, and 
environmental elements has also been reviewed in several studies [9]. Furthermore, black 
spot identification methods that couple statistical analysis with accident severity indices 
have been discussed as a more reliable approach for road safety assessments [10]. Tradi-
tional methods, such as generalized logistic regression and classification trees, have been 
widely used to identify combinations of factors leading to fatal accidents [11]. Researchers 
have applied association rule mining to reveal complex interactions between human, ve-
hicle, road, and environmental factors in multi-fatality crashes [12]. A novel matched 
crash vs. non-crash approach for analysing severe crash patterns on multilane highways 
has also been introduced [13]. Logistic regression models have been developed to estimate 
fatality and major injury probabilities in single-vehicle accidents, with the major injury 
model showing better explanatory power [14]. More recent advancements in machine 
learning have introduced techniques that enhance the precision and scope of RTA analy-
sis. Machine learning methods such as random forests, support vector machines (SVM), 
and deep learning models are now being applied to traffic accident data to capture non-
linear and complex relationships between variables. For instance, random forests have 
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proven effective for accident severity prediction by leveraging ensemble learning, which 
boosts accuracy by combining multiple decision trees [14]. Similarly, SVMs have been use-
ful for classifying accident severity outcomes by optimizing the margin between different 
classes for improved classification accuracy [15]. Deep learning approaches, such as neu-
ral networks, have shown promise in real-time prediction of accident severity and in iden-
tifying complex patterns that are less apparent through traditional methods [16]. In addi-
tion, unsupervised learning methods, like clustering and dimensionality reduction tech-
niques, including principal component analysis (PCA), are being increasingly used to ex-
plore latent structures within complex accident datasets [17]. These methods complement 
traditional approaches and provide a more detailed understanding of accident dynamics, 
enabling better accident prediction and risk factor identification. When analysing RTA 
data, one of the key objectives is to quantify the influence of accident-related variables on 
the severity of injuries. Several studies have identified factors that influence both accident 
severity and frequency. Critical factors such as collision type, road configuration, vehicle 
type, driver characteristics, and environmental conditions have been highlighted in re-
search [15,16]. Specifically, motorcycles, male drivers, elderly drivers, nighttime driving, 
high-speed roads, and unlit roads have been pointed out as significant risk factors associ-
ated with higher accident severity [16]. Furthermore, studies have examined the relation-
ship between safety devices and injury outcomes. For instance, safety devices, narrow im-
pact zones, ejection, airbag deployment, and higher speeds have been strongly correlated 
with more severe injuries [17]. Additional research has emphasised the critical role of air-
bag deployment, vehicle extrication, ejection, travel speed, and alcohol involvement in 
determining injury severity [18,19]. Multiple driver errors have also been shown to result 
in more severe crashes [20]. Moreover, factors such as environmental conditions, vehicle 
type, protective devices, and time of day significantly impact accident severity, as dis-
cussed in other studies [21,22]. Understanding these variables is crucial for conducting 
exploratory data analyses and developing effective road safety measures. These insights 
provide a solid foundation for identifying critical risk factors and implementing targeted 
interventions in traffic safety [23]. Further studies highlight the importance of comprehen-
sive data analysis in developing effective road safety strategies [10,24–26]. A systems ap-
proach focusing on the entire road transport system rather than just individual behaviour 
has been advocated by researchers [27]. The effectiveness of various interventions, includ-
ing educational, engineering, and multifaceted approaches, has been demonstrated in im-
proving pedestrian safety [28]. It has been found that legislation combined with strong 
enforcement or as part of a multifaceted approach is most effective in low- and middle-
income countries [29]. Moreover, the importance of awareness creation, strict implemen-
tation of traffic rules, and scientific engineering measures to prevent RTAs  has been 
stressed [30]. The dynamic interactions between various factors in analyzing RTAs and 
developing more effective safety measures underscore the necessity of comprehensive, 
multidimensional approaches to RTA prevention. 

1.3. Research Question and Scope 
RTAs remain a significant challenge, with single-vehicle accidents accounting for a 

substantial portion of fatalities in Europe [14]. Within the scope of a multidimensional 
approach to RTA analysis, this study investigates how multivariate and recurrent BPs in 
single-vehicle accidents can be identified, as well as their significance for severe and fatal 
accidents (referred to as severe casualties). This study aims to represent driver, vehicle, 
roadway, and situational variables and their correlations with accident severity using ad-
vanced statistical methods. Additionally, it identifies significant BPs among these varia-
bles. These patterns provide a deeper understanding of accident circumstances and high-
light potential areas for targeted safety interventions. By combining descriptive statistics, 
binomial logistic regression, and innovative methods like the PATTERMAX method, this 
study seeks to detect recurring patterns that contribute to severe accidents and evaluate 
their frequency and impact. This research is intended not only to improve road safety 
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measures but also to facilitate the development of more precise prevention strategies that 
target the most hazardous accident BPs. Therefore, this paper addresses the following re-
search question: How can multivariate and recurrent variable-specific blackpatterns (BPs) 
in single-vehicle, single-occupant road traffic accidents with personal injury be accurately 
identified and analysed, and what is their significance in mitigating severe and fatal acci-
dents? 

2. Methods 
Figure 1 illustrates the key steps in the methodological approach used in this study. 

It begins with data preparation focused on single-vehicle, single-occupant accidents, fol-
lowed by descriptive analyses using Fisher’s exact test and the phi coefficient to identify 
significant relationships between variables and accident severity. The maximum combi-
nation value (MCV) is then calculated to identify frequent co-occurrences of accident-re-
lated variables. Binomial logistic regression is applied to model the impact of these varia-
bles on severe casualties. Finally, the PATTERMAX method is employed to detect BPs, 
which are ranked using the blackpattern impact score (BIS) to prioritise high-risk combi-
nations for targeted road safety interventions. The following chapters present these meth-
odological steps in detail, providing a comprehensive explanation of each stage. 

 
Figure 1. Methodological flowchart. 

2.1. Data Preparation for Pattern Recognition 
Between 2012 and 2019, 303,700 RTAs   occurred on the Austrian road network. 

110,666 road accidents occurred outside built-up areas, while 193,034 accidents occurred 
within built-up areas. This study focuses on single-vehicle accidents with single occu-
pancy that occurred outside built-up areas between 2012 and 2019 (n = 20,293). The cho-
sen sample amounts to 7% of all RTAs with a personal injury in Austria between 2012–
2019 (n = 303,700). Within the period under review, 110,666 accidents with personal in-
jury occurred outside the built-up area, of which the extracted sample comprises 18%. The 
selection of these specific accidents allows for an analysis that is not confounded by the 
presence of multiple vehicles or individuals, which could otherwise complicate the al-
ready complex nature of road traffic accidents. By isolating these accidents, this study can 
more effectively identify and examine the underlying BPs and factors contributing to se-
vere outcomes, making this sample particularly valuable for targeted analysis. The data 
preparation involves creating a binary RTA database with over 150 accident-related vari-
ables. Figure 2 illustrates the extracted RTA data sample in relation to all recorded RTAs 
between 2012–2019 in Austria. 
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Figure 2. Development of road traffic accidents (RTAs) in Austria from 2012–2019. Own compilation 
based on RTA data from Statistics Austria. 

2.2. Accident-Related Variables 
After recoding all accident-related characteristics and setting up a binary accident 

database, the next step in data preparation foresees the assignment of each binary variable 
to one of the following categories: driver-related variables (54 variables), vehicle-related 
variables (32 variables), roadway-related variables (50 variables), and situation-related 
variables (22 variables). Table 1 illustrates the categorisation scheme for the 158 analysed 
accident-related variables. 

Table 1. Categorisation scheme for accident-related variables. 

Driver Vehicle Roadway Situation 
• Sex 
• Age Class 
• Driving licence 
• Impairment 
• Driving  
manoeuvres 
• Safety settings 

• Engine power 
• Kilometrage 
• Vehicle colour 
• Vehicle safety  
settings 

• Speed limits 
• Road  
characteristics 
• Traffic light 
• Road types 
• Road surface  
conditions 

• Daytime 
• Weekday 
• Meteorological 
seasons 
• Weather  
conditions 
• Light conditions 

We aim to quantify each accident-related variable’s impact on the degree of injury. 
Therefore, the dependent variable shall combine severe injury and fatalities within the 
category of severe casualties. Regarding the Austrian Road Safety Strategy 2021–2030 [31], 
it is equally important to reduce fatalities and the number of severe injuries. Also, both 
categories (severe and fatal accidents) entail high economic costs and human suffering. 
These premises lead to the following classification of the degree of injury: 
• Casualties: minor injury, severe injury, death at accident site, death within 30 days, 
• Severe casualties: severe injury, death at accident site, death within 30 days. 

Thus, the degree of injury comprises two categories within this study. The resulting 
dependent variable is severe casualties. This classification corresponds to the definition 
within the Handbook of Transportation System Planning [32] (p. 73). 
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2.3. Descriptive Analyses 
Initial analyses include calculating conditional and joint probabilities, applying 

Fisher’s exact test, and estimating the phi coefficient for each accident-related variable in 
relation to severe casualties, treating severe casualties as the dependent variable. A boot-
strap resampling method is used for robust parameter estimation, and a maximum com-
bination value (MCV) is calculated as a key indicator for BP detection. This value indicates 
how often a specific variable co-occurs with one or more accident-related variables. Each 
accident-related variable is broken down into a contingency table, where the rows repre-
sent the accident variable and the columns represent the outcomes: casualty and severe 
casualty. The frequency nij represents the number of occurrences where the accident var-
iable takes the value xi  and the outcome is either casualty or severe casualty, with severe 
casualty being treated as the dependent variable. The conditional probability P  of an 
event A given another event B is denoted as P = (A|B): 

P =  
P (A ∩ B)

P(B)
 (1) 

Here, P = (A ∩ B) is the joint probability of A and B, and P(B) is the probability of 
B. In the context of this analysis, A represents a specific accident variable, and B repre-
sents the outcome severe casualties. Fisher’s exact test calculates the exact probability of 
observing the distribution in the contingency table. This is particularly useful for small 
sample sizes or when examining the relationship between an accident variable and severe 
casualties. The phi coefficient is a measure of association between each accident-related 
variable and the outcome severe casualties. The probability P of observing this particular 
table is calculated using the hypergeometric distribution: 

P =  
�a+ba ��c+dc �
� n
a+c�

 (2) 

where 
�a+ba � is the binomial coefficient, calculated as (a+b)!

a!×b!
, 

�c+dc � is the binomial coefficient for the second row, 
� n
a+c� is the binomial coefficient for the total table, where n = a + c + b + d. 

As a next step, we apply Bootstrap resampling to estimate robust confidence intervals 
for the parameters. The 95% confidence intervals indicate that certain variables consist-
ently contribute to severe accidents, reinforcing the findings from the Fisher’s test. As a 
first step towards pattern recognition, we want to identify the MCV, which tells us how 
often a specific variable co-occurs with one or more accident-related variables. Let D =
 {D1, D2, … , Dn} be a dataset with n entries. Each entry Di consists of a set of binary var-
iables {x1, x2, … , xm} where each xj can be either 0 or 1. The goal is to find the combina-
tion of variables that maximizes the occurrence of a specific outcome, Y, which could be 
severe accidents, for instance. To define the combination of variables that includes xj, let 
C = �xj1, xj2, … , xjk�  be a combination of xj  with k  other variables, where xj1, xj2, … , xjk 
are selected from the full set x1, x2, … , xm. The frequency F(C) of each combination C is 
defined as the number of entries Di, where all variables in C take the value 1. 

F(C) =  � I(C, Di)
n

i=1

 (3) 

where the indicator I(C, Di) is defined as follows: 

I(C, Di) = �1  ifxj1 = 1, xj2 = 1, … , xjk = 1 in Di,
0  otherwise                                              

 (4) 

The MCV is the combination C∗ that includes xj and maximises the frequency F(C) 
in relation to a specific outcome Y = 1: 
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MCV =  max
C⊆{x1,x2,…,xm},xj∈C

F(C|Y = 1) (5) 

The MCV  approach involves searching through all possible combinations that in-
clude the specific variable xj, calculating the frequency with which these combinations 
occur when a specific outcome Y = 1 is observed, and identifying the combination with 
the highest frequency. The MCV method analyses how frequently a particular variable 
occurs in combination with one or more other variables, identifying the most common 
combination in which the variable appears. 

2.4. Binomial Logistic Regression 
This study employs several pattern recognition methods. To investigate to what ex-

tent accident-related variable affects the probability of severe casualties, we apply bino-
mial logistic regression, with severe casualties as the dependent variable. The logistic re-
gression model is crucial for understanding how different accident-related variables, such 
as speeding, alcohol use, or road conditions, contribute to the probability of severe casu-
alties. By examining these relationships, the model helps identify key factors that increase 
the risk of severe accidents. 

log �
P(Y = 1)
P(Y = 0)

� =β0 + β1X1 + β2X2 +⋯+ βkXk (6) 

where 
P(Y = 1) is the probability of the outcome being severe casualty, 
P(Y = 0) is the probability of the outcome being a non-severe casualty, 
log �P(Y=1)

P(Y=0)
� is the log-odds of the outcome occurring (severe casualties), 

β0 is the intercept term, representing the log-odds of severe casualties when all predictors 
X1, X2, … , Xk are zero, 
β1, β2, … , βk  are coefficients associated with each accident-related predictor variable, 
X1, X2, … , Xk. These coefficients indicate the strength and direction of the relationship be-
tween each variable and the likelihood of severe casualties. 

2.5. PATTERMAX Method 
The developed PATTERMAX method analyses the frequencies of variable combina-

tions (BPs) and examines their association strength with severe casualties. The RTA da-
taset D consists of n entries, where each entry is a sequence of x binary variables (0s and 
1s). We aim to calculate the frequency of each BP, i.e., each identical sequence of 0s and 
1s of length m in the dataset D. We define the BP of length m as a string of m binary 
variables, where BP =  (p1, p2, . . . , pm), with pi being either 0 or 1. To calculate the fre-
quency F(BP, D) of BP in the dataset D, we use the PATTERMAX method, which pro-
ceeds as follows: 

F(BP, D) = � � I(BP, Di[j: j + m]
x−m+1

j=1

n

i=1
) (7) 

where 
n is the number of entries in the dataset D, 
x is the number of binary variables in each entry, 
Di represents the i-th entry in the dataset D, 
j is the position in the entry Di where the BP is checked, 
I(BP, Di[j: j + m] is an indicator function that returns 1 if the substring BP exactly matches 
Di from position j to j + m − 1, and 0 otherwise. 

This formula describes the PATTERMAX method for calculating the frequency of 
the BP in the dataset D. To verify if the BP matches at a specific position, we iterate over 
each entry in the dataset, over all positions in the entry, and use the indicator function. 
The sum over all entries and positions returns the total frequency of BP  in D . After 
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identifying BPs using the PATTERMAX method, each generated BP is further examined 
using Fisher’s exact test to determine the p-value that quantifies the strength of the asso-
ciation between the BP  and severe casualties. pFisher(BP)  represents the p -value ob-
tained from Fisher’s exact test for BP. This step ensures that the BPs identified are not 
only frequent but also statistically significant in their relationship to severe accidents. 

2.6. Blackpattern Impact Analysis 
To calculate a blackpattern impact score (BIS ), we combine four components: fre-

quency of the BP �F(BP, D)�, the statistical association between the BP and severe cau-
salities (measured by (pFisher(BP)), the strength of this association (measured by the phi 
coefficient ϕ(BP)), and the logistic regression coefficients βi corresponding to the varia-
bles in BP. These components are integrated into a comprehensive BIS to prioritize the 
identified BPs. This approach enables a precise assessment of the BPs concerning severe 
accidents by considering both their frequency and the strength of their association with 
severe casualties, thereby identifying BPs that are both frequent and impactful. 

BIS(BP) = F(BP, D) × ϵ|ϕ(BP)| × �−log�pFisher(BP)�� × ��ϵβi
k

i=1

� (8) 

where 
βi represents the logistic regression coefficient for each variable Vi in the BP, 
F(BP, D) is the frequency of the BP, 
ϕ(BP) is the phi coefficient, which measures the strength of the association between the 
BP and the outcome, 
pFisher(BP) is the p-value from Fisher’s exact t est, indicating the statistical significance of 
the association between the BP and the outcome. 

To amplify the influence of highly significant BPs (with very small p-values), the 
negative logarithm of pFisher(BP) is used. The transformation �−log�pFisher(BP)�� con-
verts very small p-values into larger positive numbers. This ensures that BPs with strong 
statistical significance have a greater impact on the BIS. Both the logistic regression coeffi-
cients βi and the phi coefficient ϕ(BP) represent the strength of association. Small coeffi-
cients or ϕ -values might otherwise have a minimal effect on the BIS . The exponential 
transformation ϵβi  and ϵ|ϕ(P)| magnifies these values, particularly when they are small. 
This emphasizes the contribution of BPs where the variables have a stronger association 
with the outcome. 

The blackpattern impact analysis allows to identify BPs that are not only common 
and impactful but also statistically significant in their relationship with severe casualties. 
This approach provides a comprehensive and nuanced prioritization of BPs , ensuring 
that our analysis highlights the most relevant and meaningful BPs for further investiga-
tion or intervention. Table 2 illustrates the features of the blackpattern impact analysis that 
must be considered when interpreting the retrieved BIS. 

Table 2. Features of the blackpattern impact score (BIS). 

BIS Features Description 
High Frequency Blackpatterns that occur frequently in the dataset are prioritized. 
High Impact Blackpatterns with variables that have a strong influence on severe casualties are emphasized. 

Strong Association 
Blackpatterns that are statistically significant in their association with severe casualties are 
given higher priority. 
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3. Results 
3.1. Descriptive Analyses Results 

Descriptive statistics reveal the frequency and probability of each variable in severe 
and fatal accidents. Significant relationships between variables and accident severity are 
identified using Fisher’s exact test and the phi coefficient. Also, we generate the presented 
MCV. We conduct descriptive analyses for each variable within our defined categories (driver, 
vehicle, roadway, and situation). Detailed analysis results can be found in Appendix A. 

Figure 3 presents the retrieved phi coefficients between various driver-related varia-
bles and the dependent variable, severe casualties. The phi coefficient measures the 
strength and direction of association between binary variables. Positive values indicate a 
direct association, where the presence of the variable correlates with an increased likeli-
hood of severe casualties, while negative values indicate an inverse relationship. The fig-
ure’s colour gradient indicates the strength and direction of the correlation for each vari-
able with severe casualties, where red represents positive values and blue represents neg-
ative values. Driving in parallel shows the highest positive phi coefficient (0.604), indicat-
ing a strong positive correlation with severe casualties. This suggests that when drivers 
engage in this behaviour, the likelihood of severe accidents significantly increases. No 
safety belt applied (0.240) and male drivers (0.133) also exhibit notable positive associa-
tions with severe casualties, reinforcing well-established road safety insights that males 
and lack of seatbelt use are high-risk factors. Age-related factors, such as drivers aged 64 
and older (0.082), 45 to 54 years (0.046), and 55 to 64 years (0.044), also show moderate 
positive correlations with severe casualties, suggesting older age groups are more vulner-
able to severe outcomes in accidents. Other factors like hitting a tree (0.062) and fatigue 
(0.030) also display positive correlations, indicating that these environmental and driver-
related conditions contribute to more severe accident outcomes. In contrast, female driv-
ers (−0.133), drivers aged 19 to 24 years (−0.085), and those with a probationary driving 
license (−0.065) show negative correlations with severe casualties, indicating a lower like-
lihood of severe injuries for these groups compared to others. Risky behaviours such as 
speeding (−0.011) and hitting a stationary vehicle (−0.005) show slight negative correla-
tions, which may suggest that while these actions are dangerous, they are not as strongly 
associated with severe casualties in this dataset. 
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Figure 3. Phi coefficient of driver-related variables. 

Figure 4 presents the phi coefficients between various vehicle-related variables and 
the dependent variable, severe casualties. Higher engine power correlates positively with 
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severe casualties, as seen with vehicles having 110+ kW engine power (0.053) and 90–110 
kW engine power (0.039). This suggests that vehicles with more powerful engines are 
more likely to be involved in accidents resulting in severe injuries. Similarly, vehicle fire 
(0.035) shows a positive association. Interestingly, vehicle kilometrage between 150,000 to 
200,000 km (0.010) and 0–24 kW engine power (0.006) also present positive associations, 
suggesting that vehicles with higher mileage and very low engine power might also con-
tribute to accident severity. The variable airbag not deployed shows the most substantial 
negative correlation (−0.149), suggesting that in cases where the airbag does not deploy, 
the likelihood of severe casualties is lower. This does not mean that the absence of airbag 
deployment directly reduces the risk of injury; rather, it reflects the fact that airbags are 
typically designed to deploy only in high-impact crashes. In lower-impact accidents, 
where the airbag does not activate, the injuries tend to be less severe. Therefore, the neg-
ative correlation likely indicates that accidents where airbags are not deployed are gener-
ally less severe and thus less likely to result in severe casualties. This interpretation aligns 
with the purpose of airbags, which are activated in the most dangerous collisions to pre-
vent serious injury. Vehicles with 24–90 kW engine power (−0.066) and blue-coloured ve-
hicles (−0.021) also exhibit negative associations with severe casualties. Additionally, var-
iables like technical defects (−0.004), insufficient load securing (−0.008), and vehicle kilo-
metrage between 15,000 and 75,000 km (−0,010) present slight negative correlations, suggest-
ing a reduced risk of severe injuries in accidents involving vehicles with these characteristics. 

 
Figure 4. Phi coefficient of vehicle-related variables. 
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Figure 5 presents the phi coefficients between various roadway-related variables and 
the dependent variable, severe casualties. As before, the phi coefficient indicates the 
strength and direction of the association between the roadway conditions and the likeli-
hood of severe accidents. Positive values (red) suggest that the presence of a certain con-
dition increases the likelihood of severe casualties, while negative values (blue) indicate 
that the condition is inversely related to severe outcomes. Dry roads show the highest 
positive correlation with severe casualties (0.095), suggesting that accidents occurring on 
dry roads are more likely to result in severe injuries. This could be due to higher speeds 
and less cautious driving on dry roads. Similarly, straight roads (0.040) and other roads 
(0.037) exhibit positive correlations, potentially because drivers may underestimate the 
risks on straightforward routes or less-frequented roads. Infrastructure elements like gal-
leries (0.026), tunnels (0.022), and bridges (0.022) also show positive associations, indicat-
ing that these roadway types might pose a higher risk of severe accidents. Speed limits 
appear in both positive and negative associations, with the 100 km/h speed limit (0.019) 
showing a slight positive correlation, suggesting that accidents at this speed are more 
likely to be severe. In contrast, lower and higher speed limits, such as 60 km/h (−0.002), 
120 km/h (−0.004), and 130 km/h (−0.006), are negatively correlated, which could reflect 
more controlled or lower risk driving behaviours at these speeds. Wet roads (−0.270) and 
wintry conditions (−0.090) show the strongest negative correlations with severe casualties. 
This may be due to more cautious driving in adverse weather conditions, as drivers tend 
to reduce speed and drive more carefully in slippery conditions, leading to less severe 
accidents. Similarly, curves (−0.042) and middle separation (−0.019) display negative cor-
relations, suggesting that these road features may promote more cautious driving behav-
iour, thereby reducing the likelihood of severe accidents. Road types such as tunnels, 
bridges, and straight roads, along with dry conditions, seem to contribute more to severe 
outcomes, while adverse weather and curved roads tend to reduce the risk, possibly due to 
more cautious driving behaviours. These insights are valuable for road safety planning and 
interventions, as they suggest where targeted efforts can be made to reduce accident severity 
based on the road environment. 
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Figure 5. Phi coefficient of roadway-related variables. 
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Figure 6 shows the phi coefficients between situation-related variables and severe 
casualties. Positive phi values (red) suggest that certain conditions are associated with a 
higher likelihood of severe accidents, while negative values (blue) indicate an inverse re-
lationship. Clear or overcast weather (0.053) and the period 12 a.m. to 6 a.m. (0.051) exhibit 
the highest positive correlations, indicating that accidents occurring during these condi-
tions are more likely to result in severe casualties. This might be due to higher speeds 
during clear weather, as drivers feel more confident under such conditions. Similarly, the 
period from 6 p.m. to 12 a.m. (0.023) shows a moderate positive correlation, possibly re-
flecting increased accident severity during evening hours when visibility may decrease, 
but drivers may still be inclined to drive at high speeds. Seasonal factors such as summer 
(0.025) and autumn (0.023) also show mild positive correlations, suggesting that accidents 
during these times of the year are more likely to result in severe outcomes. This could be 
related to higher traffic volumes during vacation seasons or more frequent long-distance 
travel. Glare from the sun (0.010) contributes to a smaller positive correlation, which might 
be due to reduced visibility affecting driver reactions. On the other hand, winter (−0.580) 
shows the most significant negative correlation with severe casualties. This strong inverse 
relationship suggests that accidents occurring in winter conditions are less likely to result 
in severe injuries, likely due to slower driving speeds and increased caution on icy or 
snow-covered roads. Similarly, snow (−0.067) and rain (−0.019) show negative correla-
tions, which further supports the idea that adverse weather conditions encourage safer 
driving behaviour, leading to less severe accidents. Variables such as fog (−0.004), hail or 
freezing rain (−0.007), and limited visibility (−0.008) exhibit slight negative correlations, 
indicating that these conditions may reduce the risk of severe casualties. This might be 
because drivers are more cautious and reduce speed when faced with these challenging 
conditions. The analysis of situation-related variables suggests that clear weather and cer-
tain times of the day (e.g., nighttime) are more strongly associated with severe casualties, 
whereas winter conditions and precipitation tend to reduce the severity of accidents. 

 
Figure 6. Phi coefficient of situation-related variables. 
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3.2. Logistic Regression Analysis Results 
Binomial logistic regression shows the strength of relationships between accident-

related variables and severe accidents, identifying high-risk variables with significant 
odds ratios. The logistic regression analysis in Table 3 reveals several key variables that 
significantly increase the likelihood of severe RTAs. One of the most influential factors is 
the non-use of a safety belt, which has the highest odds ratio (exp(β) = 5.015) among the 
variables analysed, indicating that drivers not wearing a seatbelt are over five times more 
likely to be involved in a severe accident. Other critical factors include young drivers, par-
ticularly those aged 16 to 18, who have an odds ratio of 2.317, and those aged 19 to 24, 
with an odds ratio of 2.101, reflecting a significantly higher risk for these age groups. En-
vironmental and situational factors also play a substantial role. Driving during early 
morning hours (12 a.m. to 6 a.m.) increases the likelihood of severe accidents by 35.9% 
(exp(β) = 1.359), likely due to factors such as fatigue and reduced visibility. Road condi-
tions, such as driving on a wet road or under wintry conditions, also contribute to higher 
accident severity, with odds ratios of 1.261 and 1.462, respectively. The presence of specific 
road features like curves, intersections, and tunnels significantly increases the risk, with 
tunnels showing an odds ratio of 1.674 and curves 1.198, indicating these features are crit-
ical risk factors. Vehicle-related factors also influence the severity of accidents. Vehicles 
with engine power between 24 and 90 kW show a 19,2 % higher likelihood of severe acci-
dents, while certain actions like sudden braking or hitting an obstacle on the road increase 
the risk significantly, with odds ratios of 2,0 and 3.394, respectively. Interestingly, hitting 
a guardrail is associated with a lower likelihood of severe accidents, with an odds ratio of 
0.731, suggesting that this might serve as a mitigating factor under certain conditions. The 
analysis also highlights the significant impact of alcohol, which nearly doubles the likeli-
hood of severe accidents (exp(β) = 1.916), underscoring the critical danger posed by im-
paired driving. Additionally, vehicle-related variables like the colour green and the ab-
sence of airbag deployment are associated with higher risks, with odds ratios of 1.317 and 
2.233, respectively. 

Table 3. Logistic regression analysis results. 

Variable Regression Coefficient β Standard Error SEM p exp(β) 
No safety belt applied 1.612 0.062 0.000 5.015 
Gallery 1.522 0.589 0.010 4.583 
Vehicle fire 1.394 0.541 0.010 4.029 
Hitting an obstacle on the road 1.222 0.426 0.004 3.394 
Age class 16 to 18 0.840 0.104 0.000 2.317 
Airbag not deployed 0.803 0.046 0.000 2.233 
Bridge 0.773 0.197 0.000 2.166 
Age class 19 to 24 0.743 0.057 0.000 2.101 
Sudden braking 0.693 0.324 0.032 2.000 
Alcohol 0.650 0.062 0.000 1.916 
Hit and run 0.552 0.161 0.001 1.737 
Tunnel 0.515 0.258 0.046 1.674 
One-way 0.507 0.219 0.020 1.660 
Age class 25 to 34 0.492 0.057 0.000 1.635 
Male driver 0.491 0.045 0.000 1.634 
Intersection 0.450 0.148 0.002 1.569 
Other road variables 0.397 0.082 0.000 1.487 
Wintry conditions 0.380 0.070 0.000 1.462 
Hitting a tree 0.365 0.075 0.000 1.441 
Age class 35 to 44 0.308 0.065 0.000 1.361 
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0 a.m. to 6 a.m. 0.307 0.058 0.000 1.359 
Vehicle colour: green 0.275 0.078 0.000 1.317 
County road 0.247 0.062 0.000 1.280 
Dry road 0.232 0.047 0.000 1.261 
Curve 0.180 0.043 0.000 1.198 
Engine power 24–90 kW 0.175 0.046 0.000 1.192 
Probationary driving licence 0.166 0.078 0.033 1.181 
Darkness 0.165 0.049 0.001 1.180 
Drifting left 0.147 0.041 0.000 1.158 
Speed limit 100 km/h 0.114 0.046 0.013 1.120 
Hitting a guardrail −0.313 0.091 0.001 0.731 
Speed limit 50 km/h −0.329 0.144 0.022 0.719 
Constant −9.285 0.611 0.000  

When performing multiple logistic regression, some variables may be excluded from 
the final model, resulting in no regression coefficient being assigned to them. This exclu-
sion occurs because the statistical model deems these variables to have an insignificant or 
non-contributory effect on the outcome, often due to multicollinearity, lack of variability, 
or because their contribution is already captured by other variables in the model. 

3.3. PATTERMAX Method Results 
The PATTERMAX method reveals critical BPs in the data, indicating combinations 

of factors that significantly contribute to severe accidents (Table 4). One of the most prom-
inent BPs identified is the combination of a 130 km/h speed limit, driving on a highway, 
drifting to the right, and being a male driver. This BP is statistically significant with a p-
value of 0.001 and a phi coefficient of 0.027, occurring 44 times in the dataset. This suggests 
that this specific combination of factors is strongly associated with severe accidents. An-
other significant BP involves a 100 km/h speed limit on a country road, with left drift and 
male drivers, showing an even stronger correlation with severe casualties (p = 0.000, ϕ = 
0,032) and a frequency of 41 occurrences. This BP underscores the heightened risk asso-
ciated with country roads, particularly when combined with drifting and male drivers. 
Additional BPs include scenarios where male drivers on country roads, particularly un-
der conditions of fatigue or without wearing a safety belt, show a strong association with 
severe accidents. For example, the combination of a 100 km/h speed limit, left drift, a male 
driver, and no safety belt applied is highly significant (p = 0.000, ϕ = 0.031), though it 
occurs less frequently, with 10 recorded instances. This indicates that, although less com-
mon, this particular combination of factors leads to particularly severe outcomes. Other 
BPs  highlight the risk posed by wet roads and darkness. A BP  involving a 100 km/h 
speed limit on a country road, a wet road surface, a male driver aged 25–34, and a right 
drift shows a strong association with severe accidents (p = 0.001,ϕ = 0.027). Similarly, driv-
ing in darkness on country roads with right drift and male drivers also presents a signifi-
cant risk (p = 0.003, ϕ = 0.026). 

Table 4. Blackpatterns showing a significant relationship with the target variable severe casualties, 
and a positive phi coefficient; n = 20,293 single-vehicle accidents with single occupation and personal 
injury occurring outside the built-up area on the Austrian road network (3431 are severe casualties). 

BP ID BP Variables 
Fisher’s  

Exact Test p 
Phi 

Coefficient ϕ 
Frequency 

n 
BP1 speed limit 130 km/h, highway, right drift, male driver 0.001 0.027 44 
BP2 speed limit 100 km/h, country road, left drift, male driver 0.000 0.032 41 
BP3 speed limit 100 km/h, country road, curve, left drift, male driver 0.011 0.020 30 
BP4 country road, right drift, female driver 0.042 0.015 28 
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BP5 speed limit 100 km/h, country road, left drift, male driver, fatigue 0.001 0.028 20 
BP6 speed limit 130 km/h, highway, drifting right, male driver, fatigue 0.040 0.015 16 

BP7 
speed limit 100 km/h, country road, wet road, age 25–34, right drift, 
male driver 

0.001 0.027 12 

BP8 
speed limit 100 km/h, country road, left drift, male driver, no safety 
belt applied 

0.000 0.031 10 

BP9 speed limit 100 km/h, country road, darkness, right drift, male driver 0.003 0.026 10 
B10 speed limit 80 km/h, country road, right drift, male driver 0.016 0.020 10 

3.4. Blackpattern Impact Analysis Results 
The blackpattern impact analysis results in Table 5 highlight the varying influence of 

different combinations of variables on the likelihood of severe RTAs, with the BIS provid-
ing a quantitative measure of their overall effect. In cases where a BP generated by the 
PATTERMAX method includes variables without a regression coefficient, we assign a 
value of zero (β = 0)  to these variables. By setting the coefficient to zero, we ensure that 
the variable neither positively nor negatively influences the BIS, reflecting the fact that the 
variable does not significantly impact the likelihood of severe outcomes according to our 
logistic regression model. The BP with the highest BIS involves a 100 km/h speed limit 
on a country road, left drift, a male driver, and the absence of a safety belt, which has a 
significant BIS of 982.9. This high BIS reflects the strong influence of not wearing a seat-
belt, which substantially increases the likelihood of severe accidents, as indicated by the 
high regression coefficient (β = 1.612). The combination of a 100 km/h speed limit, country 
road, and a male driver, whether drifting left or right, consistently yields high BIS (e.g., 
804.7 and 167.6), indicating that these factors together significantly elevate the risk of se-
vere accidents. A speed limit of 130 km/h on a highway with right drift and a male driver 
result in a relatively high BIS of 628.4 which still presents a notable risk. This BP high-
lights that while speed and road type are important, the absence of additional high-risk 
behaviours like seatbelt non-use somewhat mitigates the overall risk. BPs involving fe-
male drivers or those with a speed limit of 80 km/h on a country road with right drift show 
even lower BIS (e.g., 50.1 and 38.3), reflecting the reduced likelihood of severe outcomes 
compared to more dangerous combinations. This suggests that gender and lower speed 
limits contribute to safer outcomes, although they are not completely devoid of risk. The 
BIS  also underscores the combined risk posed by fatigue and specific road conditions 
(e.g., 167.6 and 37.1). 

Table 5. Blackpattern impact analysis results. 

BP ID 
BP 

Frequency 
n 

BP 
Fisher’s 

Exact Test 
p 

BP Phi 
Coefficient 

ϕ 
BP Variables and Their Regression Coefficients β BIS 

BP1 44 0.001 0.027 
Speed limit 
130 km/h 

Highway Right drift 
Male 

driver 
  

628.4 
0 0 0 0.491   

BP2 41 0.001 0.032 
Speed limit 
100 km/h 

Country 
road 

Left drift 
Male 

driver 
  

804.7 
0.114 0.247 0.147 0.491   

BP3 30 0.011 0.020 
Speed limit 
100 km/h 

Country 
road 

curve Left drift 
Male 

driver 
 

194.9 
0.114 0.247 0.180 0.147 0.491  

BP4 28 0.042 0.015 
Country 

road 
Right drift 

Female 
driver 

   50.1 
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0.247 0 0    

BP5 20 0.001 0.028 
Speed limit 
100 km/h 

Country 
road 

Left drift 
Male 

driver 
Fatigue  

167.6 
0.114 0.247 0.147 0.491 0  

BP6 16 0.040 0.015 
Speed limit 
130 km/h 

Highway Right drift 
Male 

driver 
Fatigue  

37.1 
0 0 0 0.491 0  

BP7 12 0.001 0.027 
Speed limit 
100 km/h 

Country 
road 

Wet road Age 25–34 Right drift 
Male 

driver 141.8 
0.114 0.247 0 0.492 0 0.491 

BP8 10 0.000 0.031 
Speed limit 
100 km/h 

Country 
road 

Left drift 
Male 

driver 
No safety 

belt 
 

982.9 
0.114 0.247 0.147 0.491 1.612  

BP9 10 0.003 0.026 
Speed limit 
100 km/h 

Country 
road 

Darkness Right drift 
Male 

driver 
 

71.6 
0.114 0.247 0.165 0 0.491  

BP10 10 0.016 0.020 
Speed limit 

80 km/h 
Country 

road 
Right drift 

Male 
driver 

  
38.3 

0 0.247 0 0.491   

4. Discussion 
The findings from this study underscore the complex and multivariate nature of 

RTAs, particularly single-vehicle, single-occupant accidents outside built-up areas in Aus-
tria. By applying statistical methods such as binomial logistic regression and the PATTER-
MAX method, we have identified significant BPs that consistently correlate with severe 
casualties. These BPs provide critical insights into how specific combinations of driver-
related, vehicle-related, roadway-related, and situational factors contribute to the severity 
of accidents. The multivariate approach used here echoes the work of [6], who found that 
considering multiple interacting factors is crucial for understanding RTA risk. One of the 
key observations from the logistic regression analysis is the substantial impact of not 
wearing a seatbelt, which emerged as the most influential variable, increasing the likeli-
hood of severe accidents by over five times. This finding aligns with existing literature, 
such as [33], which consistently highlights the protective benefits of seatbelt usage in pre-
venting severe injuries and fatalities. Seatbelt non-use remains one of the most critical be-
havioural risk factors in RTAs, as demonstrated in several international studies [34,35], 
which also emphasise the need for stricter enforcement of seatbelt laws to mitigate injury 
severity. Similarly, the significant influence of young drivers, particularly those aged 16 
to 24, on accident severity is consistent with previous research that points to younger driv-
ers’ higher propensity for risky behaviours, such as speeding and distracted driving [36]. 
Studies by [37] also note the higher incidence of severe accidents among this demographic 
due to inexperience and impulsive driving behaviours. 

The PATTERMAX method further refines our understanding by identifying specific 
combinations of variables that, when occurring together, significantly increase the likeli-
hood of severe outcomes. For instance, BPs involving high-speed limits, rural roadways, 
and male drivers frequently result in severe accidents, especially when compounded by 
factors such as driver fatigue or adverse weather conditions. This mirrors findings from 
studies like [38] that show how rural roads, higher speeds, and male drivers increase ac-
cident risk, particularly in environments with poor weather or lighting conditions. The 
importance of considering such multivariate patterns in road safety interventions is also 
emphasised in work by [39], who recommend tailored safety measures for rural roads 
with high-speed limits. Moreover, the BP  impact analysis introduces a novel way of 
quantifying the combined effect of these variables, offering a clear prioritisation of the 
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most dangerous combinations. This is particularly useful for designing targeted interven-
tions that can address the most critical risks. For instance, the combination of a 100 km/h 
speed limit, a country road, left drift, and a male driver not wearing a seatbelt was identi-
fied as having the highest BIS, making it a prime target for road safety campaigns and 
enforcement measures. This is consistent with recommendations from [40], who suggests 
that high-risk locations and behaviours must be prioritised for intervention based on em-
pirical accident data. Similarly, [41] highlights the effectiveness of focusing on specific be-
havioural interventions, such as enforcing speed limits and seatbelt use, especially in rural 
areas, to reduce severe accidents. 

In conclusion, this study highlights the importance of multivariate approaches in 
road safety research and supports the growing body of literature that calls for a compre-
hensive, data-driven approach to accident prevention. Future research could benefit from 
incorporating more advanced machine learning techniques, as these methods are partic-
ularly well-suited to detecting complex patterns in large datasets, as demonstrated by [42]. 
Emerging technologies like digital twin theory for autonomous vehicle testing [43] and 
advanced trajectory extraction methods under challenging environmental conditions [44] 
could provide new avenues for refining accident prediction models and improving safety 
in more complex scenarios. Integrating these techniques into the BP analysis framework 
could enhance the accuracy and applicability of the results for road safety policy. 

5. Conclusions 
This study successfully identifies and quantifies the most significant BPs associated 

with severe single-vehicle, single-occupant RTAs on Austrian roads. By focusing on acci-
dents occurring outside built-up areas, we were able to analyse specific high-risk combi-
nations of variables, such as driver behaviour, vehicle characteristics, roadway conditions, 
and situational factors, that contribute to the severity of accidents. The use of binomial 
logistic regression and the PATTERMAX method provides a robust framework for under-
standing the complex, multicausal interactions that lead to severe accident outcomes. It is 
important to note that this paper is methodologically and hermeneutically driven. The 
primary focus is on the development, validation, and application of the BP  detection 
method rather than on prescribing specific road safety interventions. As such, while the 
results offer valuable insights into high-risk combinations of factors, explicit recommen-
dations for road safety measures are not the central aim of this study. Instead, the empha-
sis is on providing a versatile toolset that can be used by researchers and policymakers to 
further explore and address severe RTAs within their respective contexts. However, the 
findings should be considered within the context of several limitations. First, this study is 
based on a dataset of single-vehicle accidents, which excludes vehicle-to-vehicle crashes, 
potentially limiting the generalisability of the results to other types of RTAs. Second, the 
analysis relies on available data, which may not fully capture certain behavioural and en-
vironmental factors, such as driver distraction or precise weather conditions at the time of 
the accident. The lack of real-time behavioural data also means that some underlying 
causes of accidents, like driver fatigue or attention lapses, could not be directly analysed. 
Additionally, while the BP approach is effective for identifying multivariate risk patterns, it 
is important to acknowledge that more advanced machine learning techniques could further 
enhance predictive accuracy by capturing non-linear relationships between variables. 

Despite these limitations, this study provides valuable insights for road safety inter-
ventions specific to the Austrian context. The identified BPs highlight the importance of 
addressing high-risk combinations of variables, such as high-speed limits, lack of safety 
equipment (e.g., seatbelt use), and rural road conditions. Policymakers can use these find-
ings to design targeted interventions, such as stricter seatbelt enforcement, road infra-
structure improvements, and the adjustment of speed limits based on road type and risk 
profile. Furthermore, public awareness campaigns aimed at high-risk groups, such as 
younger drivers or those driving in adverse conditions, could be crucial in mitigating the 
risks highlighted by the BP analysis. 
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Future research should expand the scope of this analysis to include other accident 
types and integrate additional data sources, such as real-time behavioural and environ-
mental data, to develop more comprehensive accident prediction models. The integration 
of more advanced machine learning techniques, such as neural networks or random for-
ests, could also be explored to enhance the detection of complex patterns. By doing so, we 
can refine our understanding of the factors contributing to severe accidents and improve 
the effectiveness of prevention strategies. Ultimately, the insights gained from this study 
provide a solid foundation for improving road safety and reducing the human and eco-
nomic costs associated with severe RTAs on Austrian roads. 
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Appendix A. Descriptive Analysis Results 
The driver-related outcomes in Table A1 reveal that male drivers are significantly 

more likely to be involved in severe accidents compared to female drivers, with a proba-
bility of 12.11% versus 4.79%, respectively. Age also plays a crucial role, with younger 
drivers aged 19 to 24 and older drivers aged 64 and above showing a higher likelihood of 
being involved in severe accidents. The analysis indicates that the absence of a driving 
license and probationary driving licenses are associated with increased accident severity, 
although their impact is relatively lower compared to other factors. Impairment due to 
alcohol, distraction, and fatigue are highlighted as significant contributors to severe acci-
dents, but among these, fatigue shows a particularly strong correlation. The table also un-
derscores the critical impact of not wearing a seatbelt, which is strongly associated with 
severe casualties, as evidenced by the highest phi coefficient in the analysis. Various driv-
ing manoeuvres, such as skidding, hitting a tree, and sudden braking, also exhibit signif-
icant relationships with accident severity, with some manoeuvres like hitting a tree being 
particularly indicative of severe outcomes. The MCV suggests that certain variables, like 
the absence of a seatbelt, tend to co-occur with other risk factors more frequently in severe 
accidents, further emphasising their role in contributing to accident severity. 

Table A1. Single-vehicle accidents with single occupation and personal injury that occurred outside 
built-up areas between 2012 and 2019 in Austria, broken down by driver-related variables. n = 20,293 
(3431 are severe casualties). 

 Variable 
Casualties 

n 

Severe  
Casualties 

n 

P (X ∩ SC) 
% 

Fisher’s 
Exact Test 

p 

Phi 
Coefficient 

𝛟𝛟 

MCV 
n 

Se
x 

Male 11,576 2458 12.11% 0.000 0.133 817 
Female 8706 972 4.79% 0.000 −0.133 1.132 
Unknown sex 11 1 - - - - 

A
ge

 c
la

ss
 16 to 18 years 1465 162 0.80% 0.000 −0.044 171 

19 to 24 years 6547 806 3.97% 0.000 −0.085 1.132 
25 to 34 years 4323 697 3.43% 0.120 −0.011 830 
35 to 44 years 2488 468 2.31% 0.008 0.019 432 
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45 to 54 years 2180 476 2.35% 0.000 0.046 382 
55 to 64 years 1404 323 1.59% 0.000 0.044 212 
64 and older 1878 499 2.46% 0.000 0.082 303 
Unknown age class 8 - - - - - 

* DL 
No driving licence 356 94 0.46% 0.020 0.034 15 
Probationary driving licence 2805 303 1.49% 0.000 −0.065 391 

Im
pa

ir
m

en
t 

Alcohol 2858 481 2.37% 0.934 −0.001 246 
Distraction 2369 431 2.12% 0.079 0.012 93 
Fatigue 1518 317 1.56% 0.000 0.030 134 
Health 432 91 0.45% 0.021 0.016 38 
Drugs 66 15 0.07% 0.247 0.009 3 
Medicines 50 10 0.05% 0.570 0.004 2 
Excitation 7 2 0.01% 0.337 0.006 1 

D
ri

vi
ng

 m
an

oe
uv

re
s 

Speeding 3608 579 2.85% 0.136 −0.011 131 
Skidding 1823 239 1.18% 0.000 −0.032 80 
Hitting an obstacle next to road 1512 280 1.38% 0.086 0.012 35 
Hitting the guardrail 1378 181 0.89% 0.000 −0.027 37 
Hitting a tree 1217 318 1.57% 0.000 0.062 23 
Misconduct by pedestrians 503 79 0.39% 0.505 −0.005 12 
Hit and run 371 53 0.26% 0.186 −0.010 22 
Sudden braking 149 11 0.05% 0.002 −0.022 9 
Overtaking 147 26 0.13% 0.834 0.002 8 
Cutting curves 128 27 0.13% 0.194 0.009 4 
Hitting an obstacle on the road 117 6 0.03% 0.001 −0.024 7 
Changing lanes 58 9 0.04% 1.000 −0.002 3 
Inadequate safety distance 38 7 0.03% 0.828 0.002 1 
Reverse driving 26 6 0.03% 0.429 0.006 2 
Phoning 25 7 0.03% 0.175 0.010 1 
Turning around 22 4 0.02% 0.780 0.001 3 
Fall from the vehicle 22 11 0.05% 0.000 0.029 2 
Getting in lane 18 4 0.02% 0.529 0.004 1 
Disregarding driving direction 16 2 0.01% 1.000 −0.003 1 
Priority violation 15 4 0.02% 0.302 0.007 1 
Driving towards left-hand side of road 9 3 0.01% 0.184 0.009 1 
Forbidden overtaking 8 2 0.01% 0.630 0.004 1 
Hitting a moving vehicle 8 0 0.00% 0.367 −0.009 2 
Disregarding driving ban 5 2 0.01% 0.201 0.010 1 
Driving in parallel 5 1 0.00% 1.000 0.604 1 
Opening the vehicle door 5 2 0.01% 0.201 0.010 1 
Hitting a stationary vehicle 3 0 0.00% 1.000 −0.005 1 
Wrong-way driver 1 0 0.00% 1.000 −0.003 1 
Disregarding red light 1 0 0.00% 1.000 −0.003 1 
Dangerous stopping and parking 0 0 - - - - 
Disregarding turning ban 0 0 - - - - 
Missing indication of direction change 0 0 - - - - 
Driving against one-way 0 0 - - - - 

** ST 
Driving without mandatory light 0 0 - - - - 
No safety belt applied 1401 699 3.44% 0.000 0.240 60 

* DL: Driving licence; ** ST: Safety Settings. 
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Table A2 presents a comprehensive analysis of vehicle-related variables and their as-
sociation with the severity of accidents. Engine power is a notable factor, with vehicles 
having higher engine power (over 110 kW) showing a higher probability of severe casu-
alties, as indicated by the phi coefficient of 0.053 and a significant p-value of 0.000. This 
suggests that vehicles with greater engine power are more likely to be involved in severe 
accidents. In contrast, vehicles with lower engine power (24–90 kW) demonstrate a nega-
tive correlation with accident severity, as reflected by a negative phi coefficient (−0.066). 
Vehicle colours appear to play a neglectable role as the correlations are weak and not sta-
tistically significant. The table also highlights the impact of vehicle safety features on ac-
cident outcomes. Cases where the airbag did not deploy are strongly associated with se-
vere casualties, as evidenced by a phi coefficient of −0.149, making it one of the most crit-
ical factors in the analysis. Other variables, such as technical defects and insufficient vehi-
cle security, are less prevalent but still present some level of risk, particularly vehicle fires, 
which have a phi coefficient of 0.035. 

Table A2. Single-vehicle accidents with single occupation and personal injury that occurred outside 
built-up areas between 2012 and 2019 in Austria, broken down by vehicle-related variables. n = 
20,293 (3431 are severe casualties). 

 Variable Casualties 
n 

Severe 
Casualties 

n 

P (X ∩ SC) 
% 

Fisher’s 
Exact Test 

p 

Phi 
Coefficient 

𝛟𝛟 

MCV 
n 

En
gi

ne
 

po
w

er
 (k

W
) 0–24 kW 11 3 0.01% 0.411 0.006 2 

24–90 kW 15,412 2.393 11.79% 0.000 −0.066 975 
90–110 1928 413 2.04% 0.000 0.039 201 
110+ 1947 448 2.21% 0.000 0.053 256 

K
ilo

m
et

ra
ge

 
(k

m
) 

0 to 15.000 156 24 0.12% 0.662 −0.004 13 
15.000 to 75.000 605 89 0.44% 0.154 −0.010 51 
75.000 to 100.000 387 70 0.34% 0.541 .004 33 
100.000 to 150.000 663 104 0.51% 0.428 −0.006 44 
150.000 to 200.000 942 176 0.87% 0.141 0.010 56 

V
eh

ic
le

 
co

lo
ur

 

Beige 18 3 0.01% 1.000 0.000 5 
Blue 3166 478 2.36% 0.003 −0.021 868 
Brown 193 35 0.17% 0.637 0.003 52 
Bronze 1 0 0.00% 1.000 −0.003 1 
Dark 30 6 0.03% 0.626 0.003 6 
Yellow 129 18 0.09% 0.408 −0.006 37 
Gold 18 3 0.01% 1.000 0.000 5 
Grey 2702 462 2.28% 0.784 0.002 770 
Green 1219 262 1.29% 0.000 0.031 281 
Bright 8 2 0.01% 0.630 0.004 2 
Orange 130 24 0.12% 0.647 0.003 41 
Red 2272 381 1.88% 0.857 −0.001 602 
Black 3981 652 3.21% 0.334 −0.007 958 
Silver 716 136 0.67% 0.127 0.011 146 
Purple 49 8 0.04% 1.000 −0.001 11 
White 1907 323 1.59% 0.977 0.000 497 
Others 1 1 0.00% 0.169 0.016 1 

V
eh

ic
le

 
sa

fe
ty

 

Insufficient vehicle security 16 6 0.03% 0.040 0.015 2 
Insufficient load securing 6 0 0.00% 0.598 −0.008 1 
Technical defects 102 15 0.07% 0.682 −0.004 6 
Vehicle fire 18 11 0.05% 0.000 0.035 1 
Airbag not deployed 8.138 819 4.04% 0.000 −0.149 975 
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Table A3 provides a detailed analysis of roadway-related variables and their impact 
on the severity of single-vehicle accidents that took place outside built-up areas in Austria 
between 2012 and 2019. 

Table A3. Single-vehicle accidents with single occupation and personal injury that occurred outside 
built-up areas between 2012 and 2019 in Austria, broken down by roadway-related variables. n = 
20.293 (3.431 are severe casualties). 

 Variable 
Casualties 

n 

Severe 
Casualties 

n 

P (X ∩ SC) 
% 

Fisher’s 
Exact Test 

p 

Phi 
Coefficient 

𝛟𝛟 

MCV 
n 

Sp
ee

d 
lim

it 
(k

m
/h

) 

Driving ban 2270 380 1.87% 0.833 −0.002 350 
5 1 1 0.00% 0.169 0.016 1 
10 1 0 0.00% 1.000 −0.003 1 
20 2 0 0.00% 1.000 −0.004 1 
30 173 33 0.16% 0.479 0.005 13 
40 40 8 0.04% 0.533 0.004 6 
50 505 71 0.35% 0.095 −0.012 56 
60 334 55 0.27% 0.877 −0.002 43 
70 1421 218 1.07% 0.108 −0.011 321 
80 1231 192 0.95% 0.225 −0.009 222 
90 3 0 0.00% 1.000 −0.005 1 
100 12,292 2148 10.58% 0.008 0.019 2.232 
110 35 4 0.02% 0.502 −0.006 10 
120 2 0 0.00% 1.000 −0.004 1 
130 1983 321 1.58% 0.377 −0.006 488 

R
oa

d 
ty

pe
 

Highway 2593 417 2.05% 0.239 −0.008 488 
Expressway 595 80 0.39% 0.024 −0.016 82 
Country road 14,457 2416 11.91% 0.247 −0.008 2.232 
Other roads 2220 463 2.28% 0.000 0.037 248 
Intersection 439 62 0.31% 0.125 −0.011 62 
Roundabout 68 16 0.08% 0.146 0.010 11 

R
oa

d 
ch

ar
ac

te
ri

st
ic

s 

Deceleration lane 10 2 0.01% 0.681 0.002 1 
Acceleration lane 3 1 0.00% 0.426 0.005 1 
One-way 144 33 0.16% 0.054 0.014 26 
Construction site 157 21 0.10% 0.286 −0.008 10 
Cycle path 4 0 0.00% 1.000 −0.006 1 
Crosswalk 3 0 0.00% 1.000 −0.006 1 
Pedestrian and cycle path 10 2 0.01% 0.681 0.002 3 
Parking lane 7 0 0.00% 0.610 −0.008 1 
Secondary lane 5 1 0.00% 1.000 0.001 1 
Hard shoulder 45 9 0.04% 0.551 0.004 7 
Banquet 123 22 0.11% 0.729 0.002 22 
Straight road 11,507 2095 10.32% 0.000 0.040 2.232 
Tunnel 89 26 0.13% 0.004 0.022 8 
Gallery 15 8 0.04% 0.001 0.026 1 
Rest area 26 6 0.03% 0.429 0.006 2 
Traffic island 81 18 0.09% 0.233 0.009 4 
Underpass 32 7 0.03% 0.476 0.005 3 
Middle separation 777 104 0.51% 0.008 −0.019 137 
Bridge 157 41 0.20% 0.003 0.022 7 
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Curve 8.399 1264 6.23% 0.000 −0.042 1.437 
Narrow lane 30 8 0.04% 0.149 0.010 3 
Entry or exit 57 17 0.08% 0.019 0.018 5 
Tram or bus station 8 2 0.01% 0.630 0.004 1 

R
oa

d 
co

nd
iti

on
 Dry road 10,441 2126 10.48% 0.000 0.095 2.232 

Wet road 5705 872 4.30% 0.000 −0.27 1.225 
Sand or grit on the road 297 48 0.24% 0.809 −0.002 56 
Wintry conditions 3771 370 1.82% 0.000 −0.090 938 
Other conditions (oil, soil) 95 17 0.08% 0.796 0.002 16 

TL * Traffic light in full operation 29 2 0.01% 0.213 −0.010 4 
* TL: Traffic lights. 

One of the most significant findings is the relationship between speed limits and ac-
cident severity. Accidents occurring in areas with a 100 km/h speed limit show a higher 
probability of severe casualties, with a phi coefficient of 0.019 and a significant p-value of 
0.008, indicating a moderate positive correlation. Similarly, roads with a 130 km/h speed 
limit also show a notable frequency of severe accidents, although the correlation is slightly 
weaker. The type of road is another critical factor, with accidents on country roads being 
particularly severe, as these roads account for the highest number of severe casualties, 
although the phi coefficient suggests only a weak correlation. Additionally, certain road 
characteristics, such as curves and straight roads, are strongly associated with severe ac-
cidents. Curves, in particular, have a significant negative phi coefficient (−0.042), indicat-
ing a strong correlation with accident severity. In contrast, straight roads, despite their 
higher overall accident frequency, show a positive phi coefficient (0.040), suggesting that 
while they are common sites for accidents, the severity is more strongly associated with 
other variables like speed or road conditions. The analysis also reveals that road condi-
tions significantly impact accident severity, with dry roads being the most common setting 
for severe accidents, supported by a high phi coefficient (0.095). However, wet and wintry 
conditions also play a significant role, as indicated by negative phi coefficients, showing that 
these conditions are associated with less severe outcomes compared to dry conditions. 

Table A4 provides an analysis of situation-related variables and their impact on the 
severity of single-vehicle accidents. The analysis highlights several critical situation-re-
lated factors that influence the severity of single-vehicle accidents. Time of day emerges 
as a significant variable, with accidents occurring between 12 a.m. and 6 a.m. showing a 
higher probability of severe casualties, indicated by a phi coefficient of 0.051 and a signif-
icant p-value of 0.000. This suggests that early morning hours are particularly dangerous, 
likely due to factors such as reduced visibility, fatigue, or lower traffic volumes leading to 
higher speeds. In contrast, the period from 12 p.m. to 6 p.m., although still significant, 
shows a negative correlation with accident severity, indicating fewer severe outcomes 
during daylight hours. The day of the week also plays a role, with accidents from Monday 
to Thursday slightly more likely to result in severe casualties compared to those occurring 
from Friday to Sunday. However, the correlation is weak, as reflected by the small phi 
coefficient (−0.025). Seasonal variation is evident, with summer showing a slightly higher 
likelihood of severe accidents, as suggested by a phi coefficient of 0.025. This could be 
attributed to increased travel and higher speeds during warmer weather. Winter, on the 
other hand, despite the challenging driving conditions, shows a negative correlation with 
severe outcomes, which may be due to more cautious driving during adverse weather 
conditions. Weather conditions have a notable impact, with clear or overcast weather be-
ing strongly associated with severe casualties, as indicated by a phi coefficient of 0.053. 
This finding may be counterintuitive, but it suggests that drivers might be less cautious 
during clear conditions, leading to higher speeds and more severe accidents. Snowy con-
ditions, however, show a significant negative correlation with severe casualties, likely re-
flecting more careful driving in such conditions. Light conditions further influence 
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accident severity, with darkness being associated with a higher likelihood of severe acci-
dents, as shown by a phi coefficient of 0.044. This is consistent with the increased risks 
associated with driving at night, such as reduced visibility and driver fatigue. 

Table A4. Single-vehicle accidents with single occupation and personal injury that occurred outside 
built-up areas between 2012 and 2019 in Austria, broken down by situation-related variables. n = 
20,293 (3431 are severe casualties). 

 Variable 
Casualties 

n 

Severe 
Casualties 

n 

P (X ∩ SC) 
% 

Fisher’s 
Exact Test 

p 

Phi 
Coefficient 

𝛟𝛟 

MCV 
n 

Ti
m

e 

12 a.m. to 6 a.m. 3367 713 3.51% 0.000 0.051 245 
6 a.m. to 12 p.m. 6283 889 4.38% 0.000 −0.049 586 
12 p.m. to 6 p.m. 5915 956 4.71% 0.070 −0.013 578 
6 p.m. to 12 a.m. 4728 873 4.30% 0.001 0.023 368 

WD * 
Mon to Thu 11,131 1788 8.81% 0.000 −0.025 586 
Fri to Sun 9162 1643 8.10% 0.000 0.025 430 

Se
as

on
 Spring 4279 774 3.81% 0.021 0.016 435 

Summer 4821 896 4.42% 0.000 0.025 578 
Autumn 4802 885 4.36% 0.001 0.023 394 
Winter 6391 876 4.32% 0.000 −0.58 586 

W
ea

th
er

 
co

nd
iti

on
 

Clear or overcast weather 15,541 2797 13.78% 0.000 0.053 586 
Rain 3.013 458 2.26% 0.007 −0.019 110 
Hail, freezing rain 124 17 0.08% 0.398 −0.007 12 
Snow 1913 175 0.86% 0.000 −0.067 147 
Fog 636 102 0.50% 0.588 −0.004 37 
High wind 377 52 0.26% 0.113 −0.011 17 

Li
gh

t 
co

nd
iti

on
 

Daylight 11,546 1790 8.82% 0.000 −0.043 586 
Dusk or dawn 1604 266 1.31% 0.753 −0.003 111 
Darkness 6.828 1311 6.46% 0.000 0.044 368 
Artificial light 571 93 0.46% 0.730 −0.003 15 
Limited visibility 7 0 0.00% 0.610 −0.008 1 
Glare from the sun 109 24 0.12% 0.156 0.010 8 

* WD: Weekday. 
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