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Abstract

Today, customers demand highly individualized products, such as cars, significantly
increasing the number of product variants, which drives flexible and reconfigurable
manufacturing. Cyber-Physical Production Systems (CPPSs), such as automated car
factories, are software-intensive systems that use modern manufacturing techniques to
produce such customizable products. They contain production resources, such as robots,
that execute production processes like welding car parts. During CPPS engineering,
domain experts aim to systematically and efficiently reuse engineering artifacts. Thereby,
they built CPPS families with common and variable features, such as work lines with
similar production resources.

However, CPPS engineering involves multiple disciplines, such as mechanical and electrical
engineering. This setting creates challenges, including discipline-specific implicit CPPS
engineering knowledge and a mainly manual engineering process that is inefficient and
hard to reproduce. At the same time, separating the discipline-specific concerns is crucial
for agile CPPS engineering.

This cumulative thesis aims to address these challenges through a multifaceted approach.
First, it aims to establish explicit production knowledge models to facilitate multidis-
ciplinary CPPS knowledge modeling and exchange. Second, it investigates designing
methods, reference models, and design patterns for advanced CPPS engineering applica-
tions to improve knowledge communication and coordination. Finally, it aims to develop
integrated reuse and variability management to enhance the efficiency of CPPS family
design.

Therefore, the thesis presents the following contributions. In the context of production
knowledge models, we present the superimposed Product-Process-Resource (PPR) model
that serves as a visual representation of PPR with variability. Then, we discuss the PPR
meta-model as a formal model-based representation with variability and the Product-
Process-Resource Domain-Specific Language (PPR–DSL) to make implicit engineering
knowledge explicit. For advanced CPPS engineering applications, we present the Industry
4.0 Asset Network (I4AN) meta-model and the I4AN reference model for improved
coordination and communication of engineering knowledge. Furthermore, we introduce
basic engineering design patterns to address common engineering problems. Additionally,
we present the Capability and Skill Reuse (CSR) framework to reuse engineering knowledge
systematically. In the context of integrated reuse and variability management for CPPS
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engineering, we introduce the systematic, semi-automated, and integrated Extended
Iterative Process Sequence Exploration (EIPSE) approach. EIPSE aims to manage the
three primary dimensions of variability that PPRs spawn in CPPS families.

We evaluated the approaches with a mixed-methods approach (domain analyses, iterative
internal validation, feasibility studies, case studies, user study) with engineers and domain
experts from the CPPS domain and our industry partners.

The findings showed that the production knowledge models enable the straightforward
externalization of engineering knowledge with variability. The advanced CPPS engineer-
ing applications demonstrated an improved multidisciplinary knowledge communication
in industrial practice and increased reuse of engineering artifacts. The EIPSE allows
an efficient represent CPPS engineering knowledge in verifiable variability models. Fur-
thermore, evaluating the EIPSE with domain experts suggests that the approach allows
the efficient configuration of the three primary dimensions of CPPS variability. As a
result, the approach allows the reuse of engineering knowledge and artifacts and enables
an efficient management of their variability. These findings, we argue, indicate that the
approach can reduce the effort required from domain experts when evolving or designing
CPPS families.
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CHAPTER 1
Introduction

Today, customers demand highly individualized products, such as cars, electronics, or
other consumer goods, driving the need for flexible manufacturing. This demand is
related to rapid innovation and shorter product lifecycles that significantly increase
the number of product variants [84]. For instance, Scania, a large Swedish producer
of trucks and buses, allows their customers to configure around a thousand individual
features of their products [147]. Figure 1.1 shows a simplified example to illustrate the
concepts, following the Product-Process-Resource (PPR) paradigm [181], throughout the
subsequent paragraphs. The leftmost column depicts five similar but different car types
with various bodies, windows, and tires. The second column shows related production
processes for manufacturing the car types. The third column depicts the production
resources and their layouts on the shop floor. The rightmost column illustrates two
related Cyber-Physical Production Systems (CPPSs) manufacturing the car series.
CPPSs are software-intensive systems that use cutting-edge Information and Commu-
nication Technology (ICT) to manufacture such highly configurable products from a
product portfolio using modern manufacturing methods [69, 143]. CPPSs consist of
production resources, such as robot arms and conveyor belts, managed by software, such
as control software and data-intensive information systems, which interact with the
physical environment via sensors and actuators [69, 143]. For instance, in automotive
manufacturing, automated assembly lines assemble cars, often based on the configuration
of consumers that choose particular features that the product “digitally carries” along
the production process.
Hence, CPPSs need to execute a flexible series of production processes, which build the
glue between products and production resources, to manufacture the different product
types [85, 143]. The second column of Figure 1.1 shows an exemplarily configured
sequence of production processes. These car types build a family of products with the
same platform but with different features. The first three car types share the same
assembly process of the chassis (C1 ), while the fourth and fifth cars have slightly different
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Figure 1.1: Illustrative car production example with its four dimensions of variability.

chassis assembly processes. Mounting the back is similar for the second and third car
(B2 ), in contrast to mounting the back of the first car (B1 ) and the other vehicles
(B3 and B4 ). Similarly, assembling the windows is the same for the first and third car
(W1 ) and different but related for the other car types (W2, W3, and W4 ). In the final
production process step, the tires are mounted the same way for the three first and for
the fourth and fifth car types.

Product Family.

A product family shares a common platform but has, at the same time, distinct
features [19, 152]. For instance, a car series typically shares a common platform
with various individual features that customers can configure.

Per product type, these production processes are executed, with some degree of freedom,
in a particular sequence by production resources. Figure 1.1 shows such production
resources in the third column as two work lines. For instance, assembling the chassis and
mounting the tires is done on similar production resources (C1, C2 and T1, T2 ) with
different configurations. Mounting the back onto the cars is done sequentially on two
different production resources for the first three cars (B1 and B2 ) and in parallel in the
case of the flatbed and small truck (B3 and B4 ). This differentiation of the production
resources is similar to installing the windows, which is done on different production
resources (W1–W4 ).

Consequently, CPPSs require capabilities for extensive and more efficient flexibility in
reconfiguration (brownfield engineering) and new design scenarios (greenfield engineer-
ing) [85, 154]. Envisioned by the Industrie 4.0 initiative [202],1 the interplay of knowledge,

1Researchagenda Industrie 4.0: https://www.bmbf.de/bmbf/de/forschung/

2

https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0_node.html
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0_node.html
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0_node.html


software, hardware and environment aims to equip CPPSs with such production capabil-
ities. This way, CPPSs aim at fostering flexible production down to small batch sizes
and single customizable products in production operation, i.e., lot size 1 production [85].
This objective goes along with the rapid adaptation to changing requirements, such as in
production capacity, dispatching of orders [84], or new product types. Going beyond, the
objective concerns the vision of adaptation to uncertain environmental conditions such
as temperature or light irradiation [2, 183].

While much of the work lines are similar in the example of Figure 1.1, the products are
manufactured in two different CPPSs, for instance, for production efficiency. This way,
the two systems build a family of CPPSs on their own as they share, for example, a
particular architecture concerning the hardware and the software. These circumstances
result in an increased variability of CPPS designs, directly representing the state of the
practice. These organizations repeatedly have to consider different characteristics, such
as plant setups, hardware, geolocations, and recent advances like frugal production [53].

CPPS Family.

A CPPS family shares a common platform, for instance, system architecture like
step-chain work lines or workshop production with similar production resources,
such as the same type of robots and their control software. However, the individual
CPPSs are, for instance, planned with variations like manufacturing different
product families in various geolocations.

Together, the family of products, the family of production processes, the family of
production resources, and the family of CPPSs as a multi-product line [4, 78] build
four principal dimensions of CPPSs variability [55].2 Therefore, CPPS engineers reuse
production engineering knowledge and artifacts, such as product and resource models,
design components, or control code [71, 178]. Thereby, they often build CPPS families in
an implicit or ad-hoc manner with the problem, for instance, to propagate changes to
CPPS family instances. At the same time, knowledge and artifact reuse typically follow
a clone-and-own approach [54]. In contrast, SPL engineering emphasizes systematic
reuse, variability modeling, and management of (software) artifacts and models across
products [152]. Hence, SPL engineering aims at proactively planning for reusable
artifacts and systematically and efficiently reusing the artifacts by managed variability,
i.e., modeling and managing the commonalities and the differences in the systems [152].
In this regard, the SPL research community has recently shown a growing interest in
applying SPL concepts to CPPS engineering [1, 22, 104].

However, beyond SPL engineering, engineering a complex CPPS is an effort of engineers
from multiple heterogeneous disciplines, such as mechanical, electrical, and software

digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0_node.html
2We use the term product families and product lines synonymously. However, we tried to use the

term product families in the context of CPPSs and product lines in the context of Software Product Line
(SPL) research.
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1. Introduction

engineering, with different views on the system [10, 198]. For instance, engineers of the
so-called basic planning phase, i.e., conceptualization and rough system planning, draft a
functional CPPS design [109, 198] (cf. also Section 1.1.2). This design is based on the
requirements of a client, who wants to buy or operate the CPPS. Furthermore, the design
is complemented with a cost estimate for the client. In case the client accepts the design
and cost estimate, the engineers of the various involved disciplines pick up the system
design drafts and refine them in the detailed engineering phase [109, 198]. One issue
that challenges engineering organizations is that much of the knowledge used to design a
CPPS and its processes is implicit knowledge of, mostly senior, domain engineers scattered
over different heterogeneous disciplines. Subsequently, this makes the engineering process
hard to reproduce which impedes flexible reconfiguration.

Similar to software systems, CPPSs undergo a regular evolution, which means that
planning repetition may be necessary, for example, due to changes in product and
customer requirements [195]. Such an evolution requires remodeling, reimplementing,
and revalidating the CPPS design throughout the involved engineering disciplines to
incorporate the changes [198], which adds to the complexity. If, for example, parts of
the car platform change, the compatibility of all car types and CPPS designs must be
re-checked for potential issues and subsequent redesign tasks.

CPPS Reuse and Variability.

Establishing CPPS reuse and variability involves proactively planning for reusable
engineering knowledge and common CPPS platforms (based on [152]). This
activity aims to establish reusable engineering artifacts with their dependencies,
such as production process or resource specifications, from multiple disciplines
and viewpoints. Engineers must model and manage the reusable knowledge and
engineering artifacts with their variability to achieve systematic and efficient reuse
of engineering knowledge and assets. These efforts include reducing domain expert
effort for/with reuse or increasing the scope and value of reused engineering assets.

Nevertheless, engineers aim to reuse and share existing concepts and components, to
improve engineering quality and efficiency while lowering engineering and maintenance
effort and risk [71, 178]. This reuse concerns, for instance, using the same types of
robots where possible. These design artifacts stem, for instance, from prior projects in a
similar engineering discipline. Therefore, the engineers and disciplines share engineering
artifacts that represent CPPS assets, i.e., material or immaterial objects [160, 200].
Beyond those artifacts, engineers require accurate knowledge models of CPPS concepts
with variability to effectively and efficiently fulfill their engineering tasks and collaborate
across engineering processes [7, 200, 201]. Practitioners also disclosed that applications for
CPPS engineering are often insufficient for systematic CPPS knowledge representation,
mainly concerning structured knowledge reuse. This issue further calls for approaches
and techniques for efficient and integrated reuse and variability management in CPPS
engineering.

4



1.1. Problem Definition

To tackle challenges of security and production quality improvement for CPPSs, the
Christian Doppler Laboratory For Security and Quality Improvement in the Production
System Lifecycle (CDL SQI) was established.3 This thesis and its topics are embedded in
the CDL SQI, engaging in foundational research backed by essential research challenges
of industry partners. Furthermore, it aims to foster collaboration between local and
international researchers and PhD students. Throughout this thesis, the author of this
thesis collaborated closely with many researchers and practitioners. The publications
contributing to this cumulative thesis are all 1st author publications apart from one 2nd

author publication (cf. Table 2.1). Other contributions in further publications can be
clearly distinguished from those of other PhD students and researchers by marking the
author’s position (cf. Table 5.1).4

This thesis is based on the assumption that achieving the required CPPS flexibility and
adaptability and overcoming the impediments for CPPS engineering requires integrating
approaches and techniques from multiple research fields. We argue that a suitable
integration requires new methods and an interdisciplinary research effort, bringing
together research from the fields of CPPS Engineering, SPL Engineering, and Model-
based Software Engineering (MBSE) [117]. This thesis aims to develop methodologies
and tools that effectively address the intricacies of variability management within CPPSs
engineering by intertwining contributions coming from these research disciplines to
establish the following research lines as main themes:

RL1. Introducing Production Knowledge Models (PKMO) shall make implicit production
engineering knowledge with variability explicit and mitigate issues coming from
heterogeneous multidisciplinary engineering artifacts as a foundation for

RL2. Advanced CPPS Engineering Applications (ACEA) that shall provide the founda-
tions for engineers to reuse multidisciplinary production engineering knowledge
systematically and facilitate

RL3. Integrated Reuse and Variability Management (IRVM) for CPPS engineering to
manage the variability of CPPS families, particularly considering production process
sequences to facilitate efficient reuse in comparison to a traditional manual approach.

1.1 Problem Definition
Engineering CPPS is an extensive effort of multiple stakeholders that come from dif-
ferent, heterogeneous disciplines. Improving this engineering process for efficient reuse
and variability requires suitable methods and techniques. There exist frameworks for
introducing reuse in the production systems domain, such as the VDI 3695 guideline [200],
that resembles Domain and Application Engineering (DAE) from SPL engineering [152]

3CDL SQI: https://sqi.at
4Disclaimer: This thesis uses the we form rather than the I form throughout the text. This is owed to

numerous discussions with colleagues and other researchers, for instance, at conferences, all contributing
at least partially to achieving the research results and outcomes.

5
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1. Introduction

(cf. Section 1.2). However, similar to the latter, the VDI 3695 guideline leaves concrete
implementation open but proposes higher-level directives. For CPPS engineering, we
argue it requires approaches for explicit knowledge management and its applications for
CPPS engineering. Furthermore, it mandates an integrated management of the aspects
of reuse and variability for multidisciplinary CPPS engineering.

This section first describes two illustrative use cases from an industry partner to frame
the topic further and break it down into concrete research challenges. Secondly, the
section describes the traditional CPPS engineering process with its issues as a baseline.
Finally, this section raises practical engineering challenges that reflect the business needs
of engineering organizations.

1.1.1 Industrial Use Cases

To illustrate the challenges concerning reuse and variability management in CPPS
engineering, this section introduces two industrial use cases from an industry partner
in the CPPS domain, the shift fork and the rocker switch [130]. These use cases were
published, together with two other use cases, in the Extractive Software Product Line
Adoption (ESPLA) case study catalog [115]5 as part of this thesis [130].

Shift Fork

The shift fork use case comprises a CPPS designed and operated by an industry partner.
The CPPS manufactures four different types of shift forks [130]. Figure 1.2 depicts a
simplified schematic drawing of two of the four shift forks with their parts. A shift fork
moves a cuff with its fork, which consists of several fork jaws, along a pipe to engage and
align the transmission gears. Typically, one shift fork positions one particular cuff for
two different gears, such as the first gear and the third gear.

Figure 1.2: Rendered shift forks for a manual transmission with a list of parts.

5ESPLA catalog – https://but4reuse.github.io/espla_catalog/ESPLACatalog.html

6
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1.1. Problem Definition

The shift forks vary depending on the different gear combinations in the transmission. A
shift fork consists of a Pipe, several Forks, a Lock, and several auxiliary parts, such as
the Barrels. In this use case, the CPPS produces a product family of 4 distinct shift fork
types for a 7-gear truck transmission constructed from 15 parts. Selective production
steps must follow a specific sequence to produce the shift fork types. For example, the
Pipe must be available in the production system before the Forks are mounted onto
the pipe. However, several degrees of freedom in assembling a shift fork remain. For
instance, it is not important whether the Fork on the left or right side are welded onto
the Pipe first. The sequence of these production steps must be resolved during CPPS
engineering or operation. Overall, the CPPS executes more than 19 production process
steps, executed by 21 work cells that contain production resources, such as robot arms.

Rocker Switch

The rocker switch use case comprises a complex CPPS that is designed by an industry
partner and shall manufacture 12 different types of rocker switches [130]. Rocker switches
are everyday devices for controlling electrical appliances, such as lights and window blinds.
Figure 1.3 shows a simplified schematic view of the core of a rocker switch in vertical
and horizontal views.

The rocker switches vary depending on how many functions they control, for instance,
one or two lights with a single switch. Typically, the core of a rocker switch consists of
a Socket, in gray, several contacts (Pole in orange, Neutral in salmon, Changeover in
magenta, and Off in blue), one or more Rockers, in green that open and close the electric
circuits, and several auxiliary parts. In this use case, the CPPS shall produce a product
family of 12 rocker switch types for different applications. These rocker switches are
constructed from up to 40 parts that can vary quite much depending on the type of
rocker switch. Like the shift fork use case, selected production steps must follow specific
sequences. For instance, Figure 1.3 reveals that the Rocker must be pressed into the
socket before the Off contact but after the Pole contact to switch between them. However,
for instance, mounting the Screws can be done at many points in the production process.
Similar to the shift fork use case, this induces several degrees of freedom concerning the
order of production steps. Overall, the CPPS shall employ more than 75 production
process steps executed by 49 work cells.

Socket

Rocker
OffPole

ChangeoverNeutral

Figure 1.3: Vertical and horizontal views of a rocker switch and its components [130].
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Summary: Use Cases. These two use cases illustrate typical product families manu-
factured on CPPSs. The main difference between the CPPSs is that the rocker switch
core can have from 4 to 20 parts produced on 21 respectively 49 work cells, which
increases complexity and potential configuration space by magnitudes. This problem
complexity, especially, concerns the configuration sequence of production steps, 19 for the
shift fork and up to 75 for the rocker switch, for optimal production regarding production
resource utilization, availability, throughput, and initial and running cost. Furthermore,
the solution complexity concerns investigating which rocker switch types are economically
feasible and optimal under process and resource unit cost assumptions.

Sequence Configurations.

Configuring sequences of options results in the sequence roughly following a
permutation with P (n, r) = n!/(n − r)!, with n = r if the whole sequence is
considered. This defines an even larger configuration space than independent
optional binary features. For instance, the configuration space for 5 independent
optional features would make 25 = 32 configurations, but 5! = 120 configurations
considering the sequence.

1.1.2 Traditional CPPS Planning Process
Figure 1.4 shows the workflow of the traditional basic CPPS planning process elicited
from an industry partner [87]. During this initial planning phase, the client provides
the necessary product specifications and requirements towards the CPPS. These can be
artifacts like Computer-Aided Design (CAD) drawings or prototypes of products with
their parts or business constraints, such as the built-up area or cost.

Family of Products

The products comprise different types that usually form a (mechanical) product family.
Designated engineers, known as basic engineers, analyze the product types and their
commonalities and differences. This way, they determine a base type or shared platform
on which the other product types shall build (Step 1). Based on this analysis, the
engineers create a bill of materials that lists the parts required to manufacture each
product variant.

One way to represent these lists for all product types of a family are Type Comparison
Matrices (TCMs), a common approach in the industry that contain the product types in
the columns and their parts in the rows. TCMs are easy to start with and manipulate in
various spreadsheet tools, independent from the platform, and easy to understand when
small. Table 1.1 shows the TCM of the shift fork product family with the shift fork types
in the columns and their parts in the rows. For instance, Fork-13 requires several parts
but Pipe 8 and Lock 3 exclusively compared to the other shift forks. Further, Barrel 1
is used in all shift fork types, while Barrel 2 is only used in Fork-13 and Fork-57.
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T

1. Define Products 2. Select Product or
Type Representative

3. Configure Processes
with Resources

4. Configure
Processes Sequences

Product
Specifications

Type Comparison
Matrix

Bill of Material

Bill of Processes
& Resources

Process
Configuration

5. Configure
Plant Layout

CPPS Layout

Figure 1.4: Traditional basic planning process of the initial CPPS design [87].

Parts/Types Fork-13 Fork-2R Fork-46 Fork-57
Pipe 2 ×
Pipe 3 × ×
Pipe 8 ×
Barrel 1 × × × ×
Barrel 2 × ×
Jack 1 × × × ×
Ring 1 × × × ×
Fork 3 × × × ×
Fork 4 × × × ×
Fork 5 × × × ×
Lock 1 × ×
Lock 2 ×
Lock 3 ×
Screw × × × ×
O-Ring × × × ×

Table 1.1: TCM of shift fork types (columns) and their parts (rows).

This way, our industry partner is already aware of the structural product variability and
uses one kind of variability representation for the products. However, as our project
partner confirmed, they get increasingly difficult to comprehend when extensive and error-
prone to maintain. For instance, for this thesis, we elicited data from several documents
and spreadsheets that engineers currently use with matrices up to 300 rows × 45 columns.
Even worse, these matrices lack clear semantics within and across projects, making them
hard to explain, even for the engineers. For instance, the original TCM for the shift fork
never listed Barrel 2, but something that was assumed that the engineers know from
the CAD drawings. Similarly, while the TCM for the shift fork contained × symbols
to represent the presence of a part, the TCM contained integer values. Additionally,
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1. Introduction

engineers often clone-and-own spreadsheets from one project to another, carrying over
errors and semantic inconsistencies. This way, the spreadsheets are growing inconsistent
over time, significantly challenging our project partner.

Family of Production Processes

In the next step, the engineers examine plausible production process steps to assemble
the product types, often by (virtually) disassembling the prototypes and putting them
“back together” [105]. For instance, several process steps in the shift fork use case are
joining the forks with the pipe by welding. The engineers begin by describing the atomic
process steps required to assemble parts of a particular product variant.

Pipe

Insert PipeLinefeed

Pipe

Insert
LockLinefeed

Lock

Pipe with
Lock

Pipe with
Lock

Weld
Lock

Welded
Pipe

Screw
Screw

Screw

Welded Pipe
with Screw

LaserWelding
Robot

Screwing
Robot

Figure 1.5: Partial PPR model for production of a shift fork in VDI 3682 notation [199]
with products as circles, production processes as rectangles, and production resources as
rounded rectangles, from Meixner et al. [137].

For planning this functional process perspective of the CPPS, the engineers can use
representations [7], such as the VDI 3682 model and notation [199] that uses the concepts
of the PPR paradigm [181]. For instance, Figure 1.5 shows a section of a production
sequence for a single shift fork variant in a VDI 3682 model [199]. In the first step, a
Pipe (product, depicted as a circle) is inserted (process, represented as a rectangle) into
the CPPS using a Linefeed (resource, depicted as a rounded rectangle).

Combinations of these atomic process steps subsequently form composed production
process steps and production process sequences, aiming for a feasible production process
design. However, as mentioned in the prior paragraphs, several degrees of freedom remain
when assembling a particular product variant. For instance, in the shift fork use case
(cf. Section 1.1.1), the Barrels, the Screw, and the Ring can be assembled to the shift fork
after welding the Forks in a very arbitrary order. This freedom results in a vast space of
up to n! possible production process variants (cf. Section 1.1.1). However, these options
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must be resolved in the engineering phase, for example, by engineers or during operation,
for instance, by an information system that schedules the production process steps.

This task results in a bill of processes for each product variant. The engineers must
merge these bills to represent one or more potential production process sequences for
the requested product family. Take, for instance, the five production processes from
the introductory example illustrated in Figure 1.1. Therefore, they often use a type
representative that resembles a virtual product that combines several features of a set of
product variants (Step 2). There, engineers have to investigate the commonalities and
the variability of the processes and decide which process steps fit together and which
sequences are feasible and efficient. This task is challenging itself as it presents, in its
theory, a typical set cover problem, which is at least NP-complete if not NP-hard for
optimizing production processes sequences.6 Furthermore, it requires additional domain
knowledge, for instance, which process steps are more prone to error, more resource
intensive, or costly to define not a feasible but efficient process sequence. This is, among
other things, why only experienced domain engineers with several years of experience are
able to and trusted enough to take over the responsibility of making such wide-ranging
design decisions.

Our industry partner has developed a closed-source, machine-interpretable data format
for production processes. Process engineers also use this data format, for instance, to
simulate the timings of production processes. Semantically it also seems beneficial to
align such a representation with the taxonomies for production processes [31] and allow
de-composition. However, so far, our industry partner has not developed a representation
that incorporates the behavioral process variability.

a b

c

d

Figure 1.6: Illustrative section of a potential shop floor layout with production process
labels.

Family of Production Resources

To complete the first rough design of the CPPS, the engineers determine production
resources, such as work cells or robot arms, resulting in a bill of resources. These

6Set cover problem: https://w.wiki/Ai$f
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production resources must be suited to execute the particular production process steps
within the sequence (Step 3). Then, the production processes are reordered to a sequence
that seems optimal to fulfill the client’s goals, such as the throughput (Step 4). Then,
the engineers lay out the production resources in a shop floor design considering the
requirements of the client, such as the available space (Step 5). Figure 1.6 shows a
schematic section of a CPPS shop floor design with (a) robot cells in a work line with
(b) buffers and storage for intermediate products that are connected via (c) transport
facilities to other work lines, and (d) human workplaces in the CPPS. This step might
already require re-planning the production process sequence of the constraints of the
client cannot be fulfilled.

To this extent, our industry partner is aware of the structural resource variability. Our
industry partner addresses this challenge by modularizing and qualifying technical com-
ponents in their enterprise resource planning system. Furthermore, a representation of
technical components and their parameters are stored in a spreadsheet, the so-called
technical library with corresponding CAD pictures. Best-practice taxonomies for struc-
turing resources along hierarchies also exist, which our industry partner aims to follow.7
However, to the best of our knowledge, few tools support these taxonomies in practice.

The CPPS design with the production process steps and resource designs are later used
to implement CPPS artifacts in the respective engineering disciplines, such as the control
software. With this rough design, the engineers can further investigate the advantages
and drawbacks of these CPPS design options, such as distribution over several CPPSs.
Furthermore, they can create corresponding rough cost estimates for the realization of
potential CPPS designs provided to the client. If customers accept a CPPS design and
cost estimate, basic engineering hands over the artifacts to the different disciplines of
detail engineering.

Summary: Traditional Engineering. The traditional engineering process is man-
ually conducted by experienced engineers mainly based on their implicit knowledge.
While this part of the engineering process might be straightforward to senior engineers
in a single project, these issues make the engineering process error-prone and hard to
reproduce. Missing holistic knowledge models that allow the modeling of the main con-
cepts of CPPS engineering with their variability intensify this issue. Relying on implicit
knowledge significantly impedes knowledge transfer to other colleagues and disciplines,
making the reuse of concepts and artifacts difficult and inefficient. The lack of knowledge
models for communicating engineering knowledge and systematic approaches for the
reuse of engineering assets poses an essential problem. This insufficient combination of
multidisciplinary knowledge further hinders supporting engineers with automating the
engineering process.

Many engineering organizations have a strong focus on production resource planning and
see production processes more as a means to an end to support resource selection. To this

7ECLASS Standard: https://eclass.eu/eclass-standard
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extent, the PPR paradigm [181] provides a novel perspective into their CPPS engineering
process with the benefit of connecting these concepts. However, the large variability of
products, production processes, and production resources to choose from opens a vast
configuration space with permutational complexity and NP-hard difficulty. This also
poses an issue as the systems have long runtimes and maintenance spans, which require
the propagation of reconfigurations or bug fixes. The lack of approaches to integrate
these different dimensions of variability presents a significant problem.

Several engineering organizations that we collaborated with consider SPL engineering,
including variability modeling, twofold. On the one hand, they welcome the expected
opportunities that SPL methods and techniques promise. On the other hand, they are
concerned about the additional complexity and effort that introducing SPL engineering
might render in an already multidisciplinary engineering environment. Currently, the
engineers typically clone and own [54] the engineering artifacts, for instance, spreadsheets
with product types and their parts, including errors and semantic inconsistencies. Our
industry partner aims to counter those issues with typical methods from classic software
engineering, such as templates and modularization, adopted to CPPS engineering. These
practices align with some of the current strategies and techniques used in the production
systems industry and how SPL engineering is currently perceived [6, 9, 159].

1.1.3 Challenges
In the prior section, we mentioned that CPPS engineers encounter multifaceted chal-
lenges that impede their efforts toward more efficient CPPS family engineering. The
traditional engineering approach is a predominantly manual process with limited artifact
and hardly any tool support for variability management. This limitation impedes the
seamless integration of knowledge and engineering expertise essential for designing and
implementing efficient CPPS families. Furthermore, it leads to error-prone engineering
artifacts typically carried over multiple projects, sometimes hampering cooperation with
other disciplines and very limited reproducibility. This practice results in rework and
high effort if project requirements change, which occurs regularly. In this context, the
following challenges significantly impact reuse efficiency.

CH1. Insufficient knowledge representation with variability in CPPS artifacts.
At the forefront is the challenge of inadequate CPPS knowledge models, related to
RL1., that are easy to understand and manipulate for humans and, at the same
time, machine-interpretable while supporting multiple disciplines. Furthermore,
the systematic representation of variability within the engineering artifacts is
deprived. Consequently, engineers struggle to express their implicit discipline-
specific knowledge acquired through experience inherent in CPPS engineering that
remains largely undocumented or is scattered in various heterogeneous artifacts.
This implicit knowledge leads to opaque decision-making processes that are hard
and, most of the time, impossible to reproduce, especially with their dependencies
on engineering artifacts. Making this knowledge sufficiently explicit is still an open
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challenge in CPPS engineering [32, 33]. This issue also concerns the means to
consistently model PPR concepts, for instance, using Domain-specific Languages
(DSLs) or low-code approaches with sufficient semantics.

CH2. Insufficient CPPS engineering applications for CPPS knowledge. The
shortcoming of insufficient knowledge representation largely influences the chal-
lenge of insufficient knowledge management in CPPS engineering applications,
related to RL2., where knowledge is hard to constitute and reuse systematically.
This challenge is exacerbated as the engineering process is often conducted in
isolated information silos within the different disciplines. However, this inherent
difficulty in capturing, formalizing, and composing implicit knowledge hampers
the transferability and communication of expertise across disciplines, projects, and
engineering seniority. Changes of the CPPS design, which occur frequently due to
client requests [195], lead to redesigning the entire CPPS from scratch [130, 148]
rather than employing systematic and efficient reuse management.

CH3. Inefficient reuse and variability management in CPPS engineering. While
guidelines exist [200], practice shows [6, 159] that the concept of systematic reuse
and variability management presents a significant challenge in CPPS engineering.
As a result, engineers grapple with weak understanding of evolving CPPS reuse
and variability aspects. For instance, current approaches in CPPS engineering often
result in manual effort-intensive clone-and-own strategies [54]. Furthermore, the
means to systematically configure assets based on reusable artifacts are unclear.
This is especially true for assets that need to be revalidated after a reconfiguration
due to, for example, product or batch changes. This lack of systematic reuse
mechanisms impedes efficiency and limits innovation and agility in adapting to
changing requirements toward the CPPS.
Nevertheless, CPPSs induce complex variability concerns that stem, in particular,
from the three principal product families comprising (i) product types and their
characteristics, (ii) production processes and their dependencies, and, (iii) produc-
tion resources with their potential for reconfiguration. These families with the
fourth dimension of CPPS families form a multi-product line [4, 78]. Together,
this incorporates the variability of the PPR families, their dependencies, often
non-functional constraints, and feature cardinalities. The variability spans a vast
complex design and configuration space when planning the CPPS that demands
sophisticated solutions for effective planning and execution [28, 155, 185]. However,
an insufficient combination of multidisciplinary knowledge impedes the automation
of the engineering process. Therefore, this variability must be managed efficiently
to enable systematic reuse. A manual configuration is highly inefficient and te-
dious due to the large number of possible production sequences, which challenge
engineers to find practically feasible ones [137]. Furthermore, modeling regard-
ing production process sequence variability and characteristics is inaccurate due
to missing dependencies to product and resource variability [117]. This weak
understanding hampers designing CPPS process composition and optimization,
leveraging production flexibility for a product family [117]. Meanwhile, current
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research approaches often focus on either product variability [3, 152, 197] or process
variability [176, 186], neglecting the interconnectedness between the two. Thus,
this laborious, time-consuming, and error-prone activity calls for a methodology to
document and automate production sequence and resource configuration derivation
from a product configuration.

These three challenges delineate the scope of the thesis regarding efficient reuse and
variability management for CPPS families.

Efficient CPPS Reuse and Variability Management.

Efficient CPPS reuse concerns establishing systematic approaches for multidisci-
plinary knowledge externalization and reuse. Additionally, it concerns systematic,
semi-automated approaches for employing reusable engineering artifacts. These
approaches aimed to overcome the largely manual, error-prone, and unreproducible
traditional engineering process. Furthermore, they should help narrow down the
CPPS configuration space and subsequently lower domain expert effort. Such
approaches shall include managing the variability in engineering artifacts based on
explicit CPPS engineering knowledge for PPR families.

Overall, these challenges hinder the integration and seamless cooperation of disciplines
with iterative knowledge backflows from engineering and operation concerning mul-
tidisciplinary collaboration and knowledge exchange while maintaining the necessary
separation of concerns between the disciplines. Overcoming these challenges requires an
integrated approach that addresses the interplay between knowledge modeling capabilities,
advanced engineering applications, reuse and variability management strategies, and
multidisciplinary cooperation.

1.2 Related Work
This section discusses related work from the research fields CPPS and SPL engineering,
presenting the research that this thesis builds on and the research gaps for this thesis.

1.2.1 CPPS Engineering
We mentioned that CPPSs are production systems to facilitate flexible, reconfigurable
production of highly customizable products [81, 143].

Therefore, the Industrie 4.0 initiative has developed principles and architectures, such
as the Reference Architectural Model industrie 4.0 (RAMI 4.0) [160]. The RAMI 4.0
provides a foundational framework to support the design, development, and integration
of Industrie 4.0 solutions by combining three axes of engineering CPPS [139]. These axes
are (i) the architecture axis –layers– defining the role of CPPS assets, (ii) the lifecycle
axis representing the life cycle of CPPS assets, and (iii) the hierarchy axis for assigning
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Figure 1.7: Context of the contributions of the thesis in the RAMI 4.0, based on
RAMI 4.0 [160].

functional models of assets to individual levels [160]. Figure 1.7 shows an adapted
version of the RAMI 4.0 setting the scope of this thesis (bold concepts) concerning (i) the
engineering lifecycle phase, (ii) for PPR concepts in the hierarchical axis, (iii) on the
functional layer of the RAMI 4.0.

Beyond the RAMI 4.0, the Verein Deutscher Ingenieure (Association of German Engineers)
(VDI) provides several guidelines for structured plant engineering processes [198, 200] to
tackle the complexity of production systems and their planning. The VDI 3695 guideline
on evaluating and optimizing engineering industrial plants defines several measures. In
particular, the VDI 3695 raises, beyond others, the following measures with specific target
states for consideration.

M1. Models and description languages to create models of engineering concepts with
syntax and semantics that adhere to the aspects described by a model, reaching
from natural language and programming languages over graphical symbols and
diagrams to low-code approaches, supporting the diverse requirements of disciplines
concerning expressiveness, related to RL1..

M2. Knowledge management to systematically handle knowledge on information, find-
ings, and experiences in formalized and machine-interpretable representation, related
to RL1. and RL2..

M3. Re-use to facilitate the optimization of engineering (RL1.–RL3.).
M4. Quality assurance to ensure that products or services maintain specified levels of

quality (RL1.–RL3.).
M5. Integration and seamless cooperation of disciplines and their activities across the

engineering life cycle to ensure the coordination, consistency, and interoperability
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of results while separating their individual concerns related to all three research
lines (RL1.–RL3.).

This thesis considers these VDI 3695 measures as opportunities for research aiming to
provide significant contributions to each of these measures.

In CPPS engineering, the engineers within and over the disciplines work on and share
various engineering artifacts. They reuse several artifacts to improve engineering quality
and efficiency and lower the engineering effort and risk [71, 178]. Artifacts like Type
Comparison Matrices (TCMs) already contain information on product variants and
implicit production processes [44]. Nevertheless, these TCMs induce further issues, such
as the lack of semantics and standardization. However, we utilize TCMs as an example
regarding the relevant variability of products in industrial engineering artifacts [43].

Concepts and artifacts that focus on functional CPPS models are, for instance, the PPR
approach [181, 199] and Capability- and Skill-based Engineering (CSBE) [58, 93, 149],
providing foundational models for CPPS engineering knowledge.

The PPR approach [181], denoting products, production processes, and production
resources as first-class-citizen concepts, is a well-established concept for production
systems planning [58]. The VDI 3682 guideline [199] for process descriptions, named
Formalised Process Description (FPD), formalizes this approach. While Part 1 of the
guideline provides a concise and straightforward visual notation, Part 2 describes a
technology-agnostic knowledge model. This way, the VDI 3682 allows modeling products,
production process sequences with input and output products to manufacture the products,
and production resources that execute the processes. Figure 1.5 shows a section of such a
VDI 3682 model that visually describes the insertion of the pipe and a lock (circles) into
a production system and the process of welding the lock onto the pipe (rounded rectangle).
The model also shows the production resources (rounded rectangle) that execute those
processes, such as the linefeed and the laser welding robot. Other knowledge models, such
as AutomationML (AML) [32] or the Planning Domain Definition Language (PDDL) [61],
are able to represent production processes. The first approach concentrates more on data
exchange, while the second one focuses more on scheduling single production processes
and does not support reconfiguration and adaptation easily. However, they do not provide
a visual presentation, which we deem an important characteristic for the acceptance of
the domain engineers. Therefore, we build on the VDI 3682 to model the PPR aspects of
CPPSs with a focus on production processes as first-class citizens.

Part 3 of the VDI 3682 guideline aimed at an Extensible Markup Language (XML)
representation of the knowledge model. However, even though the VDI first published
the guideline in English in 2005, is still in preparation and not expected before the third
quarter of 2025, posing a significant limitation.8 Furthermore, it does not provide the
means to express the needed variability of the concepts. Therefore, we exploited the gap

8VDI 3682 Part 3: https://www.vdi.de/richtlinien/details/
vdivde-3682-blatt-3-formalisierte-prozessbeschreibungen-xml-repraesentation
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of a missing human-interpretable and machine-readable VDI 3682 format to develop
a concise DSL that supports the modeling of variability for PPR concepts and their
dependencies. For the development of the DSL, we initially used the guideline of Strembeck
and Zdun [191] specifying a concrete and abstract syntax and providing a corresponding
meta-model according to the Meta Object Facility (MOF).9 In subsequent work and
additional publications, we followed more advanced language modeling frameworks (cf.
Section 3.1.2).

Le
ge
nd

Lock

Pipe with Lock

Pipe

- Rate
- Heat

- Heat_range
- Rate_range
- Laser_type

- Type

- Dimension

implements

providesprovides

executes

requires

matches

- Rate
- Heat
- Type
- Dimension

- Heat_range
- Rate_range
- ...

- Heat_range
- Rate_range
- Laser_type

Weld Lock Laserwelding
Robot

Provided Welding
Capability

Laserwelding
Skill

Required Welding
Capability

Product Process Resource

Capability Skill

Figure 1.8: PPR model for a welding process in VDI 3682 [199] notation without (dashed
connection executes) and with Capabilities and Skills (C&Ss), based on Meixner et al.
[135].

Fostering reuse requires decoupling of the production process from resource modeling
regarding the VDI 3682 and proposed DSL. CSBE [58, 93, 149] uses C&Ss. It aims at
decoupling the required capabilities for production processes from the provided capabilities
of production resources. Further decoupling is achieved by instantiating a provided
capability as a skill implementation for a particular resource type. For instance, Figure 1.8
shows a PPR model for a welding process without (dashed connection) and with C&Ss
(depicted as diamonds). In this example, the Pipe and the Lock need to be welded together,
so Welding is a capability that is required by a production process with a certain speed
rate and heat. This required capability can be matched to a group of provided capabilities
that support the ranges of the speed rate and heat. Going further, the provided capability
can be specialized to a Laser Welding capability, which is implemented for a particular
robot arm in the control code. We build on the CSBE concept to describe applications of
CPPS knowledge management and model decoupled reusable PPR assets.

9Meta Object Facility: https://www.omg.org/mof
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1.2.2 SPL Engineering
SPL engineering is founded on mass customization of (software) products utilizing a
shared platform of reusable artifacts with individually configurable features [25, 152].
Pohl et al. [152] introduced the DAE framework (cf. also Figure 1.10) based on a
framework for software construction with components [144, 203] with two life cycles.
The domain engineering cycle focuses on developing “artifacts for reuse”, shared in a
common artifact repository [197]. The application engineering cycle concentrates on the
development “with reusable artifacts” that are instantiated and configured for particular
requirements. This thesis exploits research opportunities within the DAE framework
regarding its application for CPPS engineering.

Within SPL engineering, variability modeling is a crucial activity to capture the common-
alities and differences of the investigated system. Therefore, the research community has
developed various variability modeling methods and models investigated in a plethora of
Systematic Literature Reviews (SLRs), mapping studies, and surveys [5, 8, 24, 29, 156].
The de-facto standard for variability modeling are feature models [86]. Other im-
portant variability modeling approaches are decision models [30, 68], and orthogonal
variability models [152]. These approaches have been refined and extended in the last
decades [29, 156]. More recently, the Universal Variability Language (UVL) [193], a
textual DSL for variability modeling, was developed as a community effort and gained
attention.

shiftfork_product

Barrel

Barrel1_1 Barrel1_2

Screw Jack1 Ring1 O_Ring Fork

Fork3 Fork4 Fork5

Pipe

Pipe8 Pipe3 Pipe2

Lock

Lock1 Lock2 Lock3

Lock1 → Pipe2 ∨ Pipe3 Lock2 → Pipe3Lock3 → Pipe8 Pipe2 ∨ Pipe8 → Barrel1_2

Figure 1.9: Feature model of a shift fork (cf. Section 1.1.1) [137] (cf. also Figure 3.13a).

Feature models Feature models have rooted in the Feature-Oriented Domain Analysis
(FODA) method and elicit commonalities and variable features in a feature tree with
cross-tree constraints, i.e., inclusion and exclusion criteria [86]. Figure 1.9 shows the
feature model of the shift fork product family of the shift fork use case (cf. Section 1.1.1),
conveying the same information as the TCM (cf. Table 1.1) but semantically unambiguous.
The model consists of mandatory features representing product parts required in all
variants, such as a Screw. The model also contains optional features, such as Barrel1_2.
Furthermore, it contains feature groups, such as the alternative Pipe group that allows
selecting only one type of pipe. While feature models are well suited to represent
structural variability, since hierarchy is a key concept in these approaches, they are not
designed to define behavioral variability, i.e., configuration sequences. This also means
that the user guidance during their configuration is relatively low [138], which has been
shown helpful in product configuration [158]. This thesis builds on feature models to
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represent the structural variability of CPPS aspects. At the same time, we exploit the
inability of feature models to represent configuration sequences in this thesis.

ID Question Type Range Card. Visible/Relevant if Constraint/Rule
Pipe Which Pipe type? Enum Pipe2 | Pipe 3 | Pipe8 1:1 false

Lock Which Lock type? Enum Lock1 | Lock2 | Lock3 1:1 false

Lock1 =⇒ Pipe = Pipe2 ∨
Pipe = Pipe3

Lock2 =⇒ Pipe = Pipe3
Lock3 =⇒ Pipe = Pipe 8

Barrel1_2 With Barrel? Boolean true | false Pipe2 ∨ Pipe8

Table 1.2: DOPLER Decision Models (DM) [30] representing the shift fork product
variability.

Decision models Decision models are rooted in the Synthesis method and elicit only
variable decisions in a decision table with their constraints [23]. For instance, the DO-
PLER approach [30] comprises decision models and asset models for defining variability.
With their visibility conditions, they are also capable of describing configuration sequences.
Table 1.2 represents an exemplary DOPLER decision model in tabular representation. A
decision in a decision model consists of a unique ID and a text describing the decision
(usually a Question). These decisions are configured based on the specified Range. For
instance, only one of the three locks can be selected in the enumeration decision Lock.
Constraint/Rule and Visible/Relevant if relationships between decisions spec-
ify (post-)conditions and hierarchical or logical (pre-)conditions defining orders of making
decisions during the configuration. The Visible/Relevant if relationship defines
preconditions that need to be satisfied for the decision to be selectable. For instance,
Barrel1_2 can only be selected if Pipe2 or Pipe8 is selected. These explicit dependencies
among selected decisions reflect a configuration order, which models behavioral variability.
This thesis builds on decision models to represent the behavioral variability of CPPS
aspects.

1.2.3 CPPS and SPL Engineering
The VDI 3695 also introduces a procedure model (cf. Figure 1.10) that defines Project-
independent Activities (PIAs) and Project-Dependent Activities (PDAs) activities that
structure and formalize the engineering process [200]. The VDI 3695 procedure model
originates from the DAE framework. To briefly recap, the PIAs start with a domain
analysis, continue with the planning and realization (engineering) of reusable domain
artifacts, and conclude with reusable, configurable, tested, and approved artifacts. The
PDAs start with the acquisition and requirements elicitation of a CPPS project and
continue with the planning of the CPPS employing and configuring the reusable artifacts,
CPPS realization, and finish with the ramp-up and commissioning of the CPPS for
handover to operations.

Jazdi et al. [83] described the combination of these procedure models and details on
the PIAs for production systems engineering. In their work, Jazdi et al. [83] call for
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Figure 1.10: Domain and Application Engineering (DAE) cycle in SPL and CPPS
engineering [83, 152, 200].

action to adopt and implement research achievements. This adoption includes the SPL
engineering and CPPS engineering domain to gain, beyond others, from the following
SPL capabilities.

C1. Efficient Reuse of assets across various CPPS configurations, leading to significant
efficiency gains in development and maintenance, related to RL1. and RL3..

C2. Adaptability accommodating changes in production requirements, technology ad-
vancements, and market demands more effectively, related to RL3..

C3. Variability Management managing variability in software-intensive systems to
handle the diverse configuration options and production scenarios related to RL1.
and RL3..

C4. Enhanced Quality and Consistency of components reused across CPPS instances,
mitigating the risks of errors and inconsistencies (RL1.–RL3.).

C5. Facilitation of Multidisciplinary Collaboration10 encouraging the collaboration
between engineers from diverse disciplines (RL1.–RL3.).

This thesis considers these SPL capabilities for CPPS engineering as opportunities for
research aiming to provide significant contributions to each of these capabilities adopted
to CPPS engineering.

In the introduction, we reported on the different dimensions of variability in CPPSs
regarding families of products, processes, and resources that together build a multi-
product line [55, 147, 196]. Within the PPR modeling concept, production processes
play a central role [199], similar to production system engineering in general [55, 147].
This type of variability requires modeling preconditions for process steps that need to be
executed subsequently [59].

10The original publications (cf. [83, 152, 197] often use the term “interdisciplinary collaboration”
when referring to the benefits of SPL engineering. To fit the wording of this thesis, we use the term
“multidisciplinary collaboration”.
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Regarding production processes and SPLs approaches, several SLRs report that variability
of process models, such as business processes, are underrepresented in SPL research [156,
59]. Rombach [174] raised integrating software processes and product lines as future work.
Feature models, as single models, are incapable of representing the essential behavioral
variability. However, DOPLER decision models [68, 30] facilitate such constructs via
visibility conditions that we employ to represent the process preconditions. Nevertheless,
existing variability modeling approaches and models focus either on structural OR
behavioral variability. As a result, current approaches are as-is incapable of handling the
combination of different CPPS product families. Consequently, we address the research
gap of missing process configuration support for integrated structural AND behavioral
variability.
The dimensions of CPPS variability entail, among other things, the modularization
of variability models and the separation of concerns between the stakeholders that
model the different families but also the ones that configure them. Holl et al. [78]
reported in an SLR on a plethora of works that address multi-product lines [162, 175]
and multi-view product lines [80, 145]. Staged configuration [26, 108] or multiple levels
of variability models [27, 162], so the subsequent configuration of multiple self-contained
but interdependent variability models is one way to tackle multi-product lines. These
approaches can be combined, for instance, with configuration flows [79, 141, 142] to
coordinate the particular sequence of the variability model configuration. This requires
establishing cross-model constraints to the express dependencies between the variability
models [20]. In this thesis, we pick up the concepts of multi-product and multi-view
families. Therefore, Linsbauer et al. [106] allows propagating feature dependencies
automatically among several feature models. However, to the best of our knowledge,
these works use feature models and do not allow the modeling and configuration of
process sequences within a single variability model. Therefore, this thesis aims to address
the research gap of multi-product and multi-view families with configuration sequences
within one variability model.
For Cyber-Physical System (CPS) and CPPS in particular, several works support multi-
product and multi-view families. Safdar et al. [179] developed a framework for the e CPSs
domain that uses Unified Modeling Language (UML) and Object Constraint Language
(OCL) constraints for variability modeling. Similar to the approaches mentioned in
the previous paragraph, the approach does not support process sequence configuration
presenting a research opportunity.
SysMl v2 is a systems modeling language, currently undergoing finalization, that uses a vi-
sual and textual representation, with its predecessor being a well-established standard[37].
Epp et al. [37] present an approach to use SysML v2 as a modeling language for expressing
the variability of production systems. To this end, they incorporated the concept of
feature models into SysML v2. However, they do not consider behavioral variability as
required for production processes.
In her thesis, Fang [40] developed a multi-product and multi-view approach for the
production systems domain, including the topology of a system, which requires process
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variability. The approach combines a topology and a process to define the dependencies
between the different views. However, they rely on templates for the process models
without the possibility to define the degrees of freedom outside these templates. This
means that only between templates that represent a certain process variability can
be chosen. In contrast, we aim at addressing the degrees of freedom of the production
processes during the configuration.

Fadhlillah et al. [39] developed a multi-product and multi-view variability management
approach for CPPSs. In this approach, engineers can also choose which type of variability
model they want to use for each single product line. However, they concentrate more
on the Business-Architecture-Process-Organization (BAPO) layers of CPPS variability,
considering processes as the configuration workflow for the multi-product configuration,
rather than the PPR approach and production process variability within a single model.
Nevertheless, throughout this thesis, the author of the work and the author of this thesis
closely collaborated.

Summary: Related Work

The related work highlights the foundational frameworks, methodologies, and techniques
in CPPS and SPL engineering, emphasizing their strengths and limitations. These
frameworks already provide essential structures for flexible and efficient production.
However, significant gaps remain, particularly in externalizing engineering knowledge
and propagating it to the different involved engineering disciplines. Furthermore, gaps
remain for modeling the variability of the combined PPR concepts and an integrated
approach for managing knowledge for reuse and variability. This thesis aims to address
these gaps by developing novel approaches and mechanisms that enhance the flexibility,
reconfigurability, and reusability of CPPSs, advancing state-of-the-art in both research
domains.

1.3 Research Goals
By tackling these impediments head-on, CPPS engineers can pave the way for more
efficient, reconfigurable, and sustainable CPPSs that meet the demands of today’s
dynamic manufacturing landscape. This mainly concerns automating the derivation of
production sequences and resource configurations from a product configuration.

From the research lines (RL1.–RL3.), we derive the following research goals (Gx).

G1. PKMO. Design knowledge models aligned with state-of-the-art approaches that
allow modeling various aspects of CPPSs. These models shall provide the foundation
for explicitly capturing and representing CPPSs knowledge and its reuse in CPPS
engineering and operation (RL1.). Furthermore, they shall provide the basis for
the reuse of multidisciplinary knowledge for applications, such as advanced data
analytics and production quality improvement.
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G2. ACEA. Develop models and methods for CPPS engineering applications. These
approaches shall support engineers in iteratively conducting DAE activities based
on the previously designed knowledge models to improve engineering knowledge
coordination and communication (RL2.). Furthermore, models and methods
models shall improve the multidisciplinary collaboration throughout the engineering
process.

G3. IRVM. Establish explicit and systematic knowledge modeling and engineering
applications for selected DAE activities for the PPR concepts utilizing techniques
and technologies from knowledge modeling and management, CPPS engineering,
and SPL engineering for integrated reuse and variability management to facilitate
adaptability and flexibility of CPPSs (RL1.-RL3.).

G4. Prototypical Applications. Implement prototypical applications, as proof of
concept, to validate the knowledge models and engineering applications developed
for reuse and variability management within CPPS engineering (RL1.-RL3.).

G5. Empirical Evaluation. Showcase successful knowledge application through em-
pirical evaluation backed by real-world use cases as a demonstration of the practical
applicability and effectiveness of the approaches providing evidence to support our
assumption of more efficient reuse and variability management for CPPS engineering
(RL1.-RL3.).

1.4 Research Methodology

The research methodology of this thesis follows the iterative Design Science approach [73,
74, 205]. The approach embeds information systems research, and in more general software
engineering research, into a broader framework that includes its related environment and
its foundational knowledge base.

Figure 1.11 shows an instantiation of the Design Science methodology for this thesis. The
design science methodology defines three cycles for conducting research on information
systems: the relevance cycle, the central design cycle, and the rigor cycle [73, 74]. Its
primary goal is to design artifacts that treat a problem in the particular context.

The following section describes the technological rule as an aid to guide the application
of the design science methodology. Furthermore, it describes the Design Science cycles’
activities conducted in the context of this thesis.

1.4.1 Design Science Technological Rule

In information systems and software engineering research, a technological rule captures
the essence of design science [36]. It does so by defining issues based on what stakeholders
demand through interventions in a particular context [36]. Such a generalization shall
help to identify and communicate a research project’s practical impacts [36]. Therefore,
we formulate the following technological rules to guide the application of the design
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Figure 1.11: The applied Design Science approach in the context of this thesis [73, 74, 205].

science methodology for this thesis and relate them to the research lines (RL1.–RL3.)
the VDI 3695 measures (M1.–M5.) and SPL capabilities (C1.–C5.).

Design Science Technological Rule 1. To achieve (situation) in multidisciplinary CPPS
engineering (M5., C5.) (effect) explicit production knowledge modeling (M1., M2.) of
CPPS assets with enhanced quality and consistency (M4., C4.) and improved CPPS
knowledge coordination and communication (M2., M5., C5.), (intervention) apply the
PPR knowledge model, the Product-Process-Resource Domain-Specific Language (PPR–
DSL), and advanced CPPS engineering applications (RL1., RL2.).

For instance, engineers shall be able to express their knowledge of a particular welding
process or a welding robot in a human-readable and machine-interpretable model when
planning a welding work line for car parts. Therefore, they shall be able to follow
a systematic approach to elicit existing knowledge from engineering artifacts of prior
projects. Additionally, the engineers shall be able to suitably communicate the knowledge
of their models to stakeholders of multiple other disciplines. The engineers shall be able
to conduct this task, for instance, with an engineering design pattern.

Design Science Technological Rule 2. To achieve (situation) in multidisciplinary CPPS
engineering (M5., C5.) (effect) efficient reuse and variability management (M3., C1.,
C3.) of CPPS assets with enhanced quality and consistency (M4., C4.), (intervention)
apply the integrated reuse and variability management approach (RL3.) employing the
PPR knowledge model and advanced CPPS engineering applications.

The engineers shall be able to reuse the previously defined models and artifacts efficiently,
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for instance, to reconfigure the work line if new products are required. For example,
engineers shall be able to model the new product, such as an additional shift fork with
a particular welding seam length. Then, they shall be able to reuse an already defined
welding process or robot template and easily “inject” the welding seam length of the shift
fork to get a deployable engineering artifact, such as robot control code.

From these rules, we can derive the particular methodological components for this thesis.

1.4.2 Relevance Cycle
The relevance cycle links the research project’s contextual environment to the activities
of the design cycle [73, 74]. It investigates the business needs and elicits requirements
for research as well as evaluation criteria for the design artifacts [73, 74]. The research
project’s results shall be applied in the context.

Flexible production with reusable assets in CPPS engineering is an ongoing interdisci-
plinary topic in research and the industry [10, 40, 58, 84, 104]. The thesis is based on
investigating CPPS engineering in the context of the long-running research project CDL
SQI with several industry partners. Identified stakeholders relevant to this thesis on an
organizational level are manufacturing or factory automation companies and CPPS tool
providers.

We elicited challenges, requirements, and evaluation criteria from several industry partners
and their use cases. These activities were conducted in continuous meetings and multiple
workshops over several years that the author of this thesis endeavored and actively led.
These industry partners have designed and engineered CPPSs or have aimed to provide
information and engineering systems to individual stakeholders, such as product and
CPPS planners, CPPS engineers, and production process optimizers. They require
techniques and tools to tackle the inherent issue of implicit knowledge, knowledge reuse,
and variability management with subsequent configuration. Existing techniques and
technologies are tools and information systems for CPPS engineering, variant modeling,
component libraries, and internal best practices for artifact reuse. However, these
techniques and technologies often have limited capabilities that must be extended.

Furthermore, we verified, discussed, and investigated the identified challenges, require-
ments, and evaluation criteria with partners from research collaborations (cf. Feichtinger
et al. [49, 50]). These collaborations partially existed in the research group or were proac-
tively established by the author throughout this thesis in several meetings, workshops,
or conferences. Additionally, to further gather an overview of research publications, the
author of this thesis initiated and conducted a concise literature survey with authors from
several research initiatives [58].

1.4.3 Rigor Cycle
The rigor cycle links the knowledge base of the research project’s scientific fields to
the activities of the design cycle [73, 74]. The knowledge base provides the theoretical
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foundations and research methodologies to conduct the research project rigorously [73, 74].
The research project’s results add to the knowledge base via dissemination, including the
publication of research data, presentations, workshops, conference sessions, papers, and
this thesis.

This research project aims to support CPPS engineering through efficient reuse and
variability management with explicit knowledge management. To this end, the relevant
research fields concern CPPS Engineering, SPL Engineering, and MBSE integrating
their foundations and methodologies. Hence, the thesis aims to utilize methods and
techniques established in these communities. In particular, it utilizes frameworks and
methods from CPPS engineering, such as VDI 3695, VDI 3682, and CSBE. Furthermore,
it employs state-of-the-art feature and decision models from SPL engineering, as proposed
in, for instance, Galster et al. [59], Raatikainen et al. [156], and model-based artifact
transformations and agile methods from software engineering. To evaluate the design
artifacts, we aimed to apply methodologies from empirical software engineering [52, 214],
such as systematic literature reviews, conceptual modeling, and qualitative and mixed
methods.

We worked with external and international researchers and domain experts to achieve
distinguished research results and validate the methods and techniques. These activi-
ties aimed at exchanging our ideas and gathering feedback, for instance, on scientific
conferences. There, the author of this thesis acted as a special session and workshop
organizer in a leading role to foster research dissemination. Furthermore, we collaborated
with research organizations that investigate complementary challenges and can provide
orthogonal approaches where the author took over the conceptual planning and overview.

1.4.4 Design Cycle
Two pivotal research activities in the design cycle are conducted iteratively. The artifact
design to improve a problem in a particular context, and the artifact evaluation to evaluate
and validate the artifacts in this context [73, 74]. Together, they aim to provide short
feedback loops to stakeholders from the environment to further refine the design [73, 74].

Artifact Design

The design activity creates purposeful artifacts that aim to solve significant problems
in the environment [73, 74]. These artifacts are not fully mature systems ready for
use but represent new ideas in concepts, models, methods, and techniques [73, 74].
They shall support the analysis, design, implementation, and utilization of information
systems [73, 74].

We designed a set of artifacts comprising concepts for explicit knowledge management
that support reuse and variability management methods and techniques. Furthermore, we
designed and developed prototypical applications as a proof of concept for the approaches.
Some of the most important artifacts are listed below following the research lines (RL1.–
RL3.) and related to the VDI 3695 measures (M2.–M5.) and SPL capabilities (C1.–C5.).
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A1.1. A CPPS engineering knowledge model, that the author developed and implemented,
based on the VDI 3682 guideline supporting reuse and variability management.
With such a knowledge model, we provide an engineering knowledge representation
of the PPR approach [181] and establish the basis for reusable CPPS assets (M1.,
M3., M5., C5.).

A1.2. A human-understandable and machine-interpretable DSL for the CPPS knowledge
model, where the author led the design and implementation process. Such a
DSL provides the measures to explicitly define CPPS engineering knowledge with
variability of domain experts from different disciplines over the CPPS lifecycle (M1.,
M3., M5., C5., C3.).

A2.1. A model for advanced CPPS engineering applications on CPPS assets with their
dependencies to other assets, their characteristics, and data that the author devel-
oped (M2., M1., M3., M5., C5.). Such a model provides the foundation for iterative
and traceable modeling in an engineering graph by identifying assets suitable for
reuse.

A2.2. An integration of C&S-based concepts [93, 149] into the knowledge model for im-
proved CPPS asset reusability that the author pursued (M2., C1.). The integration
shall facilitate the loose coupling of processes and resources, making it easier to
redesign in the engineering phase and reschedule during operation (M1., M3., M5.,
C5.).

A2.3. A CPPS reference model for the domain and its asset types to facilitate the
identification of engineering design patterns for the reuse of components from assets
(M2., M1., M3., M5.) that the author designed and established. Such a reference
model shall guide CPPS engineers in finding and delimiting a cumulation of assets
that can be reused as building blocks during engineering and operation, also serving
improved coordination and communication. The development comprises the means
to derive an engineering graph from the reference model as a foundation for advanced
method integration, such as quality assurance or process optimization.

A2.4. A systematic method for C&S reuse activities over the CPPS engineering lifecycle
aligned with DAE. The method is supported by loosely coupling PPR, in particular,
production processes and resources with C&S (M2., M1., M5.) that the author
created. This method shall guide engineers in how to elicit, organize, reuse, and
configure reusable PPR assets from CPPS artifacts loose coupling with C&S a
foundation for more efficient knowledge reuse.

A3.1. Mapping rules and model transformations from the CPPS model to state-of-the-art
variability models (M1., M3., C1., C3.), where the author provided the domain-
specific foundation. Such rules and transformations build the foundation to support
engineers in their discipline while modeling and validating the variability in well-
established models.

A3.2. Documented and modeled industrial use cases from the CPPS domain, including
their variability, as a foundation for empirical evaluations of the different approaches
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that the author elicited, modeled, and documented. Furthermore, the use cases
shall act as a possible baseline for the research community in the mind of open
science and research reproducibility.

A3.3. An iterative integrated approach to reuse, configure, and validate CPPS assets and
their dependencies, in particular, to configure products, explore the sequence of
required production processes as a source of significant complexity, and configure
production resources in CPPSs engineering (M2., M1., M3., M5., C1., C3., C5.)
that the author designed and developed cooperating with a research partner.

A3.4. A toolchain for integrated reuse and variability management method and gener-
ate engineering artifacts from configurations while maintaining the separation of
concerns between CPPS engineers and the engineering lifecycles (M2., M1., M3.,
M5., C1., C3., C5.), where the author supervised the conceptual design and led the
development and implementation.

Artifact Evaluation

In the evaluation activity, the designed artifacts shall be evaluated, for example, for
functionality, quality, and efficacy. The methodologies employed shall be founded in the
scientific knowledge base and range from conceptual to more sophisticated evaluations [73,
74]. To this end, the evaluation of the artifacts shall provide empirical evidence to support
the hypothesis raised for this thesis.

We utilized the following evaluation methodologies for the design artifacts in this activity
to showcase successful knowledge applications.

• Rigorous domain analyses. with stakeholders from the CPPS domain for insights
into the particular requirements and challenges within the field. This analysis
should ensure a thorough understanding of the context based on industrial use
cases [75, 187].

• Engineering and internal validation. Iterative engineering of the design artifacts
with internal validations in the research team and researchers from collaborations.

• Empirical studies. Utilization of empirical studies, such as Model and quality checks
utilizing and investigating the developed artifacts to provide empirical evidence
of their efficacy and utility [52, 214]; Case studies. Application of the developed
artifacts in multiple real-world case studies to assess their efficacy and utility across
diverse scenarios, validating their applicability and robustness [177, 214]; and A user
study in a lab setting with domain experts to investigate how they use the artifacts
and receive feedback for iterative improvements and enhancements [52, 184].

1.4.5 Research Questions
The thesis explores how to improve CPPS engineering through models, methods, and
techniques founded in the relevant scientific fields. In particular, it investigates: (1) Ex-
plicit knowledge modeling through a PPR knowledge model with a corresponding DSL.
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(2) Advanced CPPS engineering applications for coordination and communication. These
applications shall utilize a knowledge model for connected engineering assets and a
reference model for identifying engineering design patterns. (3) An integrated approach
for reuse and variability management to manage the variability of reusable artifacts
of CPPS engineering as the foundation for efficient reuse. To this end, we derive the
following research questions.

RQ1. Production knowledge model for CPPS engineering. What production knowledge
model effectively captures the fundamental PPR aspects and their inherent vari-
ability and what techniques help express these aspects to facilitate knowledge
externalization by engineers in multiple interacting domains?

RQ2. Knowledge management for advanced CPPS engineering applications. What knowl-
edge management model, CPPS reference model, and design patterns for advanced
CPPS engineering applications effectively organize and integrate CPPS assets
and artifacts, their dependencies, and data to facilitate traceable engineering and
knowledge coordination, serving as a foundation for systematic and effective asset
reuse?

RQ3. CPPS family reuse and variability management. What is an effective and efficient
approach for reuse and variability management that accurately represents the
structural and behavioral variability inherent in assets of CPPS families, and how
can such an approach guide engineers in modeling reusable artifacts to derive valid
CPPS configurations and artifacts?

1.4.6 Research Contributions
This section presents the main contributions of the thesis, addressing the identified
challenges in CPPS engineering (CH1.–CH3.). It highlights advancements in knowledge
modeling, engineering applications, and integrated reuse and variability management
approaches, aiming to enhance effectiveness and efficiency in CPPS design. To this end, we
seek to empower CPPS engineers with the means to facilitate knowledge externalization
and communication across disciplines. These means should provide the foundation for
reusable CPPS artifacts with their variability, fostering innovation and agility. The main
contributions of this thesis, in brief, are:

CO1. A production knowledge model for CPPS engineering and operation: Development
of a comprehensive production knowledge model for CPPS engineering and oper-
ation, capturing the essential aspects of PPR extended for reuse and variability
management. A DSL for CPPS engineering and operation: Development of a
human-readable and machine-interpretable DSL based on the knowledge model
that enables engineers to define CPPS engineering knowledge explicitly. This
contribution relates to RQ1. and comprises design artifacts A1.1. and A1.2..

CO2. A knowledge model for advanced CPPS engineering applications: Development
of an extended production knowledge model as a foundation for coordination
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and communication of multidisciplinary engineering knowledge. A knowledge
management approach for advanced CPPS engineering applications: Development
of a systematic approach for CPPS asset reuse providing a reference model for CPPS
engineers with a blueprint for engineering design patterns facilitating communication
and collaboration across multiple disciplines. A systematic method for C&S reuse:
Development of a method for CPPS engineering structured as DAE activities for
eliciting, developing, and configure reusable PPR assets with C&S for loose coupling
fostering efficient knowledge reuse This contribution relates to RQ2. and comprises
design artifacts A2.1. to A2.4..

CO3. An integrated reuse and variability management approach: Design and implement
an iterative, integrated approach for variability management of assets for CPPS
families. This approach shall enable engineers to design PPR model and configure
products, explore production process sequences, and configure production resources
efficiently and validated as a foundation for artifact generation. This development
entails the creation of mappings for an integration of the CPPS knowledge model
with state-of-the-art variability models, such as feature models and decision models.
This contribution relates to RQ3. and comprises design artifacts A3.1. to A3.4..

1.5 Outline
Chapter 1 introduced the context of the thesis regarding engineering CPPS to manu-
facture product families flexibly and the necessity of systematic reuse and variability
management. Furthermore, the chapter presented the shift fork and rocker switch use
cases for illustrative purposes to better explain the traditional approach of CPPS en-
gineering. Then, the chapter introduced the research goals and the employed research
methodology, including the research questions and design artifacts.

Chapter 2 gives a synopsis of the ten core publications contributing to this cumula-
tive thesis grouped by the three research lines (RL.1) Production Knowledge Models,
(RL.2) Advanced CPPS Engineering Applications, and (RL.3) IRVM for CPPS engineer-
ing. To this end, the publications are first presented chronologically in a table showing
the corresponding venue, the author’s position, and the research questions the particular
publication aims to answer. Then, the chapter summarizes each publication and its
contributions.

Chapter 3 discusses the scientific contributions of the thesis author, grouped by the
research lines. The chapter, first, presents production knowledge models that structure
the CPPS domain knowledge for representing PPR aspects with variability. Subsequently,
it presents the PPR–DSL for externalizing CPPS engineering knowledge. Second, the
chapter introduces advanced CPPS engineering applications. These provide means
to structure the externalized knowledge with a reference model, communicate it via
engineering design patterns, and systematically reuse engineering artifacts along the
DAE activities with PPR and C&S. Third, the chapter discusses integrated reuse and
variability management for CPPS engineering as a semi-automated, systematic, and
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integrated approach to managing the variability of reusable artifacts of CPPS families as
a foundation for efficient reuse.

Chapter 4 discusses and concludes the thesis regarding the research results and outcome.
The discussion includes the uptake of the research by other researchers, industry partners,
and the CPPS engineering and SPL communities. Furthermore, the section presents
future work based on the limitations of the approaches and opportunities for research.

Chapter 5 presents the ten core publications contributing to this cumulative thesis,
grouped by the research lines. Furthermore, is presents a table with additional publications
composed throughout this thesis.
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CHAPTER 2
Synopsis of Publications

This chapter provides the synopsis of the ten publications that form this cumulative
thesis and their relation. Table 2.1 lists these publications chronologically with their
reference number, title, and year. Furthermore, it denotes the author’s position and the
research questions to which the particular publication contributes.

Throughout this thesis, we approached the issue of providing means and methods for
explicit knowledge modeling and advanced applications for knowledge modeling for CPPSs
from several perspectives. Furthermore, we focused on efficient reuse and variability
management for multidisciplinary engineering of CPPS families in particular. The
synopsis of the publications is grouped into the three main themes of the thesis: PKMO,
ACEA, and IRVM.

Additionally, Table 2.2 shows a different view on the core publications regarding the
research lines, design artifacts, and targeted VDI 3695 measures and SPL capabilities.
The table lists the research lines mapped to the design artifacts in the first and second
columns. Artifact A0.0 represents the overall idea of the thesis contributions supported
by two publications. The third column shows the VDI 3695 measures and SPL capabilities
that the design artifact supports. The last column shows the core thesis references that
contributed to the particular research line and design artifact.

2.1 Production Knowledge Models
This section summarizes the author’s relevant publications for this thesis regarding the
overall idea of integrated variability management for CPPS engineering. First, we utilized
the standard VDI 3682 model for PPR aspects introducing the variability management.
Furthermore, we suggest a superimposed model and the corresponding architecture for
an industrial information system that supports this integrated approach. Based on this
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Ref# Title Venue Year Author RQ1. RQ2. RQ3.

#01 [118] “Towards modeling variability of
products, processes and resources
in cyber-physical production sys-
tems engineering”

SPLC 2019 1st × × ×

#02 [117] “Integrating Variability Modeling
of Products, Processes, and Re-
sources in Cyber-Physical Pro-
duction Systems Engineering”

SPLC 2020 1st × × ×

#03 [43] “Variability Transformation from
Industrial Engineering Artifacts:
An Example in the Cyber-
Physical Production Systems Do-
main”

SPLC 2020 2nd × ×

#04 [129] “Patterns for Reuse in Produc-
tion Systems Engineering”

SEKE 2021 1st × ×

#05 [127] “A reusable set of real-world prod-
uct line case studies for compar-
ing variability models in research
and practice”

SPLC 2021 1st × ×

#06 [130] “A Domain-Specific Language for
Product-Process-Resource Model-
ing”

ETFA 2021 1st × ×

#07 [128] “Patterns for Reuse in Produc-
tion Systems Engineering”

IJSEKE 2021 1st × ×

#08 [132] “Efficient Production Process
Variability Exploration”

VaMoS 2022 1st ×

#09 [135] “Organizing reuse for production
systems engineering with capabil-
ities and skills”

AT 2023 1st × ×

#10 [137] “Variability Modeling of Prod-
ucts, Processes, and Resources in
Cyber-Physical Production Sys-
tems Engineering”

JSS 2023 1st ×

Table 2.1: Chronological list of core publications part of the thesis.

idea, the section further presents a production knowledge model for CPPS engineering
and operations based on the VDI 3682 and a DSL.

In the publication “Towards Modeling Variability of Products, Processes, and
Resources in Cyber-Physical Production Systems Engineering” [118], we con-
ducted the first rigorous domain analysis with an industry partner, a system integrator of
automation for high-performance CPPS. This publication identified essential aspects of
CPPS engineering that challenge reuse and variability management methods. In particu-
lar, we identified (i) the multidisciplinary roles, requirements, models, and dependencies
of the CPPS engineering domain, (ii) the heterogeneity of CPPS engineering artifacts,
(iii) the limited usability of available tools for reuse and variability management, and
(iv) the evolution of the products and the impact on the interdependent CPPS design.
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Research
Line Description Measures & Capabilities Reference

A0.0 – Overall idea M1., M2., M3., M4., M5.,
C1., C2., C3., C4., C5.

[118, 117]

PKMO A1.1. – VDI 3682-based CPPS knowl-
edge model with variability modeling
support

M1., M2., M3., M5., C1.,
C2., C3., C5.

[118, 117, 130]

PKMO A1.2. – Human- & machine-readable
DSL for the CPPS knowledge model

M1., M2., M3., M4., M5.,
C1., C2., C3., C4., C5.

[130]

ACEA A2.1. – Model for advanced CPPS en-
gineering applications with asset depen-
dencies

M1., M2., M3., M5., C1.,
C2., C5.

[128, 129]

ACEA A2.2. – Integration of C&S-based con-
cepts into the knowledge model for
CPPS asset reuse

M1., M2., M3., M5., C1.,
C2., C5.

[128, 129]

ACEA A2.3. – CPPS reference model for
reusable engineering design patterns
and component reuse

M2., M3., M4., M5., C1.,
C2., C4., C5.

[128, 129]

ACEA A2.4. – Systematic method for C&S
reuse activities for loose coupling of
PPR concepts

M2., M3., M4., M5., C1.,
C2., C4., C5.

[135]

IRVM A3.1. – Model mapping rules and
transformations to state-of-the-art vari-
ability models

M1., M3., M5., C1., C3., C5. [43]

IRVM A3.2. – Industrial use cases for empir-
ical evaluation and open science

M1., M3., M4., C1., C3., C4. [127]

IRVM A3.3. – Integrated approach for reusing
and configuringCPPS assets with pro-
cess variability

M1., M2., M3., M4., M5.,
C1., C2., C3., C4., C5.

[132, 137]

IRVM A3.4. – Toolchain for integrated reuse
and variability management approach

M1., M2., M3., M4., M5.,
C1., C2., C3., C4., C5.

[137]

Table 2.2: Research lines and artifacts mapped to CPPS measures and SPL capabilities
with core thesis references.

Furthermore, we investigated how to extend the established knowledge model of the
industry guideline VDI 3682 [199] that represents the core assets, i.e., PPR, to address
these challenges. As a first idea, we proposed (i) a superimposed knowledge model for
the PPR approach and (ii) an integrated reuse and variability management approach
utilizing orthogonal variability models to the PPR model, (iii) including an architecture
draft to model and manage PPR variants. We conceptually evaluated the knowledge
model with the rocker switch use case (cf. Section 1.1.1) with domain experts from an
industry partner. To this end, the publication contributed a feasible knowledge model
and an integrated framework for reuse and variability management for CPPS engineering,
which we iteratively refined throughout the thesis.

This publication contributes to RQ1., RQ2., and RQ3.. It addresses the VDI 3695
measures of models and description languages M1., knowledge management M2., re-use
M3., quality assurance M4., integration and seamless cooperation of disciplines M5., and
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the SPL capabilities efficient reuse C1., adaptability C2., variability management C3.,
enhanced quality and consistency C4., and facilitation of multidisciplinary collaboration
C5..
In “Integrating Variability Modeling of Products, Processes, and Resources
in Cyber-Physical Production Systems Engineering” [117], a doctoral symposium
publication, we further analyzed the rocker switch use case (cf. Section 1.1.1). In this
publication, we raised the fundamental challenge of the sequential variability of production
processes, which imposes an additional element of complexity. We advanced the knowledge
model toward representing production process dependencies in a precedence graph to
restrict their potential variability. Furthermore, we argued that current variability
modeling approaches treat structural and behavioral variability separately, leading to an
inaccurate CPPS model. We also stressed the weak understanding of change impacts
in the product portfolio on CPPS production process properties requiring a more agile
and iterative process. The publication provided the fundamental insight that combining
structural and behavioral variability is necessary. It could only be achieved by integrating
different types of variability models to utilize their particular benefits, such as visibility
conditions for sequential configuration. Furthermore, the publication sketched a research
agenda for planning the artifacts and publications of the thesis.
This publication contributes to RQ1., RQ2., and RQ3. by addressing the VDI 3695
measures of models and description languages M1., knowledge management M2., re-use
M3., quality assurance M4., integration and seamless cooperation of disciplines M5., and
the SPL capabilities efficient reuse C1., adaptability C2., variability management C3.,
enhanced quality and consistency C4., and facilitation of multidisciplinary collaboration
C5..
In the publication “A Domain-Specific Language for Product-Process-Resource
Modeling” [123], we presented an extension of a work-in-progress publication [130].
This extension included the conceptual design for an engineering knowledge model based
on the VDI 3682 guideline [199]. The model aimed to represent PPR aspects of CPPSs
along with their associated constraints in a comprehensive syntax. To develop this
model, we identified requirements in workshops with domain experts from an industry
partner in discrete manufacturing. Furthermore, we designed and prototyped a DSL that
implements this knowledge model. Additionally, we presented a mechanism to map and
evaluate the constraints. This mechanism utilizes advanced SQL queries and supports
well-established database technologies used in the industry. We conceptually evaluated
the PPR–DSL with the rocker switch use case (cf. Section 1.1.1), demonstrating the
DSL’s capability to represent the functional aspects of CPPS and specify and assess
constraints. Furthermore, we measured the performance of the constraints evaluation
mechanism using a programmatic approach. Additionally, we conducted a workshop and
interviews with domain experts from CPPS engineering for iterative improvements. The
knowledge model and DSL were iteratively refined and used in several core publications,
as can be seen in Figure 3.1 and multiple further publications.
This publication contributes to RQ1. and RQ3. by addressing the VDI 3695 measures
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of models and description languages M1., knowledge management M2., re-use M3., quality
assurance M4., integration and seamless cooperation of disciplines M5., and the SPL
capabilities efficient reuse C1., adaptability C2., variability management C3., enhanced
quality and consistency C4., and facilitation of multidisciplinary collaboration C5..

2.2 Advanced CPPS Engineering Applications
The previous section presented publications concerning the PPR production knowledge
model for CPPS engineering and operation. This knowledge model aimed particularly at
integrating production processes with the PPR approach and variability modeling. This
section discusses publications that cover the advancements of this knowledge model and
advanced engineering methods for CPPS engineering based on this knowledge model.

In “Patterns for Reuse in Production Systems Engineering” [129], we extended a
domain analysis from Meixner et al. [125]. This extension aimed at eliciting requirements
for representing PPR assets and their dependencies in an engineering knowledge graph. We
introduced the Industry 4.0 Asset Network (I4AN) concept and provided a concrete meta-
model for the I4AN. The meta-model included multidisciplinary dependencies between
different PPR assets stemming from multiple engineering disciplines. Furthermore, we
introduced boundary objects, which help distinguish between closely related assets, their
values, and dependencies. These objects allowed us to build a group of linked assets,
serving as a foundation for reusable CPPS components, similar to component concepts in
software engineering. The asset groups in the reference architecture can expose regularly
recurring connected CPPS assets within CPPS engineering. Inspired by design patterns
from software engineering, we motivated the implementation of reuse patterns specifically
for CPPS engineering. To this end, we presented four basic patterns for reuse engineering.
These patterns aimed to improve the creation of concrete patterns that enhance reuse
maturity and efficiency. To evaluate the I4AN concept and model, we conducted a
conceptual feasibility study with a use case from the domain analysis. The evaluation
indicated that the I4AN model satisfies the elicited requirements and enables CPPS
engineers to identify patterns for reuse in their disciplines. We further refined the concepts
of the publication in [129].

This publication contributes to RQ1., RQ2. by addressing the VDI 3695 measures of
models and description languages M1., knowledge management M2., re-use M3., quality
assurance M4., integration and seamless cooperation of disciplines M5., and the SPL
capabilities efficient reuse C1., adaptability C2., enhanced quality and consistency C4.,
and facilitation of multidisciplinary collaboration C5..

The publication “Patterns for Reuse in Production Systems Engineering” [128]
extended the previous publication [129], sharing the same name, in the “International
Journal for Software Engineering and Knowledge Engineering”. In this publication, we
extended the previously developed meta-model with C&Ss for improved loose coupling
between production processes and resources. Furthermore, we refined the dependency
representation with technical and functional links from CPPS engineering. Additionally,
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we added trace links for improved coordination between the engineering disciplines.
Finally, we defined a reference model for the CPPSs domain as recommended in the
analysis activity of Domain and Application Engineering (DAE) [152]. In the context of
Production Systems Engineering (PSE), reference models formally describe engineering
knowledge, serving as a common foundation for communication [200]. The reference
model provides an abstract representation of engineering elements in the I4AN required
to represent typical CPPS designs. We designed and implemented the approach with a
prototype based on a well-established graph database that can create and query the I4AN
as an engineering graph. Additionally, we examined the approach with the prototype
and a feasibility study from the real world. The concepts of the publication were further
refined and used in several publications, such as [13, 15, 17, 134, 211], which use the
meta-model and reference architecture as a significant building block.

This publication contributes to RQ1. and RQ2. by addressing the VDI 3695 measures
of models and description languages M1., knowledge management M2., re-use M3., quality
assurance M4., integration and seamless cooperation of disciplines M5., and the SPL
capabilities efficient reuse C1., adaptability C2., enhanced quality and consistency C4.,
and facilitation of multidisciplinary collaboration C5..

The publication “Organizing reuse for production systems engineering with
capabilities and skills” [135] picked up our previous approach of reusing PPR models
with capabilities [125]. In the publication, we proposed the Capability and Skill Reuse
(CSR) framework based on DAE [152]. Therefore, we categorized requirements from a
concise literature survey that we conducted [58] into the four groups capability description,
capability and skill selection, skill implementation time, and skill run time. Based on
these categories, we investigated how DAE activities need to be conducted to elicit PPR
models and C&Ss from engineering artifacts and models to establish a reuse lifecycle.
From this investigation, we proposed the CSR framework and detailed how PPR and
C&Ss can be used for every DAE activity. We discussed the CSR framework compared
to the traditional approach of CPPS engineering and linked them to categorized benefits
from the survey [58].

This publication contributes to RQ2. and RQ3. by addressing the VDI 3695 measures
of knowledge management M2., re-use M3., quality assurance M4., integration and
seamless cooperation of disciplines M5., and the SPL capabilities efficient reuse C1.,
adaptability C2., enhanced quality and consistency C4., and facilitation of multidisciplinary
collaboration C5..

2.3 Integrated Reuse and Variability Management for
CPPS Engineering

The prior sections have introduced several publications covering the integrated reuse
and variability management approach. In particular, these are Meixner et al. [118] and
Meixner [117] that identified fundamental challenges and proposed extending the VDI 3682
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knowledge model [199]. Furthermore these publications motivated combining different
variability models to use their particular strengths, for instance, using decision models
for production process sequence configuration. This section presents the publications
that cover primarily integrated reuse and variability management approaches.

In “Variability Transformation from Industrial Engineering Artifacts: An
Example in the Cyber-Physical Production Systems Domain” [43], we stressed
the need for model transformations from engineering artifacts with variability to well-
established variability models. This method aimed to address the challenge of scattered
and implicit knowledge distributed across various disciplines. To address this requirement,
we introduced the Variability Evolution Roundtrip Transformation (VERT) process for
iterative round-trip transformation process for custom-developed engineering variability
artifacts. The approach allows engineers to transform such engineering artifacts to a
feature model, evolve and optimize the model and transform it back to the original
engineering artifacts. Building on a recently developed transformation approach, we
developed model mappings from PPR model representations to feature models. We
evaluated the feasibility of the process using a real-world use case from an industry partner.
To strengthen our study’s rigor and further refine our approaches, we interviewed domain
experts and reflect on lessons learned regarding our approach.

This publication contributes to RQ1. and RQ3. by addressing the VDI 3695 measures of
models and description languages M1., re-use M3., integration and seamless cooperation
of disciplines M5., and the SPL capabilities efficient reuse C1., variability management
C3., and facilitation of multidisciplinary collaboration C5..

The publication “A reusable set of real-world product line case studies for
comparing variability models in research and practice” [127] aimed at comparable
evaluations and empirical studies for variability modeling for CPPS engineering. To
this end, the publication presented four iteratively developed reusable real-world case
studies describing variability in CPPSs, which are otherwise often not accessible.1 The
use cases were first modeled in the PPR–DSL, previously developed in Meixner et al.
[123]. Then, we automatically transformed these artifacts to well-known variability
models, for example, the Product Feature Models (FM), with TRAVART transformation
operations [46], based on the previously developed transformations [43]. We evaluated
the completeness and expressiveness of the transformed variability models compared
to the PPR models. The results indicated that the models’ content and variability
can be fully transformed into feature models. The four use case studies were added
to the ESPLA catalog, a collaborative catalog of case studies for software product line
adoption.5 Furthermore, the case studies were used in several successive publications as
a foundation for evaluation, such as [132, 137].

This publication contributes to RQ1. and RQ3. by addressing the VDI 3695 measures
of models and description languages M1., re-use M3., quality assurance M4., and the SPL

1GitHub Repository: https://github.com/tuw-qse/cpps-var-case-studies
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capabilities efficient reuse C1., variability management C3., and enhanced quality and
consistency C4..

In “Efficient Production Process Variability Exploration” [132], we presented
the Iterative Process Sequence Exploration (IPSE) approach. The approach comprises
a process that captures CPPS DAE knowledge in PPR–DSL models and transforms
them to a structural Product FM and behavioral production Process DM. Furthermore,
the approach establishes a configuration process that reduces the configuration space
of the production processes based on the product configuration. In subsequent steps,
the approach allows the exploration of the production process sequences in a decision
model. For production process sequence design, the approach is the first to combine
configurable structural and behavioral variability required for CPPS design. The approach
was complemented with a prototype based on state-of-the-art technology. We evaluated
the approach in the feasibility study on a manufacturing work line from automotive
production and compared it with the traditional approach of process sequence planning.

This publication contributes to RQ3. by addressing the VDI 3695 measures of models
and description languages M1., knowledge management M2., re-use M3., quality assurance
M4., integration and seamless cooperation of disciplines M5., and the SPL capabilities
efficient reuse C1., adaptability C2., variability management C3., enhanced quality and
consistency C4., and facilitation of multidisciplinary collaboration C5..

In the publication “Variability Modeling of Products, Processes, and Resources
in Cyber-Physical Production Systems Engineering” [137], we extend our work [132]
towards (i) additional process steps for production resource definition in the PPR–DSL,
(ii) transformations to a Resource FM, (iii) its reduction and configuration, (iv) the gener-
ation of CPPS artifacts, (v) and feedback loops for iterative CPPS design. Furthermore,
we improved the prototype to evaluate the feasibility of the approach, extending it with
(i) concrete transformations of the PPR–DSL into a Resource FM and Cross-Discipline
Constraints (CDCs) and to elicit the dependencies from the different variability models,
(ii) a novel DM editor for modeling and configuring DOPLER decision models, that in
this context allows representing and configuring production process sequences, (iii) an
automated reduction of the possible production process DM configuration based on the
product configuration to lower the complexity of production process sequence configura-
tion (iv) support for resource configuration, and (v) IEC 61499 artifact generation to
automate the creation of control software based on the PPR configuration. To empirically
evaluate the approach, we investigated the approach’s feasibility of selecting adequate
CPPS variants in the four previously developed case studies [127]. We also applied the
approach in a new case study with engineers from heterogeneous backgrounds. The
publication presents the first exploration of the combined utilization of feature and
decision models for configuring CPPSs and creating CPPS artifacts.

This publication contributes to RQ3. by addressing the VDI 3695 measures of models
and description languages M1., knowledge management M2., re-use M3., quality assurance
M4., integration and seamless cooperation of disciplines M5., and the SPL capabilities
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efficient reuse C1., adaptability C2., variability management C3., enhanced quality and
consistency C4., and facilitation of multidisciplinary collaboration C5..

2.3.1 Summary: Synopsis of Publications
The publications contributing to this cumulative thesis are grouped into the three
main research lines (i) Production Knowledge Models, (ii) Advanced CPPS Engineering
Applications, and (iii) Integrated Reuse and Variability Management for CPPS engineering.
The ten publications comprising this cumulative thesis support the research questions in
the following way (cf. Table 2.1).

Two publications [117, 118] introduced the overall ideas of the thesis shaping the research
questions (RQ1.–RQ3.) and presenting first ideas. In addition to those publications, five
publications address RQ1.. Three publications, specifically, develop, extend, and evaluate
the PPR production knowledge model with variability and establishing a corresponding
DSL [43, 127, 130]. Two publications advance the knowledge model for coordination and
communication towards engineering patterns in an I4AN [128, 129].

Beyond the two initial publications, three publications address RQ2.. Two publications
develop the I4AN reference model for identifying engineering design patterns [128, 129].
One publication supports the research question with a systematic approach for eliciting
and developing reusable PPR models supported by C&Ss [135].

On top of the two initial publications, six publications address RQ3.. One publication
investigated transforming industrial engineering artifacts with variability to state-of-the-
art variability models to gather insights on product and process variability [43]. One
publication extended the VDI 3682 knowledge model towards a knowledge model for PPR
variability modeling in a textual DSL with constraint evaluation [130]. One publication
established the transformation of the PPR–DSL to state-of-the-art variability models,
including product and resource feature models and process decision models [43]. Two
publications comprise the IPSE and Extended Iterative Process Sequence Exploration
(EIPSE) approach [132, 137] for model transformations from the PPR model to feature
and decision models. Furthermore, it allows a reduction of subsequent configurations
of a Product FM, a Process DM, and a Resource FM. Additionally, it includes the
development of a decision model editor and a generation of parameterized IEC 61499
control code artifacts, with a rigorous empirical evaluation.

The publications of this thesis provide methodologies, models, and tools for efficient reuse
and variability management for CPPSs families.

These approaches allow explicit production knowledge modeling via the PPR knowledge
model and PPR–DSL. This includes the inherent variability of products, production
processes, and production resources to address the different dimensions of CPPSs families.

Furthermore, the approaches enable knowledge exchange via engineering design patterns
and systematic reuse of engineering artifacts. This enables creating parameterizable
and reusable artifacts that foster DAE in the CPPS lifecycle supporting CPPS families.
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Engineering artifacts from prior projects can be elicited, developed toward PPR models
loosely coupled with C&Ss, and validated using the CSR approach.

The integrated reuse and variability management approach for CPPS engineering allows
the modeling of CPPS knowledge and allows the subsequent configuration of interdepen-
dent products, processes, and resources. This is based on transformations from the CPPS
models to feature and decision models and includes, as a showcase, engineering artifact
generation with resource control code. The empirical evaluation of the approach in a lab
user study with domain experts indicates that the approach lowers engineering expert
effort. It also creates suitably reusable engineering models for improved reproducibility
and handover to other engineering disciplines.
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CHAPTER 3
Scientific Contributions

This chapter presents the scientific contributions of the thesis project. The contributions
forming the core of this thesis project are grouped along the three main research lines
introduced in Chapter 1. First, the research line Production Knowledge Models (PKMO)
provides foundational knowledge models and techniques to make implicit multidisciplinary
production engineering knowledge with variability explicit. Then, the research line
Advanced CPPS Engineering Applications (ACEA) describes methods and models for
engineers to reuse multidisciplinary production engineering knowledge systematically
with reference models and design patterns. Finally, the research line Integrated Reuse
and Variability Management (IRVM) integrates SPL techniques with CPPS engineering
to manage the variability of CPPS families. This research line particularly considers
production process sequences and maintaining the separation of concerns from the
different engineering disciplines.

For better visualization, Figure 3.1 depicts the publications and their relation over time
using dashed blue arrows for PKMO, dotted red arrows for ACEA, and densely dotted
violent arrows for IRVM. The following sections describe the main scientific contributions
to these themes.

3.1 Production Knowledge Models

Externalizing implicit domain knowledge on CPPSs is essential for reusing CPPS design
and engineering artifacts. Therefore, PKMO that structure the domain knowledge are
crucial. This section first introduces the superimposed PPR model, based on the VDI 3682
model [199] notation, for visually representing PPR variability. Subsequently, the section
presents a production knowledge model and a DSL for PPR [181] modeling based on the
underspecified VDI 3682 model [199].
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Figure 3.1: The publications forming this cumulative thesis’ core (cf. Table 2.1) follow
the three research lines: PKMO, ACEA, and IRVM approaches (cf. Chapter 1). Their
relations are highlighted by specific arrows labeled with a research line.

3.1.1 Superimposed PPR Modeling

Models apply three core principles, which are the abstraction and reduction of the
original, and pragmatism in building those models [189]. We postulate that models are
an abstraction of the world restricted by a domain that reduces the scope of the world
to model. In the context of this thesis, we understand knowledge models as abstract
representations of (engineering) knowledge for a domain-specific context. The context
reduces the scope of knowledge subsequently restricting the model.

The VDI 3682 [199] provides a visual and formal guideline for modeling PPR models as
production process descriptions. While the formal guideline details particular concepts,
its explanatory notes get increasingly imprecise. Therefore, Part 3 of the guideline aimed
at an XML representation of the knowledge model. However, this part is not expected
before 2025, posing a significant limitation.

Unfortunately, such PPR models also do not allow modeling the variability of the PPR
aspects. CPPS engineering practice often uses a so-called type representative [70] that
expresses not only a single product but a set of product features, representing several
of the most important types, in a “virtual” product, i.e., a 150% model [194, 107]. The
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Figure 3.2: Concept of a superimposed model for PPR models, in adapted VDI 3682
notation [199].

engineers then utilize this type representative to plan potential production processes
and resources. This planning is done using TCMs and selecting products covering a
particular set of product parts. According to our industry partner, another strategy
in CPPS engineering is to test variable products by taking several “real” products as
representatives and simulating their production one after another.

We picked up the VDI guideline and introduced superimposed PPR models in Meixner
et al. [118] as type of 150% PPR model. This notation aimed to support engineers
allowing them to visually express the variability in PPR models. Figure 3.2 shows such
an superimposed model for a part of the rocker switch use case (cf. Section 1.1.1). PPR
elements in black are common model parts shared by every product and production
process. For instance, all products share the parts Socket, Pole 1 (1), Rocker 1 (1),
and Changeover. The part Ground (1) is only used in product F7. Similarly, the last
production step of the production process model is only used for products F6. The
product annotations are concatenated with OR if several products use one of the PPR
elements. For example, Pole 1 (2) is used for the product types F6, F7, F8, F11 and F9,
while the second production step is not used in product type F8.

We evaluated the approach in the feasibility study with the rocker switch use case. Then
we discussed the utility of the superimposed PPR model with domain experts from our
industry partner. The experts found the superimposed model with the product variants
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embedded in the production processes to improve their way of modeling compared to
TCMs [118]. However, the domain experts also noted that it requires tool support to
maintain the potentially complex model [118]. To this end, we experienced that the
superimposed PPR model can grow quite large and get cluttered, for instance, with
annotations, in use cases of medium size. We argue that such models have to be designed
in a modular way, which can counter this issue, as the VDI 3682 proposes. However, this
argument needs to be investigated in additional research.

To summarize, superimposed PPR models visually capture the variability of functional
PPR aspects and offer an easy-to-understand variability representation for CPPS engineer-
ing. This way, it enhances the established PPR approach [181, 199] and helps engineers
to better communicate their engineering knowledge with the variability. However, the
rising complexity of the superimposed PPR models requires additional tool support.

Research Outcome. In research, Fidan et al. [53] adopted this notation to represent
variability in production processes for frugal production. The aim is to model the full
range of the production processes in the superimposed model. The model is then tailored
to local needs in developing countries, thereby simplifying complexity and supporting
sustainable production regarding the Sustainable Development Goals (SDGs) 6, 9, and
12.1

3.1.2 PPR Production Knowledge Model and PPR–DSL
Picking up the superimposed PPR model, we require a concrete, comprehensive model to
effectively manage the PPR aspects and their variability inherent in CPPS engineering.
The following section introduces the Production Knowledge Model for PPR with variability
as the foundation for knowledge externalization in the PPR–DSL.

PPR Production Knowledge Model Based on the VDI 3682 guideline’s limitation
to provide a machine-readable and precise knowledge model and the positive perception
of the superimposed PPR model, we designed a concrete knowledge model. This model
discards elements with largely imprecise explanations, creating a pragmatic knowledge
model for CPPS engineering in Meixner et al. [123] and Meixner et al. [130]. Figure 3.3
and Figure 3.4 show the meta-model (elements) of this knowledge model.2

Figure 3.3 shows the main entities of the meta-model in an UML class diagram – Product,
Process, and Resource, derived from the Vdi3682Object, and the AssemblySequence that serves
as a container for the model. To uniquely identify the entity, the Vdi3682Object is associated
with an Identification. The class has a Boolean value isAbstract, allowing abstraction and
inheritance. Furthermore, it has a Boolean value isComposed, indicating whether the
particular entity is composed of entities of similar type and a list of Characteristics that
characterize the entity. The Identification refers to identifyingAttributes that consist of

1UN SDGs: https://sdgs.un.org/goals
2Note that the meta-model here is located on level M2 in the MOF.

46

https://sdgs.un.org/goals


3.1. Production Knowledge Models

AssemblySequence

- products: HashMap<>
- processes: HashMap<>
- resources: HashMap<>
- definedAttributes: HashMap<>
- inputProductProcessRelations: List<>
- outputProductProcessRelations: List<>
- resourceProcessRelations: List<>
- globalConstraints: List<>

Characteristic

- category: Category
- descriptiveElement: DescriptiveElement

Constraint

- id: String
- definition: String
- statusCode: String
- message: String

NamedObject

- value: Object
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Figure 3.3: The core entities Product, Process, and Resource and their inheritance
hierarchy of the PPR knowledge model as UML class diagram.

several values, such as a code, versionNumber, and revisionNumber, that identify an entity.
Furthermore, the Identification can also refer to other Vdi3682Objects to describe close
relations. Characteristics a Category, such as a type of value, and an DescriptiveElement.
Additionally, Characteristics have minor properties that we stripped from the model for
better understandability and, thus, are not shown in the figure. The AssemblySequence holds
the Products, Processes, and Resources of the model. Furthermore, it contains the definition
of the attributes that can be reused in the particular PPR entities. The AssemblySequence
also has lists of the relations between the PPR entities, which are explained in the
paragraphs below. Finally, the AssemblySequence holds a list of globalConstraints that
are used to define relations between the PPR entities that can be evaluated. These
constraints can be compared to constraints in the variability models from SPL engineering.
PPR elements have a list of NamedObjects, derived from Characteristics, that represent a
particular element’s attributes. These specialize the characteristics of the Vdi3682Object. Each
of the three PPR entities has several lists holding instances of its own type, explained
in the following utilizing the Process entity. However, note that the relations of these
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associations are not shown in the figure to keep it de-cluttered. The Process holds a list
of abstract entities that it is derived from, cf. Figure 3.3 implementedXXX, for instance,
implementedProcesses. For instance, for the shift fork use case (cf. also Figure 1.5 in
Section 1.1.1), the Pipe is an abstract concept as a parent, with Pipe2, Pipe3, and
Pipe8 as concrete concepts, referring to Pipe in the implementedProducts. Furthermore,
the entities hold a list of children that represent particular products they comprise,
accumulating throughout the production process. For example, the finished shift fork
includes all the required product parts as children. The following two lists concern
variability modeling and management. The requires list holds required entities for this
entity to be produced, for instance, required products to which the specific product is
mounted. Similarly, PPR entities have a list of excludes that they cannot be produced
with. For instance, in the shift fork use case Pipe2, Pipe3, and Pipe3 exclude each
other. These lists can be compared to implication and exclusion criteria from variability
modeling. Additionally to the Product and Resource entities, the Processes has structures
for relations to Resources, resourceProcessRelations, and Products that are inputs and outputs
of the production process, inputProductProcessRelations and outputProductProcessRelations.
We detail this in the paragraphs below.

We introduced concrete relations for the domain model to represent the relations in the
PPR models. Figure 3.4 shows these relations, which are inherited from an entity Relation
(cf. Figure 3.6). InputProductProcessRelations model the relation between a particular
input Product and production Process. This relation also maintains a reference to the
OutputProductProcessRelation to indicate from which production Process the input Product
comes. This is needed to model abstract Products as a blueprint for reusable PPR
models. The OutputProductProcessRelation maintains references to a particular output
Product and production Process. To model relations between a concrete production Process
and Resource, we introduced the ResourceProcessRelation with corresponding references. The
AssemblySequence maintains global lists of the relations between Products, Processes, and
Resources. Products and Processes are related to each other via InputProductProcessRelations
and OutputProductProcessRelations. In the same way, Processes and Resources are connected
via ResourceProcessRelation.

To summarize, due to limitations of the VDI 3682 to provide a precise, machine-readable
knowledge model, we extracted a pragmatic knowledge model tailored for CPPS engineer-
ing for the PPR concepts. The knowledge model supports modeling variability through
abstraction and inheritance between elements and lists of required and excluded elements.
The knowledge model also embeds advanced constraints that cannot be expressed with
the basic functionality. This refined model addresses the imprecise elements of the original
guideline and offers an approach to capture, manage, and communicate engineering CPPS
knowledge.

Product-Process-Resource Domain-Specific Language DSLs are languages tai-
lored to a domain intended to be easily written and understood by the experts of that
domain [56]. We designed the extensible PPR–DSL [130, 123] based on the above-
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Figure 3.4: Combined PPR knowledge model as UML class diagram.

mentioned knowledge model. The DSL comprises a custom-tailored mapping of the
knowledge model to DSL elements for CPPS engineers. This alignment helps them relate
to their understanding of the concepts, enabling quick comprehension and writing of the
PPR–DSL.

Listing 1 and Listing 2 show two listings in PPR–DSL for the shift fork model (cf.
Section 1.1.1). Listing 1 defines first two Attributes uniquely identified by their ID length
in line 1 and partialProduct in line 7. Furthermore, it defines length, as numerical value,
and partialProduct, as Boolean value, with their defaultValues, types, and units. Line 12
shows an abstract Product Fork, keyword isAbstract, that sets the Attribute partialProduct to
true, indicating that this concept is a part of the product. Lines 15 to 20 define a concrete
partial Product Fork3 with a length of 30 millimeters that implements the abstract Fork.
Additionally, Fork3 directly requires the Product Fork5 to be manufactured. Lines 25 to
29 define a partial Product Pipe2 that excludes the Products Pipe3 and Pipe8, which means
they cannot be used in the same product variant. Lines 31 to 34 define an abstract final
Product ForkProduct that requires, besides others an abstract Pipe and Lock. Fork_13
implements the ForkProduct and details the abstract required products to Pipe8 and Lock3
and further requires an additional Barrel1_2.
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1 Attribute "length": {
2 type: "Number",
3 unit: "mm",
4 defaultValue: 1.0
5 }
6
7 Attribute "partialProduct": {
8 type: "String",
9 defaultValue: "false"

10 }
11
12 Product "Fork": { name: "Abstract Fork",
13 isAbstract: true, partialProduct: "true"
14 }
15 Product "Fork3": { name: "Fork 3",
16 length: 30,
17 implements: [ "Fork" ],
18 requires: ["Fork5"],
19 partialProduct: "true"
20 }
21
22 Product "Pipe": { name: "Abstract Pipe",
23 isAbstract: true, partialProduct: "true"
24 }
25 Product "Pipe2": { name: "Pipe 2",
26 implements: ["Pipe"],
27 excludes: [ "Pipe3", "Pipe8" ],
28 partialProduct: "true"
29 }
30
31 Product "ForkProduct": { name: "ForkProduct",
32 isAbstract: true,
33 requires: [ "Barrel1_1", [...], "Fork3", "Pipe", "Lock"],
34 }
35 Product "Fork_13": { name: "Fork 13",
36 implements: ["ForkProduct"],
37 requires: ["Pipe8", "Lock3", "Barrel1_2"]
38 }
39
40 Resource "Linefeeds": { name: "Linefeeds", isAbstract: true }
41 Resource "LF_3": { name: "LF_3", implements: [ "Linefeeds" ] }
42 Resource "LF_4": { name: "LF_4", implements: [ "Linefeeds" ] }

Listing 1: Excerpt of the products and production resources of a PPR model for the shift
fork case study in PPR–DSL [131].

Listing 1 also shows simplified Resource definitions of abstract Linefeeds that can feed
workpieces to the production system, where LF_3 is capable of feeding larger pieces to
the system than LF_4 (lines 41 to 42). As both Resources can be used for the configuration
of a CPPS, they do not exclude each other. Using the inheritance structure, the model
can build a hierarchical family of Resources that engineers can reuse across different
engineering projects and even build catalogs similar to EClass or the technical library
that our industry partner currently modeled in Excel.

Listing 2 shows the definition of production Processes in the PPR–DSL. Lines 1 to 5 define
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a Process InsertFork3 that inserts the input product Fork3 to the production system,
inputs keyword. The outputs contain an abstract Product with the productId Forkproduct
and the output operation ID OP17 to identify the output product with the particular
production process uniquely. The Process also defines resources with the resourceId Linefeeds
that can later then be configured with a concrete Resource, for example, the LF_3. Lines
7 to 13 define a Process WeldFork3 that requires the processes InsertFork3 and WeldFork5
to be completed before it can start. It also requires that the input Products a particular
Pipe and the concrete Products Fork3 and Fork5 are present in the system. Similar to the
previous Process, the output is a particular Forkproduct, and the Process uses a Resource
from the family of LaserWeldingRobots.

1 Process "InsertFork3": { name: "InsertFork3",
2 inputs: [ {productId: "Fork3"} ],
3 outputs: [ {OP17: {productId: "ForkProduct"}}],
4 resources: [ {resourceId: "Linefeeds"} ]
5 }
6
7 Process "WeldFork3": { name: "WeldFork3",
8 requires: [ "InsertFork3", "WeldFork5" ],
9 inputs: [ {productId: "Fork3"}, {productId: "Pipe"},

10 {productId: "Fork5"} ],
11 outputs: [ {OP18: {productId: "ForkProduct"}}],
12 resources: [ { resourceId: "LaserWeldingRobots" } ]
13 }
14
15 Constraint "Constraint1": {
16 definition: "Lock1, Pipe2, Pipe3 -> Lock1 implies Pipe2 or Pipe3"
17 }
18
19 Constraint "Constraint2": {
20 definition: "Lock2, Pipe3 -> Lock2 implies Pipe3"
21 }
22
23 Constraint "Constraint3": {
24 definition: "InsertLock1, InsertLock2, InsertLock3 -> InsertLock1 implies (not

InsertLock2 and not InsertLock3)"�→
25 }
26
27 Constraint "Constraint4":{
28 definition: "Pipe descendants all -> all.length > 10"
29 }

Listing 2: Excerpt of a PPR model for the shift fork case study in PPR–DSL [131].

Lines 15 to 25 of Listing 2 show three Constraints that cannot be expressed via the
more simple requires or excludes definitions. Therefore, we designed a reduced syntax for
PPR models, particularly circumventing the complexity of other constraint evaluation
languages, such as OCL.3 Constraints can be specified explicitly or implicitly. The Constraint1
expresses that if Product Lock1 is used that either Product Pipe2 or Pipe3 need to be
used. Similarly, Constraint2 expresses that if Lock2 is used Pipe3 also needs to be used.
Constraint3 defines that if Process InsertLock1 is used, then Processes InsertLock2 and

3OMG OCL: http://www.omg.org/spec/OCL/
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InsertLock3 must not be used. These Constraints explicitly denote the PPR entities.
However, we can also specify Constraints implicitly by indirectly referring to them via
particular manipulators. Therefore, we designed the keyword subtype (for implements
relations) and descendants (for containment relations) in the PPR models followed by a
qualifier in the constraint definition. Constraint4 uses the keyword descendants and qualifier
all. In Meixner et al. [130], we list additional keywords and functions that we support in
the constraint syntax.

To validate the PPR knowledge model and, in particular, their constraints, we aimed
to utilize state-of-the-art technology widely available in industrial and manufacturing
contexts for broader acceptance. Therefore, we first implemented the meta-model as
an interface library in Java. Then, we implemented the PPR–DSL in a Java library, a
parser to read DSL files, and a corresponding DSL writer. Furthermore, we investigated
the Structured Query Language (SQL) as a well-established technology in the industry,
which provides a standardized syntax for querying, in this case, relational data models.
We mapped the PPR–DSL constraint syntax to SQL query templates whose parameters
are then replaced at runtime by the concrete values. These queries can be quite complex,
which means that a particular technology must support, for instance, recursive queries.
Therefore, we utilized PostgreSQL4 as a proof-of-concept database to execute these SQL
queries and return potential constraint violations. This strategy also goes along with
the existing software ecosystem of our industry partner, who did not want to integrate
additional technologies such as the Eclipse Modeling Framework (EMF) [190].

We initially evaluated the approach with the rocker switch use case by reverse engineering
existing artifacts and plans from our industry partner. Throughout the thesis and the
later works [127, 137], we employed the PPR–DSL for modeling the PPR aspects of
various CPPSs. Furthermore, we gathered feedback from the engineers of our industry
partner in a workshop with interviews. Compared to drawing the PPR models, they
found the PPR–DSL easier to create and maintain and the structured constraints with
their automated evaluation useful, compared to their natural language constraints [130].
Nevertheless, they noted that the PPR–DSL is verbose and emphasized the need for
simplification [130]. Furthermore, they confirmed that the implementation lowers the
entry barrier to their ecosystem[130].

In ongoing work, we simplified the syntax of the PPR–DSL to address these limitations.
For instance, we raised the Boolean attribute isAbstract and the Attribute partialProduct to
a prefix of the PPR concepts. Furthermore, we de-cluttered the syntax from superficial
quotes and parentheses. This simplification results, for instance, in code like abstract
partial Product Fork {...}. Examples of the adopted simplified syntax can be found in Rinker
et al. [170] and Rinker et al. [172]. To broaden the PPR–DSL to the scientific community
and industrial practitioners, in ongoing work, we use Eclipse Xtext,5 a tooling framework
for developing DSLs, to create an improved grammar. We translate this Eclipse Xtext
grammar directly to a parser and PPR–DSL editor with syntax highlighting and support.

4PostgreSQL: https://www.postgresql.org
5Eclipse Xtext: https://eclipse.dev/Xtext/
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As Eclipse Xtext uses ANTLR,6 a parser generator, in the background to generate the
syntax and parser, we can adapt this ANTLR grammar to use it with different other DSL
tool suites, such as the popular Language Server Protocol (LSP) that supports multiple
other editors like VSCode.7

To summarize, the PPR–DSL manifests the previously introduced PPR production knowl-
edge model. This way, engineers can relatively straightforwardly describe PPR models,
for instance, in a text editor or collaborative document. Furthermore, we developed a
basic embedded constraint language that facilitates expressing relations between PPR
elements, such as x < y, calculating sums, or more complex variability constraints. This
constraint language was mapped to SQL and implemented in PostgreSQL as a widely
used industry standard.

Research Outcome. The PPR production knowledge model and the PPR–DSL allow
to externalize previously implicit knowledge of CPPS engineers in a structured machine-
interpretable way. Thereby, they provide the foundation for multidisciplinary knowledge
transfer, reusable engineering artifacts, and transformation of the PPR knowledge with
variability to well-established variability models. In research, the approach was picked up
as a foundation for (i) further research in our group in the context of a PhD project [169,
172], (ii) a novel CPPS engineering information ecosystem by our industry partner
at the CDL SQI, (iii) an evaluation of the maturity of DSL ecosystems for CPPSs
in a transnational research collaboration [64]. Furthermore, the approach was picked
up as a foundation for a visual representation of the PPR models in a line of master
theses [35, 153, 100, 21]. However, the visual representation in combination with the
PPR–DSL is not in the scope of this thesis.

3.2 Advanced CPPS Engineering Applications
The knowledge model presented in the previous section outlined a concrete formal
representation for externalized engineering knowledge based on the PPR concepts as
primary aspects of CPPSs. The ACEA build on this knowledge model to further structure
the externalized engineering knowledge. They also aim to enhance communication with
others via design patterns and systematically reuse these patterns and engineering
artifacts.

The section first presents the I4AN knowledge model to structure engineering knowledge
further along the engineering disciplines and CPPS aspects. Second, it introduces the
I4AN reference model that helps organize engineering knowledge as a foundation for
reusable engineering design patterns. Finally, the section describes how to systematize
the elicitation and reuse of engineering artifacts employing C&Ss for decoupled processes
and resources.

6ANTLR: https://www.antlr.org
7VSCode: https://code.visualstudio.com/
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3.2.1 I4AN Meta-Model and Reference Model for Engineering
Design Patterns

Design patterns are common solutions for recurring problems that serve as a basis for
coordination and communication [57]. Similarly, the VDI 3695 recognizes a reference
model as a formal description of engineering knowledge forming a common basis for
communication [200]. Therefore, we consider engineering design patterns for CPPSs
essential, especially in multidisciplinary CPPS engineering.

To this end, we extended our knowledge model (cf. Section 3.1.2) to the I4AN model
in Meixner et al. [128, 129]. This extension introduced multidisciplinary dependencies
to link engineering assets and artifacts across disciplines. It also aims to define distinct
concept delimitations to support engineers in identifying such patterns. Furthermore,
we developed a reference model, in the sense of the VDI 3695 reference models [200],
for structuring engineering knowledge. This knowledge model builds the foundation for
eliciting engineering design patterns and conceptual reuse in CPPS engineering.

I4AN Knowlede Model The following detailed description of the I4AN meta-model,
shown in Figure 3.5 as a UML class diagram, explains the essential elements, attributes,
and relations.

The I4.0Asset, as material or immaterial good with a digital representation in an engineering
organization8 [151] shown in the middle of Figure 3.5, builds the root of the knowledge
management model. We carry over several of the Vdi3682Object characteristics to the
I4.0Asset. To this end, an I4.0Asset can be a specialization of another I4.0Asset via the
is-a relation or build a hierarchy via the part-of relation. Furthermore, the I4.0Asset
comprises a list of attributes of type NamedObject. We extended the class NamedObject
from the previous model with a part-of relation. This relation enables a hierarchical
structuring of attributes that follows the Asset Administration Shell (AAS) design [151]
towards a standardized representation of attributes views for multidisciplinary CPPS
engineering. We apply these measures as information modeling at various levels of
system functionality is essential in CPPS engineering [97]. Derived from the I4.0Asset,
we have the three ubiquitous PPR elements [181] and the supplementary Capability
concept [149].9 The original PPR approach [181] and the VDI 3682 [199] establish a
strict connection between processes and resources based on a direct usage in the original
model. This tight coupling between processes and resources creates a relatively inflexible
model [97]. To better decouple processes and resources, Keddis et al. [93] and Pfrommer
et al. [149] and others [58] presented the Capability concept. In this context, a capability
is defined as “an implementation-independent specification of a function in industrial

8Asset Administration Shell: https://opcfoundation.org/documents/30270/
9 In the original publications [129, 128], the concept was named Skill. However, here, we use the

already more established term Capability for the concept, leaving the Skill concept as its concrete
implementation by a particular Resource. A more recent model of the capability and skill concepts,
including production services, was published in a joint publication with this thesis’ author as one author
in [97].
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Figure 3.5: Domain model of the I4AN as UML class diagram.

production to achieve an effect in the physical or virtual world,” specifying a function
of a process [97]. Consequently, the Resource holds providedCapabilities, a list detailing
the Capabilities, identified by an ID, provided by a Resource. Similarly, the Process has
requiredCapabilities, indicating the Capabilities required for the Process. For completeness, we
also depict the Product class.

An Artifact models a CPPS engineering artifact from engineering or operation, such as
CAD drawings and robot control code or log data and process measurements.

To relate the CPPS concepts among each, we introduced the Link class in the model.
For better understandability, Figure 3.6 shows the inheritance structure of the different
Relation classes. The Link has two associations to the Linkable class, which acts as a
superclass for classes that can be linked, i.e., the I4.0Asset, the NamedObject, the Artifact,
and the Boundary classes. The Link class is subdivided into Technical Links, Functional
Links, and Trace Links as well as Dependencies to represent various CPPS relationships. A
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Figure 3.6: Relation entity and its inheritance hierarchy of the PPR and I4AN knowledge
model as UML class diagram.

Functional Link refers to a physical or technical association between assets established
by domain experts. It typically involves hardware or direct connections, such as a wired
connection from a Linefeed to a Conveyor Belt, which transmits information between
these assets. A Technical Link represents a logical or functional connection between
assets that work together to perform a specific function in the production process. It
focuses on the collaborative roles of the assets to achieve a particular task. For instance,
a Screwdriver along with its Bit and Controller collectively provide a screwing function.
A Trace Link refers to a permanent or temporary association between assets and artifacts
or both that are interesting to examine or trace. For instance, it might be interesting
within an inspection of an integration test or issue to link several assets and artifacts to
a group and inspect their actual measurements along their relations. A Dependency Link is
essential for describing patterns where assets or artifacts depend on each other and must
be included in a CPPS design when selecting the outgoing concept. For example, in an
orchestrated two-robot work cell, an industrial PC (IPC) always requires interfaces to
the Robot Controllers. A Boundary is a container for a group of Assets or Artifacts or both.
For instance, it defines the assets associated with a particular pattern. The Boundary also
reveals external Dependency Links for a group of assets that extend beyond the Boundary
and are intended for reuse.

To summarize, the I4AN model extends the previous PPR production knowledge model
incorporating dependencies over discipline borders to capture multidisciplinary CPPS
engineering knowledge. The model incorporates the PPR and C&S concepts to decouple
processes and resources, enhancing system flexibility. Furthermore, it builds the foun-
dation for integrating engineering artifacts from different disciplines. Additionally, the
model defines several link types, such as technical and functional, for representing differ-
ent CPPS engineering relations, beyond others to engineering artifacts and trace links.
The model also defines dependencies and boundaries to encapsulate CPPS components,
allowing better coordination between the different engineering disciplines.

I4AN Reference Model and Design Patterns. To structure engineering knowledge
and identify reusable engineering design patterns, we developed the I4AN reference model
based on the visual VDI 3682 model. This approach aims to improve communication and
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Figure 3.7: I4AN reference model (top row) and Patterns for Reuse (dashed contours) in
an I4AN for the shift fork use case (cf. Section 1.1.1), in adapted VDI 3682 notation [199].

the delineation of concepts between multiple disciplines. The reference model is based on
a typical CPPS engineering process and its engineering artifacts at an industry partner
(cf. Section 1.1.1 and Section 1.1.2). Furthermore, it incorporates insights from a domain
analysis in the automotive industry [72].

Figure 3.7 visualizes the I4AN reference model at the top of the figure and an instance
of an I4AN for the shift fork use case (cf. Section 1.1.1) at the bottom. Furthermore, it
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illustrates four reusable engineering design patterns in dashed contours (P1-P4 ). The
reference model defines the elements required to represent typical solution designs. The
notation follows the extended VDI 3695 notation for PPR models with the following
additions. Relations to and from Capabilities, i.e., from Processes and Resources, are shown
as arrows with a dotted line. Functional Links are shown with a solid line, Technical Links
with a dotted line, and Trace Links with a dashed arrow. Dependency Links are illustrated
as small circles with a corresponding circle with the same label. Attributes of class
NamedObject are shown near the particular entities connected with a dotted line.

The I4AN reference model specifies elements to identify particular engineering design
patterns in engineering organizations. Therefore, the reference model focuses on a
production process executed by one or more production resources. Figure 3.7 shows
these elements in “columns” labeled with their membership to particular asset or artifact
types, which we describe from left to right. We explain the reference model using the
instance below.

The leftmost column shows input and output Products linked to a production Process
that engineers need to define. For example, in the I4AN instance, the product Lock is
inserted into the production line and positioned onto the Pipe in the Insert & Position
Lock process. A Process may require several Capabilities that abstractly describe the
requirements of the Products to be manufactured in that Process. For instance, welding
the lock onto the pipe requires a Welding Capability with specific properties such as the
welding Seam length. On the other hand, Resources provide particular Capabilities that
may match. In this way, Capabilities represent interfaces between Processes and Resources,
decoupling them in favor of more flexibility similar to software engineering. In the I4AN
instance, Work Cell 2 with its resources provides such a Welding Capability. Often,
resources are structured hierarchically Main Resources, Sub-resources, and Automation
Devices linked through Functional Links or Technical Links. For example, there is a Main
Resource Laser Welder, connected to a Sub-resource Welding Head, and an Automation
Device Welder Controller. Capabilities are typically related to the Main Resources in the
CPPS. Automation Devices are related to Sub-resources or, sometimes, Main Resources to
control their behavior. Finally, there exist Engineering Artifacts with data or information
relevant to various assets that are connected to these assets via Trace Links. The Robot
Controller requires a Robot Program for particular instructions on how to execute the
process of Welding.

The presented elements and categories of the reference model were found relevant in
the domain analysis and built the foundation for identifying engineering design patterns.
From this, we identified four basic engineering patterns (cf. Figure 3.7 P1-P4 ) that
engineers can use to elicit concrete engineering patterns for their domain and engineering
organization. We described a simple procedure for each pattern to collect the relevant
elements from the I4AN. With this engineers can create efficiently from a set of engineering
artifacts that contain the required model information. Here, we give a brief overview of
these engineering patterns.
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P1. Product-Process-Capability: The engineers tasked with functional CPPS plan-
ning aim at selecting suitable and proven production processes with capabilities
for (slightly) abstracted products. Therefore, we identified the Product-Process-
Capability pattern as a self-contained entity as the foundation to identify concrete
patterns of this kind. For instance, when plastic parts need to be solidly joined
onto a metal part, the plastic only sustains a certain force and temperature. Suit-
able processes may include gluing or welding at low temperatures, which can
be described as capabilities with stiffness and temperature constraints. Alterna-
tively, a more specific capability, such as ultrasonic welding, can be defined for
solid connections at low temperatures, creating a low-temperature plastic joining
Product-Process-Capability pattern.

P2. Capability-Resource Pattern: Engineers aim to design resources that provide the
capabilities potentially required to execute production processes based on their
functions. To this end, we identified the Capability-Resource pattern as a reusable
description of resource functionality. For example, a particular line feed can carry
workpieces of a certain size at a certain velocity and accuracy from a box to an
actuator like a robot. This linefeed can then provide, for instance, a transport
capability, resulting in a potential transport with velocity X Capability-Resource
pattern, where a type of linefeed with a provided transport capability can be
matched to a required capability by a process.

P3. Resource-Resource Composition Pattern: Engineers in the design and implementa-
tion phase, i.e., detailed engineering, aim to plan, configure, and program production
resources. This requires the reuse of blueprints of connected resource components.
The Resource-Resource Composition pattern represents the composition of a re-
source from main to sub-resources and automation devices and their relations,
incorporating technical parameters and dependencies. For instance, Figure 3.7
shows Work Cell 2, which has two robots that each require a robot controller that
is driven by an industrial PC (IPC). With the Resource-Resource Composition
basic pattern, engineers can identify the main resource and the strictly required sub
and automation resources to reuse as a component that, nevertheless, is relatively
independent of the other components.

P4. Resource-Artifact Pattern: To build similar types of CPPSs efficiently, engineers
must reuse and configure as many engineering artifacts as possible. Furthermore,
engineers shall be able to retrieve the relevant engineering artifacts for particular
resources easily. The Resource-Artifact pattern connects crucial engineering artifacts
to production resources, facilitating efficient reuse of resources and their associated
data or programs. For example, a transformer might require an electronic data
sheet where essential properties and their value range are denoted. Similarly, a
positioning unit that positions larger workpieces always needs an acceleration curve
artifact to stay in the safe acceleration range.

From the I4AN reference model and the basic patterns, engineers are encouraged to
identify concrete reusable patterns in their organization in several ways in the DAE
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lifecycle. In the analysis activity, the engineers can use the basic patterns to analyze
already existing CPPS artifacts and designs utilizing an extractive approach. In the
design and implementation activities, the engineers can use the I4AN reference model and
basic patterns to develop concrete engineering design patterns. Furthermore, they can
elicit patterns and artifacts in a project retrospective. This way, the engineers can build
up a common artifact repository. Beyond that, they can gradually build an engineering
knowledge graph for CPPS engineering knowledge reuse.

Therefore, we implemented a prototypical application with Neo4J10 and Neo4J Bloom11,
based on the I4AN knowledge model. Furthermore, we conducted a feasibility study with
an industrial use case from the automotive industry originating from a domain analysis
with 80 types of robot cells and 27 robot types [72]. We showed that engineering design
patterns can be instantiated with the I4AN instance using boundaries and presented
examples of applied patterns for reuse. Furthermore, we investigated queries to the I4AN
and whether the queries retrieve valid patterns and discussed the results with industry
partners.

To summarize, based on a domain analysis at a partner from the automotive industry, we
built the I4AN reference model. The reference model can help structure CPPS engineering
knowledge along the engineering lifecycle. This way, it aids in identifying reusable
engineering design patterns, which serve as a basis for multidisciplinary knowledge
coordination and communication. We identified four basic but essential engineering
patterns – product-process-capabilities, capabilities-resources, resources-sub-resources-
automation devices, and resources-engineering artifacts. Additionally, we implemented
the I4AN reference model as an engineering graph in a graph database based on the
I4AN knowledge model. Additionally, we developed several concrete engineering patterns
and incorporated them into the engineering graph. This way, we build a common artifact
repository with reusable engineering knowledge.

Research Outcome. The I4AN knowledge and I4AN reference model with the engi-
neering design patterns provided the foundation for (i) further research on utilizing it as
a coordinating artifact for multidisciplinary reuse of CPPSs engineering knowledge [134],
(ii) several publications inside the research group [13, 16, 14, 168] and in research collab-
orations [112, 76], and (iii) applications in industrial research and development in two
research projects regarding production quality improvement [103, 102] in an Austrian
company and advanced data analytics [77] in a German company.

3.2.2 CPPS Design Reuse with C&Ss
The VDI 3695 procedure model [200] proposed, based on the DAE framework [152], a
systematic approach for developing reusable production systems engineering artifacts
in one and their instantiation and parameterzation in a second lifecycle. Meixner et al.

10Neo4J: https://neo4j.com
11Neo4J Bloom: https://neo4j.com/product/bloom/
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[135] proposed the conceptual CSR framework that describes how the VDI 3695 needs to
be adapted to CPPS engineering with C&Ss [149, 93, 58]. This framework aims to enable
engineers to reuse engineering models and artifacts more systematically, exploiting C&Ss
to decouple production processes and resources.
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Figure 3.8: The CSR framework for PPR models and artifacts with C&Ss, based on
DAE [152] and the VDI 3695 [200, 83], from Meixner et al. [135].

Figure 3.8 shows the CSR framework with the typical VDI 3695 activities (in blue) and
activities for reuse with capabilities and skills with PPR (in light gray). We enumerated
the activities from domain engineering as PIA 1 to 4 and application engineering as
PDA 1 to 5, responding to the VDI 3695 [200]. The following paragraphs discuss these
activities and how they shall be conducted, considering the novel framework and carrying
over the results from the previous activity to the next activity.

PIA1. Model and Artifact Analysis. In this activity, engineers assess the strategic con-
straints of their manufacturing domain. For instance, our industry partner holds a
unique selling proposition in high-speed automation of CPPSs. Then, engineers
have to analyze past engineering projects for reusable PPR engineering artifact
candidates. In contrast to the traditional approach, engineers must identify (i)
processes that can be abstracted from the products and (ii) resources whose func-
tionality can be described as required, respectively, provided capabilities. This
activity results in a domain reference, for instance, high-speed work line automation,
and documented (partial) artifact candidates that contain processes and resources.

PIA2. Process and Resource Planning. Engineers take up the identified artifact candidates
and separate the PPR assets in them into processes and resources. Furthermore,
they categorize them following, for instance, domain-specific guidelines, such as the
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DIN 8580 for processes.12 The engineers generalize these PPR assets, assess their
variability, and plan their configuration options and parameterization. The results
are separated and categorized processes (with generalized products, such as two
aluminum parts), resources, and capability candidates. In contrast, the traditional
approach results in less modular and decoupled processes and resources.

PIA3. PPR and C&S Modeling. Engineers aim to realize the identified PPR assets as
loosely coupled, reusable PPR and C&S models. The engineers represent a process
asset as a process with a required capability and a resource asset as a resource
with a provided capability. Additionally, the provided capability for a particular
resource is implemented as a skill. Developing C&Ss requires appropriate models
and languages, such as ontologies [96, 204] or DSLs [130] for capabilities and
OPC UA [95, 215] or PackML13 for skill implementation. The realized reusable and
parameterizable models for PPR with C&Ss are deployed into the common artifact
repository using an agreed-on repository structure. In the traditional approach, the
engineers directly model the processes and, from them, the resources, resulting in
increased coupling, which makes reconfigurability harder.

PIA4. Model Validation. The reusable artifacts must be instantiated and thoroughly
tested and validated, for instance, on industrial testbeds or training plants. This
activity is an important step towards a “qualification” for the rigorous (real-time)
demands of CPPSs.

In a particular engineering project, the activities of application engineering, here named
PDAs aligned with the VDI 3695, depicted in the lower part of Figure 3.8, are conducted.

PDA1. Product Portfolio Analysis. In this activity, engineers analyze the family of products
intended to be manufactured on the CPPS. Therefore, the compare the product
parts, for instance, the pipe and lock, to the abstracted product parts, for instance,
the aluminum parts, and process artifact candidates in the common artifact repos-
itory that fit. This task results in a bill of products with the product family’s
corresponding variability and configuration. Furthermore, it results in a set of
requirements for processes.

PDA2. Process and Capability Planning. Engineers investigate how to manufacture the
products deriving process models. In contrast to the traditional approach, where
resources are directly assigned, engineers search the common artifact repository
for suitable reusable process models with their capabilities. Next, the engineers
configure those capability models with the values of the products, such as the
welding heat and speed rate. This task results in models of partially configured
product, process, and required capability models.

PDA3. Capability and Skill Matching. Engineers match the partially configured process
capability models with provided capabilities from the common artifact repository

12DIN 8580 – https://standards.globalspec.com/std/1742169/DIN%208580
13PackML – https://www.omac.org/packml
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with computational support, resulting in a list of matches. Ideally, engineers can
also select from various skills implemented for particular resources.

PDA4. Capability and Skill Configuration. Engineers iteratively configure the capability
models for a final list of skills and resources. This step results in configured models
and artifacts for a CPPS design. Furthermore, concrete artifacts, such as control
code, can be generated from additional engineering artifact templates. In the
traditional approach, processes are already bound to resources.

PDA5. Skill Verification and Execution. During verification and execution, the collected
configured models and artifacts are tested. This can be done in a simulation or
digital twin or if parts of the CPPS are already in the state of building on the
system.

To summarize, the CSR framework refines DAE activities towards systematically using
PPR and C&S models for decoupling products and processes from resources for improved
reuse by (i) eliciting assets from prior projects abstracting them for reuse, (ii) repre-
senting them as PPR and C&S models and validate them as reusable artifacts in a
common artifact repository, and (iii) using, configuring, and testing them in particular
engineering projects [135]. Experiences, assets, and engineering artifacts, such as the
PPR and C&S models, from the PDAs are fed back to the PIAs to improve the reuse
lifecycle [135]. We compared the approach to the traditional reuse approach in these
engineering organizations.

Research Outcome. We expect our industry partner to timely adopt the approach in
their new engineering information system for transitioning from the traditional approach
of CPPS engineering toward DAE activities. In research, concepts of the approach were
included in the effort to build a common community model for C&Ss [97] in the CPPS
engineering community.

3.3 Integrated Reuse and Variability Management for
CPPS Engineering

In the previous section we described contributions that allow engineers to systematically
communicate externalized knowledge. Furthermore, we presented an approach for reusing
engineering knowledge along the DAE cycles.

This section presents three essential contributions to further advance an integrated
approach for reuse and variability management for CPPS engineering. The first section
presents the VERT approach enabling CPPS engineers to transform engineering artifacts
with variability to state-of-the-art variability models. For instance, we transform a
TCM a feature model, which engineers can change and transform back to the TCM via
VERT for iterative development. We then present four reusable real-world use cases of
different complexity modeled in the PPR–DSL and transformed to the de-facto standard
feature models. We use the TRAVART variability transformation approach as an open
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source baseline to compare variability models. Finally, we describe the IPSE and EIPSE
approaches that provide an integrated reuse and variability management approach for
CPPS families using three interdependent families of Product-Process-Resource.

3.3.1 PPR Variability Modeling and Transformation
Basic Variability Modeling and Engineering Artifact Transformation. While
there are several SPL methods and techniques, including variability modeling, they are
not yet well adopted in industry and, especially, in production systems engineering [6].
For modeling variability, stakeholders from the industry often develop custom-tailored
variability models and artifacts that suit their purposes. A typical artifact for representing
the variability of products are TCMs (cf. Table 1.1), which lack semantics and are hard
to validate.

Therefore, we designed the VERT approach [43] for iterative round-trip transformation.
This approach enables CPPS engineers to transform their custom-developed TCMs to
a state-of-the-art feature model. This way, we aim to counter the lack of semantics
and validation issues but also scattered and implicit knowledge. The approach utilizes
TRAVART, a recent transformation approach [42], which aims for a pivotal transformation
between well-established and custom variability models. VERT also allows the definition
of preconditions for assembling products in a precedence graph to create the additional
constraints for the feature model. VERT supports round-trip transformation to evolve
and optimize the feature model and transform it back to its original format, i.e., the TCM.
We evaluated the approach iteratively with the shift fork use case (cf. Section 1.1.1).
This activity resulted in several versions of the shift fork feature model comparable to
the feature model in Figure 3.13a. Furthermore, we conducted a workshop with domain
experts from our industry partner. With them, we derived lessons learned and potential
improvements toward an integrated reuse and variability management approach.

The main findings were that (i) the engineers recognized that production processes and,
in particular, their sequence should be represented in structured variability models, (ii) an
approach to evolve the engineering artifacts and variability models must be iterative,
(iii) the product type information needs to be maintained in the variability models,
and (iv) tool support is essential for engineering artifact transformation and managing
variability as the foundation for reuse. In this regard, we gained valuable insights and
feedback for the research endeavor. Furthermore, we identified additional challenges of the
variability artifact transformation. These challenges include precise mappings between
the custom variability and the feature model to maintain relevant CPPS engineering
information like identifiable products.

To summarize, although many SPL methods and models exist, their adoption in CPPS
engineering is limited. Therefore, industry stakeholders often create custom variability
artifacts, like TCMs, that lack semantics and are hard to validate. With the VERT
approach we address these issues by enabling iterative transformations of TCMs into
feature models using TRAVART. This way, we improve semantics and validation while
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supporting round-trip transformations. We evaluated the approach with the shift fork
use case and in a workshop with the main engineers. The findings showed a positive
recognition of the approach but also revealed challenges, such as the need to preserve
essential CPPS information in future models.

Advanced PPR Variability Modeling and CPPS Case Studies. Based on the
gaps identified, i.a., in the VERT publication [43], we have established the PPR–DSL [130,
123] for more advanced PPR and variability modeling (cf. Section 3.1.2). Furthermore,
we aimed to enhance our evaluations and carry out further empirical studies of our
approaches within industrial case studies to ensure comparability. Beyond that, we
aimed to provide the case studies’ data to other researchers and practitioners, which are
otherwise often not accessible [115]. This dissemination follows our commitment to open
science and reproducibility, especially for models of industrial product families.

To address these issues we employed four reusable real-world case studies for product
family in production systems with different complexity in Meixner et al. [127]. The case
studies are the truck, shift fork, water filter, and rocker switch case studies.

• The truck use case comprises a 3D-printed truck product family. The product
family is manufactured on the academic Testbed for Industry 4.0 (I4.0) at Czech
Technical University in Prague with three robot arms and a conveyor belt that
can be flexibly configured [127].14 The truck use case is of low complexity, with
just four possible types and no dependencies between the features in the product
structure itself.

• The shift fork product family is a use case from one of our industry partners
explained in detail in Section 1.1.1 [127]. The shift fork use case is of low complexity,
consisting of four different shift fork types with three constraints among the products
and manufactured on a timed conveyor-belt CPPS.

• The water filter use case covers the low-cost, locally manufactured, and config-
urable NanoFilter water filter product family. It originates in a frugal Tanzanian
development project, where researchers investigated different filter materials and
constructions [94].15 This way, the electricity-free water filter filters impurities and
can selectively remove contaminants from unsafe water sources, addressing the
basic needs of price-sensitive customers in developing countries [127]. We consider
the use case with its eight different product types and around 160 dependencies of
medium complexity.

• The rocker switch product family is a use case from one of our industry partners
explained in detail in Section 1.1.1. We consider the rocker switch use case,
manufactured on a timed conveyor-belt CPPS, of medium complexity consisting of
twelve different types with around 180 dependencies among the products [127].

14Industry 4.0 Testbed: https://ciirc.cvut.cz/teams-labs/testbed/
15Gongali Project: https://gongalimodel.com/
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With the support of the particular case’s domain experts, we refined the case studies
toward variability modeling and reuse of the products. Therefore, we modeled the case
studies in several iterations in the PPR–DSL. This activity resulted in artifacts with
variability and precise semantics, making them uniformly accessible and human-readable.
Table 3.1 shows the statistics of these use cases along with their categorized complexity.
Furthermore, it includes the number of product types, the number of PPR–DSL elements
required to model the product family, and the number of dependencies in the PPR–DSL
model.

Use
Case

Complexity #Product Types #DSL Elements #Dependencies

3D-
printed
truck

low 4 12 31

Shift
fork

low 4 22 36

Water fil-
ter

medium 8 54 165

Rocker
switch

medium 12 54 184

Table 3.1: Overview of the characteristics of the four case studies.

These PPR–DSL models provided the foundation to derive product variability models
using TRAVART [46]. However, this direction also required additional model transfor-
mations for an automated transformation from the PPR–DSL to the variability models,
i.e., feature models. Based on learnings from the previous publication [43], we mapped
the product elements and their variability concepts from the PPR knowledge model
to FeatureIDE [116] feature models. A model mapping for the transformation of the
PPR–DSL to feature models that are more advanced is shown in Figure 3.12. However,
the model mapping for this publication is left out here for brevity but can be found in
the publication [43].

We subsequently implemented the TRAVART transformation operations [46] to the
FeatureIDE feature model’s XML syntax and conducted the transformations on the
four case studies. Figure 3.9 shows, as an example, the renderings of the shift forks
(in blue, magenta, and green) in a manual transmission on the bottom left, a section
of the shifts for products and their parts on the bottom right in the PPR–DSL, and
the resulting feature model on top of the figure. We published the case studies’ data
and their artifacts in a Git repository.16 Furthermore, we compared and evaluated the
completeness and expressiveness of the PPR models and the feature models, ensuring
they were transformed without information loss.

However, we also identified the following limitations of the approach, as the feature model
at the top of Figure 3.9 shows. First, the feature model maintains the final product

16GitHub Repository: https://github.com/tuw-qse/cpps-var-case-studies
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Figure 3.9: Rendered shift forks (in blue, magenta, and green) in a manual transmission,
(Image: World Arm Lamp, CC0 on Wikipedia - https://w.wiki/3DCf), a section of
the shift fork products in PPR–DSL, and the resulting feature model, from Meixner et al.
[127].

types required for round-trip engineering. However, instead of “not showing” them in
the configuration, the final product types can be selected as features in the configuration.
Second, while there are constraints concerning which features exclude and imply each
other, the features miss or and xor groups and are defined as optional features missing
the mandatory relations in the feature groups. Finally, the case studies only describe the
product variability rather than the three main families of CPPSs and do not address the
variability in processes and resources.

To summarize, we described four real-world case studies, the 3D-printed truck, shift fork,
water filter, and rocker switch case studies. We aimed to use these case studies as a
baseline for empirical evaluations and reproducibility. We addressed the identified gaps in
the TCMs of unclear semantics, limited verification, and scattered engineering artifacts.
Therefore, we modeled the case studies in our previously developed PPR–DSL [130, 123]
with their variability, making them accessible and human-readable. These models enabled
the derivation of detailed product feature models with TRAVART, highlighting the
diverse configurations within each product family. Additionally, we transformed the
models back to the PPR–DSL and validated them for completeness and expressiveness [43].
This way, we achieved a round-trip transformation including the initial products, as
identified in a requirement in a prior publication [43].

Research Outcome. The results of the variability transformation and the use cases
were picked up (i) by our subsequent research efforts [123, 130, 127, 132, 137, 138, 64],
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(ii) as part of a PhD thesis [41] showcasing the successful transformation of custom
variability artifacts from industry to well-established variability models, and (iii) partially
by the TRAVART [46] transformation approach.17 Beyond our collaboration, this work
and subsequent work [138] led to discussions in the SPL community on how to extend
the recent community-effort variability language UVL [192]. For dissemination, we made
the case study artifacts publicly available in a Git repository to support open science
and reproducibility.18 The four use case studies were also published in the ESPLA
catalog [115], a collaborative catalog of case studies for software product line adoption
and extraction.5

3.3.2 Integrated Reuse and Variability Management

The IRVM research line (RL3.) aimed to achieve the following objectives. Enable
modeling and managing the three essential interdependent product families of products,
processes, and resources for engineering CPPS families. In particular, this should include
the configurable and flexible sequence of production steps [85, 143], which reflects the
behavioral variability of the CPPSs. Overcome the manual modeling and configuration
process, based on implicit domain knowledge that comes primarily from experience
and undocumented dependencies, which is hard and, most of the time, impossible to
reproduce [132, 137]. Maintain the paramount separation the concerns in the engineering
process including variability modeling and reuse management [1, 132, 137].

We addressed these challenges, building on our PPR knowledge model for CPPS engi-
neering the PPR–DSL (cf. Section 3.1 and our variability modeling and transformation
approaches (cf. Section 3.3.1). Therefore, we developed the IPSE in Meixner et al. [132]
and extended it in the EIPSE approach in Meixner et al. [137].19 Figure 3.10 shows
the overall approach with steps from EIPSE.20 Furthermore, we developed the EIPSE
toolchain architecture for the approach, which Figure 3.11 illustrates, and implemented
it as the EIPSE tool.21 In the following, we describe the EIPSE process along with a
description of the components in the toolchain.

The EIPSE process starts, similar to the traditional engineering process, with receiving
the product specifications and descriptions. From them, in Step 1 of the EIPSE process,
CPPS engineers iteratively model a PPR–DSL model (cf. Listing 1). Ideally, the engineers
select and slightly adapt atomic process steps and production resources from a common
artifact repository, as explained in Section 3.2.2. In the toolchain architecture, the
PPR–DSL component is shown in yellow at the top left.

17TRAVART Github: https://github.com/SECPS/TraVarT
18Variability Case Studies: https://github.com/tuw-qse/cpps-var-case-studies
19Additional material to EIPSE can be found under: https://github.com/tuw-qse/eipse
20Steps from IPSE are in dashed contours, updated steps with solid contours, and novel steps with

solid contours and a darker color.
21The color coding follows the same terminology of the EIPSE process. Existing components are

displayed in dashed contours, updated ones with solid contours, novel ones with solid contours, and
additional components in a darker color.
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Figure 3.10: (Human & automated) EIPSE process steps [137] for exploring production
process steps based on a product configuration (steps from IPSE [132] in dashed contours,
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Meixner et al. [137].
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In Step 2, EIPSE uses TRAVART [46] to automatically transform the PPR–DSL model
into suitable variability models. Modeling the interdependent product families meant
linking their structural and behavioral variability utilizing well-established variability
models and models to capture their dependencies.

Therefore, in the IPSE [132] we transformed the PPR–DSL into (i) a Product FM
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Figure 3.12: Conceptual mapping of the PPR–DSL knowledge model to UVL [192] for
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to represent the product types, their parts, and structural variability (Step 1a) and
(ii) a DOPLER Process DM [68, 30] to represent the atomic process steps and their
dependencies for aThe partial behavior of the CPPS (Step 1b), and (iii) automatically
linked both models (Step 4) [132]. The EIPSE approach additionally transforms the
PPR–DSL into (i) a Resource FM to represent the hierarchical structure of production
resources (Step 2c), and (ii) CDCs capturing the dependencies between the three models
in propositional logic (Step 2d).

Figure 3.12 shows the model mapping from the PPR–DSL to UVL [192] creating
FeatureIDE feature models and DOPLER decision models. We briefly describe this
mapping in the following, beginning with the high-level concepts and advancing to
their properties. Resources are mapped to features in the UVL Resource FM. Similarly,
Products map to features in the UVL Product FM. Furthermore, they are mapped to
decisions that are not visible to configurators due to their visibility properties in the
UVL Process DM. The dependencies between the products are modeled as constraint
rules. These additional properties and constraints are required for the satisfiability
calculation of the model. Processes are mapped to decisions. Attributes of the PPR–
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DSL model are automatically transformed to general attribute properties in the UVL.
The IDs of resources, products, and processes are transformed to feature names, and
the names of resources, products, and processes are transformed to name properties.
The isAbstract attribute of the PPR concepts is transformed to abstract features and
decisions. The implements list of the PPR concepts are translated to parents features, or
if several concepts are used in the list to constraints, as feature and decision models do
not allow several parents. The children list is transformed to child features. The requires
list is transformed either to visibility conditions, implies constraints, and mandatory
features necessary. The elements in the excludes list are transformed to constraints and
concatenated with not. Constraints are straightforward transformed to UVL constraints
with not mapping to not, and mapping to and, and or mapping to or.

In the toolchain architecture, we advanced the PPR transformations in the PPR plugin
of TRAVART with the transformation operations, and the transformation algorithms.
Furthermore, we changed the decision model plugin to better support visibility conditions
and constraints in the DOPLER decision models. Additionally, we changed the model
writer for the different variability model files. With the model mappings and corresponding
TRAVART transformation operations, we transformed the PPR–DSL models to the
respective variability models. Figure 3.13 shows the resulting Product FM for the shift
fork parts at the top and Resource FM for potential shift fork resources at the bottom
(cf. Section 1.1.1). Table 3.2 shows the corresponding Process DM for the shift fork.

shiftfork_product
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Barrel1_1 Barrel1_2

Screw Jack1 Ring1 O_Ring Fork

Fork3 Fork4 Fork5

Pipe

Pipe8 Pipe3 Pipe2

Lock

Lock1 Lock2 Lock3

Lock1 → Pipe2 ∨ Pipe3 Lock2 → Pipe3Lock3 → Pipe8 Pipe2 ∨ Pipe8 → Barrel1_2
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(b) Resource FM of the production resources for the shiftfork CPPS

Figure 3.13: FeatureIDE feature models [116] of product (top) and production resource
(bottom) variability of the shift fork use case.

In Step 3, a CPPS engineer configures the Product FM, which results in a valid product
configuration. Engineers can conduct this task in the standard FeatureIDE configurator.

Step 4 automatically “reduces” the Process DM configuration based on the Product FM
configuration to exclude decisions not needed for the configured product.
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ID Question Type Range Card. Visible/Relevant if Constraint/Rule
Pipe Which Pipe types? Enum Pipe2 | Pipe 3 | Pipe8 1:1 false
Barrel1_2 Install Barrel1_2? Bool true | false false

Lock Which Lock types? Enum Lock1 | Lock2 | Lock3 1:1 false

Lock1 =⇒ Pipe = Pipe2 ∨
Pipe = Pipe3

Lock2 =⇒ Pipe = Pipe3
Lock3 =⇒ Pipe = Pipe 8

. . . . . . . . . . . . . . . . . . . . .
InsertPipe Install InsertPipe? Bool true | false false
InsertPipe2 Install InsertPipe2? Bool true | false Pipe == Pipe2 InsertPipe2 =⇒ InsertPipe
. . . . . . . . . . . . . . . . . . . . .
InsertLock Install InsertLock? Bool true | false false
InsertLock1 Install InsertLock1? Bool true | false Lock == Lock1 InsertLock1 =⇒ InsertLock
InsertLock2 Install InsertLock2? Bool true | false Lock == Lock2 InsertLock2 =⇒ InsertLock
. . . . . . . . . . . . . . . . . . . . .
InsertBarrel1_2 Install InsertBarrel1_2? Bool true | false Barrel1_2
PressBarrel1_2 Install PressBarrel1_2? Bool true | false Barrel1_2 & InsertBarrel1_2 & InsertPipe
. . . . . . . . . . . . . . . . . . . . .

Table 3.2: Excerpt of the generated DOPLER DM [30] representing the process variability
of the shift fork case study.

Figure 3.14: After configuring the Product FM in Step 3 of the EIPSE process (back-
ground) for the shift fork use case [130], the reduced Process DM configuration is created
in Step 4 of the EIPSE process using the EIPSE prototype’s wizard (front), from Meixner
et al. [137].

In Step 5, a CPPS engineer can explore the remaining process decisions iteratively and
interactively. However, the IPSE approach had no automation and tool support to explore
and configure process sequences [137].

Therefore, we implemented the novel decision model editor (blue on the bottom left),
embedded in the Eclipse ecosystem, to work seamlessly with the state-of-the-art variability
modeling editor FeatureIDE. The editor not only allows the configuration of Process DM,
but can also be used to create various kinds of decision models and their configuration.
This means that, to the best of our knowledge, the editor is the first openly available
editor for DOPLER decision models. With this, the EIPSE tool reduces the Process DM,
which a CPPS engineer can then explore and configure based on a constant evaluation

72



3.3. Integrated Reuse and Variability Management for CPPS Engineering

with SAT4J, the standard solver in the FeatureIDE.22 As a result, the tool only displays
process steps feasible in the particular configuration stage. In the background, the editor
evaluates the visibility conditions and sets the subsequent configuration options based on
the constraints in the Process DM. Figure 3.14 and Figure 3.15 show the decision model
editor during the shift fork configuration.

In Step 6, the EIPSE tool automatically reduces the Resource FM configuration based on
the previous Process DM configuration, resulting in a partial Resource FM configuration.
In this configuration, possibilities are valid production resource configurations for a
particular product and process sequence configuration from previous steps.

Based on this Resource FM, in Step 7, a CPPS engineer can configure the desired
production resources with the EIPSE tool. However, the IPSE toolchain did not include
production resource modeling and configuration. Therefore, we adapted and connected
the closed source V4rdiac component of Fadhlillah et al. [39] (shown in violet on the
bottom right), a co-author of the EIPSE publication, to exemplify the EIPSE approach.
The V4rdiac tool takes up the CDC file, containing further dependencies between the
different variability models, reduces the Resource FM, and enables its configuration.

Figure 3.15: During the configuration of the production steps in the Process DM in
Step 5 of the EIPSE process, a suitable production process sequence for the shift fork
use case [130] is defined. The EIPSE prototype provides a rollback option (right-hand
side) for systematic process sequence exploration [133], from Meixner et al. [137].

Finally, in Step 8, we support generating particular CPPS engineering and operation
artifacts. Based on which artifacts shall be generated, it requires an additional artifact
generation component. For the EIPSE tool, we utilized V4rdiac to generate IEC 61499
control software [82]. V4rdiac picks up the configurations of the Process DM and
Resource FM and parameterizes the base implementation of IEC 61499 code with the
values from the configurations and generates the final control software. This software
then contains the relevant processes and resources and can be further modified by CPPS
engineers and then deployed to a manufacturing execution system and particular resources,
such as robot arms.

22SAT4J: http://sat4j.org/
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To evaluate the EIPSE approach, we conducted an empirical evaluation that involved:
(i) assessing the feasibility of selecting a suitable CPPS variant in four previously presented
real-world case studies [130], (ii) applying the EIPSE approach in the novel chess piece
case study conducted by domain experts with diverse backgrounds and no prior experience
with the EIPSE approach, and (iii) exploring the joint use of feature and decision models
for configuring CPPS and generating CPPS artifacts with V4rdiac [39].
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S1 E,ME 10m 60m 30m 3m 5m 1m
S2 E,ME 13m 70m 15m 2m 7m 3m
S3 E,ME 9m 72m 3m 2m 5m 4m
S4 E,SE 6m 62m 4m 1m 4m 1m
S5 R,ME 9m 63m 9m 6m 9m 3m

Summary (avg) 9m 65m 12m 3m 6m 2m

Table 3.3: “Time spent” by engineers with different backgrounds for EIPSE to the
chess piece case study. E. . . Engineer, R. . . Researcher; ME. . . Mechanical engineering,
SE. . . Systems engineering, from Meixner et al. [137].

In the study, we assessed how much effort (senior) domain experts from diverse back-
grounds and inexperienced with the EIPSE approach dedicated to each step of its
application. Therefore, we utilized the chess piece case study, which we elicited from TU
Wien’s pilot factory,23 where a CPPS produces the six types of chess pieces with different
configurations. Five subjects participated in the study, modeled the chess pieces, the
production processes, and the resources using the PPR–DSL, and configured the resulting
variability models subsequently to the EIPSE approach. Table 3.3 shows the domains
and origin of the subjects (mechanical (ME) or (SE) systems engineering; engineers
(E) or researchers (R), how much time they spend on particular tasks, and a summary
row that shows the “time spent” as average. We introduced the subjects to the EIPSE
approach and the case study, spending an average of 9 minutes on this introduction.
The subjects spent most of the time defining the chess piece product line, averaging
65 minutes. Additionally, on average, they spent 12 minutes updating their models
according to feedback loops, for instance, when they found out that modeling a product
as an abstract product makes sense. The configuration of the product, process, and
resource variability models took around 3 minutes for the product and resource models.
In contrast, the process sequence configuration took slightly longer, at 6 minutes on
average.

23Pilotfabrik TU Wien: https://www.pilotfabrik.at
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Our pre-modeled baseline for the chest piece case study comprises the 6 chess piece types
with 17 features in the Product FM. Furthermore, it contains around 11 production
process steps with 19 process decisions in the Process DM, and 5 production resources in
the Resource FM. Following our categorization of the reusable use cases published before
in Meixner et al. [127] (cf. Table 3.1), we categorize the complexity of this case study
still low.
The users spent a large part of the time defining and updating the PPR–DSL models,
compared to the configuration of the interdependent Product FM, Process DM, and
Resource FM. We strongly assume that some time is owed due to the unfamiliar DSL.
Considering this, these results show that the subjects required more time for the domain
engineering activities than the configuration part of the application engineering activities.
However, we argue that engineers, in any case, have to invest a significant amount of
mental work to identify how to manufacture the product and which production processes
and resources to use in the first place. Furthermore, with this externalization of their
implicit knowledge into the PPR–DSL, they make their knowledge on the imagined
CPPS available (i) for reusability, for instance, as libraries, increasing the reusable
artifacts, (ii) a further iteration and evolution of the products and CPPS design lowering
domain expert effort, and (iii) communication and transfer to other disciplines, as well
as clients, for better reproducibility. This result indicates that the manual approach
unlikely pays off for CPPSs families with low complexity. This concerns, for instance,
the truck, shift fork, or chess piece use cases, except in projects where the products or
the production system changes regularly. However, in medium to large projects with
many dependencies, modeling, for instance, an additional product seems a marginal
change in domain engineering while reusing the former models. Similarly, the user study
indicates that the effort of additional exploration of the Product FM, Process DM, and
Resource FM stays within reasonable limits.
This evaluation strengthens our initial assumption that an integrated approach for reuse
and variability management allows more efficient engineering of CPPS families compared
to the traditional approach (cf. Section 1.1.2). The approach does so by (i) facilitating
multidisciplinary knowledge exchange via PPR model and engineering design patterns
while separating the disciplines’s concerns (C5., M2., M5.), (ii) increasing reusable
artifacts that serve as a foundation for engineering iterations or future CPPSs (C1.,
M3.), and thus (iii) reducing domain expert effort when evolving or designing CPPS
(C2.). Furthermore, through this approach, we expect an overall increase in the quality
of engineering artifacts and the engineering lifecycle (C1., M2.).
To summarize, building on the previously established PPR knowledge model and PPR–
DSL, we developed the IPSE and its extension, the EIPSE approach with the EIPSE
toolchain. The EIPSE approach aimed to address, in particular, challenge subsumed in
challenge CH3. aiming to improve the efficiency of reuse and variability management in
CPPS engineering.
The EIPSE approach supports automated transformations from the PPR–DSL models
to t interdependent variability models, i.e., the Product FM, the Process DM, and the
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Resource FM. This way, the approach captures the structural and behavioral variability
of CPPSs. Furthermore, EIPSE provides tool-assisted configuration tasks, including
production process sequence and resource explorations based on a product configuration.
Additionally, we showed the generation of parameterized CPPS artifacts with IEC 61499
control code [82] generation from the variability model configuration.

A user study with (senior) domain experts from academia and industry indicated that
the EIPSE approach is effective. For a use case of low complexity, they spent more time
in domain engineering, creating reusable PPR–DSL models. In contrast, the subsequent
configuration of the three different variability models and the control code generation
were relatively fast in the application engineering activity. The externalization of their
engineering knowledge and separation into the different variability models in the study
suggest that the approach facilitates multidisciplinary knowledge exchange. Furthermore,
it increases the reasonability of engineering artifacts. We argue, that these findings show
that the approach overall reduces the effort required from domain experts when evolving
or designing CPPSs and their families.

Research Outcome. This work advances the state of the art by introducing a sys-
tematic reuse and variability management approach utilizing CPPS engineering models.
We go beyond the state of the art as the utilized decision models significantly exceed the
size and complexity of decision models commonly found in the literature [182]. In this
regard, we can present a new baseline for decision models for the SPL community. For
dissemination, we created additional material19 along with a video of the IRVM approach
in action.24

24eIPSE demonstration video: https://youtu.be/eoNNDOusXKA
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CHAPTER 4
Conclusion

This chapter discusses the research results and concludes the thesis.

4.1 Discussion
This section analyzes our research findings. To this end, it discusses the implications of
the developed methods and models. Furthermore, it addresses the broader impact of the
adoption of integrated reuse and variability management approaches in the industry.

Engineering organizations in CPPS engineering face, beyond others, the rising demand
for more flexible and adaptable CPPSs. This flexibility subsequently requires reusing
engineering artifacts and modeling the variability within these systems. This, in particular,
concerns the different dimensions of variability, i.e., product, production process, and
production resource variability.

Variability Awareness. Our industry partners are aware of the variability within a
single CPPS but also in related CPPS. Concerning this variability, they face similar
issues to other industrial engineering organizations [6]. According to an interview with
a senior researcher in automation engineering, beyond others, these issues concern the
multidisciplinarity of the field with implicit and scattered knowledge, variability on
multiple levels, and long-running project times on long-living ecosystems.

As a result, engineering organizations use, for instance, TCMs to model the variability of
the products. Furthermore, they use technical components from libraries to represent
production resource variants. However, these libraries must be filled and maintained in
parallel with their project business. There is also limited awareness of the holistic and
interlinked variability of products, processes, and resources. This limited awareness is
because thinking in multidisciplinary engineering objects over disciplined borders is the
foundation for interdisciplinary and secure reuse. However, this relevant knowledge has
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only been acquired in recent years [181, 150]. Additionally, there is limited knowledge
on SPL methods, which is, if known, seen as an opportunity but also as a significant
challenge to implement, among other things, because of missing integrated tool chains.

To this end, the PPR model has already brought more insight into our industry partners.
The superimposed PPR model for the visual representation of variability, presented in
Section 3.1, brought additional awareness of the interrelated CPPS variability and its mod-
eling to the engineers, helping them to communicate their engineering knowledge better.
However, according to our industry partner, the rising complexity of the superimposed
PPR model requires additional tool support and a pragmatic approach to represent the
model not only visually [118]. Nevertheless, Fidan et al. [53] already adopted the model
to represent variability for frugal production aiming to support sustainable production
regarding the SDGs. Furthermore, the ideas concerning an integrated reuse and variability
modeling approach [118] have provided foundational knowledge for the Christian Doppler
Laboratory For Mastering Variability in Software-intensive Cyber-Physical Production
Systems (CDL VaSiCS)1 [157] resulting in a long-term collaboration with JKU Linz.
Furthermore, its resulted in the Variability Modeling Body of Knowledge (VMBoK).2

Future Work in this direction concerns further raising the awareness for SPL methods
and disseminating the results of the thesis, in particular, on integrated PPR variability
with process sequences, to a broader industrial audience. Developing easy-to-understand
educational material and engaging in workshops or industrial focus groups, such as,
INCOSE MBSE or INCOSE SPL.3

Production Knowledge Model and Reuse and Variability Management. Fur-
ther, this thesis has introduced the PPR production knowledge model and PPR–DSL [123,
130]. This approach allows human- and machine-readable modeling of product, produc-
tion process, and production resource elements. Furthermore, the PPR–DSL supports
the explicit representation of variability, enabling engineers to capture this knowledge
systematically. Our industry partners utilize the ideas for designing their strategic CPPS
engineering information ecosystem. The feedback was generally positive with an “easy to
use” PPR–DSL “once the syntax is clear” and the PPR–DSL being “great because it is
not as complex as, e.g., SysML.” [137]

However, our industry partners and (senior) domain subjects pointed out several lim-
itations from a user study, demanding further improvements, for instance, due to “a
steep learning curve.” [137] These demands range from a “simplified syntax to be usable
for engineers” as it is “sometimes redundant and partially confusing”, “redundancies
that should be omitted”, to “improving the documentation”. Furthermore, it requires
“additional and better tool support to use it efficiently” with “better tool feedback” and
“a better overview of PPR concepts” using, for example, “low code approaches” [137].

1CDL VaSiCS: https://www.jku.at/cdl-vasics/
2VMBoK: https://github.com/SECPS/VMBoK
3International Council on Systems Engineering (INCOSE): https://www.incose.org
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Beyond the industrial collaboration, the production knowledge model and PPR–DSL
have been picked up as the foundation for research in our group [169, 172] and a maturity
evaluation of DSL ecosystems in a transnational research collaboration [64]. Furthermore,
the approach was picked up for a visual representation of the PPR models in a line of
master theses [35, 153, 100, 21] to foster the low code approach. However, the visual
representation in combination with the PPR–DSL is not in the scope of this thesis.
Future Work in this direction concerns further advancing the PPR–DSL and its tool
support. In particular, it includes reevaluating the ongoing work on simplification and
tool support. Such a reevaluation should be conducted in more extensive empirical
evaluations, such as usability and usefulness, with our industry partners and industrial
practitioners.
For the IRVM research line, this thesis has adopted the PPR–DSL model for transforming
those models into state-of-the-art variability models. This includes providing four openly
available, reusable real-world case studies [127] in the sense of open science and dissem-
ination. Furthermore, the PPR–DSL was adopted in the IPSE [132] and EIPSE [137]
approaches. These approaches provide structured methodologies for integrating products
and their variability with the corresponding production process and resource variability
as required for CPPS families [55, 147]. These approaches have leveraged feature and
decision models to handle structural and behavioral variability, addressing a significant
gap in traditional variability management techniques [59, 174]. An essential contribution
of the thesis has been the EIPSE toolchain built on state-of-the-art software. It auto-
mates critical steps in the CPPS configuration process, including transforming PPR–DSL
models into variability models [43] and configuring these models to generate concrete
CPPS solutions. This toolchain has enhanced engineers’ ability to manage CPPS lines
efficiently, reducing the manual effort and potential for errors associated with traditional
approaches. A feasibility study of four real-world case studies [127] and a user study
with (senior) domain experts have validated the practical applicability in an additional
case study [137]. These studies have provided evidence that IRVM strategies improve
engineering efficiency and facilitate better knowledge exchange across disciplines. These
are believed to ultimately lead to higher quality and more adaptable CPPS solutions.
The feedback noted that “the process digitalization is a great idea that can improve
reuse of existing configurations”, “makes the knowledge about the production sequence
explicit”, and ‘ “supports the reproducibility of process selection.” [137] Furthermore, the
feedback confirmed the separation of concerns through “modeling relations from different
discipline perspectives.” However, the domain experts also noted that “the toolchain
requires better integration” and that “executing the process using the EIPSE toolchain
requires a lot of preparatory steps, which could be reduced.” One expert also mentioned
that “the often rigid integration structures of large companies might render the approach
better suited for small and medium companies.”
For ACEA, this thesis has presented the CSR method [135] that provides a framework to
introduce DAE based on CSBE. The framework describes the activities to elicit CPPS
knowledge from prior projects and model them as reusable artifacts PPR and C&Ss
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models. This aims at improving the loose coupling of production processes and resources
for a common artifact repository. Furthermore, the framework presents activities on how
to use, configure, and test these reusable artifacts in particular engineering projects.

The research on the PPR knowledge model and PPR–DSL, the EIPSE, and CSR
approaches involved several industrial case studies and evaluations with domain experts.
However, these evaluations were quite limited in the number of participants and the
size of the case studies. Furthermore, while, for instance, the EIPSE approach indicates
a certain efficiency improvement due to the fast configuration of the interdependent
variability models after changes to the PPR models [137], this needs additional proof.

Future Work in this direction concerns further empirical evaluations. Such empirical
evaluations should be conducted on a broader real-world case study. Furthermore,
they should include more engineers who represent the different disciplines involved in
the engineering process, i.e., product designers, process engineers, and, for instance,
mechanical engineers. To ensure the rigor of such an evaluation, guidelines for systematic
and empirical evaluation should be considered [177, 205, 214, 52].

Similar to the evaluation with engineers, an evaluation of the scalability of the approaches
needs to be conducted. This concerns, for instance, the deployment and retrieval of the
PPR models and libraries in a common artifact repository to support the EIPSE approach
and toolchain and the CSR framework. From the software engineering perspective, tools
like Maven4 or npm5 for engineering build could be a blueprint. As deployment platforms,
similar approaches like the Docker Hub6 could be used.

Furthermore, the CSR and EIPSE approach need to be developed toward a higher level of
technical readiness, including the functionality and the further integration of the toolchain
in the CPPS engineering context.

Adoption in the Industry. Adopting the proposed approach in industrial contexts
presents several opportunities and challenges. A first step toward adoption must be,
as mentioned above, raising the awareness for SPL engineering in general and for the
concepts of the proposed approaches in particular. For instance, the SPL community
reaches out, for instance, with the “product line hall of fame”.7 However, the CPPS
research and engineering domain is currently undergoing the fourth and fifth revolution,
including the recent developments in artificial intelligence, which binds resources at other
domains.

Due to similar reasons, several of the following points must apply to implement SPL
approaches, such as ours. We argue that there needs to be certain pain points that can
be addressed through the approach. In our case, we deem it the required flexibility and
a current change to brownfield engineering, which requires improved reconfigurability

4Maven: https://maven.apache.org
5NPMJS: https://www.npmjs.com/
6Docker Hub: https://hub.docker.com/
7Product Line Hall of Fame: https://splc.net/fame.html
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of CPPSs. Additionally, there needs to be strong support from the CPPS engineering
organization’s management and a collaboration champion within the CPPS engineering
organization [213]. Similarly, there need to be short-term results that have an impact [213]
on the CPPS engineering organization and the involved domain experts. These are, for
instance, avoiding semantic inconsistencies and overcoming clone-and-own approaches.
Therefore, there needs to be the provision of well-documented comprehensive and solid
tool prototypes for the proposed approaches tested, at least, on CPPSs of lab size as
showcases. These prototypes should support the different concerns of the involved
engineering disciplines and minimize manual effort and complexity. This is because it is a
significant monetary effort for a CPPS engineering organization to pull off high-valuable
engineers from their daily business to participate in activities, such as testing software,
as our industry partners confirm. This goes hand in hand with the multidisciplinary
domain, as CPPS engineering is a multidisciplinary effort, and testing would require
several engineers of different disciplines. This might be countered by splitting the tests
into domain-specific tests and then testing the toolchain in integrated multidisciplinary
tests.
However, testing the approaches and practices would require the investment of upfront
efforts. This includes, for instance, the preparation of particular models, filling engineering
libraries with potential production processes and resources, and training of domain experts
to learn the PPR–DSL and EIPSE in a tool environment that is not yet integrated into
their software ecosystem. Short-term benefits could be eliciting engineering knowledge
from domain experts for integrated PPR aspects or the enhanced reproducibility of the
configuration approach. Nevertheless, the EIPSE approach is quite a complex approach
that might induce more overhead than introducing isolated measures, which needs to be
investigated further.
Nevertheless, such upfront efforts require a thorough analysis of the costs and benefits
to demonstrate the long-term benefits of our approaches in CPPS engineering. This
includes investigating, for example, reduced errors, increased engineering efficiency and
quality, and cost reduction during basic planning. While there are cost models for SPL
engineering, such as COCOMO [152, 197], to our knowledge, such a cost-benefit approach
has not been developed for multidisciplinary engineering, including CPPS engineering.
Finally, it requires developing an approach for conducting incremental migrations toward
CPPS family engineering in several stages, backed by evidence and experience from the
practice. A blueprint could be, for instance, similar to what Grüner et al. [67] proposed
for SPL engineering in robot automation.
Future Work that can drive this direction further include, among other things, the
following. Additionally, workshops with our industry partners who are now aware of
our proposed approaches but who require support on how to integrate them into their
engineering practice and software ecosystem. Advancing the approaches and prototypes
toward a point where engineers of different disciplines can use them easily. Investigation
of the costs and benefits, for instance when implementing the approach in a lighthouse
project with interested CPPS domain experts.
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Production Reference Model Finally, the thesis has extended the PPR production
knowledge model toward ACEA. To this end, it provides the I4AN knowledge model
and the I4AN reference model [128, 129] as a foundation for the identification of CPPS
engineering design patterns. The reference model and the engineering design patterns
have fostered coordination and communication of multidisciplinary knowledge in CPPS
engineering. The approach has provided the foundation for research on coordinated
CPPS reuse for multidisciplinary CPPSs engineering knowledge [134], publications in our
research group [13, 14, 16, 168] and collaborations [76, 112]. Beyond that the approach
has been successfully applied and been well received in a corporation with a German
automotive manufacturer for advanced data analytics [77] Additionally, it has been
successfully applied and been well received in a corporation with an Austrian supplier of
automotive parts for production quality improvement [102, 103].

Future Work in this direction could be the development of support to conduct the
approach better.

Takeaways for the SPL community. Considering the application of SPL approaches
by CPPS engineering, the SPL community may take away the following points. First,
while engineering product lines solely for software is already a challenge, implementing
these approaches in a multidisciplinary domain presents even greater difficulties. In
such a domain, multiple heterogeneous engineering disciplines must collaborate on a
highly complex system, further challenging current methods and techniques. Second,
in contrast to SPL engineering, in CPPS engineering, the identification of particular
variants is far more critical. This significance arises because unnecessary product variants
do not contribute to the “return on investment” of a CPPS. Even worse, planning for
manufacturing product variants that do not contribute can lead to a significant overshoot
in production cost, for instance, if resources are not working on capacity or are not even
used. Third, the physical component of CPPS must be considered more thoroughly.
This concerns, in particular, the testing and verification of approaches in the real world.
Setting up test environments and gracefully shutting them down includes considerably
more effort and cost than for sole SPLs.

Beyond the thesis’s publications, the research project has led to several activities in the
scientific community. One is a transnational collaboration on CSBE resulting in further
publications [58, 97] and an industry whitepaper8 and frequent exchanges with European
research groups. Additionally, for dissemination, the author and a fellow group of
researchers have successfully organized several editions of the special session on Capability
and Skill-based Engineering of Manufacturing Systems at the international conference
on Emerging Technologies and Factory Automation. In addition, the author was invited
to organize several editions of the workshop on Variability and Evolution of Software-
intensive Systems at the international Systems and Software Product Line Conference.9

8Platform 4.0 C&S Whitepaper: https://www.plattform-i40.de/IP/Redaktion/DE/
Downloads/Publikation/CapabilitiesSkillsServices.html

9SPLC 2023: https://2023.splc.net
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4.2. Conclusion

Furthermore, for dissemination, we have successfully organized two special sessions
on Software Engineering for Cyber-Physical Production Systems at the international
conference on Emerging Technologies and Factory Automation10, resulting from the
workshop on Software Engineering in Cyber-Physical Production Systems.11

4.2 Conclusion
This cumulative PhD thesis presented methods, models, and techniques for efficient reuse
and variability management for Cyber-Physical Production System (CPPS) families.

The thesis addressed essential challenges in CPPS engineering including discipline-specific
implicit CPPS engineering knowledge and a mainly manual engineering process that
is inefficient and hard to reproduce. An additional challenge is the lack of effective
and efficient engineering knowledge representation with variability. This variability
includes the primary dimensions of variability in CPPSs, i.e., products, processes, and
resources, required to efficiently build CPPS families. These challenges have been
particularly prominent in multidisciplinary environments where knowledge communication,
consistency, and reproducibility are essential for efficient CPPS design and operation.
At the same time, separating the discipline-specific concerns is crucial for agile CPPS
engineering.

The thesis has been organized along three main research lines: RL1. the Production
Knowledge Models (PKMO) for multidisciplinary CPPS engineering knowledge repre-
sentation with variability. The research line is focused on making implicit engineering
knowledge explicit and mitigating issues that arise from heterogeneous engineering arti-
facts and unclear semantics. These efforts aim to facilitate multidisciplinary engineering
knowledge modeling and exchange (cf. Section 3.1); RL2. the Advanced CPPS Engi-
neering Applications (ACEA) for improved engineering coordination and engineering
knowledge communication. These efforts aimed to provide the foundations for engineers
to reuse engineering knowledge and models systematically (cf. Section 3.2); and RL3.
the Integrated Reuse and Variability Management (IRVM) for CPPS engineering for
semi-automated, systematic, and integrated management of the variability of reusable
CPPS family artifacts (cf. Section 3.3). This research line aimed to facilitate reuse
and variability management compared to a traditional manual approach to enhance the
efficiency of CPPS family design (cf. Section 1.1.2).

The thesis project contributed ten core publications (cf. Table 2.1) to this cumulative
thesis and several, mostly related, additional publications (cf. Table 5.1). From these
publications, the thesis presented the following contributions. In the context of PKMO,
we presented the superimposed Product-Process-Resource (PPR) model that serves as a
visual representation of PPR with variability. In an evaluation with the domain experts
the superimposed PPR model was positively received. However, they also demanded

10ETFA 2024: https://2024.ieee-etfa.org
11https://rickrabiser.github.io/secpps-ws/
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additional tool support and textual presentations to counter visual complexity. As a result,
we developed and discussed the PPR meta-model as a formal model-based representation
with variability and the Product-Process-Resource Domain-Specific Language (PPR–DSL)
to make implicit engineering knowledge explicit. Evaluations with domain experts showed
the benefits but also led to improvements, such as a simplified syntax and additional tool
support in ongoing work. For ACEA, we presented the Industry 4.0 Asset Network (I4AN)
meta-model and the I4AN reference model for improved coordination and communication
of engineering knowledge. Furthermore, we introduced basic engineering design patterns
to address common engineering problems. The I4AN reference model was evaluated
and already applied in industrial practice for engineering knowledge communication.
Additionally, we presented the Capability and Skill Reuse (CSR) framework to reuse
engineering knowledge systematically. In the context of IRVM for CPPS engineering,
we presented four real-world case studies with PPR models and transformations to
state-of-the-art variability models and published them with the engineering artifacts in
the sense of open science. Furthermore, we introduced the systematic, semi-automated,
and integrated Extended Iterative Process Sequence Exploration (EIPSE) approach that
extends our Iterative Process Sequence Exploration (IPSE) approach. EIPSE aimed to
manage the three primary dimensions of variability that PPRs spawned in CPPS families.
To evaluate the approach we conducted a user study with several (senior) domain experts.

The findings showed that the PKMO enable the straightforward externalization of
engineering knowledge with variability. The ACEA demonstrated an improved mul-
tidisciplinary knowledge communication in industrial practice and increased reuse of
engineering artifacts. The EIPSE allows an efficient represent CPPS engineering knowl-
edge in verifiable variability models. Furthermore, the evaluation of the EIPSE with
domain experts implies that the approach allows the efficient configuration of the three
primary dimensions of CPPS variability. As a result, the approach enables reusing
engineering knowledge and artifacts and managing their variability efficiently. These
findings, we argue, indicate that the approach can reduce the effort required from domain
experts when evolving or designing CPPSs families.

In a discussion, we detailed how the approaches can benefit the environment. However,
we also raised limitations concerning the approaches and sketched necessary future work
to adopt the approaches in the industry.

This thesis has made significant contributions to the relevant stakeholder groups. Several
concepts of the presented approaches were picked up and applied by our industry partners
in the research environment. We contributed additions to the CPPS research community,
for instance, by providing methods and models for externalizing engineering knowledge
with variability based on standards and guidelines. Furthermore, we presented frameworks
for reuse and variability management of the primary aspects of CPPS engineering, i.e.,
PPR models. We contributed foundational research for the Software Product Line
(SPL) community concerning the connection of structural and behavioral variability.
Furthermore, we presented crucial insights into CPPS engineering relevant for adopting
SPL methodologies and frameworks in this field.
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CHAPTER 5
Publications

The following peer-reviewed publications, grouped according to the research lines, con-
tributed to this cumulative thesis. We provide detailed information on the particular
publication in a corresponding section. This information comprises the publication’s full
citation, its aim in the context of this thesis, and the abstract. In addition, we include
the contributions to the thesis concerning the thesis’ goals (cf. Section 1.3) and research
questions (cf. Section 1.4.5).

In Section 5.4, Table 5.1 chronologically lists additional publications of the thesis. However,
several of these publications either provide building blocks for the core publications or
pick up the concepts developed in the core publications of this thesis. Finally, Table 5.2
shows currently planned publications.

5.1 Production Knowledge Models

5.1.1 Towards modeling variability of PPR in CPPS engineering

Citation

[118] K. Meixner, R. Rabiser, and S. Biffl. Towards modeling variability of products,
processes and resources in cyber-physical production systems engineering. In C. Cetina,
O. Diaz, L. Duchien, M. Huchard, R. Rabiser, C. Salinesi, C. Seidl, X. Tërnava, L. Teixeira,
T. Thuem, and T. Ziadi, editors, Proceedings of the 23rd International Systems and
Software Product Line Conference, SPLC 2019, Volume B, Paris, France, September
9-13, 2019, volume B, pages 68:1–68:8. Association for Computing Machinery, 2019. doi:
10.1145/3307630.3342411
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Aim

The publication “Towards modeling variability of products, processes, and resources in
cyber-physical production systems engineering” [118] conveys the first idea of integrating
state-of-the-art PPR models and variability modeling for improving CPPS design reuse
and flexibility. The publication (i) elicits challenges of the research topic from domain
experts, (ii) provides a running real-world example, (iii) introduces superimposed CPPS
engineering model as a knowledge model that integrates variability modeling, (iv) con-
tributes a draft for a potential prototypical software architecture, and (v) sketches a
basic research agenda.

Contribution to the thesis

This publication contributes CPPS challenges, research vision, and research agenda, and
to the research goals IRVM idea (G2.), superimposed CPPS knowledge model (G1.),
and IRVM prototype architecture (G4.).

This publication contributes to the research questions RQ1., RQ2., and RQ3. by
addressing the VDI 3695 measures of models and description languages M1., knowledge
management M2., re-use M3., quality assurance M4., integration and seamless cooperation
of disciplines M5., and the SPL capabilities efficient reuse C1., variability management C3.,
enhanced quality and consistency C4., and facilitation of interdisciplinary collaboration
C5..

Abstract

Planning and developing CPPSs are multi-disciplinary engineering activities that rely on
effective and efficient knowledge exchange for better collaboration between engineers of
different disciplines. The PPR approach allows modeling products produced by industrial
processes using specific production resources. In practice, a CPPS manufactures a
portfolio of product type variants, i.e., a product line. Therefore, engineers need to create
and maintain several PPR models to cover PPR variants and their evolving versions. In
this paper, we detail a representative use case, identify challenges for using Variability
Modeling (VM) methods to describe and manage PPR variants and present a first solution
approach based on cooperation with domain experts at an industry partner, a system
integrator of automation for high-performance CPPS. We conclude that integrating basic
variability concepts into PPR models is a promising first step and describe our further
research plans to support PPR VM in CPPS.

86



Towards Modeling Variability of Products, Processes and
Resources in Cyber-Physical Production Systems Engineering

Kristof Meixner
Christian Doppler Lab CDL-SQI, ISE

TU Wien, Austria
kristof.meixner@tuwien.ac.at

Rick Rabiser
Christian Doppler Lab MEVSS, ISSE
Johannes Kepler Univ. Linz, Austria

rick.rabiser@jku.at

Stefan Biffl
Inst. of Information Systems Eng.

TU Wien, Austria
stefan.biffl@tuwien.ac.at

ABSTRACT
Planning and developing Cyber-Physical Production Systems (CPPS)
are multi-disciplinary engineering activities that rely on effec-
tive and efficient knowledge exchange for better collaboration
between engineers of different disciplines. The Product-Process-
Resource (PPR) approach allows modeling products produced by
industrial processes using specific production resources. In prac-
tice, a CPPS manufactures a portfolio of product type variants, i.e.,
a product line. Therefore, engineers need to create and maintain
several PPR models to cover PPR variants and their evolving ver-
sions. In this paper, we detail a representative use case, identify
challenges for using Variability Modeling (VM) methods to describe
and manage PPR variants, and present a first solution approach
based on cooperation with domain experts at an industry partner,
a system integrator of automation for high-performance CPPS. We
conclude that integrating basic variability concepts into PPR mod-
els is a promising first step and describe our further research plans
to support PPR VM in CPPS.

CCS CONCEPTS
• Software and its engineering→ Software product lines.

KEYWORDS
Variability Modelling, Product-Process-Resource, Cyber-Physical
Production System
ACM Reference Format:
Kristof Meixner, Rick Rabiser, and Stefan Biffl. 2019. Towards Modeling Vari-
ability of Products, Processes and Resources in Cyber-Physical Production
Systems Engineering. In 23rd International Systems and Software Product
Line Conference - Volume B (SPLC ’19), September 9–13, 2019, Paris, France.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3307630.3342411

1 INTRODUCTION
In recent years, computation and communication technologies in-
creasingly collaborate with connected smart physical devices, build-
ing ubiquitous Cyber-Physical Systems (CPSs), which are capable
of autonomously interacting with their environments, including
humans [33, 41]. Cyber-Physical Production Systems (CPPSs), such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6668-7/19/09. . . $15.00
https://doi.org/10.1145/3307630.3342411

automated car manufacturing plants or steel mills, reflect the char-
acteristics of CPSs to industrialized manufacturing [6, 33]. Planning
and developing successful CPPSs are engineering tasks requiring a
multi-disciplinary team effort of engineers from different domains,
such as mechanical, electrical and software engineering [6, 8]. In-
nately, the involved disciplines establish differentmindsets resulting
in a variety of heterogeneous engineering artifacts. Therefore, in
multi-disciplinary teams a proficient knowledge exchange is crucial
for an effective and efficient collaboration, subsequently requiring
an adequate knowledge representation, which often does not exist.
Model-based engineering artifact representations can help to
bridge the gap of engineering knowledge transfer [4, 59] as they
are easy to exchange among domains and can be transformed to
represent relevant concepts of other domains. The Product-Process-
Resource (PPR) approach [48], for example, allows defining relations
between products to produce (e.g., a cake or rocker switch), the
associated production processes (e.g., assembling or welding), and
the necessary production resources (e.g., machines or robots). The
Formal Process Description (FPD) [56] is a formal notation to realize
PPR by modeling production processes with their input, interme-
diate, and output products as well as the resources needed in the
processes to manipulate these products. Such concepts allow model-
ing, e.g., assembly sequences, which define the manufacturing steps
for a particular product variant as a basis for designing the layout
of the CPPS and describing/optimizing production plans, easily.
However, (a) approaches, such as the FPD, are still limited for
modeling variability of the involved artifacts and (b) existing Vari-
ability Modeling (VM) approaches [11] might not be able to deal
with the variability of processes, products, as well as resources in
a CPPS context. Existing work from the area of Software Product
Line (SPL) engineering either addressed (software) product variabil-
ity [2, 38, 55] OR process variability [45, 52], but not their combi-
nation. Integrated software process and product lines have been
proposed as a vision [43], but, at least in the CPPS context, this vi-
sion has not been achieved. Further, production resources have been
only indirectly addressed in work on non-functional properties and
product lines [51].
A combined approach for PPR Variability Modeling (VM) seems

to be not readily available. While a multi-product line approach [21]
might seem promising on the first glance, we will show that prod-
uct, process, and resource variability should be modeled in an in-
tegrated manner, and not as separate product lines. Finally, in a
CPPS context, integrated PPR modeling is not the only challenge
for a VM approach, primarily due to the heterogeneity of artifacts
and involved domains, and due to the continuous and independent
evolution of products, processes, and resources.

5.1. Production Knowledge Models

87



SPLC ’19, September 9–13, 2019, Paris, France Kristof Meixner, Rick Rabiser, and Stefan Biffl

In this paper, we identify and detail the challenges for VM ap-
proaches in the CPPS context. Furthermore, we evaluate a first PPR
notation extension for variability in a case study with domain ex-
perts at an industry partner and present a research agenda directed
towards achieving the goal of modeling the PPR variability in CPPSs.
The remainder of this paper is structured as follows. Section 2
presents the background of CPPS and PPR and discusses related
work on PPR and VM . Section 3 describes our research questions.
Section 4 presents an illustrative use case, which is used to de-
rive challenges for VM in CPPS presented in Section 5. Section 6
presents a first solution approach and describes a research agenda.
We conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORK
This section summarizes related work on CPPSs, PPR, and VM .

2.1 Cyber-Physical Production Systems
The scientific community uses several definitions of CPSs, which
Gunes et al. [20] summarize in a survey on CPSs concepts and
challenges as “complex, multi-disciplinary, physically-aware next-
generation engineered systems that integrate embedded computing
technology into the physical phenomena”. Examples range from home
automation solutions based, e.g., on Google Echo, over truck fleet
logistics using GPS for real-time coordination, to large-scale in-
frastructure like smart grids allocating resources depending on en-
ergy load. Key capabilities of CPSs are, e.g., robustness, safety, and
adaptation to environmental characteristics in real-time through,
e.g., self-diagnosis, self-adaptation, and self-maintenance [33, 41].
Krüger et al. [27] state that a central challenge of CPSs stems from
managing the variability of their heterogeneous aspects.
In this paper, we utilize [6] that defines CPPSs as advanced pro-
duction systems building the foundation for the 4th industrial rev-
olution [33]. Using smart physical infrastructures, the latest data,
computer, and communication technology, as well as modern pro-
duction methods, like additive manufacturing, CPPSs facilitate opti-
mized production processes along the value chain for a variety of
products with a broad range of characteristics.
As mentioned CPPS engineering requires efforts of engineers

from various domains, building amulti-disciplinary environment [6].
Furthermore, engineers often build groups, e.g., basic vs. detailed
planning, depending on the process phase [23]. On top, they consult
experts with cross-cutting knowledge, like safety and security, for
support. In such settings, disciplines employ different paradigms
and use heterogeneous engineering artifacts, technologies, and
tools [34]. For instance, electrical engineers use wiring plans as
CPPS perspective and specific tools to manipulate them. Therefore,
engineers working together necessarily establish auxiliary common
concepts [35] that describe similar elements of CPPSs and act as
interfaces between domains. For example, in wiring plans control
lines for sensor inputs are modeled and connected via wiring to ro-
bot sensors that are familiar to mechanical engineers. However, due
to the varying CPPS perspectives and the heterogeneous artifacts,
auxiliary concepts are often insufficient. Aiming at enabling more
effective and efficient knowledge exchange, it is, therefore, crucial
to establish representations that include relevant CPPSs aspects and
their commonalities and variability.

2.2 Product-Process-Resource
CPPS engineering is often optimized for intra-disciplinary pro-
cesses [23]. Still, the heterogeneity and incompatibility of paradigms,
domain-specific tools, and artifacts in the interdisciplinary knowl-
edge exchange may result in low-quality data and, subsequently, in
planning errors.
On top, the internal semantics of engineering artifacts, such as

Excel spreadsheets, which are frequently used, often require expert
interpretation. Therefore, model-based, machine-readable, and eas-
ily exchangeable engineering representations are the foundation
for bridging gaps in the knowledge transfer [4] by providing com-
mon concepts [35] between engineering domains. However, as the
purpose of CPPSs is to manufacture products by combining produc-
tion resources in production processes [15], these varying aspects
are inseparably linked. This implies the need for comprehensive
models to express the requirements of products towards CPPSs.
Schleipen et al. [48] coined the term PPR model based on the trin-
ity of (a) the product with its characteristics and components (Bill
of Materials), (b) the processes with their characteristics (Bill of
Operation), and (c) the resources executing the processes. In the
PPR model, these aspects of a CPPS are treated as first-class objects.
Several approaches support modeling PPR concepts, like the ini-
tially proposed approach of Schleipen et al. [48], which heavily
builds upon AutomationML1 and the ISA 95 [22], which indirectly
allows the representation of PPR but is more oriented at batch pro-
cessing and the description of interfaces between manufacturing
information systems. We decided to use the FPD approach [56] that,
in contrast to the before mentioned approaches, provides a direct,
tool- and technology-agnostic way to represent PPR concepts. The
FPD defines a graphical notation and a data model for modeling con-
nected production processes, including their boundaries that accept
process input products and yield output products by employing
specific resources (see left side of Figure 1 for an example).

2.3 Variability Modeling
There is a plethora of systematic (literature) reviews (SLRs), map-
ping studies, and surveys that discuss Variability Modeling (VM)
approaches [3, 5, 10, 11, 18, 39]. For example, in a tertiary study
Raatikainen et al. [39] investigate structured reviews in the field
of software product lines to extract (a) how software variability is
modeled, (b) which kinds of variability models exist, and (c) which
level of evidence was found in the reviews. Their findings show that
research on the variability of process models and quality attributes
is underrepresented. Rather than new approaches of VM , they ad-
vocate the adaptation and combination of existing approaches to
particular problem contexts to make VM applicable for industry.
Galster et al. [18] provide an SLR investigating current trends of

VM and how variability is handled in software engineering, but also
gaps in the research area. Their results show that only a few works
consider business processes as artifacts in VM and that design-time
qualities, including evolvability, has been less addressed in existing
research.
There is some work focusing on process variability/software pro-

cess lines. For example, Rosa et al. [44] report on a survey on VM
for business processes. They found variability mostly modeled by
1AutomationML - https://www.automationml.org/
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extending existing business process models with VM elements, e.g.,
by exchanging process tasks for sub-process templates. Classical
VM techniques, such as feature or decision models, were more seen
as decision support during customization when choosing elements
to add to the business process models. Simmonds et al. [52] describe
their experiences of using a mega-modeling approach to define pro-
cesses and their variability. Rouillé et al. [45] propose an approach
to apply the Common Variability Language to model requirements
variability and their relation to development processes. Lamprecht
et al. [28] present a behavior-oriented approach to variability man-
agement for supporting process developers in selecting processes
that match service constraints.
There is also some work on non-functional properties and vari-

ability, which might be useful to deal with resource variability
[51]. Sincero et al. [53] describe their Feedback Approach, which
extends traditional SPL engineering to improve the configuration of
non-functional properties. Ghezzi and Sharifloo [19] explain how
probabilistic model checking techniques and tools can help verify
non-functional properties of configurations derived from a SPL.
There is a rich body of work on modeling CPSs [12, 29], e.g., mod-
eling architecture and behavior [42] or modeling system goals of
self-adaptive systems. Modeling CPSs clearly has been recognized
as an important approach to deal with their complexity and hetero-
geneity [29]. Variability, however, has not been the scope of these
works. Except for some initial works [27] that mainly discuss chal-
lenges and potential solutions, to the best of our knowledge, there
is no approach explicitly and systematically tackling the variability
of products, processes, and resources in an integrated manner in
the context of CPPSs. Existing work from the SPL community, e.g.,
on partial models or perspectives on feature models [26, 49] and
on supporting interdisciplinary product lines [16, 24], needs to be
adapted and extended for this context.

3 RESEARCH QUESTIONS
This section raises research questions that we identified from related
work and discussions with domain experts at an industry partner –
a provider of automation solutions for high-performance CPPSs.

RQ1: Which aspects of CPPS engineering mainly challenge the
capabilities of existing variability modeling methods? CPPS engi-
neering is embedded in a multi-disciplinary environment with
diverging characteristics to software engineering, where SPL engi-
neering stems from, and traditional manufacturing. To enable VM
in the context of CPPS engineering in practice, we need to identify
which particular aspects of such projects challenge existing VM
approaches. We address this RQ by analyzing the literature from
Section 2 and interviewing domain experts of our industry part-
ner. By answering RQ1, we aim to sketch and investigate possible
research directions to address the identified challenges and adapt
existing VM approaches for use in the CPPS context.

RQ2: How can a PPR model, such as the FPD, be extended to
represent both product and process variability as foundation for co-
evolution of products and processes in the design of assembly sequences
in CPPS engineering? FPD is a standard approach that reflects PPR
aspects of CPPS engineering. However, the approach does not take

VM aspects into account, e.g., to model the commonalities and vari-
ability of products and related manufacturing processes. Therefore,
we investigate how extending the FPD modeling notation can rep-
resent both solution space variability and problem space variability
to domain experts as a foundation for designing co-evolution of
products and processes in the design of assembly sequences in CPPS
engineering. A first goal is enabling engineers to model variability
in the assembly sequence efficiently based on a suitable notation
as a fully combined variability model is likely to overwhelm them.
Despite this goal we need to further investigate how to combine
the PPR notation with advanced aspects of VM .

4 ILLUSTRATIVE USE CASE
We present the cake baking use case, based on [60], to illustrate the
variability in CPPSs and challenges for existing approaches.
Figure 1 shows, on the left-hand side, a part of a FPD model-
ing a cake baking production process along with its products and
resources, and, on the right-hand side, corresponding orthogonal
feature models of the particular PPR aspects. Exemplary variation
points from the FPD model, indicated with gray circles and an
ID VarX, are reflected in the orthogonal feature models.
A cake consists of a varying number of layers, a filling between
the layers and an optional gloss. The layers require three input
factors, i.e., Flour, Milk, and Eggs, depicted as circles in the figure,
which together create a Raw Dough after a mixing process (Mix
ingredients), shown as a rectangle, using a Mixer, illustrated as
rounded rectangle. The dashed line around the mentioned PPR
aspects shows the boundary of the process step. In a further pro-
cess (Bake dough), the Raw Dough is then baked in an oven to create
a Cake Layer.
Quite similar to the previous two process steps, the process Cook

filling requires two ingredients to create a cake filling. However, in
this case we can choose from alternative input factors, i.e., the Fruit,
marked here for better readability with Var1 in the FPD of Figure 1.
Corresponding to the FPD, on the top right-hand side of the figure
there is a feature model describing the products, i.e., the cake and
its parts. Fruit are modeled as an alternative feature and marked as
Var1 in the model. Depending on the type of Fruit used, the Filling
needs to be cooked at different temperatures levels. Therefore, two
further variation points are highlighted in the figure. First, tagged
with Var2, the energy of the process, added as Heat, needs to be
adjusted in a certain range. Second, the resource used to process the
Fruit, i.e., the Stirrer, labeled with Var3 in the FPD, needs to fulfill
the requirements of the Filling to be cooked. These variation points
imply cross-model dependencies between the variability models and
features that are illustrated as the red arrows. In our case, depending
on the chosen feature for Fruit, the process requires appropriate
heat implying in the Resource Variability feature model, to choose
the Hot Stirrer when the cake should contain a Strawberry Filling.
An additional variability, indicating cross-model dependency,
is the decision whether or not to put a Gloss on the cake (Var4 in
the figure). If the optional feature Gloss is not selected, the whole
process (Create gloss) with its products and resources, indicated by
the dashed boundary, has to be neglected. Further, more complex
constraints that can be modeled at design time or run time could

5.1. Production Knowledge Models
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Figure 1: Cake baking CPPS example represented by a PPR model (left) and orthogonal feature models (right)
to describe Products, Processes, and Resources.

be, e.g., the trade-off between dough creation throughput and the
disintegration of the Eggs due to the heat generated by the Mixer.
This simple yet realistic cake baking example is an academic

abstraction of our industry partner’s CPPSs that we use to improve
common understanding and due to non-disclosure agreements. It
still shows the complexity that CPPSs can imply on variability mod-
eling. Indeed, there is scientific evidence on the complexity of cake
baking CPPSs in food engineering [31, 46]. One can easily transfer
the example to any CPPS in the industrial automation domain, e.g.,
product aspects could be machine parts to be built, gloss could be
varnish; process aspects could be the welding of machine parts
(using different welding methods and heat levels) in discrete manu-
facturing, painting in continuous production; resources could be
welding equipment or a painting robot. The cake baking exam-
ple allows identifying and discussing challenges that variability
modeling methods face in a PPR/CPPS context.

5 CHALLENGES
To answer RQ1, we identified the following challenges for VM in
the context of PPR for CPPSs based on the described use case and
discussions with domain experts of our industry partner.

CH.1 – Multiple Disciplines. In most case study reports [5, 32, 55],
themodelers, who actually create variabilitymodels, typically either
come from the same or similar domains, like software engineering,
and/or do this with insufficient tools like Excel. In common practice,
there is just one person responsible for the variability modeling, if
there is any person. However, inCPPS engineering, several modelers
are coming from very heterogeneous domains, such as mechanical,
electrical, process, fluidic, and software engineering, with their
discipline-specific tools and vocabularies. These different views

imply an additional dimension in the variability models, as each
of the domains brings in its own perspective on the particular
PPR variability aspects. Existing approaches that emphasize multi-
disciplinary models [1, 16, 24] could be a good starting point to
develop an approach for this context.
To accurately model the variability in such heterogeneous multi-
disciplinary environments, we identified three sub-challenges to
address. (a) Common concepts. Engineers need to agree on a set of
common concepts [35] defining variation points in their specific
domain to later identify the connecting points representing de-
pendencies between the variability representations. (b) Variability
dependencies. Engineers then need to find out which changes in a
discipline-specific representation need to be propagated to depen-
dent representations to model variability consistently. For instance,
safety constraints in connected variability models might be crucial
for the correct operation of a CPPS and, therefore, are important
to be preserved. (c) Change awareness. Newly introduced or modi-
fied concepts or variation points need to be communicated to the
stakeholders of dependent domains to allow them to adapt their
variability models accordingly and to ensure consistency. Challenge
CH.1 impacts several of the following identified challenges due to
its cross-cutting nature.

CH.2 – Heterogeneity. Krüger et al. [27] affirmed that CPSs com-
bine heterogeneous aspects, requiring a combined representation
of the systems’ variability. The authors identified three sources
of heterogeneity in CPSs, (a) a broad range of different artifacts,
(b) various levels of information granularity, and (c) mixed represen-
tations of variability, and proposed using either a mapping between
the variability models or an integrated model for the aspects.
The cake baking use case demonstrates that the identified sources

of heterogeneity similarly exist for PPR variability modeling. In our
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case, (a) the range of artifacts is the distinct models for the three
different aspects of PPR, namely the product, process, and resource
variability models, (b) the varying levels of information granularity
can also be found in the PPR case as, e.g., the gloss product might
be connected to more than one process step, and (c) the mixed rep-
resentations that can be mapped to different modeling approaches
or hierarchies of the PPR aspects.
Looking at Figure 1, one can tell that representations like feature

models can help to structure variability but, at the same time, these
models and their mutual dependencies may quickly become large,
complex, and, subsequently, hard tomanage for practitioners.While
approaches exist to deal with product variability [11], process vari-
ability [52], and resources [51], there is no integrated approach for
dealing with products, processes, and resources as well as their vari-
ability. A very specific approach that aims at reusing safety cases
for safety-critical product development processes by combining
these aspects was presented in [17]. For the practical CPPS context,
it, however, remains unclear whether to prefer an integrated mod-
eling approach or an approach with multiple separate/orthogonal
models and explicit mappings.

CH.3 – Usability. Due to the multi-disciplinary environment,
stakeholders from various domains will be involved in the variabil-
ity modeling process. Therefore, the usability of the modeling tools
for different types of users from the CPPS engineering domain is
essential for a broad acceptance, which is hard to achieve when hav-
ing to deal with user groups with diverse backgrounds. To this end,
we also count quality in terms of, e.g., interdisciplinary correctness
of the variability models, to the characteristics of usability.
Currently, variability modeling methods and tools are often aca-
demic solutions that do not have usability as their primary focus,
particularly not in reported evaluations [10]. Those tools that do em-
phasize usability, e.g., the commercial tools pure::variants2, Gears3,
and the (openly available) Feature IDE4, have still mainly been de-
signed envisioning users with a software (engineering) background.
While some work has been investigating the usability of product
configuration tools [40], to the best of our knowledge, the usability
of variability modeling tools has not been considered, especially
not in a CPPS context.
The general dilemma between automation and usability has been
discussed before [37]. The key challenge in our context is to pro-
vide concepts and tools that help practitioners to model variability
efficiently, even in a heterogeneous context, while maintaining the
correctness at a reasonable level of complexity. Furthermore, the
engineering tools of the particular domain experts have to employ
the provided concepts to foster their usage in practice, while still
maintaining engineering domain-specific vocabulary.

CH.4 – (Co-)Evolution. CPPS engineering is driven by require-
ments of industry and customers as well as by frequently evolving
technologies. Therefore, the concepts represented in PPR variabil-
ity models are subject to continuous change. The underlying PPR
aspects, such as the production processes, are, in principle, evolu-
tionary independent, which means that an engineer typically will
change these aspects without notifying others. For instance, the
2pure::variants - https://www.pure-systems.com/
3Gears - https://biglever.com/solution/gears/
4Feature IDE - http://www.featureide.com/

DIN 8580 [14] provides a standardized catalogue for manufacturing
processes that evolves independently from production resources
existing on the market. However, a change in one aspect and its
variability model may require the adaptation of dependent models.
For instance, if a new production process is developed, variability
may change not only the process variability model but also the re-
source variability model, if new requirements towards resources are
introduced. Similarly, if, e.g., a new sort of fruit for a cake filling has
to be considered, new or changed dependencies must be propagated
between the product and process variability models. Remarks from
engineers revealed that today, such evolutionary changes are done
unsystematically in various tools and artifacts, with a propagation
among domains often only on demand and, e.g., via e-mail or in
informal meetings, causing issues during integration.
Such changes not only have to be considered when supporting
the co-evolution of the variability models and their dependencies
but also in the means to propagate such changes to participating
engineers, which highly relates this challenge to CH.1. Existing
research on the co-evolution of variability models and product line
artifacts [9, 13, 30, 50] is a promising starting point to address this
challenge, but, to our best knowledge and according to the reviewed
literature, so far has not been applied in the CPPS context. Other
work on co-evolution, e.g., of products, processes, and production
systems in the manufacturing domain [54], has not considered
variability systematically. A key goal is to achieve, at some point,
an integrated, consistent variability model that can safely be used
in the engineering phase. Developing a consistency checking ap-
proach [57, 58] to detect and fix inconsistencies between (models
for) products, processes, and resources thus could be a promising
first step to support co-evolution.

6 TOWARDS PPR VARIABILITY MODELING
To address the challenges described in Section 5, and following
other discussions of CPS challenges [27] and issues regarding in-
tegrating software process and product lines [43], we aim at de-
veloping an approach to support integrated VM for CPPS. Instead
of re-inventing the wheel, we build on existing VM approaches
discussed in Section 2 and adapt and combine these approaches as
needed. Promising starting points are orthogonal VM approaches,
such as Decision Modeling (DM) [11] and OVM [38]. However, one
also has to consider the availability of tools that support modeling
products, processes, and resources, and their variability in an in-
tegrated manner, while supporting multi-disciplinary users, in a
context with high demands on usability and continuous evolution.

6.1 Preliminary Industry Case Study: Assembly
Sequence PPR VM for Rocker Switches

Together with domain experts at our industry partner, we con-
ducted a case study on the usefulness and usability of means to
model variability by extending the semantics of the FPD for PPR
modeling. Figure 2 shows the FPD model extension in the context
of a section of an assembly sequence of a rocker switch PPR model5
The variants of the switches are based on real-world CPPS use cases
from our industry partner, elicited from several documents and
5Rocker switches have one or more rockers, e.g., realized as single-pole-single-throw,
double-pole changeover, or four-way switches, controlling devices like sun-blinds.
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Figure 2: PPR model of six rocker switch assembly sequence
variants related with different features. Numbers in

brackets indicate multiple instances of elements.

Excel sheets (∼300 rows × 45 columns) that engineers already use
as variant matrices for products. Instead of presenting a single PPR
model variant that engineers subsequently clone, this model repre-
sents the union of several variants, following an annotative, 150%
modeling approach [47].
In the notation, we depict mandatory PPR elements in black,

while optional/alternative elements are filled with a hatched pattern.
Selection of optional/alternative6 elements depends on the selection
of certain (obfuscated) features annotated in the figure. For example,
while in Figure 2 the first process is mandatory for all variants
including the Socket and Pole 1 (1), Ground (1) is only needed for a
particular feature (F7).
When a process step is marked with a hatched pattern, all of its
input factors and resources are optional. Nested optional elements
are further marked with a hatched pattern. For instance, the second
(insert/glue) process step in the assembly sequence is needed in all
variants except for when Feature 8 was chosen, as shown by the
negation in the feature annotation. The second Rocker 1 (2) in the
second process step is relevant for features F7, F11 and F12, indicated
by the pattern and the usage of the logical OR conjunction. This
means when selecting F7, the optional elements Ground (1), Pole 1
(2), and the second process step including Rocker 1 (2) are needed
besides the mandatory Socket and the Pole 1 (1).
This extension of the notation addresses challenge CH.3 as, in
practice, domain experts in basic engineering first need to iden-
tify the relevant product variants from customer requirements and
6Note that at this point, we do not explicitly separate between optional and alternative
elements in the graphical notation.

determine their particular assembly sequence. Therefore, domain ex-
perts require a PPR notation extension that enables them to model
assembly sequence variants before building up the rest of the vari-
ability model. We argue that such models are useful and usable for
CPPS engineers to express the variants of the assembly sequence.
To this end, we investigated in the case study the notation exten-
sion for twelve assembly sequences of rocker switch variants. In an
open interview with three domain experts at the industry partner,
we discussed the model to evaluate our approach. We explained
the PPR model notation, in particular, the extensions introduced
for modeling variability. The experts provided feedback on the
completeness of the model and on model expressiveness regarding
relevant variants. The domain experts found the model extension
to improve their way of modeling the variants of a product in
comparison to their traditional way of describing variants in Excel
spreadsheets. The domain experts also confirmed that the current
version of the approach provides the required means to represent
product variants properly in a single model. The experts also found
the model useful to communicate their ideas to partner engineers
and customer representatives. However, the experts mentioned that
they would require specific tool support to design, analyze, and
maintain the potentially complex model.
This preliminary case study is a first step towards answering

RQ2 (cf. Section 3) and developing an approach to support inte-
grated variability modelling of PPR in a CPPS context.

6.2 Status and Research Agenda
While the examples presented in this paper allowed us to initially
describe the challenges (cf. Section 5) for VM in the context of PPR
for CPPS, to investigate RQ1 (cf. Section 3) in sufficient detail, we
need to systematically study existing VM approaches. We already
have started conducting a systematic mapping study to identify and
analyze VM approaches in literature that (a) provide at least basic
support for integrated modeling of product and process variability,
(b) are extensible, and (c) have the potential to be applicable to the
domain of CPPS to (partly) address the found challenges (cf. Sec-
tion 5. As there is already a plethora of systematic literature reviews
and mapping studies [3, 5, 10, 11, 18], we conduct a tertiary study,
similar to the study by Raatikainen et al. [39], but with a different
focus: we put emphasis on finding approaches that are good in
dealing with multiple disciplines (cf. CH.1), heterogeneity (cf. CH.2),
and (co-)evolution (cf. CH.4). Tool support that has been evaluated
with real users (cf. CH.3) will also be a major criterion.
To fully address RQ2 (cf. Section 3), we will build on the findings
of this study and on our modeling experiments with industry part-
ners to (a) further adapt the FPD approach for Variability Modeling,
e.g., by introducing abstract aspects, and (b) propose an approach
for designing an Integrated Variability Model (IVM) for PPR. The
IVM should provide a basis to model the relevant information for
decision-making, such as the properties of processes and resources,
and dependencies between the PPR aspects to build up an orthogo-
nal variability model representing variability in the problem space.
For example, a decision model could serve as a basis for detail
engineering to narrow down suitable resources for a CPPS.
To address challenge CH.1 – Multiple Disciplines and challenge

CH.3 – Usability, we plan to employ Collective Intelligence Systems

5. Publications

92



Towards Modeling Variability of Products, Processes, and Resources in CPPS SPLC ’19, September 9–13, 2019, Paris, France

m

D1
D2InD

BK

D4D3
BK

D1
D2InD

BK

D4D3
BK

Integrated Variability Model

CPPS Model

Collective Intelligence Systems

Engineering
Domains

CI Systems

Glossary

Model Viewer

...Glossary

Model Viewer

...

collaborate

Updater

Consistency Checker

...Updater

Consistency Checker

...

enrich

maintain

define

support

build
plan

check

specify

Figure 3: Draft Solution Architecture for Integrated
Variability Modelling of PPR in a CPPS context.

(CISs) [36] to negotiate common concepts [35] and allow collabora-
tive work on the IVM by providing discipline-specific views [25].
We have already collected engineering terms in a multi-user glos-
sary farm7 as a first step. To address the correctness of the IVM
for different disciplines and to support (co-)evolution (cf. CH.4), we
plan to apply human-supported inspection to the models [7] and
adapt automated consistency checking techniques [57, 58].
Figure 3 shows a first architecture draft of our solution approach,

with the IVM on the upper left, CISs examples on the upper right, a
CPPS model on the lower right, and automated services like Con-
tinuous Integration (CI) systems on the lower left. Engineers from
different domains are supported by the IVM when planning the
CPPS. Therefore, engineering tools used by the different disciplines
facilitate the IVM to gather relevant information concerning the
perspectives of the CPPS. For example, when a mechanical engineer
wants to decide which robot arm to use as a particular resource, a
tool might provide a selection based on the properties of the prod-
uct or process. The IVM is created and maintained by the engineers
using diverse collaborative CISs, e.g., the glossary, that enrich the
IVM and provide domain-specific views. Vice versa, the IVM defines
possible selections for modeling, e.g., in a shared PPR VM editor.
The CI systems check and maintain the consistency of the IVM
and the CPPS, e.g., based on specific rules, and update the IVM if
required. Such a system could, e.g., be a CI server that checks the
consistency of the CPPS engineering artifacts, like electrical plans,
and, in parallel, maintains the consistency of the IVM .
After building a first prototypical design, we will conduct further
case studies with industry partners to investigate the feasibility
and effectiveness of our PPR variability approach to address the
described challenges. Based on the results of these studies, we will
iteratively improve and evaluate the approach in a larger context.

7 CONCLUSION
When planning and engineering CPPS, engineers from heteroge-
neous disciplines have to work together, making effective and effi-
cient knowledge exchange crucial. The PPR approach and the FPD
language provide foundations for knowledge exchange in CPPS by
representing the products to be manufactured in combination with
7Glossary - https://glossary-farm.herokuapp.com/glossaries/cdl-sqi/terms

the required production processes and resources. As CPPSs usually
manufacture a broad product portfolio with many product variants,
engineers also need to model variability in a suitable way.
In this paper, we raised RQ1, askingwhich aspects ofCPPSmainly

challenge existing VM approaches. We described a simple yet realis-
tic example of a cake-baking CPPS to identify four key challenges for
variability modeling in CPPSs: multi-disciplinary views, heterogene-
ity of artifacts, usability of VM methods/tools, and (co-)evolution of
product and production-process variability models. We argue that
existing VM solutions fall short in addressing (all of) these chal-
lenges and that orthogonal approaches are best suited to create a
variability model that represents different views and dependencies.

RQ2 asked how the PPR modeling notation can be extended as
foundation for (co-)evolution. Interviews with domain experts re-
vealed that first the challenge of usability needs to be addressed,
i.e., allowing them to model variants of a basic artifact such as the
assembly sequence of the products to build in a straightforward and
integrated way. An initial evaluation of a PPR notation extension
in a case study found potential for PPR modeling to help engineers
describe better model variants and to explain assembly sequence
variants to other engineers as well as customers. The PPR extension
should serve as foundation to investigate how to tackle further chal-
lenges identified by RQ1. Moreover, we proposed a basic solution
architecture for VM of PPR in the context of CPPS and a research
agenda to address these challenges in the CPPS/PPR context.
As next step we plan to integrate a first orthogonal variability
model describing standard processes used in manufacturing, such
as the DIN 8580, to the PPR notation extension to further investigate
the feasibility of the orthogonal approach in industrial contexts.
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Aim

The publication “Integrating Variability Modeling of Products, Processes, and Resources
in Cyber-Physical Production Systems Engineering” [117] refines the idea of integrated
PPR and variability modeling towards production process sequence variability and
presents the research methodology employed for the thesis. The publication (i) presents
the advanced challenges of production process sequence variability, (ii) first research
questions for the thesis, and (iii) the research methodology based on design science
research [73, 74, 205].

Contribution to the thesis

This publication contributes CPPS production process challenges, research methodology,
and to the research goals IRVM (G3.).

This publication contributes to RQ1., RQ2., and RQ3. by addressing the VDI 3695
measures of models and description languages M1., knowledge management M2., re-use
M3., quality assurance M4., integration and seamless cooperation of disciplines M5., and
the SPL capabilities efficient reuse C1., variability management C3., enhanced quality
and consistency C4., and facilitation of interdisciplinary collaboration C5..

Abstract

The Industry 4.0 initiative envisions the flexible and optimized production of customized
products on CPPS that consist of subsystems coordinated to conduct complex production
processes. Hence, accurate CPPS modeling requires integrating the modeling of variability
for PPR aspects. Yet, current variability modeling approaches treat structural and
behavioral variability separately, leading to inaccurate CPPS production models that
impede CPPS engineering and optimization. This paper proposes a PhD project for
integrated variability modeling of PPR aspects to improve the accuracy of production
models with variability for CPPS engineers and production optimizers. The research
project follows the Design Science approach aiming for the iterative design and evaluation
of (a) a framework to categorize currently incomplete and scattered models and methods
for PPR variability modeling as a foundation for an integrated model, and (b) a modeling
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approach for more accurate integrated PPR variability modeling. The planned research
will provide the SPL and CPPS engineering research communities with (a) novel models,
methods, and insights on integrated PPR variability modeling, (b) open data from CPPS
engineering use cases for common modeling, and (c) empirical data from field studies for
shared analysis and evaluation.
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ABSTRACT
The Industry 4.0 initiative envisions the flexible and optimized
production of customized products on Cyber-Physical Production
Systems (CPPSs) that consist of subsystems coordinated to conduct
complex production processes. Hence, accurate CPPS modeling
requires integrating the modeling of variability for Product-Process-
Resource (PPR) aspects. Yet, current variability modeling approaches
treat structural and behavioral variability separately, leading to in-
accurate CPPS production models that impede CPPS engineering
and optimization. This paper proposes a PhD project for integrated
variability modeling of PPR aspects to improve the accuracy of
production models with variability for CPPS engineers and produc-
tion optimizers. The research project follows the Design Science
approach aiming for the iterative design and evaluation of (a) a
framework to categorize currently incomplete and scattered models
and methods for PPR variability modeling as a foundation for an
integrated model; and (b) a modeling approach for more accurate
integrated PPR variability modeling. The planned research will
provide the Software Product Line (SPL) and CPPS engineering re-
search communities with (a) novel models, methods, and insights
on integrated PPR variability modeling, (b) open data from CPPS
engineering use cases for common modeling, and (c) empirical data
from field studies for shared analysis and evaluation.
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1 INTRODUCTION
The Industry 4.0 initiative1 envisions Cyber-Physical Production
Systems (CPPSs), like automated car factories, which enable the flex-
ible and optimized production of mass-customizable products [6]. A
CPPS can interact with its environment, make context-aware deci-
sions, and self-adapt to uncertain conditions [19, 32], supporting the
envisioned flexibility. Recent research shows growing interest in ap-
plying SPL engineering concepts to CPPS engineering [1, 7, 24, 30].
Key stakeholders in CPPS engineering are basic engineers and
production process optimizers. Basic engineers design the abstract
CPPS capable to produce a product line. They want to efficiently
explore the large configuration space for production process design
that considers product variability. Production process optimizers
want to explore the configuration space for production process
planning and scheduling. They require sufficiently accurate CPPS
models to understand the consequences of their decisions regarding
production process goal properties, such as throughput.
Hence, accurate models of CPPS engineering concepts are crucial
for engineers to effectively and efficiently exchange their knowl-
edge and collaborate over the engineering lifecycle [4, 46]. The
PPR concept [41], with the Formalised Process Description (FPD) [45]
as a formal visual model, provides a solid foundation to express
CPPS engineering knowledge. However, to support the Industry
4.0 vision, such knowledge models need to include CPPS variabil-
ity [30, 31], which can stem from (a) product type characteristics,
(b) production process variants, and (c) CPPS resources.
There are scattered modeling approaches in CPPS engineering,

like product comparison matrices, that consider aspects of variabil-
ity to some extent. In addition, modeling is inaccurate, particularly
regarding production process variability and characteristics due
to missing dependencies to product variability. These limitations
lead to the challenges of (1) weak understanding of PPR variability
aspects required for CPPS design and process optimization and
(2) weak understanding of the impact of changes in the product
design or portfolio on CPPS production process properties. This
weak understanding hampers designing CPPS process optimization
methods that leverage production flexibility for a product family.
To support the required flexibility and variability, models and
approaches from CPPS engineering and Variability Modeling (VM)
need to be integrated. However, current research results on SPL en-
gineering have been addressing either product variability [2, 33, 44]
or process variability [39, 42]. Therefore, a sound integration re-
quires new methods and an interdisciplinary research effort, bring-
ing together researchers from Model-Driven Engineering, Software
Product Line (SPL) Engineering, and CPPS Engineering.
1Researchagenda Industrie 4.0: https://ec.europa.eu/growth/tools-databases/dem/
monitor/sites/default/files/DTM_Industrie%204.0.pdf
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In preliminary research [30], we identified the challenge of het-
erogeneous variability representation in CPPS engineering and
introduced a model-based approach to represent variability in PPR
engineering models. Further, this investigation revealed the chal-
lenge of insufficient representation of variability dependencies be-
tween product and process variants in CPPS engineering.
In this paper, we motivate the need for integrated modeling
of structural and behavioral variability in CPPS engineering em-
ploying the Rocker Switch product line use case. We describe our
preliminary research as a basis to handle variability in CPPS engi-
neering models, and present a first solution approach. We propose
a PhD project and a corresponding research agenda on how to
introduce integrated product and process variability into CPPS en-
gineering models. The results aim at improving the accuracy of
CPPS production models with variability for CPPS engineers and
production optimizers.
The PhD project will follow the Design Science approach [47] re-
sulting in the PPR variability framework and the PPRVar modeling
approach. The PPR variability framework will provide researchers
with a categorized overview on models and methods for CPPS VM
and identify gaps in research. The PPRVar modeling approach will
provide integrated PPR variability models that represent delayed
design decisions in CPPS engineering more accurately. We propose
a work plan, including a systematic (literature) review (SLR) and
design studies on integrated PPR variability models and methods.
Further, we plan case studies with CPPS engineering and optimiza-
tion experts to validate the viability of the integrated PPR variability
models and analyze the strengths and limitations of the designed ar-
tifacts for the next design iteration. A good research result would be
a Rocker Switch product and process variability model that process
optimizers can use to design optimized processes efficiently.
The planned research will provide the SPL and CPPS engineering

research communities with (a) novel models, methods, and insights
on integrated CPPS variability modeling, (b) use case data from
CPPS engineering for common modeling, and (c) empirical data
from field studies for shared analysis and evaluation.
The remainder of this paper is structured as follows. Section 2
discusses related work on CPPS engineering and VM. Section 3
introduces the use case Rocker Switch product line. Section 4 moti-
vates research questions. Section 5 discusses the research approach
and methods. Section 6 presents preliminary results and outlines a
research agenda. Section 7 concludes the paper.

2 RELATED WORK
This section summarizes research on CPPS engineering and VM.

2.1 Cyber-Physical Production Systems
Engineering

CPPSs are advanced production systems [6] reflecting the attributes
of Cyber-Physical System (CPS) to the production domain: com-
plex, multidisciplinary, physically-aware, self-adaptive systems us-
ing modern ICT to integrate their environment [13, 32]. CPPSs
use modern production methods, like additive manufacturing, to
facilitate optimized production processes along the value chain for
product families. CPS/CPPS examples range from smart farming
over automated car manufacturing plants to large-scale smart grids.

The multidisciplinary nature of CPPSs requires experts from dif-
ferent domains, likemechanics and electrical engineering, and cross-
cutting knowledge, like safety and security, to work together [6].
Naturally, particular domains employ their own concepts, tech-
niques, and tools that are usually optimized for intra-disciplinary
processes, which leads to heterogeneous engineering artifacts [21].
Krüger et al. [24] identified this heterogeneity as a major challenge
for managing variability. We identify Challenge 1a, the weak un-
derstanding of CPPS variability dispersed in heterogeneous artifacts,
often leading to an incomplete representation of variability in CPPS
engineering. It is often hard to reduce the large problem and configu-
ration space of design options and assess their impact on production
and the sequence of production steps. A foundation to bridge the
gaps in knowledge transfer and to overcome the heterogeneity are
shared, model-based, machine-readable, and easily exchangeable
engineering representations [4], which are capable of expressing
the requirements of products towards CPPSs.
Schleipen et al. [41] coined the term PPR model based on the

three inseparably linked aspects (a) product with its properties and
components, (b) process manipulating the products, and (c) resource
that executes the processes. The initial approach of Schleipen et al.
[41] focuses on batch processing and the link to manufacturing
information systems. The Formalised Process Description (FPD) ap-
proach [45] provides a tool- and technology-agnostic representation
for PPR concepts defining a formal and visual notation (see Fig-
ure 1 Variant 1 for an example). The approach allows modeling
connected production processes (rectangles) that transform input
products into output products (circles) by employing production
resources (rounded rectangles). Hildebrandt et al. [15] introduced
the SemAnz 4.0 approach to allow semantic reasoning by linking the
FPD with a standardized, structural model [18] and a programming
language [17] to express resource behavior. In Kathrein et al. [21],
we extended the FPD towards abstract PPR aspects and consistency
expressions to support delayed design decisions and the formula-
tion of dependencies. Furthermore, we introduced the concept of
required and provided skills and their aggregation [29], further
abstracting the connection between processes and resources to fa-
cilitate the efficient matching of variable PPR aspects. To describe
dependencies between processes and the processed products, which
can be used during process sequence optimization, we apply pre-
and postconditions [28] for processes and assembly groups. We
define Challenge 1b for variability management in CPPS engi-
neering as the insufficient representation of dependencies between
product and process variants and between process sequence variants.
The insufficient representation makes it difficult to define and de-
rive valid production process solution candidates due to complex
dependencies between product and process variability and the large
unmapped solution space.
While these approaches are essential building blocks for CPPS

VM, they focus on the resource aspect of PPR and hardly consider
dependencies between product and production process variants. In
this paper, we focus on representing dependencies between PPR
aspects [21], in particular between product and production process
variants, to facilitate CPPS engineers and process optimizers in
finding valid production process solutions and in analyzing the
impact of changes to product requirements on viable production
process variants.
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2.2 Variability Modeling
There is a large number of SLRs, mapping studies, and surveys that
investigate Variability Modeling (VM) approaches [3, 5, 9, 10, 12, 34].
Raatikainen et al. [34] report in their tertiary study on SLRs in the
area of Software Product Lines (SPLs) low representation of research
on the variability of process models and quality attributes. They
suggest to adapt and combine VM approaches and apply them to
specific industry problems. Galster et al. [12] investigate in their
SLR trends of VM, how software engineering handles variability,
and gaps in the field of SPL. They show that business processes
have been less addressed as artifacts in VM.
Rather few academic works focus on Software Process Lines. Rosa
et al. [38] provide a survey on VM for business processes. Their
research shows that only a few business process models have been
investigated and that these are extended with VM elements, e.g., by
substituting process tasks with templates. Feature or Decision Mod-
eling was used more as a support in the business process models’
customization during element selection. The authors observe that
most of the approaches have neither been validated nor evaluated,
requiring further research in the field. Lamprecht et al. [25] present
a VM approach that supports process developers matching service
constraints to process properties during their selection. Rombach
[37] proposes an integration of software process and product lines
as a future vision, which has not yet been achieved.
There is a plethora of research on modeling various CPS charac-

teristics [11, 26], like the system goals, architecture, and behavior of
self-adaptive systems [36]. Initial work [24] on CPSs in the context
of VM discusses challenges and potential solutions. Yet, existing ap-
proaches for VM [10] seem to be incapable to handle CPS variability
and the combination of PPR in CPPS engineering.
A typical approach in CPPS engineering is the use of super-
imposed product representatives, i.e., type representatives [14], to
investigate whether the resources required for producing a superset
of products were planned in a CPPS design. Yet, type representatives
are usually single-use, calculated, virtual products without model
and reference to the underlying features. This renders them insuf-
ficient for a systematic, model-driven approach. Interdisciplinary
product lines [23] aim to model the variability of CPPS resources,
maintaining a domain-specific view on the modeled variability, but
do not consider products and resources. Caesar et al. [7] aim at a
context-aware re-configuration of CPPSs using VM and semantic ap-
proaches. They model the variability of the CPPSs and their context
in separate feature models linked through cross-tree constraints.
At runtime they then adapt the CPPSs through reasoning over the
problem and solution space. Yet, these approaches focus on design-
ing resource solutions and treat processes just as requirements for
resource designs. Multi-purpose, multi-level feature modeling [35]
introduces a VM approach that considers different (domain-specific)
views on different levels of granularity. Yet, the work does not con-
sider the behavioral nature of production systems. Multi-product
lines [16] seem promising but model product, process, and resource
variability as separate product lines. Recent work on structural
and behavioral variability [20] extends the domain-specific lan-
guage (DSL) CLAFER for these purposes. We will investigate this
approach’s applicability to CPPS engineering, e.g., considering its
usability for CPPSs engineers and domain experts.

While the related work provides a wide range of concepts and
building blocks, there is no clear approach for PPR variability that in-
tegrates structure and behavior. Therefore, we identify Challenge 2
as the unclear impact of additional product variants on the variability
of processes in CPPS. The knowledge of such an impact is essential
when additional products enter the product family, or additional
features should be realized. To the best of our knowledge, there is
no approach explicitly and systematically tackling PPR variability
in an integrated manner in the CPPS engineering context. To il-
lustrate the mentioned challenges, the next section introduces the
use case Rocker Switch product line, abstracted from a real-world
industrial use case.

3 THE ROCKER SWITCH PRODUCT LINE
The use case Rocker Switch product line illustrates the large problem
space of a typical set of products and process steps, comparable to
production in CPPS work cells or assembly lines. The use case was
drafted with domain experts from our industry partner, a leading
systems integrator for high-performance CPPSs.

Rocker switches are every-day devices for controlling electrical
appliances like light-switches or hairdryers. Simply put, a rocker
switch consists of a socket, several contacts that can be wired to
the energy sources and the electrical devices, and several rockers
that can be pushed to open and close the electric circuits. Rocker
switches are usually realized as switch circuit variants depending on
howmany functions a switch can control. The rocker switch variant
determines requirements for the sequence of assembling the parts,
i.e., the assembly sequence. Our industry partner plans a CPPS for
manufacturing a product line of rocker switches. The CPPS should
be able to produce at least 12 defined rocker switch variants, each
requiring up to 60 assembly steps (with around 70% similar steps
across the product variants) for the final product. The assembly
sequences have several degrees of freedom concerning the order of
steps (about 30% of the steps can be executed in different sequences)
that define the CPPS architecture. The complexity induced by the
structural and behavioral variability leads to a large problem and
configuration space when planning the CPPS.
For planning the CPPS, the CPPS customer provides product
design prototypes for each product variant. The basic engineer
investigates particular prototype variants and explores plausible
ways to assemble them and the advantages and drawbacks of these
production process design options. The basic engineer then takes
design decisions creating a rough design of the CPPS based on the
combination of the assembly sequences (cf. Figures 1 and 2), the
properties of the products, CPPS architecture options and resources,
and mostly implicit knowledge and experience. Today, basic engi-
neers at our industry partner follow a clone-and-own approach using
spreadsheets. They create and manage the assembly sequences for
each variant and list the common and variable product parts in a
matrix, which is a common approach in the industry.
Figure 1 shows sections of assembly sequences of rocker switch
variants as four PPR models. We elicited the required data from
several documents and spreadsheets (∼300 rows × 45 columns)
that engineers currently use. The first step in Variant 1 inserts an
instance of Pole 1 pole type (see the type of product directly after the
name, and the instance number of the type in parentheses) into the

5.1. Production Knowledge Models

99



SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Kristof Meixner

`̀

InsertLinefeed

Socket w
Contacts

Socket

Insert/GlueLinefeed

Socket w
Rockers

Pole 1 (1)

Rocker 1 (1)

Variant
1

Gluegun

Variant
2

InsertLinefeed

Socket w
Contacts

Socket Pole 1 (1)

Insert/GlueLinefeed

Socket w
Rockers

Rocker 1 (1)

Changeover 1

Gluegun

Variant
3

zzInsertLinefeed

Socket w
Contacts

Socket Pole 1 (1)Changeover 1 Neutral 1 Variant
4

Process

Product

Resource

InsertLinefeed

Claw

Socket w
Claw

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

InsertLinefeed

Claw

Socket w
Claw

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

InsertLinefeed

Claw

Socket w
Claw

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

InsertLinefeed

Claw

Socket w
Claw

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

InsertLinefeed

Claw

Socket w
Claw

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

InsertLinefeed

Claw

Socket w
Claw

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

Insert/GlueLinefeed

Socket w
Rockers

Rocker 1 (1)

Gluegun

Insert/GlueLinefeed

Socket w
Rockers

Rocker 1 (1)

Gluegun

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

Insert/ScrewLinefeed

Clawscrew

Socket w
Clawscrew

Screwdriver

InsertLinefeed

Claw

Socket w
Claw

InsertLinefeed

Claw

Socket w
Claw

Insert/GlueLinefeed

Socket w
Rockers

Rocker 1 (1)

Gluegun

Rocker 1 (2)

Insert/GlueLinefeed

Socket w
Rockers

Rocker 1 (1)

Gluegun

Rocker 1 (2)

zzInsertLinefeed

Socket w
Contacts

Socket Pole 1 (1) Pole 1 (2)

zzInsertLinefeed

Socket w
Contacts

Socket Pole 1 (1) Pole 1 (2)

Figure 1: Production process sections (PPR models) for four product variants in the the Rocker Switch product line.

Socket. Then, an instance of a Rocker 1 is inserted and glued onto the
socket with the underlying pole. The final two steps place a Claw
on the socket and screw it on with a Clawscrew. Variant 2 to Variant
4 differ in the number and types of contacts inserted and glued
into the socket (see Figure 1 dashed rectangles in red) defining the
structural variability of the products. The four PPR model instances
illustrate possible assembly sequences with behavioral variability,
as, e.g., steps for the claw and clawscrew processes can be executed
in different order (see Figure 1 dot-dashed rectangles in orange).
The process optimizer builds on the rough CPPS plan from the

basic engineer to design high-performance production process plan
variants. Then, the production processes are simulated to determine
their key performance indicators, such as throughput, duration, or
resource consumption. Based on the rough plan and the process
simulation, CPPS engineers can estimate costs as a foundation for
optimizing the CPPS configuration. In addition to the PPR model
shown in Figure 1, a loosely coupled process PPR model could be
easier to process for the process optimizer.
Figure 2 illustrates an initial design concept of a precedence graph

with variable product parts connected to production processes as in-
put to production planning. The precedence graph consists of prod-
ucts (circles, similar to Figure 1), optional product parts (hatched
pattern in orange color), dependencies between product parts (ar-
rows pointing towards the required product part), and optional
dependencies (dashed arrows). The precedence graph represents
required processes (PPR model snippets) linked to product depen-
dencies (dotted lines in red color) and requirement dependencies
between processes (arrows that point towards the required process).

The precedence graph (see Figure 2) will facilitate the process
optimizer in taking informed CPPS design decisions that consider
the variability and dependencies of products and processes.
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product part dependencies and attached process snippets.
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4 RESEARCH QUESTIONS
This section raises the research questions for the planned PhD
research project based on related work and discussions with domain
experts from our industry partner.
Our research goal is to improve the modeling of CPPSs consider-
ing the complexity of the large problem and configuration space
induced by product and process lines. The integrated structural and
behavioral PPR variability models will facilitate basic engineers
and process optimizers in exploring (a) a broader problem space
than with a traditional fixed production process for a type repre-
sentative [14] and (b) the impact of PPR variability factors, such as
adding/removing product features in the product family, on process
characteristics.

RQ1: Conceptual Framework. What conceptual framework
can categorize models, methods, and technical solutions to represent
PPR variability core concepts for engineering and optimizing CPPS
production models?
To address the challenge of heterogeneous and isolated multi-
disciplinary variability representations in CPPS engineering, tools
and artifacts require variability management. To that, variability
management should address how variability is perceived and han-
dled by the different disciplines, including the elicitation, creation,
and maintenance of variability models.
To consider CPPS flexibility in the engineering process, PPR vari-
ability allows deferring design decisions to later engineering and
run-time phases. We envision a conceptual PPR variability frame-
work that provides an overview on PPR variability core concepts
required in CPPS design decisions and modeling approaches that
allow representing PPR variability. PPR variability core concepts
extend the traditional PPR model aspects with model elements re-
quired to represent variability, such as structural and behavioral
variability of PPR aspects and their dependencies (products, abstract
CPPS resources, and their properties; variability properties and de-
pendencies) to be represented in a PPR variability meta-model.
A successful PPR variability framework will allow identifying
promising modeling approaches to represent and integrate struc-
tural and behavioral variability core concepts. We elicit these con-
cepts with CPPS domain experts initially in the scope of discrete
production processes like the use case Rocker Switch product line in
a CPPS work cell or assembly line. CPPS engineering and SPL re-
searchers can build on the PPR variability framework to develop and
explore applied methods for variability modeling and management.

RQ2: CPPS Variability Modeling Approach. How can a vari-
ability modeling approach represent the integrated structural and
behavioral variability with sufficient accuracy required for designing
and optimizing CPPS production processes ?
Addressing the challenge of insufficient representation of vari-

ability dependencies between product and process variants in CPPS
engineering, requires a VM approach that builds on and integrates
structural and behavioral variability.
To address this research question, we aim at (a) PPR variability

(PPRVar) models for CPPS knowledge representation and (b) the
PPRVar modeling method to represent the integrated structural
and behavioral variability core concepts. The PPRVar models and
modeling method can build on, e.g., feature models for structural

variability, decision models regarding decisions to determine pro-
duction process sequence candidates, and pre/post conditions [28]
that link production process functions to product design elements.
A successful PPRVar modeling language expresses PPR variabil-

ity core concepts, particularly dependency types, like the existence
of product parts and states, pre/post-conditions between processes.
A successful PPRVar modeling method will enable CPPS engineers
and process optimizers to create a PPRVar model for the Rocker
Switch product line example (and other industrial examples). The
resulting PPRVar model represents required CPPS design decisions
and efficiently describes valid parts of the problem space as a basis
for guidance towards interesting parts of the configuration space.

RQ3: Production Process Derivation. How can researchers
derive valid production process instances with sufficient accuracy for
exploring the impact of product variability on production process
characteristics, such as duration and efficiency?
Process optimizers require determining attributes of a production
process solution, which may include stochastic elements due to
variability and uncertainty, as a basis for exploring the impact of
product variants on the production process solution space.
This research question addresses production process optimiz-
ers that require a method to (a) derive valid production process
instances from an integrated CPPS variability model and (b) deter-
mine optimization criteria values for these process instances.
A successful method for process instance derivation will enable
a CPPS domain expert to iteratively identify valid instances, e.g.,
for the use case Rocker Switch product line, and their characteristics,
like duration and efficiency, as a basis for process optimization.

5 RESEARCH METHODOLOGY
This section outlines the research methodology with the planned
approach and discusses threats to validity and their mitigation.
For the PhD project, we see the following research interfaces
to achieve distinguished research results: we will (a) exchange our
ideas and gather feedback from the research areas of CPPS engi-
neering and VM, (b) collaborate with the members of our research
group at TU Wien and the Christian Doppler Laboratory for Se-
curity and Quality Improvement in the Production System Lifecycle
(CDL-SQI) and consult with the PhD project supervisors Stefan
Biffl and Rick Rabiser, and (c) work together with external and
international researchers and domain experts (Arndt Lüder from
University Magdeburg or Petr Novak from TU Prague and Industry
4.0 Testbed) and CDL-SQI company partners.

5.1 Research Approach
To achieve the research goal and address the research questions
introduced in Section 4, we will follow the Design Science method-
ology [47]. Design Science defines of two main research tasks, the
design of artifacts to improve a problem in a particular context and
their evaluation in the context to address knowledge questions,
such as understanding which PPR variability factors have a major
impact on production optimization. Figure 3 shows an overview on
the work plan for the PhD project in IDEF0 notation2. The boxes in
blue comply to the major research tasks to address the RQs, those in

2See a large version of the work plan at https://bit.ly/2V6I7mI
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Figure 3: Research methodology and work plan.

white comply to the iterative tasks of artifact design and evaluation
and dissemination over the research process.

WP1. Design PPR variability framework. This research task
will result in the PPR variability framework and a PPR variability
(PPRVar) meta model on PPR variability core concepts, in particular,
(a) dependencies between structural variability of products (and
abstract CPPS resources) and behavioral process variability and (b)
binding times for PPR variability options. The conceptual PPRVar
framework will categorize models, methods, and technical solutions
to represent and integrate PPR variability core concepts building on
existing PPR and VM approaches. The conceptual PPR variability
framework should serve as a blueprint that CPPS researchers can
build upon to develop and explore applied methods for handling
variability in the CPPS engineering lifecycle.
We will collaborate with researchers at the CDL-SQI to collect
data on use cases that concern design decisions on variability and
binding time, and to elicit requirements for the conceptual PPRVar
framework with potential users, such as CPPS engineers and CPPS
optimization researchers in academic environments, including the
TU Wien pilot factory3 and the TU Prague Testbed for Industry 4.04,
and at industry partners. We will conduct an SLR [22] on struc-
tural and behavioral VM approaches, and approaches to integrate
them, leading to the PPRVar framework categories, approaches, and
their characteristics and limitations. We will evaluate the PPRVar
framework in an expert survey with CPPS engineering and SPL
researchers domain and experts.

WP2. Design PPR variability modeling approach. This re-
search task will result in the PPRVar modeling language and method
to represent integrated structural and behavioral PPR variability,
including abstract CPPS resources. The PPRVar modeling language
and method will build on suitable modeling approaches identified
in WP1, such as a DSL to foster machine-readability and simple
exchange, allowing easy manipulation for experts and the future
use of versioning systems for storage and change detection. PPRVar
models represent integrated PPR variability as a basis for CPPS en-
gineers to define, defer, and take PPR design decisions at different
points during the CPPS engineering process.

3http://pilotfabrik.tuwien.ac.at/en/die-pilotfabrik-der-tu-wien/themenprofil/
4https://www.ciirc.cvut.cz/teams-labs/testbed/

We will iteratively (a) extend models for CPPS knowledge repre-
sentation considering variability requirements from research and
practice towards integrating structural and behavioral CPPS vari-
ability core concepts in the PPRVar modeling language using es-
tablished design guidelines and (b) design the PPRVar modeling
method to guide designing PPRVar models based on the PPRVar
modeling language employing proven modeling method guidelines.
We will collaborate with CPPS and optimization researchers to eval-
uate the utility and accuracy of the resulting models in prototype
evaluations and case studies on selected industrial and academic
use cases, like the Rocker Switch product line, with requirements
coming from basic engineers and process optimizers.

WP3. Design process instance derivation method. This re-
search task will result in (a) a method to derive valid process in-
stances and their properties from PPRVar models (WP2) and (b)
selected production process instances as input to production process
evaluation and optimization. Basic engineers and process optimiz-
ers can compare process instances and their properties to analyze
the impact of process differences on process characteristics and to
adjust the PPRVar model in case of missing or too stringent variabil-
ity or dependency definitions. An interesting question is when to
bind design decisions: during CPPS engineering or run time, trading
off benefits from production flexibility for design complexity and
risk at run time. Depending on the selected binding time of design
decisions, the design of exchanged artifacts will differ and are likely
to require different user and CPPS capabilities to handle variability.
We will liaise with users to define requirements for valid pro-
duction process instances for a product family. We will build on
approaches and frameworks, like SMT solvers [43], to design a
method to derive valid production process instances for a product
family and validate configurations for the integrated CPPS variabil-
ity model with requirements from CPPS domain experts.

WP4 Design research prototypes.We will collaborate with
technical experts to design and implement the technical artifacts,
such as software prototypes, required to evaluate the research re-
sults. We aim at providing open data and software to the research
communities as a foundation for future research.

WP5 Evaluate PPRVar models and methods. For the evalu-
ation of the PPRVar models and methods, we plan to focus on our
approach’s utility and efficacy. We focus on these criteria as it is
essential for basic engineers and process optimizers to draft a CPPS
design and calculate a cost estimate with minimal effort.
Therefore, we will design and conduct case studies [40] with
stakeholders from CPPS engineering and researchers. In the study
on utility and efficacy, we aim to employ an existing project from
our industry partner and let engineers design the variability of the
CPPS with our approach. To evaluate the utility, we will assess in
interviews whether the engineers were able to model the required
product and process variability in the study context. We also study
if our approach complements their incomplete and scattered mod-
els or even has the potential to replace some of them. To evaluate
the efficacy, we will determine if the assumed gained benefit of
modeling the CPPS variability with our approach outweighs the
additional effort. Further, we compare our PPRVar approach with
their traditional approach concerning the engineers’ goal of mini-
mal engineering effort. We plan to address further criteria in a later
phase: the expressiveness and usability of our PPRVar approach.
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A first case study candidate concerns modeling the use case
Rocker Switch product line with a group of basic engineers from our
industry partner, building on the GQM template [8] to define data
collection goals and artifacts.
We aim at sharing evaluation data with the scientific community
to validate and extend our research results.

5.2 Threats to Validity
We consider the following threats to validity [48]. Limited scope of
use cases in discrete manufacturing may miss important concepts
and dependencies. Limited modeling approaches may not fit per-
fectly to concepts in use cases and each other, leading to issues with
integrated modeling. However, we are confident that even an initial
solution will provide valuable stepping stones for researchers to
improve engineering support and illustrate limitations.

Research bias may stem from selecting the wrong study system
for evaluation, bias during requirements identification and artifact
construction, and data collection and analysis. We aim at mitigating
these risks utilizing collectively developed and reviewed research
protocols in a team of researchers, selecting representative data
and case study participants and basing our work on representative
industrial case studies such as the Rocker Switch product line. Further,
we will follow best-practice research guidelines for constructing
theories, designs, and empirical evaluations.

6 TOWARDS INTEGRATED PPR
VARIABILITY MODELING

This section presents preliminary results and a research agenda for
integrating variability in CPPS engineering.

6.1 Preliminary results
Table 1 shows the achieved and planned publications. In Meixner
et al. [30] we (a) elicited important challenges and requirements

Title/Topic (Status) Year Venue RQs
Production-Aware Analysis of CPPS
Eng. Processes (P) [21]

2019 ICEIS RQ1/RQ2

Modeling Variability of PPR in CPPS
Engineering (P) [31]

2019 SPLC WS RQ1

Feature Identification for Model Vari-
ants in CPPS (P) [30]

2020 VaMoS RQ2

Modeling Expert Knowledge for CPPS
Resource Selection for a Product Port-
folio (A) [29]

2020 ETFA RQ1/RQ2

Test Cases from Product and Process
Model Preconditions (A) [28]

2020 ETFA RQ2

Towards a DSL for PPR Constraints
(S) [27]

2020 ETFA RQ2

Requirements for managing CPPS
variability (Pl)

2021 ICPS RQ1

Requirements for a CPPS variability
framework (Pl)

2021 VaMoS RQ1

CPPS variability Framework (Pl) 2021 SPLC RQ2
SLR on structural and behavioral vari-
ability (Pl)

2021 IST RQ2

Table 1: Publication plan (Pl/Planned, S/Submitted, A/Ac-
cepted, P/Published work).

towards variability in CPPS engineering and (b) introduced a super-
imposed PPR model to represent CPPS variability building knowl-
edge forWP0/RQ1/RQ2. In Meixner et al. [31] we presented a pro-
totype to extract features from PPR models to support VM from
exiting artifacts contributing to WP0-WP2/RQ1/RQ2. In Kathrein
et al. [21], we extended the FPD to (a) represent abstract PPR as-
pects usable for abstract features and (b) consistency expressions
as a basis for explicitly describing, i.a., variability dependencies
contributing toWP1/RQ2. In Meixner et al. [28] we extended the
consistency expressions to (a) link process steps to product proper-
ties via pre-/post-conditions and (b) derive test cases for testable
PPR models contributing toWP2/RQ1/RQ2. In Meixner et al. [27] we
drafted a DSL to make constraints executable building knowledge
forWP2/WP3/RQ2/RQ3. To enable an improved basis for process
optimization, we introduced the concept of modeling PPR with
skills, abstract, vendor-independent descriptions of CPPS resources,
and variability contributing toWP1/WP2/RQ1/RQ2.

6.2 Research Agenda
In the next 12months, wewill follow the research plan (see Figure 3).
We will use an agile research approach with frequent feedback from
collaborating researches and industry partners in 3-5 week sprints.
Building on the preliminary research results, we work on the follow-
ing work packages: (1) The problem investigation (WP0) extending
it as required to gather requirements and use cases interviewing
CPPS engineers and researchers as the basis forWP1. We will pub-
lish our results to VaMoS 2021 and ICPS 2021. (2) The rough design
of a PPR variability framework (WP1) concerning RQ1. To that, we
will conduct an SLR on structural and behavioral VM, which we
will publish to IST in 2021. From the conclusions drawn in (1) and
the SLR, we will design a framework for PPR variability in CPPSs,
planned for SPLC 2021. In parallel and based on the results from
WP0 andWP1 we will work onWP4 to design prototypes as a basis
for evaluation and onWP5 to design an evaluation framework based
on research guidelines and fit for the particular research context.

7 CONCLUSION
Cyber-Physical Production Systems enable the flexible and optimized
production of customized products on employing complex produc-
tion processes. Modeling the variability of CPPS is crucial to achieve
this goal but challenging due to the weak understanding (1) of vari-
ability in heterogeneous, dispersed artifacts leading to incomplete
variability representations and (2) impact of changes in the product
family on the CPPS design. This paper aims to motivate the need for
an integrated approach to model structural and behavioral in CPPS
models to support CPPS engineers and optimizers and proposes a
PhD research project to conduct this research. The planned research
will provide the SPL and CPPS engineering research communities
with (a) models and methods on integrated CPPS variability mod-
eling, (b) use case data from CPPS engineering, and (c) shared
empirical data and evaluations from our research. The PhD project
aims to provide basic engineers and production process optimizers
with sufficient CPPS variability modeling methods. These should in-
tegrate structural and behavioral CPPS variability to effectively and
efficiently explore the complex problem and configuration space
and the impact of changes in the product features on CPPS designs.
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The planned research should foster discussion on the impact of
heterogeneous artifacts on VM and options to combine the variabil-
ity of structure and behavior while maintaining their integrity.
We would like to ask the advisory committee: (1) How could we
improve the value of the research idea and the planned results for
the research community? (2) How could we improve the benefits
of the research approach and plan and reduce risks? (3) Whom
would you recommend considering as a research interview partner
or collaborator? Thank you for your valuable time and advice.
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5.1.3 A Domain-Specific Language for PPR Modeling
Citation

[130] K. Meixner, F. Rinker, H. Marcher, J. Decker, and S. Biffl. A domain-specific
language for product-process-resource modeling. In 26th IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA 2021, Vasteras, Sweden,
September 7-10, 2021, volume 2021-September, pages 1–8. Institute of Electrical and
Electronics Engineers Inc., 2021. doi: 10.1109/ETFA45728.2021.9613674

Aim

The publication “A Domain-Specific Language for Product-Process-Resource Model-
ing” [130] introduces a Domain-specific Language (DSL) for PPR modeling that serves
as a foundational model for explicit engineering knowledge. The publication (i) a meta–
model for modeling PPR assets with their variability and constraints, (ii) an instantiation
of the model as DSL to support explicit knowledge modeling, (iii) a constraint evaluation
mechanism with recursive SQL queries in PostGres, and (iv) a real-world case study of a
product line in the PPR–DSL.

Contribution to the thesis

This publication contributes to the research goals CPPS knowledge model with variabil-
ity and constraints (G1.), PPR–DSL constraint evaluation method (G2.), PPR–DSL
prototype (G4.), case study evaluation (G5.).

This publication contributes to RQ1. and RQ3. by addressing the VDI 3695 measures
of models and description languages re-use M3., quality assurance M4., integration
and seamless cooperation of disciplines M5., and the SPL capabilities efficient reuse
C1., variability management C3., enhanced quality and consistency C4., facilitation of
interdisciplinary collaboration C5..

Abstract

CPPSs are envisioned as next-generation adaptive production systems combining modern
production techniques with the latest information technology. In CPPS engineering, basic
planners define the functional relations between PPR views to specify valid production
process and resource designs that fulfill the customer requirements. Using the Formalised
Process Description (FPD) standard (VDI 3682) allows to visually model these PPR
views but is hard to process by machines and insufficiently defined formally. In this
paper, we present the design of a DSL, the PPR–DSL, to effectively and efficiently
represent PPR aspects and evaluate constraints defined for these aspects. We illustrate
the PPR–DSL with the use case rocker switch, abstracted from an industrial use case. We
identify requirements and iteratively design and evaluate the PPR–DSL. We show that
the PPR–DSL can model (a) the functional view of CPPSs and (b) define and efficiently
evaluate constraints of a CPPS using technologies well-established in industry. We argue
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that the PPR–DSL provides a valuable contribution for the community and industry to
describe PPR aspects and evaluate constraints on these aspects. This way, PPR model
can be defined and evaluated more easily for researchers and/or practitioners.
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Abstract—Cyber-Physical Production Systems (CPPSs) are
envisioned as next-generation adaptive production systems com-
bining modern production techniques with the latest information
technology. In CPPS engineering, basic planners define the func-
tional relations between Product-Process-Resource (PPR) views
to specify valid production process and resource designs that
fulfill the customer requirements. Using the Formalised Process
Description standard (VDI 3682) allows to visually model these
PPR views but is hard to process by machines and insufficiently
defined formally. In this paper, we present the design of a
Domain Specific Language (DSL), the PPR DSL, to effectively
and efficiently represent PPR aspects and evaluate constraints
defined for these aspects. We illustrate the PPR DSL with the
use case rocker switch, abstracted from an industrial use case. We
identify requirements and iteratively design and evaluate the PPR
DSL. We show that the PPR DSL can model (a) the functional
view of CPPSs and (b) define and efficiently evaluate constraints
of a CPPS using technologies well-established in industry. We
argue that the PPR DSL provides a valuable contribution for the
community and industry to describe PPR aspects and evaluate
constraints on these aspects. This way, PPR model can be defined
and evaluated more easily for researchers and/or practitioners.

Index Terms—Digitalization, CPPS Engineering, CPPS Opti-
mization, Model-Based Engineering, PPR Modeling.

I. INTRODUCTION

Cyber-Physical Production System (CPPS) engineering is
a multi-disciplinary task that involves experts from several
domains with different views on the system. These experts
collaborate to achieve the common goal of planning and de-
signing a CPPS effectively and efficiently [1], [2]. One of these
domains is functional planning, where basic planners define
the CPPS functionality in, so-called assembly sequences, and
formulate constraints between the CPPS aspects that specify
valid designs considering product requirements. However, for
CPPS engineering, it is crucial to share the constraints with
later engineering phases [3], [4], like detail planning and
commissioning, as a foundation for verifying the correctness
and efficiency of the CPPS and its behavior [5]. However,
there is insufficient support for knowledge representation on
the CPPS’s Product-Process-Resource (PPR) aspects and con-
straints between them.

The financial support by the Christian Doppler Research Association,
the Austrian Federal Ministry for Digital and Economic Affairs and the
National Foundation for Research, Technology and Development is gratefully
acknowledged. The competence center CDP is funded within the framework
of COMET – Competence Centers for Excellent Technologies by BMVIT,
BMDW, and the federal state of Vienna, managed by the FFG.

The Formalised Process Description (FPD) [6] for PPR
modeling and its extensions [7], [8] provide visual representa-
tions to facilitate multi-view modeling of the functional view
on the CPPS in the basic planning phase. However, recent
works [6]–[8] do not define important aspects of the formal
models, like the concrete syntax of the constraints and their
functionality. This shortcoming makes such representations
hard to process for machines impeding automated testing
and verification. Model-based, machine-readable, and easily
exchangeable engineering representations are the foundation
for bridging gaps in the knowledge transfer [9] by providing
common concepts [10] between engineering domains. Domain
Specific Languages (DSLs) potentially reduce cost and foster
portability, reliability, and testability of models [11]. DSLs are,
in contrast to general purpose programming languages like C#,
languages with a set of concepts and rules tailed to a particular
domain. A textual DSL for the FPD and its extensions and its
relevant constraints should facilitate efficient processing both
for human domain experts and machines.

To tackle these shortcomings, we raise the main Research
Question (RQ) on PPR Constraint Modeling and Evaluation
(cf. Section III): Which conceptual representation of PPR
models and constraints (1) facilitates their processing by
humans and machines, in particular, (2) constraint evaluation
in industrial contexts?

In previous work [12], [13], we motivated a basic design for
a Product-Process-Resource Domain-Specific Language (PPR
DSL) with constraints and presented a research agenda. In this
paper, we build on and extend our previous work providing
a full design of the PPR DSL with constraint evaluation.
Following the Design Science approach [14], we iteratively
design and evaluate the PPR DSL with domain experts from
our industry partner. We apply the PPR DSL to the Rocker
Switch use case from our industry partner to demonstrate the
PPR DSL’s feasibility.

We summarize related work in Section II, motivate detailed
RQs in Section III, and introduce the Rocker Switch use case
in IV. In Section V, we introduce the PPR DSL approach
addressing the RQs. We demonstrate the feasibility and ap-
plicability of our DSL approach in Section VI, followed by a
discussion in Section VII. Finally, Section VIII concludes and
gives an outlook on future work.
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II. RELATED WORK

This section summarizes related work on CPPS engineering,
PPR concepts and their constraints, and DSLs.

Cyber-Physical Production System Engineering. CPPS
engineering processes are often customized for intra-
disciplinary activities [7]. Therefore, shortcomings regarding
the definition of common concepts [10], discipline-specific
tools, and proprietary and heterogeneous artifacts limit the
effectiveness and efficiency of interdisciplinary knowledge
exchange. For example, spreadsheets require expert interpre-
tation due to varying and implicit semantics. However, the
CPPS engineering disciplines and their concepts are linked,
requiring comprehensive models to express the requirements
of products toward designing a CPPS [9].

Schleipen et al. [15] coined the term PPR based on the three
aspects product with its properties, process that produces a
product, and resource that executes production processes. The
FPD [6] represents the PPR aspects in a technology- and tool-
agnostic way by defining a graphical notation and a data model
for the functional view on a CPPS. In this paper, we build on
these PPR foundations.

Product-Process-Resource Concepts and Constraints.
The Formalised Process Description (FPD) [6] enables the
definition of production sequences by specifying relations
between input and output products and production processes.
However, the FPD does not provide means to formulate
consistency constraints, such as the applicable torque for a
screw or the maximal weight of a set of CPPS resources.
Such constraints are crucial in CPPS engineering to formulate
requirements, e.g., from products, that must not be violated
to yield the necessary product quality or might even break
the CPPS if violated. Kathrein et al. [7] extended the FPD
with constraint expressions and with abstract resources that
act as placeholders to be specified later, and with consistency
constraints that define dependencies between the PPR aspects.
In this paper, we build on the FPD and its extensions [7]
to investigate how to efficiently define and evaluate PPR
constraints with technology that is well-established in industry.

Domain-Specific Languages on Constraints. A DSL is
a language to efficiently describe a specific kind of problem
in a domain using domain-specific concepts, such as PPR.
In contrast, a general-purpose language provides only general
domain-agnostic concepts [16] that require adaptation to a
domain. The are several approaches recommended for de-
signing and creating the structure of a DSL [11], [17]. The
Meta Object Facility (MOF)1 is a standard for model-driven
engineering, defining an architecture for the classification of
models. A popular approach with tool support is the Eclipse
Modeling Framework (EMF) [18]. However, the technical
footprint of the EMF is quite large and EMF is hard to include
in applications other than the Eclipse IDE2.

Constraint definition and evaluation require a specific syntax
and engine capable of specifying and evaluating the con-

1MOF: https://www.omg.org/mof
2Eclipse IDE: https://www.eclipse.org/ide/

straints. The Object Constraint Language (OCL) is a frame-
work standardized by the Object Management Group [19].
OCL is quite expressive, but may be difficult to use for CPPS
engineers, who are not software modeling experts. An alter-
native is the Structured Query Language (SQL) [20], a goal-
oriented query language for relational databases to formulate
and evaluate constraints on databases. However, it is not clear
how to leverage SQL capabilities for evaluating constraints
on PPR aspects. In this paper, we explore how to efficiently
evaluate PPR constraints building on SQL capabilities, which
are well-known and accessible to CPPS engineers.

The Reference Architecture Model Industry 4.0 (RAMI 4.0)
is a 3-dimensional model that describes a technical asset in
terms of roles, its lifecycle and value stream, and allows the
classification into various hierarchy levels, each on a different
axis [21]. The proposed PPR DSL assists the development
phase of a station component and allows a consistent descrip-
tion from a functional viewpoint. Therefore, the contributions
of this paper fit into the functional layer, the development
phase of lifecycle and value stream, and the hierarchy level of
a station component.

III. RESEARCH QUESTIONS

CPPS engineers require approaches beyond visual represen-
tations of PPR models to model their engineering knowledge.
We aim to define a DSL for the PPR approach that can be used
efficiently to formalize PPR models. Therefore, the following
research questions guide our research for a PPR DSL.

RQ1. PPR Constraint Modeling. Which domain model and
textual DSL can represent PPR models and constraints for
efficient processing by humans and machines?

We identify requirements for a set of elements of a PPR
DSL to support domain experts to engineer CPPSs. To address
these requirements, we design (a) a meta-model for a PPR
DSL and (b) the PPR DSL.

RQ2. PPR Constraint Evaluation. How can PPR con-
straints, formulated in a DSL, be evaluated with a technology
that is established in the production system industry, such as
relational databases?

For CPPS engineers it is important to formulate consistency
constraints during the design time of the CPPS to validate
design decisions across the involved disciplines. However,
constraint evaluation frameworks from model-driven software
engineering, like OCL, are often hard to integrate to existing
engineering tool landscapes and the run-time context. There-
fore, we investigate how to map the concepts of PPR models
with constraints to a well-established industrial technology,
such as relational database technology, for efficiently evaluat-
ing the consistency constraints.

In workshops with several domain experts at a company
partner in discrete manufacturing, we elicited the following
requirements towards a PPR DSL with constraints, and tech-
nologies for their implementation.

R1. PPR representation. The DSL shall represent (R1.1)
the PPR aspects – products, processes, and resources and their
attributes. (R1.2) the relationships between the PPR aspects
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conforming to the VDI 3682 standard [6], including is-part
relations, to model PPR sub-structures.

R2. Reusable templates for PPR aspect definitions. To
foster the reuse of definitions, the PPR DSL shall represent
abstract PPR aspects. For instance, a resource might be
defined in an abstract way with high-level attributes as a
foundation for defining concrete resources that inherit these
attributes.

R3. Constraint representation. The DSL shall represent
constraints between the PPR aspects, including the aggrega-
tion over multiple levels (is-part relations) and attributes (sum
or average function).

R4. Focus on domain-specific concepts. The DSL shall
focus on domain-specific concepts, such as PPR concepts, to
facilitate the DSL use with engineers in various disciplines,
typically with limited education in software engineering.

R5. Technology-agnostic DSL definition and evaluation.
The DSL shall be technology agnostic to support the integra-
tion with typical industrial standard software environments and
contexts, e.g., for mapping DSL concepts to query languages
that are well-known and accessible in the target domain
and can express/execute recursive queries, e.g., SQL, OCL,
Cypher, or DataLog.

To address the RQs and these requirements, we iteratively
design and develop our approach for a PPR DSL with con-
straint evaluation following the design science approach [14].
We evaluate our results in a feasibility study utilizing the
illustrative use case Rocker Switch (cf. Section IV).

IV. ILLUSTRATIVE USE CASE Rocker Switch

This section presents the use case Rocker Switch as running
example. The use case stems from an analysis of a CPPS
design from a cooperation with an industry partner, showing
an abstracted design to honor intellectual property rights.

Rocker switches are everyday appliances to control devices,
like lights or sun-blinds. The bottom part of Figure 1 shows a
schematic view of the core of a rocker switch. Basically, this
core consists of a socket (in grey), several contacts, like pole
(in orange), neutral, or off, that are held in place by screws
(in pink), and a number of rockers (in green). An analysis
of the rocker switch’s CPPS design revealed that the system
manufactures 12 different rocker switch variants building a
product family [22]. A rocker switch variant can require up to
sixty individual production steps, resulting in more than 600
assembly sequence parts that engineers need to design and
maintain.

Figure 1 shows a part of the assembly sequence of a rocker
switch as a PPR model with an extended view on the CPPS
resources. In the first step, Work Cell 1 inserts the Pole contact
into the Socket in an Insert/Press process. In the second step,
Work Cell 2 inserts the Rocker into the Socket. In the third
step, Work Cell 3 inserts and screws Screw 1 and Screw 2 into
the socket. Therefore, Work Cell 3 has two Screwdrivers each
consisting of a Bit and a Drive. Each Drive has a Transformer
that is controlled by a Screwing Controller. The Screwing

Controllers are lead by Robot Controllers that are orchestrated
by an Industrial PC (IPC).

For the design of the use case, we identified two important
constraints. Constraint C1 defines the screwdrivers not to
exceed the maximum torque specified by the designs of the
screws and the socket. C1 is relevant both at design time and
at run time. Constraint C2 states that all resources connected
to the screwdriver must not exceed a power consumption of
50 Watt.

Today, domain experts often create and manage assembly
sequences in spreadsheets that lack semantic relationships,
an approach that is time-consuming and error-prone. Further,
constraints like C1 and C2 are very hard to formulate and
evaluate in tools like spreadsheets, as the required informa-
tion and structural data are often scattered across several
heterogeneous documents. Therefore, a PPR DSL providing
suitable capabilities with tool support to model these assembly
sequences could reduce effort and risk in CPPS engineering.

V. DOMAIN-SPECIFIC PPR LANGUAGE

This section introduces the design of the PPR DSL, illus-
trated with examples from the use case Rocker Switch.

A. Domain-Specific Product-Process-Resource Model

We build on the meta-models of the VDI 3682 [6] and our
previous work [8], [12] to define the domain model for the
PPR DSL. The domain model of a DSL defines the concepts
of the DSL and their relationships. Figure 2 shows the domain
model for the PPR DSL in UML notation representing Layer 1
of the MOF. We explain the core concepts of the DSL using
the Rocker Switch use case.

The root concept is the AssemblySequence, i.e., the
functional production sequence that engineers want to model.

To address requirement R1.1, AssemblySequence con-
tains the Product, Process, and Resource concepts,3 for
instance, the product Screw, the process Insert/Screw, and the
resource IPC in the use case (cf. Figure 1). Instances of these
three concepts can be declared abstract with the isAbstract
property. This property indicates a particular concept to be a
template for concrete instances, addressing requirement R2.

The PPR concepts have four reflexive relationships to
address requirement R1.2. The relation implements indi-
cates a concept to implement an abstract concept of similar
type, inheriting its characteristics. For example, an electric
screwdriver could implement an abstract resource screwdriver.
The relations parents and children allow defining the
containment relations has-part and is-part. For instance, the
screwdriver has the parts bit and drive. Both concepts are
required for defining multiple parents and children, e.g., to
model multiple views on the system. The relation requires
defines required other concepts, other than a containment
relation. For instance, the screwer driver requires the robot
controller. Similarly, the relation excludes defines concepts
that cannot be combined with the particular aspect.

3Due to space limitations, Figure 2 shows the properties and reflexive
relations, applicable to each of the three PPR concepts, only for the Resource.
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Fig. 1. Product-Process-Resource Model with constraints for a Rocker Switch.

To address requirement R1.2, we defined three relationships
between the PPR concepts. Input products are connected
to a process with InputProductProcessRelation,
e.g., the Socket is connected to the process Insert/Press
(cf. Figure 1). Output products are connected to a process
with OutputProductProcessRelation, e.g., the out-
put product Socket with Contacts is connected to the process
Insert/Press. To relate a resource with a process, the domain
model defines ResourceProcessRelation, e.g., the re-
source IPC is connected to the process Insert/Screw.

To address requirement R1.1, the AssemblySequence
contains the Characteristic concept, conforming to
VDI 3682 [6]. Characteristics model properties of PPR con-
cepts, e.g., the torque that a screw can take, and of relation-
ships. Characteristics are globally defined to allow their reuse
in the model, addressing requirement R2.

The AssemblySequence also holds the Constraint
concept allowing to include PPR aspects and global attributes.
We describe constraints in detail in Section V-C.

B. Domain-Specific Product-Process-Resource Language

To design the textual representation of the PPR DSL re-
quires mapping the domain model to language constructs, like
the keywords, utilizing an iterative DSL design approach [17].
We aimed at one-to-one mappings between domain model
concepts and language constructs and at introducing keywords
that facilitate understandability for CPPS engineers, addressing
requirement R4.

Listing 1 shows an excerpt4 of the PPR DSL model for
the use case Rocker Switch. Basically, each concept is defined
using a keyword, followed by an ID and a body in curly braces
with further definitions.

The concept Characteristic is mapped to the keyword
Attribute. For instance, Line 1 globally defines the at-
tribute MaxAllowedForce with the torque unit Nm.

Lines 5 to 8 define four products. For instance, Line 7
defines product Screw 1 with ID S1 using the globally defined
attribute MaxAllowedForce.

4A complete DSL representation of the use case Rocker Switch and an
overview graphic of the improved PPR-design approach can be found at https:
//github.com/tuw-qse/ppr-dsl-case-study
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Fig. 2. The domain model of the PPR DSL with the main concepts Product-Process-Resource and Constraint (in UML notation).

The following lines define the resource Work Cell 3. The
construct children defines the parts of the work cell, such
as the IPC. Abstract concepts are defined by the keyword
isAbstract in their body. For instance, Line 16 defines
the abstract resource Screwdriver that is implemented in Line
21 as the concrete resource Screwdriver 1. The keyword
requires allows creating logical categories or groups.
Line 30 indicates that the ScrewingController requires a
RobotController. Similarly, the keyword excludes can be
used to model forbidden combinations, e.g., two product parts
that must not be used together.

Processes can be defined using the keyword Process. A
InputProductProcessRelation corresponds to the DSL keyword
inputs in the Process (cf. InsertScrew in Listing 1)
followed by a list of identifiers of the input products. Similarly,
an OutputProductProcessRelation is defined using the DSL
keyword outputs with corresponding identifiers. A Resour-
ceProcessRelation is indicated with the keyword resources
within the Process linked with identifiers of the resources.
For instance, process InsertScrew uses resource Work Cell 3
to execute the production step.

C. Constraint Definition and Mapping

PPR Constraint Definition. To address requirements R3
and R4 and to provide an easy-to-use constraint language for
CPPS engineers, we defined a simple constraint syntax. The
specification of PPR constraints is divided into a left-hand side
(LHS), specifying the involved PPR aspects, and a right-hand
side (RHS), specifying the constraint.

Listing 1 (Lines 41 to 46) illustrates two constraints –
C1 and C2. C1 defines the force, applied by Screwdriver1
and Screwdriver2 to the product SocketWithRocker shall not
exceed the product’s defined force threshold. C2 defines all
components belonging to Screwdriver1 together shall not
consume more than 50 Watt. A constraint may concern an
a-priori unknown number of PPR aspects. For constraint C2,
the affected PPR aspects are Bit, Drive, Transformer, and
ScrewerController.

The specification of PPR aspects in a constraint can either
be explicit or implicit. Constraint C1 explicitly specifies the
involved PPR aspects: Screwdriver1, Screwdriver2, and Sock-
etWithRocker. Constraint C2 implicitly specifies the affected
PPR aspects: all components belonging to Screwdriver1. The
implicit specification of PPR aspects can use the keywords
subtype (for implements relations) and descendants (for
containment relations). Both keywords are followed by a
qualifier name, as a reference in the constraint text. Constraint
C2 uses the qualifier name all.

The RHS of the PPR constraints specifies the constraint
formula. Constraints can be formulated either as an aggre-
gation function, followed by a comparison operator and a
numerical expression (cf. C1) or an arrow symbol, followed
by a Boolean expression (cf. C2). Table I summarizes the
supported aggregation functions and operators.

TABLE I
OPERATORS FOR PPR CONSTRAINT DEFINITION AND EVALUATION.

Symbol Description
-> For all objects on the LHS of ->, execute the

evaluation formula on the RHS.
=, <, >, =>, <= Comparison operators
sum, count, avg, min,
max

Aggregation operators

descendants|subtype
<qualifier>

Access to child/derived aspects regarding the
aspect declared. Retrieving attribute values
from child/derived aspects, requires a qualifier.

PPR Constraint Mapping for Evaluation. The model-driven
engineering community offers frameworks to implement DSLs
and the evaluation of constraints (cf. Section II). However,
in the industrial context it is important to use established
technologies that work on the infrastructure of a production
system. The Structured Query Language (SQL) provides stan-
dardized capabilities to query relational data models and is an
established technology in industry.

To address RQ2, i.e., to evaluate the constraints in a well-
established technology frequently used in production systems,
we designed the following approach: (a) map the PPR DSL
constraint syntax to intermediate representations, i.e., SQL

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 03,2023 at 11:15:06 UTC from IEEE Xplore. Restrictions apply.

5.1. Production Knowledge Models

111



1 Attribute "MaxAllowedForce": {unit: "Nm"}
2 Attribute "AppliedForce": {unit: "Nm"}
3 Attribute "PowerConsumption": {unit: "W"}
4

5 Product "SwR": {name: "Socket with Rockers"}
6 Product "SwS": {name: "Socket with Screws"}
7 Product "S1": {name: "Screw 1", MaxAllowedForce: 4}
8 Product "S2": {name: "Screw 2", MaxAllowedForce: 4}
9

10 Resource "WC3": {name: "Work Cell 3",
11 children: ["IPC", "Robot1", "SDriver1",
12 "Robot2", "SDriver2", "PCell3"]}
13

14 # Definition PCell3, Drive5, Drive6, IPC, PLC, ...
15

16 Resource "ScrewDriver": { name: "Screwdriver",
17 isAbstract: true, AppliedForce: 3}
18

19 Resource "SDriver1": {name: "Screwdriver 1",
20 children: ["Bit1", "Drive7"],
21 implements: ["Screwdriver"]}
22 Resource "Bit1": {name: "Bit 1"}
23 Resource "Drive1": {name: "Drive 7",
24 PowerConsumption: 10,
25 children: ["Transformer1"]}
26 Resource "Transformer1": {name: "Transformer 1",
27 children: ["ScrewerController1"]}
28 Resource "ScrewerController1": {
29 name: "Screwer Controller 1",
30 requires: ["RController1"]}
31

32 # Definition SDriver2, ...
33

34 Process "InsertScrew": { name: "Insert/Screw",
35 inputs: [ {productId: "S1"}, {productId: "S2"},
36 {productId: "SwR", comesFrom: "IPOut"} ],
37 outputs: [ {SwSOut: {productId: "SwS"}} ],
38 resources: [ {resourceId: "WC3", minCost: 0.0} ]
39 }
40

41 Constraint "C1":{
42 *definition: "SDriver1, SDriver2

max(AppliedForce) <= SwR.MaxAllowedForce"
43 }
44 Constraint "C2":{
45 *definition: "SDriver1 descendants all ->

all.PowerConsumption < 50"
46 }

Listing 1: PPR DSL section of the Rocker Switch use case (cf.
full example at https://github.com/tuw-qse/ppr-dsl-case-study)

queries, (b) execute the SQL query on a suitable relational
database system, and (c) observe whether a constraint violation
occurred. To determine a suitable intermediate representation,
we investigated the capabilities of SQL regarding constraint
evaluation and designed SQL query templates with instantiated
examples shown in Listings 2 and 3.

To evaluate the SQL expressions, we designed a relational
model consisting of tables for the concepts Product, Process,
Resource, and Attribute. The PPR tables are connected with

1 WITH combined AS (

2 SELECT * FROM resourceAttributeView

3 WHERE id='Screwdriver1' AND
4 attributeId='AppliedForce'

5 UNION SELECT * FROM resourceAttributeView

6 WHERE id='Screwdriver2' AND
7 attributeId='AppliedForce')

8

9 SELECT * FROM
10 (SELECT MAX(attributeValue) AS aggregation

11 FROM combined) AS aggr,

12 productAttributeView SwR0

13 WHERE SwR0.id='SwR' AND
14 SwR0.attributeId='MaxAllowedForce' AND
15 NOT (aggr.aggregation <= SwR0.attributeValue)

Listing 2: SQL Query implementing Constraint C1.

the Attribute table by the following three views to provide
easier access: ProductAttributeView, ProcessAttributeView and
ResourceAttributeView respectively.

Listing 2 illustrates the result of mapping of constraint
C1 to SQL. First, the common table expression in Listing 2
introduces a new temporary relation combined. The relation
combined encapsulates the PPR aspects, specified at the LHS
of constraint C1. Lines 2 to 4 select the first involved element,
Screwdriver1, with the required attribute, AppliedForce. Lines
5 to 7 select the second element, Screwdriver2, with the
same attribute. The expression starting at Line 9 evaluates the
constraint formula, i.e., it computes the aggregation function
over the previously generated relation combined and joins
additional relations as required. Lines 10 to 11 compute the
aggregation function as a sub-query, using the SQL aggrega-
tion function MAX (or a similar SQL function as specified;
cf. to operators in Table I). Lines 12 to 14 join additional
relations required to evaluate the constraint (SwR with attribute
MaxAllowedForce in the case of C1). Line 15 evaluates the
actual constraint (RHS of C1).

Listing 3 illustrates the mapping of constraint C2 to SQL.
The general concept is similar to Listing 2. The first expression
in Listing 3 builds a relation over the LHS of the constraint
assigning the name combined. However, this time the first
expression is slightly more complicated. As the number of
involved PPR aspects (all components of Screwdriver1) is not
known in advance, a recursive common table expression is
necessary. Lines 2 to 4 select the root node (Screwdriver1).
Lines 5 to 10 sequentially add all children of the root node.
Table resourceContainsResource specifies the containment re-
lations, i.e., parents or children. For constraint C2,
combined contains Screwdriver1 with its attributes and all
children with their attributes. The second expression, starting
at Line 12, computes the constraint formula (RHS of C2).
Lines 13-14 exclude the root node (Screwdriver1) and restricts
the attributes to PowerConsumption. Line 15 evaluates the
constraint formula, checking whether all remaining elements
have an attribute value less than 50.
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1 WITH RECURSIVE combined AS
2 (SELECT resourceAttributeView.*
3 FROM resourceAttributeView

4 WHERE id='Screwdriver1'

5 UNION SELECT main.*
6 FROM combined,

7 resourceAttributeView main,

8 resourceContainsResource containment

9 WHERE combined.id=containment.parentId AND
10 main.id = containment.childId)

11

12 SELECT * FROM combined

13 WHERE combined.id != 'Screwdriver1' AND
14 combined.attributeid = 'PowerConsumption' AND
15 NOT (combined.attributevalue < 50)

Listing 3: SQL Query implementing Constraint C2.

VI. EVALUATION

To evaluate our approach we conducted a feasibility study.
We developed a prototype of the PPR DSL and the constraint
evaluation and evaluated it using the Rocker Switch use case.
We further interviewed the domain experts of our industry
partner to gather feedback on our approach.

We decided to use Java and PostgreSQL5 as relational
database, which provide the necessary capabilities, like re-
cursive queries and views, for the prototype. We created
parsers that read the DSL into the Java implementation of the
domain model (cf. Figure 2). The prototype then persists the
PPR concepts and attributes to the PostgreSQL database. The
evaluation engine reads the constraint specifications, produces
equivalent SQL representations and executes them against a
database to determine whether a given constraint is violated.
After executing the queries, the result is either empty or not. In
the first case, the evaluation engine concludes that no violation
is present. In the second case, the evaluation engine uses the
resulting rows to determine the cause for the violation.

To investigate the performance of the approach, we mea-
sured the execution time for constraint evaluation. We used
the Java Microbenchmark Harness framework6 to measure the
average execution time of the evaluation from the prototype7.
To be able to compare the execution time and calculate an
average execution time configured JMH to use 100 iterations.
The evaluation required 8.2 milliseconds (ms) with a standard
deviation of 0.45 ms for constraint C1 and 9.3 ms with a
standard deviation of 0.6 ms for constraint C2.

We further evaluated the PPR DSL in the industrial context.
Therefore, we conducted a workshop and interviews8 with
two CPPS domain experts from our industry partner on the
perceived usefulness of the PPR DSL. First, we introduced

5PostgreSQL: https://www.postgresql.org
6JMH framework - https://openjdk.java.net/projects/code-tools/jmh
7These measures include the time that Java needs to set up the queries to

the PostgreSQL database.
8The detailed guidelines for the interviews can be found in [13].

the syntax and semantics to the study participants and verified
their understanding of the PPR DSL concepts. Then, the
domain experts had to define a PPR DSL model from a
functional model of a CPPS. Compared to their traditional
approach to draw the PPR models, they found the PPR DSL
easier to create and maintain. However, they also mentioned
the PPR DSL syntax to be quite verbose and found ways
for simplification. Compared to their traditional approach to
formulate the constraints in natural language, they found the
structured constraint definition and the automated evaluation
useful for their engineering tasks. They also approved the
implementation to software that they already use in their
production systems as this approach lowers the entry barrier
to using explicitly defined constraints.

VII. DISCUSSION

This section discusses our results and the research questions.
We first raised the question, which domain model and

textual DSL can represent PPR models and constraints. To
address RQ1, in Section V we identified requirements for a
set of elements of a PPR DSL to support domain experts to
engineer CPPSs. To address these requirements, we developed
(a) a domain model for a PPR DSL based on the VDI 36282
standard and our previous work and (b) a language design
for the PPR DSL. This goes beyond the state of the art, as
most approaches only visually support the VDI 3682 standard
and do not support important extensions such as abstract PPR
aspects.

Secondly, we asked how PPR constraints can be evalu-
ated with a technology that is established in the production
system industry, such as relational databases? Existing DSL
workbenches, such as Meta Programming System (MPS) or
Eclipse Modeling Framework (EMF) [13], mostly have a
high complexity and steep learning curve. Furthermore, these
technologies and especially the constraint evaluation are hard
to integrate into the current software landscape of many
industrial production systems. To address RQ2, in Section V-C
we developed a mapping of our PPR DSL constraint syntax
to the SQL standard. Using these mappings the constraints
can easily be evaluate on relation database systems. These
database systems are well-established in the industry and
frequently used in production systems to hold the production
systems’ data and control its functions via software. This
way it is possible to easily integrate our constraint evaluation
mechanism to the engineering lifecycle but also use it during
runtime to validate the systems behavior.

An evaluation with domain experts from an industry partner
of a prototype for our approach using Java and PostgresSQL
showed that (i) our approach is reasonably efficient and (ii)
that domain experts found our approach useful in the context
of engineering their CPPS using the PPR DSL to share
knowledge over the engineering phases and validate potential
functional designs.

These research results build on the VDI 3682 standard
and its extensions [12] and go beyond the state of the art
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in production systems engineering by providing (i) a ma-
chine-readable and easy-to-maintain formal definition of PPR
models; (ii) technology-agnostic constraint definition that can
be mapped to several constraint evaluation technologies; and
(iii) a mapping of the technology-agnostic constraint definition
for constraint evaluation in SQL, an established industrial
technology.

Threats to Validity. Expressiveness of constraints. The
focus of the PPR DSL constraints is on the expression of
constraints on PPR aspect attributes. Therefore, the PPR DSL
cannot express, e.g., whether certain aspects are missing in
the design of the CPPS. However, even the current PPR
DSL capabilities to express constraints seem useful for typical
practitioners. Limited Usecases. We evaluated the PPR DSL
with one use case and in a specific production system domain.
However, the research design carefully selected a use case
derived from a real-world industrial project that is likely to
identify requirements that can be expected to be useful to some
extent for similar use cases in production systems engineering.

VIII. CONCLUSION

In Cyber-Physical Production System (CPPS) engineering,
basic engineers want to design the functional view on a
particular CPPS as PPR models based on VDI 3682 and share
constraints regarding valid CPPS designs. These constraints
are crucial to validate the CPPS design through the engineering
phases. However, there is only limited support for representing
PPR aspects and constraints. Furthermore, current approaches
for constraint evaluation are often hard to integrate into the
software landscape of a production system.

In this paper, we identified five requirements for a DSL to
representing PPR models. We then introduced a domain model
and mapped a language design for the PPR DSL. The PPR
DSL allows a representation of PPR aspects and a formulation
of constraints between the aspects.

One research question was how to integrate the constraint
evaluation with well-established technologies in CPPS engi-
neering. We developed a mapping of the PPR DSL constraint
syntax to SQL queries to execute them on relational database
systems, a well-established technology in industry.

To evaluate our approach, we developed a prototype to
define and evaluate the constraints in a PostgresSQL database.
We tested our approach in a feasibility study with the industrial
use case Rocker Switch. The evaluation found the mapping
to PostgresSQL to work well with reasonable duration for
constraint evaluation, even on a laptop computer. Furthermore,
domain experts interviewed on the perceived usability of the
PPR DSL stated the DSL to be easily usable in their context
and noted suggestions for simplifying some language aspects.

Overall, we were able (i) to establish a DSL to define PPR
models that are based on VDI 3682 and (ii) to successfully
evaluate constraints defined in the PPR DSL using SQL, a
well-established technology in industry.

Future Work. We plan to design improved tool support
for the PPR DSL including an editor with instant feedback.
Feedback from practitioners provided input on simplifying

the PPR DSL to improve support for engineers with limited
programming background. Further, we plan to benchmark the
evaluation of the constraints with different databases, including
emerging technologies in industry, such as graph databases.
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5.2 Advanced CPPS Engineering Applications
5.2.1 Patterns for Reuse
[129] K. Meixner, A. Lüder, J. Herzog, D. Winkler, and S. Biffl. Patterns for reuse
in production systems engineering. International Journal of Software Engineering and
Knowledge Engineering, 31(11-12):1623–1659, 2021. doi: 10.1142/S0218194021400155

Aim

The publication “Patterns for Reuse in Production Systems Engineering” [129] introduces
a modeling approach for PPR and capabilities as assets for reuse in domain engineering
in a knowledge graph. The publication provides (i) requirements for a PPR asset graph
representation with a dependency network, (ii) the meta-model of a knowledge graph for
PPR assets, i.e, the Industry 4.0 Asset Network (iii) , for reuse in Production Systems
Engineering (PSE) and (iv) four patterns for engineers to identify reusable assets for
domain engineering.

Contribution to the thesis

This publication contributes to the research goals CPPS knowledge model (G1.), CPPS
knowledge model reference architecture (G2.), CPPS knowledge model patterns (G2.),
and CPPS reuse framework (G2.), .

This publication contributes to RQ1., RQ2. by addressing the VDI 3695 measures of
models and description languages M1., knowledge management M2., re-use M3., quality
assurance M4., integration and seamless cooperation of disciplines M5., and the SPL
capabilities enhanced quality and consistency C4., and facilitation of interdisciplinary
collaboration C5..

Abstract

In PSE, domain experts aim at reusing production processes implemented as Industry
4.0 assets and software. However, the knowledge on reusable assets is often scattered
on multi-disciplinary engineering artifacts and domain experts, making it hard to find
suitable reusable assets and map them to requirements. In this paper, we (i) identify
challenges and requirements for reuse in PSE based on a domain analysis; (ii) introduce
the I4AN that integrates multi-disciplinary dependencies between the assets and exposes
recurring patterns; and (iii) present four patterns for reuse in PSE that aim at improving
reuse efficiency and risk. We evaluate the I4AN with reuse scenarios in a feasibility study.
The study results indicate that the I4AN model satisfies the elicited requirements and
enables PSE domain experts to identify patterns for reuse in their contexts.
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Abstract—In Production Systems Engineering (PSE), domain
experts aim at reusing production processes implemented as
Industry 4.0 assets and software. However, the knowledge on
reusable assets is often scattered on multi-disciplinary engineer-
ing artifacts and domain experts, making it hard to find suitable
reusable assets and map them to requirements. In this paper,
we (i) identify challenges and requirements for reuse in PSE
based on a domain analysis; (ii) introduce the Industry 4.0 Asset
Network (I4AN) that integrates multi-disciplinary dependencies
between the assets and exposes recurring patterns; and (iii)
present four patterns for reuse in PSE that aim at improving
reuse efficiency and risk. We evaluate the I4AN with reuse
scenarios in a feasibility study. The study results indicate that the
I4AN model satisfies the elicited requirements and enables PSE
domain experts to identify patterns for reuse in their contexts.

Keywords—Reuse, Production Systems Engineering, Industry
4.0 asset, Industry 4.0 component.

I. INTRODUCTION

The Industry 4.0 (I4.0) initiative1 has led to an increased
focus on research related to Production Systems Engineering
(PSE) in various research fields [1]. The I4.0 initiative en-
visions flexible and highly customizable production systems
that interconnect modern manufacturing with the latest in-
formation and communication technology, so-called Cyber-
Physical Production Systems (CPPSs) [2] that can self-adapt
to particular conditions. These CPPSs incorporate I4.0 assets
representing objects of perceived or actual value, such as
products, processes, or resources [3]. The Asset Administration
Shell (AAS), their standardized digital representation [3], can
describe their skills [4] and adapt the I4.0 assets to changes in
the production environment. The aim is to fulfill business de-
mands for increased flexibility and distribution of production,
i.e., production as a service, and to react to shorter product
life-cycles with reduced PSE project duration and effort [5].

These demands require the (partial) reuse of process and
resource solutions from previous projects or standardized
catalogues [6], [7]. Examples in automotive manufacturing are
position and screw tasks, like screwing a dashboard into a car.
In such cases, product type variants and their parameters vary,

DOI: 10.18293/SEKE2021-150
1Industry 4.0 Initiative: https://www.plattform-i40.de

e.g., where and how tightly to screw which kind of screw
to a dashboard. Yet, the processes and production resources
executing these tasks, like robot arms, are quite similar. In
addition, parts of the software controlling the resources and
orchestrating the overall production system can be reused.

Reuse in PSE depends on efficiently identifying recurring
patterns that can be integrated into a production system. These
patterns need to follow reference architectures [8], [9] of
(i) product types, e.g., car types, (ii) production processes, e.g.,
screwing processes, and (iii) production resource types and
instances, e.g., screwing robots. Reuse also requires a pattern
description on type and instance levels to facilitate referring
to vendor catalogues or previous projects [6], [10].

The engineering of a production system is a collaborative
effort of experts coming from many disciplines, like me-
chanical, electrical, and software engineering [11]. However,
traditionally much of the engineering information is hidden
in scattered engineering artifacts and much of the knowl-
edge is implicit domain knowledge of engineering experts [5]
(cf. Section IV). Furthermore, there is insufficient interdis-
ciplinary exchange between the domains, leading to hard
to extract/collect/validate dependencies from heterogeneous
engineering artifacts and domain experts [12]. Hence, it is
crucial in this multi-disciplinary environment to thoroughly
model the (interdisciplinary) dependencies and boundaries in
pattern analysis to reduce the risk of broken reusable assets.

Hence, we raise the main research question: What approach
can PSE experts use to efficiently identify patterns from
existing engineering knowledge for reusing Industry 4.0 assets
and related artifacts?

In this paper, we (i) identify challenges and requirements for
knowledge reuse in PSE, (ii) introduce the Industry 4.0 Asset
Network (I4AN), a model to integrate the scattered knowledge
and enable engineers to identify patterns for reuse to improve
the effectiveness and efficiency of the PSE life-cycle, and
(iii) present four recurring high-level patterns in PSE as a basis
for identifying applied solution patterns for similar problems.
We evaluate these contributions with an instance of an I4AN.
Therefore, we investigate to what extent typical reuse scenario
questions can be answered as queries to the I4AN.

The remainder of this paper is structured as follows: Sec-
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tion II summarizes related work. Section III presents the
research questions and method. Section IV introduces an
illustrative use case and identifies requirements for reuse in
PSE. Section V introduces the Industry 4.0 Asset Network
(I4AN) for reuse in PSE and four high-level reusable patterns.
Section VI reports on a feasibility study to evaluate the I4AN
capabilities and discusses the results and limitations of the
research. Section VII concludes and outlines future work.

II. RELATED WORK

This section summarizes related work on Production Sys-
tems Engineering (PSE), knowledge management, and reuse.

A. Production Systems Engineering

PSE is a multi-disciplinary process that involves various
disciplines, like mechanical, electrical, and software engineer-
ing [11]. Engineering teams iteratively perform tasks, like me-
chanical design or implementation of the control software [13],
to engineer the desired production system.

In PSE, engineers create various types of engineering arti-
facts and models [5], [14]. However, the used formats and tools
have traditionally been optimized for a single discipline, and
while engineers are well connected within their domains, there
is often an insufficient interdisciplinary exchange. Further, the
engineering artifacts and information are scattered through-
out the engineering landscape [5]. Much of the engineering
knowledge is implicit knowledge of the domain experts. These
issues pose an increasing challenge related to information
management and reuse within PSE projects [15].

Yet, for the suitable and correct production system design,
it is crucial to exchange information and knowledge between
the disciplines effectively and efficiently [16]. In addition, the
reuse of designs and specifications for recurring problems, e.g.,
using a robot type for similar tasks, improves the quality and
helps to reduce PSE project duration, effort, and risk [8].

In this paper, we introduce a network, based on explicitly
linked assets and artifacts, to provide the foundation for do-
main experts to link their specific knowledge representations.

Industry 4.0 (I4.0) addresses the overall digitalization and
networking of production system elements, i.e., I4.0 assets,
towards Cyber-Physical Production Systems (CPPS). I4.0 as-
sets are physical or immaterial objects of perceived or actual
value [3]. An increasing focus can be recognized on product,
process, and resource-related I4.0 assets, which we mainly
refer to. An Asset Administration Shell (AAS) provides a digital
representation [3] of I4.0 assets with their property views
and skills. These descriptions should include the information
and knowledge for an automated orchestration, which requires
explicit knowledge on the I4.0 assets and their dependencies.

Pfrommer et al. [17] define a skill as the ability of a
resource to perform a process, while a production skill gives
the requirements [4]. Candidio et al. [18] understand a skill
as ability to perform actions that are needed to support the
production process. Meixner et al. [10] described how to
abstract skills of resources from process requirements. Hence,
models must represent the required skills of processes and the

provided skills of resources [17], [19]. However, the identifi-
cation of reusable I4.0 Asset candidates requires representing
skills as I4.0 Assets to provide the abstraction for the digital
representation of boundaries between reusable patterns.

In this paper, we represent skills for the first time as I4.0
Asset, as an abstraction between processes and resources to
foster the identification of reusable I4.0 Asset candidates.

B. Modeling Engineering Knowledge in PSE

Sabou et al. [20] introduced a knowledge graph for reuse
in the software engineering domain, but without multi-model
links that facilitate reuse in PSE.

For modeling Cyber-Physical Production Systems (CPPSs),
two main research and development directions have been
pursued. First, IT systems engineering uses CASE tools based
on UML [21]. As a result, systems engineering methodologies
have been created utilizing domain-crossing modeling stan-
dards like SysML2 [22]. Second, engineering data exchange
preserves the multi-model nature of PSE knowledge and builds
on standardized data formats like AutomationML3 [16] to make
data integration more efficient. In this paper, we build on
cross-linking assets and engineering artifacts as a basis for
an improved reuse considering dependencies.

Both directions require for explicitly modeling PSE knowl-
edge to reflect the specifics of this domain, including (i)
modeling part-whole relations, (ii) connections between com-
ponents [23], and (iii) technical dependencies of the vari-
ous involved technical disciplines [24] The authors observed
in PSE containment hierarchies to be well-established and
frequently used to organize assets in PSE models. Further-
more, discipline-specific dependencies are often represented
in discipline-specific models as interfaces.

Feldmann et al. [25] introduced an approach for managing
inconsistencies in a multi-disciplinary multi-model environ-
ment using links between objects in PSE. However, the
approach by Feldmann et al. [25] does not consider I4.0
assets and skills as first-class citizens in PSE. However, this
integration is a foundation for better identifying reusable assets
based on the digital representation of their skills. In this paper,
we build on their meta-model [25] to integrate links between
I4.0 assets coming from several engineering disciplines.

C. Reuse in Production Systems Engineering

Main approaches to reuse are (i) clone and own [26] and
(ii) reuse of components, such as software libraries. However,
these general reuse approaches do not sufficiently cover re-
quirements in multi-disciplinary environments, like PSE.

In PSE, several reference frameworks address the reuse of
assets. The guideline VDI 2206 [27] describes the V-Model
as a procedure for structured PSE. It encourages to reuse re-
quirements and partial implementations in later phases, like the
test phase, without mentioning how. Jazdi et al. [8] provided
first methodologies related to the systematic identification of

2SysML: https://www.sysml.org
3AutomationML: https://www.automationml.org
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reusable system components. Most of them are based on the
idea of mechatronic systems [28] following the VDI 2206 [27].

The guideline VDI 3695 [29] understands reuse as a method
for engineering optimization and defines five types of reuse,
i.e., Reuse Levels (RL): Reuse (i) by employees on their
own accord (RL-A), (ii) controlled within the project (RL-B),
(iii) controlled from a central point across all projects (RL-C),
(iv) based on a reference model (RL-D), and (v) based on
internal and external standards (RL-E). The effectiveness and
efficiency of reuse of assets depends on the level of reuse
maturity [29] and the relations between assets [9]. Yet, this
information is insufficiently available in PSE due to scattered
artifacts and information.

In software engineering, one specific domain in the PSE
engineering process, design patterns [30] are a widely adopted
standard for reuse. Design patterns aim at developing software
faster and in better quality while reducing risks and cost [30].
Therefore, design patterns provide adaptable design solution
templates to general problems that software developers face. A
design pattern consists of (i) a pattern name, (ii) a description
of a problem that should be solved, (iii) a solution description
with its elements and dependencies, and (iv) implications of
the pattern, such as benefits and limitations. Software design
patterns can serve as a blueprint for PSE design patterns but
need to be adapted to the multi-disciplinary context of PSE.

In this paper, we build on the guideline VDI 3695 to
describe the reuse maturity in PSE and the idea of mechatronic
units as reusable entities [28]. Furthermore, we build on design
patterns as a concept to identify reusable patterns in PSE.

III. RESEARCH QUESTIONS AND APPROACH

In this paper, we follow the Design Science methodol-
ogy [31] to investigate how to improve identifying I4.0 assets
for reuse in PSE. Therefore, we (i) conducted a domain anal-
ysis in the automotive industry, (ii) condensed a representative
use case, and (iii) elicited requirements on I4.0 asset reuse with
domain experts at medium-to-large European PSE companies
(cf. Section IV).

Considering identified gaps in the related work and require-
ments in PSE, we formulate the following research questions.

RQ1a. What model and elements facilitate identifying I4.0
assets for reuse in PSE? The systematic reuse of I4.0 assets
in engineering fosters quality and efficiency [8]. However, in
PSE, the knowledge required for reuse often consists of hetero-
geneous information and implicit knowledge, scattered across
the engineering landscape. To address RQ1a, we investigated
recurring engineering artifacts from the domain analysis to
identify knowledge elements that help engineers in efficiently
identifying reusable assets. Our contribution is the Industry
4.0 Asset Network (I4AN) as a foundation to explore assets
suitable for reuse.

RQ1b. What connections between system parts and en-
gineering artifacts represent dependencies in an I4.0 asset
network as a foundation for identifying sets of reusable assets?
Connections and relationships between I4.0 assets provide data
to understand internal and external dependencies of CPPS

assets. These dependencies are crucial to coherently identify
and explain which potentially reusable assets can be reused
as-is or require further assets to be included to correctly reuse
them. To address RQ1b, we build on the Industry 4.0 Asset
Network (I4AN) , coming from RQ1a, and investigated which
links represent internal and external dependencies that are
relevant to facilitate the reuse of assets. Our contributions
focus on the classification of dependencies in the I4AN that
are crucial to identify sets of reusable assets.

RQ2. Which basic patterns for reuse facilitate identifying
best-practice pattern candidates for PSE? For identifying
patterns for reuse, engineers require a starting point in their
particular context. For instance, engineers are likely to recog-
nize a pattern as an initial set of assets and their dependencies
to other assets. Basic patterns, which occur independently
from the particular context of the PSE project, can represent
such a starting point. From domain analysis and discussions
with engineers, we identify basic patterns that regularly occur
in PSE. These patterns provide blueprints to help engineers
identify reusable assets in I4AN instances.

Each research question addresses parts of the overarching
question (cf. Section I) tying together model elements, their
dependencies, and patterns for the efficient reuse of CPPS
knowledge. We evaluate the I4AN in a feasibility study for the
use case “Car Body with Screwed-on Parts” (cf. Section IV).
Therefore, we use data from a sample of artifacts from the
domain analysis. We investigate to what extent advanced reuse
scenario questions can be answered by queries to the I4AN.

IV. ILLUSTRATIVE USE CASE

This section introduces the use case “Car Body with
Screwed-on Parts”. We condensed the use case from a domain
analysis in the automotive manufacturing domain. The analysis
was conducted in a setting with 80 types of screwing robot
cells and 27 robot types.

In automotive manufacturing, human workers collaborate
with industrial robots in mounting lines to place and screw
various components onto a car body using screwdrivers. Typ-
ical mid-class cars contain screws of 80 screw types at 1,500
to 1,800 screw positions. Figure 1 shows the use case with its
I4.0 assets and their connections. The left-hand side shows
a screwing process consisting of two steps: (i) positioning
the dashboard and the screws and (ii) fastening the screws.
Both steps are characterized by process requirements, defining
the necessary skills of the resources including technical or
economic parameters. In PSE, relevant resources, i.e., resource
hierarchies, (see right-hand side of Figure 1) are selected and
orchestrated to provide the required skills [17], [19].

In theory, one can engineer an optimized robot-screwdriver
combination for each screw type to maximize production
effectiveness and efficiency. Yet, this approach might lead to
around 80 different robot and screwdriver types, adding signifi-
cant costs for installation, maintenance, and expert knowledge.

In practice, PSE aims at cost-optimized system designs [32].
Hence, a sufficiently effective and efficient robot-screwdriver
combination to each screw type can be assigned, minimizing
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Fig. 1. Reuse Patterns (dashed boxes) in an asset network for the use case “Car Body with Screwed-on Parts” (in adapted VDI 3682 notation [10], [29]).

the number of robot types and investments in spare parts and
know-how. This approach may significantly reduce costs in
comparison to a high-variety approach.

Identifying an optimized set of robot-screwdriver combi-
nations for the high number of different screws types and
positions requires the identification of (i) resources that can
execute several varying screwing tasks and (ii) engineering ar-
tifacts that can be reused, such as control programs. However,
identifying suitable solutions is difficult due to the scattered
information and the engineers’ implicit knowledge.

Achieving these advantages requires a set of reusable pat-
terns. This set of patterns can be completed by (i) identifying
similar components within existing engineering projects, (ii)
mapping these components to expected future requirements,
and (iii) abstracting these components with respect to possible
adaptations for application-case related parameterization [8].

Requirements for I40 Asset Reuse. From the domain
analysis, we elicited the following requirements Rx towards
asset reuse in PSE with eight domain experts from five
medium-to-large European PSE companies4.

R1. I40 Asset Map. Domain experts require an Industry

4The experts rated their company’s maturity level of asset reuse, using the
VDI 3695 classification, at reuse levels RL-C (controlled from a central point)
or RL-E (reuse based on internal and external standards).

4.0 Asset Map, i.e., an overview on the assets in the planning
phase to explicitly represent implicit knowledge and relevant
information as a context for reuse, currently scattered across
various engineering artifacts. This requirement is adapted from
software engineering, i.e., documenting the project structure
and software artifacts, to multi-disciplinary PSE assets in the
Product-Process-Resource (PPR) scope.

R2. I40 Dependency Network. As a basis to identify
patterns for reuse in PSE, domain experts require an explicit
representation of the links and dependencies of and be-
tween assets coming from several engineering disciplines. This
concerns mainly three different views. Product engineering
requires links between product components, processes, and
their required skills that a process requires from a resource to
automate the process. Systems engineering concerns relation-
ships between resources and their provided capabilities. The
assets and dependencies can be represented in an Industry 4.0
Dependency Network that adds information and knowledge
required for reuse to the Industry 4.0 Asset Map.

R3. System Boundary. For reuse, a system or subsystem
containing the reusable assets needs to have a clearly defined
boundary. System boundaries are a means to group assets into
a meaningful set of assets that can be reused. A boundary also
allows to investigate incoming and outgoing dependencies.
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Thus, system boundaries serve as a basis for systematically
reusing (parts of) a solution that was used in previous projects.
Without a clear boundary, it is unclear which elements can,
should, or have to be included in a set of reusable assets.
Furthermore, system boundaries enable developing and using
metrics, like complexity, to compare patterns.

R4. Solution Design Abstraction. As a foundation to iden-
tify reusable patterns, domain experts need a representation of
solution design candidates at a suitable level of abstraction.
This abstraction is required to allow the adaptability and
portability of a pattern to similar problems with varying
characteristics. For example, to make a solution for a posi-
tion task reusable requires hiding unnecessary attributes and
dependencies. In the use case, the robot positioning accuracy
is a relevant characteristic, while the way how the robot moves
might be irrelevant. Solution Design Abstraction facilitates (i)
generalizing from a particular solution instance to a more
general level of problems and (ii) finding reusable solution
candidates in similar or historic designs.

The following section builds on this use case to illustrate a
novel knowledge representation model for Industry 4.0 Assets
for identifying patterns for reuse.

V. PATTERNS FOR REUSE IN PSE

This section presents the Industry 4.0 Asset Network and
four basic patterns to identify concrete patterns for reuse.

A. I40 Asset based Network with Dependencies

To address RQ1a and RQ1b, we investigated the data of
robot cells with up to two robots from the use case context with
domain experts. From this data, we determined knowledge
elements that we can use for identifying abstract patterns
for reuse. These elements were used to build a condensed
metamodel as the foundation for the I4AN. This section
illustrates the metamodel and the I4AN using the car body
with screwed-on parts use case from Section IV.
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Fig. 2. Asset, (Engineering) Artifact and Link meta model, based on [33]

Figure 2 shows the metamodel (in UML notation) contain-
ing the Asset class, one of the Industry 4.0 Asset types product,
process, resource, or skill. An Asset can be a specialization (is-
a relation, e.g., an electric screwdriver is a type of screwdriver)
and/or a part (is-part-of relation, e.g., a bit is part of a
screwdriver) of another asset. An Artifact is an engineering
object created during design time, e.g., an electrical plan or

robot program, or during runtime, e.g., a set of qualitative
data. A particular Link can connect assets with each other
or to artifacts. Links can have different forms (cf. Figure 1)
realized using typed properties (not shown in the meta-model):
Functional links between production resources may represent
a resource composition. Technical links may represent a wired
connection from an Industrial PC (IPC) to a robot. To model
a connection between an Asset and an Artifact, we use Trace
Links, e.g., a robot controller requires a robot program. A
Link can be manifested as Dependency, if the link is strictly
required by an Asset. Assets, Artifacts, and Links can have
attributes that describe characteristics of the particular object.
These properties follow the I4.0 Asset Administration Shell
(AAS) [3] design to facilitate the standardized representation
of property views coming from several engineering disciplines.
A Boundary object represents a pattern boundary that contains
Assets and Artifacts, e.g., boundary (A).

These concepts provide the foundation to build an I4AN
that explicitly represents PSE information and knowledge for
a wide range of applications, such as change impact analysis.
Figure 1 illustrates an I4AN with the relevant engineering
artifacts and the links between the assets. This model can be
created automatically by exploiting appropriate engineering
data logistic systems [12]. This overall model can be the
starting point to identify common reusable patterns [19].

B. Patterns for I40 Asset Reuse

This section describes four basic patterns for identifying
best-practice candidates for reuse in their context. These
identification patterns can be used as a starting point to identify
patterns in the particular PSE contexts of domain experts.

The reuse of assets requires considering the asset itself
and, beyond that, its embedding in the surrounding system
and functional intentions [6], [9], [28]. As described, PSE
comprises two main phases, rough and detail planning.

The rough planning phase consists of matching process
skills required by products and provided by resources. This
comparison shall be based on product creation (P1) and
process execution (P2) patterns.

P1. Product-Process-Skill Pattern. Product creation in
PSE aims at providing the combination of products with their
requirements and processes to manufacture them. Aim: The
Product-Process-Skill pattern (cf. Figure 1, tag A) supports
product engineers in selecting appropriate processes for their
products. This product creation pattern contains production
processes with their input and output materials, boundary
conditions, and required skills. Solution: The pattern can be
identified by collecting all assets connected to the related
processes by product-process-related links: For an output
product isolate the input products and determine their relevant
properties. For each input product determine the required
process steps and build the aggregated required skills of the
steps according to [10]. Group the products, process steps, and
skills into a boundary object. For the outgoing and incoming
links, determine whether they are strict dependencies. For de-
pendencies, decide if you need to either expand the boundary
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or create a depending pattern object. Example: An example
are screw-screwing combinations. We identified different reuse
patterns from equivalence classes based on the screwing bit,
the applicable torque, and the screw material (magnetic vs.
non-magnetic) with industry partners.

P2. Skill-Resource Pattern. Process execution in PSE is to
identify resources able to execute a production process based
on their functional skills. Aim: The Skill-Resource pattern (cf.
Figure 1, tag B) helps to select appropriate resources matching
to the Product-Process-Skill pattern. This process execution
pattern contains resources with their properties, boundary
conditions, and provided skills. Solution: The pattern can be
identified by collecting all assets connected to the related
resource links: For a set of connected resources, determine
their provided skills and properties. From the skills, build
the aggregated provided resources skills according to [10].
Group the resources and skills into a boundary object and
determine the dependencies. For dependencies, decide if you
need to either expand the boundary or create a depending
pattern. Example: The pattern supports the definition of skills,
e.g., positioning, with predefined attributes, like positioning
accuracy, which are fulfilled by a set of resources.

The main concern within the detail planning phase is
realizing production resources providing all necessary func-
tionalities to fulfill the required skills. Here, patterns related to
resource structuring and functionality are relevant. Thus links
shall be considered depending on the use case.

P3. Resource-Resource Composition Pattern. The goal of
detailed engineering in PSE is detailing and programming the
selected resources. Aim: The Resource-Resource composition
pattern (cf. Figure 1, tag C) represents the composition of a re-
source from sub-components, with the knowledge on technical
parameters and dependencies on the type and instance levels.
A quality ensured resource tree pattern could be applied at
this point, reflecting the optimized orchestration of resources.
Solution: For a group of connected resources (part-of relation)
determine which resources are required to either fulfill a
particular skill or if they require each other for functionality.
Group the strictly required resources into a boundary. For de-
pendencies, decide if you need to either expand the boundary
or create a depending pattern object. Example: Screwdrivers
can be driven, e.g., electrically or pneumatically. Depending
on the drive, the screwdriver requires a transformer for the
current or not, which can be expressed in an RR pattern.

P4. Resource-Artifact Pattern. Within the commissioning
phase of PSE the detailed resource system is established
according to the relevant engineering artifacts, e.g., relevant for
operation. Aim: The Resource-Artifact pattern (cf. Figure 1,
tag D) aims at binding the required engineering artifacts to the
resources used in the production system. This helps engineers
to reuse resources and their corresponding data or programs as
a bundle. Solution: From a resource, follow the trace links to
the engineering artifacts. For the resource and the necessary
engineering artifacts, use a boundary object to group them.
For incoming or outgoing dependencies from resources or
engineering artifacts, decide whether to expand the boundary

or create a depending pattern object. Example: Screwdrivers
have a minimum, maximum, and yield torque for a screwing
process. The screwdrivers and function blocks controlling the
torque of the screwdrivers can be expressed as a pattern and
reused in future projects.

The use case Car Body with screwed-on parts can benefit
from reuse patterns in (at least) four ways: (i) The product-
process-skill pattern can support product engineers in selecting
appropriate screwing processes for their car body parts (see
tag A in Figure 1). (ii) The skill-resource pattern facilitates
selecting appropriate screwdrivers to screwing processes (see
tag B in Figure 1). (iii) The resource-resource composition
pattern can be applied for the optimized combination of
screwing resources, e.g., robots and robot controllers (see
tag C in Figure 1). (iv) The resource-artifact pattern can be
applied for reusing engineering artifacts, e.g., robot controllers
and robot control programs (see tag D in Fig. 1).

VI. FEASIBILITY STUDY AND DISCUSSION

This section presents a preliminary feasibility study and
discusses the contributions with a focus on the research
questions raised in Section III.

A. Preliminary Feasibility Study

As a proof of concept, we used a part of the production
system for the investigated use case “Car Body with Screwed-
on Parts” from the initial domain analysis to design and
instantiate the Industry 4.0 Asset Network (I4AN) in a Neo4J5

graph database. The I4AN was found easy to extract from
existing engineering information, which has to be integrated
according to the the I4.0 AAS design [3].

The graph database facilitated the effective and efficient
exploration, querying, and visualization of the linked assets.
In addition to the technical links between assets coming from
engineering models, we instantiated dependency links between
the assets. Deep domain expert knowledge has to be added
to the I4AN manually. The concepts in the I4AN facilitated
adding previously implicit domain knowledge to the graph.

The I4AN instance associated to Figure 1 enables identify-
ing I4.0 Assets that belong to a pattern for I4.0 Asset reuse
(cf. Section VI-B). To investigate the functionality, we issued
queries onto the I4AN to track the dependencies. We used
iterative queries, similar to cause-effect graph exploration [33],
starting at a selected I4.0 Asset, such as a skill, and followed
the multi-model links to neighboring assets of a specified type
until reaching a stopping condition. We were able to efficiently
isolate parts of the I4AN that correspond to the basic patterns
introduced in Section VI-B. This approach also worked for the
reuse scenario system boundary analysis that can be translated
into the question: Which set of dependency links connects a
selected set of assets to their immediate neighboring assets?
This capability indicates that engineers can utilize the I4AN to
investigate the network to identify familiar patterns of assets
as candidates for reuse.

5Graph database Neo4J: https://neo4j.com
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B. Discussion

We conducted a domain analysis with 80 types of robot
cells and 27 robot types. Further, we elicited requirements
from domain experts at five European PSE companies. The
requirements showed that a key aspect is modeling the multi-
disciplinary dependencies between assets and engineering ar-
tifacts that need to be considered to identify reusable asset
patterns. It is also essential to thoroughly model the boundaries
of the patterns to allow suitable reuse in practice among the
involved engineering disciplines.

RQ1a and RQ1b concerned models and dependencies that
facilitate the identification of assets suitable for reuse. To
address RQ1a and RQ1b, Section V-A introduced the Industry
4.0 Asset Network (I4AN) that addresses requirements R1 to
R3 identified in Section IV. The I4AN builds on I4.0 assets
and uses their administration shell to integrate property views
from several engineering disciplines. In comparison to patterns
in software engineering, this multi-disciplinary aspect adds
complexity to identifying patterns for reuse in PSE.

We go beyond the state of the art [4], [18] by modeling
skills as I4.0 assets using their digital representation for
linking multi-disciplinary assets and identifying boundaries for
reusable assets. We build on and go beyond [25] by integrating
multi-disciplinary multi-model links between I4.0 Assets.

RQ2 asked which basic patterns for reuse facilitate the
identification of patterns for reuse. To address RQ2, Section
identified four basic patterns addressing requirement R4 (cf.
Section IV). These patterns specifically incorporate regularly
occurring connected assets in PSE that can be reused for
similar problems. Therefore, they provide guidance for reuse
design and management with the I4AN. In this sense, the I4AN
provides designers with the capability to describe partial so-
lutions and integrate partial solutions into a complete solution
from production processes to automation devices that automate
the production process.

Limitations. The following limitations require further in-
vestigation. The research in this paper focused on the reuse
of production processes and associated automation system
elements in a typical use case of automotive manufacturing,
the Car Body with Screwed-on Parts use case. As we assume
the findings of this paper to be relevant in the broader scope of
production processes and automation system elements, e.g., for
discrete production and continuous production, the approach
should be investigated in a broader range of application areas.

The domain analysis was conducted by one of the paper
authors with consultation from domain experts and checked
for plausibility by the author team. While the feasibility study
focused on a I4AN for a robot cell of typical complexity, the
authors of this paper, consulting with domain experts in car
manufacturing, conducted the design of the I4AN including
dependencies that are missing in traditional PSE design. This
reflects the current practice of PSE engineering only partially
and introduced bias to the study, requiring validation in a range
of traditional and advanced PSE environments.

VII. CONCLUSION AND FUTURE WORK

The Industry 4.0 (I4.0) vision of production systems that
are easy to adapt depends on advanced capabilities for
reusing proven production processes, I4.0 assets and software-
intensive components that automate these production pro-
cesses. In Production Systems Engineering (PSE), the reuse of
I4.0 assets requires understanding the dependencies of these
assets in multi-disciplinary systems-of-systems engineering
with heterogeneous models.

This paper investigated the information requirements for ad-
vanced multi-disciplinary reuse scenarios, such as process and
resource identification and for system boundary analysis. To
address the challenges of scattered and implicit domain expert
knowledge that may lead to overlooking risky dependencies
of reusable system elements, we introduced the Industry 4.0
Asset Network (I4AN). The I4AN builds on the I4.0 Asset
Administration Shell [3] design to integrate system element
properties and dependencies from several engineering disci-
plines, such as mechanical, electrical, and software interfaces
and technical links.

Therefore, the I4AN enables designing a knowledge
graph that represents for a reuse scenario important multi-
disciplinary dependencies between system elements as neigh-
borhoods of I4.0 Assets. Further, the I4AN concepts facilitate
representing domain expert knowledge that was implicit, e.g.,
to recommend using a resource type with a process type.

We presented the use case “Car Body with Screwed-on
Parts” to illustrate typical I4.0 Assets and links in production
processes and robot cells widely used in car manufacturing.
In the I4AN of the use case (cf. Figure 1), we identified four
types of patterns for reuse.

In a feasibility study, we evaluated the I4AN with reuse
scenarios by instantiating an I4AN knowledge graph formu-
lating scenario concepts and questions as data in and queries
to the knowledge graph. The study results indicate that the
I4AN model is a good foundation for PSE domain experts to
identify patterns for reuse in their contexts.

The research results advance the state of the art in knowl-
edge engineering in PSE by modeling the Skill concept as an
I40 Asset. The I4AN provides a lens for analyzing similarities
and differences in production process and system designs. To
this end, we are providing the foundations for advanced reuse
design and management with the I4AN and patterns.

The research results advance the state of the art by adapting
blueprints for design pattern to a multi-disciplinary engineer-
ing environment where multi-model links are crucial. The
I4AN provides designers with the capability to describe partial
solutions and integrate these partial solutions into a com-
plete solution, from production process to automation devices
that automate the production process. The I4AN facilitates
identifying risky external systems dependencies across several
engineering disciplines as input to assess the reuse effort and
risk of candidate solution designs.

Future Work. Validation of patterns for reuse. We plan to
investigate I4AN applications for reuse to improve PSE tools,
e.g., with knowledge on multi-model dependencies.
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Scalability. We see the need to investigate the scalability of
the I4AN in a larger context and with additional engineering
disciplines to evaluate the impact on the multi-disciplinary
dependencies and boundaries beyond the scale of work cells.

Skills. We consider examining the extended use of skills
as an advanced method to abstract from process requirements
to resource capabilities and their role in reusable process and
resource assets, e.g., using standardized catalog search.

Extension of the I4AN with Semantic Web content. For the
PSE domain, the I4AN seems well represented in a graph
database as this technology is increasingly well accepted
in PSE, while Semantic Web technology is mainly used in
research. We envision extending the I4AN with knowledge
organized with Semantic Web technologies, e.g., issues, rec-
ommendations as natural text. The I4AN knowledge graph can
collect knowledge instances that can be converted efficiently to
Semantic Web technologies to facilitate research on industrial
data for Semantic Web researchers.

Security. Aggregating domain knowledge in an I4AN creates
a high-value knowledge graph. This graph requires research on
security concerns, e.g., theft of intellectual property or using it
to plan attacks on systems that represent critical infrastructure.
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Aim

The publication “Patterns for Reuse in Production Systems Engineering” [128] extends the
previous publication with an in-depth investigation of the asset network and a feasibility
study. The publication provides (i) an extended knowledge graph meta-model for PPR
assets with capabilities and skills, i.e, the Industry 4.0 Asset Network (I4AN), for reuse
in PSE including a more detailed asset dependency network serving as a reference model
for industry, (ii) an elaborate description of the patterns, (iii) a feasibility study with
a realization of the approach in the Neo4J graph database with queries for stakeholder
questions.

Contribution to the thesis

This publication contributes to the research goals CPPS knowledge model (G1.), CPPS
knowledge model reference architecture (G2.), CPPS knowledge model patterns (G2.),
CPPS reuse method (G2.), CPPS knowledge model prototype (G4.), and case study
evaluation (G5.).

This publication contributes to RQ1., RQ2. by addressing the VDI 3695 measures of
models and description languages M1., knowledge management M2., re-use M3., quality
assurance M4., integration and seamless cooperation of disciplines M5., and the SPL
capabilities enhanced quality and consistency C4., and facilitation of interdisciplinary
collaboration C5..

Abstract

In PSE, domain experts aim at reusing partial system designs implemented as Industry
4.0 assets and software. However, the knowledge on assets is often scattered across
engineering artifacts from multiple disciplines and domain experts, making it difficult
to find reusable assets and map them to requirements. In this paper, we (i) identify
challenges and requirements for the representation of reuse knowledge in PSE, based
on the results of a domain analysis in automotive manufacturing; (ii) refine the I4AN
meta-model that integrates multi-disciplinary dependencies between the assets; (iii)
introduce the I4AN reference model that exposes recurring patterns; and (iv) present
basic and applied patterns for reuse in PSE that aim at improving reuse efficiency and
lowering risks. We evaluate the I4AN reference model and patterns with reuse scenarios
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in a feasibility study in automotive manufacturing. The study results indicate that the
I4AN reference model and patterns satisfy the elicited requirements and enable PSE
domain experts to identify patterns for reuse and sufficiently complete sets of reusable
assets in their contexts.
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Abstract—In the multi-disciplinary production systems engineering
(PSE) process, software engineers depend on requirements and de-
sign rationales coming from product and production process
planning, summarized as product/ion knowledge. Unfortunately,
the engineering artifacts coming from product/ion planning often
represent important product/ion knowledge incompletely and not
well integrated, leading to risks regarding software engineering
quality. In this paper, we report on a case study at a large indus-
trial PSE organization, investigating Technical Debt (TD) effects,
items, and causes in PSE process documentation and configuration
management according to the VDI guideline 3695 Part 2. We focus
on requirements for and issues in the representation of product/ion
knowledge in the engineering data provided to software engineers.
Based on data elicited from PSE domain experts, we model TD
concepts based on the Quality Function Deployment method as
foundation for TD analysis and risk management. The initial vali-
dation with domain experts revealed how software engineers could
benefit from improved product/ion knowledge modeling as foun-
dation for better understanding the rationale of engineering design
decisions.

Keywords—Multi-Disciplinary Production Systems Engineering,
Product/ion Knowledge, Product-Process-Resource (PPR) Model,
Process Management, Technical Debt

I. INTRODUCTION
In production systems engineering (PSE) organizations,

many different engineering disciplines work together, such as
basic system and process planners, detailed automation engi-
neers and production optimizers, for fulfilling customer require-
ments towards the Industrie 4.0 vision [1] regarding, for exam-
ple, production system throughput and quality. In a typical PSE
process, the domain experts work in parallel in discipline-spe-
cific workgroups that exchange engineering artifacts for iterative
improvement. For making informed design decisions, industrial
automation and software engineers depend on the high quality
of input artifacts that contain software requirements as well as
results and rationale of system design decisions [4][5].

Unfortunately, the quality of software engineering (SE) re-
sults, such as software code governing the transportation system
of a production plant, is subject to risks due to the missing or
incorrect representation of product/ion knowledge, i.e.,
knowledge on characteristics of the product, produced by the
plant or characteristics of the industrial production process and
their relationships to characteristics of the production system
[13].

DOI reference number: 10.18293/SEKE2019-037

An example for such a relation is a fragile product that im-
poses limitations on the maximal acceleration during the
transport between production system components. If a software
engineer sets the transport speed high to maximize the system
throughput, the product quality may suffer, leading to the costly
redesign of the overall system. Limited awareness of domain ex-
perts on the knowledge requirements of partner roles in the pro-
ject may lead to insufficient descriptions of relevant engineering
data and knowledge. Risks from decisions based on insufficient
and often incomplete information or from unplanned effort due
to unreliable communication between basic and detailed plan-
ners could be better managed with adequate knowledge repre-
sentations of product/ion knowledge throughout the process.
Kathrein et al. point in [13] out that engineering organizations
(EOs), as defined in the VDI 3695 [28], tend to focus on disci-
pline-specific outcomes rather than on the collaboration of do-
main experts. The domain experts suffer from low quality of col-
laboration artifacts, but do not, in general, have the knowledge
or the budget to improve the collaboration process.

In this paper, we investigate Technical Debt (TD) in the rep-
resentation of product/ion knowledge in engineering artifacts ex-
changed between PSE workgroups as foundation for analyzing
and managing risks from TD effects, items, and causes in a PSE
organization. An example for TD is a missing or incomplete en-
gineering process description, which makes it hard to manage
projects across several domains and work groups. In this paper
we adapt the definition of TD by Li et al. [16] according to en-
gineering artifacts and the collaboration process: TD are viola-
tions in engineering artifacts compared to best practices of en-
gineering process documentation and configuration for collab-
orative workgroups in the PSE domain. Main goal is to identify
TD throughout the engineering process, for better PSE process
management, in particular, SE risks.

We report on results from a case study at a large industrial
PSE organization on TD regarding process documentation ac-
cording to the PSE domain VDI Guideline 3695 Part 2 [28] con-
cerning the procedure model for project activities and configu-
ration management in an engineering organization. We focus
on eliciting requirements for and in the representation of prod-
uct/ion knowledge supporting software engineers in their deci-
sion-making process. In the case study, we identified TD items,
where one TD item is a unit bearing quality risk [16], on insuf-
ficient description of engineering process and information in the
data exchange process and insufficient representation of prod-
uct/ion knowledge. Based on collected data samples, we relate
TD concepts to each other and investigate their relationships
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based on the Quality Function Deployment (QFD) [19] method.
The QFDmethod allows analyzing and prioritizing customer re-
quirements together with solution options. We use the QFD
method for analyzing TD repayment options [19], e.g., which
TD items should be addressed to reduce system design cost. Bet-
ter understanding TD relationships is the foundation for ad-
vanced analyses of TD risks and TD repayment options.

The remainder of this paper is structured as follows: Section
II summarizes related work on PSE, on knowledge representa-
tion in PSE, and on concepts of TD in PSE knowledge. Section
III introduces the research questions and approach. Section IV
reports case study findings regarding TD effects, items, and
causes, and relates these TD concepts in a preliminaryQFD style
model. Section V discusses results and limitations of the re-
search. Section VI concludes and provides an outlook on future
research.

II. RELATEDWORK

This section summarizes related work on production systems
engineering (PSE), on knowledge representation in PSE, and on
concepts of technical debt in PSE knowledge.

A. Production Systems Engineering (PSE)
The engineering of production systems is a multi-discipli-

nary task involving various disciplines, such as mechanical,
electrical, and software engineering [3]. The disciplines conduct
a network of engineering activities where engineering decisions
are taken and engineering data are created by engineers. The en-
gineers use appropriate input data and engineering tools opti-
mized for the discipline. One role, the automation engineering
designs and implements the hardware and software of the pro-
duction system control, a main software engineering task in PSE
[27].

Within PSE, the importance of digital models is increasing.
New activities related to the development and use of life cycle
crossing digital shadows of complete production systems and
their components are envisioned to enable the Industrie 4.0 vi-
sion [17]. These models shall contain all relevant data and
knowledge on production systems aspects. This includes the de-
scription of the involved production system components, the
production processes they execute, and the product resulting
from the production process. Schleipen et al. [24] calls this PPR
knowledge and Kathrein et al. [13] use the term product/ion
knowledge. In this paper, we build on the PPR concept to iden-
tify shortcomings regarding knowledge representation that intro-
duce risks to SE activities.

B. Knowledge Representation in PSE
Engineering knowledge is a specific kind of knowledge, ori-

ented towards the production of artifacts, and, as such, requires
knowledge modeling and representation approaches that differ
from other types of knowledge, such as taxonomical knowledge
characteristic for the life sciences domain [25]. Ontologies are

1 OntoCAPE: https://www.avt.rwth-aachen.de/AVT/index.php?id=730
2 SSN Ontology: www.w3.org/2005/Incubator/ssn/ssnx/ssn.owl
3 https://www.w3.org/

information artefacts that have been used extensively to explic-
itly represent such engineering knowledge. This is for example
investigated by Ekaputra et al. [7] highlighting different ontol-
ogy-based data integration strategies, possible objectives an en-
gineering organization has, as well as data source types used.

Sabou et al. [23] provide an overview of such ontologies and
classify them in terms of the aspects of the PPR process that they
cover. For example, OntoCAPE1 [20] is an ontology for support-
ing computer-aided process engineering (CAPE) focusing on
describing production process information. The Semantic Sensor
Network (SSN)2 ontology, developed at W3C3, is well suited to
describe process states and their observability, as well as re-
source states. The Automation Ontology (AO) captures
knowledge about industrial plants and their automation systems
to support engineering simulation models [21]. AO concerns
mechatronic concepts to support simulation model design and
integration.

The explicit modeling of PSE knowledge is characterized by
the need to address recurring modeling needs specific for this
domain, including: Modeling Part-whole relations. Legat et al.
[14] observe that containment hierarchies are a well-accepted
and frequently occurring organizational paradigm from model-
ing part-whole relations in (mechatronic) engineering settings.
Modeling connections between components. Legat et al. [14] ob-
serve that interface-based composition describes the capabilities
expected from an interface to enable reasoning tasks about the
correctness of a system’s structure.

The modeling of recurring knowledge structures can be well
addressed by the reuse ofOntology Design Patterns (ODPs) that
model best practices applicable to typical conceptualization sce-
narios [10]. Indeed, ODPs exist to support the conceptual mod-
eling of (variations) of the engineering-specific modeling sce-
narios mentioned above. For example, modeling Part-whole re-
lations can be achieved by reusing the PartOf ODP4, which al-
lows modeling part-whole relations in a transitive fashion. The
Componency ODP5 is a specialization of the PartOf ODP for
modeling part-whole relations distinguishing between direct and
indirect (i.e., transitively-assessed) parts of an object. While
there are several approaches for knowledge representation in
PSE they are often not used and lead thus to TD, which is ad-
dressed in this paper.

C. Technical Debt in PSE Knowledge
Avgeriou et al. [2] compare Technical Debt (TD) to friction

in mechanical devices, requiring increasingly more energy to
achieve the same results as parts deteriorate. This is also true for
software engineering (SE), as short-term gains create friction
over the lifetime of a software-intensive system that require ex-
tra effort and cost to address or to repay. To deal with TD, Avge-
riou et al. [2] propose to analyze TD repayment options and to
investigate TD from different viewpoints. TD in a system con-
sists of TD items that are measurable in an SE artifact. Li et al.
[16] identify ten different TD types, with effects ranging from

4 PartOf ODP: http://ontologydesignpatterns.org/wiki/Submissions:PartOf
5 Componency ODP: http://ontologydesignpatterns.org/wiki/Submis-
sions:Componency
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inconveniences to crippling whole software systems, making fu-
ture maintenance costly [2]. Martini et al. [18] point out that
large SE companies invest a quarter of the development time in
managing TD to continue providing their SE functions.

Dong and Vogel-Heuser [6] draw a comparison, based on re-
sults from two case studies, between TD in PSE and in SE, as
similar effects, such as short-term cost savings or lack of expe-
rience, occur in both domains. Causes of TD manifest in various
dimensions, for example mechanical, electrical, or software en-
gineering [6]. As process improvement and data exchange pro-
cesses are success-critical processes in engineering organiza-
tions (EOs), they identify crucial TD in design and architecture,
knowledge distribution and documentation [6].

Martini et al. [18] show how architectural TD accumulates
during development in a project until reaching a crisis point that
makes refactoring inevitable, increasing business value as the
short-term sins are repaid adequately. Case studies by Biffl et al.
[4][5] and Kathrein et al. [12][13] investigated engineering pro-
cesses of EOs with a focus on the structure of collaborations be-
tween workgroups [13] and how data is exchanged [4][5]. These
works represent building blocks for this paper, as they define a
coherent context with basic concepts needed for TD investiga-
tions. The research highlights multiple use cases with different
levels of TD, and points out missing product/ion-aware (PPR)
knowledge as a limitation.

III. RESEARCHQUESTIONS ANDAPPROACH

This section introduces the research questions (RQs) follow-
ing the design science method [29], and presents an illustrating
use case to investigate TD in the representation of product/ion
knowledge. Similarly, as in [26], we investigate TD as a form of
software engineering risks, with effects and possible causes.

RQ1: What risks to software engineering results and activi-
ties are related to technical debt in the representation of prod-
uct/ion knowledge in engineering artifacts exchanged between
workgroups in production systems engineering? From the high-
level RQ1, we derive the following sub-RQs.

RQ1a: What are effects of TD related to software engineer-
ing risks in PSE? We identify TD effects in the PSE process in
interviews with domain experts. These TD effects can be defined
as process management issues, i.e., deviations from the planned
engineering process, and the process executed by individual do-
main experts. The identification of TD effects allows highlight-
ing risks known to SE, but not to domain experts in PSE.

RQ1b: What are TD items regarding the VDI Guideline 3695
Part 2 in engineering artifacts exchanged between workgroups
in PSE? The VDI Guideline 3695 Part 2 [28] provides valuable
insights in describing engineering organizations (EOs) and po-
tential improvement steps. The guideline provides a set of best
practices that should be followed in an EO and allows analyses
similar to code reviews in SE. Therefore, we define TD items in
the PSE process by comparing selected target states in the VDI
3695 to the as-is engineering process.

RQ1c: What are causes regarding elicited TD items? As
foundation for managing TD, we elicit in the case study candi-
date TD causes in the engineering organization. TD causes

strengthen the deviation between the as-is and VDI 3695 defined
process and are important to address TD items and SE risks.

RQ2: How do TD concepts in the data exchange process re-
late to each other? After identifying TD concepts, we model
their relationships as foundation for analyzing the impact of TD
causes on TD items and effects, with a focus on SE concepts.

RQ2a: How do TD effects and TD items relate to each other?
Main outcome of this RQ is a table based on the QFD method
[19], developed with quality managers, who are responsible for
defining an ideal PSE process across all involved disciplines and
for possible improvement steps. TheQFDmethod facilitates pri-
oritizing relationships between TD effects and TD items that are
relevant to reduce SE risks.

RQ2b: How do TD items and causes relate to each other?
There are many and diverse TD cause candidates that can have
different impacts on TD items. This RQ investigates most rele-
vant TD causes to influence the TD items and effects. Main out-
come is a table depicting relationships of TD causes and items
based on the QFD method [19], created with quality managers.

To answer the RQs, we followed a case study design [22] by
adhering to the following case study plan. [Objective] Exploring
an existing engineering process [Case] in a large PSE organiza-
tion. [Theory] Following the design science cycle according to
Wieringa [29] in a holistic case study, [Goal] we identify com-
mon concepts at collaboration interfaces between PSE work-
groups, and identify information bottlenecks regarding TD ef-
fects. [Method] Through seven semi-structured interviews (in a
funnel approach) [22], [Selection] we elicit representative data
from domain experts and investigate TD effects, items, and
causes.

According to the design science cycle [29], this paper fo-
cuses on workshops and interviews regarding TD effects,
causes, items, and the types and strengths of the relationships
between the TD concepts. We discuss likely causes for the TD
items found. Based on Matook and Indulska [19], we adapt the
QFD method to focus in this paper on two dimensions of the
QFDHouse of Quality (see SectionV). In cooperation with qual-
ity managers, responsible for improving the PSE process, we de-
sign tables based on the QFD method [19] for investigating TD
cause candidates. Finally, we present a conceptual evaluation,
discussing presented repayment options to address SE-relevant
TD in the multi-disciplinary engineering process.

Kathrein et al. [12][13] elicited the illustrating use case in
Fig. 1 for data exchange in the PSE process. In this paper, the
use case frames the election of TD concepts in the case study. In
the beginning, the system planner (SP) receives product specifi-
cations from the customer (1) and aims at providing a competi-
tive offer and at deriving specific knowledge on the production
system for later use. This process is similar to software architec-
ture design [14]. Output of this step (lilac arrow) are resource
documents regarding the plant layout, calculations, and assem-
bly sequences, delivered to the process planner (PP) (2).

Upon receiving the artifacts, the PP investigates these arti-
facts with a common schema that domain experts have devel-
oped over decades. For example, the first column always is the
module identifier followed by the module name and a reference
to an existing CAD drawing if possible. Main goal is to derive
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basic variations of the previously offered production system for
detailing mechanical aspects. However, if important product as-
pects and design decisions are not documented, the PP has to
call back the SP, e.g., via e-mail or telephone (3). Final output
of this step are detailed descriptions of the production system as
foundation for production optimization and PLC software engi-
neering in the form of automation tasks (4).

Process Planner (PP)

Production Optimizer (PO)

Automation Engineer
(AE)

System Planner (SP)

PUSH-based Artifact
Exchange

PULL-based Artifact
Exchange

Engineering
Artifact

Customer

1

2
3

4

4

6
5

5

Figure 1. Use case depicting the AS-IS data exchange process.

The production optimizer (PO) receives all basic plans and
tries to minimize the cycle times of the plant. However, this
work requires different product/ion knowledge aspects and may
cause many calls back to the SP and PP (5). The PO collaborates
with the automation engineer (AE) (6), who is responsible for
PLC software engineering tasks. From basic plans (4), the AE
derives specific PLC software code. Goal of the AE is to trace
design decisions as foundation for making informed design var-
iations, such as the parameterization of the software and systems
that execute production processes, e.g., the speed and accelera-
tion of transport processes. In the next section we investigate this
case study regarding TD effects, items and causes.

IV. CASE STUDY RESULTS AND TECHNICALDEBTMODEL

This section reports on findings from the case study regard-
ing TD effects, items, and causes, and relates these TD concepts
in a preliminary QFD model for the case study context.

A. Case Study results on TD effects (RQ1a)
TD effects. Regarding the use case, data exchange process,

the following TD effects came up frequently in workshop ses-
sions.

TD-E1 High effort for tracing design decisions. High un-
planned effort in SE activities to collect information on the ra-
tionale of design decisions to sufficiently understand what
changes in the system design make sense in the production pro-
cess context.

TD-E2 Data quality risks in engineering artifacts. Low qual-
ity of engineering artifacts may limit the production system ca-
pabilities and reduce reuse opportunities of system components.

TD-E3 Risk of economic project failure due to cost for un-
planned effort for collecting information and due to risk of lim-
ited production system quality and capabilities.

B. Case Study results on TD items (RQ1b)
The TD item description contains the following sections:

name and acronym of the TD item;motivation of the typical con-
text and short-term benefits of the TD item; definition of the TD
item as a violation of the VDI Guideline 3695 Part 2 [28], (see
Section II.A);measurement definition on the presence of the TD
item; relationships to effects including long-term impact from
the presence of the TD item; and hypothetical relationships to
causes, including technical decisions or postponed best-practice
activities. Based on the TD item description, we identified the
following TD items.

Engineering process description insufficient (TD1Proc)
Motivation. The requirements for the engineering process de-
pend on the project and on the specific engineers conducting the
engineering tasks. Therefore, engineering process models may
exist on an abstract level, but do not cover engineering infor-
mation exchange in sufficient detail. The domain experts focus
on engineering production systems and rather than on formally
defining the engineering process in detail, with the short-term
benefit of starting quickly, following a method they prefer to use.
The engineering process models are not maintained and often
diverge from actual project practice. Similar TD concepts in SE
are missing documentation of application program interfaces
(APIs) and software engineering processes in general.

Definition. The VDI Guideline 3695 Part 2 [28], procedure
model for project activities, defines the target state A as “the staff
knows the procedure model and can explain how they use it in
the project.” However, in the case study context, the domain ex-
perts referred to only experience-based informal processes, with
limited awareness of the impact of actions in the process, in par-
ticular data exchange with process partners, beyond the immedi-
ate workgroup of the domain expert, such as extra effort and risk
of engineering data consumers.

Measurement. There is no formal description of discipline-
specific engineering process steps and of the collaboration pro-
cesses between the disciplines involved in the engineering pro-
cess. The staff does not know about their engineering process
description including the impact of exchanged information and
the required data maturity.

Relationships to effects. TD-E1, TD-E3 (see Table I in Sec-
tion IV.C). TD symptoms include high effort for communication
and rework due to shortcomings in data exchange, in particular
for SE, as the SE activities depend in inputs from several disci-
plines that may be incomplete or even contradicting (see Fig. 1).

Relationships to causes. See Table II, in Section IV.C. In the
case study, main causes came from insufficient means that hin-
der the description of the engineering process.

Information description insufficient (TD2Inf) (in ex-
changed engineering data). Motivation. In the case study con-
text, the domain experts focus only on the data relevant to their
own discipline and do not consider dependencies to related dis-
ciplines. They often use tool-specific data exports, such as com-
ponent lists or CAD drawings, and Excel as a general-purpose
information exchange artifact. Short-term benefits include sav-
ing effort for the data provider and flexible choice of means for
the provider when collecting the engineering data to exchange.
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Similar TD concepts in SE are missing documentation of inter-
faces, code, and implementation details.

Definition. The VDI Guideline 3695 Part 2 [28], configura-
tion management, defines the target state A as “… there are dis-
cipline-specific procedures for configuration identification, con-
figuration monitoring, […] Within a discipline, all employees
follow common guidelines.” However, in the case study, domain
experts found artifacts not to be managed, but simply to evolve
over time according to engineering personnel experience, with-
out specific consideration for dependencies between engineering
artifacts in different disciplines, which poses risks for SE activi-
ties that depend on consistent and complete inputs (see Fig. 1).

Measurement. There is no formal description of engineering
artifacts and data, including dependencies between engineering
disciplines, such as product, process, and system design. There
is no configuration history for backtracking design decisions.

Relationships to effects. See Table I, in Section IV.C. TD
symptoms include high effort and risk for propagating changes
to systems design across disciplines, in particular for SE, when
receiving inputs from several engineering disciplines.

Relationships to causes. See Table II, in Section IV.C.

Product/ion (PPR) knowledge representation insufficient
(TD3PPR) (in exchanged engineering data). Motivation. Do-
main experts in production process design have product/ion
(PPR) knowledge that would be, in many cases, important to en-
gineers in later stages of PSE and optimization, in particular, for
SE activities. However, the process designer tends to provide her
engineering partners with hard-coded production system param-
eters rather than PPR knowledge as there is no dedicated tool or
modeling language to allow the effective and efficient represen-
tation of PPR knowledge. Short-term benefit for the process de-
signer is saving effort for modeling the PPR knowledge. Similar
TD concept in SE would be missing information on non-func-
tional requirements for a software system.

Definition. The VDI Guideline 3695 Part 2 [28], configura-
tion management, defines the target state D as “system-assisted
cross-discipline” configuration management to enable “con-
sistency check […] at an early stage”. However, without suffi-
cient PPR knowledge representation, consistency checks be-
tween production process design and production system design
are difficult, error-prone, and take considerable expert effort.

Measurement. The engineering data model misses represen-
tations for expressing PPR knowledge and rationale to trace de-
sign decisions, such as production system temperature settings
to the welding temperature and force of a metal joining process.

Relationships to effects. See Table I, in Section IV.C. TD
symptoms include in SE activities considerable costs of errors
from changes and effort for preventing defects after changes.

Relationships to causes. See Table II, in Section IV.C. In the
case study context, main cause candidates include workgroup-
specific optimization of the engineering organization and insuf-
ficient means to express PPR knowledge.

C. Case Study results on TD cause candidates (RQ1c)
Cause candidates linked to context in the engineering or-

ganization, often for economic and historic reasons in the EO.
A1. Workgroup-related profit centers lead to the local opti-

mization of workgroups with limited concerns for the optimiza-
tion of projects across workgroups, often at the expense of SE.

A2. Engineering habit trained by discipline-specific educa-
tion leads to engineers focusing on good results in their
workgroup. Engineers are, in general, not aware about work
tasks, dependencies, and problems in other workgroups, unless
a partner asks them for an improvement.

A3. Unclear responsibilities of domain experts in data ex-
change process lead to ad-hoc procedures and data definitions.

A4. Limited collaboration effort across work groups without
a dedicated role for coordinating the work across workgroups.

Cause candidates from engineering process description
B1. Engineering process modelled as an artifact-based

workflow, not as a data-related workflow makes it hard to de-
scribe dependencies between SE and other disciplines, such as
consistency rules that relate to the data model, not to artifacts.

B2. Engineering process defined, but not useful. There is a
workflow definition for a process. However, the definition may
be abstract and lack important description of content dependen-
cies, such as relationships between the product and resource de-
sign, tainting the usefulness of the definition.

B3. Engineering process defined, but not operational. There
is a process description. However, missing technical founda-
tions, such as adequate process description concepts or tool sup-
port, make it hard or impossible to conduct the process.

B4. Engineering process defined, but not known to stake-
holders. There is a process description somewhere in a manual.
However, the relevant actors in the project are not aware of the
process description for their daily work.

Cause candidates linked to information description
C1. Description of complex dependencies required due to a

large number of disciplines (often 15 or more) in a PSE project.
Complex descriptions of processes and artifacts and their de-
pendencies in an engineering organization (EO) lead to a very
complex network (consider Fig. 1, scaled up).

C2. Industry-dependent information description. The de-
scription of information depends on the industry and has to be
adapted accordingly. There is no general standard that could be
applied directly. There is no general EO model as the industry
domains require a variety of EO structures and behavior

C3. Tool-driven process without product/ion (PPR) infor-
mation description. Often, the process is defined based on a spe-
cific tool chain. Therefore, the functional and data export capa-
bilities of the tool determine the exchanged information. The
process is not aware of PPR as the discipline-specific tools only
know the PPR knowledge that is relevant within the discipline.
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D. TD effect and item relationships (RQ2a)
Following an adaptation of the QFD method according to

Matook and Indulska [19], we create a House of Quality (HoQ).
Our HoQ provides insights into the relationships between TD
effects and items horizontally (representing customer require-
ments in the original HoQ) and TD items and causes in the ver-
tical axis (representing engineering requirements). For these two
QFD dimensions, we design two tables expressing likely corre-
lations and relationships. We elicited and aggregated likely rela-
tionships from a workshop with domain experts in the explora-
tory case study context [12][13]. As relationship types differ, we
indicate the following types and strengths. DS indicates a direct
and strong relationship (the stronger the item, the stronger the
effect). DW indicates a direct weak relationship (a stronger item
correlates moderately to a stronger effect), and IW expresses an
indirect weak relationship (stronger cause leads to a lower TD
item). No indicates that the TD item is not related to an effect,
such as (TD1proc) -> (II. Data Quality Risk).

RQ2a. Table I presents the relationships between TD effects
(see Section IV.A) and TD items (see Section IV.B), similar to
the HoQ analysis [19] matrix, TD effects horizontally and TD
items in the vertical axis. The relationships are of the form TD
item relates to TD effect, (TD item) -> (TD effect), expressing
how a TD item relates to an effect.

Table I. Relationships between TD effects and TD items.

TD Effect/
TD Item

TD-E1
High
Effort

TD-E2
Data

Quality Risk

TD-E3
Economic
Failure

TD1Proc DS No DS
TD2Inf DS DS DW
TD3PPR DS DW DW

Legend: Relationships: DS: direct strong; DW: direct weak.

In Table I, all three TD items, relate strongly to the TD effect
TD-E1 High Effort for SE. This is due to unclear descriptions of
the process and information as well as missing product/ion
knowledge, which all lead to high effort for tracing design deci-
sions. An insufficient information description relates strongly to
high risks in data quality, as artifacts are not built on common
concepts or data models and thus lack any formal description.
Missing product/ion knowledge is also related to the second TD
effect (TD-E2), however not so strongly. All three TD items
have a relation to the TD-E3 Economic Failure, as missing in-
formation in the engineering process leads to high rework and
communication overheads.

E. TD item and cause relationships (RQ2b)
Table II represents the relationship between TD items (see

Section IV.B) and TD cause candidates (see Section IV.C), (TD
cause) -> (TD item). Cause candidates coming from the context
of the EO (A1 – A4), and from the engineering process descrip-
tion (B1 – B4) have a strong direct relationship to the engineer-
ing process description (TD1Proc). For example, unclear rela-
tionships and descriptions which are not useful, make it very
hard to describe the engineering process sufficiently to facilitate
collaboration and coordination across multiple workgroups.

All three cause groups A, B, and C relate to the insufficient
description of the engineering data exchange model (TD2Inf).
Note the inverse relationships of a stronger focus on engineering

habits (intra process improvements) and descriptions of the en-
gineering process as artifacts. This does not directly impact the
TD item.

Table II. Relationships between TD items and TD causes.

TD Item ->
TD Cause (see Sect. IV.C)

TD1
Proc

TD2
Inf

TD3
PPR

A1.Profit Center DW DS DS
A2.Engineering Habits DW IW DS
A3.Unclear responsibility DS DW DS
A4.Limited collaboration DW DS DS
B1.Eng. Proc. descr. as artifact No IW DS
B2. Eng. Proc. descr. not useful DS DW No
B3. Eng. Proc. not operational DS DW No
B4. Eng. Proc. unknown DS No No
C1.Inform. description. complex DS DW No
C2. Inf. desc. Industry. depend. No DS DW
C3.Tools w/o PPR No DW DS

Legend: DS: direct strong; DW: direct weak; IW: indirect weak.

Insufficient descriptions of the engineering process make it
impossible to successfully represent product/ion-aware
knowledge (causes Ax) -> (TD3PPR). Causes regarding the in-
formation and data exchange description do not impact prod-
uct/ion knowledge representations, as a major precondition for
knowledge representation is the clarification of (a) the responsi-
bility for each part of product/ion knowledge and (b) a suitable
represented approach throughout an engineering process.

F. Preliminary validation in the exploratory case study
Throughout the domain expert interviews, we collected rep-

resentative data samples from engineering artifacts. We derived
tables I and II from analyzing these artifacts. As the tables pre-
sent vital pieces of information regarding possible correlations,
we initially elicited the relationships from domain experts. We
discussed the relationship candidates in detail with quality man-
agers, who are responsible for improving the engineering pro-
cess and are knowledgeable in the overall process and work
group habits, including SE. We resolved divergences between
the views of the domain experts and the quality managers in a
common discussion. Overall, the domain experts and quality
managers found the preliminary TD concepts and analysis
method useful and usable for identifying and addressing high-
priority TD effects, items, and causes regarding SE activities.

V. DISCUSSION

This paper investigates risks for software engineering (SE)
in activities related to the engineering process in a PSE organi-
zation (RQ1) and possible relationship between certain risks
(RQ2). In this context, risks are TD effects for SE that occur in
a PSE context with measurable probability and costs. To deal
with these risks, da Luz et al. [26] presented a management tool
for analyzing causes and effects. Similar to our work, Luz et al.
[26] propose an approach to identify risks through selection, de-
scription and analyzation. However, the presented approach gen-
eralizes risks in a late phase, whereas we focus on organization
specific TD effects and investigate these. In the exploratory case
study context, SE activities depend on the requirements and de-
sign rationale from early engineering phases and often have to
deal with locally optimizing workgroups, low awareness on col-
laboration processes, andmissing understanding of requirements
between work groups.
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For software engineers, the high effort comes from risks re-
garding rework efforts due to frequent and late changes coming
from earlier phases. As software engineers highly depend on
weakly documented design decisions from early phases, a repay-
ment option for TD is better knowledge representation of prod-
uct/ion knowledge throughout the engineering process. The low
data exchange quality impacts software engineers, who are
made responsible for low quality system output, even if they
write high quality code, but based on weakly communicated
early design decisions. TD repayment for reducing the SE risk
should focus on improving the documentation and communica-
tion of design decisions that are directly related to high-quality
SE results. Finally, issues regarding unplanned efforts for re-
works in the software design due to low system quality decisions
may exceed the budget available to SE, leading to local eco-
nomic failure.

The VDI Guideline 3695 Part 2 [28] was used to investigate
TD items (RQ1b). This guideline can be seen similar to best
practices for SE code development, and our analysis is equiva-
lent to a code review. An unclear engineering process descrip-
tion makes it hard for software engineers to reliably configure
production systems, as input from several disciplines may be
contradicting. The missing collaboration in PSE forces software
engineers to take the risky decision on which inputs to consider
or ignore. Further, the information description is not sufficient.
This makes it unclear for software engineers where to look for
reliable information, as data syntax and semantics may change
frequently, making it hard to validate input data and to automate
the data exchange process. Software engineers thus often work
based on risky assumptions. Finally, missing product/ion aware
knowledge makes it hard in SE to take informed decisions for
adapting the software system design if the preferred system de-
sign option is not feasible.

In RQ1c, we investigated possible causes regarding elicited
TD items. Causes linked to the context of production systems
engineering cannot be directly influenced by SE actors, but re-
quire the insight of PSEmanagers. We discussed the preliminary
results at the case study EO with quality managers, who found
the analysis useful for considering and prioritizing improvement
options. Cause candidates linked to the engineering process de-
scription clearly motivate the need for better means of PPR
knowledge representation as a foundation for process descrip-
tions, considering conceptual, language, and usability aspects.
This is similar to the need for proper software architecture de-
scriptions identified by Guessi et al. [11]. The last group we
identified are cause candidates linked to the information descrip-
tion. For example, it is challenging to combine methods for data
integration [7] with domain-specific standards, such as Automa-
tionML [7] or ontologies [23].

A repayment option to address TD items related to weak col-
laboration of workgroups is a new role, the data curator, simi-
larly as presented in [9]. This role would be responsible for con-
solidating a common data exchange model and describe the en-
gineering process adequately. This new role should needs to un-
derstand the requirements and limitations of the involved
workgroups, in particular SE activities. As TD effects, items and
causes are related to each other, we used the Quality Function
Deployment [19] method to investigate relationships between
TD effects, items and causes (RQ2).

In RQ2a we investigated how TD effects and TD items relate
to each other. The TD-E1 High Effort is strongly and directly
connected to all three TD items. This is obvious as reworks are
often needed to compensate missing descriptions or information
bottlenecks where especially software engineers are affected. In-
teresting is, that the TD-E2 Data Quality Risk is only weakly
connected to PPR knowledge representation, even though this is
an important information exchange concept. For SE this means
that design decisions from early phases do not impact the code
development so much as the overall information description, this
could be for example the selection of an easily changeable com-
ponent in the user interface.

RQ2b investigated how TD items and causes are related.
Nearly all causes regarding the information description strongly
impact the process description. This clearly motivates the need
for better knowledge representation approaches, as the current
engineering process is either not described, or the description is
not useful or unknown to domain experts. As there are currently
no tools that support the expression of PPR knowledge, software
engineers could address this open issue to improve product/ion-
aware knowledge representation and further allow a backflow of
SE knowledge into early engineering phases as foundation for
designing better reusable system parts.

Limitations. The research of this paper followed a case
study in an engineering organization. However, the case study
focused on only one company, which may not be representative
for all EOs in general. While the domain experts in the study
were very knowledgeable, their number was limited due to re-
source limitations of the available experts besides their daily
business obligations. We found that the engineering process de-
scription may highly depend on the context, domain, and organ-
ization, thus future case studies should consider these variation
points. While the domain experts found the preliminary list of
TD effects, items, and causes, and their relationships useful for
reflecting on TD repayment options in the case study context,
these results require validation and discussion on comparable
context for strengthening the external validity of the results.

VI. CONCLUSION AND FUTUREWORK

In engineering organizations, software engineers join the
PSE process in a late phase and are concerned with detailing SE
aspects of the software-intensive system. However, software en-
gineers often only receive poorly described design decisions in
form of engineering artifacts making it hard for them to derive
adequate new (software) engineering knowledge or tracing the
earlier design decisions. These shortcomings lead to risks re-
garding the SE quality and impact the project effort negatively,
endangering project success. In this paper, we reported on a case
study at a large industrial engineering organization with the fo-
cus of investigating technical debt (TD) effects, items, and
causes as risks for software engineers. Results highlight that TD
can slow down engineering organizations, making it hard to
manage processes where multiple domains are involved. Main
insight for addressing the found challenges is the introduction of
a new role, the data curator, to facilitate the collaboration across
workgroups. The results highlight requirements for the represen-
tation of product/ion knowledge in the engineering data pro-
vided to software engineers. Engineering data is heterogeneous
and there are no guidelines for basic planners, leading to a large
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number of individual and local data models, and making the data
exchange hard to manage, often resulting in extra effort to main-
tain high software quality.

The relations between TD effects, items, and causes high-
lighted the need for better representations for product/ion
knowledge as inadequate context and artifact descriptions lead
to high efforts, in particular, for software engineers, and might
result in economic project failure. The research findings provide
domain experts, such as project managers or software engineers
with insights into the engineering process. The presented model
serves as a foundation for better understanding the rationale of
engineering design decisions. This leads to better SE code due
to (a) better understanding of design decisions, (b) more explicit
representation of system limits that relate to product characteris-
tics, and (c) better knowledge representation for tool support.

Future work. The results of the exploratory case study
should be validated with empirical data from comparable engi-
neering companies. We focused in this paper on product/ion-
aware exchange of engineering artifacts. Future research should
investigate the impact of knowledge representation options on
selected SE. Finally, the more comprehensive representation of
integrated PSE knowledge requires improved information secu-
rity. The comprehensive and well-integrated knowledge is a
prime target for attackers regarding corporate espionage and re-
garding the intentional change of artifacts for reducing the qual-
ity of the production system or the production process. Thus, fu-
ture work should investigate security auditing aspects that con-
sider the issues and repayment options identified in this paper.
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Aim

The publication “Organizing reuse for production systems engineering with capabilities
and skills” aims at improving the reuse of engineering assets by decoupling production
process and resource models. The publication provides (i) requirements for capability and
skill reuse, (ii) a framework to define the adaptation of VDI 3695 activities to support
domain and application engineering for capabilities and skills, and (iii) how the framework
can facilitate reuse along the production system life-cycle.

Contribution to the thesis

This publication contributes requirements for capability and skill reuse, and to the
research goals CPPS reuse method for capabilities and skills (G3., G2.).

This publication contributes to RQ2. and RQ3. by addressing the VDI 3695 measures
of re-use M3., quality assurance M4., integration and seamless cooperation of disciplines
M5., and the SPL capabilities efficient reuse C1., enhanced quality and consistency C4.,
facilitation of interdisciplinary collaboration C5..

Abstract

The flexibility of production systems is a key factor for Industry 4.0. Capabilities and skills
(C&Ss) aim at improving engineering flexibility along the production system life-cycle by
decoupling production processes and resources. However, traditional reuse approaches in
production systems engineering, such as the VDI 3695, do not yet consider C&Ss. This
paper proposes the Capability and Skill Reuse (CSR) framework to define how VDI 3695
activities require adaptation for C&S models. The paper analyzes how the framework
can facilitate reuse along the production system life-cycle and identifies open issues for
research.
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Zusammenfassung: Die Flexibilität von Produktionssyste-
men ist ein wesentlicher Faktor für Industrie 4.0. Capabili-
ties und skills (C&Ss)bezweckendieFlexibilität entlangdes
Lebenszyklus von Produktionssystemen zu verbessern,
indem sie helfen Produktionsprozesse und -ressourcen
zu entkoppeln. Traditionelle Wiederverwendungsansätze
im Engineering, wie die VDI 3695, berücksichtigen C&Ss
jedoch noch nicht. Dieser Beitrag schlägt das Capability
und Skill Reuse (CSR) Rahmenwerk vor, um zu definieren,
wie VDI 3695-Aktivitäten für C&S-Modelle Angepassungen
erfordern. Der Beitrag analysiert, wie das Rahmenwerk
die Wiederverwendung entlang des Lebenszyklus’ von
Produktionssystemen erleichtern kann und identifiziert
offene Fragen für die Forschung.

Schlagwörter: Capabilities; Flexibilität; Wiederverwen-
dung; Skills.

1 Introduction
Key factors for the Industry 4.0 transformation are the
flexibility and adaptability of production systems to manu-
facture a range of products from a product portfolio [1, 2].
Further, the Industry 4.0 vision concerns connecting single
production systems to production networks for enabling
production as a service (PaaS).

An established approach to model the functionality of
a system in Production Systems Engineering (PSE) is the
Product-Process-Resource (PPR) approach [3] representing
products, production processes, and the necessary pro-
duction resources. However, in PSE practice, production

Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.
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processesand resources, and theirmodels, areoften tightly
coupled, impeding production flexibility. Complementing
the PPR approach, capabilities and skills (C&Ss) aim to
support flexibility along the production system life-cycle
by decoupling and abstracting production processes and
their requirements from the production resources that
execute these processes [4]. For instance, recent research
proposed formal and machine-readable C&S descriptions,
e.g., using ontologies, to overcome tacit expert knowledge
[5, 6]. Such semantic descriptions also aim at an automated
matching of production process requirements to resources,
easing PSE and lowering manual work that is prone to error
[7]. Further works investigated the automated derivation
of capability descriptions along with executable skills [8].
Machine-readable capability and skill (C&S) descriptions
combined with automated matching and decoupled exe-
cutable production services should facilitate the required
flexibility and creation of production networks.

A crucial prerequisite for efficient and high-quality
PSE and operation is the systematic reuse of engineering
artifacts, suchas resourceswith theirmodels and reference
sheets. Systematic reuse promises to reduce engineering
cost and time to market, lower maintenance effort and
improve the quality of products [9]. Jazdi et al. [10] investi-
gated the project-independent activities (PIAs) of VDI 3695
[11] to improve the efficiency of PSE by increasing artifact
reusability. The same applies to C&Ss, where reusability
and reuse were identified in a recent literature survey as
both a requirement for and a benefit of using C&Ss [4]. This
especiallyholds indistributedenvironments, suchasPaaS.

However, to the best of our knowledge, the elicitation
of C&Ss from existing engineering artifacts, such as PPR
models, for their systematic reuse has not been reported.
Therefore, we aim in this paper to address the research
question: How do VDI 3695 activities for domain and
application engineering require adaptation to facilitate
reuse with capabilities and skills in PSE?

To address this research question in this work, we
provide the followingcontributions.Wecategorize require-
ments towards C&Ss from a recent literature survey [4] and
investigate how these requirements need to be considered
to facilitate C&S-based reuse. We propose the Capability
and Skill Reuse (CSR) framework for the elicitation of C&Ss
from engineering models and artifacts and their reuse.
Therefore, we describe how the VDI 3695 reuse activities
for domain and application engineering in PSE require
adaptation to enable C&S-based reuse. Further, we discuss
the benefits and limitations of C&S models as a foundation
to facilitate reuse along the production system life-cycle.

The remainder of the paper is structured as follows.
Section 2 describes the background and related work on
knowledge representation and reuse in PSE. Section 3
categorizes requirements towards C&S and introduces the
Capability and Skill Reuse (CSR) framework for the reuse
of production system models and artifacts. Sections 4 and
5 discuss the research results and conclude.

2 Background
This section summarizes the background and related work
and sketches an illustrative use case.

2.1 Knowledge representation in PSE
PSE consists of several life-cycle phases, from basic
and detailed planning to commissioning and operation.
Additionally, PSE takes place in a multidisciplinary
environment, where engineers from various domains,
such as mechanical or electrical engineering, maintain
different views on the production system [12]. The PPR
approach [3] unifies three main aspects of PSE. The
model represents input and output products, production
processes required to transform input into output
products, and production resources that automate the
production processes. The Formal Process Description
(FPD), defined in the VDI 3682 [13], provides a visual and
formal model to describe these aspects.

Pfrommer et al. [14] introduced skills as a comple-
mentary element to PPR. They defined skills as semantic,
vendor-independent representations of process function-
ality required by a product and provided by a resource. Ked-
dis et al. [15] distinguished required capabilities, defined in
production step plans, from provided capabilities, imple-
mentedbyresources.Whilea recent literaturesurvey found
early literature on C&S to use the concepts interchangeably
[4], later works distinguished more clearly between C&S.
Nevertheless, both concepts aim to abstract and decouple
processes and resources for more flexible production.

Several works proposed models for C&S, including
their relations to PPR, and formal machine-readable speci-
fication, e.g., via ontologies [5, 16, 17]. Järvenpää et al. [7]
investigated how formally described resource capabilities
can be automatically matched to product requirements.
Furthermore, recent research studied the automated
derivation and execution of skills, e.g., via OPC UA [8, 18].

Thispaperbuildson thePPRandC&Sconcepts, inpar-
ticular, on the definitions and the model of C&S described
in [19]. In their model, capabilities are implementation-
independent specifications of functions in industrial
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production. While production resources can provide such
capabilities, production processes can require them,
encapsulating the product requirements. On the other
hand, skills areexecutable implementationsof capabilities
on a resource (cf. Figure 1), where several skills might
realize a capability.

2.2 Knowledge reuse in PSE
Jazdi et al. [10] investigated how PSE efficiency can be
increasedby identifying reusable engineeringartifacts and
systematically using them extensively in upcoming engi-
neering projects. Their work is based on the VDI 3695 pro-
ceduremodel forproject activities [11] and the two-life-cycle
model from Software Product Line Engineering (SPLE) [9].

The VDI 3695 [11] for optimizing engineering organi-
zations describes a two-phase proceduremodel. The model
consists of project-independent activities (PIAs) to iden-
tify and provide reusable artifacts and project-dependent
activities (PDAs) that use these artifacts (cf. Figure 2). The
PIAs for domain engineering consist of (i) an analysis of
the domain and artifacts suited for reuse, (ii) the planning
of a reference architecture and reusable artifacts, and (iii)
the realization and testing of reusable artifacts. Jazdi et al.
[10] translate these activities into detailed tasks for PSE.
The VDI 3695 specifies five target states of reuse maturity
in PSE that range from isolated reuse by single engineers
to reuse with reference models and standards. The PDAs
for application engineering consist of (i) the acquisition
and requirements engineering of new PSE projects, (ii) the
planning and realization of a production system or produc-
tion services using the reference architecture and reusable
artifacts, and (iii) commissioning of the realized system and
services. Ideally, requirements, acquired knowledge, and

Figure 1: PPR model for a screwing process in VDI 3682 [13] notation
without (dashed connection executes) and with C&Ss.

artifacts from the individual projects are inputs to the PIAs
(cf. Figure 2, dashed arrow).

Similarly, SPLE investigates the reuse, flexibility, and
configuration of software portfolios and their engineering
[20]. Therefore, van der Linden et al. [9] identified the
four fundamental principles of variability management,
business-centric and architecture-centric engineering, and
the two-life-cycle approach. The two-life-cycle approach
describes domain engineering and application engineering,
similar to PIAs and PDAs of the VDI 3695 [11]. The reusable
artifacts are stored in a common artifact repository (cf.
Figure 2) for use in the PDAs. SPLE also investigated
models and methods to represent and manage variability
in artifacts and their configuration. Two SPLE approaches
to model and configure variability, also mentioned by Jazdi
et al. [10], are feature modeling and decision modeling [20].

A recent survey [4] elicited expected requirements
towards C&S and benefits of C&S in PSE. The survey
reported reusability both as a requirement to enable
C&S-based PSE and as a benefit as C&Ss foster reuse of
knowledge. However, to the best of our knowledge, very
little work on the systematic reuse of C&S in PSE has been
reported. Therefore, this paper investigates the reuse in
and for C&S-based PSE, in particular, the elicitation and
abstractionofC&Ss fromengineeringartifacts, suchasPPR
models.

2.3 Illustrative use case
To illustrate the CSR framework, this section reports
on a use case abstracted from real-world applications.
These applications stem from engineering organizations of
high-performance automation for car part manufacturing
in Germany and Austria [21]. In particular, we consider
joining processes of large car parts, such as doors, to car
bodies.

In the use case, we consider a system integrator which,
for particular customers, plans and engineers work line
production systems that manufacture a portfolio of car
parts automated in typical car production plants. The
plant operators should be able to offer their production
services in a marketplace in the future, aiming at PaaS.
Therefore, the system integrator wants to reuse existing
well-described engineering artifacts, such as robot cell
models, for various company-wide projects. To this end,
the solution candidates should be decoupled from specific
product and production process requirements of previous
projects.

Figure 1 shows a section of a PPR model in VDI 3682
notation [13] with the products (represented as circles in
a blue frame), e.g., the door, one process step (depicted
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Figure 2: The Capability and Skill Reuse (CSR) framework for PPR models and artifacts, based on the VDI 3695 guideline [11].

as a rectangle in a red frame), i.e., the door screwing
process, and a resource (shown as a rounded rectangle
in a yellow frame), i.e., the screw-driving robot. A corre-
sponding engineering artifact can be, e.g., the model in
the Product-Process-Resource Domain-Specific Language
(PPR–DSL) [22].

In the use case, the door is mounted to a car body
with screws. The screws have different types depending on
the doors, which have different dimensions. The processes
have technical and economic requirements, such as the
required torque or the production rate. Furthermore, the
processes need to consider the characteristics of the
products, i.e., the torqueanddimension.Thescrew-driving
robot has several characteristics, such as torque or rate
range, required for correct process execution. While some
of these characteristics are similar in the assembly line,
others are variants of originating processes and resources.

Traditional PSE and reuse [10, 23] often maintain a
quite resource-centered perspective, where processes are
modeled only as part of the resource and its behavior (cf.
dashed red arrow in Figure 1).

In C&S-based PSE, the process requirements are mod-
eled as required capabilities, e.g., a screwing capability (cf.
Figure 1) or even more abstract a joining capability. How-
ever, some characteristics, such as electric or pneumatic
screwing, might be irrelevant to the production processes.
Resources, such as screw-driving robots, on the other
hand, provide the means to execute a functionality, in this
case, to join two parts, respectively, screw them together.
In C&S-based PSE, the functionalities of resources are

modeled asprovided capabilitiesand implemented as, e.g.,
skills [19]. This way, the required and provided capabilities
can be matched, e.g., in the engineering phase or on a
marketplace.

3 The CSR framework for reuse with
capabilities and skills

This section categorizes requirements for C&Ss regarding
their relevance for reuse and presents the Capability and
Skill Reuse (CSR) framework.

3.1 Requirements towards capability- and
skill-based engineering and reuse

Froschauer et al. [4] elicited requirements towards C&Ss
in a literature survey. We categorize these requirements
to identify which of them are particularly relevant in
what reuse activity of the CSR framework. In Table 1, we
introduce four categories and assign each requirement to
one of them.1 In the next section, we use this categorization
to highlight the relevance of the particular requirements in
the activities of the CSR framework.

The first category concerns the description of capa-
bilities to support their interpretation by machines and
humans, exchange, and ideally openness [24]. Therefore,
capability descriptions shall be formal and vendor-neutral.

1 Note that the requirement reusability in [4] is not part of this
categorization due to the overall focus of this paper on reuse.
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Table 1: Categorized requirements for capabilities and skills.

Category Requirements

Capability description Vendor-neutral
Formal

Capability and skill selection Identifiable
Classifiable
(Auto-)discoverable
Matchable

Skill implementation time (Re-)configurable/Adaptable
Modular
Extensible

Skill run time Executable
Stateful/deterministic
Scalable
Communication interface

To facilitate the selection of C&Ss, i.e., the appropriate
selection of C&Ss for a purpose, during the PSE life-cycle,
they shall be (i) identifiable2 for reliable distinction (ii)
classifiable to categorize C&Ss according to well-known
PSE semantics, e.g., the DIN 8580 [25], (iii) matchable
to automatically find suitable production resources for
production requirements, and (iv) discoverable to find
production services in a distributed environment, e.g., on
a marketplace.

Skills encapsulate the functionality of a production
resource implementing a particular capability. Therefore,
they need to fulfill requirements at implementation and
at run time. During the implementation time of a skill,
engineers need to consider the following requirements
with the aim of flexibility and usage variability. A skill
shouldbe (i) configurable respectivelyadaptable, to choose
from their internal variations [9], (ii) modular to combine
them to higher-level functionality, and (iii) extensible to
adapt them for future purposes.

At production system run time, skills shall be (i)
executable to run directly on a resource, (ii) stateful
respectively deterministic for reproducibility and to know
their current state, (iii) scalable to deploy them to many
similar resourcesandhandlegrowingproduction requests,
and (iv) provide a communication interface to control their
behavior.

2 For instance, the RFC 2396 URI syntax provides a scheme for
identifiable assets – https://www.rfc-editor.org/rfc/rfc2396.

3.2 Activities for capability- and skill-based
reuse of PPR artifacts

This section introduces the Capability and Skill Reuse
(CSR) framework for reuse in PSE with C&Ss. Figure 2
shows the PIAs and PDAs of the VDI 3695 procedure
model [11]. This paper focuses on the activities depicted
in blue, i.e., the core activities of domain and application
engineering [9] without considering acquisition. Between
the PIAs and PDAs, Figure 2 further shows the common
artifact repository to store reusable artifacts. Furthermore,
the figure shows the iterative character of the framework as
backflow from the PDAs to the PIAs. As a novelty, Figure 2
highlights the activities for engineering with C&Ss based
on reusable PPR artifacts (areas in grey).

The first four activities of the CSR framework concern
the PIAs of the VDI 3695 procedure model for domain
engineering.

PIA.1 – Model and artifact analysis. This activity
maps to the analysis PIA of the VDI 3695.

In this activity, engineers responsible for company-
wide reuse analyze the domain and its requirements. The
result is a reference model for the domain, such as the
system architecture for a work line in car manufacturing.
This reference model can specify common requirements
but also technical solution elements for the PDAs. Fur-
thermore, the engineers analyze existing artifacts, like
PPR models in PPR–DSL [22], from previous projects to
assess their reuse potential. The analysis aims to find and
document artifacts that have been used in several projects
and that engineers can adapt for more generic use. In the
context of the use case (cf. Section 2.3), such artifacts could
be PPR models of screwing processes with parameters in a
similar range, like the torque or workpiece dimensions.

In the traditional approach, the engineers often do
not differentiate between the products, processes, and
resources in the analysis. For instance, engineers analyzed
and collected resources for reuse in future projects at one
company from the use case but mixed them with concrete
products rather than, e.g., more generic dimensions. While
such an analysis is efficient for local engineering, it makes
reuse beyond local environments riskier and less efficient.

In the CSR framework, the reuse engineers pursue
two goals to find and document reuse candidates. First,
they identify processes in the artifacts independent of the
productsandresources theyuse,e.g., thescrewingprocess.
Based on that, more generic process characteristics can
be derived in the next activity. The overall goal is to
identify process candidates that seem relevant for required
capabilitydescriptions (cf. Figure 1). Second, the engineers
identify resources in the artifacts that seem promising
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for reuse, e.g., the screw-driving robot. For instance, one
company in our use case maintains a database of regu-
larly used resources with particular characteristics, such
as power consumption. In another company, a domain
analysis showed that the types of screw-driving robots
could be reduced by grouping them by their functionality
[21]. The overall goal is to identify functionality candidates
that seem relevant as input to describe the functionalities
of these resources as provided capabilities and implement
them as skills.

The result of the analysis (cf. Figure 2 yellow
diamond 1) is a reference model for the domain, e.g., for
joining work lines, and a documentation of (partial) PPR
artifacts identifiedasprocessesor resources. This reference
model and the documentation are the inputs for activity
PIA.2.

PIA.2 – Processandresourceplanning.This activity
maps to the planning PIA of the VDI 3695.

In this activity, the engineers define the utilization of
the assets from the analyzed PPR artifacts, e.g., usage as
reference assets or parameterized assets in future projects.
Therefore, the engineers need to generalize and categorize
theassets andplan their parameterization, i.e., assess their
variability and configuration options.

In the use case, we consider the PPR model of the door
screwing process. First, the PPR artifacts might need to be
split to single out the section with the screwing process.
Then, the engineers need to generalize the products as
the products are most likely different in other projects.
For instance, the type of screw used, e.g., with a specific
inventory number, needs to be generalized to its relevant
properties, e.g., slotted or Phillips head. Similarly, the
door might be generalized to a workpiece with particular
dimensions. Figure 1 illustrates this generalization of
products as dashed outlines in activity PIA.2.

In the traditional approach, process and resource
assets are often mixed or merged in the artifacts. For
instance, the screw-driving robot might be modeled to
directlymanipulate theproducts, only implicitly represent-
ing a screwing process. Thus, artifacts resulting from this
planning activity are less modular and decoupled and,
hence, represent the requiring and provisioning side of
production insufficiently.

In the CSR approach, the engineers decide which
(parts of the) artifacts concern process capabilities, i.e.,
required, or resource capabilities, i.e., provided. If an
artifact mixes process requirements and resource func-
tionality, the engineers plan how to separate the process
from the resource descriptions. In the use case, the PPR
artifact requires splitting or remodeling to separate the

process and the resource, e.g., into different artifacts that
can then be imported as libraries. The engineers must
then categorize and group the processes and resources
by similar requirements and functionality. This task can
follow domain-specific guidelines, such as the DIN 85803

for manufacturing methods. For instance, screwing and
welding processes can be part of a higher-level group of
joining processes. Similarly, catalogs, such as company-
specific taxonomies or databases or the EClass standard,4
can help to categorize resources.

The result of the planning activity (cf. Figure 2
yellow diamond 2) are separated and categorized processes
(with generalized products) and resources. These resulting
artifacts are the input for activity PIA.3.

PIA.3 – Capability and skill elicitation and mod-
elling. This activity maps to the PIAs planning and
realization of the VDI 3695.

In this activity, domain engineers realize the reusable
assets as PPR artifacts. For instance, they create templates
from particular assets that can be parameterized and
reused in different PSE projects.

In the traditional approach, such PPR template
designs often consist of resources only that realize the
functionality for the production of a product. Therefore,
the resultingartifacts concernproductandprocess require-
ments as well as the functionality of particular resources
like robots.While thismightmake theconfigurationof such
templates easier, it makes, e.g., the exchange of resources
solely based on the required functionality harder [7].

In the CSR framework, the domain engineers elicit
and model processes and their requirements as process
capabilities. In several cases, the engineers might want
to aggregate the found process requirements for an
abstraction to higher-level groups, e.g., serving a range
of parameter values [26]. Similarly, the engineers model
the resource functionality as capabilities and potentially
implement them as skills. Modeling the C&Ss requires
using appropriate models or languages, such as ontologies
[5, 17] or domain-specific languages [22]. For the skill
implementations, engineers can utilize technologies, such
as OPC UA [8, 18] or PackML.5

In the use case, we would model the screwing process
as required capability, e.g., in a process ontology [5], with
the required rate, torque, and screw type as configurable
parameters. The screw-driving robot would be modeled

3 DIN 8580 – https://standards.globalspec.com/std/1742169/DIN
%208580.
4 EClass – https://eclass.eu/en/eclass-standard.
5 PackML – https://www.omac.org/packml.
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as provided capability with its rate and torque range,
i.e., the minimal and maximal values, e.g., 100 Nm to
200 Nm. Furthermore, the concrete functionality of the
screw-driving robot would be implemented as a skill,
e.g., with specific control software, that implements the
provided capability.

The capabilities shall fulfill the capability description
and C&S selection requirements (cf. Table 1) that are then
relevant in the PDAs. Similarly, the skill implementations
shall fulfill the implementation time requirements. While
this is an extra effort in this step, fulfilling these require-
ments pays off in the project-dependent realization.

The result of the realization is modeled as C&Ss
that are deployed into the common artifact repository
using an agreed-on structure. Figure 2 illustrates these
artifacts as processes with generalized products with their
corresponding capabilities in blue and as resources with
their corresponding capabilities (and skills) in magenta.

PIA.4 – Capability and skill validation. This activity
maps to the testing PIA of the VDI 3695.

After modeling the capabilities and implementing the
skills, the provided C&Ss must be tested and validated
to qualify them for the production systems. This task
should already be executed on physical resources, such
as a testbed, indicated by the cog wheel in the resources.

Therefore, skills must fulfill the run time requirements.
This means, they need to be executable, stateful and
deterministic, and scalable [4]. Furthermore, they need to
have a communication interface to control their behavior.

The artifacts resulting from the PIAs are stored in the
common artifact repository for use in the PDAs.

The activities in the lower part of Figure 2 concern the
project-dependentactivity (PDA)of theVDI3695procedure
model.

PDA.1 – Product portfolio analysis. This activity
maps to the planning PDA of the VDI 3695 and is similar in
the traditional approach and the CSR framework.

In this activity, application engineers analyze the
product portfolio that the production system should
manufacture. Therefore, they investigate its production
requirements, such as quality concerns or the planned
order quantity, based on input from theacquisition activity.
Figure 2 shows a product portfolio as small product icons.
For instance, in the use case, a range of different doors
types shall be mounted to similar types of car bodies.

In the use case, the engineers analyze the doors and
car bodies with their commonalities and variability. From
this analysis, they can derive which products are similar
enough to manufacture them on one production system,

e.g., door type A and B with similar dimensions in a robot
cell.

The result of this analysis shall be a bill of materials
for the products with corresponding variability and config-
uration models [9]. In Figure 2 the red label 1 at the lower
part represents the results that are input to PDA.2.

PDA.2 – Capability planning. This activity maps to
the planning and realization PDAs of the VDI 3695.

In this activity, application engineers receive the
production system requirements and the product portfolio
analysis from PDA.1. From this data and the reference
architecture from PIA.1, they derive a suitable production
system architecture. Second, the application engineers
define the requirements and the functionality for the
products’ single production steps. Therefore, they take
up the analyzed product portfolio, investigate ways to
assemble these products, and derive properties for the
production steps. In the use case, the engineers decide,
e.g., to mount the doors to the car body with screws of a
certain type using a screwing process with a specific torque
and rate.

In the traditional approach, the engineers often
define a bill of processes and tie them to reusable resource
templates from the common artifact repository. However,
without adequate abstraction, this limits the exchange
and reconfiguration of resources and impedes the search
for adequate production services, e.g., in a production
network.

In the CSR framework, the engineers take up the
product portfolio description to plan the capabilities
required to produce the products. In the use case, the engi-
neersdefine thatadoor is screwed to thecarbody, e.g.,with
aPhillips and150Nmtorque.Basedon these requirements,
the engineers search in the common artifact repository
for process capabilities that fit their requirements, i.e., a
screwing capability with configuration parameters for the
screw head and the torque. Therefore, the capabilities have
to fulfill the requirement categories capability description
and C&S selection (cf. Table 1) to find suitable reusable
capabilities in the common artifact repository.

In the second step, the engineers configure the
retrieved capabilities with the known values of the prod-
ucts from the product portfolio. In the use case, this means
configuring a screwing capability with, e.g., the required
torque of 150 Nm ±5 Nm, and the required Phillips screw
head. Modeling classes of parameter ranges can be helpful
to support better matching to provided C&Ss in the next
step.

Figure 2 illustrates the resulting configured capabil-
ityas a PPR model with concrete products and a configured
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process capability in blue. These configured capabilities
(cf. red diamond 2 in Figure 2) are then inputs to PDA.3.

PDA.3 – Capability and skill matching. This activity
maps to the planning and realization PDAs of the VDI 3695.

In this activity, the product requirements, expressed
through process descriptions, must be matched and bound
to concrete production resources. The resources must then
be configured to execute the processes correctly.

In the traditional approach, the engineers manually
match the process requirements to resources from the
common artifact repository. This step is mainly based
on implicit knowledge by a single key engineer. A major
limitation of this approach is the need for experts with high
domain knowledge suitable to conduct this task. Thus, this
task is challenging, error-prone, hard to teach, and limited
by the availability of these key experts.

In the CSR framework application engineers use
computational support to match the partially configured
process capabilities with resource capabilities. Therefore,
the toolingenvironmentshall enable tomatchC&Sdescrip-
tions. The selection requires C&Ss to be (cf. Table 1)
identifiable to find unique ones, classifiable to search for
them systematically, discoverable to retrieve them from the
common artifact repository, andmatchable to assign them
to the required process capabilities. Ontology reasoning is
a promising approach to match C&Ss [7]. In the use case,
we would set up, e.g., an ontology query that searches
for provided capabilities with a torque range that includes
the configured torque of 150 Nm. The result would be the
previously described provided capability with a torque
range from 100 Nm to 200 Nm. Similarly, other provide
capabilities with torque ranges around 150 Nm could be
returned. Furthermore, the engineers can now select from
different skills that implement these capabilities, e.g.,
based on robots that they regularly use in their projects.

The results of this step are matched required and
provided capabilities (cf. red label 3 Figure 2) that are input
to PDA.4. Figure 2 depicts the icon of the processes with
concrete products and their required capabilities that are
matched to one or more capabilities.

PDA.4 – Capability and skill configuration. This
activity maps to the planning and realization PDAs of the
VDI 3695.

In the traditional approach, one of two cases applies.
If the artifacts are tightly coupled, they require adaption to
the particular project. If the artifacts are loosely coupled,
they require adaption to each other and the project. This
specific adaptation makes it hard to exchange production
resources in case they do not fit as expected.

In the CSR framework, the engineers receive C&Ss
from activity PDA.3 that match each other but are only par-
tially configured. For instance, the torque in the screwing
capability has been set to a particular value, in the use case
150 Nm. However, the engineer might need to set further
C&S parameters to concrete values for the production.
Furthermore, the engineers need to bind the particular
capability to the finally selected and configured skill.

In Figure 2 theboundandconfiguredcapability and
skill foraprocessareshowninaPPRmodelwithconnected
C&Ss. The results of this step (cf. red label 4 Figure 2) are
input to PDA.5.

PDA.5 – Skill execution. This activity maps to the
commissioning PDA of the VDI 3695.

During commissioning, the designed production sys-
tem runs for the first time with different resource configu-
rations for various products from the product portfolio.

In the traditionalapproach, theengineersconfigured
the resources based on product and process knowledge
which is often diluted over the engineering process. While
they might have used reusable artifacts for the configura-
tion, we argue that it is harder to reconfigure resources in
case they do not prove as efficient or suitable as expected.

In the CSR approach, the finally configured skills are
executed for the first time on the production system with
the particular configuration. This activity shall ensure,
beyondother things, that theC&Ssareconfiguredcorrectly.
To run on the production system, skills must fulfill the
same requirements as in PIA.3, where the skills are tested
and validated. Concretely, they have to fulfill the run time
requirements of Table 1. Issues during the execution of the
skills shall be fed back directly to the PIAs, e.g., validation
and testing.

Experiences and assets from the PDAs are fed back to
the PIAs to improve the reuse lifecycle.

As a summary, the CSR framework defines activities
that motivate which tasks should be taken to (i) elicit C&Ss
from previous projects, (ii) model and validate them as
reusable artifacts in a common artifact repository, and (iii)
use and configure them in particular engineering projects.
In the next section, we discuss the CSR framework in
context to the related work and research question.

4 Discussion
In PSE, engineering organizations aim at establishing
reuse to improve the quality and efficiency of engineering
[11].

This paper investigated the research question: How do
VDI 3695 activities for domain and application engineering
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require adaptation to facilitate reuse with capabilities and
skills in PSE?

To address this research question, this paper intro-
duced the Capability and Skill Reuse (CSR) framework that
defines how the VDI 3695 procedure model for reuse for
domain and application engineering requires adaptation
to support but also benefit from C&S models.

The CSR framework organizes the design and applica-
tion of C&S models that fulfill essential C&S requirements
(cf. Table 1) to facilitate C&S-based reuse in PSE. In
particular, the CSR framework guides engineering activ-
ities to move from traditional reuse of tightly coupled
engineering artifacts for a specific reference architecture
towards an approach aimed at higher reuse. C&S-based
reuse of loosely coupled C&S artifacts facilitates both
internal reuse and the exchange of C&S on a marketplace
with a wider audience, possibly for similar but different
reference architectures.

In these contexts, Table 2 lists expected benefits of
C&S-based (reuse in) PSE towards flexible production [4].
However, thesebenefits require investment intoC&S-based
assets, which should be organized in increments that each
provide a benefit to justify the cost and mitigate migration
risks.

The activities of CSR framework themselves require
the means and methods of the C&S community. This
includes C&S description methods, such as ontologies [5,
17] anddomain-specific languages [22], and technologies to
implement skills, such as OPC UA [8, 18] or PackML/ISA 88.
To thisend, theCSRframework requiresa futurediscussion
and validation by the community.

The explicit modeling of C&S knowledge represents
currently implicit domain expert knowledge to improve the
automation of designing C&S-based solutions that match
defined process capability requirements. To this end, the
CSR framework facilitates integrating scattered domain
knowledge on reuse from several engineering disciplines,

Table 2: Expected benefits of capabilities and skills [4].

Category Benefits

Usage advancement Flexibility
Automatic matching
Optimization
Interoperability

Development streamlining Planning efficiency
Development efficiency

Reuse support Abstraction
C&S reuse

in particular, product and process design, as well as a
variety of detail engineering disciplines [27].

The research in this paper goes beyond the state of the
art in PSE reuse [10, 11] and C&S-based engineering (i) by
defining how engineers responsible for reuse can create
and exchange reusable C&S-based engineering artifacts
and models from PPR artifacts and (ii) by illustrating its
applicability in a reuse use case.

The following limitation requires further investiga-
tion. While there are promising contributions towards
C&S-based reuse, experiments and case studies in typical
application contexts are required to provide sound empiri-
cal evidence on the expected benefits and associated costs
and risks.

5 Conclusion and outlook
The Industry 4.0 initiative indicated the flexibility and
adaptability of systemsasa crucial success factor for future
production. The Product-Process-Resource (PPR) concept
aims to provide a model to represent the key aspects of
Production Systems Engineering (PSE). Complemented by
capabilities and skills (C&Ss), which aim to abstract pro-
cess requirementsandresource functionalityanddecouple
them using semantic descriptions, this approach supports
the required flexibility for building production networks
[4].

There is maturing work on C&S foundations for
engineering and exchange in a marketplace [28]. However,
less emphasis has been put on the question of how
to combine reuse concerns with C&S-based engineering
to provide a framework for starting and growing C&S-
based engineering in a company. An example are system
integrators that consider providing or procuring solution
elements on a marketplace for C&Ss. However, traditional
reuse approaches in PSE, such as the VDI 3695 guideline
[11] and domain engineering [9, 10], do not consider C&S.
Therefore, this paper introduced the Capability and Skill
Reuse (CSR) framework to extend the reuse activities
of the VDI 3695 procedure model towards the use of
C&Ss. Therefore, we build on and integrate basic C&S
representation and processing capabilities [5, 8, 17, 18].

Traditional reuse works well for a system integrator in
a limited domain with well-known solution partners and a
stable set of reference architecture and solution technolo-
gies. However, considering incremental investment into
C&Ss seems advisable if more flexibility regarding these
concerns is required. In this context, C&S-based reuse
can facilitate the work of domain experts with computer
functions for reuseprocesses touse scarce expert resources
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efficiently. Researchers and practitioners in PSE can take
up the results of this research to investigate and improve
reuse in PSE. For instance, they can apply and validate the
framework in various application contexts.

Future Work. Capability and Skill Reuse (CSR) archi-
tecture. We plan to design and explore options for a
software solution architecture for the CSR framework for a
particular domain, such as automotive manufacturing. To
this end, we want to consider aspects of typical reference
architectures and ways for knowledge representation.

Empirical studies of CSR framework applications.
Further, we plan to conduct case studies with system
integrators to detail and validate selected parts of the
CSR framework. For instance, this comprises lifting skill
knowledge fromreuseassetsor theco-evolutionof solution
elements in domain and application engineering.
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Aim

The publication “Variability Transformation from Industrial Engineering Artifacts: An
Example in the Cyber-Physical Production Systems Domain” introduces the Variabil-
ity Evolution Roundtrip Transformation (VERT) approach to transform from and to
engineering artifacts with variability into state-of-the-art variability models using a
transformation framework. The publication (i) presents a framework to transform CPPS
engineering artifacts with variability to feature models and back, (ii) shows the feasibility
of the framework using one of the previously presented real-world use cases.

Contribution to the thesis

This publication contributes to the research goals transformation framework for CPPS
engineering artifacts with variability (G3., G2., G4.), and case study evaluation (G5.).

This publication contributes to RQ1. and RQ3. by addressing the VDI 3695 measures
of models and description languages M1., re-use M3., quality assurance M4., integration
and seamless cooperation of disciplines M5., and the SPL capabilities efficient reuse C1.,
variability management C3., enhanced quality and consistency C4., and facilitation of
interdisciplinary collaboration C5..

Abstract

Many variability modeling approaches have been proposed to explicitly represent the
commonalities and variability in (software) product lines. Unfortunately, practitioners
in industry still develop custom solutions to manage variability of various artifacts, like
requirements documents or design spreadsheets. These custom-developed variability
representations often miss important variability information, e.g., information required to
assemble production goods. In this paper, we introduce the VERT process. The process
enables practitioners from the CPPSs domain to transform custom-developed engineering
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variability artifacts to a feature model, evolve and optimize the model, and transform
it back to the original engineering artifacts. We build on an existing transformation
approach for variability models and show the feasibility of the process using a real-world
use case from an industry partner. We report on an initial feasibility study conducted
with our industry partners’ domain experts and on lessons learned regarding variability
transformation of engineering variability artifacts.
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ABSTRACT
Many variability modeling approaches have been proposed to ex-
plicitly represent the commonalities and variability in (software)
product lines. Unfortunately, practitioners in industry still develop
custom solutions to manage variability of various artifacts, like
requirements documents or design spreadsheets. These custom-
developed variability representations often miss important vari-
ability information, e.g., information required to assemble produc-
tion goods. In this paper, we introduce the Variability Evolution
Roundtrip Transformation (VERT) process. The process enables
practitioners from the Cyber-Physical Production Systems domain
to transform custom-developed engineering variability artifacts to
a feature model, evolve and optimize the model, and transform it
back to the original engineering artifacts. We build on an existing
transformation approach for variability models and show the feasi-
bility of the process using a real-world use case from an industry
partner. We report on an initial feasibility study conducted with our
industry partners’ domain experts and on lessons learned regarding
variability transformation of engineering variability artifacts.
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1 INTRODUCTION
Variability modeling is the discipline of explicitly representing vari-
ability in dedicated models that describe the common and variable
aspects of a set of (software) systems [9] as the basis for Software
Product Line (SPL) engineering [32]. Several works have focused
on comparing existing variability modeling approaches, tools, and
languages [4, 7, 12, 19, 33, 39] and on analyzing their use in indus-
try [9]. Still, there is currently no unified or standardized variability
modeling approach available. Industrial practitioners are often not
familiar with academic approaches from the SPL community [34]
and develop custom solutions tomanage variability instead of adapt-
ing existing approaches [9, 19].While existing approachesmay have
their benefits and limitations, they still could be a useful basis to
manage variability in their particular domain and use case.
For this paper, we worked with a leading company in the inte-
gration of high-speed automation for Cyber-Physical Production
Systems (CPPSs). The industry partner’s domain experts represent
variability information on CPPS requirements in different artifacts,
e.g., type comparison matrices (TCMs) (product parts vs. product
types) and CAD drawings of product types. Unfortunately, these
variability representations are incomplete and require additional
information, like production constraints, to derive production pro-
cesses and corresponding CPPS design correctly. This information
is individual implicit knowledge of domain experts. The lack of a
systematic variability modeling approach and implicit variability
knowledgemake the evolution of product lines time-consuming and
error-prone. In workshops with CPPS domain experts, we identified
the following two research challenges.

Challenge 1. No process available for evolving engineering vari-
ability artifacts while using the benefits of well-known variability
models. In CPPS engineering, basic engineers draft initial CPPS de-
signs in the basic planing phase, i.e., for a rough cost estimation,
before handing them over to detailed planning. Therefore, they need
to understand the impact of product requirements on the sequence
of production processes and the particular CPPS designs. Important
product requirements come from additional product types, added
to the product line over time, i.e., an evolving product line.
The variability information within the custom solutions is typi-
cally spread across various artifacts, like requirements documents
or spreadsheets, and across different domain experts. This informa-
tion dispersion makes understanding the impact of changes and
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evolution difficult. Hence, a process to evolve industrial variabil-
ity artifacts while using the benefits of a well-known variability
modeling approach, e.g., feature modeling, would help basic engi-
neers to evolve their variability representations and, consequently,
understand the impact of their designs better.
Unfortunately, such a process is missing as domain experts
(a) mostly apply implicit knowledge and heuristics and do not
know how to (b) elicit the relevant variability information from the
engineering artifacts and (c) transform this variability information
back to the tools they require, e.g., for cost estimation.

Challenge 2. Unclear how to implement a transformation of
custom-developed industrial engineering variability artifacts into
well-known variability models. The variability information in en-
gineering artifacts is often held in differing granularity, making
it challenging to systematically analyze and model variability. So
even when a well-known variability model could be used, it is hard
for domain experts to model their variability in the new approach.
It often fails due to the implicit knowledge about existing variability
representation and the ambiguity of extracting features correctly
from existing representations.
Our industry partner’s basic engineers have problems extract-
ing features from their variability representations in TCMs and
CAD drawings and capturing their implicit knowledge about the
product variability in a well-known variability model. Therefore, a
structured method to transform these custom-developed variability
representations into a variability model, e.g., a feature model, would
support basic engineers to model their variability and further make
implicit knowledge more explicit. However, we do not expect the
domain experts in CPPS engineering disciplines to switch to a vari-
ability modeling approach soon entirely. Transforming between
different variability representations to employ their particular ben-
efits would help them understand variability better and support
them in the evolution of their representations.
From the challenges, we raise two research questions:
RQ1. How can a process support CPPS engineers evolving a product

line represented in industrial CPPS engineering variability artifacts
while taking advantage of well-known variability models? To address
Research Challenge 1, we introduce and validate the Variability
Evolution Roundtrip Transformation (VERT) process (cf. Figure 1
and Section 4) to (a) transform industrial variability artifacts into
a feature model, (b) refine the resulting feature model based on
domain expert feedback making implicit variability knowledge
explicit, and (c) evolve the feature model and industrial variability
artifacts according to additional CPPS requirements. We conducted
the VERT process in an initial feasibility study. We discussed the
resulting feature model and artifacts with our industry partner’s
domain experts to evaluate the process and artifacts’ utility and
efficacy. In this paper, we report on the results of the evaluation
and lessons learned during the process.

RQ2. How can custom-developed engineering variability artifacts
be (semi-)automatically transformed into a well-known variability
model? To address Research Challenge 2, we adapted a transforma-
tion approach for variability models [18] to automatically transform
custom-developed industrial variability representations into an ini-
tial feature model as a basis to incorporate domain expert feedback
and then transform it back to the original variability representations.
This paper introduces transformation operations implemented in

transformation algorithms, which we use in the VERT process, as
well as lessons learned.
The remainder of this paper is structured as follows. Section 2
discusses background and related work on CPPS, transformation
of variability models, and feature extraction. Section 3 introduces
the industrial shift fork product line as the use case for the initial
feasibility study. Section 4 presents the VERT process steps and
artifacts as well as transformation operations for engineering vari-
ability artifacts of our industry partner. Section 5 discusses the
initial feasibility study with feedback from the industry partner and
lessons learned. Section 6 concludes the paper and outlines future
work directions.

2 BACKGROUND AND RELATED WORK
This section summarizes work on CPPS engineering, transforming
variability models, and feature extraction.

2.1 Cyber-Physical Production Systems Eng.
CPPSs are envisioned as next-generation production systems aim-
ing for flexible and optimized production of customized goods.
CPPSs employ autonomous and cooperative resources capable of
interacting with their environment and utilize modern manufac-
turing techniques combined with information and communication
technology [28]. Key characteristics of a CPPS are, e.g., robustness,
real-time control, and self-adaptive behavior to uncertain condi-
tions [21, 28]. Examples range from automated car manufacturing
plants to large-scale smart grids, which can re-allocate resources
under load.
Engineers from different domains design CPPSs in consecutive
engineering phases, creating a multidisciplinary environment [10].
A proficient collaboration of engineers in such environments is
key but requires a sufficient exchange of engineering knowledge
between domains and throughout the CPPS lifecycle. Model-based,
machine-readable, and easy to exchange engineering knowledge
representations facilitate such a knowledge exchange [8].
The three main aspects of CPPSs are products, manufactures by

processes that employ resources to transform the state of the product
parts [38]. Realizing the vision of flexible production of product
lines requires the management of variability of the three aspects
at engineering and run time. The variability in CPPSs stems from
(a) product types and their features, (b) process sequence variants and
their particular characteristics, and (c) resource candidate variants
that enable executing a process task. To that effect, the variability of
the Product-Process-Resource (PPR) aspects and their dependencies
create a large and complex problem and configuration space. De-
pending on the architecture of the CPPS, e.g., assembly line and/or
work cell production, engineers have to make design decisions
that define the CPPS layout and production sequence at particular
phases, which can be understood as the binding time for CPPS.
In this work, we focus on design decisions implied by product
types’ structure and their assembling order in a CPPS.

2.2 Transformation of Variability Models
Many different approaches have been developed for managing
variability. The most common approaches are feature modeling
and decision modeling [14]. Researchers have compared variability
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modeling approaches [7, 14, 17] and investigated transforming
between different approaches, e.g., feature model to Orthogonal
Variability Modeling (OVM) [35], or transforming feature models
into propositional formulas or binary decision graphs for automated
analyses [5, 15]. Although there were and still are ongoing efforts
to develop a standard variability modeling language, e.g., CVL [20],
currently, no such language exists.
This work builds on a transformation approach for variability
models [18], which allows the transformation of an industrial vari-
ability representation into a well-known variability model and vice
versa. In our case, we transform the industrial variability represen-
tations, consisting of a set of artifacts, into a feature model. The ap-
proach consists of three main components. Variability meta-models
capture the (types of) elements and dependencies of variability
models. Each particular type of variability model has a meta-model,
which either exists explicitly [11] or implicitly [22], and/or an im-
plementation in a tool [16]. Transformation operations rely on the
meta-meta models of the different variability model types and de-
scribe the required operations to transform one (type of) variability
model into a different one (e.g., feature model to decision model).
Transformation algorithms rely on the transformation operations
and the meta-models of two variability model types and imple-
ment how one concrete type of variability model is transformed
into another concrete type of variability model (e.g., FeatureIDE
model [25] to DOPLER model [16]).
For this paper, we derive transformation operations and imple-
ment them in transformation algorithms to derive a feature model
from our industry partner’s custom-developed variability represen-
tation and vice versa. These transformations allow an integration
to our industry partner’s existing processes while still benefiting
from the feature modeling capabilities. It also gives us the flexibility
to work with different artifact types and generate different model
types in the future.

2.3 Feature Extraction
Retrieving the variability of existing systems can be a tedious task,
especially when done manually. Several Feature Extraction and Iden-
tification approaches have been proposed to automatically reveal
and analyze variability in various artifacts [3, 13, 24, 27].
For product comparison matrices (PCMs), which are quite similar
to TCMs, some approaches exist. Nasr et al. [29] developed an
approach to extract PCMs from pre-selected product descriptions
in natural language and provided evidence that the synthesized
PCMs sufficiently represent product variability. Bécan et al. [6]
propose a meta-model for a more formal PCMs representation and
an automated approach to transform PCMs to this model. In [36, 37],
the authors identified that unclear semantics are one of the major
limitations of PCMs. The authors propose using variability models
over PCMs, emphasize the drawbacks of current PCMs feature
extraction methods, and raise questions to bride the gap between
PCM and variability models. In a mapping study, Assunção et al. [2]
discuss further works on re-engineering of systems into product
lines with a focus on transforming various artifacts into reusable
components.
Most approaches typically focus on specific types of artifacts and

can only generate one kind of variability model. This specialization

makes it hard to apply the approaches in an industrial context,
across a heterogeneous set of variability representations used in
different disciplines, potentially evolving in the future.

3 THE SHIFT FORK USE CASE
Our industry partner is a leading company in the integration of
high-speed automation for CPPSs. The company plans and engi-
neers CPPSs based on the requirements of customers that want to
manufacture product lines, like automotive parts, effectively and
efficiently. In the following, we outline the activities and artifacts
that engineers execute and create in the basic planning phase, re-
sulting in a rough layout of the CPPS and a corresponding cost
estimate, using the shift fork product line use case. A shift fork is
part of a manual transmission in a machine, e.g., a car, that shifts
a cuff1 along rods into a particular position so that the gears con-
nect correctly. Many parts of the shift fork types are similar but,
depending on the type, need to be installed at different positions.
At the beginning of the CPPS engineering process, basic engi-

neers receive designs and/or prototypes of different product types
from the customer. The engineers investigate different options for
assembling the particular product types. Hence, they explore the
product variability and dependencies between product types, their
parts, and assembly groups2. They then enter the identified is part
of relations into a type comparison matrix (TCM) (cf. product com-
parison matrix [29]) to document the requirements and calculate,
e.g., the number of required parts for a particular number of final
products. Table 1 shows a TCM for the shift fork use case with four
shift fork types and 14 parts. The TCM holds product types in the
columns and parts and assembly groups in the rows.
Basic engineers use implicit company-specific semantics to cre-

ate the TCM. In this use case, an 𝑥 in the type column and part row
marks that a product type requires the particular product part. For
instance, Fork-13 requires Barrel 1, a commonality of all product
types, pipe Pipe 8, and lock Lock 3, which differ among the product
types. However, across engineering projects, TCMs may slightly
differ in their semantics. For instance, if a product contains two
instances of the same type, e.g., Barrel 1, an engineer may write 2 in
the row of a part type or create two rows, each containing the same
part type. Secondly, a TCM can get quite large with typically con-
sisting of 45 columns and 300 rows. The inconsistent semantics and
the often huge table makes it even for engineers challenging to read
this engineering artifact. From the TCM and implicit knowledge
on assembly techniques, the basic engineers identify the abstract
production processes and resources of the CPPS. Then, they design
a first draft of the production process sequence for the unification of
all processes for the requested product types with a corresponding
CPPS layout and a cost estimate.
From discussions with domain experts at our industry partner,

we assume that a more formal model with defined semantics, like a
feature model, would benefit their work. It could help them to ana-
lyze and discuss the features and their dependencies. Furthermore,
an explicit representation of the product parts’ dependencies and
how they are assembled would improve the knowledge transfer
1See a shift fork illustration at https://commons.wikimedia.org/wiki/File:Manual_
transmission_clutch_First_gear.PNG
2An assembly group is an intermediate part that can be assembled in a separate CPPS
module or in parallel to other tasks.
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Table 1: Variability matrix of the shift fork types.

Parts/Types Fork-13 Fork-2R Fork-46 Fork-57
Pipe 2 ×
Pipe 3 × ×
Pipe 8 ×
Barrel 1 × × × ×
Jack 1 × × × ×
Ring 1 × × × ×
Fork 3 × × × ×
Fork 4 × × × ×
Fork 5 × × × ×
Lock 1 × ×
Lock 2 ×
Lock 3 ×
Screw × × × ×
O-Ring × × × ×

between engineering phases and disciplines, especially as some
of the domain experts’ knowledge is currently only available im-
plicitly, as internal expertise. Still, experience [9, 41] shows the
difficulty to motivate a company to switch to a new approach (and
tooling), in part due to the effort to create and maintain variability
models manually. We thus aim to (1) automatically generate at least
an initial version of a feature model and (2) to support roundtrip
engineering, i.e., allow domain experts to keep working with their
artifacts while updating them based on feature model changes, like
refined constraints.

4 VARIABILITY TRANSFORMATION FROM
AND TO ENGINEERING ARTIFACTS

This section introduces the Variability Evolution Roundtrip Trans-
formation (VERT) process and the transformation operations to
transform the engineering variability artifacts into a feature model
and vice versa.

4.1 Variab. Evol. Roundtrip Transform. Process
We define the six-step VERT process (cf. Figure 1) to address re-
search question RQ1. The process is inspired by agile engineering
techniques and developed based on discussions with several in-
dustry partners from CPPS engineering as well as recent research
on variability model transformation [18]. The VERT process starts
from engineering artifacts provided by the basic engineers and
transforms these custom-developed variability representations into
an initial feature model. This feature model serves as the basis for
an optimization and evolution cycle using configuration sampling
and basic engineers’ feedback. The optimized feature model is then
transformed back into their original variability representation. This
roundtrip allows basic engineers the evolution of the product and
CPPS variability more systematically and make the implicit knowl-
edge available. In the following, we describe the VERT process steps
in detail and illustrate them using the shift fork use case.

Step 1: Analyze variability information. In this step, the vari-
ability modeling expert (VME) (in our case, a researcher) analyzes
various engineering artifacts to understand the product types, their
variability, and dependencies. These artifacts, provided by the basic

engineers, consist of initial TCMs, engineering documents, e.g.,
CAD drawings, and basic engineering knowledge. The analysis
of the artifacts results in a cleaned-up TCM (cf. Table 1) and a
Precedence Graph (PG) (cf. Figure 2) with the relevant variability
information extracted. The initial TCMs often contain additional
information, like pictures, word glossaries, and various comments.
Hence, the VME needs to clean up these initial TCMs and extract
the relevant variability information. The result is a TCM represent-
ing the different product parts and the product types, similar to the
one in Table 1. The TCMs, as provided, contain only limited infor-
mation on dependencies between the particular product parts of a
product type. The remaining information is implicit knowledge of
basic engineers, for example, implies relations and a basic sequence
of assembly steps (e.g., that the fork needs to be welded onto the
pipe). The PG represents these dependencies explicitly as a basis for
reasoning on possible product structures and assembly sequences.
Figure 2 illustrates for the shift fork use case a PG that defines

which parts need to be installed before particular other parts can
be installed3 as black-headed arrows. For instance, Fork 5 needs to
be welded onto the Pipe prior Fork 3 and Fork 4 as, otherwise, the
welding point cannot be reached anymore. However, it is arbitrary
whether Fork 5 or Barrel 1 is installed first. The graph also shows
which product parts are subtypes of an abstract group, in gray,
using white-headed arrows. For example, Pipe 2 belongs to the Pipe
group as Lock 1 belongs to the Lock group. The VME creates an
𝑁 ×𝑁 adjacency matrix that represents the PG as shown in Figure 2
from the given variability descriptions, where 𝑁 is the number of
parts in the product line.

Step 2: Transform variability artifacts to feature model. In this
step, the VME uses our transformation approach to automatically
transform the TCM and PG from Step 1 into an over-approximated
feature model (cf. Figure 3). The generated feature model allows
to conduct advanced analyses of the product types and their de-
pendencies. Subsection 4.2 describes the transformation operations
extracting features from the TCM and the PG to create an over-
approximated feature model in detail.

Step 3: Derive configuration samples. In this step, the VME uses a
configuration generator that follows a sampling algorithm to derive
configuration samples, i.e., product type samples. Configuration
sampling is a well-known technique where a representative set
of valid configurations [30, 31] is created to enable product-based
testing of software product lines [40]. In our process, we rely on the
YASA [23] sampling algorithm implemented in the FeatureIDE [25].
The generated product type samples from this step are based on
the over-approximated feature model coming from Step 2 or the
improved feature model coming from Step 5. The product type sam-
ples are a valid set regarding the feature model and allow checking
whether it fits the required set of product types.

Step 4: Collect feedback from basic engineer. In this step, the VME
and basic engineers, based on their implicit knowledge, manually
analyze and discuss the initial feature model in comparison with
the product type samples to collect feedback in a shared document
for improving the model. The VME and basic engineers take the
over-approximated feature model and the product type samples
coming from Step 3 as input for analysis. The basic engineers give

3For better visualization, we do not show the transitive dependencies in the figure.
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Figure 1: The VERT process of generating a feature model from custom-developed variability representations.

feedback on the overall feature model structure, e.g., number and
correctness of features and feature groups. The basic engineers then
check whether the product type samples fit the customers’ product
line and if the most relevant product types exist. They also check
if the constraints in the feature model are too strict or too loose.
The feedback loop results in a proposal of changes to the feature
model, e.g., to add or rearrange features and improve constraints,
or the acceptance of the feature model. The feedback also pertains
to improvements of the engineering variability artifacts, such as
inconsistencies or missing information. For evaluating the VERT
process, we conducted this step with three of our industry partners’
domain experts for the shift fork use case (cf. Section 5).

Figure 2: The Precedence Graph (PG) of shift fork product
line parts from the TCM (cf. Table 1).

Step 5: Incorporate feedback into feature model. In this step, the
VME incorporates the feedback of the basic engineers from Step
4 into the feature model. Therefore, either the VME integrates the
required changes into the feature model resulting in an improved
feature model, or the basic engineers approve the model resulting in
an accepted feature model. The improved feature model is input to
the next refinement iteration in Step 3, where product type samples
are generated based on the model. The accepted feature model is
forwarded to Step 6. Figure 4 shows the accepted feature model
with several modifications requested by the domain experts. The
feedback cycle between Step 3 and Step 5 can be executed directly
in the meeting with the basic engineers with software support like
feature modeling tools.

Step 6: Generate engineering variability artifacts (roundtrip trans-
formation). In this step, the VME uses the transformation approach
to generate the evolved engineering variability artifacts from the
accepted feature model. The results are a new TCM and PG with
the changes of the feature model. This way, basic engineers can
effectively pass on the feedback collected (Step 4) and changes made
in the feature model (Step 5) to the original engineering variability
artifacts. Furthermore, basic engineers can work with the generated
engineering variability artifacts, e.g., to calculate certain product
properties or evaluate a CPPS design. The adapted engineering vari-
ability artifacts can then be used as an input to Step 2 for another
iteration closing the roundtrip and as a basis for the co-evolution
of domain-specific variability artifacts and feature models.

4.2 Variability Transformation Operations
We define a sequence of transformation operations that allow the
transformation of the TCM and PG into a feature model and vice
versa, to address research question RQ2. The transformation opera-
tions aim for an over-approximated feature model, as redundant
information can be removed during the first feedback session with
the domain expert, but might help them to understand the resulting
model. We implemented the transformation operations to auto-
matically transform the TCM and PG into a FeatureIDE feature
model [25] and back. The algorithms take the TCM and PG as
input and produce a feature model, or take the feature model as
input and create a TCM and PG, respectively. Figure 3 shows the
generated feature model from the custom variability representa-
tion. We conducted a preliminary evaluation with data from the
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Figure 3: The initially generated feature model for the shift fork product line
consists of 21 features and 22 constraints with a maximal feature tree height of 2.

Figure 4: The updated feature model for the shift fork product line, accepted by domain experts after four iterations.
The accepted feature model consists of 21 features and 3 constraints with a maximal feature tree height of 2.

shift fork use case (cf. Section 5) to evaluate the feasibility of these
transformations.

Transformation from TCM and PG to feature model. Operation
productPartToFeature creates a feature for each part in the TCM.
For a group of parts sharing the same name (e.g., feature Pipe 2,
Pipe 3 or Pipe 8 in Figure 3) the operation creates an abstract par-
ent feature (cf. feature Pipe in Figure 3). This approach works in
practice, as similar product parts, like the pipes, have names with
part numbers that start with the same number groups. Operation
productTypeToFeatureCardinality defines the cardinality of each
feature according to the types it is part of. Per default, each feature
is optional but becomes mandatory if it is part of all product types.
If there is only one instance of a part per product type, the feature
group becomes an alternative group (e.g., only one Pipe is used at
the same time). If a feature group is not used in all but used together
with other parts of the same group, the feature group becomes an or
group (not visible in the example use case). Operation productType-
ToFeatureAttribute defines that each part-feature stores its relevant
product types as attributes of the feature (e.g., store Fork-2R and
Fork-46 as attributes in feature Pipe 3). Type information stored
with the derived features enables roundtrip engineering artifact
transformation. Operation dependencyToImpliesConstraint trans-
forms the dependencies captured in the PG into implies constraints
in the feature model. For each dependency, it creates an implies
constraint, based on the direction of the dependency in the PG.

For instance, the implies constraint Lock 1 implies Pipe 3 is based
on the dependency Lock 1 → Pipe 3 in the PG (cf. Figure 2). Many
constraints derived from the PG would not be necessary, as those
constraints are already represented via feature groups in the feature
model. Nevertheless, these constraints may help domain experts
understand the model and are thus kept. They can be removed in a
feedback meeting or using optimization support from FeatureIDE.
The over-approximated constraints in the feature model impact
the set of product configurations that can be derived from the fea-
ture model, as some of the constraints violate the feature group
constraints (e.g., constraints Lock 1 → Pipe 2 and Lock 1 → Pipe 3 vio-
late the alternative constraint of the Pipe feature group). Therefore,
feedback from basic engineers is necessary to capture the product
variability correctly.

Transformation from feature model to TCM and PG. Operation
featureToProductPart transforms each part-feature of a feature
model into a product part of the TCM. Operation featureAttribute-
ToProductType restores the product types of the TCM from the
feature attributes. Specifically, it restores for each part the types
from the respective feature and stores these type assignment in
the TCM. Operation constraintToPGDependency restores the PG
from the constraints of the feature model. The operation creates a
dependency for each implies constraint in the resulting PG.
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5 PRELIMINARY EVALUATION
We conducted an initial feasibility study on the Variability Evolution
Roundtrip Transformation (VERT) process and the implemented
transformation operations as a preliminary evaluation and to collect
industry feedback on the research results.
The study’s objective is to assess the utility and efficacy of the
VERT process and the artifact transformation from a domain ex-
pert’s perspective. Two researchers (authors of this paper) con-
ducted the VERT process in a workshop together with a basic
engineer and two senior domain experts at our industry partner
to investigate how they handle the process and value the artifacts.
They employed the shift fork use case and conducted the process
in four iterations. We assume that the VERT process helps domain
experts to better model and evolve their variability representations
and reveals implicit knowledge that can be externalized. Finally,
two researchers (authors of this paper) collected the senior domain
experts’ feedback during the workshop and discussed the inter-
views’ results after finishing the process. They mainly collected
feedback on the representations of the transformation results and
input for future work. In the evaluation, we focus on the research
questions (RQs) raised in Section 1. For both questions, we distilled
industry feedback takeaways (Fx.x – words in brackets serve for
better understanding) and lessons learned (LLx.x) for researchers.

5.1 Var. Evo. Roundtrip Trans. Process (RQ1)
The domain experts found the VERT process understandable and
useful to augment their current CPPS engineering process. The
domain experts found the VERT variability model representations,
i.e., the TCM and the PG useful. They noted that these artifacts
capture the dependencies of the custom-developed variability rep-
resentation and suitably express implicit domain expert knowledge
to facilitate analysis and reuse. In particular, knowledge reuse con-
cerns understanding the impact of changes to the product line that
require the evolution of variability knowledge. We received the
following feedback for future work.

F1.1: Co-evolution of variability representation and product type
changes is a key capability. A major takeaway was the importance
of a structured and systematic co-evolution of product type and
CPPS variability representation. In practice, evolutionary changes
are triggered by new product types or processes or by changing
product types and processes. Basic engineers “often do not dare to
change designs made by other domain experts but rather design
many artifacts from scratch to avoid the risk of corrupting a cost
estimate or running system”. The engineers noted that a method
to use a “feature model [to represent their variability needs] is
definitely worth the additional effort for creating the [variability]
model.” This emphasizes the need for further research in the field
of variability co-evolution in CPPS engineering.

F1.2: The variability model has to represent production processes.
The basic engineers pointed out that “at some point, we also re-
quire the [assembly] processes [that produce the products] to be
shown in the feature [variability] model” (cf. Section 2.1) to repre-
sent CPPS variability sufficiently. For instance, a particular process
that does not work for a product type as initially intended, e.g., a
screw cannot be easily installed from a designed position, may re-
quire changing the product assembly groups and the feature groups

and constraints in the feature model. This coexistence of engineer-
ing artifacts requires further research on a variability model that
integrates product, process, and resource variability [26].
Besides the feedback of the domain experts, we learned the
following lessons during the research process.

LL1.1: Understanding custom variability representations is chal-
lenging. One of the biggest challenges for researchers was under-
standing the custom variability representations (such as TCMs,
CAD drawings of products, and CPPS layouts) in VERT Step 1 well
enough to design the PG and systematic operations to transform
these variability representations into a feature model. Without the
knowledge of and training by domain experts, it would have been
very difficult to create a feature model that domain experts can work
with. Sometimes even the domain experts struggled to remember
and express the reasons for particular design decisions.

LL1.2: The level of detail in the Precedence Graph determines
the semantic foundation for expressing constraints. The variability
model’s goal is to allow configuring all valid product types that the
CPPS shall be able to produce. We experienced that one must be
careful not to over-constrain the model using the PG. In our case,
the level of detail of the shift fork’s PG and the derivation of the
adjacency matrix had a major impact on the feature model’s “con-
figurability”. Suppose there are too many details and dependencies
in the matrix, e.g., not grouped around parent type. In that case,
very few product configurations can eventually be derived from the
resulting feature model, or the feature model may become invalid.
Hence, besides the careful creation of the PG, the definition of suit-
able rules to derive its adjacency matrix needs to be investigated
before extracting the constraints. This issue is based on the fact
that the engineers currently do not create such an explicit artifact.
We also experienced that the adjacency matrix as-is cannot express
excludes or negations constraints. This calls for an extension of the
semantics of the PG and adjacency matrix.
Our preliminary evaluation results show the feasibility and in-
dicate the utility of our VERT process as a foundation for product
line evolution (cf. RQ1) by systematically transforming industrial
variability engineering artifacts to a well-known variability model.

5.2 Variability Transformation Alg. (RQ2)
The domain experts liked the feature model generated by the vari-
ability transformation algorithm and the product variability rep-
resentation as a feature model in general. The FeatureIDE [25]
supported them in easily adding new product features and depen-
dencies. Further, domain experts found it useful to transform the
updated feature model back into the original representation of the
TCM and the PG as input to their subsequent processes. They gave
the following valuable feedback for future work on the transforma-
tion and the resulting feature model.

F2.1: Counter-intuitive syntax of the feature model and constraints.
Domain experts had problems to understand the syntax of the fea-
ture model and its constraints at first. They especially experienced
problems with particular constraints when incorporating the feed-
back to the feature model despite configurations sampling. For
example, they were unsure whether “the lock should imply the
pipe” or the other way around, making it hard for them to resolve
dead features in the feature model. Teaching variability modeling
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(to industry) is a foundation for practical application the community
needs to improve [1].

F2.2: Integration of variability artifacts into one feature model
is useful. Figure 3 shows the feature model generated from the
TCM (see Table 1) and the PG (see Figure 2). The domain experts
liked “the hierarchical structure of the feature model and the con-
cept of abstract features to group features to assembly groups” used
in different product types. Integrating variability information from
multiple artifacts into one single model was considered useful.

F2.3: The feature model should contain product type information.
In comparison to the engineering artifacts, the feature model loses
the information of the particular product types, which are crucial
to track for the domain experts. CPPS engineers think in product
types that they receive as requirements from customers. While vari-
ability models provide support to represent the commonalities and
variability of the product types, only very few product configura-
tions make sense to produce on a CPPS. The engineers want “at any
point in the engineering process an overview on the product types
that are modeled in the variability model”. This is a big difference in
software engineering. The “production cost” of combining features
to software products is small compared to producing industrial
goods, which has to focus on profitable types.

LL2.1: Custom variability representations lack well-defined se-
mantics. For example, certain product parts are used multiple times
during product assembly (e.g., Barrel 1 is used twice in several shift
forks). However, this multiplicity is not always reflected as proper
quantification in the engineering artifacts. When asked why their
variability representation does not capture this information, do-
main experts mainly gave two reasons. First, unfortunately, they
do not have rules for treating instances in the variability represen-
tation, but “rely on heuristics and the experience of the experts
on what works best for a particular project”. Second, sometimes
the customer provides a basic type comparison matrix along with
other requirements documents and the basic engineer adopts the
customer’s informal semantics. This confirms research reported by
Sannier et al. [36] and exemplifies the issue of insufficient semantics
also in industry.

LL2.2: Tool support is essential in feature extraction approaches.
The results of the VERT evaluation indicate a promising first step
towards variability co-evolution in CPPS engineering. The automat-
ically generated initial variability model is a good basis for further
discussions. However, further specific roundtrip and co-evolution
tool support is needed for practitioners. Our industry partner aims
to provide basic engineers with novel engineering tools that shall
build on capabilities from recent research on variability modeling
and co-evolution support.
Our preliminary evaluation demonstrates that a set of transfor-

mation operations could be successfully implemented to (semi-) au-
tomatically transform industrial variability engineering artifacts
into a variability model and back (cf. RQ2).

6 CONCLUSIONS AND FUTURE WORK
Practitioners frequently develop custom variability representations
that hardly follow or adapt one of the many systematic variability
modeling approaches from the software product line community.
These custom representations are often incomplete, with weak

semantics, e.g., spreadsheets, and lack domain experts’ implicit
knowledge on variability. In this paper, we introduced the iterative
Variability Evolution Roundtrip Transformation process, enabling
the systematic transformation and evolution of engineering vari-
ability artifacts that represent related product types produced on
Cyber-Physical Production System to a feature model. We built on
an existing transformation approach to transform the artifacts. We
showed the VERT process’ feasibility for the representative indus-
trial shift fork product line use case. We evaluated the VERT process
with our industry partner’s domain partner on utility and efficacy
and reported on their feedback and lessons learned for researchers.
Domain experts found the VERT process feasible and useful,
and the generated feature model suitable in the study context. We
infer that the VERT process is a promising contribution towards
product variability evolution in CPPS engineering. We found that
the impacts of product line evolution on CPPS process and layout
design can be significant and that understanding them is crucial for
domain experts. Hence, we advocate for an integrated CPPS vari-
ability model considering the variability of products, processes, and
resources alike. Understanding the semantics of engineering vari-
ability artifacts and grasping implicit domain experts’ knowledge
is challenging. In reverse, the semantics of well-known variabil-
ity models seem to not always be intuitive for domain experts.
We argue that industry and academia do not understand their re-
spective concepts well enough to find common ground, calling for
closer collaboration to convey relevant concepts. Yet, transforming
between variability models can bridge a gap between the fields.
We also found that product type information is significantly more
important in the engineering domain than the software domain,
reflecting fundamentally different needs of the two domains.
In future work, we plan to investigate using type comparison
matrices (TCMs) from larger projects and examine the evolution-
ary impact of omitting and adding product types to a product line
one at a time. We further plan to use a Precedence Graph (PG)
to represent the variability of (production) process sequences and
derive and inform basic engineers on feasible process alternatives,
e.g., production processes optimized for resource type usage. Such
a PG could then be transformed into a decision model for design
decision support and to generalize the employed transformation ap-
proach. Based on these experiences, we plan to perform a case study
with an industry partner to evaluate the transformation approach.
Additionally, an extension of the adjacency matrix semantics to
represent implies, excludes, and negation constraints of the feature
model is required. We further plan to explore how research from
the SPL community can better support the evolution of custom-
developed variability representations. In parallel, we investigate
possibilities to partly automate the PG’s creation, e.g., from CAD
product drawings, to reduce the manual effort for researchers and
basic engineers.
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Aim

The publication “A reusable set of real-world product line case studies for comparing
variability models in research and practice” [127] provides four real-world case studies
with their product, process, and resource variability as a foundation for the evaluation of
the approaches and techniques presented in this thesis. formalized in the PPR–DSL The
publication (i) describes four real-world case studies of different complexity, (ii) formalizes
then in the PPR–DSL, and (iii) introduces the VERT approach to transform the variability
modeled in the industrial engineering artifact into state-of-the-art variability models, i.e.,
feature models.

Contribution to the thesis

This publication contributes to the research goals case studies for evaluation formalized
in PPR–DSL (G5.), CPPS engineering artifacts with variability (G5.), and CPPS
engineering artifact to variability model transformations (G4.).

This publication contributes to RQ1. and RQ3. by addressing the VDI 3695 measures
of models and description languages M1., re-use M3., quality assurance M4., integration
and seamless cooperation of disciplines M5., and the SPL capabilities efficient reuse C1.,
variability management C3., enhanced quality and consistency C4., and facilitation of
interdisciplinary collaboration C5..

Abstract

Real-world cases describing (product) variability in production systems are rare and
often not accessible. Thus, researchers often use toy examples or develop fictitious case
studies. These are designed to demonstrate their approach but rarely to compare multiple
approaches. In this paper, we aim at making variability modeling evaluations comparable.
We present and provide a reusable set of four real-world case studies that are easy to
access, with artifacts represented in a universal, variability-model-agnostic way, the
industrial PPR–DSL. We report how researchers can use the case studies, automatically
transforming the DSL artifacts to well-known variability models, e.g., product feature
models, using the VERT process. We compare the expressiveness and complexity of the
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transformed feature models. We argue that the case studies with the DSL and the flexible
transformation capabilities build a valuable contribution to making future research results
more comparable and facilitating evaluations with real-world product lines.
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ABSTRACT
Real-world cases describing (product) variability in production sys-
tems are rare and often not accessible. Thus, researchers often use
toy examples or develop fictitious case studies. These are designed
to demonstrate their approach but rarely to compare multiple ap-
proaches. In this paper, we aim at making variability modeling
evaluations comparable. We present and provide a reusable set
of four real-world case studies that are easy to access, with arti-
facts represented in a universal, variability-model-agnostic way,
the industrial Product-Process-Resource Domain-Specific Language
(PPR DSL). We report how researchers can use the case studies,
automatically transforming the Domain-Specific Language (DSL)
artifacts to well-known variability models, e.g., product feature
models, using the Variability Evolution Roundtrip Transformation
(VERT) process. We compare the expressiveness and complexity of
the transformed feature models. We argue that the case studies with
the DSL and the flexible transformation capabilities build a valuable
contribution to making future research results more comparable
and facilitating evaluations with real-world product lines.

CCS CONCEPTS
• Software and its engineering → Software product lines.
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Variability Modeling, Feature Extraction, Cyber-Physical Produc-
tion System, Case Studies.
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1 INTRODUCTION
In Software Product Line (SPL) engineering developers aim at de-
veloping software(-intensive) systems through systematic reuse of
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artifacts and their customization [4]. SPL engineering uses variabil-
ity modeling to explicitly represent the commonalities and variabil-
ity of reusable artifacts and their dependencies for building and
evolving the family of underlying systems [1].
In Cyber-Physical Production Systems (CPPSs) engineering, engi-

neers from different disciplines develop software-intensive systems
that manufacture product lines employing modern production tech-
niques [3]. CPPSs can adapt to uncertain conditions of their physical
environment using the latest information and communication tech-
nology [18]. Designing a CPPS requires variability modeling on
multiple levels, e.g., the product, process, production resource, and
software level. Therefore, engineers create different engineering
artifacts (e.g., product comparison matrices (PCMs) [19] or CAD
drawings ) that contain variant information. These artifacts are of-
ten unstructured and need to be analyzed to model and extract the
overall CPPS variability. While the amount of structured variability
modeling approaches is overwhelming, industrial practitioners are
often unaware of available approaches and their application [2, 20].
Case studies can help researchers and practitioners to gain in-

sights into variability modeling in different contexts. They are also
a major empirical strategy to describe and investigate phenomena
in software engineering [22]. Examples in SPL engineering are, e.g.,
the challenge repository of the SPL community1, the SPL2go [23]
catalog of SPLs, the SPLOT repository [17], the Extractive Software
Product Line Adoption (ESPLA) case study catalog [13], and the
Apo-Games [12] case study on reverse SPL engineering.
However, case studies for extractive variability modeling are
often not fully accessible nor easy to reproduce [13]. According
to the ESPLA catalog about 20 case studies in the catalog describe
variability in production systems engineering, but none of them
are accessible. On variable production systems, we found a single
accessible case study only, the Pick-and-Place Unit (PPU) [24].
This shortage tempts researchers to often use toy examples or fic-

titious case studies to demonstrate their particular approaches [13].
However, such case studies are often not reusable in different con-
texts or for different approaches. This makes it challenging to com-
pare variability modeling approaches and their evaluations for
potential use in the industry. Hence, we raise the question, which
set of real-world cases can be used to investigate variability modeling
approaches and how can these cases be used in research and practice?
The effort to manually create (and maintain) variability models
from industrial artifacts is very high [1]. Therefore, we also need to
investigate how to efficiently extract variability information from
engineering artifacts and create state-of-the-art variability models.
This work aims to make evaluations for CPPSs easier to repro-

duce and more comparable. Hence, this paper introduces a reusable
1https://variability-challenges.github.io/
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set of four real-world case studies for product lines in CPPS engi-
neering: (i) the 3D-printed truck, (ii) the shift fork, (iii) the water
filter, and (iv) the rocker switch product lines, exhibiting varying
levels of complexity from three domains.
The case studies are represented universally in the PPR DSL [16]

as CPPS engineering artifact. The PPR DSL was created to represent
the functional view on CPPSs including system variants. This allows
to represent the required concepts for a transformation to different
well-known variability models, e.g., feature models. Researchers can
transform the PPR DSL instances into variability models to evaluate
selected SPL approaches. For instance, this paper demonstrates
how PPR DSL artifacts can be transformed into product feature
models, using the VERT process [6]. We discuss the case studies
and compare the resulting artifacts and models to investigate their
expressiveness and complexity. The case studies can and should
be used by the community to evaluate and compare innovative
variability modeling approaches. DSL artifacts, feature models, and
case descriptions are available in an online repository2.

2 RESEARCH QUESTIONS
CPPS variability originates from different sources [21]. The char-
acteristics and variability of the products manufactured in these
systems influence all subsequent engineering activities and deci-
sions. We aim to search for and elicit available case studies for
product lines in production systems of different complexity, e.g., as
in the number of product variants, their features, and constraints,
as a foundation for investigating product variability in CPPS. We
also investigate the applicability of our real-world case study sys-
tems to allow researchers to compare different variability modeling
approaches. Therefore, we define the following research questions.

RQ1. Which real-world case studies satisfy minimal requirements
as a basis to investigate product variability in production systems?
We propose minimal requirements for real-world case studies to
investigate variability in CPPS. Adhering to these requirements, we
selected and elicited four real-world case studies of product lines
for production systems from ongoing collaboration projects. We
present and describe the case study systems in Section 5.

RQ2. How can we obtain variability models from the real-world
case study systems to compare different variability modeling ap-
proaches? We show that our case studies can serve as a basis to in-
vestigate different variability modeling approaches and make them
better comparable. To demonstrate this, we first describe the CPPS
product variants using the industrial PPR DSL. We demonstrate
how we transform the DSL instances of the real-word case study
systems to feature models and back using the VERT process [6],
which builds on the variability model transformation approach
TRAVART [7]. We then compare these resulting models to the case
study descriptions focusing on their features and constraints.

3 CPPS MODELING WITH VARIABILITY
To plan a CPPS, engineers first design its functional model using
Product-Process-Resource (PPR) concepts including different vari-
ants. Therefore, Meixner et al. [16] designed the PPR DSL building
on extensions of the Formalised Process Description (FPD) [9]. Prod-
uct design (with variants) is a crucial part of CPPS planning as the

2https://github.com/tuw-qse/cpps-var-case-studies

1 Attribute "length": { type: "Number", unit: "mm" }
2
3 Product "Chassis": { name: "Chassis" }
4 Product "Cabin": { name: "Cabin" }
5
6 Product "Body": { name: "Body",
7 isAbstract: true }
8
9 Product "Tank": { name: "Tank",
10 isAbstract: false ,
11 implements: [ "Body" ] }
12
13 Product "OpenTop": { name: "OpenTop",
14 isAbstract: false ,
15 implements: [ "Body" ], length: 30 }
16
17 Product "Legotruck": { name: "Legotruck",
18 isAbstract: true ,
19 children: [ "Chassis", "Cabin", "Body"],
20 requires: [ "Chassis", "Cabin", "Body"] }
21
22 Product "Legotruck1": { name: "Legotruck1",
23 isAbstract: false ,
24 implements: [ "Legotruck" ],
25 requires: [ "Tank" ], excludes: [ "OpenTop" ] }

Listing 1: PPR DSL [16] excerpt of the 3D-printed truck.

variants and parameters determine the production processes and
resources. For instance, a product 3D-printed Truck (cf. Section 5.1)
basically consists of a body, a chassis, and cabin but has several
variations like a tank body. Depending on the variant, it needs to
be assembled differently requiring different production resources.
Listing 1 shows a PPR DSL excerpt of the truck. Line 1 defines
a (global) Attribute length. Lines 3 & 4 define two Products Chas-
sis and Cabin. Line 6 defines an abstract product Body (keyword:
isAbstract). An abstract product represents either a virtual prod-
uct, e.g., to group similar products part types like bodies, or an
assembly group, a set of functional connected parts that result
from a production step. Lines 8 & 10 define the product Tank as
implementation of the body (implements). Lines 11 to 13 define the
OpenTop product implementing the body with a length of 30 mm.
The abstract product Legotruck (Lines 15-18) holds the parts (chil-
dren) and the required products (requires – similarly there exists
an excludes keyword). We use the two product keywords requires
and excludes to map dependencies and exclusion criteria of prod-
ucts. Abstract products can contain abstract and concrete products
in these lists. Finally, the variant Legotruck1 (Lines 20-24) imple-
ments the Legotruck, requiring the Tank as implementation for the
Body. Furthermore, the product excludes the OpenTop as a possible
body alternative. Similarly, the PPR DSL can describe production
processes with their input and output products and resources.
However, for a more systematic management of variability, en-
gineers would benefit from a dedicated variability model. Feature
models are well-known to model the variability of different sys-
tems [5]. They can also represent the product variability modeled in
the PPR DSL, which, however, requires a sufficient transformation.
Figure 1 shows a feature model for the product described by the
PPR DSL in Listing 1. Instead of representing the particular truck
variants, it shows the features that the product line consists of. Due
to space constraints and their prominence we refer to the relevant
literature for details on feature models [14].
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Figure 1: Feature model of the 3D-printed truck.

4 STUDY REQUIREMENTS AND PROCESS
We identified the following requirements from discussions with
researchers and practitioners in CPPS research and engineering
and based on our long-time research experience in the field.

Req1. Product variability in production systems. The case study
must cover the variability of products that can be manufactured on
a production system. Req1. is important as this product variability,
introducing configuration options that are non-Boolean and can be
instantiated multiple times, drives the subsequent CPPS variability.
The production process must allow for automation, at least in a
future CPPS. Therefore, (i) we exclude software products and (ii) we
leave process and resource variability of CPPSs for future work.

Req2. Structured product variants. The products produced in the
CPPS need to be sufficiently similar to build at least a minimal
product line. Product line engineering text books [4] argue that 50%
to 80% commonalities are required for a product line. We would
not want to specify an exact number but exclude case studies on
special production or specialized manual labor, where products are
unique with few commonalities.

Req3. Availability of domain experts or documents. This require-
ment is crucial to properly describe the particular case study. It
requires domain experts who sufficiently understand the product
line and a candidate production system to discuss variability and
provide feedback. Further, the case study elicitation requires suffi-
cient documentation, e.g., CAD drawings of product variants, to
extract product variability information.
Based on these requirements, we performed an iterative research

process to elicit the real-world case studies from our collaborations
using the following three steps.

1. Identify accessible real-world case studies.We employed
strategies from two methodologies, the case study guideline [22]
and the design sciencemethodology [26]. Specifically, we conducted
offline and online interviewswith practitioners and researchers from
three collaborations with industry and academia on production sys-
tems. Based on the discussions, we derived and defined minimal
requirements on real-world case study systems that should be used
to investigate variability in production systems. We describe these
essential requirements in Section 5. From these collaborations, we
identified and selected four particular cases that fulfill the require-
ments and gathered documentation material to study them.

2. Extract variability information to PPRDSL.CPPS variabil-
ity aspects are often described in various engineering artifacts [21].
Manually creating and maintaining variability models from such
(industrial) artifacts is tedious [2]. Following the case study guide-
line, in a data analysis step, we modeled the product lines in the
PPR DSL, checked the results with the interviewees, and interpreted
the data. In the modeling process, we focused on the product vari-
ability of the case studies and left the CPPS’s process and resource

variability for future work. Therefore, the author that developed
the DSL in close cooperation with industry modeled our four case
study systems using the PPR DSL. The author mapped the product
parts, the intermediate assembly groups, and the product variants
to concepts in the DSL. The author also analyzed and mapped the
dependencies between the products and between their parts to
is-part-of (children), requires, or excludes concepts.

3. Transform a PPR DSL artifact to a well-known variabil-
ity model. Applying the VERT process [6] enables users to trans-
form engineering artifacts containing variability information, such
as the PPR DSL, into variability models like feature or decision
models. Following the iterative design science methodology [26]
one author (different from the author performing Step 2) defined a
mapping between the PPR DSL and FeatureIDE [14] feature mod-
els. The mapping facilitated defining transformation operations be-
tween the two representations and implementing them as part of
the TRAVART [7] approach. In Section 3, we describe the mapping
between the PPR DSL and feature models. Additionally, the author
sampled the configurations for each case study’s resulting feature
model using the YASA sampler [11] to estimate the configuration
space for the case studies.
The VERT process used in Step 3 builds on the variability ar-
tifact transformation approach TRAVART [7]. In this approach,
transformation operations describe the operations required to trans-
form one (type of) variability model into a different one (e.g, feature
models into decision models), based on their meta-models. If no
variability meta-model is available (e.g., for industry representa-
tions), these transformation operations define a mapping between
the industry engineering artifact and the well-known variability
model. Transformation algorithms implement the transformation
operations between two concrete variability model types (e.g., fea-
ture model to decision model) or the industry representation to a
variability model (e.g., the PPR DSL [16] to a feature model)
Based on learnings from earlier work [6], we map all product

variability concepts of the PPR DSL to concepts of feature models.
We accommodate for specific concepts of the PPR DSL, which a
feature model cannot represent, e.g., custom attribute definitions
or constraints based on these custom attributes, by storing them
in feature properties. Table 1 shows the mapping in between the
DSL artifact components and a feature model. The mappings are
implemented so that the relevant information to restore the source
model (type) are maintained. A detailed description of transforma-
tion operations is available online2.

Table 1: Mapping of PPR DSL to Feature Model.

PPR DSL Feature Model

cu
st

om
at

tr
ib

ut
e attribute property

type property
unit property
defaultValue property
description property

pr
od

uc
t

id name
name property
isAbstract defines if the feature is abstract
implements property/feature tree
requires implies constraint
excludes excludes constraint
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5 CASE STUDIES
Based on the requirements we selected four case studies of real-
world product lines in discrete manufacturing of different complex-
ity. For each case study, we evaluate the VERT transformations by
comparing the PPR DSL engineering artifacts and the feature mod-
els resulting from the transformations. Also, for each case study,
we describe possible (and partly ongoing) applications in research
and practice. Table 2 shows an overview comparing key character-
istics of the case studies. The PPR DSL files, feature models, and
additional material are available in the corresponding repository2.

5.1 Case Study 3D-printed Truck
Overview. The real-world 3D-printed truck product line is produced
in an academic production system, the Testbed for Industry 4.0 (I4.0)
at Czech Technical University in Prague3. The I4.0 Testbed is used
for research and technology transfer on various topics of CPPSs
and collaborative robot-human production, like process schedul-
ing and optimization and adaptive production. The I4.0 Testbed
can manipulate different products using three robot arms and a
conveyor belt that can be flexibly configured. The truck case is of
low complexity with just four possible types and no dependencies
between the features in the product structure itself.

Data collection. We interviewed one researcher, with whom we
have a long-running collaboration, at online and offline meetings,
i.a., during a visit at the I4.0 Testbed, in semi-structured interviews.
Further, we elicited relevant parts of the case study from documents
that we received from the researcher, including publications [25].

Variability. To research thementioned phenomena, the I4.0 Testbed
is configured to assemble the truck product line, currently consisting
of four different 3D-printed truck variants. Basically, a truck con-
sists of three basic parts, the chassis, the cabin, and the body. While
the chassis and the cabin are the same in all truck variants, there are
four types of truck bodies: dumper, opentop, stakebed, and tank. In
addition, the single parts of the truck can be produced in different
colors. Wally et al. [25] discussed the I4.0 Testbed as a running use
case for iterative process refinement, also providing a feature model
of the truck product line. We do not consider the colors as specific
features to make the truck product line comparable to the other
case studies in this paper, where we also just consider parts rather
than their particular attributes.

Configuration/Assembly. When assembling the truck, the se-
quence of production steps and the production resources depend
on the particular truck configuration. For instance, when assem-
bling the dumper configuration, the cabin needs to be mounted to
the chassis before the body. Similarly, the tank variant requires a
production resource that is narrow enough so it can grip between
two particular points.

Representing Variability using the PPR DSL. An author of the
paper modeled the 3D-printed truck product line of the case study
in the PPR DSL. The four product variants of the product line
require twelve product definitions in the DSL, e.g., body (Product) at
Line 6, including two abstract products (isAbstract) as templates for
concrete products. The products tank and opentop then implement
the template of the body (implements). The instance defines a truck
to consist of (children) and to require (requires) the concrete product

3Industry 4.0 Testbed: https://ciirc.cvut.cz/teams-labs/testbed/

Figure 2: Rendered 3D-printed truck (©Vaclav Jirkovsky in
[25]), DSL section, and the resulting feature model.

parts chassis and cabin and an abstract body. The concrete product
truck1 implements (implements) the truck and requires the concrete
body implementation tank. It excludes the opentop product part
with the excludes keyword as only one of the truck bodies can be
used at a time. In total, 31 requires and excludes dependencies define
the product variants (cf. Table 2).

Transformed Variability Models. The VERT transformation of the
PPR DSL instance to a feature model resulted in a model with 13
features4 and 31 constraints. Figure 1 shows the resulting feature
model with five example constraints. We sampled 23 configurations
for this case study.

Applications and Summary. Figure 2 shows the parts of the 3D-
printed truck as rendering with a section of the corresponding
PPR DSL instance and the resulting feature model. The complexity
of the 3D-printed truck product line with just four product vari-
ants, two abstract assembly groups that categorize subtree, and
30 dependencies (e.g., exclusion criteria between the body parts)
between the products is quite low. However, the case is a simple and
straightforward example to learn about/teach variability modeling
concepts. The DSL instance and the resulting feature model can be
found in the repository5.

5.2 Case Study Shift Fork
Overview. The shift fork product line (cf. also Feichtinger et al. [6])
is produced on an industrial production system planned by one of
our industry partners, a CPPS integrator for high-speed automation
of assembling automotive parts. The data reported (artifacts and
examples) has been abstracted to honor intellectual property rights.
Currently, our industry partner restructures its engineering process
towards using the PPR approach and an approach for structured
product line engineering through all engineering levels. To this
end, we are in close contact with two senior and one junior domain
expert of the company that act as an interface to research.

4The additional feature originates from the root node of the feature model, which
was counted towards the number of overall features.

5https://github.com/tuw-qse/cpps-var-case-studies/tree/main/truck
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Table 2: Overview of the characteristics of the four case studies.

Parts/Types Complexity #Product Variants #DSL Elements #Dependencies #Features #Constraints #Configurations
3D-printed truck low 4 12 31 13 31 23
Shift fork low 4 22 36 25 38 67
Water filter medium 8 54 165 55 165 217
Rocker switch medium 12 54 184 55 216 183

Figure 3: Rendered manual transmission with shift forks
(©World Arm Lamp, CC0 on Wikipedia - https://w.wiki/
3DCf), DSL section, and the resulting feature model.

Data collection. For the case study, we conducted several offline
and online workshops. In these workshops, we discussed the case
in detail with the two mentioned senior members, two senior en-
gineers (one from the functional and one from the mechanical
domain), and several junior engineers from different domains. We
received and discussed a large number of different engineering arti-
facts, from requirement documents in text and spreadsheet format
to the manual of the finished production system. We analyzed the
data manually, extracting the information of the product line and
its variants to derive the case study.

Variability. A shift fork (cf. schematic view in Figure 3) is a part
of a manual transmission in the drive chain of a machine, e.g., a
car. It shifts a cuff along rods into particular positions to let the
gears connect correctly. The shift fork product line consists of four
different shift fork variants manufactured on a timed conveyor-belt
production system.
A single shift fork consists of 14 parts, where the same 12 parts

are used in all four shift fork variants, and two parts differ between
the variants. For instance, the shift fork variant Fork-136 requires
Barrel 1, a commonality of all shift fork types, as well as Pipe 8 and
Lock 3, which differ among the shift fork variants. As there are,
e.g., different pipe types, but a shift fork requires exactly one pipe,
the pipe types build an exclusive group. The production system
requires 15 process steps to assemble a single shift fork.

Configuration/Assembly. Similar to the truck, the sequence of
process steps, i.e., how the shift fork is assembled, is important
in the production system. For instance, the parts Fork 3, Fork 4,

6https://github.com/tuw-qse/cpps-var-case-studies/tree/main/shiftfork

and Fork 5 need to be mounted to the pipe before one of the locks
can be welded on. Such dependencies cannot be expressed, for
example, in a feature model, since this model does not define the
order of feature selection (which requires additional approaches
like decision models).

Representing Variability using the PPR DSL. The PPR DSL model
of the case study, created by an author, consists of 22 products,
including four abstract products. The model defines 36 inclusion
and exclusion dependencies between the products and their parts.

Transformed Variability Models. The feature model resulting from
transforming the shift fork PPR DSL instance contains 13 features,
31 constraints, and 23 configurations sampled by YASA. For the
resulting feature model we refer to the online repository due to
readability and space constraints.

Applications and Summary. Figure 3 depicts a rendered manual
transmission with three shift forks (blue, cyan, and green), the
corresponding PPR DSL instance for the shift fork product types,
and the resulting feature model. The complexity of the shift fork
case with four products, four abstract assembly groups, and 36 de-
pendencies (e.g., exclusions between the pipes and locks) between
the product parts is rather low. The DSL instance and the resulting
feature model can be found in the repository6. Our industry partner
uses the shift fork case to investigate variability in production sys-
tems. This includes basic teaching of variability models, like feature
models, and examining different techniques to introduce structured
variability modeling into their CPPS engineering process.

5.3 Case Study Water Filter – NanoFilter
Overview. The water filter product line, the so-called NanoFilter (cf.
Figure 4), originates from a development project in Tanzania7. In the
project, researchers investigated different filter materials and con-
structions [10]. The water filter can filter impurities and, contrary
to most local solutions, selectively remove contaminants from un-
safe water sources. Depending on its configuration, the NanoFilter
costs about 5% to 25% less than imported water filters. This way, the
water filter addresses the basic need of price-sensitive customers
in developing countries by providing a low-cost but customizable
solution that works without electricity and can be manufactured
locally due to its simple structure and few components.

Data Collection. A collaborating researcher (not an author of this
paper) collected the primary data for the case study by conduct-
ing a semi-structured online interview and email communication
with the Nanofilter’s inventor. This data has been supported by sec-
ondary data from the filter’s manual, project documents submitted
for funding8, and the company’s website. We iteratively elicited and

7See project website https://gongalimodel.com/
8www.globalgiving.com
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Figure 4: NanoFilter installed on a Rack (©Askwar Hilonga,
[8]), DSL section, and the resulting feature model.

reviewed the case study from the gathered data and the resulting
knowledge from both data sources.

Variability. Thewater filter product line consists of eight variants
that contain up to 14 parts. To meet particular requirements, e.g.,
use at home vs. in schools, or the water contamination rate, the
water filter variants differ in size, clean water production rate, and
the water purification technology. The water filter consists of a
standard or large freshwater tank for the cleaned water and a filter
tank of similar dimensions to purify thewater. The filter tank always
contains sand and either bone charcoal or active charcoal to filter
particles and micro-organisms from the polluted water. For severe
water contamination, like certain chemicals, the water filter can
have an additional nano filter. There is an additional wastewater
tank to hold the polluted water for large variants of the water filter.
Depending on the size of the water filter and whether the nano filter
is installed, the water filter is mounted on different sorts of mounts
like an iron frame or a large rack. Furthermore, some auxiliary parts,
such as valves and tubes, need to be installed.

Configuration/Assembly. The assembly sequence of the water
filter is relatively straightforward and implied by the configuration
of thewater filter. However, to assemble the different configurations,
different resources might be needed, e.g., to lift the tanks and racks.

Representing Variability using the PPR DSL. An author of the pa-
per created a model of the water filter product line in the PPR DSL.
The DSL instance describes 54 products with ten abstract products.
From the total products, 19 were created as assembly groups that
build functional, connected intermediate products in the produc-
tion process. Furthermore, we created 165 inclusion and exclusion
dependencies.

Transformed Variability Models. The feature model resulting from
transforming the PPR DSL instance of the water filter product line
contains 55 features, 165 constraints, and 217 possible configura-
tions. For the resulting feature model we refer to the online reposi-
tory9 due to readability and space constraints.

Applications and Summary. Figure 4 shows a picture of two
Nanofilter water filters in different development stages with three

9https://github.com/tuw-qse/cpps-var-case-studies/tree/main/waterfilter

Figure 5: Schematic view of a rocker switch variant with
three contact types and one rocker type.

tanks and a nanofilter in the left water filter. The figure also shows
a section of the PPR DSL for the water filter product variants and
the transformed feature model. The water filter case consists of
eight product types and with 165 dependencies between the parts
of the product types (e.g., exclusion of bone and active charcoal).
Therefore, we consider the case’s complexity to be at a medium
level. The additional information of the water filter case studies
can be found at this paper’s repository. With the water filter case,
we aim to investigate the evolution of variability. An interesting
issue is how an iterative addition of product variants will impact
the complexity of the variability model. Furthermore, production
systems engineers want to know which product variants are likely
to add over-proportional cost to the production system (design).

5.4 Case Study Rocker Switch
Overview. The rocker switch product line (a simplified example
was presented by Meixner et al. [15]) is produced on a high-speed
industrial production system by the same industry partner who
produces the shift fork (see above). The data reported (artifacts and
examples) has been abstracted to honor intellectual property rights.

Rocker switches are everyday appliances to control electrical de-
vices, such as lights or sun blinds. Figure 5 shows a schematic image
of an assembly of a rocker switch variant. Basically, a rocker switch
consists of several contacts and rockers that close and open electric
circuits. With this simple schema, it is possible to realize basic but
also complicated switching applications. The rocker switch produc-
tion system is a fix-clocked conveyor belt system (cf. Section 5.2).

Data Collection. Similar to the shift fork case study, we conducted
several offline and online workshops for the rocker switch case
study with our industry partner. There we discussed the rocker
switch product line and production system with the two main
contact engineers and one senior functional planner. Furthermore,
we received detailed planning artifacts, like a spreadsheet (∼300
rows × 45 columns) that engineers use as variant matrices, which
we incorporated into the case study. The engineers reviewed and
acknowledged the elicited results and drawn conclusions.

Variability. The rocker switch product line consists of the essential
core of twelve different rocker switches variants with up to 24
product parts and ten process steps (some variants in the original
product line consisted of up to 35 parts and 60 process steps). Each
rocker switch variant has an initially empty socket where parts are
mounted. The rocker switch variant shown in Figure 5 has a socket
with four spaces for contacts and contacts of type pole, neutral,
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and off. In the middle of the contacts, the figure shows a rocker
that allows opening and closing the circuits. Depending on the
switching application, the rocker switch consists of various contact
and rocker types mounted at different locations in the socket. To
mount the socket into a frame, each rocker switch has two claws
with isolating rings each held by a screw (not shown in Figure 5).

Configuration/Assembly. The left-hand-side part of Figure 5 shows
dependencies of the assembly sequence on the configuration. For
instance, in this variant, the pole needs to be inserted into the
socket before the rocker. Accordingly, the rocker must be inserted
before the neutral and off contacts. However, in this case, it is not
important whether the neutral or the off contact get mounted first
or whether the claw is attached. Furthermore, some resources, like
a robot arm, of the production system might be able to handle
different contact types that can be used in different process steps
when the steps are distinct between rocker switch variants. These
variation points represent a large solution space for the design of
the production system.

Representing Variability using the PPR DSL. The DSL instance of
the rocker switch product line, which an author created, consists
of 54 products with 15 abstract products. The instance further
has four assembly groups and defines 184 inclusion and exclusion
dependencies.

Transformed Variability Models. The feature model resulting from
the transformation of the rocker switch PPR DSL contains 55 fea-
tures, 216 constraints, and 183 possible configurations. For the
resulting feature model we refer to the online repository10 due to
readability and space constraints.

Applications and Summary. Figure 5 shows a schematic view of
a rocker switch variant, a part of its PPR DSL representation, and a
section of the feature model resulting from the transformation. The
rocker switch consists of 12 product variants with 165 dependencies,
e.g., to define which contact groups are valid for specific product
types, and 15 assembly groups. We consider the product line’s
complexity to be medium. The case study’s additional material,
like the DSL instance and the feature model, can be found in the
repository. The rocker switch case is crucial for investigating further
variability models together with our industry partner. The product
configuration has a direct impact on the production step sequence. If
two product types have distinct process steps with similar needs, the
resources in the production system might be reused. For instance,
if two different but similar contacts need to be inserted into a
socket and two product variants use the process steps exclusively,
a robot arm might be reused. As feature models do not imply an
order for feature selection, we need to investigate for this case the
transformation to other variability models, like decision models.

6 DISCUSSION
The variability in CPPSs is rooted in different aspects of the system,
like products, processes, and resources. As these aspects are inter-
twined, research needs to take their combination into account, in-
cluding the domain’s particular challenges [21], which also requires
a combination of variability modeling approaches. In this paper,
we focus on product variability in CPPSs striving for real-world

10https://github.com/tuw-qse/cpps-var-case-studies/tree/main/rockerswitch

case studies that can be used in research and practice, following
the research questions raised in Section 2.
To address RQ1, in Section 5 we defined three essential require-

ments that case studies need to satisfy to be selected into our set. A
real-world case study system to be considered must (Req1.) cover
variability of products that can be produced on a CPPS, (Req2.) de-
scribe product variants that are sufficiently similar to build a prod-
uct family, and (Req3.) must be accessible (either previously or
published with the contribution).
In Section 5 we introduced four case studies on product variabil-
ity from the production domain that satisfy the identified require-
ments and represent several complexity levels, i.e., regarding the
number of product variants and constraints. The product variant
data of the case studies are represented in the PPR DSL (i) to make
them accessible in a uniform and readable way and (ii) as a founda-
tion for deriving a variety of product variability models following
on the VERT/TRAVART method. We provide the case studies in a
repository2 that contains the case descriptions, the DSL instances,
their resulting feature models, and the transformation algorithms.
This way, we want to make the case studies available for a broad
range of researchers and practitioners.
With this set of reusable case studies, we address product lines in

CPPS in contrast to case study directories like the SPL challenge or
ApoGames [12] repository that cover SPLs only. While the ESPLA
catalog [13] contains some product lines for production systems,
they are not accessible. In the future, we also aim to contribute our
case studies to the ESPLA catalog.
To address RQ2, in Section 3 we introduced operations to trans-
form the PPR DSL to a feature model. In Section 5, we described
how we modeled the product line data of the case studies in the
PPR DSL. Using the defined transformation operations, we auto-
matically transformed the PPR DSL instances to feature models
and compared the case study characteristics based on these models.
In this context, the PPR DSL is sufficiently expressive to serve as
the basis to transform the product variants to a suitable feature
model. Furthermore, we describe examples of how the case studies
can be used in research and practice. These research results build
on [6, 16] and go beyond the state of the art in variability modeling
by (i) uniformly describing the cases in a PPR DSL engineering
artifact and (ii) facilitating the transformation to feature models
and their comparison.
The PPR DSL allows the similar description of other CPPS prod-

uct lines, ensuring the basic quality of case study descriptions. Due
to using the PPR DSL and reusing the TRAVART transformation
operations, the resulting variability models can be expected to be
comparable among each other and of similar quality. Researchers,
who want to represent the case studies’ product lines in a particu-
lar variability model, can implement transformation operations for
their approach to automatically transform the cases into their model.
This way, they can design and implement comparable variability
models in their research and application scopes.
These research results go beyond the state of the art in variability
modeling by (i) providing transformation operations to transform
PPR DSL engineering artifacts to feature models, and (ii) explaining
how to design transformation operations to transform the PPR DSL
to variability models other than feature models.
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Threats to Validity. Despite being real-world case studies, the
case studies are still of limited size and complexity. Furthermore,
the case studies have not been found or selected systematically,
e.g., to cover particular production system fields. They were rather
identified and selected from ongoing collaborations where we had
access to people willing to contribute. The case studies were mod-
eled in the DSL by a single author. Similarly, the transformation
operations were implemented by a (different) single author. How-
ever, we tried to reduce bias by regularly checking results with a
second author. The case studies solely describe product lines and
not the complete variability of the production system, e.g., process
variability. However, we aim at extending the case studies in this
direction.

7 CONCLUSIONS AND FUTURE WORK
Unfortunately, real-world cases describing variability in production
systems are rare and often not accessible. We identified selection
criteria for real-world case studies of product lines in CPPS engineer-
ing and presented a reusable set of four case studies with varying
complexity from three different domains. We modeled the product
lines of the case studies in the uniform PPR DSL, an engineering
artifact from CPPS engineering that allows the representation of
variants. Furthermore, we reported how the PPR DSL artifacts can
be transformed to feature models automatically. We compared the
case study feature models and the PPR DSL artifacts to investigate
their complexity and expressiveness. We argue that the presented
case studies with the PPR DSL instances and the flexible transfor-
mation capabilities build a valuable contribution to making future
research results more comparable and facilitating evaluations with
real-world product lines. We plan to extend our work incorporating
other variability model approaches supported by TRAVART like
decision modeling, e.g., for process variability modeling. We envi-
sion the community to use the case study materials as a starting
point to evaluate their variability modeling approaches. Another
use case of our real-world case studies is teaching product line
engineering to students or training practitioners.
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Aim

The publication “Efficient Production Process Variability Exploration” introduces the
IPSE approach for modeling and configuring models of variable product and production
process assets. The publication provides (i) and elicitation of specific requirements
for the integration of product, production process, and production resource variability
integration, (ii) the IPSE approach to derive suitable state-of-the-art variability models
for products and processes from a PPR–DSL model, and (iii) to efficiently explore the
configuration space in a product feature model and a process decision model.

Contribution to the thesis

This publication contributes to the research goals CPPS knowledge model integration
(G1.), PPR–DSL variability transformations (G4.), IRVM approach with CPPS vari-
ability exploration (G3., G2.), CPPS reuse method (G2.), and case study evaluation
(G5.).

This publication contributes to RQ2., and RQ3. by addressing the VDI 3695 measures
of M1., knowledge management M2., re-use M3., quality assurance M4., integration and
seamless cooperation of disciplines M5., and the SPL capabilities efficient reuse C1.,
adaptability C2., variability management C3., enhanced quality and consistency C4., and
facilitation of interdisciplinary collaboration C5..

Abstract

CPPSs manufacture highly-customizable products from a product family following a
sequence of production steps. For a CPPS, basic planners design feasible production pro-
cess sequences by arranging atomic production steps based on implicit domain knowledge.
However, the manual design of production sequences is inefficient and hard to reproduce
due to the large configuration space. In this paper, we introduce the IPSE approach that
(i) elicits domain knowledge in an industrial variability artifact, using the PPR–DSL; (ii)
reduces configuration space size regarding structural product variability and behavioral
process variability; and (iii) facilitates efficiently exploring the configuration space in a
process decision model. For production process sequence design, IPSE is a first approach
to combine structural and behavioral variability models. We investigated the feasibility
of the IPSE in a study on a typical manufacturing work line in automotive production.
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We compare the IPSE to a traditional process sequence planning approach. Our study
indicates IPSE to be more efficient than the traditional manual approach.
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ABSTRACT
Cyber-Physical Production Systems (CPPSs) manufacture highly-
customizable products from a product family following a sequence
of production steps. For a CPPS, basic planners design feasible pro-
duction process sequences by arranging atomic production steps
based on implicit domain knowledge. However, the manual design
of production sequences is inefficient and hard to reproduce due
to the large configuration space. In this paper, we introduce the
Iterative Process Sequence Exploration (IPSE) approach that (i) elicits
domain knowledge in an industrial variability artifact, using the
Product-Process-Resource Domain-Specific Language (PPR–DSL);
(ii) reduces configuration space size regarding structural product
variability and behavioral process variability; and (iii) facilitates
efficiently exploring the configuration space in a process decision
model. For production process sequence design, IPSE is a first ap-
proach to combine structural and behavioral variability models.
We investigated the feasibility of the IPSE in a study on a typical
manufacturing work line in automotive production. We compare
the IPSE to a traditional process sequence planning approach. Our
study indicates IPSE to be more efficient than the traditional manual
approach.

CCS CONCEPTS
• Software and its engineering → Software product lines.

KEYWORDS
Variability Modeling, Cyber-Physical Production System, Process
Variability, Configuration Reduction.
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1 INTRODUCTION
Software Product Line (SPL) engineering aims to systematically
reuse and customize artifacts to support engineers at developing
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software-intensive systems [7]. Variability modeling aims to repre-
sent the commonalities, variability, and dependencies of reusable
artifacts explicitly to create products sharing a common platform,
i.e., a product line [3].
Cyber-Physical Production Systems (CPPSs), like automated
car plants, use the latest information and communication tech-
nology and modern production techniques to manufacture highly-
customizable products from a product line by following a sequence
of production steps [30, 34]. Basic planners, key stakeholders in
CPPS engineering, aim at designing feasible production process
sequences to investigate their performance characteristics and esti-
mate construction cost options for CPPS variants. The traditional
approach is to manually design production process sequences ac-
cording to implicit domain knowledge, e.g., for assembling car parts
such as shift forks that require dozens of production steps. Unfortu-
nately, this manual design process is hard to reproduce, especially
with an evolving product line, e.g., with additional product vari-
ants, a key scenario in CPPS engineering [49]. Furthermore, this
approach is inefficient due to the large space of possible but poten-
tially undesirable or invalid process sequence solutions. Therefore,
it is time-consuming and error-prone for domain experts to ex-
plore the (changed) configuration space without method and tool
support.
A major challenge for automating parts of the production pro-
cess design is the insufficient representation of production process
variability due to missing dependencies to product variability [30].
Nevertheless, the variability and configuration of the products heav-
ily determine the parameterization and/or sequence of the produc-
tion steps. For instance, mounting a trunk lid to a car requires the
chassis to be present. Depending on the car type, the trunk lid may
be mounted at the top, bottom, or side, with different screw types,
and at different production process stages. Therefore, it requires
integrating heterogeneous (a) product variability, i.e., the CPPS
can produce a variety of customized products, and (b) production
process variability, i.e., the CPPS can produce products in different
ways [4, 29]. However, current research on SPL engineering has
been separately addressing either product variability [1, 38, 50] or
process variability [44, 47].
Further, important domain-specific process conditions, such as vi-

bration or temperature influences, are hard to express formally. This
circumstance renders predefined [48] or fully automated [35] graph
solutions infeasible in this context and requires domain experts to
explore the solution space.
In this paper, we introduce the conceptual Iterative Process Se-

quence Exploration (IPSE) approach to integrate structural product
variability and behavioral production process variability. IPSE aims
at (a) eliciting domain knowledge in an industrial variability ar-
tifact to represent the variability of products and processes with
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their dependencies; (b) reducing the configuration space regarding
structural product and behavioral process variability by leveraging
explicit dependencies; and (c) facilitating the efficient and iterative
exploration of the configuration space in a process decision model
(DM).
We follow the Design Science methodology [52] to design the

IPSE process, knowledge representation, and tool support. We eval-
uate the IPSE approach in a feasibility study on a typical manu-
facturing work line in automotive production with 19 production
steps. To this end, we investigate the size of the process sequence
configuration space and its reduction towards efficient iterative
exploration by a domain expert. We measure the effort to conduct
a task with a number of data elements, e.g., the effort to design a
process sequence with 19 atomic process steps. We compare the
study of the IPSE approach to a traditional manual process sequence
planning approach to investigate strengths and limitations of IPSE.
The main contributions of this work are (a) an approach for
configuring a process DM with a product feature model (FM) con-
figuration (in a CPPS engineering context, i.e., production process
sequence design); (b) novel TRAVART transformations from an
industrial variability artifact to a DM; and (c) materials for reproduc-
ing IPSE from an abstracted representative use case in automotive
manufacturing.1
The remainder of this work is structured as follows. Section 2

summarizes background and related work on CPPSs and on variabil-
ity modeling. Section 3 presents an illustrative use case for evalua-
tion. Section 4 presents the IPSE approach. Section 5.1 evaluates the
IPSE approach. Section 5.2 discusses the results and implications
considering related work. Section 6 concludes this work and raises
topics for future work.

2 BACKGROUND AND RELATED WORK
This section provides a background and summarizes related work
on CPPS engineering, variability modeling for CPPS, and variability
model transformation.

2.1 CPPS Engineering
CPPSs are next-generation production systems that aim for the
adaptive production of highly-customizable products [19, 30, 34].
CPPS engineering includes, beyond others, the life cycle phases of
engineering the product (line) to be manufactured and the regarding
production system [4]. Typically, the underlying product lines are
subject to frequent evolution [4, 37], e.g., improving products or
entering new markets with changed conditions. An essential task
is production process engineering based on the product line [37].
Developing these software-intensive systems requires a collab-
oration of engineers from different domains, such as mechanical,
electrical, and software engineering [4]. These experts create vari-
ous artifacts, such as CAD drawings or bills of materials and op-
erations, that model Product-Process-Resource (PPR) [45] aspects:
(a) products with their parts, (b) production processes creating the
products, and (c) production resources automating these processes.
Some of these artifacts, such as type comparison matrices (TCMs),

1The supplementary material to this work can be found online at: https://github.
com/tuw-qse/cpps-variability

contain variant information on multiple levels, i.e., the product,
production process, and production resource levels [13].
The Formal Process Description (FPD) [51] allows modeling PPR
aspects as production process sequences with input and output
products, their relation to production steps, and the required pro-
duction resources. The relations also express process preconditions
regarding previous product states and processes. Kathrein et al.
[21] extended the FPD to model abstract aspects, dependencies and
consistency constraints, such as the maximum force in a process.
Meixner et al. [31] built on their work to design the Product-Process-
Resource Domain-Specific Language (PPR–DSL) to facilitate the
representation of PPR variants, i.e., variability information. This
paper builds on the PPR–DSL to model products, their parts, and
production process steps, including their functional process pre-
conditions regarding previous processes.
In the first CPPS engineering phase, basic plannersmodel a rough
CPPS design including a feasible production process sequence ac-
cording to several (often implicit) constraints. For example, it is
prudent to mount costly product parts at a late production step
where the scrap rate is lower than at an early production step.
Therefore, the adaptive production of product lines requires the
management of variability during CPPS engineering and at run time.
The variability in CPPSs stems from (a) product types and their fea-
tures, (b) process (sequence) variants, and (c) resource variants. Thus,
the variability of the PPR aspects, their dependencies, and often
non-functional constraints and feature cardinalities typically create
a large and complex problem and configuration space [9, 39, 46].
For instance, a car consists of hundreds of thousands of components
assembled in several thousands of production steps. We focus on
variability resolved during CPPS engineering before the CPPS goes
into operation.

2.2 Variability Modeling for CPPS
The most prominent Variability Modeling (VM) approach is, de
facto, feature modeling [20]. Decision modeling [25] has also been
widely investigated [8]. Both approaches have been refined and
extended in the last decades [8, 40].
There is a plethora of Systematic Literature Reviews (SLRs),
mapping studies, and surveys that investigate a broad range of
VM methods and models [2, 3, 6, 8, 40]. Raatikainen et al. [40]
and Galster et al. [16] report that process model variability and
business processes as artifacts are underrepresented. Rosa et al.
[43] conducted a survey on VM for business processes, showing
that only a few business process model types have been investigated.
Early, Rombach [42] already proposed integrating software process
and product lines as a future vision, which has, however, not yet
been achieved.
Several works [10, 18, 24, 32, 33] report on staged configuration

and feature configuration flows that utilize FMs for an iterative con-
figuration. These and others [17] also stress that the separation of
concerns is important, especially, in multidisciplinary VM, required
for CPPS engineering.
A key challenge is allowing basic planners to use the PPR–DSL
model without forcing them to use a new or unfamiliar approach
while linking structural and behavioral variability usingwell-known
models. Existing VM approaches mainly focus either on structural
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OR behavioral variability and are as-is incapable to handle CPPS
engineering variability and the combination of different CPPS as-
pects [8]. In this paper, we generate (a) a FM for the structural
product variability and (b) a DOPLER DM for the behavioral pro-
cess variability from the PPR–DSL artifacts and (c) automatically
link both models. This way, we aim at investigating staged configu-
ration to a certain point, using FM and DM to suit these demands.
FMs [8] are well suited to represent structural variability since

hierarchy is a key concept in these approaches. However, they have
not been designed to define behavioral variability. Dhungana et al.
[11] presented the DOPLER approach, a flexible and extensible DM-
based approach using the DOPLER VM language. The DOPLER
DM describes the decisions that need to be made during product
derivation to configure assets, such as code artifacts. The approach
allows defining orders of making decisions via visibility conditions
(decisions become “visible”, i.e., relevant, depending on other de-
cisions’ values) and decision rules (making decisions affect other
decisions’ values and value ranges).

2.3 Variability Model Transformation
Generating variability models requires a model transformation
approach for the PPR–DSL models. Building on variability meta-
models [5, 20], the TRAVART [15] approach specifies transforma-
tion operations implemented in concrete transformation algorithms
to transform one (type of) model into another one [14]. In absence
of a meta-model, TRAVART allows specifying concrete transforma-
tion operations. For instance, for custom variability representations,
like Domain-Specific Languages (DSLs) artifacts, product compari-
son matrices (PCMs) [36], or TCMs, such transformation operations
can be specified, to transform them into, e.g., a FM.
In this work, we employ the TRAVART approach [15]. We build
on the transformation operations specified for transforming the
product variants in the PPR–DSL into a FM [28] and specify similar
operations for transforming production process steps in the PPR–
DSL into a DOPLER DM.

3 ILLUSTRATIVE USE CASE FOR
EVALUATION

To illustrate and evaluate process sequence exploration for a com-
prehensive, concise, and still manageable example, we adapted our
previous shift fork case study [28]. In the manual transmission of a
car, shift forks shift cuffs along pipes to correctly align the gears.2
Shift forks establish a product line with variable product parts, such
as pipes of different lengths. We adapted the study with domain
experts from our CPPS industry partner to check the correctness
and get feedback.
In CPPS engineering, basic planners receive design artifacts, such
as CAD drawings or prototypes of products, from their customers.
They explore the product similarities and variability, including
dependencies between the product types and their parts. TCMs
are intermediate design artifacts that contain product types and
their required parts. From a TCM, basic planners can derive similar
functions of the product parts, e.g., parts that resemble a sub-type
of a pipe.

2An exemplary figure of shift forks can be found at https://w.wiki/3DCf

The engineers also investigate the production steps required for
the particular product types, often by first disassembling them [23].
They aim at designing first drafts of feasible production processes
for requested products with corresponding CPPS layouts and a
rough cost estimate. Based on the dependencies between the prod-
uct parts, a basic planner models a precedence graph of how prod-
uct types imply a particular assembly order, e.g., parts that need
to be mounted onto a pipe. From this graph, the planner derives
atomic production steps that transform input products into out-
put products, e.g., joining a fork to a pipe. In the use case context,
traditionally, a basic planner designs feasible process sequences,
e.g., in DelMia3, based on implicit knowledge, typically using het-
erogeneous and partial data representations. The planner uses the
sequences to reason on process characteristics, e.g., duration or
cost of faulty products.

1 Product "Pipe": { name: "Abstract Pipe", isAbstract: true }
2 Product "Pipe2": { name: "Pipe 2",
3 implements: ["Pipe"],
4 excludes: [ "Pipe3", "Pipe8" ]
5 }
6
7 Product "Lock": { name: "Abstract Lock",
8 isAbstract: true , requires: ["Pipe"]
9 }
10 Product "Lock1": { name: "Lock 1",
11 implements: ["Lock"],
12 excludes: [ "Lock2", "Lock3" ]
13 }
14
15 Process "InsertPipe2": { name: "InsertPipe2",
16 isAbstract: false ,
17 implements: ["InsertPipe"],
18 inputs: [ {productId: "Pipe2"} ],
19 outputs: [ {OP2: {productId: "Pipe2"}} ]
20 }
21
22 Process "WeldLock": { name: "WeldLock",
23 isAbstract: true ,
24 requires: [ "InsertLock", "InsertPipe", ... ],
25 inputs: [ {productId: "Lock"}, {productId: "Pipe"} ],
26 outputs: [ {OP22: {productId: "ForkProduct"}}]
27 }

Listing 1: PPR DSL [31] excerpt for the shift fork use case.

However, due to frequent product line evolution, engineers need
to investigate the impact of the changes on the production sequence
and the CPPS design [37]. Often a basic planner, different from
the initial planner, conducts this process redesign. According to
practitioners, this often results in rebuilding the CPPS design from
scratch rather than reusing existing solutions as the engineering
process is hard to reproduce. Hence, this approach is inefficient
and prone to error due to the limited representation of domain
knowledge that hinders systematic improvement, automation, and
reuse.
To explicitly model their domain knowledge, basic planners can
use the PPR–DSL [31] to model the PPR aspects and constraints
between them. The use case consists of four shift fork types with
14 product parts. Furthermore, the product parts each have up to
three dependencies to other parts.

3https://www.3ds.com/products-services/delmia/
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Listing 1 illustrates the PPR–DSL model of selected shift fork
parts: product parts and variants (lines 1-13); and atomic production
steps and variants (lines 15-27). Line 1 defines the abstract Product
Pipe, building the core of a shift fork. Product Pipe2 implements the
abstract Pipe and excludes other product parts of type pipe, defining
an alternative group. Lines 7 to 9 define the abstract Lock and
concrete Lock1 part. Lines 10 to 13 define the Lock to require a
Pipe for assembly. Lines 15 to 20 model the Process InsertPipe2, that
implements InsertPipe, with its input and output products, i.e., Pipe2.
InsertPipe changes the location of Pipe2 in the system. Lines 22 to 27
define the abstract processWeldLock with Lock and Pipe as inputs.
WeldLock requires InsertLock and InsertPipe as preconditions.
For this paper, we assume basic planners able to describe the
atomic process steps and their preconditions for all product types
and parts.

4 SOLUTION: THE IPSE APPROACH
This section identifies requirements for process sequence explo-
ration for product lines and introduces the five-step Iterative Process
Sequence Exploration (IPSE). We elicited the requirements and de-
signed the IPSE process based on the literature and a domain anal-
ysis with experts from an industry partner. In the domain analysis,
we interviewed three senior domain experts on their traditional
manual engineering approach, which artifacts they produce, and
their issues with process sequence exploration in CPPS engineering.

4.1 Requirements for IPSE
From the literature [13, 30] and the domain analysis, we elicited
the following requirements for an IPSE process with data repre-
sentation and tool support. R1. The IPSE process shall collect and
transform the variability knowledge required for efficiently explor-
ing production process sequence options. In particular, the IPSE
shall consider new knowledge iteratively, especially from prod-
uct line evolution but also, e.g., process simulation. R2. The IPSE
knowledge representation shall model (a) products, atomic process
steps, and their dependencies in an industrial variability artifact,
e.g., using the PPR–DSL [31]; (b) a product line; and (c) a process
line with process sequence dependencies and constraints. R3. The
IPSE method and tool support shall (a) automate transformations
from industrial variability artifacts to well-known variability mod-
els, e.g., a FM or a DM, using frameworks, such as TRAVART [15];
(b) provide assistance to explore and configure a product FM and a
process DM, such as the FeatureIDE [26] and DOPLER tool [11].

4.2 The IPSE Process
Based on the literature [13] and the domain analysis, we developed
the IPSE process (cf. Figure 1). IPSE comprises steps conducted by
engineers with tool support (persona icon) and automated steps
(cog icon). IPSE, addressing requirement R1, provides tool support in
form of an IPSE agent. That agent conducts some tasks automatically
and supports the basic planner in the “human” tasks that require
access to models. We describe this process in detail in the following.

Step 1: Define PPR–DSL model. The basic planner analyzes
product descriptions and production requirements provided by the
product designer and customer (cf. Section 3) to identify atomic
production steps required to assemble a (partial) product variant.

The basic planner iteratively models in the PPR–DSL model (a) the
product variants, their parts, (b) the atomic process steps with their
input and output products, as required to assemble the products,
and (c) dependencies between a process step and preceding abstrac-
t/concrete products and processes (cf. Listing 1) – (requirement
R2).
For instance, the basic planner defines the fork as laser-welded
to a pipe by a welding robot to achieve a reliable connection for
the shift fork. Preconditions for the process step laser-welding are
the fork and the pipe, correctly inserted into the CPPS (cf. Listing 1,
line 25). In companies with advanced reuse capabilities, the basic
planner can select and adapt atomic process steps from a process
catalog.

Step 2: Transform PPR–DSL model to FM and DM. In this
step, the IPSE agent utilizes the TRAVART approach [15] to trans-
form the PPR–DSL model into two different variability models (cf.
requirement R2 & R3 in Section 4.1): (a) a FM to represent the prod-
uct parts and variants (cf. Figure 2); and (b) a DM to represent the
atomic process steps and their dependencies (cf. Table 1).

Step 2a: PPR–DSL to Product FM. Input to this step is the PPR–
DSL model containing the products, their parts, and the atomic
production process steps. The result of this step is a Product FM
that contains the products and their parts as features, including
constraints between the product parts.
The IPSE agent utilizes TRAVART transformations [15] to gener-

ate a FM from the product definitions. The transformations create a
feature for each product part and derive its properties, e.g., whether
the feature is abstract or mandatory, from the respective PPR–DSL
properties, e.g., isAbstract (cf. Listing 1, line 1). For instance, the
product Pipe is transformed to an abstract feature with a concrete
child feature Pipe2. Based on the properties requires and excludes,
the transformation derives the feature group cardinality and/or ad-
ditional constraints. For example, the features Pipe2 to Pipe8 build
an alternative group. Afterwards, a transformation generates the
relevant constraints in the FM, e.g., a particular Lock implies the
respective feature Pipe, e.g., Lock2 implies Pipe3.

Step 2b: PPR–DSL to ProcessDM. Input to this step is the PPR–
DSL model containing the products, their parts, and the atomic
production process steps with their dependencies. The result of
this step is a Process DM with decisions concerning the products
and process steps for possible production sequences for a product
line. The IPSE agent utilizes TRAVART transformations [15] to
transform the PPR–DSL model into the DM in two transformation
stages.
The first transformation stage translates the abstract and concrete

products of the PPR–DSL model into Boolean product-related deci-
sions in the DM (cf. Table 1, upper half). The transformation assigns
these decisions with a Boolean visibility condition, initially set to
false. This means, while a particular decision is not visible in the
configuration view, its configuration value can be used in the DM.
For instance, the product parts Pipe2 and Lock1 are transformed to
such invisible decisions in the DM. The configuration value of the
particular decision, i.e., whether the decision is selected, is then set
in Step 4 of the IPSE process.
The second transformation stage generates Boolean process deci-
sions (cf. Table 1, lower half) from the abstract and concrete PPR–
DSL process steps. The transformation sets the visibility condition
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1. Define PPR-
DSL model

2. Transform
PPR-DSL to
FM and DM

3. Configure
Product FM

4. Reduce
Process DM

5. Explore
Process DM
configurations

Product
Descriptions PPR-DSL FM/DM

FM Con-
figuration Reduced DM

Process
Sequence

Figure 1: (Human & automated) IPSE process steps for exploring production process steps based on a product configuration.

of each abstract process decision to false, ensuring only concrete
decisions to be visible in the configuration view. The visibility
condition of each concrete process decision is calculated from the
configuration values for the required input products, i.e., inputs, and
the required production process steps in preconditions, i.e., requires.
The visibility condition results from the logical and concatenation of
the involved Boolean configuration values. For instance, the trans-
formation of the process stepWeldLock shall result in a decision Do
you want to WeldLock? The visibility condition of this decision shall
concern the products Lock and Pipe and the process steps Insert-
Lock and InsertPipe. The transformation also creates constraints for
concrete process steps in the DM that refer to the abstract process
steps. For instance, selecting the decision InsertPipe2 automatically
sets the configuration value for the abstract decision InsertPipe.
These constraints ensure considering abstract decisions during the
configuration, such as references to abstract products.

Step 3: Configure Product FM. In this step, the basic planner
configures the Product FM by selecting the desired features. The
result is a valid configuration of the Product FM that represents one
particular (final target) product of the product line, e.g., a specific
type of shift fork.

Step 4: Reduce Process DM. Based on the configuration of
the Product FM, the IPSE agent reduces (cf. requirement R3) the
configuration possibilities of the DM to the valid subset of process
sequence configurations for a particular product configuration. The
result is the reduced Process DM.
For each feature in the Product FM configuration, the configu-
ration value of the particular product decision in the Process DM
is set to true. For example, assume in the Product FM the product
Pipe2 feature to be selected. The IPSE agent then sets the configu-
ration value of the Pipe2 product decision in the DM to true. This
change triggers displaying decisions with visibility conditions that
depend on that particular configuration value, e.g., process decision
InsertPipe2.

Step 5: Explore Process DM configurations. Input to this step
is the reduced Process DM, configured to a target product. The
basic planner can iteratively explore the configuration options for
the complete production process sequence. The result is one valid
production process sequence to produce the target product.
Initially, an IPSE tool (requirement R3) facilitates browsing the

visible potential first process steps, i.e., steps without preconditions,
for the product configured in the FM. After configuring a first pro-
cess step decision, i.e., the first process step to execute, the basic
planner sees the potential subsequent process steps, according to

the updated visibility conditions defined by the process precondi-
tions. The basic planner can then explore the DM and decide which
process steps to execute one after another. In the end, all necessary
decisions to manufacture the product configured in the Product FM
will have been taken in a sequence by the basic planner. The IPSE
agent keeps a queue with the sequence of decisions taken, which
can be shown as an intermediate result towards an increasingly
complete and valid assembly sequence. The final sequence of the
configuration decisions reflects the sequence of the desired pro-
duction steps, which can be connected to define a valid production
process model.

5 EVALUATION AND DISCUSSION
This section reports on a feasibility study on IPSE and discusses
research results and limitations.

5.1 Feasibility study
The authors conducted the IPSE process steps in a feasibility study1
regarding the shift fork case study selected from an existing reposi-
tory with CPPS case studies [28]. Further, the authors discussed the
study results with senior domain experts from an industry partner
in the CPPS domain and an expert in systems engineering for initial
validation.

Step 1. Define PPR–DSL model. One author extended the
PPR–DSL artifact of the shift fork case study (cf. Section 3) with
atomic process steps [12] and their dependencies. The resulting
PPR–DSL model contains 23 product and part definitions, 28 atomic
process steps, 3 constraints, and 86 dependencies from processes to
products or processes. It took the author around 8 to 10 work hours
to define the PPR–DSL model for the use case based on existing
information in documents. To ensure that the particular process
steps are suitable and the overall process is feasible, we interviewed
the domain experts to approve the resulting model.

Step 2a. Transform PPR–DSL to Product FM. One author
used the existing TRAVART transformations and tool to transform
the product parts, described in the PPR–DSL, into a FeatureIDE
FM [13], requiring roughly one work hour for preparation and
execution. The transformation consisted of less than 400 transfor-
mation steps that took seconds to execute on a standard notebook.
Figure 2 shows for the shift fork the generated Product FM with its
constraints.1

Step 2b. Transform PPR–DSL to Process DM. One author
implemented the necessary TRAVART transformation operations
towards a DOPLER DM [11] based on existing operations in around
8 to 10 work hours. For future transformation to a Process DM, these
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Figure 2: Product FM, generated from the PPR–DSL model,
representing the structural shift fork type variability.

transformation operations can be reused. TRAVART transformed
the shift fork PPR–DSL model to a DOPLER Process DM. The trans-
formation consisted of around 250 transformation steps that took
seconds to execute on a standard notebook.
Table 1 illustrates an excerpt of the resulting Process DM (cf.
supplemental material for the complete DM1). Column ID shows
the decision’s ID. Column Question shows the question generated
for display to users of the DM. Column Decision Rule shows a distin-
guished feature of the DOPLER approach [11], the DOPLER decision
rule, which is executed when the decision is taken. For instance, for
the InsertPipe2 decision a rule sets the configuration value of the
decision for the abstract process step InsertPipe to true. This ensures
to set decisions to visible with visibility conditions that depend on
abstract products or process steps. Column Visible/relevant if shows
the logical expression for the visibility condition. For example, the
decision InsertPipe2 is only displayed if the configuration value
with the ID Pipe2 is set to true.

Step 3. Configure Product FM. For the feasibility study, one
author sampled with the YASA sampler [22] all valid configurations
of the shift fork FM, resulting in four product configurations, as an
input for Step 4. This way, the authors ensure finding any desired
number of configurations for further evaluations. While the shift
fork had only four possible configurations, the authors’ aim was to
use this strategy to sample larger models in the future. The effort
for the sampler implementation was roughly 35 to 40 work hours;
product sampling took less than 10 seconds. For the feasibility study,
the authors conducted Steps 4 and 5 for all four sampled product
configurations.

Step 4. Reduce Process DM. For this step of the study, one
author implemented a Java program to reduce the Process DM,
requiring around 8 to 10 work hours. The program gets a configura-
tion of a FeatureIDE FM and sets the corresponding configuration
values in a DOPLER DM to true. In the feasibility study, these were
configuration values for the product decisions. The result for the
feasibility study was a Process DM for each product configuration.

Step 5. Explore Process DM configurations. One author im-
plemented a DOPLER DM sampler, which took around three work
days, roughly 20 to 25 work hours. to sample valid configurations
of a Process DM. This sampler receives a DM and takes the decisions
using backtracking to compute all possible configurations of the
Process DM.
For the feasibility study, one author sampled the transformed

Process DM. For each FM configuration, the sampler found around
59k possible process sequences, i.e., total configurations of the DM.
Only 1,024 (under 2%) were valid process sequences yielding a valid
final product. The four product configurations resulted in the same

number of possible and valid process sequences. This outcome is
reasonable for the studied product line, as for each final product
two similar parts were changed (the pipe and the lock).
One author, who did not define the PPR–DSL model, explored a

complete production process sequence with 19 decisions with 7 ini-
tial, on average around 3, decision options. We measured the time
required for investigating a production process step and its possible
successors. Selecting one production step took only 30 seconds to
one minute as the Process DM provided only valid process steps
options for selection. The overall time required for configuring for
one complete production process sequence was 15 to 20 minutes.
However, this was without considering particular engineering char-
acteristics of the process variants, i.e., hard-to-represent domain
expert knowledge, such as vibration dependencies.

Traditional vs IPSE approach. Traditionally, the domain ex-
perts create the product variants and atomic production process
steps, e.g., using tools such as DelMia3. This step is comparable
to the PPR–DSL model definition in IPSE Step 1. While DelMia
allows modeling parent-child relationships, the PPR–DSL also al-
lows to define extended constraints, e.g., requires, and constraints
on properties. Depending on the extensiveness of the constraints
that engineers want to express, this effort needs to be added for
IPSE Step 1. The IPSE allows starting with a small PPR–DSL model
(comparable to the DelMia model) that can be iteratively extended
regarding the level of detail on dependencies and constraints. Here,
domain experts need to balance the effort to model domain knowl-
edge for solution space reduction vs. the effort to explore a larger
space of infeasible solutions.
Traditionally, the engineers define a valid production process
sequence by connecting the atomic process steps, e.g., in DelMia3,
using their implicit knowledge. However, they can connect incom-
patible process steps, requiring the engineer to ensure the compati-
bility of steps. IPSE uses the order of the process steps given by the
explicit constraints to allow connecting compatible process steps
only.

Changes to the product line need to be incorporated in the
DelMia model and the PPR–DSL model, with comparable effort.
Note that the effort partly depends on the complexity of the con-
straints expressed in the PPR–DSL model.
For the production process sequence exploration (IPSE Step 5) in

the traditional approach, the production process sequence for a par-
ticular product type needs to be re-defined, according to the domain
experts often from scratch, due to the missing explicit knowledge.
Here, the product evolution and the impact on the processes are dri-
vers of the process design effort. In the IPSE approach, the explicit
models lead to exploring only valid production process sequences,
making the exploration process less error-prone and making the
decisions easier to reproduce.

5.2 Discussion
This work investigated the IPSE approach to support CPPS engineer-
ing in efficiently configuring valid production process sequences,
given an evolving product line. Therefore, we introduced the tech-
nical concept of the IPSE approach in Section 4.2 addressing the
requirements from Section 4.1.
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Table 1: Part of the generated DOPLER DM representing the process variability of the shift fork types.

ID Question Decision Rule Visible/relevant if
Pipe Will you use Product Pipe? false
Pipe2 Will you use Product Pipe2? false
Lock Will you use Product Lock? false
Lock1 Will you use Product Lock1? false
Fork3 Will you use Product Fork3? false
InsertPipe Do you want to InsertPipe? false
InsertPipe2 Do you want to InsertPipe2? if(isSelected(InsertPipe2))

{ InsertPipe = true }
isSelected(Pipe2)

InsertLock Do you want to InsertLock? isSelected(Lock && Pipe)
InsertLock1 Do you want to InsertLock1? isSelected(Lock && Pipe)
WeldLock Do you want to WeldLock? isSelected(Lock && Pipe && Fork4 && Fork3 && InsertLock && Weld-

Fork3 && WeldFork4)
WeldLock1 Do you want to WeldLock1? isSelected(Lock && Pipe && Fork4 && Fork3 && InsertLock && Weld-

Fork3 && WeldFork4)
InsertFork3 Do you want to InsertFork3? isSelected(Fork3 && Pipe)
WeldFork3 Do you want to WeldFork3? isSelected(Fork3 && Pipe && Fork5 && InsertFork3 && WeldFork5)

To address requirements R1 and R2, the IPSE process collects
product and process variability and dependency knowledge in a
PPR–DSL model (cf. Listing 1). Using TRAVART, IPSE transforms
this industrial variability artifact into a product FeatureIDE FM
(cf. Figure 2) and a process step DOPLER DM (cf. Table 1) as input
to efficiently explore valid feasible process sequences. To address
requirement R3, the IPSE method and tool support automates major
steps of the IPSE process, such as the model transformation to or
the reduction of the variability models (cf. Section 5.1). According
to a senior expert, the approach shows high potential but requires
user-friendly tool support for practitioners.
The IPSE process facilitates in basic planning the exploration
of production process sequences considering an overall planning
goal. In particular, IPSE facilitates finding a set of production pro-
cess sequences that fulfill (a) formal constraints/dependencies and
(b) constraints/dependencies according to domain-expert knowl-
edge. By pruning irrelevant (invalid) process sequence options, the
DM reduction ensures the planner to explore only a small configu-
ration space for process sequences, e.g., 1k instead of 59k variants.
The results of the feasibility study indicate IPSE to take rea-
sonable effort in a typical CPPS engineering context with product
evolution. Based on the study, the domain experts noted that IPSE
can be expected to be more reproducible and efficient compared to
the traditional process (cf. Section 3).
According to a senior domain expert, production process se-

quences with less than 10 process step options are relatively easy to
redesign manually. Process sequences with more than one hundred
step options are hard to redesign correctly without tool support.
Therefore, the domain expert assumed the IPSE to be considerably
faster, beyond a certain threshold of process step options that need
to be investigated, than manually searching a suitable process step
and designing the process sequence.
This work goes beyond the state of the art in SPL by (a) dis-
cussing a novel approach for configuring a Process DM with a
Product FM configuration (in a CPPS engineering context, i.e., pro-
duction process sequence design) serving as a basis for staged

configuration [10, 24] in CPPS engineering; (b) separating con-
cerns [17, 41] for multidisciplinary CPPS engineering by separately
modeling structural and behavioral variability, smartly connected
variability models; (c) introducing novel TRAVART transforma-
tions [15] from an industrial variability artifact to a DM model;
and (d) collecting evaluation data from a representative use case in
automotive manufacturing.1 This way, this work addresses relevant
challenges for VM in CPPS engineering [13, 27, 29], such as the
combination of product and process variability.

Limitations. The following limitations require further investiga-
tion. The feasibility study focused on a single use case, which might
introduce bias due to the domain of the use case. The use case is
also limited in size, a threat to scalability. We plan to extend our
research in a wider application context with larger product lines
and more production steps.
Several IPSE steps in the evaluation were performed by the
authors, which poses a threat to validity and justifies empirical
evaluation with domain experts.
This work presents a technical, conceptual study to support CPPS

engineers in a hard-to-reproduce engineering process. A limitation
is a missing user interface and integrated tool, which is why we do
not present a user study.

6 CONCLUSION AND FUTURE WORK
In this paper, we investigated the efficient configuration of valid
production process sequences for a CPPS work line, i.e., for assem-
bling a shift fork for automotive manufacturing. We introduced the
Iterative Process Sequence Exploration (IPSE) approach to facilitate
efficient, reproducible process sequence exploration. This way, we
address the challenge of representing domain knowledge on prod-
uct and production process variability for automating production
process design. The IPSE approach addresses production process
design where fully automated process optimization is not possible
due to preconditions that are hard to express formally, e.g., vibration
or temperature dependencies.
Therefore, the approach facilitates process design by combin-
ing the strengths of (a) an automated selection of valid process
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sequences from a large solution space based on a product config-
uration with (b) the skills of a domain expert to select promising
candidates from valid process steps using their advanced domain
knowledge.
Major contributions of this work are that IPSE (a) elicits domain
knowledge in an industrial variability artifact, using the PPR–DSL;
(b) transforms the variability to well-known variability models,
the Product FM and Process DM; (c) significantly reduces the con-
figuration space size regarding structural product variability and
behavioral process variability; and (d) facilitates efficiently explor-
ing the configuration space in the Process DM. To this end, the IPSE
goes beyond the state of the art in SPL engineering for CPPS by
integrating product and process variability for production process
design and fostering a separation of concerns [13, 27, 29].
Results from a feasibility study on a work line in automotive
production with 19 production steps, based on an industrial case
from our industry partner [28], indicate IPSE to be (a) feasible;
(b) better reproducible in contrast to the traditional manual process
sequence exploration (cf. Section 5.1); and (c) more efficient by
finding the 2% of valid configurations in the shift fork use case for
iterative exploration. According to a senior domain expert, a similar
reduction can be expected for larger work lines.

Future Work. The promising results of the initial evaluation
warrant conducting case studies in a wider context to validate the
initial evaluation results. We plan to investigate the IPSE approach
with further domain experts and typical instances of large work
lines with 50 to 100 process steps and, thus, much larger solution
spaces than with the use case shift fork. To further improve the
efficiency of the IPSE, we plan to investigate advanced capabilities
for process sequence exploration. Such capabilities are, e.g., back-
tracking, managing promising (partial) result sets, and evaluating
process characteristics, e.g., process optimization criteria, such as
throughput, duration, or cost, and considering process simulation
results or heuristics in the background.
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Aim

The publication “Variability Modeling of Products, Processes, and Resources in Cyber-
Physical Production Systems Engineering” introduces the EIPSE approach for holistically
modeling and configuring models of variable CPPS assets and generating configured
CPPS artifacts. The publication provides (i) an extension of the requirements for CPPS
variability integration, (ii) the EIPSE approach to derive variability models for products,
processes, and resources from a domain-specific description, (iii) in architecture and
toolchain which automatically reduces the configuration space and allows to generate
CPPS artifacts, (iv) a rigorous evaluation of the approach with four real-world use cases,
including the generation of control code artifacts, and (v) an observational user study to
collect feedback from engineers.

Contribution to the thesis

This publication contributes to the research goals CPPS knowledge model integration
(G3.), PPR–DSL variability transformations (G4.), extended IRVM approach with
CPPS variability exploration (G1., G2.), CPPS reuse method (G3., G2.), CPPS artifact
configuration and generation (G4., G5.), multi-case study evaluation (G5.), and user
study evaluation (G5.).

This publication contributes to RQ1., RQ2., and RQ3. by addressing the VDI 3695
measures of M1., knowledge management M2., re-use M3., quality assurance M4., integra-
tion and seamless cooperation of disciplines M5., and the SPL capabilities efficient reuse
C1., adaptability C2., variability management C3., enhanced quality and consistency C4.,
and facilitation of interdisciplinary collaboration C5..

Abstract

CPPSs, such as automated car manufacturing plants, execute a configurable sequence of
production steps to manufacture products from a product portfolio. In CPPS engineering,
domain experts start with manually determining feasible production step sequences and
resources based on implicit knowledge. This process is hard to reproduce and highly
inefficient. In this paper, we present the EIPSE approach to derive variability models for
products, processes, and resources from a domain-specific description. To automate the
integrated exploration and configuration process for a CPPS, we provide a toolchain which
automatically reduces the configuration space and allows to generate CPPS artifacts,
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such as control code for resources. We evaluate the approach with four real-world use
cases, including the generation of control code artifacts, and an observational user study
to collect feedback from engineers with different backgrounds. The results confirm the
usefulness of the EIPSE approach and accompanying prototype to straightforwardly
configure a desired CPPS.
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A B S T R A C T
Cyber-Physical Production Systems (CPPSs), such as automated car manufacturing plants, execute a configurable
sequence of production steps to manufacture products from a product portfolio. In CPPS engineering, domain
experts start with manually determining feasible production step sequences and resources based on implicit
knowledge. This process is hard to reproduce and highly inefficient. In this paper, we present the Extended
Iterative Process Sequence Exploration (eIPSE) approach to derive variability models for products, processes,
and resources from a domain-specific description. To automate the integrated exploration and configuration
process for a CPPS, we provide a toolchain which automatically reduces the configuration space and allows to
generate CPPS artifacts, such as control code for resources. We evaluate the approach with four real-world use
cases, including the generation of control code artifacts, and an observational user study to collect feedback
from engineers with different backgrounds. The results confirm the usefulness of the eIPSE approach and
accompanying prototype to straightforwardly configure a desired CPPS.

1. Introduction

Software Product Lines (SPLs) are ‘‘a set of software-intensive sys-
tems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission developed
from a common set of core assets in a prescribed way (Clements
and Northrop, 2002)’’. Variability modeling is a crucial activity of SPL
engineering. It captures the commonalities and differences of these
software-intensive systems explicitly and manifests them in a variability
model, such as a Feature Model (FM) (Kang et al., 1990) or Decision
Model (DM) (Schmid et al., 2011). FMs focus on configuring products
by respecting tree and cross-tree constraints, whereas DMs also allow
configuring sequences of options, which, in particular, is useful to
model process variability.

Cyber-Physical Production Systems (CPPSs), such as automated car
manufacturing plants, use the latest information and communication
technology to manufacture customized products with modern produc-
tion techniques (Monostori, 2014). Each CPPS is built by assembling
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various hardware components (e.g., sensors and actuators) that are
controlled by software to deliver one or more production system func-
tionalities. Such systems execute a configurable and flexible sequence
of production steps to manufacture products from a product portfolio,
provoking variation in how to realize the CPPS (Järvenpää et al.,
2019; Monostori, 2014). Hence, variability modeling for CPPSs faces
the challenge of capturing multiple aspects (Fang et al., 2013; Galster
et al., 2013) that reach from the variability of products to the sequence
of production steps and employed production resources. Furthermore,
engineers of different disciplines, such as mechanics, electrics, and soft-
ware engineering, with different views on the planned CPPS collaborate
to build it iteratively (Biffl et al., 2017). Due to this multidisciplinarity,
separating the concerns is essential, which is also true for variability
modeling (Ananieva et al., 2016).

To build a CPPS, typically, CPPS engineers start with determining
a feasible sequence of production process steps manually for the prod-
ucts in the portfolio (Lee, 1989). Then, they define which production
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resources can execute these production process steps, examine the
performance characteristics, and estimate the CPPS variant’s construc-
tion cost. The production process steps and production resources are
later used for designing and implementing CPPS artifacts, e.g., the
control software. As the result originates from a completely manual
process founded in implicit domain knowledge, resulting primarily from
experience and undocumented dependencies, it is hard and, most of the time,
impossible to reproduce. However, repetition of the planning may be nec-
essary when a new product variant is introduced, ‘‘a frequent scenario
in CPPS engineering’’ (Tolio et al., 2010). The manual configuration is
also highly inefficient and tedious due to the large number of possible
production sequences, challenging engineers to find practically feasible
ones. Thus, this laborious, time-consuming, and error-prone activity
calls for a methodology to automate and document the derivation
of production sequence and resource configurations from a product
configuration.

To address some of these challenges, we developed different au-
tomation facilities in previous work. We developed (i) the Product-
Process-Resource Domain-Specific Language (PPR–DSL) (Meixner et al.,
2021b) to model products with the required production processes and
resources systematically; (ii) the TRAVART framework (Feichtinger
et al., 2021) to transform engineering artifacts containing variability
information into state-of-the-art variability models automatically; (iii)
the Iterative Process Sequence Exploration (IPSE) (Meixner et al., 2022)
approach that utilized these approaches to handle CPPS variability
through SPL techniques and transformations of the PPR–DSL into a FM
and a DM. However, the IPSE approach had no automation and tool
support to explore and configure process sequences, and did not include
production resource modeling and configuration and artifact generation.

In this paper, we extend the semi-automated IPSE process and aim
to answer the following research questions:
RQ1 How can CPPS engineers be supported in modeling, exploring, and

configuring the combined variability of products, production pro-
cesses, and production resources, to generate corresponding CPPS
artifacts? The Extended Iterative Process Sequence Exploration
(eIPSE) approach establishes a process that includes these arti-
facts and incorporates feedback loops that reflect the iterative
development.

RQ2 How and to what extent can CPPS design be automated using
variability modeling and CPPS concepts? We provide the eIPSE tool
architecture, which starts with the manually defined PPR–DSL
and derives the remaining artifacts automatically.

In its first state (Meixner et al., 2022), the IPSE converted a given
PPR–DSL into a FM to capture the variety of products and their
parts, and a DM, to represent the production process sequences, using
TRAVART (Feichtinger et al., 2021). We extend IPSE to derive a
second kind of FM to capture the variability in production resources.
Additionally, we utilize Cross-Discipline Constraints (CDCs) (Fadhlillah
et al., 2022a,b) to express dependencies between variation points from
those three variability models. Furthermore, we reduce the effort of
manually configuring the resulting DM by offering an editor, which
decreases the number of configuration options with each decision
taken, and we empirically examine the gained automation. Thus, on
top of our previous work, this paper contributes:

• The eIPSE approach with additional steps for production resource
definition and configuration, artifact generation, and feedback
loops.

• An extended prototype to assess the feasibility of the eIPSE ap-
proach, complemented with

– support for transforming the PPR–DSL into a Resource FM
and CDCs to elicit resource variability and dependencies
among the different variability models

– a novel DM editor for modeling and configuring DOPLER
DMs, used in this context to represent and configure pro-
duction process sequences

– an automated reduction of the possible Process DM con-
figuration based on the product configuration to lower the
complexity of production process sequence configuration

– support for resource configuration and control code ar-
tifact generation through integration with Variability for
4diac (V4rdiac) (Fadhlillah et al., 2022a,b) to automate the
creation of control software.

• An empirical evaluation of
– the feasibility of selecting an adequate CPPS variant in four

real-world case studies (Meixner et al., 2021a)
– applying the eIPSE approach in a new case study performed

by engineers with heterogeneous backgrounds inexperi-
enced in the approach, and thereby

– the first exploration of the joint usage of feature and deci-
sion models for configuring CPPSs and creating CPPS arti-
facts.

• A report on the gathered insights from exploring production
sequences in this highly automated way.

We postulate that the eIPSE approach, compared to the baseline of
the traditional manual and hard-to-reproduce approach, (i) helps to
externalize the implicit knowledge of engineers, (ii) reduces the effort
of CPPS configuration, including the exploration of feasible produc-
tion process sequences and (iii) separates the concerns of different
engineering disciplines and, further, (iv) benefits the reproducibility
of the configuration process. With these aspects, the approach directly
addresses several criteria of the VDI 3695 guideline for optimizing in-
dustrial plant engineering (VDI, 2013; Jazdi et al., 2010). In particular,
configuration and knowledge management, description languages, re-
use, and the integration of disciplines. Additional material to this paper,
such as the model artifacts and variability models, can be found online.1

The results of our empirical evaluation demonstrate that we can
automate the subsequent configuration process of a CPPS by using
variability models; a clear benefit compared to the manual assembly
and exploration process. Our subjects spend the most time defining
the PPR–DSL, while configuring the CPPS boils down to generating
and configuring the variability models. However, this shows how much
effort it is to externalize their implicit knowledge, which, on the
other hand, supports engineers downstream the engineering process.
Particularly, configuring the production process sequences through the
DM benefits from our prototype, which displays only the decisions that
can be made in the respective configuration step. Furthermore, the
separation of concerns of splitting and linking the variability models for
products, production processes, and production resources allows their
configuration by respective experts. Consequently, the eIPSE process
with tool support meets the expectations of automating and eliciting
the configuration process of CPPSs, improving its reproducibility.

The remainder of this work is structured as follows: Section 2
summarizes the background on CPPSs engineering and variability mod-
eling. Section 3 presents an illustrative use case. Section 4 describes
our research methodology. Section 5 presents the eIPSE approach
and corresponding tooling. Section 6 describes the evaluation of the
eIPSE approach. Section 7 discusses the results and implications of the
approach. Section 8 summarizes related work that aims at achieving
similar goals and Section 9 concludes this work by providing an outlook
on future work.

2. Background

This section provides background information on CPPS engineering
and variability modeling.

1 Additional material to eIPSE: https://github.com/tuw-qse/eipse.
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Fig. 1. FeatureIDE FMs (Meinicke et al., 2017) of product (top) and production resource (bottom) variability of the shift fork case study.

2.1. CPPS engineering

CPPSs are next-generation production systems that interact au-
tonomously with their environment, aiming for flexible production of
customized products that build a product family (Meixner et al., 2020;
Monostori, 2014). CPPSs are Cyber-Physical Systems (CPSs) (Gunes
et al., 2014) with the purpose of manufacturing goods. CPPS engineer-
ing resides in a multidisciplinary environment that involves engineers
from diverse disciplines, such as mechanical, electrical, and computer
sciences (Biffl et al., 2017).

The engineers collaborate to create various artifacts representing
aspects of the CPPS. For instance, they create technical documents
such as text documents or spreadsheets for defining requirements
or bills of materials. The engineers also create engineering artifacts,
e.g., CAD drawings or AutomationML artifacts (IEC, 2014) to represent
the CPPS’s physical and functional design. Additionally, the engineers
use domain-specific language defined by industrial standards, such as
IEC 61499 (IEC, TC65/WG6, 2012), to implement the control software.
Furthermore, several of these artifacts, e.g., type comparison matrices
(TCMs), contain information on variability in the CPPS, such as product
types or production processes (Feichtinger et al., 2020).

One prominent concept in CPPS engineering is the Product-Process-
Resource (PPR) approach (Schleipen et al., 2015), which describes
(i) products and their parts, (ii) production processes required to
manufacture the products, and (iii) production resources that exe-
cute the processes. The Formalized Process Description (FPD) (VDI,
2005) allows for modeling these PPR aspects in a visual (and partly
formalized) model (cf. Fig. 2). Complementary, we contributed the
PPR–DSL (Meixner et al., 2021a), which we use in this work, as
a machine-readable PPR format that represents the variability and
constraints among the PPR aspects.

2.2. Variability modeling

Modeling variability explicitly is crucial for (software) product line
engineering. In this work, two dimensions of variability play a role:
CPPSs manufacture a product line of goods, such as families of cars,
whereas CPPSs can also be configured in various ways. Furthermore,
the sequence of the production steps involves dependencies between
product parts and production resources and may vary in the estimated
cost. The multidisciplinary nature of CPPS engineering calls for differ-
ent views on the CPPS involving different variability models (Meixner,
2020; Meixner et al., 2019): feature models to capture structural vari-
ability of product parts and production resources, and decision models
to capture the behavioral variability of production process sequences.

Feature models (Kang et al., 1990) elicit commonalities and dif-
ferences in a feature tree and allow for defining cross-tree constraints,
e.g., that one feature requires or excludes another. Given this model,
we can perform a configuration by selecting and deselecting features
while conforming to the expressed constraints. For instance, the FM
on the top of Fig. 1 captures commonalities and differences of a
shift fork (c.f., Section 3). The model consists of mandatory features
representing product parts required in all variants, such as a Screw and
the three types of forks. The model also contains optional features, such
as Barrel1_2, and feature groups, such as the alternative Pipe group
that allows selecting only one type of pipe. The FM on the bottom of
Fig. 1 captures commonalities and differences of potential production
resources, such as two Linefeeds that can be used to feed material into
the CPPS.

Decision models (Schmid et al., 2011) are rooted in the Synthesis
method (Campbell et al., 1990), which supports the reuse of processes
and the necessary assets for configuring an application engineering
process. DMs include only varying features and their constraints. For
instance, the DOPLER approach (Dhungana et al., 2011) comprises DMs
and asset models for defining variability in the problem space and
reusable elements and their dependencies in the solution space, respec-
tively. It maps assets onto the decisions, but decisions are unaware of
the assets.

Table 1 represents an exemplary DM in tabular representation. A
decision in a DM consists of a unique ID and a text describing the
decision (usually a Question). These decisions are configured based
on the specified Range. For instance, only one of the three locks can
be selected in the enumeration decision Lock. Constraint/Rule and Visi-
ble/Relevant if relationships between decisions specify (post-)conditions
and hierarchical or logical (pre-)conditions. The Visible/Relevant if rela-
tionship defines preconditions that need to be satisfied for the decision
to be selectable. For instance, InsertLock1 can only be selected if Lock1
is selected. A visibility condition false (e.g., InsertLock) entails that
the decision cannot be selected by developers but rather by selecting
another decision that relies on this decision. Similarly, abstract features
in FMs are automatically selected if one of their child features is
selected. For instance, the selection of InsertLock1 triggers the selection
of InsertLock. These explicit dependencies among selected decisions
reflect a configuration order, which models behavioral variability.

CDCs (Fadhlillah et al., 2022b,a) model the relationships among
different types of variability models, likely employed by different (en-
gineering) disciplines, as shown in Listing 1. A CDC identifies the
involved variability model using the variability type and the unique id.
For instance, CDC1 in Listing 1 refers to the relation of a Product FM
feature (shiftfork_product#Pipe2), which concerns product engineers,
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Table 1
Excerpt of the generated DOPLER DM (Dhungana et al., 2011) representing the process variability of the shift fork case study in tabular notation (Schmid and John, 2004).
ID Question Range Visible/Relevant if Constraint/Rule
Pipe Which Pipe types? Pipe2 | Pipe 3 | Pipe8 false
Barrel1_2 Install Barrel1_2? true | false false
Lock Which Lock types? Lock1 | Lock2 | Lock3 false Lock1 ⟹ Pipe =Pipe2 ∨

Pipe =Pipe3
Lock2 ⟹ Pipe =Pipe3
Lock3 ⟹ Pipe =Pipe 8

InsertPipe Install InsertPipe? true | false false
InsertPipe2 Install InsertPipe2? true | false Pipe ==Pipe2 InsertPipe2 ⟹ InsertPipe
InsertLock Install InsertLock? true | false false
InsertLock1 Install InsertLock1? true | false Lock ==Lock1 InsertLock1 ⟹ InsertLock
InsertLock2 Install InsertLock2? true | false Lock ==Lock2 InsertLock2 ⟹ InsertLock
InsertBarrel1_2 Install InsertBarrel1_2? true | false Barrel1_2
PressBarrel1_2 Install PressBarrel1_2? true | false Barrel1_2 & InsertBarrel1_2 & InsertPipe
. . . . . . . . . . . . . . .

1 CDC1) shiftfork_product#Pipe2 => shiftfork_process#Pipe2
2 CDC2) shiftfork_product#Pipe2 => shiftfork_process#InsertPipe2
3 CDC3) shiftfork_process#WeldLock =>
4 shiftfork_resource#WeldingRobots
5 CDC4) shiftfork_product#Lock1 => shiftfork_product#Pipe2 ||
6 shiftfork_product#Pipe3;

Listing 1: Excerpt of CDCs (Fadhlillah et al., 2022b) of the shift fork
case study.

to the Process DM decision (shiftfork_process#Pipe2), which concerns
production process engineers, to model dependent processes in the
decision model. Similarly, CDC3 models the relation of the Weld-
Lock process to the WeldingRobot production resource that concerns
production resource engineers.

3. Motivating case study

This section presents the shift fork case study (Meixner et al.,
2021a), one example of a CPPS, based on which we illustrate our
contribution in the following sections. Shift forks are part of a manual
transmission in a car.2 They shift the cuffs with two forks along the
pipes to their correct position to connect the transmission’s gears.
Typically, a single shift fork moves a particular cuff for two gears,
e.g., the first and the third gear. This design results in a product
portfolio of four shift fork variants required for a particular type of car
transmission.

In the first CPPS engineering phase, so-called basic engineers an-
alyze the product portfolio that the CPPS should produce (Meixner
et al., 2021a), which represents a classical (mechanical) product line
with common and varying features. The engineers examine various
artifacts, such as CAD drawings or product prototypes, to identify
the commonalities and differences of the product line (Meixner et al.,
2021a). Furthermore, the engineers examine the required partial pro-
duction steps, such as joining the fork and the pipe of the shift fork
by welding them together (Meixner et al., 2021a). Fig. 2 shows a
section of such a production step sequence for a single product in
VDI 3682 notation (VDI, 2005) (cf. Section 2), where, in the first step,
a Pipe (product) is inserted (process) into the CPPS using a Linefeed
(resource).3 In this step, they often disassemble the prototypes and put

2 Exemplary figure of shift forks: https://w.wiki/3DCf.
3 In contrast to the figure, the engineers first plan the single process steps,

e.g., insert pipe in an isolated way.

Fig. 2. Excerpt of a PPR model for the production steps of a shift fork in VDI 3682
notation (VDI, 2005).

them ‘‘back together’’ (Lee, 1989). The engineers aim to design feasible
production processes for the requested product line. They complement
these designs with potential basic CPPS designs and corresponding
rough cost estimates (Meixner et al., 2021a).4

Some product parts require a specific production sequence. For
instance, the pipe must be available to mount forks onto the pipe. Still,
several degrees of freedom to assemble a particular product remain,
which must be resolved either in engineering or operation. Tradition-
ally, the engineers design feasible process sequences, e.g., in tools
like DelMia,5 based on implicit knowledge, by using heterogeneous
and partial data representations. The engineers use the sequences to
reason about process characteristics, such as the production duration.
However, as the decisions are typically undocumented, a change to
the CPPS, which occurs frequently, may cause redesigning the entire
CPPS from scratch (Paetzold, 2017; Meixner et al., 2021a). Therefore,

4 If customers accept a CPPS design and cost estimate, the artifacts of basic
engineering are handed over to the different disciplines of detail engineering. As
the time of a cost estimate and its acceptance can be wide apart, the engineers
in detail engineering need to reiterate over those designs, ideally, reuse, and
detail them.

5 DelMia: https://www.3ds.com/products-services/delmia/.
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1 Product "Pipe": { name: "Abstract Pipe", isAbstract: true }
2 Product "Pipe2": { name: "Pipe 2",
3 implements: ["Pipe"],
4 excludes: [ "Pipe3", "Pipe8" ]
5 }
6
7 Product "Lock": { name: "Abstract Lock", isAbstract: true ,
8 requires: ["Pipe"]
9 }

10 Product "Lock1": { name: "Lock 3",
11 implements: ["Lock"], excludes: [ "Lock2", "Lock3" ]
12 }
13
14 Process "InsertPipe": { name: "InsertPipe", isAbstract: true }
15 Process "InsertPipe2": { name: "InsertPipe2",
16 implements: ["InsertPipe"],
17 inputs: [ {productId: "Pipe2"} ],
18 outputs: [ {OP1: {productId: "Pipe2"}} ],
19 resources: [ { resourceId: "Linefeeds" } ]
20 }
21 Process "WeldLock": { name: "WeldLock", isAbstract: true ,
22 requires: [ "InsertLock", "InsertPipe", ... ],
23 inputs: [ {productId: "Lock"}, {productId: "Pipe"} ],
24 outputs: [ {OP2: {productId: "ForkProduct"}}],
25 resources: [ {resourceId: "WeldingRobot"} ]
26 }
27 Process "WeldLock1": { name: "WeldLock1",
28 implements: [ "WeldLock" ], inputs: [ "Lock1" ]
29 }
30
31 Resource "WeldingRobot": { name: "WeldingRobot",
32 isAbstract: true }
33 Resource "LaserWeldingRobot_01":{ name: "LaserWeldingRobot_01",
34 implements: [ "LaserWeldingRobots" ]
35 }
36
37 Constraint "C1": {
38 definition: "Lock1,Pipe2,Pipe3 -> Lock1 implies Pipe2 OR Pipe3"
39 }

Listing 2: Excerpt of a PPR model for the shift fork case study in
PPR–DSL (Meixner et al., 2021b).

making this knowledge more explicit is a decade-old challenge in CPPS
engineering (Drath et al., 2008; Drath, 2009).

To elicit their domain knowledge, CPPS engineers can use the
PPR–DSL (Meixner et al., 2021b) to represent PPR aspects and their
constraints. Listing 2 shows an excerpt of a PPR–DSL file that defines
shift fork product parts (lines 1–12), the atomic production process steps
and variants (lines 14–29), the production resources (lines 31–35), and
the constraints between these PPR aspects (lines 37–39). The entire
PPR–DSL file is available online.1

For instance, Line 1 defines the abstract Product Pipe that builds the
central part of a shift fork. The Product Pipe2, defined in the following
line, represents a concrete pipe and excludes another variant of a pipe
(i.e., Pipe3 and Pipe8). Similarly, InsertPipe in Line 14 represents an
abstract Process which is implemented, for instance, by the Process
InsertPipe2. The PPR–DSL further enumerates its input and output
products, i.e., Pipe2, and required production resources. Examples of
production resources, which can be abstract or concrete, are stated in
Lines 31–33. The last lines of the excerpt, Lines 37 to 39, add the
Constraint C1 which defines that the Lock1 implies the presence of
either Pipe2 or Pipe3.

Thus, the PPR–DSL describes the products and their parts, the
required production process steps, and the production resources of the
shift fork case study precisely. Particularly, it elicits the variability and
dependencies among the three aspects.

4. Methodology

To develop the eIPSE approach, we applied the Design Science
methodology (Hevner, 2007; Hevner et al., 2008). This methodology
aims to solve problems by covering the design and investigation of
artifacts that define, above others, methods and technical solutions
in a problem context to improve something in that context (Hevner

Fig. 3. Design Science methodology (Hevner, 2007; Hevner et al., 2008) for this work.

et al., 2008; Wieringa, 2014). In this work, the method is the iterative
design and investigation of the eIPSE approach in the context of CPPS
engineering. Fig. 3 shows the Design Science methodology adapted to
this work, with the relevance cycle on the left, the design cycle in the
middle, and the rigor cycle on the right.

Our previous work (Feichtinger et al., 2020, 2021; Meixner et al.,
2022, 2021b) builds the grounding in the rigor cycle. Furthermore,
we aim to address literature gaps, in particular, the integration of
different variability models of CPPSs (Krüger et al., 2017) including
their behavior (Fang et al., 2013; Galster et al., 2013) and the separa-
tion of concerns between engineers of different disciplines (Ananieva
et al., 2016). Based on discussions with stakeholders of our industry
partners and our previous work, we obtain additional requirements for
an integrated CPPS variability modeling approach (cf. Section 5.1) for
the relevance cycle.

We iteratively perform the following tasks for the design cycle and
the develop/build activity (cf. Section 5): First, to address the iden-
tified requirements, we extend our former approach with respective
steps, resulting in the eIPSE approach, and investigate which steps can
be further automated (cf., Section 5.2). We lay out the architecture
of the eIPSE toolchain to illustrate a prototype implementation (cf.,
Section 5.3). We integrate a DOPLER DM into the state-of-the-art
technology and develop the remaining transformation operations for
converting the PPR–DSL into three variability models. We develop a
DM Editor as a prototype for modeling and configuring the Process DM
and design the automated reduction of the Process DM configuration
based on the configuration of the Product FM. Then, we adapt V4rdiac
to use the distinct configurations of the Product FM and Process DM
for generating artifacts. In this way, we establish the eIPSE toolchain
to support the steps of the eIPSE approach (cf. Section 5). Furthermore,
we aim to separate the concerns of basic engineers and the disciplines
involved in detail engineering, particularly product design, production
process engineering, and production resource engineering.

For the evaluate activity of the design cycle, i.e., the evaluation of
the approach and prototype, we rely on a three-fold approach. First,
we applied the eIPSE approach to a set of previously published case
studies (Meixner et al., 2021a) from the CPPS domain to investigate
the feasibility of the approach (cf. EQ1 and Section 6.3). Second, we
conducted an observational user study (Wohlin et al., 2012; Runeson
et al., 2012; Singer et al., 2008) with six engineers to provide evidence
on the perceived usability of the eIPSE approach and learn about its
usage. Therefore, we requested study subjects to perform the eIPSE
process on a newly introduced case study (cf. EQ1 and Section 6.4). A
detailed description of the user study can be found in the appendix, cf.
Appendix. Third, we investigate the configuration space’s reduction for
the production sequences of one particular case study using the eIPSE
approach (cf. EQ2 and Section 6.5). Finally, we examined the genera-
tion of parameterized CPPS artifacts for a particular CPPS configuration
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for each of the four previously mentioned case studies (cf. EQ3 and
Section 6.6). These measures complete the design cycle.

We discuss our findings and lessons learned and accompany them
with additional material1 and a demonstration video6 as additions to
the knowledge base. Furthermore, we briefly describe measures to as-
sess the practical impact of the application in CPPS engineering. These
measures aim to reach a broad audience in academia and industry and
complete the rigor and relevance cycle (cf. Section 7).

5. Adopting variability modeling for CPPS process exploration and
configuration

This section details employing variability modeling for exploring
configuration options in deriving a functional CPPS design. Firstly, Sec-
tion 5.1 states the requirements for a CPPS production process explo-
ration and production resource configuration approach as elicited from
industrial needs in previous work. Inferred from these requirements,
Section 5.2 describes increasing automation in CPPS planning and con-
figuring through the Extended Iterative Process Sequence Exploration
(eIPSE) approach. To assess the feasibility of the eIPSE approach and
to follow the Design Science methodology, Section 5.3 presents our
prototype implementation, respectively.

5.1. Requirements for eIPSE

To gather requirements for automating the configuration of
CPPSs, we conducted interviews with industrial partners in previous
work (Meixner et al., 2022) on which we build in this article. The re-
sulting requirements R1-R3 mainly motivate knowledge representation
and tool support as follows:

R1. Production Variability Exploration. The approach shall col-
lect variability knowledge from CPPS engineering (artifacts) that is
required to explore production process sequence options efficiently.
The approach must incorporate new knowledge from product line
evolution, such as changes of the products that the CPPS manufactures
or process simulation and optimization iteratively.

R2. Product & Process Variability Representation. The knowl-
edge representation shall describe

(i) the products, which form a product line,
(ii) the atomic production process steps, which form a process line,

both with their dependencies and CDCs in an industrial vari-
ability artifact, e.g., using the PPR–DSL (Meixner et al., 2021b),
and

(iii) variability models of the product and process line in state-of-the-
art variability models (e.g., FMs or DMs).

R3. Variability Transformation & Configuration. The IPSE
method and tool support shall (i) automate transformations of the
variability represented in the industrial artifacts into state-of-the-art
variability models and (ii) provide guidance through product and pro-
cess variability model exploration and configuration supported by tools,
such as the FeatureIDE (Meinicke et al., 2017) or DOPLER tool (Dhun-
gana et al., 2011) to better support multidisciplinary engineering.

However, requirements R1–R3 only focus on exploring and config-
uring products and processes without considering production resources.
Thus, based on previous work and discussions with stakeholders, we
defined two additional requirements (R4 and R5) that address the
necessity to include the production resources in the IPSE.

R4. Resource Variability Representation. After exploring feasible
production sequences, the engineers’ goal is to ‘‘search’’ for suitable
production resources, e.g., welding robots, that are able to execute the
production steps (cf. Section 3). Therefore, the eIPSE knowledge repre-
sentation shall model a product line of potential production resources
that can execute respective production process steps. The product

6 eIPSE demonstration video: https://youtu.be/eoNNDOusXKA.

line should be represented in an industrial variability artifact, e.g., a
variability model. Additionally, the eIPSE method shall respect the
production resource variability model when being transformed and
configured (R3). The production resource variability model shall be
transformed into state-of-the-art variability models and adequate tool
support shall guide configuration.

R5. Cross-Discipline Constraint Representation. The CPPS engi-
neering process expects engineers to link the developed concepts to a
system design, e.g., that a production process requires a particular type
of welding robot. To complement the overall eIPSE knowledge repre-
sentation, we must be able to describe dependencies (include/exclude
relations) between variability knowledge across different PPR concepts.

These requirements reflect the need of engineers to continuously
incorporate additional product requirements and subsequently assign
production processes and resources to the CPPS design. Furthermore,
they represent the engineers’ demand to obtain a holistic overview
of a CPPS’s variability in their preferred engineering artifacts and
models that can be better computed, e.g., for satisfiability, such as
state-of-the-art variability models. Beyond that, the requirements build
the foundation for the automation of an integrated CPPS variability
modeling approach.

5.2. The extended IPSE approach

In prior work (Meixner et al., 2022), we introduced the linear
IPSE approach, which utilizes state-of-the-art variability models to
enable the systematic and reproducible exploration of potential produc-
tion process sequence and resource configurations based on a product
configuration. These variability models need to support structural vari-
ability to represent the hierarchical structure of products and behavioral
variability to represent the potential sequences of process steps. The
tool support for the original IPSE approach allows for exploring process
sequences manually, but does not include the modeling and configura-
tion of production resources and the artifact generation. To address these
issues and satisfy the additional requirements R4 and R5, we utilize
a FM to represent resource variability and CDCs (Fadhlillah et al.,
2022b) to represent one or more dependencies across PPR concepts of
different disciplines. Here, each CDC is a propositional logic constraint
based on the variation points defined in Product FM, Process DM, and
Resource FM (cf. Listing 1). To this end, we extend our previous work
with the eIPSE approach and toolchain.
Overview. In this article, we contribute the eIPSE approach, which
extends the linear IPSE approach with

(i) automated transformations from the PPR–DSL to the Re-
source FM and the CDCs for linking the variability models,

(ii) an automated reduction of the Process DM configuration based
on the Product FM configuration and the tool-supported process
exploration that guides engineers,

(iii) the automated reduction of the Resource FM configuration and
its tool-supported configuration,

(iv) the generation of CPPS artifacts, such as control code artifacts,
(v) and feedback loops to respect its iterative character.

This way, eIPSE aims to support the disciplines of functional product
design, production process engineering, and production resource engi-
neering. Fig. 4 illustrates the resulting eIPSE process. Steps with dashed
contours in Fig. 4 were carried over as-is from the IPSE approach,
steps with solid contours were adapted, and steps with solid contours
and in dark green were newly introduced in the eIPSE approach. The
process consists of ‘‘human’’ tasks conducted by engineers with tool
support (persona with cog icon) and automated tasks (cog icon). eIPSE
provides automation support by utilizing the eIPSE tool. While the
eIPSE tool performs the automated tasks entirely, it supports CPPS
engineers during the ‘‘human’’ tasks that require access to models.

The eIPSE process starts with the definition of the PPR element
variants of the desired CPPS by engineers in the PPR–DSL and ends
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Fig. 4. (Human & automated) eIPSE process steps for exploring production process steps based on a product configuration (updated steps have solid contours, novel steps,
additionally a darker color).

in creating the artifacts for a configured CPPS automatically. The
PPR–DSL is automatically transformed into three variability models
(Step 2a-c) and their respective CDCs (Step 2d). The variability mod-
els are configured by engineers and automatically and subsequently
configured for the next configuration step (Steps 3–7).

In contrast to the IPSE process, the eIPSE process splits the second
step into sub-steps to demonstrate the various variability models that
the eIPSE tool creates based on the PPR–DSL. It creates an additional
Resource FM to represent the production resources (Step 2c) and de-
rives and elicits the CDCs among the three variability models (Step 2d).
The reduction of the Process DM configuration (Step 4) is automated.
The exploration and configuration of the Process DM (Step 5) is inte-
grated with state-of-the-art technology and supported by the eIPSE tool.
Subsequently, in Step 6, the additionally created Resource FM config-
uration is automatically reduced based on the decisions taken (i.e., the
configuration of the Process DM), and next, configured by the CPPS
engineer with the eIPSE tool. Finally, Step 8 creates the control code for
the configured production resources to operate the CPPS. The following
descriptions highlight the added and adapted steps compared to the
original IPSE and explain the eIPSE tool.
Details. First, CPPS engineers model product parts and product variants
and identify atomic production steps and production resources to man-
ufacture these products based on analyzing the product descriptions
and production requirements in Step 1. In this way, they iteratively
define a PPR–DSL model (cf. Listing 2). In practice, engineers typically
select and adapt such atomic process steps and, particularly, production
resources from an artifact catalog.

After defining the PPR–DSL, in Step 2, the eIPSE uses transformation
technology, such as TRAVART (Feichtinger et al., 2021), to create
the variability models automatically. In contrast to the IPSE process,
which derived a Product FM and a Process DM only, this second step
transforms the PPR–DSL into three variability models with shared CDCs
(cf. requirement R3 & R5). It creates

(i) a Product FM to represent the product variants, their parts, and
structure (cf. upper FM in Fig. 1),

(ii) a Process DM to represent the atomic process steps and their
dependencies, representing partial behavior of the CPPS, and
product decisions not shown to engineers during the configura-
tion but required for the satisfiability calculation of the model
(cf. Table 1),

(iii) a Resource FM to represent the hierarchical structure of produc-
tion resources (cf. lower FM in Fig. 1), and

(iv) CDCs capturing the dependencies between the Product FM, the
Process DM, and the Resource FM in propositional logic (cf.
Listing 1).

The following steps configure and reduce the possible configura-
tion spaces of the variability models. The CPPS engineer starts with
configuring the Product FM in Step 3, resulting in a valid config-
uration according to the FM. For instance, an engineer selects the
Pipe2 and Lock1 in the Product FM configuration (cf. Fig. 1). Based
on the configuration, the eIPSE tool in Step 4 automatically reduces
the subsequent Process DM configuration to exclude decisions that
are unnecessary to produce the configured product. For each selected
feature in the Product FM configuration, the configuration value for the
corresponding decision in the Process DM is set to true. For instance,
for the selected Pipe2 feature, the eIPSE tool will set the configuration
value of the Pipe2 product decision to true. For all product features
that are not selected, the configuration value of the respective decision
remains false. The configuration values in the Process DM set in this
way affect which process decisions are visible during the configuration,
e.g., decision InsertPipe2 in Table 1, due to its visibility conditions.

In this reduced Process DM configuration, in Step 5, a CPPS en-
gineer can explore the remaining process decisions iteratively and
interactively with the eIPSE tool. Based on a constant evaluation,
the tool only displays the process steps that are feasible during the
configuration stage according to the visibility conditions. Based on
the internal constraints of the Process DM, the eIPSE tool sets the
subsequent configuration values. Furthermore, the eIPSE tool stores
and visualizes a queue representing the sequence of the currently taken
decisions. The final sequence of the configured decisions represents the
desired production sequence. This production sequence can be used to
define and optimize a valid production process model that is executed
on the CPPS.

In Step 6, the eIPSE tool automatically reduces the Resource FM
configuration (cf. requirement R3) by considering the Process DM con-
figuration of Step 5. This results in a partial Resource FM configuration,
where the configuration possibilities are a valid subset of production
resource configurations for a particular product and process sequence
configuration. For each selected decision in the Process DM configura-
tion from Step 5, the eIPSE tool considers the CDCs for the production
processes and resources. If a process requires a type of production
resource, the configuration value for the corresponding features in the
Resource FM is preselected. For instance, if the WeldLock1 decision
is part of the configured process sequence, the WeldingRobot group is
selected.
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Based on the Resource FM, in Step 7, a CPPS engineer can config-
ure the desired production resources with the eIPSE tool. As the Re-
source FM is pre-configured by the Process DM configuration (Step 5),
the configuration of the Resource FM only contains the production
resources to be used in the production process.

In the final step, Step 8, engineering and operation artifacts should
be generated from the combined configuration of the Product FM,
the Process DM, and the Resource FM. For instance, IEC 61499 (IEC,
TC65/WG6, 2012) or AutomationML (Drath, 2021) code can be pa-
rameterized and generated from reusable artifacts. This step aims to
increase the reusability of artifacts and decrease artifact creation time
to increase engineering productivity. To support this automation, an
eIPSE tool requires additional mechanisms for generating CPPS arti-
facts. Therefore, CPPS engineers need to decide on a variability mecha-
nism (Apel et al., 2013), such as Delta Modeling (Schäfer et al., 2021;
Zhang et al., 2016), to implement the shared and the varying CPPS
artifacts. In Delta modeling, engineers create elements, such as stubs,
templates, and lines of code, that represent the base implementation,
in our case, particular CPPS artifacts such as control code. Then,
they define Delta models comprising modifications to enrich the base
implementation. These operations can modify the base implementation
or add or remove code (cf. Listing 3). During artifact generation, a
generator parameterizes and combines this base implementation and
the variable code parts, i.e., the Deltas, depending on the variability
models’ configuration.
Summary. The result of the eIPSE process is a set of configurations as
well as engineering and operation artifacts, such as control code for
a possible design of a CPPS or plan for the assembly of a concrete
product. This set of configurations can be used, for instance, to generate
a layout of the CPPS, optimize it, and initiate its operation.

5.3. eIPSE Toolchain Architecture

This section describes our implementation of an eIPSE tool. In
particular, it presents the architecture of our prototype and further
implementation details. Fig. 5 depicts this architecture with its main
components, which consist of (i) the PPR–DSL to define, read, and
evaluate PPR models (eIPSE, Step 1), (ii) TRAVART to transform
PPR–DSL models into FMs and DM (Step 2), (iii) the FeatureIDE to
configure the Product FM (Step 3), (iv) the eIPSE DM editor to read or
define, manipulate, and configure DMs (Steps 4 & 5), and (v) V4rdiac
to read, manipulate, and configure models with CDCs (Steps 6 & 7)
and generate IEC 61499 code based on Delta models (Clarke et al.,
2015) (Step 8). Compared to our previous work, we provide addi-
tional automation support with extended TRAVART transformations
for production processes and resources in the PPR–DSL, introduce the
novel eIPSE DM editor, and integrate V4rdiac. To this end, in Fig. 5,
unchanged components are depicted with dashed contours, and novel
or adapted components are depicted with solid contours.
PPR–DSL environment. The PPR–DSL environment is realized as a stan-
dalone Java application (cf. Fig. 5, top left in yellow). Its main compo-
nents are the PPR Model (based on an extended VDI 3682 model (VDI,
2005)), the PPR Command Line Interface (CLI), the PPR Parser,
and the PPR Evaluator for constraints. The parser reads the PPR
File, which includes the products, production process steps, production
resources, and constraints via the CLI and builds the PPR Model. The
constraints are mapped onto (recursive) SQL queries and evaluated
using a PostgreSQL database. This strategy also allows the use of
aggregation functions, such as the sum or average of attribute values,
over a PPR hierarchy and an easy integration with industrial standards.

Currently, the tool support for the PPR–DSL comprises a set of
snippets and code completion functions implemented in SublimeText.7

7 SublimeText: https://www.sublimetext.com/.

Table 2
Mapping table of PPR–DSL onto Variability Model Elements.
PPR-DSL FM and DM elements

Un
it Product Feature with attribute, Decision

Process Decision
Resource Feature with attribute

Pr
op

ert
ies

Name –
Abstract Abstract feature
implements Feature tree if only one other

unit and feature attribute
otherwise feature attribute

children Feature tree
requires Implies constraint
excludes Excludes constraints

Co
ns
tra

int
s Not Not constraint

And And constraint
Or Or constraint
Implies Implies constraint

The snippets provide stubs of PPR aspects with their attributes (cf.
Listing 2 lines 1, 14, 31, and 37) that engineers can easily fill in. The
code completion allows the recommendation and autocompletion of
keywords and the aspects’ IDs and names, such as the resource Linefeeds
in Listing 2 line 19, so engineers can quickly find existing aspects. How-
ever, the text editor does not highlight incorrectly written keywords
or whether engineers deleted aspects that are used in other aspect
definitions. To this end, the development of an improved editor that
supports features, such as code highlighting and missing aspects, using
Eclipse XText8 for better integration into the ecosystem, is ongoing.
TRAVART environment. TRAVART (Feichtinger et al., 2021) is a
plugin-based variability model transformation environment (cf. top
right of Fig. 5).9 The TRAVART core plugin is implemented in Java
and uses the Universal Variability Language (UVL) (Sundermann et al.,
2021) as the pivot model, building on the current parser implemen-
tation.10 For each supported variability model, a plugin needs to be
implemented.

Such a plugin must provide functions for reading and writing the
supported variability model. Furthermore, one has to specify Transfor-
mation Operations, which transform the supported variability model
into the pivot model and vice versa. These operations are usually
built upon a mapping table between the supported variability model
and the pivot model and then implemented in Transformation Algo-
rithms (Feichtinger et al., 2022a; Feichtinger and Rabiser, 2020a,b).
Table 2 shows a mapping between the PPR–DSL and FM and DM
aspects. Optionally, a plugin can implement a configuration Model
Sampler to enable further testing of the resulting models.

Available plugins for TRAVART, including FeatureIDE FMs
(Meinicke et al., 2017) and DOPLER DMs (Dhungana et al., 2011),
implement transformation operations (Feichtinger et al., 2021) that
map their concepts to the UVL (Sundermann et al., 2021) and vice
versa (Feichtinger and Rabiser, 2020b). For instance, a decision in the
DOPLER DM is mapped to a feature in the UVL (Sundermann et al.,
2021). Also, a rule in the DOPLER DM is mapped to either a feature
property (mandatory), the FM tree, or a constraint (Feichtinger and
Rabiser, 2020b). In the opposite direction, the hierarchy of the FM
tree is captured via the visibility conditions of the DOPLER DM. To
support the needs of the eIPSE tool, we extended the DM Plugin by
a new writer. This writer creates a file conforming to the syntax of
the DM editor (see paragraph below), a propositional logic syntax for
constraints and visibility conditions.Moreover, we iteratively extended

8 Eclipse XText: https://www.eclipse.org/Xtext/.
9 TraVarT: https://github.com/SECPS/TraVarT.

10 UVL Parser: https://github.com/Universal-Variability-Language/uvl-
parser.
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Fig. 5. Architecture of the eIPSE toolchain in UML component diagram notation (novel and updated components are depicted with solid contours).

the existing PPR--DSL Plugin (Feichtinger et al., 2022a) and transfor-
mation operations (cf. Table 2) to transform PPR–DSL processes into
a Process DM and PPR–DSL resources into a Resource FM. Specifically
for the Process DM, the plugin creates a single Boolean decision for
each process in the PPR–DSL with its input products and required
preceding processes as visibility conditions. For instance, the plugin
creates a decision InsertPipe2 in the Process DM in Table 1 from the
InsertPipe2 process in Listing 2. Furthermore, it creates a visibility
condition that fires if, for decision Pipe, the value Pipe2 is selected.
Subsequently, it creates a constraint that selects the abstract decision
InsertPipe. Abstract processes are transformed to Boolean decisions with
a visibility condition false, to be implicitly selected by those constraint
rules. Further, the transformations create a feature for each PPR–
DSL resource and derive its properties (e.g., whether the feature is
abstract or mandatory) from the respective PPR–DSL properties. For
example, for the WeldingRobot (cf. Listing 2), an abstract feature is
created in the Resource FM, defining a group of welding robots. For
the KUKA_KR_Agilus, a concrete feature is generated in theWeldingRobot
group. Each group of PPR–DSL resources is converted into an OR-group
because at least one of the grouped resources will have to be selected
if these resources are necessary to produce the configured product.
Finally, the plugin derives a list of CDCs by connecting the features
and decisions from the resulting variability artifacts, i.e., Product FM,
Process DM, and Resource FM. For instance, the necessary PPR–DSL
resources for a given process result in a CDC between the respective
process decision in the Process DM and the respective resource features
in the Resource FM (cf. CDC2 in Listing 1).

Eclipse ecosystem. The Eclipse Ecosystem11 is a cross-platform, open-
source integrated development environment (IDE) for (software) engi-
neering in different languages and domains. The IDE provides a plugin
system that allows the dynamic exchange of components. Thus, it
allows combining different independent software components into a
suitable toolchain, in our case, for variability modeling.

11 Eclipse Foundation: https://www.eclipse.org.

FeatureIDE environment. The FeatureIDE (Meinicke et al., 2017)12 is the
current de-facto-standard open-source plugin for feature-oriented soft-
ware development. It supports several FM types, among others, graphi-
cal FMs modeling and textual variability modeling using UVL (Sunder-
mann et al., 2021). Furthermore, the FeatureIDE allows for configuring
FMs and validating them through sat4j.
Eclipse 4diac™. Eclipse 4diac™13 (Zoitl et al., 2010) is an open-source
Eclipse-based tool for developing IEC 61499-based (IEC, TC65/WG6,
2012) control software for CPPSs.
DM editor environment. The eIPSE DM Editor (bottom left of Fig. 5) is
inspired by the DOPLER DM editor (Dhungana et al., 2011). The latter
was developed for an industry partner and is a closed-source tool. In-
stead, our eIPSE DM Editor (cf. Fig. 5) is an open-source Eclipse plugin,
compatible with the latest version of FeatureIDE. Our DM Editor offers
the following key features: (i) the import of DOPLER DMs, used here
to import the Process DM, (ii) the creation of DRule files, where each
file represents a single decision, (iii) the generation of DOPLER DMs
from those DRule files, (iv) the generation of DConfig configuration
files for DOPLER DMs, and (v) the configuration of DOPLER DMs via
those DConfig configuration files, used here to explore and configure
the Process DM.

DRule files exhibit a similar structure as the DOPLER DM in Sec-
tion 2.2, supporting a propositional logic syntax for constraints and
visibility conditions. Currently, we limited the syntax to types that can
be translated into common SAT solvers, in this context sat4j, to enable
the DOPLER DM’s configuration validation and integration into the
toolchain. On user-triggered generation, the DM Generator component
maps the DRule files onto an internal DM Model. From this DM
Model, the DM Writer writes a DM File with the specific syntax. In
our case, this model and the corresponding files contain the decisions
for the production process steps that need to be selected to create a
suitable process step sequence. However, this model could also be used
for other types of decisions.

The DConfig Generator component generates a configuration for
a DM in a DConfig File. It uses the DM Reader that reads the DM
model file created either by the DM Generator or by TRAVART.

12 FeatureIDE: https://github.com/FeatureIDE/FeatureIDE.
13 Eclipse 4diac™: https://www.eclipse.org/4diac.
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The DM Config Editor reads the generated DConfig File and presents
configuration options in a configuration view. In this view, users can
configure the DM model, which is validated in the background by the
Config Evaluator. The selected sequence of decisions is stored in the
DConfig File for further processing, for instance, to export or visualize
the production process sequence.
V4rdiac. V4rdiac (Fadhlillah et al., 2022b) is a, currently closed source,
multidisciplinary variability management approach for CPPS variability
realized as an Eclipse plugin (cf. bottom right of Fig. 5). The eIPSE
tool uses several V4rdiac components for generating customer-specific
control software based on the selected products, production processes,
and production resources. Specifically, the eIPSE tool uses the com-
ponents IEC 61499 Delta Modeling, Multi-Level Configuration, CDC
Validator, Product Config Tool, and the 4diac Generator.

Eclipse 4diac™ is used to develop the base implementation of the
IEC 61499 control software. Beyond that, the IEC 61499 Delta Mod-
eling component is used to implement the Deltas for the control
code artifacts (cf. Listing 3). Afterward, a mapping between the base
implementation artifacts and the Deltas needs to be established. In our
case, CPPS engineers define an additional attribute in the PPR–DSL,
which specifies the location of corresponding Deltas, e.g., as URI (cf.
Listing 4 Line 8). The Multi-Level Configuration is used to define a
step-wise configuration in which different variability models can be
configured separately. In our case, the Product FM and Process DM with
their configurations and the Resource FM are loaded into the compo-
nent and ordered into this sequence. During the configuration of the
Resource FM, which allows the configuration of multiple production
resources for a production process, the CDC Validator ensures that the
selected configurations are valid according to the CDCs. The Product
Config Tool component displays the configuration user interface for
the Resource FM. After the Resource FM configuration in the Product
Config Tool, the eIPSE process is finished with a valid configuration.
The eIPSE tool requires an artifact generator that evaluates the mapping
between PPR–DSL attributes and CPPS artifacts to remove, combine,
and build CPPS artifacts given a set of selected products, production
processes, and production resources. The IEC 61499 Delta Modeling
component is linked to Eclipse 4diac™ and the 4diac Generator to gen-
erate the IEC 61499 control code. The 4diac Generator then generates
the control software for the production resources in IEC 61499. For a
detailed description of Delta modeling for control software, we refer
to (Fadhlillah et al., 2023a,b).

The eIPSE tool aims to support a straightforward integration of
different CPPS artifact generators and formats, such as IEC 61499 (IEC,
TC65/WG6, 2012) or AutomationML (Drath, 2021) code.

6. Evaluation

This section describes the evaluation of the eIPSE approach and pro-
totype. Section 6.1 presents the evaluation questions to be answered.
The subsequent sections (cf. Sections 6.2–6.6) first present the general
setup of the evaluation activities, followed by describing the concrete
setup and the results.

6.1. Evaluation questions

To evaluate the eIPSE approach and prototype, we address the
research questions (cf. Section 1) and stated requirements (cf. Sec-
tion 5.1) with the following evaluation questions.

EQ1 Is it feasible to apply the eIPSE approach
(a) in different real-world case studies?
(b) by engineers from heterogeneous backgrounds?

We postulate that the eIPSE approach facilitates the externalization
of knowledge, reduces the effort of CPPS modeling and configuration
through automation, including the exploration of feasible production
process sequences, and benefits the reproducibility of the configuration
process. To examine EQ1, we applied our approach to different real-
world case studies from industry (Meixner et al., 2021a). Beyond that,
we shadowed (Shull et al., 2007) subjects with different backgrounds to
investigate the utility of our approach, i.e., whether it is feasible enough
to be used in CPPS engineering. Therefore, we measured their efforts as
‘‘time spent’’ when applying the eIPSE approach step-wise and config-
uring a CPPS as a notable factor of CPPS engineering optimization (VDI,
2013) and for future investigation. Furthermore, we collected feedback
from the subjects in post-task discussions. For both investigations, we
take the engineers’ hard-to-reproduce and manual approach as a base-
line for optimization, where engineers employ mostly implicit domain
knowledge to design and configure CPPSs.

EQ2 By how much can using eIPSE reduce the number of decisions needed
to configure a production process sequence for a CPPS?

The eIPSE approach is grounded on the hypothesis that the con-
figuration of a single product and the formulation of pre- and post-
conditions for process steps can significantly reduce the configuration
space for production process sequences. By reducing the configuration
space, the users are guided to only configuring necessary process
steps, which is essential when configuring commercial and/or industrial
software (Hubaux et al., 2012). Therefore, the eIPSE approach uses
DOPLER DMs due to the concept of visibility conditions that allows
for a subsequent unfolding of configuration options in contrast to FMs.
We address EQ2 by comparing the entire configuration space of a
Process DM with the configuration space for the reduced Process DM
resulting from using eIPSE by utilizing combinatorics. In particular,
we focus on a subsequently created production process sequence for
a particular product configuration of the shift fork case study (Meixner
et al., 2021a).

EQ3 Can the eIPSE tool chain generate consistent CPPS control software
code?

The logical consequence of exploring the process sequences and
configuring the production resources for a particular product config-
uration is generating artifacts that represent various CPPS aspects.
In our work, we are currently focused on one type of CPPS artifact,
i.e., IEC 61499 (IEC, TC65/WG6, 2012) control software. We address
this question by preparing multiple valid combinations of selected prod-
ucts, production processes, and production resources. We use each valid
combination to generate IEC 61499 control software variants using our
toolchain. Then, we evaluate the consistency of the control software
code by verifying whether the elements related to the selected product,
production process, and production resources exist in the generated
control software.

6.2. General evaluation setup

For the evaluation, we installed the eIPSE toolchain on one of the
author’s notebooks. This is due to the company policies of some of
our evaluation subjects from industry, they are not allowed to install
any additional software, including our eIPSE toolchain. Our setup
included (i) SublimeText as a text editor to manipulate the PPR–DSL
including a ‘‘cheat sheet’’ for its syntax (eIPSE, Step 1), (ii) TRAVART
with the PPR–DSL as the library to transform the PPR–DSL models to
the required variability models (Step 2), (iii) Eclipse with FeatureIDE
(Step 3), the DM Editor (Steps 4 &5), and V4rdiac to manipulate
and configure the variability models (cf. Step 6 &7), and to generate
the CPPS artifacts (Step 8) showing them with 4diac as plugins. We
used this setup in the sessions to investigate the evaluation question
EQ1+EQ3.
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Fig. 6. After configuring the Product FM in Step 3 of the eIPSE process (background) for the shift fork case study (Meixner et al., 2021a), the reduced Process DM configuration
is created in Step 4 of the eIPSE process using the eIPSE prototype’s wizard (front).

Table 3
Statistical data on the PPR–DSL artifact and the generated Product FM, Process DM, Resource FM, and CDCs.
Case study PPR-DSL artifact Product FM Process DM Resource FM CDCs
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Truck 12 7 13 3 30 8 1 0 0 2 4 20 32 20 5 0 1 0 2 15
Shift fork 24 19 36 16 52 20 2 0 10 2 4 55 27 53 17 0 8 0 3 35
Rocker switch 46 33 59 13 63 34 0 0 20 2 44 92 26 92 14 0 5 0 3 63
Water filter 46 37 36 13 108 38 8 0 54 3 10 73 127 73 14 0 5 0 3 43

Additionally, our evaluation subjects are distributed in diverse lo-
cations. To solve this limitation, we utilize Zoom’s Screen Sharing and
Remote Control features to use the eIPSE toolchain remotely. In this way,
we can use the same machine specification for every subject using the
eIPSE toolchain in the evaluation. Furthermore, we can record those
Zoom sessions for later analysis.

6.3. Application of eIPSE to case studies

This evaluation activity addresses EQ1 a by investigating the appli-
cability of the eIPSE approach to real-world case studies from industry
and by measuring the resulting design and configuration space.
Setup. In prior work (Meixner et al., 2021a), we introduced four real-
world CPPS case studies: truck, shift fork, rocker switch, and water filter,
modeled their products in the PPR–DSL and implemented TRAVART
transformation operations. In Meixner et al. (2022), we extended the
shift forkmodel with processes and added the corresponding TRAVART
transformation.

For the evaluation activity, the author most familiar with the PPR–
DSL and the particular CPPSs modeled the remaining atomic process
steps and resources (eIPSE, Step 1) for each case study. The author
utilized engineering artifacts of the respective CPPSs. In the shift fork
case study, the author most familiar with TRAVART iteratively im-
proved the existing and newly implemented transformation operations,
sustaining the research methodology. These adaptations primarily con-
cerned the hierarchy and grouping of PPR aspects but did not change
the nature of the CPPS designs.

The two authors alternately applied the remaining steps of the eIPSE
approach (Steps 2 to 7) to each of the four case studies. Figs. 6 to 8 show
(i) the configuration view of the Product FM in Step 3 (background) and
the wizard to create the Process DM configuration in Step 4 (front), (ii)

the DM Editor and a step in configuring the Process DM in Step 5, and
(iii) the Resource FM configuration in Step 7 for the shift fork case study
using our eIPSE prototype.

According to the feedback loops shown in Fig. 4, the two authors in-
corporated changes during the evaluation activity iteratively to correct
errors in the PPR–DSL model, such as missing exclusion or grouping
constraints and to omit errors in the generated variability models. To
this end, we also used the eIPSE approach to validate the PPR models
of the case studies. A third author took notes and acted as a referee to
minimize bias during the evaluation activity, which could have been
introduced by the familiarity of the other two authors with the case
studies. Additionally, during the transformations, we ran automated
statistics for each case study to obtain various metrics for the PPR–DSL
file and resulting variability models. We built on previously defined
metrics (Feichtinger et al., 2022a), such as the size of the models,
their constraints, and configuration space. We summarize the resulting
statistics in Table 3 and explain them below. We used the notes by
the third author and the collected statistics to further improve the
implementation of our prototype (cf. Section 4).
Results. Our evaluation showed that we were able, with the feedback
loops, to apply the eIPSE approach in the four selected case studies.
While we had to adapt the PPR–DSL models iteratively throughout
the process, we were able to configure reasonable production process
sequences and production resources for a particular product configura-
tion. This indicates that applying eIPSE to industrial CPPS product lines
is feasible.

As a supplementary result, we gathered metrics of the variability
models resulting from the transformation, listed in Table 3. As a
representative of the case studies, we explain the shift fork case study
in detail. The first category summarizes the metrics of the PPR–DSL
artifact. For the shift fork case study, there are 24 product definitions
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Fig. 7. During the configuration of the production steps in the Process DM in Step 5 of the eIPSE process, a suitable production process sequence for the shift fork case study (Meixner
et al., 2021a) is defined. The eIPSE prototype provides a rollback option (right-hand side) for systematic process sequence exploration (Meixner et al., 2022).

Fig. 8. The configuration of the Resource FM in Step 7 of the eIPSE process for the
production resources necessary to execute the configured production process steps of
the Process DM in Step 5 of the shift fork case study (Meixner et al., 2021a).

with 19 product component definitions included, 36 atomic process
step definitions, 16 resource definitions, and 52 constraints. The next
set of metrics concerns the generated Product FM. We measured 20
features resulting from the set of 19 product components plus the root
feature. The constraints in the PPR–DSL artifact were transformed into
2 xor groups and 10 cross-tree constraints. The reduced complexity
compared to the PPR–DSL artifact results from the number of con-
straints necessary to describe an alternative group in the PPR–DSL. The
4 possible configurations for the products in the Product FM represent
exactly the 4 shift fork types produced in the real-world CPPS. The
same holds for the 4 trucks in the truck case study. However, the Prod-
uct FM is underconstrained, resulting in more possible configurations
than the modeled final product types in the PPR–DSL of the rocker

switch (44 configurations vs. 12 product types) and the water filter (10
configurations vs. 8 product types) case studies. In the generated Pro-
cess DM, we measured 55 decisions, consisting of 19 product component
decisions, of which 4 were abstract, 15 were concrete, and 36 processes
from the PPR–DSL artifact. Those 19 decisions are used to pre-configure
the Process DM for the process exploration (cf. Step 4 in Section 5). The
table shows the large number of decisions (55), rules/constraints (27),
and visibility constraints (53) compared to the constraints in the PPR
model (52). The generated Resource FM contains 17 features derived
from the 16 defined resources in the PPR–DSL model plus the root
feature. The features are grouped in or groups based on the constraints
defined in the PPR–DSL. The last category shows the generated CDCs,
which are 35 derived CDC rules for the shift fork case study. The table
shows that the PPR–DSL model requires fewer constraints (52) than the
variability models combined; 2+10 for the Product FM, 27+53 for the
Process DM, 8 for the Resource FM, and 35 CDCs.

6.4. Application of eIPSE by different engineers

This evaluation activity addresses EQ1 b. In a user study, we in-
vestigate how much effort engineers from heterogeneous backgrounds
inexperienced in the eIPSE approach spend for each step of applying
eIPSE by shadowing them (Shull et al., 2007). We report on their effort,
experience, and perceived usefulness. For a detailed description of the
user study, we refer to Appendix.
Setup. For this evaluation activity, we introduce the new chess piece
case study originating from the TU Wien pilot factory.14 The product
line consists of six chess piece types with a body and an aluminum
base with either one or two carved reamings. The body and the base
are joined via threaded rods of two lengths.

Five subjects applied the eIPSE approach to this case study. An
overview of the subjects and their domain can be found in Table 4. The
first and the second columns of the table state the subject and whether
the subjects are engineers (E) or researchers (R) and their domain.
Subject S1 is an engineer at an industry partner in the field of high-
speed CPPS automation with a background in mechanical engineering
(ME). Two subjects (S2 & S3) are engineers from an industry partner in
the automotive domain with a background in mechanical engineering.
Subject S4 is a senior systems engineer (SE) in the CPPS domain from a
research collaboration. Subject S5 is a computer science researcher with
a mechanical engineering background. All subjects know the principles
of the PPR concept.

All subjects conducted the evaluation activities in individual Zoom
sessions after the evaluation activity for EQ1 a (cf. Section 6.3) under

14 Pilotfabrik TU Wien: https://www.pilotfabrik.at.
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Table 4
‘‘Time spent’’ by engineers with different backgrounds for eIPSE to the chess piece case study. E. . . Engineer, R. . . Researcher; ME. . .Mechanical
engineering, SE. . . Systems engineering, CS. . . Computer science.
Subject Activity

Intro Engineering Configuration

Pa
rti

cip
an

t

Pr
ofe

ssi
on

De
fin

iti
on

Up
da

tes

Pr
od

uc
tF

M

Pr
oc

ss
DM

Re
so
ur
ce

FM

S1 E,ME 10 m 60 m 30 m 3 m 5 m 1 m
S2 E,ME 13 m 70 m 15 m 2 m 7 m 3 m
S3 E,ME 9 m 72 m 3 m 2 m 5 m 4 m
S4 E,SE 6 m 62 m 4 m 1 m 4 m 1 m
S5 R,ME 9 m 63 m 9 m 6 m 9 m 3 m
Summary (avg) 9 m 65 m 12 m 3 m 6 m 2 m

the supervision of at least two authors.15 If the subjects had questions
concerning the PPR–DSL, the eIPSE approach, or the toolchain, these
authors provided tips and support. These authors gave hints on how to
model aspects of the product line once a subject got stuck and asked for
help. We also measured the time the subjects took to execute each step
of the evaluation activity and eIPSE process. We aimed to understand
better where subjects need more automation support and where we
can further improve the eIPSE approach. Furthermore, we wanted to
compare the use of the eIPSE process with a control group that performs
the same tasks without the eIPSE process.

The subjects had to model the chess piece types and their parts,
reasonable atomic production steps, and production resources in a PPR–
DSL model (eIPSE, Step 1). In this evaluation, it is not necessary for
each subject to model the full version of the chess piece product line.
We mainly focused on ensuring that the subjects grasp the overall
idea of using our PPR–DSL and gain feedback from them. Furthermore,
we wanted to get an indication of the relation between the tasks for
engineering and configuration. The subjects then use their resulting
PPR–DSL model to generate the Product FM, the Process DM, and the
Resource FM using the TRAVART CLI (Step 2). Then, the subjects
configured the Product FM (Step 3) and loaded the configuration into
the DM Editor to create a reduced DM configuration file (Step 4)
(cf. Fig. 6). Afterward, the subjects explored the process sequence
and configured the Process DM (Step 5). Lastly, they configured the
Resource FM in V4rdiac, which reduced the model based on the con-
figured Process DM (Step 6 &7). If the subjects thought it was necessary
to improve their variability models, they used the feedback loops (cf.
Fig. 5) to improve their product line.

After the subjects had completed this evaluation task, we asked
them for their experience with and feedback on the eIPSE approach
as well as its perceived usefulness. We analyzed the notes taken by
comparing them and finding evidence for the usefulness and benefits
of the approach, its steps, and potential limitations and improvements.
Results. Table 4 presents the times spent on this evaluation activity.
The third column states the time to introduce the eIPSE approach
and the chess piece product line. The fourth and fifth column concern
the domain engineering phase, showing the time spent to define the
chess piece product line as a PPR–DSL model. The fifth column shows
the time the subjects used to update the product line after an initial
configuration. This update corresponds to the feedback loops of the
eIPSE approach (cf. Fig. 4 dotted arrows). The last three columns
present the times spent during the configuration phase (i.e., application
engineering) indicating the efforts for configuring the Product FM in the
FeatureIDE (Meinicke et al., 2017), the Process DM in the eIPSE DM
Editor, and the Resource FM in V4rdiac (Fadhlillah et al., 2022b). The
last row summarizes the rounded average time of each step in minutes.

15 The time frame was limited to roughly two hours for industrial subjects.

The introduction to eIPSE and the chess piece case study took, on
average, 9 min, [min. 6 mins, max. 13 mins]. Spending on average
65 minutes, [60 mins, 72 mins], the subjects spent most of the time
on defining the product line. While most of the subjects did not model
the entire product line of the six chess pieces with all the required
production processes and resources, they could all grasp the concepts of
the approach and continue with the configuration. Updating the product
line according to the feedback loops took the subjects on average
12 minutes [3 mins, 30 mins] depending on how much they updated
their models. For the initial PPR–DSL model transformation to the
variability models and their configuration, we used the subjects’ PPR–
DSL models. However, as the subjects often did not model all products,
production process steps, and production resources for timely reasons,
after the first investigation of their generated variability models, we
switched to a prepared chess piece PPR–DSL model to ensure a likewise
feedback regarding the configuration with the eIPSE approach.

The CPPS configuration in this approach was fast for the Product FM
and the Resource FM (both have avg. 3 minutes). The Process DM con-
figuration took the evaluation subjects on average 6 minutes, [4 mins,
9 mins], slightly longer than the configuration of the other variability
models. One reason might be that users novel to the approach do
not have enough experience in ordering process steps in a meaningful
way. Additionally, it seems that more domain knowledge is required
to decide which process steps seem reasonable to be ordered in a
particular way. Thus, subjects used more time to experiment with
different sequences before finalizing and deciding on a specific one.

In post-task discussions, we gathered feedback on the approach
from each subject. Overall, the eIPSE approach was well received.
Impressions were that the approach

• ‘‘is very helpful and the toolchain works great ’’. (S2)
• ‘‘makes sense from an engineer’s perspective’’. (S1/S4)
• ‘‘makes the knowledge about the production sequence explicit ’’ (S2/
S3/S4)

• ‘‘is straightforward’’. (S1/S4)
• ‘‘allows for a more economic and optimized design of the CPPS’’. (S3)

Subject S3 stated that ‘‘the process digitalization is a great idea that can
improve reuse of existing configurations’’ and it is ‘‘easy to understand
and use’’. Several subjects stated that it ‘‘supports the reproducibility of
process selection’’. S4 confirmed that the separation of concerns through
‘‘modeling relations from different discipline perspectives’’ is important. S2
meant that ‘‘the often rigid integration structures of large companies might
render the approach better suited for small and medium companies’’.

On the constructive side, the subjects also pointed out some issues
and suggested several improvements. Most subjects noted that the
approach ‘‘definitely requires better tool support to use it efficiently ’’, such
as ‘‘better tool feedback’’ and ‘‘a better overview of PPR concepts’’ using,
for example, ‘‘low code approaches’’.

Concerning the PPR–DSL for modeling the chess piece product line,
the subjects stated that
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• it ‘‘provides the means for better reuse’’ of engineering artifacts (S4)
and

• was ‘‘straightforward and easy to use once the syntax is clear ’’. (S2)
• ‘‘the PPR–DSL is great because it is not as complex as, e.g., SysML’’.
(S2)

Nevertheless, three subjects noted that the PPR–DSL ‘‘has a steep
learning curve’’. Several subjects commented that the PPR–DSL ‘‘is some-
times redundant and partially confusing ’’, for instance, because a ‘‘prod-
uct’’ is the same as a material,16 and that the ‘‘difference between
the requires and children relation is unclear ’’. Such limitations and the
‘‘several times missing overview’’ can make the PPR–DSL ‘‘as-is error-
prone for larger models’’. This concerns, for instance, ‘‘the definition of
constraints in the model with a large number of products/processes’’. While
the ‘‘cheat sheet was of great use’’, the PPR–DSL ‘‘should be simplified to be
usable for engineers’’ and ‘‘redundancies should be omitted’’. A suggestion
was also to ‘‘provide more examples and best practices’’ and ‘‘improve the
documentation’’ for the PPR–DSL. Furthermore, the subjects desired the
‘‘introduction of parallel processes’’, ‘‘definition of transport in the CPPS’’,
and ‘‘use of libraries’’. We aim to enhance the PPR–DSL and its tool
support to address these comments in the future.

Feedback on the transformation to the variability models was pos-
itive: ‘‘extremely fast and happens in the background once syntax errors
are fixed’’. However, the transformation ‘‘may cause iterative loops of
updating the PPR–DSL’’. We argue that these feedback loops are intended
and should be used by engineers to improve their PPR models. We also
argue that more experienced users and product designers presumably
define better PPR models.

Feedback on the configuration was mainly positive:

• it ‘‘provides an easy configuration’’. (S1/S4)
• ‘‘having the dependencies explicitly transferred into the configurable
models helps to build feasible production sequences’’ (S5)

• ‘‘the experimentation with different process sequences through simula-
tion is a good idea’’. (S3)

• the exploration makes sense particularly with ‘‘digital twins and
asset administration shells for simulation and provides additional
value with the modeling of the process relations’’. (S4)

All subjects also provided several remarks to improve our eIPSE
approach and toolchain. In particular, Subject S5 stated that ‘‘cost/risk
assessment would be nice to further enhance and evaluate the process
sequences’’. Several subjects also stated that ‘‘the toolchain requires better
integration’’. For instance, one subject mentioned that ‘‘executing the
process using the eIPSE toolchain requires a lot of preparatory steps, which
could be reduced’’. Asking for clarification, the subject explained that
copy-pasting the necessary files between the process steps should be
enhanced. We argue that the current state of our toolchain, not the
eIPSE process itself, caused this statement. In future work, we aim to
integrate all involved toolchain tools into a single tool environment,
such as Eclipse.

6.5. Reduction of the process configuration space

This evaluation activity addresses EQ2 by investigating the reduc-
tion of the configuration space of a Process DM.
Method. To measure the reduction of the configuration space, we
utilize combinatorics. Considering the sequence of process steps, the
Process DM configuration follows a permutation, an arrangement of
elements in a specific sequence. Additionally, only visible process steps
(visibility condition is true) can be configured in the Process DM
configuration. The formula to calculate permutations, where 𝑛 denotes

16 We note that the VDI 3682 standard uses the term product for materials
as well as complex composite products.

the total number of visible atomic process steps and 𝑟 denotes the
number of steps occurring only in combination, is defined as:
𝑃 (𝑛, 𝑟) = 𝑛!

(𝑛 − 𝑟)!
(1)

To this end, we compare the entire configuration space of a Process DM,
where process steps can be combined arbitrarily, with the configuration
space for the reduced Process DM resulting from a configured product
using eIPSE (cf. Step 3 and Step 4). As a representative, we examine a
subsequently created production process sequence in the shift fork case
study.
Results. In this evaluation, we perform a simulation to configure the
shift fork’s Product FM (cf. Fig. 1 and in Fig. 6) by selecting the
features Pipe2 and Lock1 (Step 3). This selection results in a valid
configuration representing a single shift fork product. Step 4 reduces
the configuration options of the Process DM to this product where only
the investigation of this product’s process sequence is progressed.

Consequently, the visibility conditions and configuration values of
Pipe2 and Lock1 are set true in the Process DM (cf. Table 1). The
Process DM configuration is further reduced by setting the visibility
conditions of the mandatory process steps to true. Additionally, any
alternative group within the Process DM is reduced by setting the
visibility conditions of only one of the available options to true, leaving
the engineer to select only truly variable process steps. For instance, the
InsertLock1 visibility condition is set to true and, thus, the InsertLock2
and InsertLock3 visibility conditions are set to false.

The overall Process DM configurations in the shift fork case study
comprise 21 process step decisions and the 3 alternative process step
group decisions when considering the Pipe2 and Lock1 product con-
figuration AND the constraints between the decisions. In the case of
the production process sequence exploration (Meixner et al., 2022),
𝑟 = 𝑛 since we can combine all visible production process steps in
the particular configuration step. Furthermore, arbitrarily combining
the atomic process steps visible to developers at any time results in 𝑛!
permutation possibilities for 𝑛 decisions. Thus, the entire permutation
space comprises 24! = 6 ⋅ 1023 possible process step sequences.

Transforming the pre- and postconditions of the production pro-
cesses in the PPR–DSL to visibility conditions in the Process DM enables
the subsequent unfolding of the production process steps for creating a
production process sequence. The shift fork’s product configuration al-
lows 11 process steps, e.g., InsertPipe2 and InsertLock1, with no visibility
conditions that build the starting point of the Process DM configuration.
Furthermore, the shift fork’s product configuration allows 4 process
steps with visibility conditions related to the 11 previous steps, e.g., In-
stallLock1,. Following the visibility conditions, the eIPSE approach
reduces the configuration of the Process DM to five consecutive steps
with 11, 4, 6, 2, and 1 remaining production process steps. In each
step, engineers had to decide in which sequence the currently possible
production process steps have to be executed. Consequently, the eIPSE
approach reduced the set of possible process sequences to a minimum
of 11! + 4! + 6! + 2! + 1! ≈ 39.9 ⋅ 106 possible sequences – a reduction of
about 1017 sequence options.

Even though many sequence configuration options remain, the re-
duction is significant and helps to reduce the cognitive level of deciding
on a valid and feasible sequence. However, the exploration of optimized
production process sequences still demands additional knowledge and
training from the engineers, which is a complementary activity to
introducing the eIPSE workflow.

6.6. Generation of control software

This evaluation activity addresses EQ3 by investigating how to
create parts of the control software for a particular CPPS configuration
as an example for a CPPS artifact.
Setup. The author, most familiar with V4rdiac, defined the necessary
Delta files to generate IEC 61499 control code in 4diac as a CPPS
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Fig. 9. Excerpt of a generated IEC 61499 control software with production process
and resource function blocks for a shift fork configuration.

artifact of the four case studies during Step 8. In close cooperation
with the authors of the first evaluation activity, the link between the
processes and resources in the PPR–DSL to the Delta files was realized
using a newly introduced PPR–DSL attribute.

1 delta DLock1;
2 uses ShiftForkCaseStudyApp;
3 {
4 <Remove> NetworkElement name=InsertLock1;
5 <Remove> NetworkElement name=WeldLock1;
6 <Remove> NetworkElement name=E_REND_WeldLock1;
7 <Add> FB name=UltrasonicWeldingRobot16
8 type=UltrasonicWeldingRobot_16;
9 <Add> EventConnection UltrasonicWeldingRobot16.CNF

10 PopulatedPipe.REQ;
11 }

Listing 3: Snippet of an IEC 61499 Delta model for the shift fork case
study.

An example of a Delta model can be seen in Listing 3. Each Delta
model may define a unique identifier by using the delta keyword. The
uses keyword sets the context for the modification. A <Remove> and
an <Add> operation define which element will be removed from or
added to the CPPS artifacts, respectively.

Next, the author introduced a new attribute deltaFile to the PPR
models of the four case studies and used it to refer to the particular
Delta files (cf. Listing 4) from the processes and resources (eIPSE,
Step 1). Afterward, the author re-ran the TRAVART transformations
(Step 2) to generate the attributes in the variability models. Then,
the author went through the configuration and reduction steps of the
eIPSE approach according to the setting of the first evaluation activity
(cf. Section 6.3) covering Steps 3 to 7 as input for Step 8. In Step 8,
the author triggered the generation of parts of control software in
IEC 61499 in V4rdiac.
Results. Our toolchain successfully generated an IEC 61499 control
software based on a set of selected products, production processes,
and production resources. Additionally, all elements in the generated
control software also reflect the selected products, production pro-
cesses, and production resources. For instance, Fig. 9 shows a generated
control software based on selecting production processes, e.g., the
PopulatedPipe, InsertFork5, and InsertFork4, and production resources,
e.g., LF_4_1 and LF_4_2, of the shift fork case study.

7. Discussion

This section concludes on the evaluation questions from the previ-
ous section and answers the research question raised in the introduction

1 Attribute "deltaFile": {
2 description: "delta file for V4rdiac configuration",
3 defaultValue: "", type: "String"
4 }
5
6 Process "WeldLock1": { name: "WeldLock1",
7 implements: [ "WeldLock" ], inputs: [ "Lock1" ],
8 deltaFile: "!DLock1"
9 }

10
11 Resource "WeldingRobot": { name: "WeldingRobot",
12 isAbstract: true }
13 Resource "LaserWeldingRobot_01":{ name: "LaserWeldingRobot_01",
14 implements: [ "LaserWeldingRobots" ],
15 deltaFile: "DLaserWeldingRobot01"
16 }

Listing 4: Excerpt of the PPR–DSL model of the shift fork case study
with the deltaFile attribute.

(cf. Section 1). Furthermore, it discusses the limitations of the prototype
and threats to validity.

7.1. Observations and lessons learned

This section discusses the observations and lessons learned from the
evaluation of the eIPSE approach.
General comments. To examine the applicability of eIPSE, we con-
ducted a feasibility study with users experienced in the eIPSE approach
on four published case studies (Meixner et al., 2021a) and an observa-
tional user study with users inexperienced in the eIPSE approach on a
novel case study. We also investigated the reduction of the Process DM’s
configuration space by eIPSE and experimented with generating control
code from such eIPSE configurations. These studies gave us valuable
insight into potential benefits and perceived limitations of the eIPSE
approach.

To this end, we go beyond our previous work (Meixner et al.,
2022), i.a., by providing feedback on the eIPSE approach of users from
different domains. This feedback indicates that the users perceived the
eIPSE approach and toolchain as useful. In particular, users perceived
the externalization of knowledge (Meixner, 2020) as valuable (require-
ments R1, R2, R4), the separation of concerns for the configuration
steps (Ananieva et al., 2016; Fadhlillah et al., 2022b) as helpful (R3,
R5), the production process sequence exploration as significant (Fang
et al., 2013) (R1), and the integration of variability models as benefi-
cial (Krüger et al., 2017) (R1, R2, R5). Furthermore, the users provided
valuable feedback for approach improvements and future work.

The following paragraphs summarize the observations and lessons
learned for each evaluation question.
EQ1a application of eIPSE to case studies. The primary lesson learned
from applying eIPSE to the case studies was that modeling the PPR
model combined with Steps 2 to 7 led to critical feedback. Addition-
ally, we experienced that this feedback gained importance with the
growing complexity of the product line of products and processes. For
instance, while the truck case study contained no defects in the PPR
model, it required significant improvement for the rocker switch and
water filter case studies. This improvement mainly concerned missing
requires or excludes constraints or additional CDC rules to limit the
configuration options of the manufactured products suitably. Therefore,
it is also possible to configure ‘‘semantically’’ incorrect products in
the Product FM, which can be prevented by more carefully defining
the variability in the PPR–DSL. This confirms research and industry
voices (Feichtinger et al., 2022b) and further stakeholders from in-
dustry regarding the importance of these constraints (Nyberg, 2021).
To this end, the eIPSE approach helped to reveal flaws, even in the
already published PPR models (Meixner et al., 2021a). For instance, in
Product FMs resulting from such PPR models, relevant products could
not be configured anymore, the feature groups were incorrect, or the
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Product FM allowed many more configurations than products in the
product line. This also implies that software and CPPS product lines
significantly differ regarding the configured output products, where,
in the latter, each manufactured product must contribute to the cost
and ‘‘return on investment’’ of the planned CPPS. Therefore, it requires
support for variability model analysis to constrain the models and
ensure that unintended products cannot be configured.

Second, the PPR–DSL (Meixner et al., 2021b), TRAVART (Fe-
ichtinger et al., 2021), FeatureIDE (Meinicke et al., 2017) FMs, DO-
PLER (Dhungana et al., 2011) DMs, and V4rdiac (Fadhlillah et al.,
2022b) were originally designed as independent tools. Thus, we had
to align the constraint formats and, respectively, the transformations.
EQ1b application by engineers. The first insight from observing engi-
neers applying the eIPSE approach is that the engineering phase for
the CPPS takes significantly longer (avg. 77 m) than the configuration
phase (avg. 11 m). This is partly expected because application engi-
neering is supposed to be faster than domain engineering. However,
the editor support for defining the PPR–DSL may contribute to the time
spent on the definition and update tasks and may need improvement.
Still, the numbers confirm that much (mental) effort is invested in
the product line definition. In more detail, we observed that most of
the time was spent defining the products and the atomic production
process steps rather than the production resources. The numbers also
show that the configuration of the production process sequence in the
Process DM took longer than the feature models’ configuration. This
indicates that creating a meaningful production process sequence is
more complex but also requires means to evaluate and simulate the
sequences economically. Furthermore, it implies that the time spent
on different tasks requires a separation of concerns in multidisciplinary
engineering (requirement R3, R5) and the externalization of knowledge
(R1, R2, R4), which the engineers confirmed.

Secondly, the results show that the automatic creation and reduc-
tion of the variability model configuration space is fast and leads to
a low time expenditure for the configuration of the models. This beats
the definition of an additional product and potential production process
steps as an increment in the PPR–DSL, which is still done manually
with our approach. We argue that the eIPSE approach thus supports the
challenge of an evolutionary creation of the product and its production
process line.

Thirdly, the feedback of the subjects confirmed the usefulness of
the eIPSE approach, in general. While the tool support for defining
the PPR–DSL and the integration and feedback of the entire toolchain
should be improved, the syntax seems to be straightforward for mem-
bers of the intended user group despite a steep learning curve. Further-
more, the variability models could be configured quickly and intuitively
because they only required little guidance from the supervising authors.
However, the feedback explicitly points out low code approaches as a
potential aim for industry.
EQ2- Configuration space reduction. Our results confirm our previous
hypothesis (Meixner et al., 2022) and indicate that reducing the config-
uration space for decision models improves the guidance for engineers
during production process exploration for valid and feasible production
process sequences (requirement R1). We also argue that the eIPSE
approach provides better reproducibility of the CPPS configuration
through logging the selection sequence in the Process DM configura-
tion. Nevertheless, it requires additional effort to explicitly model more
domain-specific knowledge, such as throughput, cost, or risk, to evaluate
and simulate particular process sequences.
EQ3 - Generation of control artifacts. The primary lesson learned was
that the generated function block networks already present a working
version of the control software for the configured CPPS. This shows
that the integration of the variability models and their configuration
works to a large extent (requirements R2, R4). Nevertheless, the control
software engineers still need to connect some process blocks manually.

For instance, the control software engineers must adjust the connec-
tions represented in the generated IEC 61499 function block networks
to follow the process configuration.

Secondly, the control software engineers need to manually connect
the generated production resource instances to the particular processes
that use them. We could improve that by further incorporating the
Process DM configuration as a basis for automatically generating the
Delta models.
Final remarks. The evaluation with the (i) application by engineers to
existing and a novel case study, (ii) an investigation of the Process DM
configuration space, and (iii) the successful creation of control code
artifacts shows that eIPSE is applicable to realistic cases and demands.
However, the approach also implies an additional overhead. In par-
ticular, this concerns the explicit definition of the PPR model in the
PPR–DSL, which also took the evaluation subjects the most time in the
evaluation. The additional overhead also concerns the development of
the toolchain and its future refinement. Nevertheless, we argue that
the latter is a one-time effort while the former addresses the challenges
of implicit domain knowledge and configuration reproducibility more than
counterbalancing the additional effort. Still, an in-depth investigation
of the additional effort implied by the eIPSE approach compared to
completely manually finding feasible production process sequences
needs to be conducted.

7.2. Answering the research questions

This section answers our research questions (cf. Section 1).
RQ1 How can CPPS engineers be supported in modeling, exploring, and

configuring the combined variability of products, production pro-
cesses, and production resources, to generate corresponding CPPS
artifacts?

To address this research question, this paper introduced the eIPSE
approach. The approach aims at externalizing CPPS domain knowledge
and the underlying variability by utilizing a domain-specific engineer-
ing artifact, i.e., the PPR–DSL, combined with two well-established
variability models, i.e., FMs and DMs (cf. requirements R1, R2, and
R4 in Section 5.1). Furthermore, it aims to integrate the structural and
behavioral variability of CPPS design aspects. It also provides defined
feedback loops to proactively incorporate changes in requirements or
design during CPPS engineering.

To this end, we go beyond the state-of-the-art (Ananieva et al.,
2016; Fang et al., 2013; Krüger et al., 2019; Meixner, 2020; Meixner
et al., 2019) by providing a framework for externalizing domain expert
knowledge, integrating the structural and behavioral variability of
CPPSs and their configuration, including the separation of concerns of
different engineering domains.
RQ2 How and to what extent can CPPS design be automated using

variability modeling and CPPS concepts?
To address this research question, this work introduced the semi-

automated eIPSE toolchain architecture supporting the modeling and
configuration process of a CPPS’ design based on a product configura-
tion with a corresponding prototype. Therefore, we

• adapted the TRAVART transformation operations for production
processes according to the new Process DM notation (cf. Fig. 4,
Step 2b and R2),

• implemented TRAVART transformation operations for produc-
tion resources (Step 2c and R4),

• implemented transformation operations for CDCs (Step 2d and
R5),

• implemented the eIPSE DM Editor including the configuration
space reduction of the Process DM (Steps 4 and 5), and

• adapted V4rdiac to integrate the transformed CDCs and included
a pre-configuration step to read the configurations of the three
variability models and generate CPPS implementation artifacts
(Steps 6 to 8)
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Thus, we go beyond the state-of-the-art by providing an integrated
semi-automated toolchain for modeling and configuring the multidisci-
plinary structural and behavioral variability of CPPSs (Fadhlillah et al.,
2022b; Meixner, 2020; Meixner et al., 2019). Additionally, we adapted
the DOPLER DM (Dhungana et al., 2011) constraints so that they are
solvable via standard SAT solvers, such as sat4j, and provided a DM
editor not limited to the CPPS domain. To this end, we enable the
transformation between the PPR model and state-of-the-art variability
model types (Feichtinger and Rabiser, 2020a, 2021) integrating them
into the de facto standard tool FeatureIDE (Meinicke et al., 2017)
for further dissemination. Furthermore, we go beyond the state of
the practice of the manual approach of engineering CPPS design also
opening the way for better reuse of CPPS concepts.

Finally, we will discuss our work with industry partners to assess
its practical impact. Therefore, we will investigate which concepts can
already be implemented and what needs to be altered or adapted.
Additionally, we will examine which parts of the prototype need to
gain a higher technology readiness level for practical use. We argue
that our approach can start a discussion on variability modeling and
configuration in CPPS engineering and that the tools provide a solid
foundation for future use.

7.3. Prototype limitations

The Process DM and eIPSE DM editor currently only support Boolean
decisions rather than a broader range of decision types defined by
the DOPLER approach (Dhungana et al., 2011). However, unlike the
closed source DOPLER approach, our constraint definition syntax is
SAT-solvable and thus usable with state-of-the-art software such as
FeatureIDE. Integrating the multiple tools into the eIPSE toolchain still
has room for improvement. For instance, aligning the syntax of the
constraint definitions may be investigated.

7.4. Threats to validity

One threat to validity is that several authors of the paper were involved
in steps of the evaluation. We tried to mitigate this threat by closely
sticking to the provided engineering artifacts for the case studies and,
where possible, gathering feedback from the engineers that provided
the case studies. For the user study of the eIPSE toolchain, we involved
five external subjects.

Due to its unstructured nature, another threat concerns the hard-to-
measure effort of the traditional manual approach. The eIPSE approach
mainly targets the automation of manual undocumented steps for CPPS
engineering in alignment with the VDI 3695 (VDI, 2013).

Additionally, measuring the ‘‘time spent’’ for certain tasks might not
be the best metric. However, in alignment with the VDI 3695 (VDI,
2013), we argue that the engineering time is a significant factor that
should be elicited and optimized. Furthermore, it at least shows how
fast relatively complex tasks can be completed with the eIPSE toolchain
and certainly demonstrates that with the approach one would be faster
than doing it manually. We try to demonstrate users’ experiences by
presenting their feedback.

Finally, the evaluation of the approach’s feasibility was conducted only
for a limited set of case studies of comparable size. Furthermore, the
evaluation of the approach’s usefulness was conducted only for a single case
study and with a small number of engineers. Therefore, it is unclear how
our approach would perform for systems of larger size and complexity.
This may threaten the generalizability of the eIPSE approach. However,
especially DMs in literature are smaller than the DMs created by our
approach (Schmid et al., 2011). Consequently, our case studies, at least
concerning the DMs, go beyond the state of the art.

8. Related work

This section presents approaches related to the eIPSE and work on
variability modeling for CPPS.

Safdar et al. (2021) created a framework for supporting product
configuration in the CPSs domain based on their evaluation of existing
variability modeling approaches (Safdar et al., 2016). The framework
mainly uses UML and OCL constraints for expressing CPS commonality
and variability. The framework is also designed to support automated
multi-stage and multi-level product configuration.

Fang (2019) developed a multi-view modeling approach for ex-
pressing variability in manufacturing. Variability is expressed in three
different views: (1) software, (2) production process, and (3) plants’
topology. The approach combines a feature meta-model with a topology
and process meta-model to define a relation between variability from
different views. Using this meta-model, one can create a topology and
process models that are related to a FM when expressing variability in
the manufacturing domain. At a later step, one can derive a customer-
specific topology and process model that complies with the features
selected from the FM.

Fadhlillah et al. (2022b) developed V4rdiac as a multidisciplinary
variability management approach for CPPSs. V4rdiac is designed as a
generic approach where CPPS engineers can use any types of variability
model to express CPPS control software. CPPS engineers still need to
decide which variability model best suits their domain. We use V4rdiac
to showcase how our approach can be used to generate CPPS control
software artifacts.

Existing works also use multiple FMs to model CPS system variabil-
ity from different views or perspectives (Feldmann et al., 2015; Kowal
et al., 2017; Rabiser et al., 2018; Cañete et al., 2022; Geraldi et al.,
2020) in the machine manufacturing, industrial automation domain,
and deployment of IoT application. They use cross-tree constraints or
cross-model constraints to define the relation of features in the same
or from different FMs. Expressing variability for industrial and complex
software using multiple variability models is more beneficial in terms
of maintainability and scalability compared to using a single variability
model (Czarnecki et al., 2012; Kästner et al., 2012; Oliinyk et al., 2017).
However, managing multi-view variability modeling, especially using
heterogeneous types of variability models, is still a challenge (Krüger
et al., 2017).

In contrast to existing works, our work expresses CPPS product,
production process, and production resource variability. We use the
PPR–DSL for expressing CPPS variability based on a modeling con-
cept that CPPS engineers are already familiar with. The PPR–DSL
offers a unified syntax for expressing product, production process, and
production resource variability as well as dependencies among them.
Additionally, we can transform our PPR–DSL into a Product FM, a
Process DM, and a Resource FM to enable reasoning and configuration
of a CPPS using existing product line tools (e.g., FeatureIDE). Addi-
tionally, production resources in our PPR–DSL can be related to CPPS
artifacts (e.g., IEC 61499 control software). Thus, we provide a product
configuration mechanism where we can generate customer-specific
variants that conform to the selected product, production process, and
production resource variants.

9. Conclusion and outlook

This paper introduced the eIPSE approach to decrease the manual
and unstructured efforts while facilitating reproducibility in CPPS en-
gineering. On top of our previous work (Feichtinger et al., 2020, 2021;
Meixner et al., 2022, 2021b), we contributed (i) the eIPSE approach
with additional steps to transform and configure production resource
definitions and control software artifact generation, (ii) an extended
prototype which realized the eIPSE approach (including a novel DM
editor and configuration of SAT solvable DMs). We provide the corre-
sponding artifacts in additional online material1 and a demonstration
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video.6 Furthermore, to investigate how the approach performs in
practical settings, we: (i) conducted an evaluation of the feasibility
in four published (ii)cpps case studies (Meixner et al., 2021a), (iii)
conducted an observational user study with users inexperienced in the
eIPSE approach and a novel case study, (iv) investigated the reduction
of the CPPS configuration space, and (v) examined the generation of
IEC 61499 (IEC, TC65/WG6, 2012) control software artifacts.

In this way, we go beyond the state-of-the-art (Fadhlillah et al.,
2022b; Krüger et al., 2019; Meixner, 2020; Meixner et al., 2019) by
providing a framework and semi-automated toolchain for CPPS vari-
ability modeling. This framework allows CPPS engineers to externalize
better their domain expert knowledge, which comes primarily from ex-
perience and undocumented dependencies. Furthermore, the approach
enables engineers to model and configure the multidisciplinary struc-
tural and behavioral variability of CPPSs while separating the concerns
of the different engineering disciplines. Beyond that, the production
process sequence exploration fosters reproducibility by recording the
exploration steps in the toolchain. To evaluate the eIPSE approach,
we collected the first feedback on the eIPSE approach from users from
different domains who perceived the approach and toolchain as useful
and recommended improvements for future work.

In future work, we aim to broaden the approach’s applicability
and perform further evaluation, initiating the next iteration cycle of
Design Science. On the one hand, currently, the prototypes only support
Boolean decisions, which may limit their usability in large industrial
settings. When integrating advanced solvers, like SMTs, we plan also to
support Non-Boolean decisions. On the other hand, the PPR–DSL may
be improved in terms of editor support and by decoupling the processes
from the production resources. Describing the overall CPPS variability
may involve heterogeneous multi-view variability models for express-
ing the variability of different organizational units (e.g., business de-
partment, electrical engineering, or signal engineering). Thus, we also
plan to extend further our eIPSE tool for creating a product configura-
tion tool capable of enacting configuration options from heterogeneous
multi-view variability models. Given this setup, we plan to conduct
a large-scale evaluation with external practitioners from the CPPS
domain to examine the feasibility of the eIPSE approach.
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Appendix. Chess piece user study

This section describes the user study for evaluating the eIPSE ap-
proach.

A.1. Introduction

We report the user study of the evaluation of the eIPSE toolchain.
We investigate the modeling of an industrial product line and the
subsequent production process exploration and production resource
artifact derivation for a real-world chess piece product line designed
at TU Wien Pilotfabrik.17 Users assessed should go through the eIPSE
process and evaluate the feasibility and usability of the approach and
the tools.

We undertook the evaluation reported here as part of a collabora-
tion between different academic and industrial initiatives. The subjects
conducting the user study are, on the one hand, computer scientists
and, on the other hand, engineers from companies that design or
operate CPPSs.

A.2. Rationale

The user study of the eIPSE evaluation was carried out in the focus
of this paper and as part of three of the authors’ dissertation projects.
The research scope is to investigate variability modeling for CPPSs
engineering and the required transformation of industrial artifacts to
well-established variability models. The research in this context focuses
on the reproducible exploration of production process sequences based
on an integrated variability modeling approach. This variability mod-
eling approach uses different types of variability models, i.e., feature
models and decision models, to separate the concerns of the different
stakeholders. There is limited published research on adopting state-of-
the-art variability modeling and configuration approaches in the CPPS
engineering industry, and the user study sought to contribute to the
body of research in this area.

17 TU Wien Pilotfabrik. https://www.pilotfabrik.at/.
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Fig. 10. CAD drawing of a pawn chess piece.

A.3. Objective

The user study took place in an academic setting, which is also the
primary audience for the user study. The overall objectives were as
follows.

• To perform a eIPSE toolchain evaluation in a setting with subjects
from different domains with the focus on CPPS engineering using
a formal evaluation methodology.

• To learn from the evaluation about the following:
– Can engineers model the functional view of CPPS for a small

industrial product line with its products, process steps, and
resources (domain engineering).

– Can engineers efficiently explore and configure the design
space for products, process sequences, and resources.

– Does the integration of feature models and decision mod-
els allow for the configuration of a reasonable process se-
quence and corresponding resources based on a product
configuration.

– The time spent to model the functional view of CPPS for a
small industrial product line (domain engineering).

– The time spent to configure a CPPS design variant (applica-
tion engineering).

– The perceived usefulness of the eIPSE approach and tool-
chain for the engineers.

– The lessons learned from using the eIPSE approach and
toolchain for industrial product line modeling and config-
uration.

• To learn from the usage of eIPSE approach and toolchain.

These objectives are decidedly broad and ambitious. For concise-
ness, this chapter focuses on the objectives of learning from the eval-
uation about the time spent, the perceived usefulness, and the lessons
learned.

A.4. Chess piece use case

For the evaluation, we consider the chess piece use case from TU
Pilotfabrik. The use case concerns a CPPS that manufactures the six
chess piece types, i.e., king, queen, bishops, knights, rooks, and pawns.
Fig. 10 shows a CAD drawing of the pawn chess piece.

Each chess piece consists of a base, a body, and a threaded rod that
connects them.

The base is produced from aluminum bars of 1 m length on a turning
machine. The aluminum bar is loaded into the turning machine with a bar
loader. The turning machine cuts the aluminum bar into the raw bases
of suitable length for further processing. These bases, which come in

two variants, are turned on the turning machine to get their specific
shape. The king and the queen have a base with two circumferential
reamings that are carved into the aluminum. The other chess pieces have
a base that has one circumferential reaming. After creation, a laser profiler
measures the bases for turning accuracy.

The body of the particular chess pieces is 3D-printed from Polyactic
Acid (PLA) on an industrial 3D printer.

The base and the body each have a hole with a thread carved
respectively printed in the middle. The threads each have a diameter for
a standardized M6 rod.18 Similarly to the base, the threaded rod comes
in two variants, one with 20 millimeters and one with 30 millimeters in
length.

The base, the body, and the threaded rod are assembled in an
assembly station, where each individual part needs to be loaded into
the station. The parts need to be screwed together, which can be done
in an arbitrary sequence.

A.5. Subject guideline

Conduct the eIPSE process, as described in Section 5, for the chess
piece use case for an imaginative CPPS.
Chess piece product line modeling. This task represents Step 1 of the
eIPSE approach in Fig. 4. As a user, create a functional PPR–DSL model
of the chess piece product line in the Sublime text editor. Use the
provided cheat sheet for the syntax of the PPR–DSL. The model shall
represent three parts, which are (i) the partial and final products that
should be manufactured by the CPPS, (ii) the atomic process steps that
create the products with their required input products, predecessors,
and resources, as well as (iii) the production resources that can execute
a particular process required to manufacture a product.

Products For the chess piece use case, create partial products and
final products in the PPR–DSL. Find out which partial products you
could group using abstract parent products. Furthermore, define which
of the partial products exclude each other because a similar partial
product more or less supplements them.

Processes As a user, think about how to assemble partial products
via specific atomic ‘‘manufacturing’’ processes. Realize these atomic
process steps in the PPR–DSL and, similar to the products, group them
on their abstract products and exclude process steps that you deem
unnecessary. Furthermore, consider which process steps in a particular
assembly process need to be direct predecessors and refer to them as
needed in the required section.

Resources As a user, model the resources similar to products. For
modeling them, you should apply similar rules as for the product
variability model.
Model transformation. This task represents Step 2 of the eIPSE approach
in Fig. 4. Use TRAVART from the IPSE toolchain from the command
line to transform the chess piece PPR–DSL model to the product and
resource feature model (uvl file extension) and the process decision
model (dmodel file extension).
Iterative process exploration. This task represents Steps 3 to 5 of the
eIPSE approach in Fig. 4. Configure a desired product of the chess piece
product line, i.e., one of the six chess piece types, using the configurator
for feature models in Eclipse (Step 3 in Fig. 4) by ticking the checkboxes
for the features. Then, generate a reduced decision model configuration
(dconfig file extension) by right-clicking on the decision model and se-
lecting the configuration file of the previously configured product (xml
file ending) (Step 4 in Fig. 4). Open the decision model configuration
file in the decision model configurator and explore feasible production
process sequences for the configured chess piece by ticking the decision
checkboxes (Step 5 in Fig. 4). Therefore, you can investigate the process
sequence in the right pane of the decision model configurator.

18 ISO metric screw threads: https://w.wiki/_wm23.
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Resource configuration and artifact generation. This task represents Steps
6 to 8 of the eIPSE approach in Fig. 4. Use the delta models (delta file
extension) that are prepared according to the features or decisions in
product feature model, process decision model, and resource feature model
that might affect the control source code of the CPPS. Additionally,
use the prepared delta configuration file (deltaconf file extension) in
V4rdiac to map the delta models into its corresponding feature or
decision. Then, use V4rdiac to load the previously configured product
and production processes sequence and configure the desired resources.
You can generate the control source code for the CPPS according to the
selected features or decisions after the configuration is finished.

A.6. Study protocol

No formal study protocol was developed or maintained for the user
study.

A.7. Evaluation questions

We formulated the following questions for the evaluation.
• Is it feasible to apply the eIPSE approach?

– in different real-world case studies?
– by engineers from heterogeneous backgrounds?

A.8. Methods of data collection

We used shadowing (Singer et al., 2008) to investigate 5 subjects
during performing the eIPSE approach on the chess piece use case. Due
to the distributed locations of the subjects performing the evaluation,
we used Zoom to connect them to the eIPSE toolchain and provided
them with remote control. At least two of the authors shadowed the
subjects during the evaluation sessions. One author helped the evalua-
tion subject if questions arose, additional explanations were required,
or the subjects were stuck in the process. The other authors present
took notes for later investigation. Furthermore, one author stopped
the time for each of the activities and steps of the evaluation process.
Additionally, we recorded the evaluation sessions to replay them later
during the internal result analysis. Afterward, we asked the subjects
about the perceived usefulness of the toolchain and the lessons learned
during the process.

A.9. Methods of data analysis

No particular strategy for coding the notes taken was used. We
extracted quotes from the notes that concerns the perceived usefulness
and could lead to improvements of the approach and the toolchain.

A.10. Case selection strategy

The case itself was selected on the basis that its main feature,
i.e., the chess pieces, are well known by most people. Furthermore,
the production of the chess pieces seems lucid enough for engineers
of different domains to be manageable. To this end, it should be
straightforward to understand how the possible production process
could be modeled. Yet, the case appears to be complex enough to
properly investigate the problem of the large configuration space.

A.11. Data selection strategy

The strategy for selecting data was driven primarily by the activities
defined in the subject guideline.

A.12. Replication strategy

There was no strategy for replication on the basis that there was
no comparable evaluation previously conducted or even comparable
evaluations of other technologies. We aim that future case studies of the
evaluation of the eIPSE approach adopt the here described description
for partial replication.

A.13. Quality assurance

To help ensure that data collected were representative of a broad
range of stakeholders in the domain of CPPS engineering, we selected
engineers and stakeholders from different companies and domains.

A.14. Data collection

We used shadowing (Singer et al., 2008) to investigate 5 subjects
during performing the eIPSE approach on the chess piece use case. Due
to the distributed locations of the subjects performing the evaluation,
we used Zoom to connect them to the eIPSE toolchain and provided
them with remote control. At least two of the authors shadowed the
subjects during the evaluation sessions. One author helped the evalua-
tion subject if questions arose, additional explanations were required,
or the subjects were stuck in the process. The other authors present
took notes for later investigation. Furthermore, one author stopped
the time for each of the activities and steps of the evaluation process.
Additionally, we recorded the evaluation sessions to replay them later
during the internal result analysis. Afterward, we asked the subjects
about the perceived usefulness of the toolchain and the lessons learned
during the process.
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Table 5.1: Chronological list of additional publications not in focus of the cumulative
thesis.

Ref# Title Venue Year Author
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JSS/IST 2023 2nd
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Literature Study”
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Table 5.2: List of currently planned publications.
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APPENDIX A
Overview of Generative AI Tools

Used

I used several human and software resources to correct and improve the manuscript. I used
Grammarly extensively to correct the spelling and grammar. Furthermore, Grammarly
contributed to this text by responding to these AI prompts (over the period of several
months):

Prompts created by Grammarly

• “Improve it”

Prompts I wrote

• “Improve it keeping all Latex commands.”
• “Paraphrase it keeping all Latex commands.”
• “Shorten it”
• “Shorten it keeping the references.”
• “Shorten it keeping all Latex commands.”
• “Split this long sentence”
• “Shorten it more”
• “Summarize it keeping all Latex commands.”
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