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Abstract

Machine Learning (ML)-based systems, particularly those deploying deep neural networks
(DNNs), are widely adopted into real-world applications due to their ability to be trained
without being explicitly programmed and high output accuracy. However, despite their
high classification accuracy and optimal decision-making in testing scenarios, they are
often found to be vulnerable under unseen (but realistic) inputs. This points to the
lack of generalization of these data-driven models under unseen input scenarios, hence
highlighting the need for behavioral guarantees to ensure their reliable classification and
decision-making in the real world.

Research efforts constantly provide empirical evidence for the lack of reliable DNN
behavior (under seed inputs) for various ML applications. Orthogonally, formal efforts
attempt to provide concise formal guarantees for behavioral properties/specifications
like robustness and safety to hold for the DNN models. However, due to the scalability
challenges associated with formal methods, not only are these efforts often restricted
to providing qualitative (binary) guarantees but they also focus only on limited DNN
behaviors and verification techniques.

To address the aforementioned limitations, this research provides model checking and
scalable sampling-based formal frameworks for DNN analysis, focusing on a diverse
range of DNN behavioral specifications. These include DNN noise tolerance, input
node sensitivity (to noise), node robustness bias, robustness under constrained noise,
robustness bias against tail classes and safety under bounded inputs. Realistic noise
modeling is proposed for practical DNN analysis, while restraining from the use of
unrealistic assumptions during analysis. These lead to formal guarantees that may
potentially be leveraged to identify reliable ML systems.

The research additionally leverages our DNN analysis to improve training for robust
DNNs. The resulting frameworks designed and developed during the research are all
accompanied by case studies based on DNNs trained on real-world datasets, hence
supporting the efficacy of the research efforts and provide behavioral guarantees essential
to ensure more reliable ML systems in practice.
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CHAPTER 1
Introduction

Machine Learning (ML) systems, often based on Deep Neural Networks (DNNs), are
widely used in the present-day embedded devices. The ability of DNNs to perform
decision-making tasks without being explicitly programmed, makes them an appealing
choice in real-world applications like spam filtering [ZSAT19, SSS+19], speech recognition
[HDY+12], face recognition [HYY+15, ZRM20], and smart-grids [GSK+11]. Additionally,
the high accuracy of these systems and their relearning capabilities make them an
appropriate choice even for safety-critical applications like autonomous driving [BDTD+16,
FLES19] and healthcare [ERR+19, BA21].

1.1 Research Gaps and Problem Statement
Despite the successful outlook of DNNs in numerous applications, there remain gaps in
the ML research domain regarding the reliability of such networks, in turn challenging
the reliability of DNN systems. This section elaborates on two of these research gaps,
i.e., the vulnerabilities of the trained DNNs and the limitations of the DNN design cycle1

challenging the generalization capabilities of the resulting networks, ultimately reducing
the reliability of the systems deploying the networks in the real world. They are, in turn,
used to establish the relevance of the research problem dealt with in this thesis.

1.1.1 DNNs are Vulnerable
DNNs comprise the data-driven part of the ML systems. This means, the networks learn
to make decisions based on the data samples available to DNN models. As a result, the
accuracy of the trained DNN is dependent on the data available to the DNN for learning.

1Since this thesis deals with trained DNN models, we limit our preliminary discussion of DNN training
to supervised learning. Interested readers are encouraged to read [Bro19] for a summary of more learning
algorithms.
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1. Introduction

Yet, many tasks making use of DNNs involve the recognition/identification of the rare
events [Mea01, RTVG18, Wea14], for which only insufficient data is available for the
DNNs to learn. Such data is said to exhibit long-tail distribution, and provides the first
source of vulnerability to the DNNs.

As shown in Fig. 1.1(left), the number of samples in the head (i.e., frequently occurring)
and tail (rarely occurring) classes vary significantly in the datasets with the long-tail
distribution. As a result, the DNNs trained on such datasets are often able to identify
the head classes significantly better than the tail classes [Lea18, Fea22].
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Figure 1.1: Low classification accuracy of tail class for DNN trained on dataset with
long-tail distribution (left), and misclassification of seed input by trained DNN in the
presence of small, imperceptible noise (right).

Orthogonally, DNNs are also observed to provide incorrect outputs when the network
input is subjected to small, even imperceptible, noise (as depicted in Fig. 1.1 (right)).
Such noise, often referred to as adversarial noise, has been observed to trigger network
misclassification in various DNNs, including those dealing with visual [SZS+13] and audio
[GP18] inputs. Noise forms a ubiquitous part of the real-world systems [KGB17a], and
appears even in the digital domain (for instance, as quantization noise). This makes
dealing with the DNNs’ vulnerability to noise an important research challenge that needs
to be dealt with for reliable ML systems.

1.1.2 DNN Design Cycle
A generic design cycle of a DNN (based on supervised learning) involves the use of
training, validation and testing datasets, as shown in Fig. 1.2. The training algorithm
makes use of the training dataset to optimize network parameters. The validation dataset
is employed for hyperparameter tuning and to ensure optimal training of the network.
The trained DNN is finally checked against the testing dataset to ensure high accuracy
of the DNN on unseen inputs.

However, the entire DNN design cycle makes use of a finite subset of the actual input
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1.2. Summary of the State of the Art and the Open Challenges

domain for training, validation and testing. Hence, there remains a possibility that the
available datasets do not (adequately) represent parts of the input domain, ultimately
leading to a lack of generalization of the trained DNN.

Training

Validation

TestingDataset

Training Algorithm

Deployment in
Applications

Data-driven Machine Learning:
dependent on Quality of Dataset

Acceptable

Trained Neural Network

Figure 1.2: Generic DNN design cycle: the generalization capability of the trained
network is dependent on the quality of the available dataset.

Problem Statement: Owing to the data-dependent nature of the training and testing
of DNNs, the DNNs’ vulnerability to noise and their varying accuracy for different output
classes are consequential. However, with the increasing deployment of these DNNs in
real-world ML systems, concrete guarantees, under real-world setting, are essential for
the trained DNNs prior to their deployment.

1.2 Summary of the State of the Art and the Open
Challenges

Numerous research efforts are targeted to provide behavioral guarantees for the trained
DNNs. These can be broadly categorized into: empirical efforts and formal efforts. The
empirical efforts often make use of optimization with varying objectives to find behavioral
discrepancies of the DNNs [SZS+13, PCYJ17, KHR+19]. Although, in practice, these
efforts have been successful in identifying erroneous DNN behavior, these efforts are
insufficient to provide any guarantees in case no evidence of erroneous DNN behavior is
found.

In contrast, the formal efforts are capable of providing the behavioral guarantees essential
for trained DNNs prior to being deployed. However, given the non-linearity and complexity
of DNN models, and the curse-of-dimensionality of the DNN inputs [WOZ+20], these
efforts are instead challenged by their limited scalability. For better scalability, the
completeness of the efforts is sometimes traded off to allow behavioral verification of
larger DNNs [SGPV19, TPL+21, MMS+22]. Yet, most of these formal efforts provide
only qualitative results, i.e., whether the DNNs obey certain behavioral specifications
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1. Introduction

or not. Since the DNNs rarely obey the desired behavior, the emerging efforts instead
provide behavioral guarantees for trained DNNs instead focus on quantitative results,
i.e., the precise degree of the DNNs to follow the desired specifications, hence pointing
ultimately the level of reliability of the system deploying them.

Among the behavioral properties of trained DNNs commonly focused on in these works
are robustness under constrained noise and safety under bounded input. However, this
leaves numerous open problems and challenges in this research domain:

1. Limited exploration of the formalization techniques for formal DNN analysis.

2. Dependence on norm-based noise modeling for analysis of DNNs.

3. Focus on a narrow range of behavioral properties/specifications for trained DNNs.

4. Lack of precise confidence intervals of the results during incomplete analysis.

5. High timing overhead of the DNN analysis.

1.3 Scientific Goals of the Research
The aforementioned research challenges give rise to numerous scientific goals that are
addressed in this thesis. The following provides a detailed account of these scientific
goals of this research:

1. Formalizing DNNs and their properties:
The state of the art in formal DNN analysis mostly relies on Satisfiability (SAT)
solving and Linear Programming (LP) for providing (qualitative) behavioral guar-
antees for trained networks. The quantitative analysis on the other hand makes use
of assumptions while formalizing DNNs. Being hinged on propositional logic, pure
SAT-based verification approaches have a limited scope, i.e., they are only appli-
cable for the verification of Binary Neural Networks (BNNs) [NKR+18, SDC19a].
Satisfiability Modulo Theories (SMT) and LP-based approaches, on the other hand,
make use of mathematical theories like the theory of linear arithmetic to extend
the verification objective to a general class of neural networks, with real-numbered
network parameters and piecewise linear activation functions [KHI+19, BLT+20].
The assumptions (for instance, on the output probability distribution of the network
nodes) used in the quantitative analysis are often unrealistic [CFGP20, PCFG20].
In general, there are only limited works [SDC19b, ZZC+21] exploring alternative
approaches for the formalization techniques for DNN models and their properties.

Goal: While state-of-the-art DNN analyses have seen significant improvement
over the years, they are generally restricted to only a few classical analysis ap-
proaches like SAT, SMT and LP. The objective of this research is to explore alternate
formal verification approaches, for instance, model checking, to broaden the scope

6



1.3. Scientific Goals of the Research

of the existing DNN analyses and provide alternative, and potentially useful, means
for formal behavioral guarantees for the trained DNNs.

2. DNN analysis under practical settings:
Noise is often an unavoidable component of the real-world environment. Hence, for
analysis in practical settings, such noise must be accounted for. The current DNN
analysis efforts focus on Lp-norm based noise impacting normalized DNN inputs
[DJST18, BKK+20]. However, in practice, noise affects the raw/unnormalized
inputs, which are often not focused on in the existing efforts.

Goal: While current DNN analyses often consider environmental factors like
noise, they are not considered in the most practical setting. The objective of this
research is to study the vulnerabilities of trained DNNs in a more realistic setting,
via leveraging the relative noise model.

3. Identifying DNN vulnerabilities and expanding the bounds of analysis
to cater to a diverse range of DNN vulnerabilities:
As indicated earlier, the current efforts to provide formal behavioral guarantees
for trained DNNs are often restricted to analyzing only the robustness under con-
strained noise and safety under bounded inputs [HKWW17, KHI+19]. However,
this does not encapsulate all possible vulnerabilities of the trained DNNs, and hence
requires enlarging the focus of DNN analysis.

Goal: While robustness and safety are essential behavioral properties for trained
DNNs, these are not the only properties to ascertain reliable networks. The objective
of this research is hence to target a diverse range of DNN properties, extending be-
yond only robustness and safety, that could improve the reliability of DNNs deployed
in various embedded applications.

4. Providing the confidence intervals for the subsequent analysis results in
case completeness is traded-off in favor of scalability:
The trade-off between scalability and completeness of analysis is an ongoing chal-
lenge. However, in cases where the completeness of analysis is compromised in
favor of better scalability, such analysis is scarcely accompanied by the confidence
intervals for the incomplete results [CFGP20, YLL+21b], and may often lead to
false positives [GMDC+18, SGPV19].

Goal: While incomplete formal analyses of trained DNNs come with their own
challenges, this research aims to leverage incompleteness while minimizing its limita-
tions. This is achieved in two ways: by restricting incompleteness only to the input
domain (and not formal DNN modeling via overapproximation and abstraction) to
avoid false positives, and by providing confidence intervals with the analysis results
whenever exact results are not computable.

7



1. Introduction

5. Optimizing DNN analysis for better scalability and reduced timing over-
head:
Due to the complexity and non-linearity of trained DNNs, and the curse of
DNN input dimensionality, scaling DNN analysis and minimizing timing over-
head (in terms of analysis runtime) is a big challenge. Numerous strategies are
explored in the literature to overcome these challenges, including input segmenta-
tion [BTT+18, GKPB18], overapproximation [GMDC+18, WPW+18a] and parallel
computations [WOZ+20]. Nevertheless, finding better solutions to improve timing
efficiency of DNN analysis is an ongoing scientific goal.

Goal: While trading off completeness for scalability already improves the tim-
ing efficiency of the DNN analysis, this research also explores model reduction
and input segmentation techniques to further reduce the timing of the analysis.
Additionally, we leverage GPU implementation to enable efficient parallelization,
further improving our analysis.

1.4 Thesis Contributions
With the increasing reliance of ML systems on DNNs, providing behavioral guarantees for
such trained DNNs, prior to their deployment in real-world applications, is an important
research problem. However, the problem is far from trivial. As discussed in the previous
sections, numerous open challenges and scientific goals still remain to be addressed. To
address them, this thesis contributes both to the design, development and improvement
of DNN analysis frameworks, ultimately ensuring reliable ML systems deploying such
DNNs. Additionally, once the vulnerabilities in the DNNs have been identified, we also
explore prospective directions to overcome the vulnerabilities, hence robustifying the
networks.
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Figure 1.3: Thesis overview and how it fits with the standard DNN design cycle.
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1.4. Thesis Contributions

The novel contributions of this research are summarized in Fig. 1.3 and elaborated as
follows:

1. Alternate formalization approaches: (Chapters: 3.1,4,5)
This work provides trained network formalization for model checking and sampling-
based DNN analysis. These form the basis for our qualitative and quantitative
analysis frameworks.

2. Formalizing DNN specifications: (Chapters:3.2,4,5)
A diverse range of DNN behavioral specifications are studied extensively in this
thesis, qualitatively and quantitatively. These include network robustness under
(practical) constrained noise, noise tolerance, robustness bias to specific output
classes, input node sensitivity, and output safety under bounded inputs.

3. Realistic noise modeling: (Chapter: 3.3)
Relative noise modeling is introduced in this research, which perturbs the raw,
unnormalized inputs proportional to the magnitude of the input. This encapsulates
a more realistic notion of noise under practical settings.

4. Identifying unexplored DNN vulnerabilities: (Chapters: 4,5,6)
Existing literature indicates persistent efforts toward analyzing the lack of robust-
ness of trained DNNs under noise or questionable safety guarantees. This work
additionally identifies output- and node-specific vulnerabilities of DNNs namely,
robustness bias and node robustness bias.

5. Unified (qualitative) framework for analyzing co-existing vulnerabilities:
(Chapter: 4)
This work proposes FANNet+, a unified model checking-based framework, which
is able to analyze multiple co-existing vulnerabilities. These range from over-
all network-specific vulnerabilities to individual output- and input node-specific
vulnerabilities.

6. Leverage GPU for scalability and reduced analysis time (of the quanti-
tative analysis): (Chapter: 5)
The computations involved in determining the output of the nodes of a single DNN
layer are generally independent of one another. This leaves potential for massive
parallelization during DNN analysis, which is leveraged by our framework QuanDA
via GPU-based acceleration.

7. Providing confidence intervals for incomplete analysis: (Chapter: 5.2)
Compromising completeness is often necessary to improve scalability. However,
the incompleteness in DNN analysis is rarely accompanied by the confidence of
the obtained results in existing DNN analysis literature. On the contrary, our
framework QuanDA provides precise confidence intervals for the deviation of the
exact results from the estimated ones.
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1. Introduction

8. Potential direction for minimizing DNN vulnerability: (Chapter: 6.2)
DNN analysis identifies the vulnerabilities in the trained networks. To make
the most of the obtained results, the next step is to use the knowledge of DNN
vulnerabilities to overcome them. Towards this end, this thesis also explores
prospective direction to solve the robustness bias vulnerability of DNNs. This is
accomplished by developing the data-centric framework UnbiasedNets to minimize
the bias at its core, i.e., from within the training dataset itself.

1.5 Thesis Outline
The rest of this thesis is organized as follows:

Chapter 2 provides the details of the existing works for DNN analysis. It encompasses
the efforts both in empirical and formal DNN analysis domains. It further discusses
the most prominent analysis methodologies used and DNN vulnerabilities highlighted
in existing works. Particular attention is given to the formal DNN analysis, dealing
separately with the qualitative and quantitative efforts at length.

Chapter 3 presents the formalism and notation used throughout the rest of the
thesis. In particular, the chapter provides the functional (i.e., implementation) and
behavioral (i.e., specification) formalism of the trained DNNs. Additionally, noise
formalism, including the relative noise modeling, is elaborated.

Chapter 4 explains the step-by-step construction of our model checking-based qualita-
tive DNN analysis framework, FANNet+. This includes DNN Kripke structure generation,
state-space reduction, and input segmentation. The applicability of the framework is
shown using three case studies for networks trained on real-world datasets, for analyzing
multiple DNN vulnerabilities.

Chapter 5 deals with quantitative DNN analysis, discussing both the probabilistic
and statistical approaches. The probabilistic DNN analysis extends on FANNet+, while
the statistical analysis is implemented using the novel GPU-accelerated sampling-based
framework, QuanDA. The applicability of the frameworks is again shown using case
studies of DNNs trained on real-world datasets.

Chapter 6 discusses the future potential of the DNN analysis research. It includes
a detailed investigation of the node and output-specific network behavior. A data-
centric framework, UnbiasedNets, is also proposed as a potential means to minimize
the robustness bias in trained DNNs. These are accompanied by case studies and a
comparative analysis with analogous frameworks.

Chapter 7 concludes the thesis, recapitulating the main findings and results from this
research, and presenting a future outlook for the research domain.
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CHAPTER 2
Background and Related Work

In general, DNNs comprise of groups of nodes arranged in layers. The networks receive
(normalized) inputs via the input layer and outputs the result via the output layer.
Placed between them are the hidden layer(s). This thesis focuses only on the feed-
forward DNNs, i.e., the DNNs with unidirectional input propagation. An example of
feed-forward DNNs is represented in Fig. 2.1(left). Nodes from each layer are connected
to those of the subsequent layer via a sequential arrangement of linear and non-linear
transformations. The linear transformations include affine and convolution operations.
The popular non-linear transformations include ReLU and maxpool (see Fig. 2.1(right)).
The details for network architecture and formalism will be discussed later in Chap.
3.1. Once trained, this seemingly straightforward (but not trivial) interconnection of
nodes is capable of performing classification and decision-making with high accuracy
[ZSAT19, ZRM20, ERR+19].

...
...

...

Input layer Output layerHidden layer(s)
Activation FunctionsFeed-forward Neural Network

𝑥 = max(0, 𝑦�) 𝑦
ReLU

max(𝑦�)...
...𝑦�

𝑦� 𝑥 = max(𝑦�)
Maxpool

...

Figure 2.1: General DNN architecture and popular activation functions.

However, at least a decade of research indicates the vulnerability of these networks under
different input scenarios. For instance, the addition of small, imperceptible noise to

11



2. Background and Related Work

inputs has been observed to stimulate incorrect output for DNNs in various applications,
including image and speech recognition [SZS+13, GP18]. The DNNs are additionally
found to be vulnerable to various kinds of biases, including data bias, representation
bias, and robustness bias [HDB20, MMS+21, NDS+21], whereby the trained DNNs have
a varying degree of classification accuracy of different output classes, either in presence
or absence of noise.

Other known DNN vulnerabilities include data poisoning (for instance, via backdoor
[GLDGG19]) and bit flips causing DNN parameters to change (for instance, under
cosmic radiation [StT+20]). Naturally, there remains the possibility of new vulnerability
discoveries for DNNs. This chapter provides an in-depth overview of the various DNN
vulnerabilities (including those indicated above) and the analysis approaches used to
identify them. These are categorized under the empirical (elaborated in Sec. 2.1) and
formal approaches (elaborated in Sec. 2.2). Sec. 2.3 summarises the related work
discussed in the chapter.

2.1 Empirical Exploration of Network Vulnerabilities
Among the popular DNN vulnerabilities studied empirically is the DNN misclassification
under noise. The small, often imperceptible, noise leading to such misclassifications, when
added to network input, is referred to as the adversarial noise. The analysis approaches
used for the identification of such noise generally deal with the identification of the closest
decision boundary, direction of the loss function, and the most important input features
[GSS15, KGB17b, CW17, WX18, B18, KHR+19, KAH+19]. Optimization algorithms
are then employed, with optimization objectives ranging from the imperceptibility of
noise to the targeted or untargeted misclassifications.

Another class of DNN vulnerability studied empirically is the network bias. This includes
the data bias, i.e., the bias of the trained DNN emerging due to non-optimal training
procedures, for instance, using small datasets. This results trained network with bad
generalization capabilities [LLV18, LV19]. The representation bias, on the other hand,
results due to an unequal representation of all output classes in the training dataset.
This is a fairly likely phenomenon for training datasets dealing with rare events/ having
long-tail distribution [RTVG18, Mea01, Wea14]. Hence, the performance metrics like
class-wise accuracy, class-wise variance, and maximum class discrepancy of the trained
networks vary significantly for the individual output classes [TKJ+21].

The deployment of DNNs in edge-devices and applications has encouraged energy-efficient
DNN architectures. This motivated the (empirical) analysis of network node significance
to prune away the nodes of the DNN that have the least impact on the accuracy of
the trained network [ZMC94, HKHF00, CRF+20]. Node sensitivity, particularly that
of the input nodes, is also studied to ensure the privacy of sensitive input attributes
[ZL19, MFVRT20]. These analyses either take the forward-pass approach, whereby the
impact of noise to input nodes is studied at the output nodes [HKHF00], or the backward-
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2.2. Formal Guarantees to Network Resilience

approach where partial gradients are leveraged to study insensitivity of individual network
nodes [ZMC94].

2.2 Formal Guarantees to Network Resilience
Due to the high dependence of DNNs on training datasets and their vulnerability to input
uncertainties, the empirical approaches discussed above have been fairly successful in
providing evidence of undesirable DNN behavior. Nevertheless, in theory, such approaches
are incapable of providing conclusive guarantees in cases when no undesirable DNN
behavior is identified. This is because the undesirable behavior may compose a corner-
case, which may be neglected by the empirical analysis. This may loosely be referred to
as the incompleteness of the analysis.

Formally, a proof system is said to be complete if there exists a formal proof for every
true property expressed in the proof system [HR04]. The concept of completeness
is often studied along with its ties to the formal methods (or formal verification),
which aim to provide concrete system guarantees for the entire input domain and/or
of all possible system configurations. To obtain similar guarantees for trained DNNs,
numerous efforts have studied the formal verification DNNs, to provide concrete behavioral
guarantees. However, due to the non-convexity and non-linearity of DNNs, complete
formal verification is often infeasible – the theory of transcendental functions sometimes
used as the activation functions in DNNs is known to be undecidable [Ric69], and even
the verification of DNNs using the piecewise linear activations is an NP-complete problem
[KBD+17]. The verification of quantized neural networks, i.e., the networks with fixed
(and often small) bit-width parameter sizes, is also shown to be a PSPACE-hard problem
[HLŽ21].

Nevertheless, constant efforts are made to provide both qualitative and quantitative
formal behavioral guarantees for trained DNNs, as elaborated in the rest of this section.

2.2.1 Qualitative Efforts
The qualitative DNN verification efforts rely on classical formal method techniques to
provide qualitative results for whether (or not) the trained network delineates desirable
output behavior. Hence, the verification provides binary results, i.e., either the desirable
behavior holds for the DNN or not. Towards this, numerous works have proposed
qualitative efforts, as summarized in Fig. 2.2, over the past years. The major portion
of these efforts leverages satisfiability solving and linear programming, while theorem
proving and model checking have been sparingly studied for DNN verification as well. The
following discusses the qualitative efforts in each of these four formal method domains

©2020 IEEE. Parts reproduced, with permission, from M. Shafique, M. Naseer, T. Theocharides,
C. Kyrkou, O. Mutl, L. Orosa, J. Choi: Robust machine learning systems: Challenges, current trends,
perspectives, and the road ahead, IEEE Design & Test (D&T 2020), pp. 666-669. [DOI:doi.org/0.
1109/MDAT.2020.2971217].
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(provided in reverse alphabetical order). It must also be noted that the qualitative
DNN verification is an active research domain, with continual progress and annual tool
competitions since 2020 [BMB+23].

Theorem Proving
Satisfiability Solving

Model Checking

(2017): Verification of
Perceptron

Convergence Theorem
using Theorem Prover

(2010-2012):
First use of SMT
Solvers for MLP
verification

(2017): Use of SMT
solver for verification
of medium-sized

networks

(2017): Simplex algorithm
based SMT solver proposed for
verification of ReLU-based

Neural Networks

(2018): BNN
Verification
using SAT
Solvers

(2017-2020):
Leveraging Big-M
technique for
Verification

(2015): Verification
of MLPs in

closed-loop control
applications

Linear Programming

(2017-2021):
Verification based

on Output
Reachable Set

(2016): Neural
Network

Verification using a
Linear Programmer

(2017): Combined
use of SMT and

Linear Programming
Solvers

(2018-2020):
Branch-and-Bound

Heuristics for
Verification

(2018): Bisection
of Over-

approximated
ReLU nodes

(2018-2022): Zonotope/
Polytope Abstraction of Neural
Networks for incomplete, yet

scalable, verification

(2020): Neuron
Merging for scaling

Verification

(2021): Verification
of Quantized
Networks

(2023): Complete
& Incomplete

Symbolic Model
Checking

2010 2023

Complete
Incomplete
Complete & Incomplete
Our Contribution

(2019): First BDD-
based BNN
Verification

(2020): First
complete SMT-
based BMC

(2019): First
Incomplete BMC
leveraging CUDA

Figure 2.2: Research Progress in Qualitative DNN Analysis to date.

Theorem Proving

Theorem proving is a type of formal verification in which the system and its properties
are defined mathematically, and the properties are verified for the system by rules of
natural deduction [CW96]. Generally, for propositional logic and simple circuits, for
instance, the half-adder shown in Fig. 2.3(left), the state-of-the-art theorem provers are
able to verify the system without human intervention, i.e., these systems can be verified
by automatic theorem provers. However, for complex systems, like DNNs (as shown
in Fig. 2.3(right)), human guidance is essential, and hence verification of such systems
is done via interactive theorem proving. This speaks for the complexity of theorem
proving-based DNN verification.

For verification, the system is represented as a logical model governed by mathematical
principles. The property is similarly expressed as a formal proof goal. The objective is to
use axioms and rules derived from these axioms to check if the properties, i.e., system
specifications, hold for the system model, i.e., the implementation.

As expected from a human-guided verification approach, interactive theorem proving
is difficult to execute for two reasons. First, it requires an in-depth knowledge of the
underlying system for realistic system modeling. Second, it demands the human verifier
to have an expert understanding of 1) why a certain property holds for the system, 2)
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Theorem
Prover

Trained DNN

import lib as T

T.load (‘X’)

Implementation

(do_good);
~(do_bad);
(rand_env)

Specification

Verified

Violated

Counterexample

bool a, b;

xor (sum, a, b)
and (c, a, b)
Implementation

sum = a+b

Specification

SYSTEM

Mathematical
Model

Theorem

Mathematical
Model

Theorem

Figure 2.3: Basic theorem proving (left) and for DNNs (right).

what are the required assumptions, and 3) how to prove the property on the basis of
sound mathematical principles. [MGS17] verifies the perceptron convergence theorem,
but the work focuses on a very small subset of DNNs called binary classifiers, and hence
may not be easy to adopt for large state-of-the-art DNNs. For more practical theorem
proving-based DNN verification approaches, the basic need is to understand how DNNs
work, why they make certain decisions, and what are the mathematical reasons behind
their behavior. The perceptron convergence theorem [Ros57, Ros61] was proposed almost
six decades before it was formally verified by [MGS17].

More recently, an early attempt to verify small network have been proposed [BS23].
Nevertheless, understanding and developing the theory behind DNN operations seems to
be a logical step before theorem proving can be successfully employed for practical DNN
verification.

Satisfiability Solving

SAT solving is the branch of formal verification where the system model and the property
to be verified for the system are expressed in propositional logic, and written into
Conjunctive Normal Form (CNF) [BCC+09]. The formula is then checked by an automatic
SAT solver, as shown in Fig. 2.4. Having a satisfiable (SAT) output implies that a
satisfying solution to the negation of the property, i.e., a counterexample indicating
that the property does not hold for the system model, has been found. An unsatisfiable
(UNSAT) output implies the absence of any counterexample, and hence indicates that the
stated property holds for the system model. SMT is a variant of SAT that works similar
to SAT solving but allows the use of theories beyond propositional logic, for instance,
finite linear arithmetic.

Since SAT solving allows the use of only propositional variables (i.e., atoms), it is often the
verification approach of choice for BNN [NKR+18, CNHR18]. Due to the rising popularity
and practical efficiency [HCS+16] of BNN in ML systems, these efforts are of relevance
to the research community. The network is first formalized into integer/mixed-integer
linear program, which is then transformed to CNF via sequential encoding [NKR+18].
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if (a > b)
c = a/b;
else
c = b/a;
Implementation

~(a=0)Λ
~(b=0)Λ
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Implementation

(do_good)Λ
~(do_bad) Λ
(rand_env)

Specification

UNSAT

SAT

CNF

CounterexampleSYSTEM

Figure 2.4: Basic SAT solving (left) and for DNNs (right).

An implementation-specification miter1 is then used for the verification of small and
medium-sized BNNs [CNHR18].

SMT solvers, on the other hand, have been the preferred choice for verifying DNNs
with real and/or integer network parameters. The early attempts using SMT solvers
involved the discretization of sigmoid activation functions [PT10, PT12, SWWB15]. This
was inspired by Counterexample Guided Abstraction Refinement (CEGAR) [CGJ+03]),
which refines the verification results by iteratively improving the network model using
counterexamples provided by the verification engine. HySAT, MathSAT, and Yices
[FH07, ABC+02] were used on the backend for the verification of networks with ∼ 10
network nodes in these works.

The next wave of SMT-based efforts targeted DNNs using piecewise linear activation
functions (like Rectified Linear Unit (ReLU)) [KBD+17, HKWW17, KHI+19]. Additional
concepts, like simplex algorithm, were also leveraged in the works. Ultimately, the efforts
were able to verify DNNs with up to 20, 000 nodes. To address the scalability challenge,
approaches like K-factoring [CNHR18], input domain segmentation [GKPB18] and node
merging [EGK20, AHKM20] have been proposed. Abstraction refinement to prune
away network nodes and verification of over-approximated networks [OBK22] have also
been provided as scalable verification alternatives - however, these make the verification
incomplete, possibly leading to false positive verification results.

Nevertheless, SAT-based verification still suffers from the scalability problem. Existing
works allow verification of small (less than 10 neurons) to medium (up to 20, 000 neurons)
sized networks. The application of scalability solutions, like K-factoring, may also be
computationally costly. Another challenge is the design of more efficient SAT/SMT
solvers dedicated for DNN verification.

1A miter [Bra93] is a circuit configuration where the outputs of two circuits are XORed. Hence, the
miter generates logic-1 only if the two circuits generate different outputs. In SAT solving, the outputs
XORed lead from the implementation and specification(s) of the system/network under verification.
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Model Checking

Model checking (as shown in Fig. 2.5) is an automated formal verification approach,
whereby specifications are rigorously checked for a formal model/implementation. The
model is given as a state-transition system, for instance, a Kripke structure, while the
specifications are provided in the temporal logic [BCC+09]. Similar to the SAT-solving
procedure stated earlier, the verification tool returns UNSAT (in case the specification
holds) or SAT (property violation).

init(s):= rdy
next(s):= …
req: bzy
1: {rdy,bzy}

Implementation

G(req ->
F (s=bzy))

Specification

State-space
Model

Model
Checker

Trained DNN

import lib as T
T.load(‘X’)

module DNN
. . .

Implementation

G((do_good)Λ
~(do_bad) Λ
(rand_env))

Specification

UNSAT

SAT

State-space
Model

Path to BAD stateSYSTEM

Figure 2.5: Basic model checking (left) and for DNNs (right).

Numerous abstraction approaches are available in the model-checking literature to reduce
the size of the formal model, hence avoiding state-space explosion and scaling the
model checking for larger systems. Among the popular ones include: partial order
reduction [BK08], counterexample guided abstraction refinement (CEGAR) [CGJ+03],
and bisimulation [Mil82].

While an established branch of formal methods, MC has only recently been explored
for DNN verification. These include leveraging tseitin encoding for the formalization
of BNNs into Ordered Binary Decision Diagram (OBDD) [SDC19b], and the use of
bounded model checking for the verification of networks with sigmoid activation. The
formalization of the sigmoid activation uses lookup table-based function discretization,
hence making the formal model incomplete (i.e., probable false positives in the results)
[SBG+19]. Further verification of DNNs with quantized network parameters and look-up
table-based discretization for non-linear activation functions, using SMT-based model
checking, have also been explored [SMS+21]. Yet, the scalability challenge still persists
for the existing works.

Linear Programming

With the success of DNNs with piecewise linear activations, particularly ReLU activa-
tion [NH10], in real-world DNNs, LP has become a natural choice for numerous DNN
verification efforts. LP works by defining the system as a set of linear constraints, and
the property to be verified as an objective function, as shown in Fig. 2.6. The objective
function can be either a minimization or a maximization function. The search of the
minima/maxima is automatic, and involves the use of linear programmers [Gur, cpl].
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Figure 2.6: Basic linear programming (left) and for DNNs (right).

The earlier LP verification efforts were targeted at checking the robustness of the network
against adversarial attacks. The objective was to determine the smallest noise (or noise
margin) that satisfies linear constraints of the network but causes misclassification at
network output [BIL+16, TXT19]. Orthogonally, the iterative application of LP and
SMT for bound tightening and verification, respectively [Ehl17] was also experimented.

The use of Big-M encoding [Gro02] is proposed in several recent works [LM17, DJST18,
FJ18, ALMP18, BKK+20] for DNN verification. Here, a binary indicator variable Y is
added to the linear constraints to indicate the linear region of the activation function
to which the constraint belongs, while M provides a valid output upper bound that is
greater than the maximum output value of every ReLU node in the network.

Another concept common to the ReLU-based DNN verification is the branch and bound
(BaB) heuristics. The BaB heuristics aim to determine the optimal location to segment in-
put domain and/or activation functions to ensure that the DNN can in turn be represented
as a set of linear constraints. A naive BaB implementation has an exponential worst-case
complexity [TDG09], and hence would not scale well for DNNs with large number of
neurons. Several works [BTT+18, BLT+20, TPL+21] have explored different strategies
for BaB in DNNs, while attempting to reduce the time cost of the input segmentation and
analysis. However, there is no optimal BaB heuristic for all DNN [BTT+18, BLT+20];
depending on the input domain/range and the DNN model/architecture, a different BaB
heuristic may provide better linear constraints for the analysis. For non-ReLU activation
functions, Taylor expansion can alternatively be deployed to transform the activation
into a piecewise function [LYC+19]. The verification of DNN with this new piecewise
activation again follows the same BaB principle. Ideally, for optimal speed of verification,
the number of linear segments must be kept minimum [RRCST19].

A common problem with the aforementioned LP-based approaches is their focus on
identifying linear regions to formulate linear constraints: this is a time-consuming process.
Moreover, the segmentation of ReLU to obtain two linear regions increases the number of
linear constraints in the DNN, hence augmenting the scalability problem associated with
DNN verification. To overcome these problems, convex relaxation of the ReLU activation
is used to over-approximate the piecewise linear function into a single linear function,
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bounding box, zonotope or polytope [GMDC+18, SGM+18, XTJ18, XTJ17, SGPV19,
TLM+19, TPM+21, RRCST19, YLL+21a, MMS+22]. Although the transformation is
sound [GMDC+18, SGM+18, SGPV19], the over-approximation of ReLU sacrifices the
completeness of verification results.

To reduce the effect of incompleteness (i.e., the false positives in results), techniques like
symbolic interval analysis [WPW+18b, WPW+18a, LLY+19] and backward substitution
[SGPV19, PWW20] are used for tightening output bounds, and hence reducing the
over-approximation error. These can be combined with the additional slack variables in
the objective function to prioritize the nodes that need to be dealt with earlier [KFS21],
ideally reducing the timing overhead of the verification. The merging of network nodes to
convert DNN to an interval DNN has also been found to potentially scale the verification
[PRA19].

Output reachable set estimation via bound propagation for safety specifications is another
popular DNN verification approach using LP [TPL+21, TYML+20]. Depending on
whether the propagation is exact [TPM+21, TLM+19] or over-estimated [XTJ17, XTJ18],
the verification can be deemed complete or incomplete. More recently, semi-definite
programming has also been proposed for DNNs (with feedback loop) [FMP20], which
leverages quadratic constraints instead.

2.2.2 Quantitative Efforts
As indicated earlier, the qualitative efforts described in the previous subsection provide a
binary result. As observed in numerous works [SZS+13, PCYJ17, Fea22], trained DNNs
are indeed vulnerable to input variations. The likely result of the qualitative efforts is
then to simply state the obvious, i.e., the desired DNN specification does not hold for the
trained DNN model. This calls for more precise verification results, which may enable
deducing the degree to which the DNN does/does not delineate the desired behavior.
This is a fairly recent research dilemma for the DNN verification community, with only
limited efforts (as summarized in Fig. 2.7) to date.

Probabilistic Methods

The major branch of quantitative verification efforts is the probabilistic verification
[KNP18]. In general, the idea here is to explore the entire valid input domain to calculate
the precise probability of specification(s) holding for the given implementation (formal
model). The implementation is usually presented as Markov chain, while the specifications
are stated in the temporal logic (as shown in Fig. 2.8)2. Unlike qualitative efforts, which
generally terminate as soon as the first counterexample to specification violation is found,
the search of the entire input domain makes probabilistic verification computationally
harder.

2Note that, since the formal model in probabilistic verification is a Markov chain, and the specifications
checked for the model operate temporally, it is common to see the use of terms probabilistic verification
and probabilistic model checking interchangeably.
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Figure 2.7: Research Progress in Quantitative DNN Analysis to date.
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Figure 2.8: Basic probabilistic model checking (left) and for DNNs (right).

Owing to the complexity of this quantitative verification branch, it has only been scarcely
explored for DNN verification. The prominent efforts include the transformation of
small networks to boolean circuits, which can, in turn, be transformed to OBDD and
eventually Sentential Decision Diagram (SDD) for the probabilistic verification [CSSD17].
Alternatively, the transformation of networks (particularly BNNs) have also been used
for Binary Decision Diagram (BDD) generation. This is followed by an iterative learning
algorithm [SDC19a] or sequential analysis [ZZC+21]. Model counting, i.e., counting the
SAT and UNSAT instances of the formal model for given specifications, is then used for
exact probability computing for the desired DNN properties, like safety. Added to the
existing challenge of scalability of the aforementioned DNN transformation is then the
#P complete computational complexity of the model counting.

Statistical Methods

Similar to sacrificing completeness for scalability in qualitative efforts, statistical verifica-
tion achieves the same for quantitative verification. The formal model is again composed
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of Markov chain and the specifications formalized in temporal logic (see Fig. 2.9)3.
However, the probability computed is no longer exact, but only an estimate of the exact
result [LLT+19].
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Figure 2.9: Basic statistical model checking (left) and for DNNs (right).

Compared to probabilistic verification, statistical verification has been able to achieve
better scalability in terms of DNN verification. Notable efforts include the use of
importance sampling and its variants to discover rare events, with known or assumed
underlying probability distribution. For instance, AMLS [WRTK19] has been successfully
implemented for DNN analysis, while using a combination of importance sampling
with constraint solving (for fast convergence) has also been found to be useful [LFZ21].
However, it is important to note that importance sampling, in essence, is not a verification
approach to estimate probability, but merely an analysis strategy for checking the
occurrence of rare events. The use of concentration inequalities has also been leveraged
in multiple works [BZSL19, FMP19, BCMS21], which provide probability estimates for
specification to hold. Hypothesis testing has also been adapted to provide statistical
results for the DNN specifications to hold [FMP19, BCMS21]. The trained DNNs are
treated here as black-boxes.

Similar to the case in probabilistic verification, model counting has also been explored in
terms of statistical verification. Here, the approximate counting is used to provide PAC-
style guarantees for BNNs [NSM+19, BSS+19]. Another statistical variant of the classical
formal methods is the stochastic SAT, which has been used for estimating (fairness)
probabilities within error bounds [GBM21]. However, this approach is applicable only to
boolean and linear classifiers with pseudo-boolean constraints, which can be presented in
CNF.

Among the non-conventional statistical DNN verification includes the computation
of reachable polytope volume, to in turn compute reachability probability estimates
[CFGP20, PCFG20, YLL+21b]. The works rely on the (unrealistic) assumption that all
node distributions are uniform.

3Similar to the probabilistic case, statistical verification and statistical model checking are often used
interchangeably as well.
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2.3 Summary of Related Work
Overall, the efforts to obtain behavioral guarantees for trained DNNs can be broadly
partitioned into empirical analysis and formal verification efforts. The empirical efforts
aim to identify the undesirable DNN behavior (possibly for a specific output class),
in the presence or absence of input perturbations. They are also employed to reduce
DNN complexity (for instance via pruning) while having minimal impact on DNN
behavior. The formal verification, on the other hand, takes a more holistic approach
for ensuring behavioral guarantee of the trained DNN as their prime focus. Among
them, the qualitative approaches use classical techniques like satisfiability solving and
linear programming for behavioral verification of DNN models. To provide more precise
behavioral guarantees, quantitative efforts compute (exact or approximate) probability
for the DNNs to delineate the desired behavior.

The empirical analysis provides limited completeness of results. On the other hand,
formal verification suffers from limited scalability. The following chapters focus mostly
on the formal verification aspects of providing behavioral guarantees for trained DNNs,
starting with the appropriate formalism for DNN implementation and specifications (in
Chap. 3).
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CHAPTER 3
Formalism

Numerous aspects pertaining to DNNs do not have well-defined definitions, allowing
subjective interpretations of the notions. This chapter aims to eliminate such discrepancies
in these notions by providing formal definitions of the concepts relevant to this research.
Table 3.1 lists the notations, and their corresponding relations, used throughout this

thesis to denote various aspects of DNNs and their properties.

Notation Notation
Trained DNN N Output Domain Y
Number of DNN Layers L Output Label L(X )
Input Domain X Number of Output Classes C
Input Dataset D(X ) Noise Bounds Δx
Number of Input Nodes n Maximum Noise Bounds Δxmax

Applied Noise η

where:
X ∈ Rn Y ∈ RC

D(X ) ⊂ X ∀x ∈ X : N (x) ∈ Y
N : X → Y L(X ) = one_hot_encode(N (X ))
C = |L(X )| η ≤ Δx ≤ Δxmax

Table 3.1: Notations and relations used for DNN formalism throughout the thesis.

©2023 Springer. Parts reproduced, with permission, from M. Naseer, B. S. Prabakaran, O.
Hasan, M. Shafique: UnbiasedNets: a dataset diversification framework for robustness bias allevia-
tion in neural networks, Machine Learning (Mach Learn 2023), pp. 1-28. [DOI:doi.org/10.1007/
s10994-023-06314-z].

©2023 IEEE. Parts reproduced, with permission, from M. Naseer, M. Shafique: Poster: Link between
Bias, Node Sensitivity and Long-Tail Distribution in trained DNNs, Conference on Software Testing,
Verification and Validation (ICST), Dublin, Ireland, 16-20 April, 2023, pp. 474-477. [DOI:doi.org/10.
1109/ICST57152.2023.00054].
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3. Formalism

Prior to defining concepts related to trained DNNs, it is worthwhile to understand the
notion of balanced dataset. Such datasets, in particular balanced training dataset, defines
a dataset where each output class in the dataset is equally-representative. This ensures
that the DNN, once trained on this dataset, delineates minimal bias. More formally, such
datasets can be defined as follows.

Definition 1 (Balanced Dataset). Given a dataset D(X ) with C output classes, the
dataset is said to be balanced/the output classes are equally represented iff density ρ of
inputs from each class in the input hyperspace is (approximately) equal, i.e., ρ(D(X1)) ≈
ρ(D(X2)) ≈ ... ≈ ρ(D(XC)). Note that density ρ of input here refers to the average
number of input samples contained within the unit hypervolume of the valid input domain
X for an output class, and X belongs to the Euclidean space Rn.

Rest of this chapter provides the necessary formalism required for developing DNN
formal model and their corresponding specifications. In particular, Sec. 3.1 provides
the functional formalism corresponds to the implementation of the trained DNNs (i.e.,
the formal model). Sec. 3.2 provides the behavioral formalism, i.e., the formalization of
DNN behavioral properties. Note that, the behavioral properties of DNNs point to the
desired DNN specifications - hence, the terms specifications and properties can be used
interchangeably. To study the behavior of DNNs in practical setting, it is often desirable
to consider the impact of environmental noise on the network inputs. The formalism of
such noise is provided in Sec. 3.3. Sec. 3.4 finally summarizes the important aspects of
the chapter.

3.1 Functional Formalism of Neural Networks
This research focuses on the feed-forward networks, i.e., the networks with no loops
connecting nodes of a layer to those of preceding layer(s). More formally, such networks
can be defined as follows.

Definition 2 (Feed-forward neural network). Given input domain X , a feed-forward
network N : X → Y maps the input to the output domain Y such that the nodes in each
layer k depends only on the inputs from the preceding layer k − 1. This results in a
loop-free network that can be represented by y = N (x) = N L ( N L−1 (... N 1 (x) ... )),
where N k encapsulates the linear and non–linear transformations for layer k, x ∈ X is
an input from the input domain, and y ∈ Y is an output class from the output domain.

The network is also fully-connected if each node in each network layer is connected to
every node in the adjoining layer. As briefly pointed out in the previous chapter, the
nodes are in each layer are connected to those of an adjoining layer via a sequence of
linear and non-linear transformation. For fully-connected networks, this linear transform
is an affine relation presented mathematically as:

yk
j = bk +

N�
i=0

wk
ijxk−1

i (3.1)
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3.2. Behavioral Formalism of Neural Networks

Here, wk
ij represents the weight connecting node i from layer k − 1 to node j in the layer

k, while bk represents the vector of bias parameter values associated with layer k. xk−1
i

is the input originating from node i of the layer k − 1, while the result of the affine
transform for node j in layer k is saved in yk

j .

The transformed result yk
j then goes through the non-linear activation. The result of this

next transformation is eventually the input for the subsequent network layer. Among
them, ReLU is a popular choice, which works analogous to half-wave rectifier in an
electrical circuit, clipping negative inputs to zero while passing through the positive
inputs unaltered.

xk
i = maxi∈Z+:i≤n(0, yk

i ) (3.2)

Another choice for activation function is the maxpool, which passes the maximum among
input node values to the output.

xL = maxi∈Z+:i≤n(yL
i ) (3.3)

3.2 Behavioral Formalism of Neural Networks
In general, it is desired for a trained DNN to compute correct results for all inputs,
under all possible input conditions. However, for verification or analysis1 of the DNN,
it is helpful to be more precise regarding the desired DNN behavior. The following
provides the formalism of the DNN specifications considered in this thesis, to provide the
behavioral guarantees regarding the trained networks.

Definition 3 (Robustness). Given a trained network N : X → Y, N is said to be robust
against the noise Δx if the application of an arbitrary noise η ≤ Δx to the input x ∈ X
does not change network’s classification of x, i.e., ∀η ≤ Δx : N (x + η) = N (x).

It must be noted that x corresponds to inputs that the network N does not originally
misclassify, i.e., N (x) corresponds to the true output class for input x.

Definition 4 (Noise Tolerance). Given a trained network N : X → Y, noise tolerance
is defined as the maximum noise Δxmax, which can be applied to a correctly classified
input x ∈ X such that N does not misclassify the input. Hence, for any arbitrary noise
η ≤ Δxmax, the application of noise to an input x ∈ X does not change the network’s
classification of x, i.e., ∀η ≤ Δxmax : N (x + η) = N (x).

In other words, noise tolerance provides (an estimate of) the upper bound of the noise
that the network N can withstand, without showing any discrepancies in its normal
behavior, i.e., without compromising the robustness of the network.

1(Formal) Verification is the means to mathematically check whether the specifications hold for the
system’s formal model. (Empirical) Analysis, on the other hand, is part of the testing methodology where
the results from the system are used to deduce whether the desired specifications hold for the system or
not.
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3. Formalism

Definition 5 (Robustness Bias). Given a dataset D(X ) ⊂ X with C output classes, and
X1, X2, ..., XC as the of input hyperspace representing each output class. D(X ) is said
to exhibit robustness bias iff the hyperspaces X1, X2, ..., XC are not equidistant from the
decision boundary. Note that, the decision boundary is the hyperplane separating the
hyperspace belonging to the individual output classes.

However, as long as the hyperspaces are equidistant from the decision boundary, the
dataset is said to be free from a robustness bias.

Definition 6 (Biased Network). Given a trained network N : X → Y, N is said to
be biased if the application of an arbitrary noise η ≤ Δx to any (correctly classified)
input from class i ∈ C does not change network’s output classification, ∀η ≤ Δx, x ∈ Xi :
N (x + η) = N (x). However, application of the same noise to any input from another
class j ∈ C makes the network misclassify the originally correctly classified input from
the class ∀η ≤ Δx, x′ ∈ Xj : N (x′ + η) ̸= N (x′).

It must be noted that even though unbiasedness (i.e., the property of a trained NN to be
unbiased) and classification accuracy may intuitively seem similar, they are not identical.
Obtaining an accurate DNN involves identifying the decision boundary that separates the
output classes in the dataset. In contrast, obtaining an unbiased NN involves identifying a
decision boundary that is equidistant from all the hyperspaces encapsulating the different
output classes. The resulting unbiased network, in turn, may or may not have the highest
classification accuracy. However, all the output classes will likely be equally robust to
noise in an unbiased network.

Definition 7 (Node Sensitivity). Given a network N : X → L(X ), where each input
x ∈ X comprises of n input nodes, node sensitivity determines the robustness of individual
input nodes under the incidence of the node noise η ≤ Δx, i.e., node i ∈ n is insensitive
to noise iff N (x) = N (x \ xi, xi + η).

In principle, an input node may be sensitive or insensitive to a specific kind of noise, for
instance to the positive noise or the noise bounded by specific constraints.

Definition 8 (Node Robustness Bias). Given a network N : X → L(X ), where L(X )
comprises of C output classes (i.e., L(X ) = {1, ..., C}) and each input comprises of n
input nodes, node robustness bias defines the robustness of individual input nodes for each
output class. This means, node robustness bias holds for the input node xi

k ∈ xk iff the
probability of correct classification for input xk belonging to all output classes k ∈ L(X ),
when noise η ≤ Δx is incident to node xi

k, is equal, i.e., ∀k ∈ L(X ), ∀i ∈ n : P[N (xk) =
N (xk \ xi

k, xi
k + η)] = const.

The intuition behind the analysis of node (robustness) bias is to ensure that each input
node has a consistent sensitivity for inputs belonging to all output classes.
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3.3. Formalizing Noise

3.3 Formalizing Noise
To study the behavior of trained DNNs in realistic settings, it is desirable to consider the
impact of environmental uncertainties like noise on the network input. This is in line with
the DNNs in real-world applications since the DNNs deployed in practical applications
often receive noisy inputs via data acquisition and pre-processing. The final (noisy) input
is then normalized to limit the bounds of inputs to remain within [0, 1] range. Eventually,
the input is fed to the trained DNN.

3.3.1 Lp Norm based Noise Models
This is the popular noise modeling for DNN analysis and verification. However, the noise
is added to the normalized inputs, while implicitly assuming the unnormalized input to
be clean from noise. The noise to be added to the normalized inputs can essentially be
modeled in multiple ways. But the general Lp norm-based noise can be obtained via the
following relation [Car00]:

||Δx||p = p

��
i

|Δxi|p = p

��
i

|x′
i − xi|p (3.4)

L1 Norm

Also known as the Manhattan distance, this noise model computes noise as the sum of
absolute distances between nodes of true and perturbed inputs. Naturally, this only
involves linear operations and is hence simple to implement.

L2 Norm

Also known as the Euclidean distance, this noise model is computationally harder
compared to the previous noise model. Owing to the squaring operations involved, it
magnifies the distance between true and perturbed inputs. Hence, compared to L1 norm,
L2 norm provides a less robust measure of distance between the inputs. This means
that even a small magnitude of distance is magnified in L2 norm due to the squaring
operations.

L∞ Norm

This is the simplest and most popular noise model used in literature. It gives the
maximum difference between true and perturbed inputs:

||Δx||∞ = maxi(Δxi) = maxi(|x′
i − xi|)

©2022 ACM. Parts reprinted, with permission, from I. T. Bhatti, M. Naseer, M. Shafique, O. Hasan:
A formal approach to identifying the impact of noise on neural networks, Communications of the ACM
(CACM 2022), pp. 70-73. [DOI:doi.org/10.1145/3550492].
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3. Formalism

As shown in Fig. 3.1, L∞ norm encapsulates all other Lp norms. This means that the
noise explored under Lp norm, for p < ∞, is also explored for L∞ of the same magnitude.

x1

x2
L1 – Norm: | ∆𝑥 |� = |𝑥�| + |𝑥�|

L2 – Norm: | ∆𝑥 |� = |𝑥�|� + |𝑥�|�
L – Norm: | ∆𝑥 |� = max(|𝑥�|, |𝑥�|)

General Relation (Lp – Norm): | ∆𝑥 |� = ∑� |∆𝑥�|�
Figure 3.1: Visualization of Lp norm-based noise for two-dimensional input domain.

3.3.2 Relative Noise Models
As stated earlier, the Lp norm-based noise is applied to the normalized inputs. This is
often unrealistic since noise is more likely to impact raw/unnormalized noise. Additionally,
for applications where input nodes receive data from domains with varying input ranges,
reverse engineering the impact of the same ||Δx||p is likely to differ for the different
input nodes. Hence we instead propose the relative noise model, whereby noise is added
proportionally to the magnitude of input, to the unnormalized inputs. This provides a
more realistic interpretation of noise for the verification.

Δxi = 0.01 × ϵ × xi (3.5)

The factor 0.01 ensure the magnitude of noise is significantly smaller than the input xi,
to reflect practical world (where magnitude of noise is in fact much smaller than the
magnitude of input). Hence, the noise Δxi applied to node xi is ϵ% of the input.

3.4 Summary of Formalism
This chapter provided the formal definitions for DNNs considered in this works, the
specifications studied to ensure desirable DNN behavior, and the noise models used
to verify DNNs in practical settings. The next chapters will provide details of the
qualitative and quantitative formal analysis frameworks developed in this work, based on
the formalism provided in this chapter.
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CHAPTER 4
Qualitative Neural Network

Analysis

As indicated in the previous chapters, earlier attempts to ensure correct functioning
of DNNs included empirical approaches, for instance using gradient-based methods
[SZS+13, MDFFF17] to identify the adversarial noise patterns that would lead the DNN
to misclassify benign inputs. Although such attempts provide evidence to the lack of
robustness of DNNs, they are insufficient to provide any guarantees regarding DNNs’
robustness in the case when no adversarial noise is found. To deal with the aforementioned
problem, in recent years, there has been a great interest towards the rigorous evaluation
of DNNs using formal verification [TXT19, KHI+19, BLT+20]. This usually involves
checking resilience properties, like robustness and safety, of the DNNs using SAT checking
or LP. However, the exploration of formal approaches beyond SAT and LP, to analyze
wider variety of DNNs’ properties, remains largely neglected.

To deal with the limitations of existing literature to explore formal tools for DNN
verification and handle diverse range of DNN properties, this chapter provides the step-
by-step procedure for qualitative DNN analysis. This is summarized in Fig. 4.1, while
the novel contributions of the work are listed as follows:

1. Explore the limits of model checking for DNN Analysis.

2. Use realistic and practical noise mode noise model, i.e., the relative noise model
(as elaborated in Chap. 3.3.2).

3. Focus on diverse range of properties namely: robustness, noise tolerance, robustness
bias, input nodes sensitivity and safety.

4. Combine the pros of classical formal verification and empirical analysis to develop
formal analysis frameworks, FANNet and FANNet+.
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4. Qualitative Neural Network Analysis

5. Present initial framework FANNet, to achieve aforementioned targets.

6. Propose novel input segmentation methodology, i.e., random input segmentation.

7. Develop FANNet+ to improve scalability of model checking-based analysis.

MODEL-BASED QUALITATIVE VERIFICATION & ANALYSIS

Counterexample Database

Validated Formal Model

Functional Validation

Behavioral Verification

Class/Node-wise Analysis

Functional
Guarantees

Behavioral
Guarantees

Trained
DNN

IMPLEMENTATION

Formal
Model

SPECIFICATION
Input

Uncertainity
Input

Constraints
Input

Seeds/Bounds

Formal Model

Formal (Temporal)
Property

Normalization

Segmentation

Figure 4.1: The overall qualitative analysis methodology presented in this chapter.

Sec. 4.1 provides our initial efforts toward developing a model checking-based framework,
FANNet, for the DNN formal verification and empirical analysis (henceforth referred to
simple as formal analysis). Sec. 4.2 later provide methodologies for scaling the framework,
hence proposing the extended framework FANNet+. The works are also accompanied
by supporting case studies, results and discussions. Sec. 4.4 summarizes our formal
qualitative DNN analysis.

4.1 Initial Efforts
As elaborated in previous chapters, verification for ensuring network robustness has been
an active domain of research for DNNs. These works focus on either expressing the
network and its robustness property in CNF, and verifying it using a SAT solver, and/or
transforming the problem into a set of linear constraints and objective function, and
verifying the network as an optimization problem using a LP solver, under a specified

©2020 IEEE. Parts reproduced, with permission, from M. Naseer, M. F. Minhas, F. Khalid, M.
A. Hanif, O. Hasan, M. Shafique: FANNet: formal analysis of noise tolerance, training bias and input
sensitivity in neural networks, Design, Automation & Test in Europe Conference & Exhibition (DATE
2020), Grenoble, France, 09-13 March, 2020, pp. 666-669. [DOI:doi.org/10.23919/DATE48585.
2020.9116247].
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4.1. Initial Efforts

Lp − norm space around the seed inputs. Unlike the current literature, we analyze DNN
properties beyond network robustness, using model checking.

To conduct the aforementioned studies, we propose a formal analysis methodology,
FANNet (summarized in Fig. 4.2), to address the challenges associated with DNN
analysis (elaborated in Chap. 1.2). The novel contributions of our initial qualitative
analysis include:

1. Formal modeling and analysis methodology to analyze the trained DNN as a
state-space model, using model checking.

2. Providing realistic estimates for the network tolerance in the presence of adversarial
noise.

3. Studying input node sensitivity in the presence of noise.

4. Analyzing the effects of robustness bias on network accuracy.

5. Providing a comparative analysis of the computational resources, in terms of timing
and memory, required by testing and our model checking based methodology for
the above DNN analysis.

6. Performing a case study on Leukemia Detection to demonstrate the practical
significance of the above analysis.

Trained DNN Behavioral Extraction

Functionality Architecture, Parameters

Formal Properties Formal SMV Model

𝑃SAT

UNSAT

SAT

Noise Tolerance Analysis
Addition of Non-
Deterministically
selected Noise

to all Inputs

Reduce
Noise

Functionally
Validated Formal

DNN Model

𝑃SAT
∆𝑥 UNSAT

SAT

Noise Vector
Extraction

𝑃
update 𝑁𝑉

SAT

UNSAT All 𝑁𝑉s
obtained

PROPERTIES𝑃 : 𝒩 𝒳 == ℒ(𝒳);𝑃 : 𝒩 𝒳 + 𝜂 == ℒ(𝒳);𝑃 : 𝒩 𝒳 + 𝜂== ℒ 𝒳 ∧ ~𝑁𝑉;𝑁𝑉: Misclassifying
Noise Vector

Seed Inputs:
from testing dataset

Figure 4.2: FANNet: the first complete SMT-based bounded model checking framework
for formal DNN analysis.

4.1.1 FANNet Methodology
FANNet, the initial qualitative DNN analysis framework, uses model checking to obtain
the noise tolerance of the trained DNNs. The counterexamples obtained from model
checking are subsequently leveraged to estimate sensitivity of the individual input nodes
as well as detect any robustness bias in the trained DNN. The overall framework operates
as follows.
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4. Qualitative Neural Network Analysis

Generating Kripke Structure of the Neural Networks

Consider the network shown in Fig. 4.3(top-left). A binary noise1, i.e., the noise with
magnitudes either 0 or 1, is incident to the input nodes of the network. Recall (from
Chap. 2.2) that the model checking involves rigorous analysis of the state-transition
system. So in case of explicit state model checking, there are four possible ways to apply
noise to the input nodes. Hence, the resulting Kripke structure contains four states
leading from the initial state, as shown in Fig. 4.3(right).

Additionally, the input can lead to either of the possible outputs, which provide the
Atomic Propositions (APs) for the formal model. Hence, a transition from initial state,
corresponding to any of the possible noise options, can lead to any possible outputs.
This leads to the resulting formal model (i.e., the Kripke structure) to have 1 + |η|C
states, where |η| is the number of noise options and C is the number of output classes
in the network. Again, a rigorous analysis using model checking entails the possibility
of network changing its state. Hence, the number of transitions making up the model
adds to |η|C(|η|C + 1). It must be noted that the hidden nodes are not presented in the
formal model. This can be attributed to the use of jump transitions, which allows the
compression of states having same set of AP.

Kripke Structure
initial

{L(0)}

§ Number of States: 9
§ Number of Transistions: 72L(0)

L(1)

[0,1]

[0,1]

Noise Options:
§ x0+0, x1+0
§ x0+0, x1+1

§ x0+1, x1+0
§ x0+1, x1+1

{L(0)} {L(0)} {L(0)} {L(1)} {L(1)} {L(1)} {L(1)}

x0

x1

Figure 4.3: The formal model (Kripke structure) for a small fully-connected network
(shown on top left), as generated by FANNet. A binary noise is incident to the network’s
inputs.

Analyzing the Formal Network Model

The DNN testing dataset (with seed input and their true labels) is available at the input
to the model checker. The weights and activations of the trained DNN, which determine
the network’s architecture and functionality, are first translated into the SMV model2

and the temporal properties. Prior to the analysis with input noise, the correctness of
1Note that, FANNet uses relative noise in our actual experimental analysis. The use of binary noise in

the given proof-of-concept in Fig. 4.3 is solely to ease understandability of the formal model generation.
2Modeling standard used by nuXmv model checker to generate Kripke structures

32



4.1. Initial Efforts

Algorithm 1 Noise Tolerance Analysis using Model Checking
Input: Input Matrix (X), Weight Matrices (w1, w2), Mean (µ) and Standard Deviation (ς) of

Training Dataset, True output labels (L(x)), Noise Range (Δx)
Output: No Counterexamples flag (NC), Adversarial Noise Matrix (e)
Initialize: Noise = [−Δx : +Δx], e = {}

1: for i = 1:Size(X) do ▷ Step 7)
2: NC = ⊥; count = 0
3: while !NC | count ⩽ Size(Noise) do
4: NV = rand(Noise) ▷ Step 2)
5: Xi = X(i) + X(i)×NV

100 ▷ Step 3)
6: Xn = normalize(Xi, µ, ς) ▷ Step 4)
7: OH = Layer1(xn, w1) ▷ Step 5)
8: OCn = Layer2(OH, w1)
9: if ! (G X (OCn = L(x(i)) | e)) then

10: NC = ⊤ ▷ Step 6)
11: else
12: e = NV | e
13: end if
14: count = count + 1
15: end while
16: end for

the DNN model without noise is ensured by comparing the model’s calculated outputs
against, as shown by P1 in Fig. 4.2.

The formal analysis for noise tolerance, as explained in Algorithm 1, then proceeds as
follows:

1. The noise range for the analysis is initialized as a set of integer values. The values
are initially chosen large, but the objective is to eventually reduce it to obtain the
minimum adversarial noise and ultimately estimate DNN’s tolerance.

2. From this specified range, a unique noise vector (NV ) is non-deterministically
selected in each iteration, to be added to the input.

3. The noise is then added to the input as a percentage of the input value, i.e., the
relative noise. As indicated earlier, this is a more practical noise implementation
approach for most DNN-based systems.

4. As a standard procedure in DNN, the input is normalized prior to sending it to the
network layers, using mean µ and standard deviation ς from training dataset:

Xn = Xi − µ

ς
(4.1)

5. The input then transverses through the network layers.
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4. Qualitative Neural Network Analysis

6. The computed network output OCn for is then compared to original output label
L(x) the input while recording the adversarial noise obtained as counterexamples e.
If no counterexample is found, the flag (NC) becomes true. This signifies that
the input is tolerant to the noise. This is represented by P2 in Fig. 4.2.

7. The process is repeated for all available inputs in the dataset, until NC becomes
true for a given noise range.

If OCn ̸= L(x) and the adversarial noise NV is not already contained in e, then the NV
obtained from the generated counterexample is added to e, as shown by P3 in Fig. 4.2
and Line 11 of Algorithm 1. To accelerate the procedure, the adversarial noise from one
input is tested with the remaining inputs in the dataset. Hence, the NV generated from
one input is simultaneously added to e for all the forthcoming inputs. This ensures that
the model checker obtains only the new adversarial noise patterns in each iteration.

4.1.2 Case Study on Leukemia Diagnosis
Experimental Setup

We considered a shallow fully-connected neural network architecture. It is composed of
an input layer, one hidden layer and an output layer, with 6, 20 and 2 nodes respectively.
The activations used in the network are ReLU and maxpool. The network is trained
using MATLAB with a learning rate of 0.5 for the 40 initial epochs, and a learning rate
of 0.2 for the remaining 40 epochs. The training accuracy of the network is 100% and the
testing accuracy is 94.12%. It is used to diagnose the type of leukemia using the standard
leukemia database [GST+99], consisting of 38 training samples and 34 testing samples
containing genetic attributes for Acute Lymphoblast Leukemia (ALL) and Acute Myeloid
Leukemia (AML). In total, each data sample has 7129 of these genetic attributes. From
these, the top five most significant genes are picked as network inputs using the Minimum
Redundancy and Maximum Relevance (mRMR) feature selection method [Kea18].

Varying noise ranges were input to the network, as explained in the previous subsection.
The main goals of the analysis are: (a) to determine noise tolerance for the given network
by gradually reducing the applied noise until no noise pattern that causes the true
label L(x) to change can be found, and (b) to study network properties like robustness
bias and input node sensitivity on the basis of the obtained counterexamples. It must
also be highlighted that the objective of this work is not to exhaustively search for
counterexamples, but rather to explore network properties on the basis of obtained
counterexamples.

Results and Analysis

We initiate the experiment using nuXmv with a large input noise, and gradually reduce
the noise until nuXmv can verify the absence of any counterexamples for the given noise.
The observations and analysis from our experiments (Fig. 4.4), are as follows:
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Figure 4.4: Estimated noise tolerance, impact of noise on inputs closer to classification
boundary, effects of robustness bias on network accuracy, and sensitivity of input node.

For all the correctly classified inputs in the testing dataset, addition of a noise ±11%
or less does not trigger misclassification for the given neural network. Hence, assuming
input noise to be the integer percentage values, the given network has an estimated
noise tolerance of ±11%. A few inputs among the dataset (i.e., inputs closer to the
classification boundary) were observed to be highly susceptible to input noise. On the
other hand, for other inputs, noise even as large as 50% of the input did not trigger
misclassification at the output. This knowledge can be used to estimate the network’s
classification boundary in the input hyperspace.

Inputs with L(x) = Label 0 were observed as more likely to be misclassified than the
inputs with L(x) = Label 1. On a closer inspection of the training dataset, it is observed
that approximately 70% of the data samples belong to the Label 1 output class i.e., the
training is biased towards the Label 1. This is corroborated by our formal analysis, where
the misclassification of inputs with Label 0 are more probable than the misclassification
of inputs with belonging to Label 1. This points to a robustness bias in the trained
network.

No counterexamples were obtained with positive noise at input node i5. Moreover, the
counterexamples suggest more noise patterns with positive noise at input node i2 than
the other way around. The knowledge of the input node sensitivity, in some applications,
could be exploited in the design of variable-precision data acquisition methodologies,
where the resource-greedy measurements could be reserved for obtaining the sensitive
inputs.
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4.1.3 Comparative Analysis of the Computational Overhead for
Testing and Model Checking

Testing is generally considered more user friendly, as compared to model checking.
However, the results for model checking are more rigorous, and hence provide more
reliable behavioural guarantees than testing. We compared the performance of nuXmv-
based model checking with MATLAB (R2019a) based validation testing. For testing,
we define a matrix for all possible noise combinations, for a predefined noise range,
before initializing the test. On the other hand, the model checker searches for noise
combinations, non-deterministically, at run-time. Both experiments are based on the
same network (trained on leukemia dataset) and both run on the same input samples.
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Figure 4.5: A comparison between the (a) Timing and (b) Memory overhead, of MATLAB
and nuXmv experiments.

Considering the time taken until the termination of both experiments, the average
timing requirement of the nuXmv, although significantly higher than MATLAB for our
experiment, increases at a slower rate than that for MATLAB. This trend is illustrated in
Fig. 4.5(a). On the other hand, the increase in average memory requirements of nuXmv
increases at a significantly slower rate than MATLAB, as shown in Fig. 4.5(b).

The trends for the average time and memory requirements of both experiments indicate
that the strength of model checking is more prominent for larger networks. As the size of
the network grows, the state-space for model checking grows, resulting in the increased
latency and high utilized memory resources. On the other hand, the computational
requirements for (exhaustive) testing also increase with the increase in input noise range,
often at a higher rate than that for model checking.
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4.2 Scaling Model Checking
FANNet was an initial model checking-based framework, relying on explicit state model
checking for the analysis of DNN properties. Given the efficient performance of explicit
state model checking for software verification problems in literature [EP02, CKS05,
BPV17], and the independence of our DNN models on any particular hardware tech-
nology/components, the choice of the model checking approach used in FANNet was
a logical first-step in the domain of model checking-based DNN analysis. However, as
evident from the Kripke structure in Fig. 4.3, even a binary classifier will generate a
formal model with 1 + 2|η| states, where |η| depends on the size and precision of the
noise bounds used.

This section elaborates on our proposed optimizations for reducing the size of the Kripke
structure leveraged by our enhanced framework, FANNet+. Moreover, two input splitting
approaches are also proposed, which reduce the size of the input domain and hence
improve the scalability and timing-efficiency of DNN model. Hence, in addition to the
multiple DNN properties analyzed using FANNet, the proposed framework also allows
the analysis of DNN safety properties dealing with a large input domain, which was not
viable earlier.

4.2.1 State-Space Reduction
As observed in the Kripke structure in Fig. 4.3, the state-space for the DNN model
contains multiple states leading to the same output class. This is because of the
enumeration of the different noise combinations from the available noise bounds defining
the formal model, leading to identical output states.

In contrast, FANNet+ proposes the use of Symbolic Model Checking (SMC) to reduce
the identical output classes. The noise is added to the inputs symbolically, hence reducing
the number of states in the model by a factor of approximately n. In terms of Kripke
structure, the use of SMC to present noise symbolically is equivalent to merging of the
states with the identical valid AP in the DNN model. In other words, if the transition
relations δ(Sa, Sb) and δ(Sa, Sc) hold, and the labelling function defines identical AP for
the states Sb and Sc, i.e., L(Sb) = L(Sc), then the states Sb and Sc can be merged.

Conjecture 1. Given a model M with S = [Sa, Sb, Sc] and δ = [(Sa, Sb), (Sb, Sb), (Sa, Sc),
(Sc, Sc)] to be the set of all states and transition relations in the model, respectively, the
states Sb and Sc can be merged iff L(Sb) = L(Sc) holds.

To understand the above state-space reduction, consider again the network given in Fig.
4.3. As shown in Fig. 4.6, the noise is added to the inputs symbolically, i.e., (x0 + Δx)

©2023 IEEE. Parts reproduced, with permission, from M. Naseer, O. Hasan, M. Shafique: Scaling
Model Checking for Neural Network Analysis via State-Space Reduction and Input Segmentation, Formal
Methods for ML-Enabled Autonomous Systems (FoMLAS 2023), Paris, France, 17-18 July, 2023, pp.
xxx-xxx. [DOI:doi.org/xxx].
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and (x1 +Δx). Hence, all the states with the same AP (shown in Fig. 4.6) can be merged.
The resulting model is considerably smaller, containing only 1 + C states and C(C + 1)
transitions, where C is the number of output classes.

Kripke Structure
L(0)

L(1)
{L(0)}

initial

{L(1)}

§ Number of States: 3
§ Number of Transistions: 6

noise

noise

Temporal Formulas:

G Φ1 \/ F ¬Φ2x0

x1

§ Bounded Noise F ¬Φ2 := F ¬(|𝑛𝑜𝑖𝑠𝑒| ≤ ∆𝑥)§ Robustness G Φ1≔G(out==L(0))
Figure 4.6: The formal model for a small fully-connected network (shown on left), as
generated by FANNet+, with noise added symbolically to the inputs.

It must be noted that by using SMC to reduce the state-space of the model, the noise
bounds are instead added to the existing formal specifications of the DNN model. This is
evident in the example given in Fig. 4.6, where the bounds to the noise are incorporated
using F¬Φ2. This is added to the existing property GΦ1. Together, the temporal property
states that either the output is globally correct or the noise eventually exceeds the noise
bounds. Naturally, this incurs additional complexity for checking the specification (i.e.,
the stated robustness property), but for a considerably less number of states in the model.
Overall, this has a positive impact on both the scalability and the timing efficiency of
the approach.
Again from the Kripke structure in Fig. 4.3, it can be observed that the number of states
with distinct valid AP depends on the number of output classes of the DNN. However,
model checking provides binary answers while checking the specifications, i.e., either the
specification holds (UNSAT) or it is violated (SAT). This allows the number of states to
be reduced even further by considering the output of the DNN to be either “correctly
classified” or “misclassified” instead being one of the C-output classes of the network.
The same reduction is also applicable while checking other DNN properties, like safety.
Consider a small binary classifier (network details not essential to the comparison). The
classifier is analyzed using FANNet and FANNet+ (i.e., after leveraging the state-space
reduction proposed in the section). Fig. 4.7 shows the average verification time taken for
varying input noise. As the noise bounds/range increase, the size of the resulting Kripke
structure also increases. This accounts for the large timing overhead for the verification.
Moreover, for the precise analysis of DNN’s robustness bias and input node sensitivity,
a large number of counterexamples is required. This means, the model checking needs
to be repeated multiple times, while iteratively updating the specification of this large
formal model. Again, it can be observed from the case study in Fig. 4.7 that running
FANNet for a small time duration like 5 minutes does not provide a large database of
counterexamples for precise robustness bias and input node sensitivity analysis. These
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factors limit the scalability while increasing the timing overhead of FANNet.
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Figure 4.7: Formal analysis of a binary classifier trained on heart disease dataset using
FANNet. The framework delineates limited scalability due to: (a) large size of the
network’s Kripke structure, (b) large verification time, and (c) small number of counterex-
amples collected within 5 minutes timeout. The proposed optimizations for FANNet+
improve scalability of DNN analysis by addressing all the aforementioned limitations.

Completeness – The above state-space reduction is enabled by the use SMC, i.e., via
a use of symbolic representation of model states with constraints on the (noise) symbols.
This preserves the completeness of verification since the formal model implicitly contains
the exact details of the actual network. Note that, unlike the state merging resulting from
the abstraction or overapproximation of the input domain, the state merging resulting
from SMC do not lead to false positives [KKBC12].

The Kripke structure has a completeness threshold[BCC+09] of 2, i.e., absence of coun-
terexample on a path of up to 2 states proves that the specification holds for the network
model. This is because we restrict our research to formal models for feedforward neural
networks, for which all possible output states are reachable with a path of length 2.
Hence, the uses of bounded model checking with bound 2 ensures completeness of the
model checking for the above network model.

4.2.2 Input Domain Segmentation

The analysis focused on using FANNet made use of seed inputs. Hence, model checker
only verifies specification for one element of the input domain at a time. However, for
DNN properties like safety, the verification often needs to be performed for the entire or
subset of the input domain. This again requires a large Kripke structure, likely leading
to state-space explosion. This paper proposes two approaches to resolve this problem:
coarse-grain verification and random input segmentation.
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Coarse-grain Verification

A rather straight-forward approach to verify a formal model with a large input domain
is via sampling the input domain into discrete samples with regular intervals, i.e., with
a constant sampling rate/step size. Depending on the size of the original DNN, input
domain and the available computational resources available to the model checker, the size
of the input intervals can be fine-tuned. For DNN specifications, for which the subset of
input domain violating the specifications is large, the coarse-grain verification provides
an efficient means to reduce the size of Kripke structure, while successfully finding
any violations to the DNN specifications. However, for input domains where property
violation is a rare occurrence, the approach may overlook the property violations.

It must be noted that the use of SMC does not aid in the verification of systems with
a large input domain, for highly non-linear systems like DNNs. This is because, even
though symbolic representation of input domain reduces the size of the generated Kripke
structure, the addition of input bounds to the existing formal specification may make
the specification too large to be verified by the model checker.
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Figure 4.8: Overview of Random Input Segmentation: the input nodes are split into
variable and fixed sets, which are then fed to the formal DNN model.

To address the challenge of dealing with a large input domain, we propose Random Input
Segmentation (RIS), as shown in Fig. 4.8. The overall idea here is to divide the input
nodes into two mutually exclusive sets: the variable and the fixed input node sets. The
model checking is then carried out using the inputs from the variable set represented
symbolically while the discrete samples from the fix set represented as constants in the
model. The details for the approach, also highlighted in Algorithm 2, are as follows:

1. Initially, for each input node, the upper and lower bounds of the (equally-spaced)
input segments are calculated, as shown in Lines 3 − 4 of Algorithm 2. The number
of input segments for each node (i.e., the bins per input node (X)) is pre-defined.

2. The input nodes for the variable set are then picked, while the remaining nodes form
the fixed set. Line 9 of Algorithm 2 illustrates the selection of a single input node
i for the variable set, while remaining nodes Btemp form the fixed set. However,
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Algorithm 2 Random Input Segmentation
Input: Input Domain Bounds (I), Network Parameters (w, b, L, N),

Normalization Parameters (µ, ς), Bins per Input Node (X), Specification (Φ)
Output: Counterexample (CE)
Initialize: CE ← [ ]

//Creating bins to split ranges of each input node
1: for i = 1:Size(I, 2) do ▷ For each input node
2: for j = 1:X(i) do ▷ For each input segment
3: B[1][j][i] ← ( I(2,i)−I(1,i)

X(i) × (j − 1)) + I(1, i) ▷ Step 1)
4: B[2][j][i] ← ( I(2,i)−I(1,i)

X(i) × j) + I(1, i) ▷ Step 1)
5: end for
6: end for

//Segmentation
7: for i = 1:Size(I, 2) do
8: I ′ ← I
9: Btemp ← B \ B{:, :, i} ▷ Step 2)

10: k ←Size(I, 2) − 1
11: for j1 = 1:Size(Btemp{:, :, 1}, 2) do ▷ Step 3)
12: ...
13: for jk = 1:Size(Btemp{:, :, k}, 2) do
14: temp[1] ← rand(Btemp[1, j1, 1], Btemp[2, j1, 1])
15: ...
16: temp[k] ← rand(Btemp[1, jk, k], Btemp[2, jk, k])
17: for m = 1 : k do ▷ Step 4)
18: if i ≤ m then
19: I ′[m + 1] ← temp[m]
20: else
21: I ′[m] ← temp[m]
22: end if
23: end for
24: temp ← [ ]
25: CE ← FANNET+(I ′, w, b, L, N, µ, ς, Φ) ▷ Step 5)
26: if CE ̸= [ ] then return 1 ▷ Step 6)
27: end if
28: end for
29: ...
30: end for
31: end for

the algorithm can be modified to work for any number of nodes being assigned to
either of the sets.

3. Nested loops are used to pick the combination of segments for each input node
in fixed set. For each combination of segments, a random discrete input value is
picked for each input node, as shown in Lines 11 − 16 of Algorithm 2.

4. The input domain is then updated with constant random values for input nodes in
the fixed set, as shown in Lines 17 − 23 of Algorithm 2.
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5. The model checking is then performed with this updated input domain, shown by
Line 25 of Algorithm 2.

6. If a counterexample corresponding to a property violation is obtained (as shown in
Line 26 of Algorithm 2), i.e., the property is found to be SAT, model checking can
be terminated. However, if no counterexample is found, the algorithm proceeds
with the next discrete sample from the combination of segments of input nodes
from the fixed set.

7. In turn, the process is repeated with a new splitting of input nodes into variable
and fixed sets, as depicted in Lines 7 − 9 of Algorithm 2. (Back to step 2)

As the number of input nodes fed to the DNN increase, the computation requirements
(and subsequently the timing overhead) also increase. This “curse of dimensionality” is a
known challenge with DNN analysis in the literature [WOZ+20]. However, by using RIS,
each splitting of the input nodes into the two sets and the following model checking are
completely independent. This provides an opportunity for high degree of parallelism to
the approach by dealing with different combination of nodes from fixed and variable sets
using a different computation core. This, in turn, reduces the timing-overhead of the
analysis.

Soundness – As shown in Fig. 4.8 and Lines 17 − 23 of the Algorithm 2, the input
domain contributing to the formal model analyzed by the model checker is the combination
of the entire bounds of the input nodes from the variable set and random inputs from the
selected segments of input nodes from the fixed set. Hence, this updated input domain
X ′ is the proper subset of the original valid input domain X of the DNN, i.e., X ′ ⊂ X .
This preserves soundness of the framework.

Completeness – Since the updated input domain X ′ is the proper subset of domain X ,
the model checking using the domain entails incompleteness. This means, in case the
specifications hold (UNSAT result returned by the model checker) for the input domain
X ′, there remains the possibility of the specification being violated for the input domain
X \ X ′. This is the direct result of the Lines 14 − 16 of Algorithm 2, which bypass the
exhaustive coverage of the segments of the input nodes from the fixed set. However, it
must be noted that such incompleteness is essentially different from the incompleteness
often observed in DNN analysis literature [SGM+18, SGPV19, TPL+21] arising from
overapproximation of the input domain and/or activation functions, and hence leading
to false positives in the analysis. The analysis based on our algorithm, in contrast, does
not lead to any false positives.

4.2.3 FANNet+: An Integrated and Optimized Framework for Formal
DNN Analysis

The proposed optimizations reduce the size of network’s Kripke structure as well as split
the input domain into more manageable sub-domains. This improves the scalability
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and timing-efficiency of the framework, also allowing the analysis of DNN properties
beyond those addressed in FANNet. Fig. 4.9 summarizes our overall proposed framework
FANNet+ for formal DNN analysis.

Algorithm 3 Network Formalization and Property Checking
Input: Input (I), Network Parameters (w, b, L, N),

Normalization Parameters (µ, ς), Specification (Φ)
Output: Counterexample (CE)
Initialize: CE ← [ ]

1: function FANNet+(I, w, b, L, N, µ, ς, Φ)
2: Inorm ← I−µ

ς
▷ Input normalization

3: temp_I ← Inorm

4: for i = 1 : L do
5: for j = 1 : N(i) do
6: temp_O[j] ← �

(w[j][:][i]) × temp_I[j]) + b[j][i]) ▷ Fully-connected layer
7: if temp_O[j] < 0 then
8: temp_O[j] ← 0 ▷ ReLU activation
9: end if

10: end for
11: temp_I ← temp_O ▷ Input propagation to next DNN layer
12: end for
13: Outnorm ← temp_O
14: Out ← (Outnorm × ς) + µ ▷ Output inverse-normalization
15: CE ← Property(Φ, I, Out) ▷ Checking DNN specification
16: return CE
17: end function

Trained DNN
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Figure 4.9: FANNet+: scalable SMT-based bounded model checking framework for
complete and incomplete DNN analysis.

Initially, the formal model of the DNN is defined in the appropriate syntax of the model
checker, as indicated by the yellow box in Fig. 4.9 and Algorithm 3. This requires the

43



4. Qualitative Neural Network Analysis

use of trained DNN parameters and architectural details of the network. Input is often
normalized prior to being sent to the DNN (as shown in Line 2 of Algorithm 3). Some
DNNs may in turn also use inverse-normalization for the DNN output (as shown in Line
14 of Algorithm 3). To validate the functional correctness of the model, the output of
the model is checked for the known (testing) inputs (P1 in Fig. 4.9).

The behavioral verification of the validated formal model is carried out using seed inputs
from the testing dataset and noise bounds, as explained in Section 4.2.1. This is expressed
in the blue box in Fig. 4.9. Given the noise bounds Δx, the noise applied to seed inputs
η is taken to be a percentage of original input node values, i.e., x ∗ (η/100) (i.e., relative
noise). The DNN specification is updated iteratively with the obtained counterexamples
(see P2 in Fig. 4.9) until a pre-defined timeout is reached. This allows the generation of
a large counterexample database. In case the property holds before reaching the timeout,
the model checking is immediately terminated. The noise bounds are iteratively reduced
until the noise tolerance Δxmax of the given network is obtained.

The counterexample database is then used in an empirical counterexample analysis to
check the sensitivity of individual input nodes and detect any underlying robustness bias.
The is shown by the green box in Fig. 4.9. The process is similar to the one used in
FANNet. However, the improved timing-efficiency of our current framework allows model
checking a large number of times within the pre-defined timeout. This provides a much
larger counterexample database than was possible with FANNet, which in turn allows
better analysis of the DNN properties in question.

DNN safety properties involve checking the DNN model with a large input domain. The
optimizations proposed in Section 4.2.2 allow safety verification of the validated formal
model, as shown in the orange box in Fig. 4.9. Here, either coarse-grain verification
or verification with RIS can be opted. As mentioned earlier, the sampling rate (in
coarse-grain verification) and the size of input segments (in RIS) is chosen on the basis
of the size of original DNN, input domain and the computational resources available to
the model checker. The larger the network, input domain or computation requirements,
the higher the sampling rate (or smaller the input segment) needs to be.

4.3 Qualitative DNN Analysis: The Experiments
In addition to leukemia diagnosis case study described earlier in Section 4.1.2, we use
two additional datasets (and networks) for the qualitative DNN analysis using FANNet+,
i.e., heart disease diagnosis and aircraft collision avoidance.

4.3.1 Heart Disease Prognosis
The heart disease dataset [DG17a] provides the records for 13 attributes of the patients:
among these, 4 attributes are represented by continuous values while remaining represent
discrete attributes. The outputs indicate if the patients’ blood vessels are narrowing,
hinting to a heart disease. The dataset is split into training and testing datasets with
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261 and 42 inputs, respectively. Approximately 55% of the samples from training dataset
correspond to the case with narrowing blood vessels, while the remaining represent the
samples with no significant narrowing of the blood vessels.

A feed-forward fully-connected network with 3 hidden layers, and a total of 622 network
parameters was trained for this dataset. Adaptive learning rate (Adam optimizer [KB15])
was used for 1500 epochs of training, to achieve the training and testing accuracies of
the networks were 90% and 86%, respectively.

To imitate real-world case scenarios, where the noise is much more likely to affect
continuous variables as compared to discrete ones, noise was applied to the input nodes
with continuous variables. This was in turn used for the analysis of robustness (under
constrained noise), noise tolerance, input node sensitivity, and robustness bias.

4.3.2 Airborne Collision Avoidance System (ACAS Xu)
Airborne Collision Avoidance System (ACAS Xu) DNNs belongs to the family of ACAS
X systems that make use of the trajectories of ownship and intruder to ensure safety
while maneuvering the ownship. The system consists of 45 DNNs, which correspond
to approximately different parts of the input domain. Each DNN is feed-forward and
fully-connected, with ReLU activation function, 6 hidden layers and 13, 305 parameters.

Let i1–i5 be the DNN inputs corresponding distance between ownship and intruder, and
their heading angles and speeds, while o1–o5 be the ownship’s maneuvering decisions
namely clear-of-conflict, weak left/right and strong left/right. The DNN’s output decision
corresponds to the output class with minimal value. Then the safety properties relevant
to the DNNs, which are also well-studied in the literature, include:

1. Given a large distance between ownship and intruder, with the intruder travelling
at much slower speed than ownship, the clear-of-conflict remains below a certain
threshold.

(i1 ≥ 55947.691) ∧ (i4 ≥ 1145) ∧ (i5 ≤ 60) =⇒ (o1 ≤ 1500)

2. Given a large distance between ownship and intruder, with the intruder travelling
at much slower speed than ownship, the clear-of-conflict advisory does not have
the highest value.

(i1 ≥ 55947.691) ∧ (i4 ≥ 1145) ∧ (i5 ≤ 60)
=⇒ (o2 > o1) ∨ (o3 > o1) ∨ (o4 > o1) ∨ (o5 > o1)

3. Given a constrained distance between ownship and intruder, with the intruder in
line of ownship’s translation and moving towards it, the DNN’s clear-of-conflict
advisory is not minimal.

(1500 ≤ i1 ≤ 1800) ∧ (−0.06 ≤ i2 ≤ 0.06) ∧ (i3 ≥ 3.10) ∧ i4 ≥ 980)
∧(i5 ≥ 960) =⇒ (o2 < o1) ∨ (o3 < o1) ∨ (o4 < o1) ∨ (o5 < o1)
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4. Given a constrained distance between ownship and intruder, with the intruder in
line of ownship’s translation and moving away from it, but with a speed slower
than that of the ownship, the DNN’s clear-of-conflict advisory is not minimal.

(1500 ≤ i1 ≤ 1800)∧(−0.06 ≤ i2 ≤ 0.06) ∧ (i3 = 0) ∧ (i4 ≥ 1000)
∧(700 ≤ i5 ≤ 800) =⇒ (o2 < o1) ∨ (o3 < o1) ∨ (o4 < o1) ∨ (o5 < o1)

As indicated in Section 4.2.2, the analysis of safety properties involves a formal model with
large input domains. Hence, coarse-grain verification and random input segmentation
are used for the analysis of ACAS Xu DNNs.

4.3.3 Results and Analysis
We use the newtorks highlighted in the previous subsections to perform formal DNN
analysis on CentOS-7 systems running on Intel Core i9 − 9900X processors at 3.50GHz.
The proposed framework FANNet+ is implemented in Python, C++ and MATLAB, and
uses nuXmv model checker [Bea16] back end. The tools Reluplex [KBD+17] and Marabou
[KHI+19] are implemented on virtualbox running Ubuntu 18.04, for comparison. The
timeout used for networks trained on leukemia and heart disease datasets is 5 minutes,
while a timeout of 2 hours is used for ACAS Xu DNNs.

In addition to the formal behavioral analysis using FANNet+, the timing performance of
FANNet and FANNet+ are also compared to indicate the performance improvements. The
safety verification results for ACAS Xu DNNs are then presented, while comparing these
results to those obtained from popular DNN verification tools Reluplex and Marabou.

Behavioral (Robustness) Verification and Noise Tolerance Determination

As explained in Section 4.1, the Kripke structure model for networks generated by
FANNet is quite large, owing to the enumeration of noise applied to seed inputs. In
contrast, the formal model generated by the FANNet+ is considerably smaller due to the
optimizations for stat-space reduction used. Hence, the framework provides same results
(i.e., SAT or UNSAT) for both robustness verification and noise tolerance determination.
However, the execution times of the frameworks are significantly different. Tables 4.1
and 4.2 summarise the the robustness of the seed inputs from the leukemia and heart
disease datasets, respectively, under the incidence of increasing noise bounds.

FANNet versus FANNet+. We run both frameworks for the networks trained on
the leukemia and the heart disease datasets. Figs. 4.10 shows the average execution
time for verifying networks for both datasets, for seed inputs robust to the applied noise.
Identical noise bounds for seed inputs were used for both frameworks. Both frameworks
use iterative noise reduction, leading to noise tolerance for the networks.

As observed in Fig. 4.11(a) and Fig.4.13 for network trained on leukemia dataset, both
frameworks lead to the same noise tolerance i.e., 11% (also observe Table 4.1). The same
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Table 4.1: Robustness of network, with seed inputs from leukemia dataset under varying
noise bounds: UNSAT (✓), SAT(✗). The noise tolerance of the network is 11%.

In- Result with Noise: In- Result with Noise:
put ≤ 11% 20% 30% 40% put ≤ 11% 20% 30% 40%
1 ✓ ✓ ✓ ✓ 17 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ 18 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ 19 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓ 20 ✓ ✗ ✗ ✗

5 ✓ ✓ ✓ ✓ 21 ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ 22 ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ 23 ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ 24 ✓ ✓ ✓ ✗

9 ✓ ✓ ✓ ✓ 25 ✓ ✓ ✗ ✗

10 ✓ ✓ ✓ ✓ 26 ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ 27 ✓ ✗ ✗ ✗

12 ✓ ✓ ✓ ✓ 28 ✓ ✓ ✓ ✓

13 ✓ ✓ ✓ ✓ 29 ✓ ✓ ✗ ✗

14 ✓ ✓ ✓ ✓ 30 ✓ ✗ ✗ ✗

15 ✓ ✓ ✓ ✗ 31 ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ 32 ✓ ✓ ✓ ✗
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Figure 4.10: Comparison of Timing Overhead using FANNet and FANNet+: (a) plots
the results obtained from the network trained on the leukemia dataset, while (b) plots
results from the network trained on the heart disease dataset.

is observed with network trained on the heart disease dataset, having a noise tolerance
of < 1%. However, the execution time for property verification is significantly larger for
FANNet, as shown in Fig. 4.10. For the given networks, FANNet+ provides a significant
improvement over FANNet in terms of timing-cost, by reducing the timing overheard by
a factor of up to 8000 times. This makes FANNet+ suitable for the analysis of relatively
larger DNNs.
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Table 4.2: Robustness of network, with seed inputs from heart disease dataset under
varying noise bounds: UNSAT (✓), SAT(✗).

Input Result with Noise: Input Result with Noise:
2% 5% 8% 10% 2% 5% 8% 10%

1 ✓ ✓ ✓ ✓ 19 ✓ ✗ ✗ ✗

2 ✓ ✓ ✓ ✓ 20 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ 21 ✓ ✓ ✓ ✓

4 ✓ ✓ ✗ ✗ 22 ✗ ✗ ✗ ✗

5 ✓ ✓ ✓ ✓ 23 ✗ ✗ ✗ ✗

6 ✓ ✓ ✓ ✓ 24 ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ 25 ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ 26 ✓ ✓ ✓ ✓

9 ✓ ✗ ✗ ✗ 27 ✗ ✗ ✗ ✗

10 ✓ ✗ ✗ ✗ 28 ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ 29 ✓ ✓ ✓ ✗

12 ✓ ✓ ✓ ✓ 30 ✓ ✓ ✓ ✓

13 ✓ ✓ ✓ ✗ 31 ✓ ✓ ✓ ✓

14 ✓ ✓ ✓ ✓ 32 ✓ ✓ ✓ ✓

15 ✗ ✗ ✗ ✗ 33 ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ 34 ✓ ✓ ✓ ✓

17 ✓ ✓ ✗ ✗ 35 ✗ ✗ ✗ ✗

18 ✓ ✓ ✓ ✗ 36 ✓ ✓ ✓ ✓

Counterexample Analysis for detecting Network’s Robustness Bias and Input
Node Sensitivity

With the reduction in timing overhead, it is possible to run the framework for small
timeout, and yet be able to collect a large database of misclassifying noise vectors, i.e.,
counterexamples. Analyzing the network outputs for these counterexamples provide
insights regarding robustness bias and input node sensitivity, as shown in Figs. 4.11 and
4.12.

In Fig. 4.11(a), Label 1 corresponds to ALL leukemia while Label 0 corresponds to AML
leukemia. On the other hand, Label 1 and 0 correspond to the cases with and without
blood vessels narrowing, respectively, in Fig. 4.11(b). As observed in the figures, for
the network trained on leukemia dataset, even when the large noise is applied to inputs,
ALL inputs are rarely misclassified to AML. As discussed earlier, the leukemia dataset
has long-tail distribution, with approximately 70% inputs belonging to ALL. Hence, the
obtained results indicate a strong bias in the resulting trained network likely due to the
imbalance in dataset.

On the contrary, for the network trained on heart disease dataset, outputs from both
classes are misclassified even though the misclassifications from Label 0 to Label 1 are
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4.3. Qualitative DNN Analysis: The Experiments

more likely. The training dataset for heart disease does not have the same class imbalance
as the leukemia dataset. It contains inputs from the two input classes Labels 1 and 0
with a ratio of 55 : 45. This likely accounts for the relatively moderate bias observed in
the network.

(a) (b)
Rarely any inputs from Label 1 being
misclassfied to Label 0

à Strong bias towards Label 1

Misclassification of Inputs from Label 0 to
Label 1 more likely than vice versa

àModerate bias towards Label 1

Almost no red points

Both blue and
red points exit

Figure 4.11: Output classification of networks trained on (a) Leukemia dataset and
(b) Heart disease dataset, mapped with respect to the noise applied to seed inputs,
using FANNet+. An unequal number of red and blue points indicates a bias in trained
networks.

-60 -40 -20 0 20 40 60

Noise applied to input node (N%)

For Input Node i5 – Leukemia Dataset

-60 -40 -20 0 20 40 60

Noise applied to input node (N%)

For Input Node i8 – Heart Disease Dataset
Analyzing the
noise applied to
individual input
nodes, for each
counterexample
obtained,
provides an
estimate of the
input sensitivity
of the input node.

Node relatively
insensitive to
positive noise

Node sensitive to
both positive and
negative noise

Figure 4.12: Plots of noise applied to individual input nodes (using FANNet+), that lead
to misclassification.

For the misclassifying noise vectors, observing noise applied to the individual input
node provides insights to the sensitivity of the input nodes. For instance, input node i5
from the network trained on the leukemia dataset, shown in Fig. 4.12, was observed to
delineate rarely any misclassifications for the positive values of the applied noise. This
suggests the node to be insensitive to positive noise, for the trained network. However,
this was not the case for any of the input nodes for the network trained on heart disease
dataset. For instance, node i8 in Fig. 4.12 gives an example of a typical input node that
is not sensitive to any specific input noise.
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-60 -38 -15 8 30 53
Noise applied to Input Node (N%)

For Input Node i5 - Leukemia dataset

Robustness Bias evident

Insensitivity
to positive
noise evident

Bias and node
sensitivity results
may be less precise
with fewer
counterexamples

Figure 4.13: Robustness bias and input node sensitivity of the network trained on
leukemia dataset, analyzed using the counterexample database obtained using FANNet.

FANNet versus FANNet+. We performed the same experiment for network trained
on leukemia using FANNet, as shown in Fig. 4.13. As discussed earlier, due to the
large timing overhead of FANNet, the counterexamples obtained compose a smaller
counterexample database. This is evident in the sparse 3D plot in Fig. 4.13. Hence, even
though both FANNet and FANNet+ indicate the network to be biased towards Label
1 and input node i5 to be insensitive to noise, the results obtained by FANNet+ are
more precise. For instance, given the noise bounds of 40%, Fig. 4.13 indicate node i5 to
be completely insensitive to any positive noise. However, FANNet+ (as shown in Fig.
4.12(left)) predicts the node to be relatively insensitive to positive noise, but may still lead
to input misclassification with certain noise patterns. Hence, the larger counterexample
database with FANNet+ is able to provide more precise results for robustness bias and
input node sensitivity, as compared to FANNet.

Table 4.3: Input step sizes used for coarse-grain verification of ACAS Xu safety properties.

Input Step size for sampling input for each safety property
Node P1 P2 P3 P4

i1 10, 000 10, 000 10−9 1000
i2 1 1 10−9 10−1

i3 1 1 10−9 –
i4 500 500 10−9 400
i5 500 500 10−9 400

Safety Verification

For DNN properties, like safety, which involve large input domain, coarse-grain verification
with input step sizes for ACAS Xu DNNs as shown in Table 4.3, is first used. The
verification for each property, for each DNN, takes only a few seconds to complete.
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Table 4.4: Number of segments of input domain corresponding to every input node, for
each property under analysis.

Input Node P1 P2 P3 P4
i1 3 3 2 2
i2 4 4 3 3
i3 4 4 2 1
i4 2 2 4 4
i5 2 2 4 4

As mentioned earlier in Sec. 4.2.2, coarse-grain verification is suitable for DNNs and
properties where large segments of input domain violate the property. This does not hold
true for ACAS Xu DNNs. Hence, no counterexamples to property violation were found.

Next, random input segmentation is deployed for the safety verification of ACAS Xu
properties. The number of segments for each input node for the safety properties is given
in Table 4.4. Based on the chosen variable and fixed sets, and the input segments of the
nodes from fixed set, verification of each DNN is split into multiple smaller verification
sub-problems. As stated earlier, these verification problems are independent and hence,
given sufficient computation resources, they can potentially all be verified in parallel.
If any of these sub-problems return a SAT, the property is said to be violated for the
DNN. Likewise, if any of the sub-problems times out, the entire property is considered to
have timed out, since the model checker is unable to find a result for a sub-section of
the input domain. Otherwise, the verification is deemed to have terminated without a
solution. It must be highlighted here that the framework does not return UNSAT since
the use of fixed set introduces a certain degree of incompleteness, with respect to the
input domain verified for the property. However, this notion of incompleteness is not the
same as the incompleteness of the formal model observed in numerous state of the art
[SGM+18, XTJ18, SGPV19, TPL+21], which may lead to false positive. On the other
hand, FANNet+ does not lead to false positives in the results.

The results of the safety verification are compared to those obtained from Reluplex
and Marabou. For all problems that provide SAT results with Reluplex and Marabou,
FANNet+ is also able to find the property violation unless the verification times out.
These are summarized in Fig. 4.14, where the success of FANNet+ in identifying unsafe
networks is comparable to those of the state of the art. It is interesting to note that
FANNet+ was also able to find a property violation for the network 2_2 with property
P4, although both Reluplex and Marabou return UNSAT for the stated property. We
confirmed the validity of the obtained counterexample using Maraboupy.

FANNet versus FANNet+. As opposed to FANNet+, which leverages coarse-grain
verification and random input segmentation to split input domain prior to verification,
FANNet relies on bounds of entire input domain. Hence, the verification of safety
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Figure 4.14: Safety verification using Reluplex, Marabou and FANNet+: the frameworks
either identify whether the bounded input domain is safe or unsafe for desired network
safety properties, or remain inconclusive. In case of discrepancy in result, FANNet+ is
found to provide correct result as opposed to the the other frameworks.

properties of ACAS Xu DNNs was infeasible with FANNet, even with a timeout of 24
hours.

4.4 Summary of Qualitative DNN Analysis
Formally analyzing DNN is an actively sought research domain. This chapter presented
FANNet and FANNet+, a model checking-based frameworks to verify the robustness of
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trained DNNs under constrained noise, and also analyze DNNs’ noise tolerance, input
node sensitivity, underlying robustness bias, and safety specifications. The aim of this
work was to explore not only novel formal analysis methodologies for trained DNNs but
also challenge the limits of model checking for DNN analysis. The scalability challenge
was tackled via state-space reduction and input segmentation. Additionally, a diverse
range of DNN properties were qualitatively analyzed. However, as indicated in earlier
chapters, qualitative analysis provide only binary results rather than the extent of DNNs
following the desired behavioral properties. The next chapter deals with the challenge of
DNN analysis quantitatively to answer the aforementioned limitation.
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CHAPTER 5
Quantitative Neural Network

Analysis

As mentioned in the previous chapters, the qualitative analysis provides merely a binary
result, i.e., either the specification holds for the formal model or it does not. From an
extensive focus of the existing literature (discussed in Chap. 2) on the identification of
DNN vulnerabilities, it can be observed that the desired specifications rarely hold for
the DNNs. Hence, to address the aforementioned problem, this chapter focuses on the
quantitative analysis of trained DNNs to identify the extent of DNN vulnerability. This
is also summarized in Fig. 5.1. In particular, the novel contributions of this research, in
regards to quantitative analysis, are as follows:

1. Extend the qualitative model checking-based DNN analysis framework (explained
in Chap. 4) to provide quantitative DNN behavioral guarantees.

2. Use realistic and practical noise mode noise model, i.e., the relative noise model
(described in Sec. 3.3.2) for DNN analysis.

3. Provide concrete evidence of the limitations of the popular Lp norm-based noise
models for DNN analysis.

4. Focus on a diverse range of properties namely, input node sensitivity, noise tolerance,
reachability, robustness, robustness bias and safety.

5. Develop a statistical framework, QuanDA, to provide quantitative DNN analysis
along with a confidence interval of the estimated results.

6. Propose an intricate sampling-based approach to improve scalability and ensure
good coverage of the analysis.
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7. Propagate realistic probability estimates through DNN layers, while avoiding any
unrealistic assumptions on the node probability distributions.

8. Introduce GPU implementation of the framework to reduce timing overhead for
DNN quantitative analysis.

PROBABILISTIC VERIFICATION

Bound Computation

Validated Formal Model

Functional Validation
Functional

Guarantees

Behavioral
Guarantees

Trained
DNN

IMPLEMENTATION

Formal
Model

Behavioral Verification

Noise NodeClass

Behavioral Verification

Reachability SafetySampling

Bound/Property Propagation

SPECIFICATION
Input

Uncertainity
Input

Constraints
Input

Seeds

Formal Model

Formal Property

Normali-
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Segment-
ation

Confidence
Interval

STATISTICAL ANALYSIS

Figure 5.1: The overall quantitative analysis methodology presented in this chapter.

5.1 Probabilistic Analysis
Noise is a ubiquitous component of the physical environment. Whether it be due to
atmospheric conditions like fog and pollution, or perturbation at input sensors during data
acquisition, it is unlikely to have a system deployed in the real-world that is completely
immune to noise [StT+20]. Even though the magnitude of the noise is often considerably
small compared to the magnitude of the input, as shown by the orange and blue bars,
respectively, in Fig. 5.2 for a DNN trained on MNIST dataset, it is capable of making
the DNNs delineate unexpected behavior.

©2022 ACM. Parts reproduced, with permission, from I. T. Bhatti, M. Naseer, M. Shafique, O.
Hasan: A formal approach to identifying the impact of noise on neural networks, Communications of the
ACM (CACM 2022), pp. 70-73. [DOI:doi.org/10.1145/3550492].

©2023 Springer International Publishing. Parts reproduced, with permission, from M. Naseer, I.
T. Bhatti, O. Hasan, M. Shafique: Considering the Impact of Noise on Machine Learning Accuracy,
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing: Hardware Architectures, pp.
xxx-xxx. [DOI:doi.org/xxxx].
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Figure 5.2: The magnitude of noise (shown in orange) is often small in comparison to
the input magnitude (shown in blue). Hence, the resulting change in input is too minute
to be perceptible, while still making the DNN misclassify the (noisy) input.

Given the completeness of the formal methods [HKWW17, tMK+20, WOZ+20], they are
of particular interest to provide reliable guarantees for the behavior of DNNs under such
noisy conditions [SZS+13, MMS+22, WOZ+20]. To achieve this, we already proposed a
qualitative DNN analysis framework, as elaborated in the previous chapter. In this section,
we adapt our qualitative analysis framework for the probabilistic analysis of trained
DNNs. This is achieved by swapping the model checker used backend by the framework
to a probabilistic model checker. Additionally, we provide a detailed comparison of the
analysis using the various noise models provided in Chap. 3.3, establishing the practicality
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and usefulness of the relative noise modeling.

5.1.1 Experimental Setup
To demonstrate the impact of noise on a real-world dataset quantitatively, we trained
a single hidden layer, ReLU-based fully-connected binary classifier on leukemia dataset
[GST+99] to the training and testing accuracy of 100% and 94.12%, respectively. The
Storm model checker [DJKV17] was used backend for the analysis, on AMDRyzen
Threadripper 2990WX processors running Ubuntu 18.04 LTS operating system. For the
experiments using the relative noise model, the precision of noise was chosen to be 1%,
while for the experiments using the Lp norm model, the precision was 0.01.

5.1.2 Results and Analysis
From prior qualitative analysis (Chap. 4), it was observed qualitatively that the increase
in noise reduces the classification accuracy of the DNN, while aggravating the bias. This
is summarized in Fig. 5.3. Note that these results correspond to the use of relative noise
model for analysis. The following provides quantitative results for the network using

Outputs at 40% Noise

Misclassifications

à Noise within the Noise Tolerance has no
impact on Neural Network Accuracy

No Misclassifications

Outputs at 11% Noise

Outputs for Network Trained on Leukemia Dataset

Figure 5.3: Impact of increasing (relative) noise on the output classification of the trained
network, as observed using nuXmv-based FANNet implementation.

relative noise as well as LP norm-based noise models, for individual DNN vulnerabilities.

Robustness and Tolerance. As expected, the probability of correct classification
reduces with the increase in the magnitude of noise, as shown in Fig. 5.4. For all noise
less than the noise tolerance of the network (also shown in Fig. 5.3), the DNN provides
correct output classification with a probability of 1.0, even in the presence of noise in the
input. For the given network, this tolerance is found to be 11% in the case of the relative
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noise. For the network under Lp norm-based noise, the robustness was significantly low,
with the noise tolerance less than the precision of the analysis.
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Figure 5.4: Increasing noise versus the probability of correct output classification: the
decreasing robustness of DNN beyond noise tolerance is observable in the case of the
relative noise model (i.e., the graph on the left).

Nevertheless, the decreasing robustness of trained DNN model under the impact of
increasing noise is evident for all noise models, as shown in Fig. 5.4. Noise tolerance,
which is an essential (constant) attribute of a trained DNN that can aid during system
design by providing an acceptable noise level to ensure the robustness of the DNN, is
also found to be extremely low for the DNNs with LP norm-based models.

Robustness Bias. Robustness bias is a stealthy vulnerability of the DNN, which
may aggravate under noisy input and may lead DNN to provide incorrect response in
real-world applications. As indicated earlier, the DNN is trained on a dataset with a
significantly larger proportion of inputs from patients having ALL (henceforth referred
to as Label 1), as compared to those having AML (henceforth referred to as Label 0).
This is likely to result in a biased DNN, as observed with the relative noise model (Fig.
5.5 - left). For inputs classified correctly in the absence of noise, i.e., inputs having a
correct classification probability of 1.0, the input noise has a more adverse impact on
the inputs belonging to Label 0, as compared to vice versa. Observing the qualitative
analysis from Fig. 5.3 supports the same conclusion. However, the bias is not observable
under Lp norm-based noise model Fig. 5.5 - right), likely due to the low robustness of
the DNN under that model.

We believe that, owing to the larger proportion of inputs from Label 1 in the training
dataset, the decision boundary learned by the DNN better encapsulates the inputs from
Label 1. The inputs from Label 0, on other hand, are presumably closer to the decision
boundary, and hence more likely to be misclassified under the application of noise.

Input Node Sensitivity. As discussed in the previous chapter, different input nodes
of a trained DNN may have a different sensitivity to the applied noise. Again, this impact
of noise is observable only with the relative noise model, for the DNN trained on the
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Figure 5.5: The bias is visible through the analysis under relative noise model, where
probability of correct classification reduces only for single output class. However, the
impact is not observable with Lp norm noise model.

leukemia dataset, as shown in Fig. 5.6. It can also be observed that certain input nodes
may be more sensitive to either positive (for instance, node x3) or negative (for instance,
node x5) noise.

5.1.3 Discussion
As elaborated in Chap. 3.3, unlike the relative noise, the Lp norm noise is added to the
normalized inputs, i.e., the inputs in the range of 0 to 1. For the analyzed network, the
raw, unnormalized input values range on the scale of hundreds to thousands. Assuming
an input node value to be 10, 000, the addition of 0.01 units of noise to the input implies
the addition of a noise of magnitude 100. Such a large noise may or may not be very
realistic for the noise analysis for a DNN to be deployed in a practical setting. This could
be a possible reason for the inadequacy of the aforementioned noise model for analyzing
the impacts of noise beyond robustness, for the given DNN.

At the same time, it is possible to have another node with an input value of 100. Here,
the application of the same noise (i.e., 0.01) implies a change of only a unit difference
in the magnitude of the input node. This is a very likely change in the input of DNN
deployed in real-world. Hence, the noise 0.01 may result in realistic noise for some input
nodes, while unrealistic for others, making the noise model inept for DNNs with inputs
having different input ranges.
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Figure 5.6: The sensitivity of individual input nodes, to positive and negative noise, as
observed under the relative and L∞ norm-based noise models.

5.2 Statistical Analysis

To address the challenge of quantitative DNN analysis, recent works [CFGP20, YLL+21b]
attempt to focus on the estimated probability of properties like the robustness of the
trained network in the presence of small noise around seed inputs. The notion of
probability in these works is considered as the ratio between the volume of reachable
outputs to the volume of the entire valid output domain. However, such a notion of
probability implicitly assumes that all regions of the output domain are equally likely,
i.e., the network nodes entail uniform distribution for their output values. As will be
shown with our detailed analysis and discussion in later subsections, this is a simplistic
notion of probability, which does not hold for practical DNNs.

In contrast, we propose a novel quantitative DNN analysis framework QuanDA, which
does not make any assumptions on the probability distribution of the output at DNN
nodes. However, this is not a straightforward task: even if the probability distribution is
assumed to be uniform at the input nodes, the same (i.e., uniform probability distribution)

©2023 ACM. Parts reproduced, with permission, from M. Naseer, O. Hasan, M. Shafique: QuanDA:
GPU Accelerated Quantitative Deep Neural Network Analysis, Transactions on Design Automation of
Electronic Systems (TODAES 2023), pp. xxx-xxx. [DOI:doi.org/xxxx].
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5. Quantitative Neural Network Analysis

does not hold for the hidden network nodes due to the computations involved in the
DNN. To the best of our knowledge, this is the first work estimating realistic probability
distribution for all DNN nodes, without any a priori assumptions regarding the probability
distribution of the hidden nodes. Apart from the computational challenge of probability
distribution estimation, the propagation of estimated distribution along DNN layers poses
the additional challenge of high timing overhead. This is tackled by QuanDA via group
formation and parallelization leveraging efficient use of both CPU and GPU capabilities.
This ultimately provides the precise probability of correct, safe, or robust DNN outputs
under bounded input and/or noise. In summary, the contributions of this work (also
provided in Fig. 5.7) are as follows:

1. Providing a novel framework, QuanDA, for quantitatively analyzing DNN properties.

2. Computing exact reachability bounds for all DNN nodes, at all network layers,
hence identifying the subset of real domain involved in network computations and
making the DNN analysis tractable.

3. Adapting stratified sampling and weighted sum models to ensure better precision
and coverage of input domain, for realistic probability estimates.

4. Using statistical methods for realistically propagating and estimating output proba-
bilities of node values at each network layer, without using any assumptions about
the probability distributions at the hidden nodes.

5. Leveraging Hoeffding’s inequality to provide the deviation from exact probabilities
and precise confidence level for the probability estimates obtained at each DNN
layer.

6. Utilizing QuanDA to check the reachability property of the nodes in the bench-
mark ACAS Xu networks, and also demonstrating the potential application of the
framework for the analysis of the safety properties of these networks.

7. Demonstrating, using the benchmark networks, that the outputs of hidden nodes in
the DNNs do not follow any univariate probability distribution, including uniform
distribution.

5.2.1 QuanDA: Quantitative Deep Neural Network Analysis
In general, quantitative analysis is a branch of mathematics leveraging statistical methods
to collect, evaluate and analyze numeric data. For DNNs, this could provide insight into
the behavior of trained networks under varying inputs, as well as their precise correctness,
safety and robustness estimates. This section systematically explains our quantitative
DNN analysis framework, QuanDA, also shown in Fig. 5.8. The framework accepts a
trained DNN and input/noise bounds (dictated by the desired network properties under
study) as inputs. These are used for exact bound computations for all DNN nodes across
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Figure 5.7: Overview of QuanDA, along with novel contributions of the work (highlighted
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Figure 5.8: Detailed overview of QuanDA: the probability estimates (namely reachability
and safety estimates) for the trained network are determined quantitatively.

all network layers. The bounds are divided into non-overlapping strata for stratified
sampling. Efficient group formation of nodes, for DNN layers with a large number of
nodes, is also deployed to reduce the timing overhead of the analysis.

This is followed by weighted score computation using Weighted Sum Models (WSMs) for
each DNN node. This aids realistic probability estimation using the framework. The
probability estimates are propagated sequentially over all network layers. The efficient
design of QuanDA enables the parallelization of computations in each layer of the DNN,
further improving the timing efficiency. The current version of the framework focuses on
reachability and safety properties for the trained DNNs.

Moreover, the user-defined confidence interval and the maximum deviation between
exact and estimated probability values provided at the input ensure precise probability
estimates. The final result from the framework is probability estimates for the reachability
property at all network nodes, and the safety properties at the network’s output layer.
These are available to users as .npy files at the output.
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5. Quantitative Neural Network Analysis

The details of the methodology comprising QuanDA is provided as follows.

Bound Computation

The input bounds refer to the extrema of the valid input domain of the given DNN.
Fundamentally, these are dictated either by the span of data available to the DNN at its
input layer or the subset of the input domain of interest for the desired DNN property.
For instance, the valid input bounds for a pixel in a grayscale image is [0, 255] and the
subset of the distance of interest between two aircraft could be [0, 1000]ft. These are used
to compute the output bounds for the layer, which form the input for the subsequent
network layer. Without the determination of precise node bounds at each DNN layer, the
node values could lie anywhere in the real domain, making the DNN analysis intractable.
QuanDA leverages the laws of interval arithmetic [HJVE01] to propagate node bounds,
starting at the input nodes, to obtain the exact bounds of the output for each node of the
trained DNN. This is a useful step in the DNN analysis since it provides the boundaries
within which all node values of interest lie.

Consider DNN nodes x1,x2 such that [x1, x1] = {x1 ∈ R|x1 ≤ x1 ≤ x1} and [x2, x2] =
{x2 ∈ R|x2 ≤ x2 ≤ x2}. The affine transformation (discussed earlier in Eq. 3.1) involves
the multiplication of the node values with scalar (weight w). Depending on whether the
scalar is positive or negative, the bounds of the resulting output [x′

1, x′
1] = w.[x1, x1] can

be obtained as follows:
w.[x1, x1] = (w < 0) =⇒ [w.x1, w.x1])

∧ (w ≥ 0) =⇒ [w.x1, w.x1])
(5.1)

The summation of the bounds of the resulting products involves the addition of individual
lower and upper bounds:

[y1, y1] = [x′
1, x′

1] + [x′
2, x′

2] = [x′
1 + x′

2, x′
1 + x′

2] (5.2)

The addition of bias value (scalar) b then translates the entire bounds by the value b:

[y′
1, y′

1] = [y1, y1] + b = [y1 + b, y1 + b] (5.3)

As stated in Eq. 3.2, the ReLU activation only alters negative input values, while
providing only identity mapping for the positive inputs. Hence, the resulting bounds
after ReLU activation can be calculated as follows:

max(0, [y′
1, y′

1]) = [max(0, y′
1), max(0, y′

1)] (5.4)

The bounds computed above are precise and exact, and correspond to the valid output
domain for each of the network nodes. (Note that this does not hold for non-piecewise
linear activations - the application of linear arithmetic to which would require approx-
imation of the function [SGPV19]. This would lead to imprecise, but not inaccurate
bounds.)

64



5.2. Statistical Analysis

Stratified Sampling

The bounds computed from the previous step are used to form S non-overlapping strata,
to enable sampling. For instance, consider again the neuron x1 with bounds [x1, x1]. The
bounds of the stratum for the node x1 are as follows:

[x1, x1] =
S−1�
i=0

{[
x1 − x1

S i,
x1 − x1

S (i + 1)]} (5.5)

The combination of samples taken from all unique combinations of strata of different
input nodes is, in turn, used to compute the output of the nodes in the following layer.
This approach of selecting random samples from the individual stratum instead of the
entire input nodes’ bounds, known as the stratified sampling, ensures that the response
of output to a wide range of input samples is considered in the analysis. Hence, the
sampling provides a “wider coverage” of input bounds, and in turn, provides “better
precision” in calculated outputs. The result is the joint score of the input-output node
stratum, which will be elaborated further later in the section.

However, to consider the combination of inputs from all strata belonging to all input
nodes entail a time complexity of O(SN ), where S is the number of strata for each of the
N nodes in a DNN layer. Therefore, QuanDA uses an apt group formation to reduce
this timing complexity.

Group Formation. For DNN layers with a large number of nodes (i.e., N ≥ th),
the nodes are distributed into G groups comprising of NG nodes each. Naturally, this
calls for the recomputation of the bounds of output nodes i.e., nodes of the subsequent
layer, with respect to the input nodes in the group (∈ NG). The affine transformation
is hence split into two stages. The first stage involves only the multiplication of nodes
in individual groups to their respective weights (i.e., x′

j∗ = �
k∈NG

wkj .xk). The second
stage adds the output results from all groups together, along with the corresponding bias
value, to obtain the final output for the node (i.e., x′

j = bj + �
G x′

j∗). This reduces the
time complexity of the sampling to O(G.SNG + (NG)G).

The sampling approach described so far entails that samples selected from each stratum
have an equal probability, hence indicating a uniform distribution. To overrule such
an assumption, QuanDA takes inspiration from the WSM, to incorporate the precise
probability of reaching each stratum into the analysis to ensure realistic probability
estimates. In general, WSM [And64] is a statistical approach to determine the likelihood
of individual responses (i.e., outputs) to the various criteria (i.e., input). Each criterion,
in turn, has a certain weight of occurrence associated with it.

In QuanDA, we use inspiration from WSMs to obtain the weighted score WSc for each
stratum of the output node, given the probabilities of strata of the input node. For
instance, let MG

x and MG
τ be the output and input nodes, respectively, for group G of
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the DNN layer. The WSc for the strata s of MG
x , given MG

τ , can then be determined as:

WSc(MG
x,s|MG

τ ) =
S�

i=1
Score(MG

x,s, MG
τ,i).P (MG

τ,i) (5.6)

This is also depicted pictorially, using the WSM matrix, in Fig. 5.9. Each cell of the
WSM matrix gives the score for reaching the specific output stratum given individual
input stratum, i.e., the joint score of input-output node stratum. The probabilities of the
individual input node stratum are used as weights for computing WSc of each stratum
of the output node, as shown in the last column of the WSM matrix (in Fig. 5.9). This
computation of WSc (and the subsequent probability estimation described in the next
subsection) are carried out layer-wise, with probabilities of nodes from each layer used as
weights to compute WSc at the next layer.
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Figure 5.9: (Top): WSM matrix between nodes Mτ and Mx; (Bottom): Computation
of probability estimate, using WSM matrices of all groups in the DNN layer.

Parallelization. It must be noted that sampling and WSc computation for an output
node are independent of similar computations for all other output nodes in the same
network layer. QuanDA leverages this independence in computation by computing results
for all output nodes in a layer in parallel. This parallelism is greatly aided by using the
parallel processing capabilities of the GPU, hence accelerating the DNN analysis.
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Probability Estimation

Depending on whether the nodes in a layer were distributed over G groups or not, each
DNN layer computes one or more WSM matrices for each input-output node pair. The
probability of the strata s of output node Nx can then be estimated (also shown in Fig.
5.9) as:

P (Mx,s|Mτ ) =
�G

i=1 WSc(Mi
x,s|Mi

τ )�S
j=1

�G
i=1 WSc(Mi

x,j |Mi
τ )

P (Mx,s) =
|τ |�
i=1

P (Mx,s|Mi)
(5.7)

where |τ | is the total number of input nodes contributing to the computation of Mx.

Correctness Criteria. The correct computation of the probability estimates, as
described above, entails the probabilities of the strata of each DNN node must sum to 1:

S�
i=1

P (Mx,i) = 1 (5.8)

The current framework focuses on mainly two DNN specifications, i.e., reachability and
safety. Probabilistically, reachability can be expressed as the probability of reaching a
subset (or strata) Ys of output, given the input [x, x] ∈ χ, i.e., P (Ys|[x, x]). Hence, the
probability estimation approach explained earlier provides the probabilistic reachability
estimates without any extra computations. Additionally, the layer-wise computation in
QuanDA allows not only to obtain reachability results at the output layer but also for all
nodes in the hidden layer(s).

For the safety analysis, QuanDA obtains the probability estimate by modifying the WSM
matrices at the DNN’s output layer such that each output node comprises of two strata,
i.e., the one corresponding to the desired (safe) output region and the other corresponding
to the unsafe region. The rest of the probability estimation proceeds similarly to the
previously explained procedure. The final result is the probability estimate P (Ys|[x, x]),
which is the precise estimate for the output to lie in the (safe) desired output region
given the input bounds [x, x].

Bounds on Estimate

Similar to available quantitative analysis frameworks for DNNs [CFGP20, YLL+21b],
QuanDA also provides only an estimate for the actual probability of the properties
holding true for the trained DNNs. However, unlike the prior efforts, QuanDA tries to
ensure that the probability estimates obtained lie within certain pre-defined (acceptable)
bounds. This is to allow more precise and accurate probability estimation. Towards this
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end, QuanDA leverages upon Hoeffding’s inequality1 [Hoe94] to identify the minimum
number of iterations (i.e., n) the probability estimation needs to be repeated to ensure
estimated probabilities have converged towards the exact probabilities. The estimates
from these n iterations are averaged out to obtain the calculated mean Mn, while E(Mn)
represent the (exact) expected mean of the probabilities:

P (|Mn − E(Mn)| ≥ t) ≤ 2e
− 2n2t2�n

i=1(bi−ai)2
< δ (5.9)

Based on the above inequality, the maximum deviation between the estimated and exact
mean of probabilities remains below t. δ represents the significance level, while 1 − δ
is the confidence interval ensuring that the deviation between the exact and estimated
probabilities stays less than t. bi and ai represent the upper and lower bounds of the
estimates, respectively. Since QuanDA deals with the probability estimates, these bounds
can be equated to 1 and 0, respectively, reducing the above inequality to:

P (|Mn − E(Mn)| ≥ t) ≤ 2e−2nt2
< δ (5.10)

As indicated earlier, the parameters t and δ are user-defined, and can be modified to
vary the accuracy and precision of probability estimates.

5.2.2 Experimental Evaluation

We implemented QuanDA on AMD Ryzen Threadripper 2990WX CPUs and NVIDIA
GeForce RTX 2080 Ti GPUs. Each CPU has 32 cores with 64 threads, with the maximum
boost clock rate of 4.2GHz. Each GPU, on the other hand, hosts 4352 CUDA cores at
1635MHz GPU boost clock rate, providing it an overall 14.2TFLOPS. This means, the
GPU is capable of handling 14.2 trillion floating point computations per second. The
GPU hosts 11GB GDDR6 device memory with 616GB/s peak memory bandwidth. The
systems use CUDA 11.6 toolkit and run on Ubuntu 18.04LTS.

The framework is written in Python and uses Numba [LPS15] for CUDA GPU program-
ming support. The current version of QuanDA accepts trained DNNs and input bounds
in .nnet and .npy formats, respectively. The probability estimates at the output
are stored in the .npy format as well. Fig. 5.10 summarizes the various operations
(described in Section 5.2.1) and flow of data throughout QuanDA, distinguishing the
operations carried out by the CPU and the GPU.

1Hoeffding’s inequality applies to independent random variables - this holds reachability probability
estimates of the network nodes feedforward networks since each computation of the probability is
independent of the other probability estimates. Note that the relation between: (1) the deviation t
between exact Mn and estimated E(Mn) of probabilities, (2) confidence interval (1 − δ) of the deviation,
and the number of iterations n required to achieve the confidence interval, established by Hoeffding’s
inequality, is of the accuracy of the individual probability estimates E(Mn).
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Figure 5.10: Overview of the python-based QuanDA toolchain, using trained DNN and
input bounds, to generate the probability estimates for the desired DNN property.

Experimental Setup

We use the aircraft collision avoidance system, ACAS Xu neural networks [KBD+17]
to provide the quantitative analysis using QuanDA. This is a well-known benchmark
opted for both qualitative and quantitative DNN analysis [KHI+19, CFGP20]. The
benchmark comprises of 45 fully-connected feed-forward DNNs, with 6 hidden layers each
consisting of 50 nodes. The networks use ReLU activation for all hidden layers. The
output layers instead use the minpool activation, i.e., the output node with the minimal
value is chosen as the DNNs’ decision. Each network accepts five inputs (i1−5), i.e., the
distance between ownship and intruder, and the directions and speeds of the aircraft.
Likewise, the output layer provides five possible maneuvering decisions (o1−5) by the
networks, i.e., clear-of-conflict (COC), weak left/right and strong left/right.

The inputs are normalized prior to being fed to the DNNs, and inverse normalization is
deployed to the output prior to decision-making. Additionally, we take all input values
to be equally likely. However, as stated earlier, we use no assumption for the probability
distribution of node values in any of the following DNN layers. In all our experiments,
we use 5 strata to distribute the bounds of all DNN nodes. Hence, the analysis of
reachability property (discussed in Section 5.2.1) provides the probability estimates
P (Ys|[x, x]), where s ∈ Z+ : s ≤ 5. Additionally, we use sN samples for the computation
of probability estimates for each node. This is the minimum number of samples required
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5. Quantitative Neural Network Analysis

to ensure the maximum coverage during probability estimation, i.e., a combination of
input samples from all strata of each node are considered during computation.

We also show the potential application of QuanDA to estimate the probability of the
following safety properties:

Property 1 (ϕ1). If the intruder is far away and flying slower than the ownship (i.e.,
i1 ≥ 55947.691 ∧ i4 ≥ 1145 ∧ i5 ≤ 60), the COC output stays within a certain threshold
(i.e., o1 ≤ 1500).

Property 2 (ϕ2). If the intruder is far away and flying slower than the ownship
(i.e., i1 ≥ 55947.691 ∧ i4 ≥ 1145 ∧ i5 ≤ 60), the COC output is not maximal (i.e.,
maxi∈Z+:i≤5(oi) ̸= o1).

Property 3 (ϕ3). If the intruder is directly ahead and flying slower than the ownship
(i.e., 1500 ≤ i1 ≤ 1800 ∧ −0.06 ≤ i2 ≤ 0.06 ∧ i3 = 0 ∧ i4 ≥ 1000 ∧ 700 ≤ i5 ≤ 800), the
COC is not minimal (i.e., mini∈Z+:i≤5(oi) ̸= o1).

We use the maximum deviation between exact and estimated probabilities (t) to be 0.05,
and a confidence interval (1 − δ) of 87% for all our experiments.

5.2.3 Results and Discussion
A single iteration of probability estimate of the safety properties (checked at the output
nodes) takes 4.5min. The reachability probability estimates of the hidden layer nodes
naturally have a smaller timing overhead. Compared to a complete CPU implementation
(i.e., single-threaded execution without using GPU), this amounts to roughly a 3600
times speed up2.

Fig. 5.11 shows the box and whisker plot of the output from randomly selected DNNs
nodes from the first hidden layer of two of the ACAS Xu networks. The output of
the nodes using different properties (and hence, different input bounds) are shown.
The graphs provide the reachability probability estimates P (Ys|[x, x]) for the randomly
selected nodes. The reachability results from the remaining nodes show a similar diversity
of probability estimates over the different node strata.

It is interesting to note that despite all inputs being equally likely (i.e., uniformly
distributed inputs), the DNN transformations of even a single layer lead the nodes
in the hidden layer to lose the uniformity of the input distribution. This invalidates
the uniform distribution assumption used for DNN nodes in the existing literature
[CFGP20, YLL+21b]. In fact, the output nodes do not follow any univariate probability
distribution. This could be partially attributed to the affine transformation, where (scaled)

2It must be noted that the execution time speedup between complete CPU implementation and
CPU-GPU was checked only for the first hidden layer of the DNNs. This is because the timing overhead
of the CPU implementation is too large to be of practical advantage for deep networks.
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Figure 5.11: The probability estimates for 5 randomly selected DNN nodes from the
first hidden layer of different DNNs, using input bounds from different properties: as
expected, the nodes do not follow any univariate probability distribution.

discrete uniform distribution of the multiple input nodes, spanning over varying input
bounds, combine to result in a multivariate distribution. Additionally, the consequent
application of ReLU activation maps all negative results to zero. The effect of this can
be observed clearly for nodes 1, 21 and 41 of the network 5_9 (in the bottom row of
graphs in Fig. 5.11), where the strata containing output zero have probabilities of ∼ 1.0.

Our observations from the reachability hence confirm that even for applications where
the input is uniformly distributed, it is very unlikely for nodes in consequent layers to
follow a uniform distribution. The realistic probability estimation of DNN properties
hence requires careful consideration and propagation of the probability distributions of
the hidden DNN nodes.

We additionally observe the probability estimates for the ACAS Xu safety properties
ϕ1−3 using QuanDA. The probability estimates for the aforementioned properties to
hold for different ACAS Xu networks are indicated in Table 5.1. The additional results
for the convergence of probability estimates with increasing confidence are provided in
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Figure 5.12: Running average of the estimated probability for the ACAS Xu networks,
for ϕ1, indicating probability estimates at different deviation and confidence levels. The
plots for the remaining networks follow a similar pattern.
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Figure 5.13: Running average of the estimated probability for the ACAS Xu networks,
for ϕ2, indicating probability estimates at different deviation and confidence levels. The
plots for the remaining networks follow a similar pattern.

Figs. 5.12-5.14. Even though the bounds on estimates are not available for the final
DNN output (the bounds provided by Hoeffding’s inequality hold for individual layers),
QuanDA still provides quantitative probability estimates. This highlights the potential
of the framework for estimating the probability of a diverse range of DNN properties.
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Figure 5.14: Running average of the estimated probability for the ACAS Xu networks,
for ϕ3, indicating probability estimates at different deviation and confidence levels. The
plots for the remaining networks follow a similar pattern.

5.3 Summary of Quantitative DNN Analysis
The choice of the best-suited noise model, along with a more broad-spectrum noise
analysis are essential tools for ensuring the high accuracy of ML-based systems deploying
DNNs in noisy, real-world environments. While Lp norm-based noise models are often a
popular choice for the DNN robustness analysis, our probabilistic analysis of trained DNN
emphasizes its inadequacy for analyzing impacts of noise beyond robustness. Particularly,
these models are not ideal for DNNs where the different input nodes have different ranges
of values.

This chapter also introduced our novel quantitative neural network analysis framework
QuanDA, which estimates the precise probabilities for the outputs of DNN nodes, without
relying on any assumption on the probability distribution of network nodes. It makes
use of efficient CPU and GPU processing, to compute the probability estimates layer-
wise with user-defined deviation and confidence intervals, and efficiently parallelize the
computations to ensure fast analysis. The framework is used to provide reachability
probability estimates of the nodes in the ACAS Xu networks benchmark. We also show
the potential application of QuanDA for three safety properties of the indicated networks.
Hoeffding’s inequality allows a trade-off between confidence/deviation between exact
and estimated probabilities, and the number of repeated experiments. This could be
leveraged to improve the scalability of the framework under restrictive timing constraints.

Up till now, we established the need for formal DNN analysis, and introduced qualitative
and quantitative analysis frameworks to provide formal behavioral guarantees for these
trained networks. These corresponded to the prime research goals of this research. The
next chapter now explores ways to use the knowledge obtained from the formal DNN
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Table 5.1: Probability estimates for the safety properties ϕ1−3, using deviation t = 0.05
and confidence 1 − δ = 87%.

DNN ϕ1 ϕ2 ϕ3 DNN ϕ1 ϕ2 ϕ3 DNN ϕ1 ϕ2 ϕ3

1_1 0.01 0.63 0.6 2_7 0.01 0.01 0.78 4_4 0.01 0.29 0.76
1_2 0.01 0.62 0.63 2_8 0.01 0.01 0.78 4_5 0.01 0.09 0.76
1_3 0.66 0.92 0.6 2_9 0 0.05 0.78 4_6 0 0 0.99
1_4 0.26 0.66 0.56 3_1 0 0.62 0.4 4_7 0 0 0.78
1_5 0.01 0.6 0.62 3_2 0 0.52 0.56 4_8 0.01 0.01 0.78
1_6 0.01 0.57 0.76 3_3 0.01 0.42 0.52 4_9 0.01 0.01 0.9
1_7 0.01 0.53 0.79 3_4 0.01 0.34 0.65 5_1 0 0.32 0.66
1_8 0.76 0.59 0.94 3_5 0 0 0.93 5_2 0.01 0.38 0.57
1_9 0.24 0.35 0.92 3_6 0.01 0.01 0.77 5_3 0.01 0.17 0.65
2_1 0.01 0.35 0.65 3_7 0.01 0.01 0.77 5_4 0.01 0.38 0.57
2_2 0 0.41 0.57 3_8 0.01 0.01 0.79 5_5 0.01 0.07 0.77
2_3 0.01 0.33 0.62 3_9 0.01 0.01 0.76 5_6 0.01 0.01 0.77
2_4 0.01 0.74 0.66 4_1 0.01 0.32 0.69 5_7 0.01 0.01 0.8
2_5 0.01 0.04 0.77 4_2 0.01 0.26 0.6 5_8 0.01 0.01 0.78
2_6 0.01 0.01 0.78 4_3 0.01 0.32 0.61 5_9 0 0 0.78

analysis to potentially strengthen the behavioral performance of these DNNs.
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CHAPTER 6
Robustifying Neural Networks

An essential aim for providing behavioral guarantees for trained DNNs is to amend the
vulnerabilities of these DNNs to ultimately obtain reliable networks, which in turn could
enable the design of reliable ML-based systems. The existing literature proposes multiple
directions to provide such robustification of trained DNNs, either implicitly or explicitly,
by leveraging the analysis results. For instance, patching has been proposed for DNNs,
which updates the network parameters to provide safer classification boundaries for the
networks [ST19, STT23]. Adding verification objectives (i.e., the specification for desired
DNN behavior) to the training loop has also been explored in an attempt to eliminate
DNN vulnerabilities during the training process itself [APDC19].
On the other end, an adaptation of the overall formal analysis approach to overcome the
challenges of the existing works is also gaining more attention. Notable efforts in this
direction include incremental DNN verification [UBMS23], where instead of verifying
the DNN from scratch after each parameter update, only partial verification is required.
Analysis of relatively newer network architectures, like quantized DNNs and Spiking
Neural Networks (SNNs) are also being explored [HLŽ21, MSB22, BGBM23] due to the
increasing popularity of these architectures. Additionally, the possibility of noise affecting
the network parameters is also considered in recent literature [Mey23] to broaden the
horizon of DNN analysis to include parameter perturbation (instead of simply input
perturbations).
Hence, there appear to be two natural directions to pursue after successful DNN analysis:
(1) adaptation of existing DNN analysis frameworks to possibly discover new DNN
vulnerabilities, and (2) provide methodologies to potentially improve the reliability of
the DNNs. We work in both directions (see chapter summary in Fig. 6.1). In particular
the novel contributions of this research, focused in this chapter, include:

1. The exploration of node level robustness bias, similar to the class level robustness
bias identified in previous chapters.

75



6. Robustifying Neural Networks

Node
Robustness Bias

Unbiased
DNN

Trained DNN

FORMAL
ANALYSIS

ROBUSTIFICATION

FANNet+

Noise/
Uncertainity

Training

Training
Dataset

Testing
Dataset

Robustness
Bias

Noise
Tolerance

UnbiasedNets

Figure 6.1: Summary to DNN analysis and robustification explored in the chapter.

2. Define the notion of the balanced dataset, which is essential to understanding and
addressing the robustness bias.

3. Explore the effectiveness of existing dataset-centric approaches to analyze their
impact on minimizing robustness bias.

4. Introduce a systematic data diversification framework, UnbiasedNets, to provide
balanced datasets and potentially minimize the robustness bias.

The rest of the chapter is organized as follows. Sec. 6.1 details the exploration of node
robustness bias using our established frameworks provided in previous chapters. Sec.
6.2 provides potential direction for the minimization of robustness bias from training
datasets via the development of UnbiasedNets framework. The works are accompanied
by case studies, while Sec. 6.3, finally summarize our robustification efforts.

6.1 Link between bias and node sensitivity
Long-tail distribution is a widely studied challenge in DNN research community, since
it is often associated with a varying classification performance of the network for head
and tail classes [Lea18, Fea22]. The concerns surrounding long-tail distribution are not
ill-founded. Numerous available datasets, in fact, comprise of long-tail distribution. The
MIT-BIH Arrhythmia dataset [Mea01] contains a significant proportion of normal ECG
samples (as opposed to ECG samples indicating arrhythmia). The IMDB-WIKI dataset
[RTVG18] comprises of a significantly larger proportion of Caucasian faces. Wafer map
training dataset [Wea14] comprises of a bigger proportion of fault-free wafers (as opposed
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6.1. Link between bias and node sensitivity

to faulty wafers). Such discrepancy in the number of inputs across different output classes
is not always surprising, since the tail classes often present rare events of the real-world.

It is not also surprising that the DNNs trained on long-tail distribution learn the
patterns in head classes better than those in the tail classes due to the availability
of ample input samples. It has also been observed that such networks also delineate
a robustness bias under the influence of noise, i.e., the network is likely to correctly
classify even noisy inputs from the head class(es), while the robustness of the tail
class(es) against noise is only negligible [tMK+20, NDS+21]. Numerous pre-training,
training, fine-tuning and transfer-learning approaches have been proposed to resolve
this discrepancy and ensure the overall classification performance stays consistent for all
classes [Zea21, Sea21, Wea17, Cea02, Yea19, Lea20].

Orthogonally, the sensitivity of input nodes has also been found to vary [BtSH22].
While this variation comes in handy while determining the relevant input nodes for
the designated task of the trained DNN [ZMC94, CRF+20], it may also pose itself as a
concern for applications where a revelation of the sensitive attributes (nodes) may lead
to a privacy infringement [ZL19, MFVRT20].

However, there is another aspect of concern for DNNs, which is inadvertently linked to
those indicated above - i.e., the (robustness) bias of the individual input nodes - which
remains unrecognized in the existing literature. This section deals with such node bias,
indicating its stealthy existence and the non-triviality of understanding its causes. To
summarize, the novel contributions of this section are as follows:

1. Highlighting the link between robustness bias, node sensitivity, and node bias.

2. Identifying the existence of node bias and empirically analyzing it in a network
trained on a real-world leukemia dataset [GST+99].

3. Discussing the severity of node bias with respect to long-tail distribution of the
training dataset.

4. Elucidating the open challenges pertaining to node bias, in trained DNNs.

6.1.1 Proposed Methodology for the Study of Node Robustness Bias
Fig. 6.2 provides an overview of our proposed analysis framework to study the node
(robustness) bias of the trained networks. The architecture and parameter details of the
trained DNN are initially used to construct the formal model of the network [BtSH22].
The formal model is validated using inputs from the testing dataset (i.e., the correct and

©2023 IEEE. Parts reproduced, with permission, from M. Naseer, M. Shafique: Poster: Link between
Bias, Node Sensitivity and Long-Tail Distribution in trained DNNs, Conference on Software Testing,
Verification and Validation (ICST), Dublin, Ireland, 16-20 April, 2023, pp. 474-477. [DOI:doi.org/10.
1109/ICST57152.2023.00054].
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Figure 6.2: Overview of our proposed framework for node (robustness) bias analysis. The
training dataset could be complete or truncated to obtain a dataset to avoid long-tail
distribution.

model’s computed output classification of the testing inputs are compared for consistency
of results). The sensitivity of the input nodes is then analyzed using a probabilistic model
checker as follows:

P=?[F(N (x) = N (x \ xi, xi + η)) ∧ (η ≤ N)],

where i is the node under sensitivity analysis and F(N (x) = N (x \ xi, xi + η)) indicates
that the network eventually provides correct output classification for input x. This is
repeated iteratively, while gradually increasing the incident noise applied to the testing
inputs. The exact node sensitivity results are then analyzed for individual input nodes to
understand the node (robustness) bias. This is achieved initially using network trained
on the complete dataset1.

As indicated in earlier chapters, the classification performance of the trained network
may vary for networks trained on training datasets with long-tail distribution. Intuitively,
this suggests that a network trained on dataset with an equal number of inputs from
each class might address the discrepancy in classification performance across different
classes [Lea18] and ensure that node (robustness) bias holds for the network. To test the
hypothesis, we truncate the training dataset by deleting inputs from the head class(es),
and repeat the analysis on this new dataset (which no longer has a long-tail distribution).

6.1.2 Case Study

This section provides a case study to highlight the node (robustness) bias in a DNN
trained on real dataset. This is followed by a discussion of the results and analysis.

1This corresponds to our probabilistic analysis setup using FANNet elaborated in Chap. 5.1
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Experimental Setup

We again train single-hidden layer ReLU-based fully-connected neural networks on the
top−5 relevant features of leukemia dataset [Kea18]. The training dataset comprises of
38 inputs, with the head class (i.e., ALL Leukemia) constituting approximately 70% of
the dataset, while the tail class (i.e., AML Leukemia) constitutes the remaining dataset.

The experiments were repeated 10 times, while noting the results for the networks trained
on the complete dataset. Similarly, 10 networks were also trained on a truncated dataset
via deleting randomly selected subset of inputs from the head class, before each training.
This ensures an equal number of inputs from each class. Storm model checker was used for
the quantitative verification of node sensitivity. All experiments were run on AMDRyzen
Threadripper 2990WX processors running Ubuntu 18.04 LTS operating system.

Results and Discussion

As indicated earlier, the training dataset of the leukemia dataset composes a long-tail
distribution. Hence, the networks trained on it delineate robustness bias, with the
increase in incident noise gradually decreasing the probability of correct classification of
AML (tail class), but not for ALL (head class). This is presented by the blue lines in Fig.
6.3. The truncation of ALL inputs from the training dataset, in turn, generates networks
that appear unbiased for at low incident noise (see the orange lines in Fig. 6.3). However,
for large noise, the classification probability of ALL starts to decrease whereas the AML
is correctly classified with a probability of ∼ 1.0. This suggests that log-tail distribution
is only a component of a much more complicated problem, leading to robustness bias.
Hence, while avoiding long-tail distribution addresses robustness bias for smaller noise,
the strategy alone may not be a sufficient bias reduction strategy for inputs exposed to
larger noise.
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Figure 6.3: Network trained on long-tail distribution indicate robustness bias for AML
(i.e., tail class). Truncation of training dataset prior to training shifts the robustness bias
towards ALL instead, but only for large noise.

Similar trends are observed from the results of node sensitivity for negative noise, as
shown in Fig. 6.4. Truncation of training dataset leads to network’s input nodes having
approximately equal classification probability for small noise. However, the probability of
correct classification gradually decreases for ALL at higher noise. It can also be observed
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for the networks trained on the original dataset that the sensitivity of different nodes is
visibly different, as observed by the corresponding gradients of the blue lines for AML.
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truncated datasets.
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Figure 6.5: The node sensitivity against positive noise for ALL and AML leukemia. The
lines present the average probability results while points present result from each (of the
10) experiments. The sensitivity varies for networks trained on complete and truncated
datasets.

The observations for the analysis with positive incident noise provide similar results in
case of ALL (see Fig. 6.5). However, a stark difference can be observed for the sensitivity
results of NODE−5, for AML. Where with negative noise, NODE−5 was observed to
be most sensitive to noise, in case of positive noise, the node is observed to be very
insensitive. This indicates a significant node (robustness) bias for networks trained on
the original dataset. It is also interesting to note that the similar node (robustness) bias
is not observed for the same input node for inputs belonging to ALL leukemia, for DNNs
trained on both the original and truncated datasets.

Such sensitivity of NODE−5 suggests a biased learning of the node for AML. It can also
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be observed through Table 6.1 that NODE−5 has the largest variance among all nodes,
for AML. This could be a possible reason for the strange sensitivity of the node, and the
subsequent node (robustness) bias. However, given a similar condition for NODE−3 for
ALL (i.e., having the largest variance for ALL), a similar discrepancy for node (robustness)
bias, between positive and negative noise, is not observed.

Table 6.1: Variance of input node values in training datasets. The extrema of the
variances, for each class, are underlined.

Training Dataset
ALL Variance (x103) AML Variance (x103)

NODE - 1 114.27 129.72
NODE - 2 81.21 11.71
NODE - 3 5531.62 231.77
NODE - 4 45.24 284.02
NODE - 5 156.40 2271.00

6.2 UnbiasedNets
Typically, DNNs are trained on large datasets, with tens to hundreds of thousands of
input samples, using various supervised training algorithms. Testing accuracy is often
the most commonly (and possibly the only) used metric to analyze the performance of
these DNNs. This spotlights two major limitations: (a) there is a notable reliance on
large, labeled datasets, obtaining which is a significant challenge for the ML community,
especially for new use-cases, and (b) the trained DNN may experience problems like
robustness bias, i.e., the robustness of DNN to noise is not the same across all output
classes, which accentuate in the presence of noisy real-world data. Even when large
datasets are available, they may contain a significantly large number of samples from one
output/decision class, i.e., the long-tail distribution.

Motivating Example

As shown earlier in Fig. 6.3 (for DNNs trained on leukemia dataset), mere truncation
of samples from head class is insufficient to avoid robustness bias in trained network.
This can be further observed in Fig. 6.6. The plot on the left shows the classification
performance of DNN trained on long-tail distribution, under the application of varying
noise. Not surprisingly, the trained DNN is more likely to misclassify inputs from the
tail class. For the repeated experiments, with random deletion of inputs from the head
class (Fig. 6.6 (right)), the robustness bias persists.

©2023 Springer. Parts reproduced, with permission, from M. Naseer, B. S. Prabakaran, O. Hasan,
M. Shafique: UnbiasedNets: a dataset diversification framework for robustness bias alleviation in neural
networks, Machine Learning (2023), pp. 1-28. [DOI:doi.org/10.1007/s10994-023-06314-z].
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Robustness Bias:
Inputs with correct Label 0 are more likely to be identified as inputs
with Label 1, as compared to vice versa

Significantly larger number of blue points
exist as compared to red points

à bias towards Label 1
à even NN trained to high accuracy

would be significantly vulnerable, in
presence of noisy real-world data

[2
4]

Number of blue points
still significantly larger as
compared to red points

Label 1 : Label 0 ≈ 3 : 1 Label 1 : Label 0 ≈ 1 : 1

[2
4]

[2
4]

Figure 6.6: Networks trained on unequal (left) and equal (right) number of inputs from
the classes: Label 0 and Label 1. All networks used the same network architecture
and training hyper-parameters, and all indicate a higher likelihood of Label 0 being
misclassified as compared to Label 1.

It must also be noted that the bias becomes apparent only in the presence of noise, since
the trained DNNs do not indicate misclassifications in the absence of noise. Hence, the
robustness bias in a trained DNN may go undetected before the deployment of the DNN
in a real-world application if testing accuracy is the only analysis the DNN goes through
before deployment in real-world. This gravitates the need to address robustness bias
and calls for the better description and acquisition of balanced datasets that may enable
training unbiased DNNs. However, obtaining such datasets is not a straightforward task.

The existing works dealing with bias alleviation either aim to improve the training
algorithms to ensure unbiased training, or manipulate training data to obtain datasets
that favor minimal DNN bias. The bias alleviation approaches can be broadly classified
into two major categories: (1) unbiased training algorithms (i.e., algorithm-centric (AC)
approaches), and (2) bias reduction via dataset manipulation (i.e., data-centric (DC)
approaches). This is sumarrized in Table 6.2

Algorithm-Centric (AC) Approaches for Bias Alleviation

Training unbiased DNN via AC approaches often involves splitting the network model into
two separate but connected networks [KKK+19, AZN18, NCA+20]. The first network
aims at either identifying key input features or amplifying the bias present in the dataset.
The second network, in turn, uses these features or accentuated bias to unlearn the
bias from the network. Learning features at deeper DNN layers during training for
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6.2. UnbiasedNets

Table 6.2: Comparison of the state-of-the-art bias alleviation approaches with our
proposed UnbiasedNets framework.

Recent Work Small
Dataset

Non-
Visual
Dataset

App-
roach

Dataset
Aug./Del.

Lever-
ages

Δxmax

Xnew

Validation

[AZN18] ✗ ✗ AC N/A ✗ N/A
[GSSH20] ✗ ✗ AC N/A ✗ N/A
[KKK+19] ✗ ✗ AC N/A ✗ N/A
[LV19] ✗ ✗ AC Del. ✗ N/A
[NCA+20] ✗ ✗ AC N/A ✗ N/A
[SWBR20] ✗ ✓ AC N/A ✗ N/A
[SWG20] ✗ ✗ AC N/A ✗ N/A
[ZWY+17] ✗ ✗ AC N/A ✗ N/A
[XLL+21] ✗ ✗ AC N/A ✗ N/A
[BZKK21] ✗ ✗ AC N/A ✗ N/A
[ZWL+19] ✗ ✗ AC+DC Aug. ✗ ✗

[Cea02] ✓ ✓ DC Aug. ✗ ✓

[Hea08] ✓ ✓ DC Aug. ✗ ✓

[LNA17] ✓ ✓ DC Aug./Del. ✗ ✓

[LBSB+20] ✗ ✓ DC Del. N/A N/A
[LLV18] ✗ ✗ DC Del. N/A N/A
UnbiasedNets ✓ ✓ DC Aug.+Del. ✓ ✓

Aug.: Input Augmentation Del.: Input Deletion N/A: technique not applicable for scenario
Δxmax: Noise Tolerance Xnew: Synthetic Data

data augmentation [ZWL+19] has also been shown to aid unbiased training. In addition,
knowledge of known biases in the dataset and a DNN trained using standard cross-entropy
loss has also been leveraged to develop a more robust DNN [SWBR20]. Other AC bias
reduction approaches include the incorporation of additional constraints during training
to guide the DNN in order to avoid learning unwanted correlations in data [ZWY+17].

For biases specific to multi-modal datasets (like colored MNIST [KKK+19], where the
dataset contains two kinds of information: the colors and the numerals), the use of a
training algorithm based on functional entropy is shown to perform better [GSSH20].
A recent work [LV19] also explores inputs in the dataset to identify the weights2 that
the inputs must be encoded with before training, to successfully reduce the bias. The
determination of invariants in inputs has also been proposed [ABGLP19] to enable
unbiased training of a DNN. In addition, recent work [SWG20] also explores algorithms
where instead of training an unbiased network from scratch, a trained DNN and dataset

2Note that the weights for encoding inputs in [LV19] are not same as the parametric weights of DNN
layers.
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(not used during training) are used to fine-tune the network to be devoid of biases specific
to a certain application.

However, as indicated earlier, these works are tailored for minimizing data and repre-
sentation biases, generally for large datasets. The biases are often explored in visual
datasets. In contrast, DNNs deployed in the real-world often also deal with non-visual
inputs, like patient’s medical data, where the existence of a bias (even the data and
representation biases) may not always be easy to detect and hence may go unnoticed.
Hence, bias alleviation poses a challenge in cases where the detection of bias is beyond
visual perception. Moreover, the exploration of robustness bias is a fairly new research
direction, and hence, the success of these AC approaches for minimizing robustness bias
remains largely unexplored.

Data-Centric (DC) Approaches for Bias Alleviation

The orthogonal direction to minimize bias is by manipulating the training dataset via
DC approaches, to potentially eliminate the bias at its core. Among the simplest and
most popular DC bias alleviation approaches are random oversampling (ROS), i.e.,
random replication of inputs from the class with less number of input samples, or random
undersampling (RUS), i.e., random deletion of inputs from the class with a significantly
larger portion of available inputs [Lea18, BL21]. The idea is to obtain a dataset with an
equal number of inputs from each class. However, RUS is known to reduce the number of
input samples available for DNN to learn, while ROS may lead to overfitting the training
data.

The synthetic minority oversampling (SMOTE) [Cea02] and adaptive synthetic sampling
(ADASYN) [Hea08] techniques provide an improvement over ROS by synthesizing new
points in the class with less number of samples using the available inputs as reference for
the synthesis of new input samples [LNA17]. However, the general assumption in these
works is that having an equal number of inputs for each of the classes ensures a balanced
dataset, and in turn ensures an absence of bias [PHJ+19, BL21]. As such, the approaches
deploy data manipulation for the output class with a smaller number of inputs only. As
observed in the motivating example earlier, this assumption provides a limited notion
of balanced datasets. In addition, neither do these works have the means to ensure if
the new inputs generated in fact belong to the minority class (i.e., output class with less
number of inputs), nor the sophistication to analyze the number of inputs required to be
added to the class to alleviate bias.

Other works explore heuristics to identify the inputs that must be removed from the
training dataset [LLV18, LBSB+20] for obtaining an unbiased DNN. However, for most
real-world applications, large labeled datasets may not always be available, except to a
few tech giants. This leaves limited scope for tasks relying on limited dataset for bias
alleviation.

In summary, the DC approaches again focus on alleviating representation and data bias,
i.e., the biases pertaining to faulty data acquisition and lack of data generalizing well to

84



6.2. UnbiasedNets

all output classes. Alleviation of robustness bias remains an unexplored research direction
in the existing works. The notion of a balanced dataset often used in these works is too
naive. For the approaches relying on the deletion of inputs from the training dataset, the
approaches are ideal only for large datasets to ensure sufficient inputs remain for DNN
training. For the augmentation approaches (like ROS, SMOTE and ADASYN), i.e., the
approaches where synthetic inputs are added to the training dataset (henceforth referred
to as data augmentation), the location for the new inputs is chosen to be in the close
proximity around existing “randomly” selected inputs. The new inputs may or may not
be realistic for the real-world input domain. The validation of these generated synthetic
inputs relies solely on them being a part of DNN training, and how well the trained DNN
works with the testing dataset.

However, most of these works [NCA+20, GSSH20, LBSB+20] encounter the following
limitations, making robustness bias alleviation a challenging task:

1. Most works [LV19, LLV18, ZWY+17] focus on either the dataset bias, i.e., the lack
of generalization of the available dataset to real-world data, or representation bias,
i.e., flaws in the dataset acquired during its collection process. However, they rarely
focus on biases like robustness bias, which generally becomes evident only during
DNN deployment, where noisy inputs are common.

2. A limited notion of balanced dataset is often used in literature [LNA17, BL21], i.e.,
a balanced dataset is the one that contains an equal number of inputs from all
output classes. However, as seen from our motivational example, such a dataset
does not necessarily aid in the alleviation of robustness bias.

3. They primarily focus on large datasets [KKK+19, NCA+20, GSSH20, ZWL+19,
LBSB+20], which provide a large pool of training samples to learn the input features
from as well as to handpick a subset of inputs that favor an unbiased DNN. However,
such large datasets may not always be available.

4. Some works focus on adding new input samples to the training dataset or at deeper
network layers [ZWL+19]. However, the heuristics for adding new inputs do not
always favor a balanced dataset.

5. The addition and deletion of input samples [BL21] may also lead to overfitting or
reduction of the training dataset, respectively.

6. The works also often focus on visual datasets, like colored MNIST or the IMDB
dataset, where the existence of bias is perceptually easy to detect and compre-
hend [ZWY+17, WQK+20]. However, the robustness bias problem may stretch
beyond visual datasets, albeit often being difficult to (perceptually) detect in
non-visual datasets.

To address the aforementioned limitations and challenges, this research proposes the
UnbiasedNets framework, which facilitates the detection and reduction (ideally elimina-
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tion) of bias in a trained DNN by addressing the bias at the root level, i.e., by reducing
the bias within the training data, rather than relying on training algorithms to unlearn
biases. Our framework is generic and hence can be implemented along with any training
algorithm, using any programming language (including MATLAB, Python, C++, etc.).
The novel contributions of the work are as follows:

1. This work deals with robustness bias, which results from having an imbalanced
dataset (which may in turn be a consequence of either dataset bias or representation
bias or both), to alleviate bias from datasets where the bias may not always be
apparent in the absence of noisy inputs.

2. We redefine the notion of balanced dataset to provide a more precise explanation
of the extent to which the number of inputs from each output class is, or is not,
essential for training unbiased DNNs.

3. Unlike the state-of-the-art approaches, UnbiasedNets can work efficiently to diversify
the dataset even in the absence of a large dataset using K-means clustering and
the noise tolerance of a DNN previously trained on the dataset.

4. Our novel framework can identify the practical bounds for generating synthetic
input samples using clusters of input features obtained via K-means and the
noise tolerance bounds of the trained network. To the best of our knowledge,
UnbiasedNets is the only framework exploiting noise tolerance to obtain realistic
bounds for synthetic inputs. We also make use of feature correlation from real-world
inputs to ensure that the synthesized inputs are realistic.

5. UnbiasedNets combines synthetic input generation with redundancy minimization
to diversify and generate potentially balanced and equally-represented datasets,
with not necessarily an equal number of inputs from all output classes.

6. The framework is applicable in diverse application scenarios. We demonstrate this
using UnbiasedNets on two real-world datasets, where the bias in the dataset is not
always visually detectable, and hence may not be straightforward to address.

6.2.1 UnbiasedNets: Framework for Bias Alleviation
We categorize UnbiasedNets into two major tasks: bias detection using a trained DNN
to identify the existence of robustness bias followed by bias alleviation to diversify the
training dataset to eliminate the bias at its core. Fig. 6.7 provides an overview of our
proposed methodology.

Bias Detection

The first step here is the application of noise η, bounded by the small noise bounds Δx
to the inputs present in the testing dataset x ∈ X (shown as Block 0 in Fig. 6.7) to
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Figure 6.7: UnbiasedNets: methodological approach to training dataset diversification,
starting with a trained DNN undergoing bias detection, followed by bias alleviation,
ultimately leading to a diversified dataset and potentially unbiased trained DNN.

obtain the noisy inputs xn.

xn = x + η s.t. η ≤ Δx (6.1)

The noisy inputs are then supplied to the trained DNN, and their output classifications
are compared to the classifications of inputs in the absence of noise. For the network to
be robust, the DNN’s classification must not change under the influence of noise. The
noise is then iteratively increased, beyond the maximum noise at which the DNN does not
misclassify the inputs, i.e., beyond the DNN’s noise tolerance. Such iterative increment
of noise provides the noise tolerance bounds of the network.

The application of noise larger than the noise tolerance bounds of the DNN entails that
the DNN misclassifies some or all the noisy inputs. These misclassifying noise patterns
(i.e., the counterexamples) act as inputs for the counterexample analysis. These noise
patterns can be collected either using a formal framework (such as the ones based on
model checking used by [tMK+20] and [BtSH22]) or an empirical approach (like the Fast
Gradient Sign Method (FGSM) attack [GSS15]).

During counterexample analysis, the obtained counterexamples are used to quantify the
bias. We define a metric BR to achieve this bias quantification. Let Ri be the ratio of
misclassified to correctly classified inputs from class i, which defines the average tendency
of inputs from output class i to be misclassified. The robustness bias estimate BR can
then be represented as follows:

BR = max(abs(Ri −
�

j∈L\i Rj

| L | −1 ))
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where L is the set of all output classes. This not only detects the presence, but also
provides the severity of robustness bias in the trained DNN, i.e., having a BR of zero
indicates an equal Ri across all output classes, and therefore an unbiased DNN. Conversely,
a non-zero BR implies a robustness bias in the network.

Additionally, the number of misclassified inputs from each class is also used to determine
the number of synthetic inputs required in the training dataset to alleviate the bias.

Bias Alleviation

Using the noise tolerance available from the bias detection and the feature extremum
of the inputs from the training dataset, we provide the step-by-step bias alleviation
methodology. The aim of the methodology is to identify the valid input domain for the
generation of synthetic data and provide a diversified training dataset for the training of
a potentially unbiased DNN. The details of each step in the methodology are as follows:

1. Bounds Determination. For each input feature in every output class, the feature
extremum, i.e., the maximum and minimum value of the feature as per the available
training data, is first identified (as shown in Block 1 of Fig. 6.7). As discussed earlier,
the inputs with noise, less than the allowed noise tolerance, are still likely to be correctly
classified by a trained DNN. Hence, the feature bounds are relaxed using Δxmax, to
provide a larger input space for the diversified inputs (also shown in Fig. 6.8(a)), as
follows:

Theorem 1 (Bound Relaxation using Noise Tolerance). For input domain X, let [xi, xi]
represent the bounds of inputs belonging to Xi (where Xi ⊂ X) and Δxmax be the noise
tolerance of the network. From the definition of noise tolerance of noise tolerance, we
know that the application of noise within the tolerance of the network does not change
the output classification. Hence, more realistic input bounds [x′

i, x′
i] can be obtained using

the laws of interval arithmetic as:

x′
i = min((xi − Δxmax), (xi + Δxmax), (xi − Δxmax), (xi + Δxmax)), (6.2)

x′
i = max((xi − Δxmax), (xi + Δxmax), (xi − Δxmax), (xi + Δxmax)) (6.3)

It must be noted that due to the scalability of underlying bias detection framework
(for instance [tMK+20]), where the application of large noise to DNN inputs may lead
to very large formal models, not suitable for analysis, noise tolerance may not always
be available for bound relaxation. A similar challenge is encountered for DNNs with a
very low noise tolerance. Consider the example of a DNN trained on an image dataset,
where the addition of noise leading to a magnitude change of even 1.0 in the pixel value
of an image may still lead to misclassification [MNG+21]. This indicates a very low
noise tolerance. Under these conditions, UnbiasedNets assumes the noise tolerance to be
zero, and proceeds with feature extremum as the feature bounds obtained during bound
determination.
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Figure 6.8: (a) Realistic bounds determination for individual feature bounds using
available training inputs, K-means clustering and noise tolerance, (b) Bound tightening
to eliminate/reduce bound overlap for synthetic input generation.

2. Bound Tightening. Bounds obtained from the previous step identify the regions in
the input space where real inputs from the training dataset exist, and hence provide an
estimate for the generation of valid synthetic data. However, it is possible for the feature
bounds for different output classes to overlap, as shown in Fig. 6.8(b). The overlap can
be either partial or complete. This provides a means for tightening the feature bounds
(shown as Block 2 in Fig. 6.7), hence leading to smaller, yet realistic, input space for the
generation of synthetic data. This in turn ensures that a lesser number of iterations are
required for realistic synthetic input generation in the later steps of the framework. The
generation of tighter feature bounds in the case of partial feature can be seen as follows:

Theorem 2 (Bound Tightening in case of Partial Overlap). Given the bounds of input
feature a for inputs belonging to class i and j to be [xa

i , xa
i ] and [xa

j , xa
j ], respectively, the

bounds can be tightened to [xa
i , xa

j ] and [xa
i , xa

j ] provided that xa
i < xa

j and xa
i < xa

j (i.e.,
the bounds overlap partially). Then, any input belonging to the new bounds also belongs
to the original feature bounds as well.

∀i, j.(([xa
i , xa

i ] ∈ Xa
i ∧[xa

j , xa
j ] ∈ Xa

j ) =⇒ ([xa
i , xa

j ] ∈ Xa
i ∧ [xa

i , xa
j ] ∈ Xa

j ))

s.t. xa
i < xa

j < xa
i < xa

j

(6.4)

However, the same cannot be generalized for complete overlap since the bounds of one
label form a subset of the other. As such, tightening is possible for a single label only.

Theorem 3 (Bound Tightening in case of Complete Overlap). Given the bounds of input
feature a for inputs belonging to class i and j to be [xa

i , xa
i ] and [xa

j , xa
j ], respectively, the

bounds for feature a of class i, Xa
i , can be tightened to [xa

i , xa
j ] and [xa

j , xa
i ] provided that

xa
i < xa

j and xa
j < xa

i . Then, any input belonging to the new bounds for Xa
i also belongs

to the original feature bounds as well.

∀i, j.(([xa
i , xa

i ] ∈ Xa
i ∧[xa

j , xa
j ] ∈ Xa

j ) =⇒ ([xa
i , xa

j ] ∈ Xa
i ∧ [xa

j , xa
i ] ∈ Xa

i ))

s.t. xa
i < xa

j < xa
j < xa

i

(6.5)
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Motivating Example. Consider an arbitrary feature a with valid input values in the range
[0, 10]. Let the inputs from class i have the bounds [2, 8] and those from class j have the
bounds [7, 10], for the feature a. Without bound tightening, any input 7 < xa < 8 can
belong to either class i or j (but not both). On the contrary, bound tightening reduces
the bounds of the feature a for classes i and j to [0, 7] and [8, 10], respectively. This
reduces the valid input domain for feature a such that it is impossible to pick a sample
for feature a that may belong to more than a single output class, hence simplifying the
task of generating realistic synthetic input samples.

3. Feature Clustering. The previous steps in the framework make use of the entire
training dataset to obtain realistic feature bounds. But intuitively, real-world inputs
often contain outliers that may be part of the training dataset, which do not occur
frequently in practical case scenarios. To subsume this characteristic into the synthetic
inputs generated, further bound tightening is carried out (shown as Block 3 in Fig. 6.7)
on the top-k input features, i.e., the k features with the smallest distance from cluster
centroid to the farthest input.

4. Synthetic Input Generation. Using the feature bounds obtained from the previous
step, the random input values are chosen within the available bounds (shown as Block 4
in Fig. 6.7). The number of inputs to be added to each output class Qi is determined on
the basis of the ratio of percentage of misclassified inputs from class i (i.e., αi) and the
percentage of misclassified inputs from the class with minimum misclassifications (i.e.,
min(αL)) using counterexamples recorded during the bias detection. Hence, the class
with higher αi gets the most synthetic inputs added to the dataset.

Algorithm 4 outlines the entire synthetic data generation process, starting from the
training dataset and noise tolerance bounds. Function classSegment (Line: 3) splits
the dataset into non-overlapping subsets of inputs belonging to each class, globalExt
(Line: 5) provides feature bounds using feature extremum, nonOverlapping (Line: 8)
performs bound tightening on basis of Theorems 2 and 3, minDist (Line: 10) identifies
the top-k features based on k-means clustering, boundsFinal (Line: 12) performs
further bound tightening based on the top features, and randInp (Line: 15) finally
generates the synthetic inputs for each output class.

It must be noted that the above input generation assumes an implicit hyperrectangular
distribution of the input domain. This means, each input feature may take any input
value (from within the defined input bounds), with equal likelihood. However, it is
also possible for the input features to have non-rectangular distributions. Assuming
these distributions to be known a priori, the random input generation could be modified
to select input values, from within the input bounds, according to their probability of
occurrence in their exact input distributions, i.e., with the more probable values having
higher likelihood of selection and vice versa.

90



6.2. UnbiasedNets

Algorithm 4 Synthetic Data Generation
Input: Training Inputs (X), Number of Output Classes (C), Noise Tolerance (Δxmax), Number of

top Features to use for Bound Tightening k, Number of Inputs to add to each Class (Q)
Output: Augmented Input Matrix (X ′), Vector of Output Classes (L′)

1: function SynthGen(X, C, Δxmax, Q)
2: n = size(X,2) ▷ Number of Input Features
3: (X1,...,XC) = classSegment(X,C)
4: for i = 1:C do
5: (f_mini, f_maxi) = globalExt(Δxmax,Xi) ▷ Block 1 in Fig. 6.7
6: end for
7: for j = 1:n do
8: (f ′_minj ,f ′_maxj) = nonOverlappping(f_minj ,...,f_maxj) ▷ Block 2 in Fig. 6.7
9: end for

10: (T1,...,Tk) = minDist(X)
11: for m = 1 : k do
12: (f ′′_minTm ,...,f ′′_maxTm ) = boundsFinal(f ′_minTm ,f ′_maxTm ) ▷ Block 3 in Fig. 6.7
13: end for
14: for i = 1:C do
15: Xnew = randInp(f ′′_mini,...,f ′′_maxi,Qi) ▷ Block 4 in Fig. 6.7
16: end for
17: end function

Input space with A
inputs

Formation of A/2
clusters

Elimination of 1 input
from each cluster

Input space with
reduced redundancy

Figure 6.9: Redundancy minimization by 50% in a two-dimensional input space.

5. Redundancy Minimization Oversampling may lead an DNN to overfit to the
training samples. Moreover, the existence of similar inputs, after the addition of synthetic
inputs, does not add to the diversity of the dataset. Existing works also indicate that
training the DNNs on smaller datasets – for instance, those obtained by eliminating input
instances leveraging different distance matrices – may reduce the timing overhead for
training while providing comparable classification accuracy [KKP+06, WTY09, Fua22].

Hence, x% closely resembling inputs from each class are removed to minimize the
redundancy in the diversified training dataset (shown as Block 5 in Fig. 6.7). This is
done by generating 1

x clusters for each output class and then retaining a single input from
each cluster. The result is a dataset with input samples covering diverse input space,
without densely populating any specific region of the input space (as realized in Fig. 6.9).
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6. Dataset Validation Up until the previous step, UnbiasedNets used real-world
inputs to identify valid input space within which the inputs exist, used knowledge of
the percentage of misclassified inputs from each output class to identify the number
of synthetic inputs to generate, and minimized the redundancy in the generated input
samples to obtain a diversified dataset. However, features in the real-world data may
be correlated, and the synthetic input features, despite lying in the valid input domain,
may not follow the correlation of real-world data. Hence, this step aims to validate the
synthetic inputs by comparing their feature correlation with that of the original training
data. If the percentage difference between the correlation coefficients is within t%, the
new inputs are deemed suitable for training a potentially unbiased DNN. Otherwise,
the process of synthetic data generation is repeated until the feature correlation of the
synthetic inputs resembles that of the original training dataset (shown as Block 6 in
Fig. 6.7).

The choice of t is made on the basis of the percentage difference between the correlation
coefficients of training and testing datasets. However, if this difference is too large, the
features may simply be independent, or obtaining appropriate correlations may require
some input pre-processing [ZHG06]. The use of only simple Pearson correlation coefficient,
on such raw data, may not be an appropriate statistical measure to ensure the synthetic
inputs to be realistic here.

6.2.2 Experiments
This section describes our experimental setup, and details of DNNs and datasets used in
our experiments.

Experimental Setup

All experiments were carried out on CentOS-7 system running on a 3.1GHz 6 core Intel
i5-8600. Our UnbiasedNets framework was implemented on MATLAB. The DNN training
was carried out using Keras.

However, the setup did not make use of any special libraries and, hence, can be easily
re-implemented using any programming language(s). Bias detection (and counterexample
generation) was carried out using SMV models with applied noise in the range of 1 − 40%
of the actual input values, using a timeout of 5 minutes for each input.

6.2.3 Datasets and Neural Network Architecture
We experimented on the long-tailed leukemia dataset [GST+99] composed of the genetic
attributes of leukemia patients classified between Acute Lymphoblast Leukemia (ALL)
and Acute Myeloid Leukemia (AML). The training dataset consists of 38 input samples
(with 27 and 11 inputs indicating ALL and AML, respectively), while the testing dataset
contains 34 inputs (with 20 and 14 ALL and AML inputs, respectively). We trained a
single hidden layer (20 nodes), fully-connected ReLU-based DNN, using the top-5 most
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essential genetic features from the dataset extracted using Minimum Redundancy and
Maximum Relevance (mRMR) feature selection technique [Kea18]. A learning rate of 0.5
for 40 epochs followed by another 40 epochs with a learning rate of 0.2 were used during
training.

We also experimented on the Iris dataset [Fis36, DG17b], which is a multi-label dataset,
with characteristics of three iris plant categories as input features. The dataset has an
equal number of inputs from all output classes. We split the dataset into training and
testing datasets, with 120 and 30 inputs, respectively, while ensuring an equal number of
inputs from all classes in each dataset. A fully-connected ReLU-based two-hidden layer
(15 nodes each) DNN was trained with a learning rate of 0.001 for 80 epochs, using a
training to validation split of 4 : 1.

Since UnbiasedNets is a data-centric bias alleviation framework, we compare the frame-
work to well-acknowledged open-source state-of-the-art data-centric approaches: RUS,
ROS, SMOTE [Cea02] and ADASYN [Hea08]. The Python toolbox imbalanced-learn
implements all of the aforementioned techniques, except RUS, and was used for the
generation of testing datasets. Since these approaches require the number of inputs to be
different in each class, 50% of the inputs from the Iris dataset were randomly selected
to create a sub-dataset with an unequal number of inputs for the classes. RUS was
implemented on MATLAB, removing inputs from class with more inputs to ensure both
classes have the same number of inputs in the case of the leukemia dataset and removing
25% samples from each class in the case of the Iris dataset. To avoid overfitting during
retraining of DNNs using augmented datasets, the number of training epochs was reduced
proportionally to the increase in the size of datasets.

All DNNs considered in the experiments were trained to the training and testing accuracies
of over 90%. In addition, the experiments for each bias alleviation approach were repeated
10 times to ensure conformity.

6.2.4 Results and Analysis
This section elaborates on the empirical results obtained from our experiments followed by
comparison and analysis of UnbiasedNets to the data-centric bias alleviation approaches.

6.2.5 Observations
As the number of output classes increases, ensuring an unbiased DNN becomes a more
challenging task. This was clearly observed in our experiments (Table 6.3), wherein
the multi-label classifiers had a higher bias and at the same time, their bias reduction
was substantially less effective in all bias alleviation approaches. (Note that the table
represents the bias of the network trained on original dataset is given in bold, and that
of the network trained diversified dataset is given in bold italics.)

As discussed earlier, lower BR indicates that the difference in the ratio of misclassified to
correctly classified inputs is low, implying that the DNN is less biased towards any output
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Table 6.3: Comparison of BR values (average ± standard deviation) obtained for the
DNNs trained on original and diversified datasets, using open-source state-of-the-art
approaches and UnbiasedNets.

Approach
Datasets Robustness Bias (BR)

Leukemia Dataset Iris Dataset
Original 0.2228 0.4732
RUS 0.1710 ± 0.07 0.5042 ± 0.11
ROS 0.2213 ± 0.07 0.8059 ± 0.36
SMOTE 0.1452 ± 0.08 0.7709 ± 0.72
ADASYN 0.2434 ± 0.06 ADASYN not suited for dataset
UnbiasedNets 0.1236 ± 0.05 0.4906 ± 0.15

class. As summarized in Table 6.3, our UnbiasedNets framework outperformed all the
DC bias alleviation techniques while obtaining optimum BR values for both binary and
multi-label datasets. Moreover, in the case of the Iris dataset, using classical data-centric
approaches to generate dataset with an equal number of inputs from each class seems
to exacerbate the robustness bias. Although UnbiasedNets may not always reduce the
robustness bias, the data diversification ensures that the dataset remains balanced.

This success of biased can also be seen in Fig. 6.10, which shows the variation in BR

values over the repeated experiments. It is clearly evident that the individual experiments
leading to a decrease in average robustness bias are far more compared to vice versa.
Hence, we advocate executing several instances of experiments in order to obtain dataset
instances that offer the best bias alleviation.

Additionally, it can be seen from the box plots that DNNs trained using the UnbiasedNets
datasets demonstrate considerably low interquartile ranges and the lowest average BR

values. Even though RUS illustrates competitive BR values, the use of RUS is not
appropriate for small datasets, since the approach involves the deletion of real input
samples and may hence diminish the learning capability of the DNN. The remaining
approaches, i.e., ROS, SMOTE, and ADASYN, present a large variation in BR results,
deeming the approaches less effective for alleviation of robustness bias.

Analysis

Our work focuses on robustness bias, which is exhibited by a trained DNN in the presence
of inputs having higher robustness to noise for certain output classes as compared to
others. From our experiments, we confirm the hypothesis that having an equal number of
inputs (as in the case of Iris dataset) is in fact insufficient to ensure an unbiased network.

In the case of the datasets where the number of inputs in each class is different, the
known approaches like RUS, ROS, SMOTE, and ADASYN may reduce the bias. But
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Figure 6.10: Variation in BR results for DNNs trained on RUS, SMOTE, ADASYN, ROS,
and the diversified UnbiasedNets datasets.

for most datasets, they may be inadequate for robustness bias alleviation mainly for
two reasons: (1) they rely on the naive definition of balanced datasets and only ensure
the number of inputs for each class is equal, which overlooks the requirement of each
class to be equally-represented in the input3, and (2) during data augmentation, new
inputs are only added in between the existing inputs, which neither diversifies the dataset
sufficiently nor ensures that the new inputs are valid candidates for the augmented dataset.
UnbiasedNets, on other hand, uses counterexample analysis from the bias detection stage
to obtain the required number of inputs in each class for a potentially equally-represented
dataset. It also uses noise tolerance, which allows us to diversify the data beyond the
bounds of the existing training dataset, which is subsequently validated by leveraging
feature correlations, to alleviate bias in DNN.

In the case of the Iris dataset, ROS and SMOTE were observed to significantly worsen
robustness bias. This may be partially due to the deletion of inputs from the dataset
to create an unequal number of inputs in the classes, which reduces the data available
for DNN training. However, RUS retained the BR value close to the original dataset,
even though the approach also employs input deletion. This suggests that the data
augmentation by ROS and SMOTE may actually contribute to an exacerbation of bias
rather than alleviation. In the case of UnbiasedNets, even though the improvement
in bias is often small, the results clearly suggest that diversifying the training dataset
by adding realistic synthetic inputs and reducing redundancy in dataset is a potential
direction to alleviate bias in DNNs, unlike the other approaches.

6.2.6 Discussion
UnbiasedNets aims to diversify the dataset so as to (potentially) achieve a balanced
dataset. While the diversification goal for obtaining a completely unbiased network

3A dataset with each class equally-represented potentially leads a balanced dataset (as described in
Chap: 2).
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may not always be achieved, UnbiasedNets rarely aggravates the bias due to its precise
perception of balanced datasets, unlike existing DC techniques. This section discusses
the various aspects of DNNs, which contribute to the challenge of data diversification
and ultimately the persisting bias in trained networks.

Input Resemblance

As seen from Table 6.3, the greater the number of output classes, the higher the robustness
bias in the DNN. This implies that the higher the number of output classes, the more
likely is the dataset imbalanced, and the more unlikely it is to obtain a trained DNN
that is equally robust for all output classes. A likely explanation for this could in fact
be a close resemblance of inputs from the different classes, for datasets with a higher
number of output classes.

Output Class: 0
Resemblance: 6

Output Class: 2
Resemblance: 3

Figure 6.11: Inputs from one output class may resemble inputs from other classes, as
observed in the MNIST dataset.

For instance, consider the case of hand-written digits (from the MNIST dataset), which
comprises of 10 output classes. As shown in Fig. 6.11, it is possible for inputs from some
classes to closely resemble inputs from other classes – for example, digit 0 may resemble
a 6, and digit 2 may resemble a 3. With inputs having likely resemblance to multiple
classes, it is challenging to generate realistic synthetic inputs, and hence obtain successful
data diversification for reducing the bias.

A more careful study of the example provided above also reveals that the difference
between the closely resembling inputs blur when their semantic distance is smaller [Ken19],
as shown in Fig. 6.11. Yet, the syntactic rules for output classification stay intact even
for these closely resembling inputs. For instance, a single loop forms the digit 0, while an
arc of a length comparable to half the circumference of the loop is required in addition
to the loop to syntactically define the digit 6. Hence, the addition of such syntactic rules
for the generation of synthetic inputs (similar to the approach taken in neuro-symbolic
learning [SZEH21]) may improve the data diversification.
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Curse of Dimensionality

Another challenge to data diversification is the large number of input nodes comprising
the DNN inputs – a challenge often referred to as the “curse of dimensionality” in the
DNN analysis literature [WOZ+20]. This implies that as the number of input nodes for
the DNN increase, the computational requirements for its analysis increase exponentially.

To understand this from the perspective of data diversification, let us consider the example
of an image dataset. Data diversification determines input feature bounds directly from
the raw input data to generate inputs such that the synthesized inputs x belong to the
valid input X , i.e., x ∈ X . However, various transformations, like affine, homographic
and photometric transforms associated with image inputs may tremendously change
the inputs, while still keeping the inputs realistic [PCYJ17]. Hence, for a practical
image dataset, inputs belonging to even a single output class will have individual inputs
that have undergone different transformations. As a result, the bounds of each input
feature obtained from the inputs, for such a dataset, will be very large. This hinders the
generation of synthetic data using these bounds, in turn making the data diversification
halt at the data validation step since the search input space is too large for the randomly
generated inputs to be realistic.

Towards this end, appropriate input pre-processing and the use of feature correlation
knowledge to determine the bounds of the correlated input features (rather than raw
input features) could potentially extend the applicability of UnbiasedNets framework to
a larger variety of datasets.

6.3 Summary of Efforts towards DNN Robustification

The overall performance of DNNs, particularly those relying on supervised training
algorithms, is largely dependent on the training data available. However, the data used to
train these DNNs may often be biased towards specific output class(es) or have different
sensitivity for the input nodes for individual output class(es). This may propagate
not only as varying classification performance across different output classes, but also
robustness bias and node robustness bias in the trained DNN. As highlighted by the
works in this chapter, identifying and correcting such vulnerabilities in DNNs is not a
straightforward task.

Towards this, we leverage our (qualitative) formal analysis framework to explore possible
link between the variance of node values in the training dataset and the impact of
removing samples of head class(es) from the training dataset prior to training. We also
proposed a novel bias alleviation framework UnbiasedNets, which initially detects and
quantifies the extent of bias in a trained DNN and then uses a methodological approach
to diversify the training datasets by leveraging the DNN’s noise tolerance and K-means
clustering. To the best of our knowledge, this is the first framework specifically addressing
the robustness bias problem.
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The analysis and robustification attempts are supported by experiments using binary
and multi-label classifiers. We also discuss the challenges in robustness bias alleviation
and elaborate on the potential future research direction for addressing the vulnerabilities
resulting from long-tail distribution in trained DNNs. The next chapter proposes other
future directions to leverage formal analysis frameworks to ensure better, more robust
DNNs for practical applications.
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CHAPTER 7
Conclusion and Future Outlook

7.1 Thesis Summary
Machine Learning (ML) has been finding more and more use cases in real-world applica-
tions for the past several decades. However, deep neural networks (DNNs), which often
form the core component of such ML-based systems are data-driven models. Hence, at
best, the performance of these models can only be as good as the data fed to them for
training. This is reflected in the numerous works focusing on identifying the vulnerabilities
of trained DNNs where DNNs are shown to delineate incorrect behavior under different
input scenarios. With this increasing reliance of ML-based system on trained DNNs, and
the vulnerabilities of such models, there is a need to provide behavioral guarantees for
DNNs to ensure reliable ML operations.

Among the efforts to identify the vulnerabilities include the empirical analysis. These
had been fairly successful in identifying DNN vulnerabilities, particularly that to the
adversarial noise. However, fundamentally, these approaches can merely provide evidence
to DNN vulnerability, but not provide any guarantees in case such evidence is not
found. Hence, formal verification forms the alternative research direction to overcome
this limitation. However, formal verification comes with it’s own challenge, i.e., the
scalability. Added to this challenge is the limited scope of current formal verification of
DNNs, both in terms of the DNN vulnerabilities addressed and the types of verification
strategies explored. Toward this important goal of providing behavioral guarantees for
trained DNNs, this thesis focuses on formal analysis, which combines the strengths of
both empirical analysis and formal verification. The research spans to provide both
qualitative and quantitative behavioral guarantees, while focusing on a diverse range of
DNN vulnerabilities.

On the qualitative end, we propose the novel model checking-based framework FANNet+,
which challenges the limits of model checking for DNN analysis while catering to a diverse
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range of DNN properties namely, robustness, noise tolerance, input node sensitivity,
robustness bias, and safety. To address the scalability challenge, numerous model
reduction techniques are used without compromising the completeness of DNN formal
models. We also develop a novel random input segmentation (RIS) approach to scale
the valid input domain for analysis. Although RIS introduces incompleteness in the
formal analysis, unlike the incompleteness often observed in existing literature, this
incompleteness of the input domain does not lead to false positives in analysis results.

Towards the quantitative front, we develop QuanDA, a novel sampling-based approach
to estimate precise probabilities of DNNs’ behavior. QuanDA allows the propagation
of probability distribution across DNN layers, hence avoiding the use of unrealistic
assumptions on the probability distributions of network nodes. Hoeffding’s inequality
is also leveraged by the framework to provide a confidence interval for the probability
estimates, while focusing on DNN reachability and safety properties. This leads to
quantitative DNN analysis that outperforms the existing state of the art in terms of both
scalability and providing realistic analysis.

For both frameworks, we show the efficacy of analysis using DNNs trained on real-world
data. The resulting DNNs correspond to critical applications namely, leukemia diagnosis,
heart disease prognosis, and aircraft collision avoidance.

Once the DNN vulnerabilities are identified, the next natural direction is to rectify
the vulnerabilities. Although this was not the prime focus of the present research, we
still provide some preliminary research directions toward developing more robust DNNs.
Our efforts are directed specifically to deal with vulnerabilities resulting from long-tail
distribution in the training dataset. Towards this, we develop UnbiasedNets to diversify
the training dataset, and potentially minimize the robustness bias. The framework shows
some success compared to available data-centric approaches for addressing the robustness
bias.

7.2 Future Outlook
This research focused on two directions for DNN analysis: model checking for the
qualitative analysis and sampling-based framework for the quantitative analysis. While
both directions cater to important research goals, there remain open challenges for the
future research. These include the ongoing scalability challenge, particularly for the
model checking-based framework. While the model reduction and input segmentation
approaches developed in this research stretch the limits for model checking for DNN
analysis, the model checking-based analysis for practically-sized networks remains an open
challenge. Specific to the quantitative analysis is the open challenge of propagating the
confidence interval over layers. While our framework provides intricate methodology for
the propagation of probability distribution over network layers, the theoretical confidence
interval is currently available only on a per-layer basis.

Additionally, while the present research focused on the development of DNN analysis
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methodologies catering a diverse range of DNN behavioral specifications, it did not
explore the implementation of proposed frameworks on DNN architectures beyond fully-
connected neural networks. The analysis of DNN architectures like convolutional and
residual networks would be interesting future directions for the research community. We
also identified node robustness bias in trained DNNs, i.e., the individual input nodes
of the DNN may have different robustness for the different output classes. This opens
potential research direction towards the interpretability of trained DNNs at the node
level.

It is interesting to note that most of the DNN vulnerabilities explored in this research as
well as existing literature likely result from the data-dependent nature of the DNN models.
While DNN behavioral analysis is an important step to ensure its reliable operation
in real world, it might also be fruitful to address DNN behavioral issues at an earlier
stage in the DNN design cycle. For instance, the addition of behavioral specifications
commonly checked post-training (explored in Chap. 3) could potentially be included
in the DNN training loop as network constraints or additional cost function, for robust
DNN training.
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