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Abstract: Land and real estate have long been regarded as stable investments, with property
prices steadily rising, underscoring the need for accurate predictive models to capture the vary-
ing rates of price growth across different locations. This study leverages a decade-long dataset of
83,527 apartment transactions in Vienna, Austria, to train machine learning models using XGBoost.
Unlike most prior research, the extended time span of the dataset enables predictions for multiple
future years, providing a more robust long-term prediction. The primary objective is to examine
how spatial factors can enhance real estate price predictions. In addition to transaction data, socio-
demographic and geographic variables were collected to characterize the neighborhoods surrounding
each apartment. Ten models, each varying in the number of input years, were trained to predict the
price per square meter. The model performance was assessed using the mean absolute percentage
error (MAPE), offering insights into their predictive accuracy for both short-term and long-term
predictions. This study underscores the importance of distinguishing between newly built and
existing apartments in real estate price modeling. By splitting the dataset prior to training, predictive
models focusing solely on newly built properties achieved an average reduction of about 6% in
MAPE. The best-performing models achieved an average MAPE of 15% for one-year-ahead predic-
tions and maintained a MAPE below 20% for predictions up to three years ahead, demonstrating the
effectiveness of leveraging spatial features to enhance real estate price prediction accuracy.

Keywords: real estate price prediction; apartment; transaction data; time-related; machine learning
algorithms; XGBoost

1. Introduction

Real estate property, a crucial asset in our society, serves not only for housing but also
as a significant investment aimed at monetary appreciation. In Austria, the increase in
prices for single-family houses and apartments has significantly outpaced other economic
indicators such as inflation or GDP over the past decade [1], highlighting the critical need
for focused research in this area. The Residential Property Index (RPI), a key indicator of
economic and cyclical trends in Europe, tracks both new and used residential properties
within Austria. It showed an increase of 12.3% in the overall value of real estate and an
increase of 15.5% for apartments in 2021 compared to the previous year [2]. This annual
fluctuation, influenced by factors such as demand, availability, and attractiveness compared
to other investments, underscores the dynamic nature of the real estate market. Current
research often focuses highly on the internal characteristics of properties, such as room and
bathroom counts. However, the variability in housing prices within a city, even among
similar properties, suggests that spatial features significantly influence price formation.
This study aims to address this by investigating the potential of developing predictive
models using a broad array of spatial features derived through feature engineering and
urban computing.
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In housing price research, it is crucial to distinguish between the data sources used for
modeling. In Austria, where property rights are only legally recognized when registered
in the land registry, each property transaction is thoroughly documented. This makes
the land registry a public and highly trusted source, with its data being reliable due to
rigorous pre-registration checks. On the contrary, online listings from real estate agents
or private individuals serve as another data source, although these often lack location
information [3] and show significant price variations. A study by willhaben (willhaben.at
is an online marketplace in Austria that also lists one of the largest offers for real estate)
and IMMOunited (IMMOUnited is an Austrian data provider for transaction data within
Austria) analyzed these discrepancies, finding up to a 21% difference between the listed
offer prices on willhaben and actual transaction prices in 2020 [4]. This disparity highlights
that actual transaction data, with fewer inaccuracies than initial offers, provide a more
accurate reflection of the market dynamics.

Most current research on real estate in connection with purchase prices focuses mainly
on the prediction of houses. Little can be found in the area of apartments, especially
in Central Europe. For example, in Germany, access to land registry is regulated by
Section 12 (1) of the German land registry code (GBO), stating that “there must be a legitimate
interest on the part of the interested party” (Grundbuchordnung §12(1): “Die Einsicht des
Grundbuchs ist jedem gestattet, der ein berechtigtes Interesse darlegt. Das gleiche gilt
von Urkunden, auf die im Grundbuch zur Ergänzung einer Eintragung Bezug genommen
ist, sowie von den noch nicht erledigten Eintragungsanträgen.”). Unfortunately, research
does not count as one of these legitimate interests. In Austria, where the transaction
details are publicly available (Grundbuchsumstellungsgesetz §5(2): “Die Einsicht in das
Hauptbuch, die Urkundensammlung und die Hilfsverzeichnisse ist durch die Ausfertigung
von Abschriften zu gewähren . . . ”), access is connected to administrative fees. The collection
of large datasets, therefore, is associated with high costs. In this article, we directly address
this issue to provide a baseline for this topic.

While actual transaction data are critical in real estate price prediction, many studies
overlook key classification distinctions that are crucial in the industry. Real estate agents
typically categorize properties using specific criteria, such as distinguishing between newly
built and existing apartments based on first occupancy rather than construction year. This
classification means that an apartment can be considered “newly built” if it has not been
used, regardless of the actual construction date. However, the prevalent research often
follows different criteria, relying mainly on the year of construction to classify properties
as new or existing. This discrepancy is evident in various studies [5–10]. In addition, other
significant factors, such as whether a property is purchased as an investment or for owner
occupation, or whether an apartment is a penthouse versus on a regular floor (every floor
of a building below the top floor is referred to as a regular floor, regardless of whether the
top floor is developed or not), are often overlooked in research.

This article explores whether combining apartment transactions using these industry-
based classifications and urban characteristics provides a robust foundation for predicting
future property prices, focusing specifically on apartments in Vienna. Unlike house transac-
tions, apartment purchases typically include the usable area in the contract, which is crucial
to predicting the price per square meter (sqm). The study also examines how the variation
in the training time span affects the prediction quality and emphasizes the spatial parame-
ters that define a neighborhood, including infrastructure, social elements, and local leisure
activities. Additionally, it considers sociodemographic factors, such as education level and
income, which may influence price dynamics. During model development, the following
questions are addressed:

• What spatial metrics can we use for feature engineering?
• What is the prediction accuracy for one year into the future for different timespans of

the input data?
• What is the optimal training time span of the input data to predict future real

estate values?
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The purpose of this research is to develop and evaluate predictive models for apart-
ment prices, with a particular emphasis on the influence of spatial and socio-demographic
factors. Drawing on a decade-long dataset, it addresses gaps in the existing literature,
which often focus on internal property characteristics while neglecting the critical role of
spatial dynamics and industry-based classifications. By integrating advanced spatial met-
rics such as the shortest paths to POIs and isochrones, the study quantifies neighborhood
accessibility and its impact on real estate prices.

To further enhance the accuracy of the model, the research distinguishes between
newly built and existing apartments, aligning with industry practices. Using the XGBoost
algorithm and rigorous hyperparameter tuning, it explores how different training time
spans influence prediction quality. Ultimately, the study aims to improve the robustness of
long-term price forecasts by leveraging spatial metrics and comprehensive data to capture
the complex dynamics of neighborhood characteristics.

The remainder of the article is organized into five sections. The discussion of the
relevant literature and the analysis of their approaches is shown in Section 2. After identi-
fying the gaps in modeling and data usage, the framework for the experiment is developed
in Section 3. It contains descriptions of the data sources used, their structure, and their
potential peculiarities. The spatial relations are then modeled for usage as input for XG-
Boost. Finally, the implementation of the prediction and the quality estimation strategy
are presented. Section 4 explains the different experiments and lists the predicted qualities
achieved. A discussion of the results is presented in Section 5. Section 6 summarizes the
findings and presents ideas for future extensions.

2. Related Work

Approaches for real estate price prediction can be divided into three main types:

• The first type is based on the hedonic pricing model (HPM) [11]. According to [8],
this model typically only considers structural characteristics. Ref. [12] lists features
such as the general condition of the house, heating system, bathroom, garage, etc.,
and location amenities. The difference between the various models often lies less
in the input features than in the method chosen for how spatial heterogeneity is
modeled. In recent years, HPMs have often been questioned as to whether they are
still appropriate since they are usually outperformed by artificial neural networks in
most valuation scores [5,13]. Nevertheless, HMPs are still used and actively addressed
in research [14,15]. In the European region, they are used either as a stand-alone
solution or as a support for evaluation experts for property valuation. A disadvantage
of the hedonic pricing model is that the quality of the estimate is highly dependent on
the availability of data on internal characteristics.

• The second type includes the most recent research that applies machine learning (ML)
and deep learning (DL) techniques (e.g., [16,17]). The focus is on a large number of
internal features, which also overlap in different research papers. Usually, spatial
features, such as distances to certain points of interest or the number of amenities in
the neighborhood, complement these internal features. In addition, other sources of
information, such as photographs, can help extract information about the environ-
ment [18] or the objects themselves [8]. Building on these advancements, Geographic
Information Systems (GISs) and Automated Valuation Models (AVMs) have emerged
as crucial tools in enhancing real estate price prediction models. GISs, with their
ability to integrate and analyze spatial data, provide a deeper understanding of how
locational attributes like proximity to amenities and landscape features impact prop-
erty values. For instance, GIS-based models have successfully quantified the influence
of viewsheds and spatial patterns on housing prices, highlighting the importance of
spatial context in real estate appraisal [19]. Additionally, GIS combined with tech-
niques like Geographically Weighted Regression (GWR) has demonstrated superior
predictive accuracy over traditional methods [20]. Meanwhile, AVMs, powered by ma-
chine learning algorithms, complement these spatial analyses by efficiently processing
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large datasets to deliver consistent and accurate valuations. These models outperform
traditional hedonic approaches by capturing complex patterns in both structured and
unstructured data [21]. The increasing availability of big data further enhances AVM
capabilities, making them indispensable for both individual property assessments and
mass appraisals [22].

• The third group focuses on the economic aspects of real estate. Economically oriented
models are usually created for a larger volume and are therefore more focused on
the investment and economic development of real estate [23]. The main difference
is that the focus is on the development of a property value rather than on price
prediction. Real estate price indices are closely related to this type of research. There is
partial overlap with the hedonic price model, as the latter also incorporates economic
factors [24] and also includes or generates the aforementioned indices [25]. Economic
models are not used exclusively for this research but are also included in the work to
a smaller extent. Ref. [26], for example, includes the economic effects of neighborhood
characteristics on housing values.

Research on housing price prediction often uses house transaction data [27] or rental
information [28,29]. For apartment price assessments, offer prices are typically utilized,
with regional variations in data usage. Most models based on rental data focus on Asia,
while in North America, more sophisticated models rely on house sales data. This is partly
because transaction data are more accessible in these regions. In contrast, in Europe, where
transaction data are not publicly available, offer data are commonly used instead, leading
to less research in this area. It should also be noted the methodologies to estimate house
and apartment prices differ.

For apartment prices, the price per square meter is usually used, whether for rental [28]
or purchase, unlike house prices, which are often expressed as a total sum. This distinction
arises because the usable area for houses is seldom available, and additional factors, such
as the value of the accompanying land, play a significant role [17]. The use of sqm price for
apartment transactions is further supported by studies like [30], who predicted apartment
prices in St. Petersburg using various methods. The data used for this work comprised
around 3000 data points of transactions for two-room-apartments collected in Spring 2010
in St. Petersburg.

As research in this field is very active, the most relevant works are considered to
identify current trends. A variety of ML algorithms are applied in the field of house price
prediction. For example, ref. [27] used XGBoost for house price prediction and achieved
good results with it. Despite the results, the paper points out that the prediction models
may vary from place to place. Ref. [17] used a comparatively large dataset over a 5-year
period in their work. The aim of this work was to compare different ML techniques against
each other. XGBoost, CatBoost, Random Forest, Lasso, Voting Regressor, and others are
used. The work used transaction data for houses in Florida and concluded that XG-Boost
provides excellent and comparatively the best results. The work by [8] focuses on features
describing the space around the object and the object itself. Multiple linear regression
and gradient boosting methods are used. Twenty thousand datasets from the Boston area
are examined. The focus of the work is on the collection of (especially) visual features,
which are included using DL techniques. Ref. [31] used transactional data to investigate
various machine learning and deep learning techniques for predicting real estate prices,
concluding that support vector machines performed best. Among the models applied, their
least squares support vector regression (LSSVR) achieved exceptionally low MAPE values
of 1.679% and 0.228%. However, the dataset is poorly described, with the authors stating
only that most of the data are residential and spans a three-year period, leaving the exact
type of real estate and other data specifics unclear. Ref. [32] used rental data in their work.
They explored the ability of the integration of ML techniques with the hedonic price model
to map spatial patterns. Different spatial characteristics within a 15-min walking distance,
sub-district, and nearest accessibility are considered. This approach proves effective in the
context of the study and can be applied to other cities.
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Most work does not consider time as a parameter. For online offer data, this is usually
not necessary, as one or more points in time are usually selected to reflect the status quo of
the bid at that point in time. However, when transaction data are used, the transaction date
is relevant and should be included in the analysis [23]. However, long-term data are usually
not available [33]. The time spans in real estate research often cover only a few months
or a few years (for example, [33]), with longer periods being rare. Ref. [33] emphasized
temporal dynamics by using 200,122 house transactions from 2011 to 2015. The models
in this research were trained over the entire duration and tested on unseen data from the
final two years as a benchmark to evaluate the various methods presented in the article,
achieving MAPEs of 8–12% with a time-aware latent hierarchical model. By adopting
this methodology, they managed to maintain a relatively stable MAPE throughout the
entire prediction period. This highlights the importance of incorporating temporal context,
a focus that aligns with our study’s emphasis on long-term forecasting.

Another example of a study utilizing a long time span is provided by [16]. They
developed a prediction model using 7407 apartment transactions in Ljubljana from 2008 to
2013. The temporal aspect was incorporated as a feature without differentiating the results
based on time. Although interior apartment characteristics were considered, the study
also placed emphasis on spatial factors, in the form of the distance to POIs. In addition,
the study used data on apartment buildings, including details such as floor count, number
of apartments per building, and renovation history. Their study highlighted a temporal
trend: a market peak in 2008 followed by a 28% decline. Despite this, the observed price
fluctuations were smaller compared to Vienna. Their Random Forest model achieved a
MAPE of 7.04% in training and 7.27% in testing, both within the same period. The temporal
consistency of their data probably contributed to these low errors.

A notable example of a study that uses an extended time span is [34], which analyzed
data over a period of approximately eight years. However, comprehensive investigations
of the impact of time span on prediction accuracy are still rare.

3. Framework

The framework discussed here is based on real transaction data of apartments, as well
as urban computing measures representing spatial concepts. These concepts are used to
engineer features that are later utilized by XGBoost. Further important decisions for the
framework are the selection of data sources used for the prediction and the method to
assess the prediction quality.

The model was intentionally designed to exclude external factors, such as the COVID-19
pandemic, policies, and interest rates, to focus solely on the impact of structural and local
socio-demographic changes. This approach ensures that the analysis remains clear and is not
influenced by broader, unpredictable events or non-spatial variables that may not enhance
the model’s capacity to capture spatial variations. However, demographic changes at the
district level were included to reflect localized socio-economic dynamics.

3.1. Data Collection and Feature Engineering

The data used for the models are apartment transactions for Vienna between 2010
and 2020 as extracted from the land registry. There are approximately 145,300 data points
available that were collected from the Austrian land registry during this period. These data
points constitute the ground truth, as they represent real-world apartment transactions.

The analysis employs a comprehensive set of features beginning with transaction data,
which includes primarily the sale price of the apartment, the usable area, and the date of the
transaction. Sociodemographic data and the Austrian Trade Index (ATX) are also included
to provide an economic context. Furthermore, leveraging the geographical component
of the transaction data, the study delves into crucial spatial features that characterize the
neighborhood, as well as urban computing measures.
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3.1.1. Features from Transaction Information

The features that can be directly extracted from the transactions are

• Price;
• Usable area;
• Location;
• Classification as a penthouse or as regular floor;
• Transaction date.

In addition to the directly extracted features, two additional features could be gen-
erated by analyzing the transactions: if newly built and if an investment. An apartment
is considered newly built if it is bought from a developer, even if the construction was
completed years ago due to the time it takes to find a buyer. This information can be
extracted on the basis of the seller’s name. An apartment is considered an investment
if there is no value-added tax (VAT) indicated in a transaction. This is the reason why
investment apartments can have lower prices than regular ones. Only a few papers address
these features (e.g., [35]), but this classification can have a significant impact on pricing,
regardless of the type of property.

Since only data points with a complete set of information can be used as training and
test data, a total of about 87,000 data points remain after inspection. The most common
reason for excluding a data point was missing information about the usable area.

The location information is supplied as an address in the transaction information.
Addresses were translated to geographical coordinates using the Vienna City address
register (Adressen Standorte Wien, available under https://www.data.gv.at, accessed on
30 June 2023). The latitude and longitude of the building entrance, instead of the object
center, are joined. Although several distance features are collected, the use of the entrance
to the building is the most realistic approach.

The sqm price, which is used as a label, is determined from the price and the usable
area, a common metric used for apartments. Using the sqm price standardizes comparisons
between apartments of varying sizes and facilitates the tracking of price fluctuations over
time. It also provides the ability to define price ranges for small areas with a reasonable
margin. The price information itself can be discarded as redundant. The concept of usable
area is mostly shaped by Austrian legislation and is defined in the Condominium Act of
Austria (§ 2 Abs. 7 WEG).

Vienna is subdivided into 23 districts. As can be seen in Figure 1, more data points are
available in the inner districts. The farther away from the city center, the housing tendency
shifts from apartments to houses. Due to the constant growth of the city, more and more
apartments are being built in the outer districts, but this transition takes time.

Figure 1. Distribution of apartment transactions with valid data points over Vienna in the form of a
heatmap. The heatmap contains transaction data for the entire ten-year time span.

https://www.data.gv.at/katalog/en/dataset/stadt-wien_adressdatenderstadtwien
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Temporal reference is also necessary. Since this work focuses heavily on time depen-
dence, a closer look must be taken at the distribution of the data over time. As can be
seen in Table 1, data availability increases over time. There are two main reasons for this.
First, the number of apartment sales increases. This is supported by the general increase
in transactions. Second, the availability of the parameter “usable area” is also increasing.
From 2010 to 2020, availability increased from about 45% to 60%. This is a sign of an
ever-improving documentation.

Table 1. Distribution of valid transaction data points by year.

Year Data Points Count Percentage

2010 5072 6.07%
2011 5472 6.55%
2012 5801 6.95%
2013 5754 6.89%
2014 5908 7.07%
2015 7431 8.90%
2016 7894 9.45%
2017 8377 10.03%
2018 9363 11.21%
2019 11,392 13.64%
2020 11,063 13.24%

3.1.2. Socio-Demographic and Economic Data

The socio-demographic and economic variables included in the model were selected to
capture key factors influencing trends in the housing market. The average income provides
insight into the purchasing power of residents, while the percentage of unemployment
reflects economic stability in the area. The percentage of residents without Austrian
citizenship highlights the demographic composition, which can influence demand and
housing preferences. Lastly, the average age is considered to account for age-related
housing needs and market dynamics.

The socio-demographic features are collected from the statistical yearbook of Vienna
(Statistische Jahrbuch der Stadt Wien available under https://www.wien.gv.at, accessed
on 30 June 2023). Various information about the city of Vienna is available in these annual
publications. All the features listed below are collected by year and district:

• Average income;
• Percentage of unemployment;
• Aercentage of residents without Austrian citizenship;
• Average age.

In addition to these features, nine educational features are collected from Statistik
Austria, the official statistics authority of Austria [36]. The features include the shares of
the different educational levels of the population aged 25–64 years by district in Vienna.

The economic situation is described by the monthly median of the ATX. The informa-
tion is provided by finanzen.at (available under: https://www.finanzen.at, accessed on
29 June 2023). Next, based on the assumption that there can be a delayed reaction of the
real estate market on the trade index, a second feature was introduced using a 6-month-old
ATX value (i.e., data points from January 2010 use the ATX median from July 2009).

3.1.3. Urban Computing Features

UrbanCore. Geographic relevant features were extracted using the UrbanCore frame-
work [37]. For this work, the area of Vienna is divided into rectangular cells to generate
statistics on infrastructure and points of interest (POIs) within these cells. The cells have
a size of 99.995 m by 66.575 m. The extent of the cell is the result of the dimension of the
total cell coverage (bounding box of transaction points) divided by a fixed number of cells.
The UrbanCore framework provides the means to extract spatial features based on raster

https://www.wien.gv.at/statistik/publikationen/jahrbuch.html
https://www.finanzen.at/index/historisch/atx
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cells novel to real estate price predictions. This gives us the opportunity to examine a broad
spectrum of spatial aspects. Thirty-two features are calculated for each of the cells (see
Table 2).

Table 2. Statistics on the features extracted from cells within Vienna’s bounding box, as defined by
UrbanCore framework.

Feature Description Mean Std Min 0.25 0.5 0.75 Max

Mean road segment length 25.85 29.05 0 0 21.72 42.82 259.77
Min road segment length 17.62 27.84 0 0 2.56 22.93 259.77
Max road segment length 36.95 38.38 0 0 30.40 68.772 303.50
Variance road seg. len. 209.81 447.64 0 0 0 246.50 11,193.26
Number of road segments 1.80 2.62 0 0 1 3 51
Mean road seg. orientation 23.45 25.35 0 0 14.80 44.87 89.99
Var. of orientation on roads 188.90 375.82 0 0 0 162.14 2008.68
Mean speed of roads 16.61 19.13 0 0 0 30 100
Min speed of roads 15.69 18.24 0 0 0 30 100
Max speed of roads 17.36 20.17 0 0 0 30 100
Variance of speed on road 7.61 29.82 0 0 0 0 900
Number of one ways 0.73 1.65 0 0 0 1 32
N._of roadcar_junctions 0.02 0.15 0 0 0 0 3
N._of pathroadcar_junc. 0.43 0.98 0 0 0 0 18
Number of junctions 1.53 2.99 0 0 0 2 75
Mean num. of ways in junc. 1.46 1.622 0 0 0 3 7
Var. num. of ways in junc. 0.035 0.11 0 0 0 0 4.58
Number of left POIs 1.64 11.38 0 0 0 0 172
Number of right POIs 0.73 2.82 0 0 0 0 46
Number of POI 2.37 13.21 0 0 0 0 205
Mean opening angle of junc. 24.36 29.90 0 0 0 56.96 197.92
Min opening angle of junc. 18.66 27.26 0 0 0 45.78 182.10
Max opening angle of junc. 29.44 36.67 0 0 0 60.13 524.28
Var. opening angle of junc. 100.84 305.23 0 0 0 0.50 13,633.72
Number of 3 ways 1.17 2.28 0 0 0 1 60
Number of 4 ways 0.34 1.07 0 0 0 0 27
Number of 5 ways 0.01 0.13 0 0 0 0 5
Number of 6 or above ways 0.00 0.06 0 0 0 0 3
Mean opening angle of
3 ways

24.97 30.86 0 0 0 59.63 150.53

Mean opening angle of 4 way 4.86 17.23 0 0 0 0 199.24
Mean opening angle of 5 way 1.013 10.26 0 0 0 0 236.42
Mean opening angle of 6 or
above way

0.26 6.36 0 0 0 0 524.28

Building structure model. The building structure model (BKM (Baukörper Model der
Stadt Wien available under: https://www.data.gv.at, accessed on 25 June 2023)) consists
of all structural measures in Vienna. This model is coordinate-based and inch-perfect. It
is maintained by the MA 41 (“The surveying department MA 41 of the city of Vienna”).
The BKM is used for four features calculated within the cell structure of the UrbanCore.
First, the built-up area within a cell is calculated as an absolute value for two BKMs ten
years apart—2011 and 2021. These two values are the first two features of the model.
The third feature is called the Building Space Ratio (BSR) and is the ratio of building to
non-built-up areas within a cell. The last feature compares both BKMs and their change
in a built-up area is calculated and outputted as a relative value. This feature is called the
Development Index (DI).

BKMx1Cell = ∑ BKMx1 per Cell (1)

https://www.data.gv.at/katalog/dataset/76c2e577-268f-4a93-bccd-7d5b43b14efd
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BuildSpaceRatio = 1 − BKM21Cell
Area of Cell

(2)

GrowthRate =
BKM21 − BKM11

Area of Cell
(3)

Location features. The features described up to this point were average values for
specified areas. However, an apartment is located at a specific address, and distances
to specific POIs are relevant for the apartment’s user [38]. Therefore, additional location
features were defined, generated, and collected. These location features are calculated
using regularly used POIs and the location from the transaction data. Some POIs, such
as schools or doctors’ offices, are used more frequently than others, such as museums.
A variety of public transport POIs, such as bus, tram and train, are also used. Each year,
Wiener Linien, the primary operator of Vienna’s public transport network, conducts an
analysis of the modal split [39]. The results consistently show that approximately one-third
of the population uses public transport.

On top of the different public transport POIs, subway stations are considered in two
different ways. As it is one of the most important transport networks in Vienna, it needs
special attention. On the one hand, a single central point is projected onto the center of
each station. On the other hand, several points are projected onto the individual entrances
to the stations.

The next section outlines the preparation of the network to minimize calculation errors
and introduces two location calculation methods (isochrones and shortest path), alongside
the features used. Due to differing administrative rules and the unavailability of key
data features outside Vienna, data points near the administrative border were excluded
from the dataset to prevent biased estimates and ensure analysis accuracy. This leaves
83,527 data points for training and testing. Detailed figures on data collection can be found
in the Table 3.

Table 3. The table provides an overview of the distribution of apartment transaction data in Vienna.
It categorizes the data into different groups based on usability.

Data Points Count Percentage

Not usable 4083 2.8%
Limited usability (missing labels) 54,377 37.4%
Data too close to the city limits 3293 2.3%
Usable data 83,527 57.5%
Total 145,280 100%

Network preparation. As stated in Section 2, walking distance is a valid approach
for location features to describe the neighborhood. The disadvantage of this approach is
that the margin of error must be kept small in order to obtain accurate and comparable
distances. This is especially true when calculating distances between points that are very
close to each other. First, an OSMnx [40] graph for Vienna was downloaded. OSMnx only
provides nodes at junctions. When a data point or POI is created on the raw OSMnx graph
it maps these points on existing nodes, so the error can be quite large. To create a sufficient
network for a better distance calculation, the following procedure is used:

1. The downloaded OSMnx graph is decomposed into vertices and nodes. The ver-
tices of the network, the data points, and the POIs are loaded with their geometry
into PostgreSQL.

2. The nearest vertices are searched for each data point and POI, and the points are
projected onto them. The nearest vertex is obtained from the shortest imaginary
orthogonal line from the vertex through the given point.

3. The vertices and projected points are moved to QGIS. The vertices are split at the
location of projected points via SAGA—“Split line by Point” (since this step resulted in
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the formation of several unwanted artifacts, QGIS provided a visual component to
clean them up).

4. The network is checked for errors (duplicated vertices) and then transferred back
to PostgreSQL, where the network is recreated with additional new nodes at every
vertex end. An ID is generated for each node, and the IDs are joined as endpoint IDs
to the vertices.

5. Finally, the IDs of the closest nodes are joined to the original points, and the manipu-
lated network is handed over to a Python script for further computation.

For the procedure, QGIS 3.16.7 with SAGA, PgAdmin 4 with PostgreSQL 14, and
PostGIS 3.1.4 were used.

Figure 2 shows the difference between the calculation methods. Let us assume that
the orange points are house entrances and the purple points are doctors. Since OSMnx only
creates nodes at intersections (yellow dots), the distance is distorted in the calculation. On
the right in Figure 2, the new nodes created by projecting them onto the segment have been
used, allowing a more accurate calculation of the shortest path.

(a) Shortest path with OSMnx and NetworkX (b) Shortest path with network manipulation

Figure 2. (a): Calculating the shortest path with OSMnx (version 1.1.2) and NetworkX (version 2.6.3),
based on the nodes created at junctions. (b): Calculating the shortest path with network manipulation.
Basemap provided by OpenStreetMap ©.

Isochrones. In preparation, the data points are checked for duplicate locations. It is
not uncommon for several data points to have the same address, especially over a ten-year
period. Furthermore, it should be taken into account that a new building could hold up to
hundreds of apartments.

Three different walking distances were chosen for the isochrones: 150, 300, and 1000 m.
These distances were chosen to reflect the immediate neighborhood. Most people are not
willing to walk more than 1 km to reach their destination. Ref. [41] showed that the average
walking distance is 0.7 miles (1.13 km) and the median is 0.5 miles (0.81 km), regardless
of the destination. Thus, 1 km gives a good approximation for the walking neighborhood.
Isochrones for these distances are calculated with a convex hull to create spatial links of the
POIs within their area. Each type of POI is summarized as a total number of occurrences
within each isochrone.

Section 3.1.3 describes two types of subway features—single and multi-point—to
represent stations either by their entries or as a single point to avoid bias from multiple
entries within an isochrone. These features are categorized based on the station’s high-
priority connections, such as links to other subway lines or trains, reflecting their proven
influence on real estate prices in other cities [34]. Transaction data are also summarized to
enhance analysis. All transactions (except those that do not include location information)
are summarized by year of occurrence. This leads to a total of thirty-five features for
each isochrone.
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Shortest path. The same POIs are used for the shortest path. There is no need for the
shortest path to the next transaction since this calculation is prone to show the distance of
POIs that are actually used by people living there. The subway stations are again used as
both single and multiple points but without classification. The calculation is carried out
using NetworkX’s shortest path algorithm. Shortest paths were calculated to a maximum
distance of 5000 m to reduce calculation time. A distance of 5000 m was used to ensure that
almost all data points have the shortest path to each POI and it is a more than sufficient
distance to be considered a neighborhood [42].

3.2. Features and Their Nature of Representation

The basic model contains 200 features. All features are listed in Table 4.

Table 4. Features used for the base models, along with their counts, descriptions, and forms
of integration.

Feature Count Description Form of Integration

Transaction 5
Usable area, investor,

penthouse, newly built,
and transaction date

individual

ATX 2 Monthly median and
6 months shifted in the past by year and month

Socio-Demographic 4
Unemployed, average income,

share of foreigners,
and average age

by year and ZIP code

Education 9

Different levels of education:
including compulsory school,

secondary school,
apprenticeship, among others

by year and district

Transaction count per
building 1 - by location

Urban Core 32
Variation of segment, junction,

POI, etc., statistical values
based on a cell grid

by location

BKM 4

Two features at fixed points in
time (2011 and 2021). Two
features derived from both

BKMs, based on Urban Core
grid cell

by location

Shortest path 15

POIs: doctor, drugstore,
kindergarten, museum, parks,

police station, low-priority
public transport, schools,

subway single point, subway
multi-point, touristic

attractions, train station,
university, playground,

restaurant/bar.

by location; individual

Isochrone 105

Shortest path POIs with finer
distinctions. Separate features
for bus and tram, restaurants

and bars, and subway
features. Includes 11
Transaction features

by location; individual

ZIP 23 One-hot-encoding; based on
the 23 districts of Vienna by ZIP code

Isochrone and Shortest Path features are emphasized in the model due to their ability
to provide detailed insights into accessibility and connectivity, which are crucial for un-
derstanding spatial influences on property values. These features offer a granular view of



ISPRS Int. J. Geo-Inf. 2024, 13, 425 12 of 27

the spatial context surrounding the apartments, capturing how easily various POIs can
be reached. In addition, POIs are readily available and can be processed automatically,
facilitating the creation of a diverse and comprehensive feature space. This automated
processing supports the development of a robust model by incorporating significant spatial
features known to impact real estate prices.

3.3. Modeling Algorithm

As mentioned above, the objective of this work is to predict the sqm price of apart-
ments. The scope is to solve this as a regression problem. The Extreme Gradient Boosting
(XGBoost) algorithm was chosen for this purpose. XGBoost is considered an efficient
technique for regression problems with the aim of building predictive models [7,9,17].
The algorithm works by using multiple weak hypotheses and combining them into a single
superior hypothesis (“Hypotheses Boosting Problem”) [43]. In other words, several weak
stems of a tree are combined into one strong model. Gradient Boosted Trees offer greater
model capacity than Random Forest, allowing them to capture complex relationships and
intricate decision boundaries. Among the various implementations of Gradient Boosted
Trees, XGBoost was selected for its scalability and high efficiency [44].

The model was implemented using Python 3.9, and further packages were used,
including XGBoost 1.3.3 and scikit-learn 0.24.2. The data were split into 90% for training
and 10% for testing. A 5-fold validation with randomized search and fifty iterations to tune
hyperparameters was used. A five-fold cross-validation with a randomized search over
fifty iterations was used to fine-tune the model hyperparameters. The search space for each
parameter is detailed in Table 5.

Table 5. Search space for hyperparameters of XGBoost models.

Hyperparameter Search Space Description

No. of estimators {200, 300, 500, 800, 750, 1000,
1500, 2000} Number of boosting rounds

Max depth {9, 10, 11, 12, 13, 14, 15, 16} Maximum depth of trees
Learning rate {0.001, 0.01, 0.025, 0.05, 0.075} Learning rate of model

Min. child weight {4, 5, 6, 7, 8, 9} Minimum sum of instance
weight in a child

Gamma {0.1, 0.2, 0.3, 0.4} Minimum loss reduction for
further partitioning

Subsample {0.5, 0.6, 0.7, 0.8, 0.9} Ratio of training data used
per tree

Colsample bytree {0.6, 0.7, 0.8, 0.9, 1.0} Ratio of columns subsampled
per tree

objective {’reg:squarederror’,
’reg:tweedie’}

Objective function
for optimization

Booster {’gbtree’, ’gblinear’} Type of boosting method used

Eval metric {’mape’} Metric for validation
data evaluation

Eta {0.2, 0.3, 0.4, 0.5, 0.6} Controls the learning rate

Ten different models were developed, differing in the number of years of training
input and hence data points. A more detailed look is given in Section 4.1. All models use
the mean absolute percentage error for validation, solve “reg:tweedie” as the objective,
and use “gbtree” as the booster. The remaining fine-tuned parameters for each model can
be found in Table 6.
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Table 6. Hyperparameters of models: subsample (SS), n_estimators (NE), min_child_weight (MCW),
max_depth (MAD), learning_rate (LR), gamma (GA), eta (ET), colsample_bytree (COL).

No.
Years
Input

SS NE MCW MAD LR GA ET COL

1 0.7 800 7 11 0.025 0.2 0.4 1.0
2 0.9 500 8 14 0.025 0.1 0.3 0.7
3 0.7 750 6 13 0.025 0.1 0.3 0.7
4 0.9 1500 8 12 0.025 0.1 0.3 0.7
5 0.8 800 8 14 0.010 0.2 0.3 0.6
6 0.9 500 5 14 0.050 0.2 0.3 0.9
7 0.9 800 8 14 0.025 0.2 0.4 0.8
8 0.6 800 5 15 0.025 0.3 0.3 0.6
9 0.8 1500 8 14 0.025 0.1 0.4 0.9

10 0.9 800 6 12 0.050 0.1 0.4 0.8

3.4. Evaluation

Several measurement methods are used in the scientific literature on real estate pre-
diction models. In addition to the R2 and the mean square error (MSE) and the mean
absolute error (MAE) are also used in regression problems. The MAE reflects the average
deviation from the real value. The mean absolute percentage error (MAPE) is chosen for
the evaluation of the model performance. MAPE is calculated as follows:

MAPE =
1
n ∑

|yi,t − yi,p|
yi,t

(4)

where yi, t is the actual value of the transaction and yi, p is the predicted value.
MAPE is chosen because of its advantages in real scenarios. Price ranges are part of

the daily real estate business and, therefore, are easy to interpret. Although the R2 error
seems to be an appropriate option, it is not due to the nonlinearity of the data. Therefore,
the R2 value cannot be used correctly here. Something similar can be said about the MSE.
Since the data are not adjusted for outliers and outliers are penalized higher in the MSE, it
is not a suitable choice [17].

4. Experiments and Results

A number of experiments were carried out on the basis of the data presented in the
last section. This section contains the concepts for the experiments and the results obtained
from them.

4.1. Input Variation

A series of 10 models were developed, each differentiated by the period of years of
input used for training. The first model utilized transaction data from a single year, while
the subsequent models incrementally incorporated more years of data, culminating in the
tenth model, which was trained on a decade’s worth of data up to the year 2019. Given the
extent of the available transaction data, the model trained on 10 years of data can produce
only one prediction value. Each model is tasked with the same objective: to employ one or
several years of data to predict sqm prices for the following years. A full sequence of this
process is termed a cycle. The modeling cycle is depicted in the provided Figure 3, which
illustrates the progression from the first model with a single input year to the tenth model.

Models with a large number of input years (8–10 years of input) must be considered
with caution, as only a few predictions can be made, and thus only a few comparisons are
available. As the number of input years used as training data increases, the number of
prediction years that can be used for comparison decreases because the study period is
limited to 2020.
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Figure 3. Training cycles of predictive models for housing prices. Illustrates the progression of
10 different models, each using a different number of input years for training. Model 1 starts with
data from a single year, incrementally increasing to Model 10, which is trained on 10 years of
data. Each cycle represents a complete sequence of predictions for subsequent years following the
training period.

4.2. Results for Predicting One Year in the Future

In the first step, the models are compared in terms of their ability to predict a subse-
quent year, regardless of how many input years were used for training. The results show
that the accuracy of the prediction depends on the quality and quantity of the input data.
In general, most models achieve a value of around 21% or even 20% at least once in their
cycle. The only exceptions are models with 9 or 10 input years. The errors of these models
are usually 2–3% higher. Table 7 shows the MAPE for the top scores for the prediction of
one year in the future.

Table 7. One-Year Prediction: This table showcases the optimal MAPEs obtained by each model
when predicting one year ahead. The models are arranged in ascending order based on the number of
training years they utilized. Additionally, alongside the number of training years, the table indicates
the specific input years used for training.

MAPE Number of Training
Year (s) Training Year (s) Prediction Year

21.18% 1 2016 2017
21.08% 2 2013–2014 2015
21.08% 3 2015–2017 2018
20.34% 4 2013–2016 2017
20.67% 5 2012–2016 2017
21.00% 6 2011–2016 2017
20.66% 7 2011–2017 2018
20.94% 8 2010–2017 2018
22.46% 9 2010–2018 2019
24.91% 10 2010–2019 2020

The error distribution of the top models can be observed in Figure 4. Each data point
is assigned coordinates that represent the predicted and the actual price achieved. It can
be seen that most data points are in the range of up to 10,000 EUR/m2 and that there are
relatively few outliers, which, however, have a large influence on the MAPE.
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(a) (b)

(c) (d)

Figure 4. The figure illustrates the regression plots for the top-performing models, arranged in
ascending order based on their MAPE. Each plot provides a comparison between the true and
predicted values. What distinguishes each plot is the number of training years involved and
the year being predicted. (a) MAPE: 20.34%; Training years: 2013–2016; Prediction year: 2017.
(b) MAPE: 20.66%; Training years: 2011–2017; Prediction year: 2018. (c) MAPE: 20.67%; Training
years: 2012–2016; Prediction year: 2017. (d) MAPE: 20.94%; Training years: 2010–2017; Prediction
year: 2018.

In the second step, all predictions for the subsequent years of all models were com-
pared. Table 8 summarizes the results and shows that the best results were achieved with
4 to 5 years of input data.
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Table 8. Mean MAPE over all subsequent year predictions of each model.

Input Years Mean MAPE

1 23.34%
2 22.86%
3 22.54%
4 22.11%
5 22.10%
6 22.34%
7 22.19%
8 22.56%
9 23.77%
10 24.68%

It should be mentioned that the predictions for 2020 could not achieve an error of less
than 24%. This needs to be investigated further after a data update to rule out a qualitative
issue. If a quality check does not change the outcome, this leads to the assumption that there
was a massive change in the price development. Aspects of the Coronavirus pandemic also
need to be considered, such as the lockdown from March until the 1st of May 2020.

4.3. Results for Predicting Multiple Years into the Future

The results of multiple subsequent years are more difficult to interpret. The main
reason is again the time limitation. It is difficult to tell from an average error whether
models with many input years are actually better. These models have better average values
than those with more verifiable results due to the fact that they have fewer years for the
verifiable forecast. Nevertheless, one statement can be made about the rate at which the
error increases. As can be seen from Figure 5, the error of models with 5–9 input years
grows slower in the experimental series from 2010 onward.

Figure 5. The figure depicts the development of error across various models over a span of multiple
years. The diversity among the models lies in the number of years used for training. The graphical
representation enables comparison of each model’s ability not only to predict outcomes for a specific
year but also to predict over a particular range of future years.

The increase in MAPE varies slightly with different starting years for training, yet it
can be noted that the error grows slower with 5 and 6 input years and subsequently also
with 4 input years (4 input years show good results, especially in the starting years 2012
and 2013).
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4.4. Noise Elimination Experiments

With around 200 features, it is likely that some features generate unnecessary noise.
Different groups of features were excluded from the training to identify redundant infor-
mation. A series of experiments was conducted with the 4-year input model, as it shows
the best prediction results. Figure 6 shows the change in MAPE for these experiments.

Figure 6. The figure presents the experiments conducted on the 4-year input model to mitigate noise
generated by features. Each segment within the figure represents a distinct cycle of training and
prediction. For instance, the initial segment illustrates training conducted with data from 2010 to
2013, followed by predictions for the years 2014 to 2020. The subsequent segment draws on training
data from 2011 to 2014 and so forth. The colored lines within each segment show the MAPE achieved
during the respective training and prediction cycle for the feature selection.

The following experiments were performed in the order defined by the list:

• Original: All features used.
• No 150: Smallest isochrones of 150 m are excluded.
• No ATXPopF: ATX and socio-demographic features are dropped.
• No Edc: No education feature.
• No ShP: Shortest path excluded.
• ZIP: Using ZIP Codes instead of One-Hot-Encoding.
• Year: Using the year of the transaction date in 20xx format instead of the year and

month delta combination.
• Delta: Using the year delta without the month.
• Normalization: Testing normalization of features with standard scaler library of sklearn.
• OutlierCutSmall: Cut outliers only if two or more features are outliers (Tukey method).
• OutlierCutLarge: Cut outliers if one or more features are outliers (Tukey method).
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The only notable improvements with respect to MAPE were achieved by using the
ZIP code variant instead of one-hot coding. Therefore, all other models were also tested
with this modification. All models except for the 2-year input performed better with the
ZIP code instead of the one-hot encoding.

4.5. Data Subset Experiments

As mentioned in the Section 1, the classification of an apartment as newly built and/or
as an investment property significantly influences its pricing structure. Therefore, these
classifications were included as features in our earlier models. To investigate whether
these features, when used to subdivide the data prior to training, testing, and prediction,
could affect the error behavior of the models, the data were divided into two distinct
groups: the first group included only newly built apartments, and the second included only
existing apartments. All investment properties were intentionally excluded to promote
price stability.

Three different predictive models for our experiment were used: 1-year, 4-year,
and 5-year models. For this experimental setup, the most promising models from the
original framework were selected. The rationale was to determine whether these input
variations could be further enhanced through data subsetting, while simultaneously main-
taining computational efficiency. Beyond excluding newly built and investment features,
the same set of features, as outlined in Section 3, was maintained in all models. With the
use of only the existing apartments, the models’ performance slightly declined. On average,
they experienced a decrease in MAPE of approximately 1–2% across all models. The best
models performed around 4% worse than their original counterparts. On the contrary,
the exclusive use of data from newly built properties resulted in substantial performance
enhancement. On average, these models outperformed their predecessors by 6%. The best
model achieved a striking 13.5% MAPE for the following year, exceeding the original model
by almost 7%. Some models managed to maintain a MAPE below 20% even three years
into the future.

Table 9 provides a direct comparison of MAPE for the model using 4 years of input.
The model selected for this comparison is the highest-performing model. The table clearly
demonstrates the superior performance of this model when only newly built apartments
are applied and therefore more homogeneous data. The MAPE remains significantly lower,
indicating the model’s ability to provide more accurate predictions, even several years into
the future.

Table 9. Comparison of the 4-year input base model to the 4-year data subset input models.

Input Years Prediction Year Base Model Newly Built Stock Only

2013–2016 2017 20.34% 13.52% 25.53%
2013–2016 2018 22.87% 16.65% 27.05%
2013–2016 2019 25.77% 19.57% 27.11%
2013–2016 2020 29.14% 23.39% 28.55%

Figure 7 underscores the superior performance of the model that exclusively uses the
newly built apartment data. It presents the MAPE over the longest possible observation
period using the 4-year input model.

To demonstrate that all models experienced a decrease in MAPE, Table 10 compares
the three aforementioned models to the original framework for one-, two-, and three-year-
ahead predictions, using 2018 as the prediction year. The results show that all variants
achieve a reduction in MAPE when trained exclusively on the homogeneous dataset of
newly built apartments.
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Figure 7. Development of the MAPE of the models for a longer observation period.

Table 10. Prediction model comparison for one-, two-, and three-year-ahead Forecasts.

Model One Year Ahead Two Year Ahead Three Year Ahead

1-Year Base Model 21.92% 22.41% 26.24%
1-Year Newly Built 14.46% 15.79% 21.12%
4-Year Base Model 20.79% 22.87% 25.64%
4-Year Newly Built 14.08% 16.65% 19.66%
5-Year Base Model 21.42% 23.27% 27.09%
5-Year Newly Built 14.42% 17.22% 21.58%

Furthermore, Table 11 presents the average performance of each input variant, aggre-
gated across all models and training data configurations. This table highlights the impact
of the training data on model performance by summarizing the average MAPE for each
variant, providing a comprehensive overview of their predictive accuracy.

Table 11. Comparison of average MAPE and MAPE decrease for different models.

Model Number of Variations Average MAPE MAPE Decrease

1-Year Base Model 56 29.29% –
1-Year Newly Built 56 23.47% 5.82%
4-Year Base Model 28 26.18% –
4-Year Newly Built 28 20.25% 5.93%
5-Year Base Model 21 26.40% –
5-Year Newly Built 21 20.36% 6.04%

This sequence of experiments highlights the critical role that these classifications play
in the prediction of real estate prices. Furthermore, it underscores how pre-subsetting
data can impact the predictive accuracy of machine learning models. Utilizing more
homogeneous data allowed the model to predict much more accurately with minimal cost
to the models that used the heterogeneous data.

4.6. Error Development over Several Subsequent Years

To examine the development of the error over a longer observation period, the errors
of the individual predictions of the data points were divided into groups, starting with an
underestimation of more than 25% up to an overestimation of more than 25% in increments
of tens. The resulting seven groups can be well compared in terms of their trends. Figure 8
shows how the error shifts when predicting several years. Figure 9 shows the same
distribution with a fixed axis so that the shape change of the deviations of the predictions
can be observed.
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(a) 2015 (b) 2016 (c) 2017

(d) 2018 (e) 2019 (f) 2020
Figure 8. The figure illustrates the categorization of labels into error classes based on their MAPE.
The model used was trained using a 4-year input from 2011 to 2014. It was employed to predict the
years that followed. When looking at the errors in these predictions, a clear trend emerges: the further
into the future the model predicts, the more pronounced the left skew in the error distribution.

(a) 2015 (b) 2016 (c) 2017

(d) 2018 (e) 2019 (f) 2020
Figure 9. This figure shows the real versus predicted labels in the form of a point cloud, using the same
4-year input model and task as described in Figure 8. A fixed-axes approach is employed to provide
a different perspective on the data shift. Through this method, it becomes apparent that the labels
tend to gravitate increasingly toward the lower part of the diagonal line as the predictions progress.

The increasing left skew in the error histograms is observed in all models. The probable
cause is that the model cannot use the time parameter (transaction date) appropriately. This
shift to the left implies that the model is increasing the single values of its predictions too
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quickly. The following versions of the time parameter have been tested (all time parameters
are derived from the transaction date):

• Year
• Year Delta (2010 ≡ 0; 2011 ≡ 1,. . . )
• Year + Month
• Year + Month Delta (January 2010 ≡ 0.01, February 2010 ≡ 0.02, January 2011 ≡ 1.01, . . . )

Initially, the year + month delta was used and confirmed as the best option for the
noise-canceling experiments from Section 4.4.

5. Discussion

To better understand the nature of the prediction errors, a detailed analysis was
performed on a specific model. This model, which used four years of training data to
predict housing prices for 2014, was selected due to its superior performance. The focus
of the analysis was on examining the deviations between the predicted and actual prices.
Outliers were identified and analyzed to determine the reasons behind these discrepancies,
helping to refine the accuracy and reliability of the model in future predictions.

MAPE defines a range for the expected deviation. Deviations far outside this range are
outliers, and it is important to see their pattern and try to explain their existence. Extreme
underestimations do not occur as frequently as overestimations. In general, this means
that the model usually overestimates. These extreme outliers were investigated in more
detail. It is hard to give a clear threshold for the MAPE of outliers because it varies a lot for
each model. For the model used, it looks as if the extreme underestimation starts at −50%
and the extreme overestimation starts at +100%. The upper threshold was chosen higher
after the predictions tended to be overestimated, as can also be seen in the left slope of the
figures in Figure 8. These thresholds are valid for about 4.5% of the predictions for the 2014
data set.

To explain significant prediction errors, additional data were collected for specific
points. These included evaluating images of the buildings and reviewing transaction details,
such as the inclusion of inventory or garage spaces. Large errors were often observed in
luxury homes that have high sqm prices due to their rarity and scattered distribution in the
dataset, making accurate predictions challenging for the model. On the contrary, extreme
overestimation cases typically occurred when the model predicted reasonable prices based
on the location and appearance of the building. However, the buyer and seller information
did not clarify why some transactions closed at unexpectedly low prices. Some factors
influencing low prices, such as agreements with existing tenants during building renova-
tions or distress sales, are acknowledged to be difficult to detect and often unavailable
publicly. These outliers, especially distress sales that require details on the seller’s financial
status, underscore inherent limitations in the dataset, preventing complete accuracy in
some estimations. As long as MAPE ranges from −50% to +100%, fully accounting for
discrepancies between model predictions and actual prices remains challenging. Enhanc-
ing the model with additional features might mitigate some inaccuracies. For example,
a property in the 9th district sold in 2014 was underestimated by over 50%, suggesting
inadequacies in the model or a lack of relevant features. Table 12 presents a comparative
analysis of this property, called Object A, with another, Object B, in the same district. Sold
one month apart, both properties were new constructions and investments with identical
sociodemographic characteristics; the main distinguishing factor was their location within
the district, with Object A in the west and Object B in the east.

Some assumptions can be made about this. First, the spatial features could have
introduced a bias in the model, since this is the main distinguishing feature between
the two properties. Second, there could be a local bias, if, in the vicinity of property A,
apartments mainly in cheaper segments are sold, which pushes the price of the prediction
down. There may also be additional features missing to make a better prediction.
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Table 12. Comparison of prediction results of the 4-year model on two objects in the 9th district.

Property Area (sqm) Real
sqm Price

Predicted
sqm Price Error Date

Object A 40.47 6022.24 2744.50 −54% September 14
Object A 41.38 6000.00 2743.46 −54% September 14
Object A 43.82 6002.74 2757.11 −54% September 14
Object A 43.84 6000.00 2757.11 −54% September 14
Object B 77.93 5587.04 4614.81 −17% October 14
Object B 59.89 4503.83 4526.91 1% October 14
Object B 86.96 7205.02 4557.47 −37% October 14
Object B 59.53 5528.39 4406.12 −20% October 14

It is important to consider that even within the same property, selling prices can vary
for apartments that are nearly identical in external features. According to the data presented
in Table 13, the model accurately predicted the square meter price for several apartments
within this property, with an average error of just 1% in 26 transactions. However, individ-
ual deviations from actual transaction prices ranged from −25% to +26%. This variability
is challenging to explain using the current set of features, as apartments of similar size and
amenities would ostensibly be priced comparably. Enhancing the model with additional
parameters could potentially reduce these discrepancies.

Table 13. Performance of 4-year model on multiple apartments of similar size within the same building.

Area (sqm) Real sqm Price Predicted sqm Price Error

58 2763.20 3206.96 16%
59 3286.44 3207.88 −2%
59 3112.04 3462.52 11%
59 3103.39 3213.00 4%
59 3103.39 3213.00 4%

The fact that the model makes worse predictions with fewer years than with more
years seems logical. A larger number of datasets enriches knowledge about the importance
of different features. The fact that the models perform worse after a certain number of input
years suggests that the underlying relative importance of features changes over time. This
cannot be adequately accounted for with XGBoost and may be the reason why the models
deteriorate rapidly as they predict further into the future. Additionally, the situation in
the later years needs to be analyzed in more detail. As mentioned in Section 4.2, it is
possible that the stability of the market or the quality of the data is lower than in earlier
years. In addition, it would be useful to have a method that automatically detects when
the market situation has changed in a specific area. This would allow us to eliminate older
data, which do not fit the new situation, from the learning process.

To put the results of this work in context, the results are compared to other studies.
The most similar work was published by [30]. The models tested achieved MAPEs ranging
from 14.86% to 20.53%. Further refinement through data subsets yielded MAPEs of 9.8%
for apartments smaller than 61.5 sqm and 19.4% for larger ones. Restricting predictions to
specific districts improved results further, achieving MAPEs of 12.9% and 23.6%. The size
of the dataset and the fact that the test error is created with unseen data from the same
time period explain to some extent the low MAPE. In our work, we focus on predicting
the future prices of apartments, having a more general approach, without distinguishing
between small and large apartments.

The setup by [16] contributed to strong performance, with the Random Forest method
achieving an MAPE of 7.04% in training and 7.27% in testing. Testing was conducted
within the same time frame as training, avoiding predictions beyond the observed period.
Additionally, price fluctuations during the observed period were relatively low, with a
mean price of EUR 2415 per sqm and a standard deviation of EUR 575. In comparison,
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the mean price in Vienna for the same period was EUR 2885 per sqm, with a notably higher
standard deviation of EUR 1504.

An example of research that acknowledges the importance of time in interpreting
results is the work by [33]. The results, broken down by each quarter for the two-year
prediction period, revealed a variation in MAPE between 8–12% for their best-performing
method. The utilization of houses rather than apartments, coupled with limited informa-
tion about the features that are used, makes this paper non-comparable to our research.
However, it warrants mention only to acknowledge the presence of time-aware real estate
research with good results. In Ref. [31], the final MAPE values of the two best models are
1.676% (LSSVR1) and 0.228% (LSSVR2). These values are among the best results found
in the field of real estate price prediction. However, the paper does not fully document
the data used. They only state that most of the data are residential and were taken from
a 3-year time period. The fact that about 2.54% of the data are commercial makes them
even harder to compare. Additionally ,it is not clear to what the presented MAPE refers to
and what was actually predicted. The article also contains a table comparing their results
with the MAPE values of other studies. Their results are the best in the selection. However,
a closer look at the papers in the table reveals that the MAPEs are based on highly different
databases and different settings. This leaves only mainly [30] and [16] for comparison.

Although it is difficult to make comparisons with other works, the results can be put
into a general context. Ref. [45] categorizes MAPE values as follows:

• Less than 10%: Highly accurate prediction;
• 11–20%: Good prediction;
• 21–50%: Reasonable prediction;
• above 51%: Inaccurate prediction.

The results obtained in this article fall into the category of Good Prediction or Reasonable
Prediction. Notably, models that exclusively rely on “newly built” data achieve the “Good
Prediction” category, maintaining this higher accuracy even when tasked with predicting
several years into the future.

The process of buying real estate is closely connected with certain variables that are
complex to define or track. At the heart of this complexity is an emotional component that
will always be present for both individuals and companies buying or selling real estate.
This aspect should not be neglected in corporate transactions either, as there is always
a human being in the background who brings not only rational considerations but also
emotional aspects into the decision-making process. Other non-quantifiable factors such as
time constraints or financial pressure also have a significant impact on the desire to buy or
sell a property. These factors can strongly influence real estate prices and lead to significant
fluctuations. Even if, by and large, a common consensus on pricing emerges, it is precisely
these variables that can lead to some differences. Therefore, given these non-descriptive
factors, the accuracy of any model can only reach a certain level of accuracy when trying to
predict real prices.

The models developed in this article introduce a new perspective on real estate by
leveraging actual transaction data and employing classifications that are widely used in
the industry, such as “newly built” or “stock”. This approach more accurately reflects
real-world conditions and significantly reduces the prediction error. Furthermore, the study
demonstrates that predictive models can deliver reliable results even with minimal infor-
mation about internal apartment characteristics, highlighting the critical role of location
factors. By incorporating a vast spatial component through urban computing, this research
distinguishes itself from previous studies, offering a novel methodology for real estate
price prediction.

The findings also underscore the importance of temporal context in real estate. In rapidly
evolving markets, particularly in Western regions, models must not only capture current
trends but also anticipate swift changes in the temporal framework. While the study fo-
cused on spatial and socio-demographic factors, it is essential to acknowledge the potential
influence of external factors such as macroeconomic policies, interest rates, and demo-
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graphic shifts. These variables could impact real estate markets in ways that spatial data
alone cannot fully capture. The exceptional nature of the COVID-19 pandemic presented
an unprecedented challenge to real estate markets, causing fluctuations that fall outside the
typical patterns captured by our model. Although the model was deliberately trained using
only pre-COVID-19 data to focus on structural and local socio-demographic factors, the in-
clusion of 2020 prediction data allows for an evaluation of how severe external events can
disrupt standard market dynamics. This approach demonstrates the model’s limitations
when faced with extraordinary circumstances, such as a global pandemic, and underscores
the need for adaptive frameworks. By examining the model’s performance during such
an exceptional period, this study raises critical questions for future research. Developing
adaptive models capable of integrating external shocks, including macroeconomic crises
or public health emergencies, could improve robustness and predictive accuracy. Such
advancements would ensure that valuation tools remain relevant and reliable, even in the
face of unforeseen global events, further enhancing their real-world applicability.

Each model’s predictive accuracy, measured in MAPE, was evaluated for both one
and several years ahead predictions. The analysis focused on three specific configurations,
the 1-year, 4-year, and 5-year setups, which proved to be the most effective input structures.
The most significant improvements were observed in models trained exclusively on newly
built apartment data. Notably, the 4-year newly built model consistently outperformed its
base counterpart, achieving MAPEs of 14.08%, 16.65%, and 19.66% for one-, two-, and three-
year predictions, respectively. In contrast, the corresponding base model recorded MAPEs
of 20.79%, 22.87%, and 25.64% over the same periods. The reduction in MAPE highlights the
crucial role of dataset homogeneity in improving model performance. Training exclusively
on data from newly built properties yielded more accurate predictions, likely due to the
reduced variance within this subset. While the base model failed to achieve an error rate
below 20%, the results from the subset models demonstrate that integrating spatial features
with carefully curated datasets significantly improves predictive accuracy. This approach
not only improves short-term predictions but also ensures reliable long-term predictions,
maintaining a MAPE mostly below 20% for predictions up to three years ahead.

6. Conclusions and Future Work

XG-Boost has proven to be an effective algorithm to predict housing prices with Good
to Reasonable prediction accuracy. A key advantage of this method is the speed with which
models can be set up, allowing for multiple model computations and extensive experi-
mental iterations within a short period. However, making comparisons with studies from
different markets, particularly in other countries, presents challenges due to the scarcity
of long-term research on owner-occupied housing, especially in Western nations. The pre-
sented work establishes a baseline that needs to be improved in the future by adding
additional data points and improving the quality of the data points. However, also the
model needs improvement, e.g., by the automatic identification of breaks between zones
of stable price development in both space and time, because an average error of 25% over
longer periods of comparison and an error of 20% for subsequent years are not sufficient
to keep up with the market. Despite these limitations, the models trained on newly built
properties achieved significantly lower MAPE values, consistently below 20% for predic-
tions up to three years ahead. This highlights the potential of leveraging homogeneous
datasets to improve predictive accuracy and reliability. Also, the introduction of additional
features such as buyer and seller classification or the marking of sales subsidized by the
state may lead to great improvements. In addition, attributes of the buildings where the
apartments are located could be added as a feature. Further analysis of spatial features,
particularly those related to key POIs such as hospitals, could improve the model’s under-
standing of neighborhood dynamics and accessibility, both of which play a critical role in
price formation.

Understanding the impact of individual factors on housing prices is crucial. This is
provided, e.g., by the analysis of feature importance. However, combinations of features
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may also need to be considered. Expanding the analytical approach to include deep
learning methods could provide significant advances, as these techniques have recently
shown considerable success in predicting house prices. Despite the differences between
houses and owner-occupied apartments, the overarching similarities in the housing market
suggest that these methods could be broadly applicable and effective.

Finally, the implementation of an AVM based on the proposed approach offers promis-
ing potential for practical applications. An AVM could provide automated and accurate
price estimates, assisting real estate professionals, policymakers, and investors in decision-
making processes. Future research should prioritize refining the current model to improve
its applicability in real-world AVM systems. Before deployment, these models must un-
dergo rigorous testing in experimental environments, involving real estate experts to
evaluate their accuracy and practical utility. Plans are already underway to conduct such
experiments, which will help ensure the robustness and adaptability of the model in a
real-world context.
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16. Čeh, M.; Kilibarda, M.; Lisec, A.; Bajat, B. Estimating the Performance of Random Forest versus Multiple Regression for Predicting
Prices of the Apartments. Isprs Int. J. Geo-Inf. 2018, 7, 168. [CrossRef]

17. Jha, S.B.; Babiceanu, R.F.; Pandey, V.; Jha, R.K. Housing market prediction problem using different machine learning algorithms:
A case study. arXiv 2020, arXiv:2006.10092.

18. Law, S.; Jeszenszky, P.; Yano, K. Examining geographical generalisation of machine learning models in urban analytics through
street frontage classification and house price regression. In Proceedings of the GIScience 2021 Short Paper Proceedings, Poznań,
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