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Kurzfassung

Moderne Produktionswerke bestehen oft aus mehreren Maschinen und Zellen, in denen Zwischen-
oder Enderzeugnisse gelagert werden. Diese Diplomarbeit beschäftigt sich mit Lösungsansätzen
für ein in der Praxis relevantes Problem, welches in solchen Netzwerken auftritt. In dem behan-
delten Problem wird von jeder Maschine eine vorgegebene Sequenz an Aufträgen ausgeführt,
welche Material konsumieren und produzieren. Für jeden Auftrag muss eine Zelle zugewiesen
werden, um dessen produziertes Material zu lagern. Außerdem müssen gültige Startzeiten für die
Aufträge aller Maschinen gefunden werden. Das Ziel des Problems ist, die kumulierte Verspätung
aller Lieferaufträge zu minimieren, wobei ein Lieferauftrag gewisse Mengen von Materialien
benötigt.

In der Vergangenheit wurden bereits einige Varianten von Planungsproblemen aus der Pro-
duktionsbranche behandelt. Allerdings werden nach unserem Wissensstand die spezifischen
Ressourceneinschränkungen des von uns untersuchten Problems von keiner Variante, die in der
wissenschaftlichen Literatur untersucht wurde, behandelt. Daher können existierende Methoden
nicht verwendet werden, um qualitative Lösungen auf effiziente Art und Weise zu finden. Da
in der Praxis auftretende Probleminstanzen sehr groß sein können, ist es ein herausforderndes
Problem, hochwertige Lösungen in akzeptablem Zeitraum zu finden. Um dieses Ziel zu erreichen,
werden innovative Lösungsmethoden benötigt.

In dieser Diplomarbeit stellen wir eine formale Spezifikation des zu lösenden Problems zur
Verfügung und modellieren dieses mittels zwei verschiedener Constraint Optimization Formu-
lierungen, welche für exakte Lösungsverfahren verwendet werden können. Weiters werden eine
Konstruktionsheuristik sowie Nachbarschaftsoperatoren für das behandelte Problem entwickelt.
Darauf basierend wird Simulated Annealing als metaheuristischer Lösungsansatz auf das Problem
angewandt. Die verschiedenen Methoden werden auf einer praktischen Instanz, sowie einer
großen Menge diverser, zufällig generierter Instanzen, getestet. Ein Vergleich bezüglich Qualität
und Laufzeit wird aufgestellt. Beide Constraintprogrammierungs-Modelle sind erfolgreich darin,
optimale Lösungen für kleinere Instanzen zu finden. Für viele der größeren Instanzen kann
nur eines der Modelle die optimale Lösung im gegebenen Zeitlimit finden. Der Ansatz mittels
Simulated Annealing löst einige Instanzen optimal und findet gültige Lösungen für die meisten
Instanzen. Außerdem können die meisten Lösungen, welche von der Konstruktionsheuristik
erzeugt werden, durch Simulated Annealing verbessert werden. Die evaluierte praktische Instanz
wurde wegen deren Größe von keinem der Constraintprogrammierungs-Modelle gelöst, die
Konstruktionsheuristik konnte allerdings eine gültige Lösung erzeugen.
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Abstract

In the modern industry, production networks often consist of multiple machines and cells, which
serve as storage facilities for final or intermediate products. In this thesis we are investigating
solution approaches for a real-life problem appearing in such production networks. In the
considered problem, each machine processes a fixed sequence of jobs that consume and produce
material. Each job must be assigned a cell, which is used for storing the produced material.
Additionally, a feasible schedule of jobs over all machines needs to be found. The objective of
the problem is to minimize the total tardiness of a set of delivery orders, which require a certain
amount of material.

Many variants of job scheduling problems from industrial manufacturing have been studied in
the past. However, to the best of our knowledge, none of the investigated variants captures the
specific resource constraints appearing in the considered problem. Thus, existing methods cannot
be used to find good solutions efficiently. Due to the large size of real-life instances, finding
high-quality solutions in a reasonable amount of time is a challenging problem that requires novel
and innovative solution approaches.

This thesis provides a formal specification of the problem at hand and investigates two alter-
native constraint programming formulations which can be used for exact solving approaches.
Furthermore, a construction heuristic is developed and neighborhood operators for the considered
problem are proposed. Based on these operators, Simulated Annealing is applied as a meta-
heuristic technique for solving the problem. Experiments are performed on one real-life instance
and a diverse set of instances that we randomly generated. We compare the different methods
regarding solution quality and runtime and present an overview of the results. Both constraint
models turned out to be successful in finding optimal solutions for small instances. For many
of the larger instances, only one model found solutions within the given time limit. Simulated
Annealing could solve numerous instances optimally and found feasible solutions for the majority
of instances. Furthermore, the Simulated Annealing approach provided improved solutions for
most of the instances. None of the constraint models solved the real-life instance due to its large
size, whereas the construction heuristic was able to provide a feasible solution.
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CHAPTER 1
Introduction

Decision-making in industrial manufacturing processes can become a complex task, since factories
may consist of a large number of machines and storage facilities, and often many jobs need to
be planned over a long period of time. The decisions to be made may consist of scheduling
jobs, but also assigning them to machines and storage facilities. Handling such planning tasks
manually using human resources not only consumes a lot of time but may also result in suboptimal
decisions. Therefore, there is a strong need to investigate automated solution methods that can
provide optimized solutions to such problems.

In this thesis, we are investigating a real-life problem arising in the agricultural animal feed
industry, which we call the Cell Assignment Problem (CAP). In general, the CAP consists of
managing the process in production networks composed of multiple machines and cells, which
represent storage facilities such as silos. A sequence of jobs, that require and produce material, is
fixed for every machine. One part of the problem is to find a feasible processing schedule over
all machines. Additionally, cells must be assigned to jobs, which store the produced material.
Another important part of the problem are the delivery orders, which consume certain quantities
of certain materials from cells as soon as their requirements are satisfied and their due date is
reached. The goal of the problem is to minimize the total tardiness of delivery orders, meaning
that every delivery order starts as soon as possible after its due date.

Similar problems appearing in the literature are the resource-constrained project scheduling prob-
lem (RCPSP) and the job-shop scheduling problem (JSSP). Extensive overviews of research on
solution methods for different variants of these problems are provided in [HB22] and [XSRH22],
respectively. While the RCPSP shares with the CAP the concept of jobs which require resources,
the aspect of the CAP that multiple machines work in parallel relates more to the JSSP. However,
to the best of our knowledge, none of the investigated problem variants tackles the specific
resource constraints emerging in the CAP.

Real-life instances of the CAP are using a large number of cells, jobs, and delivery orders. Solving
the CAP under such extensive requirements is a challenging task, as a large number of complex
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1. INTRODUCTION

constraints and objectives have to be regarded. Therefore, efficient modeling techniques and
innovative algorithms are needed to ensure an efficient and punctual production process.

1.1 Aims of this Thesis

The main goals of this thesis are:

• Providing a formal definition of the CAP. This includes a specification of the input, decision
variables, constraints, and objective.

• Providing an overview of related literature on similar problems.

• Formulating and implementing a constraint programming model as an exact solution
approach to the CAP.

• Solving the CAP using a metaheuristic approach which we expect to produce high-quality
solutions in a reasonable amount of time.

• Evaluating the various approaches on a diverse set of instances.

1.2 Main Contributions

The main results of this thesis are:

• We formulated a high-level constraint programming model for the CAP, which also serves
as a problem specification. Furthermore, a sophisticated model has been developed, which
uses an adapted input representation and additional predecessor variables to decrease the
number of generated constraints.

• Using Simulated Annealing, a novel metaheuristic approach to the CAP is provided. To
accomplish that, we developed a construction heuristic to find initial solutions of reasonable
quality as a starting point for Simulated Annealing. Additionally, four types of moves have
been designed, which are used to obtain neighborhood solutions.

• We developed a random instance generator based on real-life instances to establish a diverse
set of realistic instances. Extensive parameter tuning and experimental evaluation was
performed with the resulting instances.

• A summary of the experimental results is provided. This includes a comparison of the
solutions found by the different methods regarding solution quality. The experiments show
that the exact methods are able to provide optimal solutions for the majority of small
instances. Furthermore, it can be seen that Simulated Annealing is used successfully to
find feasible solutions also for larger instances and to solve many instances optimally.
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1.3. Organization

1.3 Organization

Chapter 2 starts by formally defining the CAP and identifying related problems in the literature.
We continue in Chapter 3 with a description of two different constraint programming models that
can be used as an exact approach to the CAP. In Chapter 4, our metaheuristic approach to the
CAP using Simulated Annealing is outlined. Chapter 5 explains the setup of the experiments
performed and gives an overview of their outcome. We provide concluding remarks and mention
future work in Chapter 6.
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CHAPTER 2
The Cell Assignment Problem

Production networks in the CAP consist of multiple machines1 and cells. The machines and cells
are partly connected by directed paths. A small example of such a network can be seen in Figure
2.1.

Figure 2.1: Example of a production network

During the production process, the feed has to be mixed by a mixing machine (M1 in Figure 1)
and, depending on the desired product, additionally pressed by a pressing machine (P1 and P2).
After every production step, the feed is stored in a cell, which has a certain capacity and type.

1Machines are also denoted as resources in later chapters.
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2. THE CELL ASSIGNMENT PROBLEM

Cells of type 1 (pre-cells) store intermediate products that still need to be pressed. Cells of type 2
(bag-loading/sacking cells) store feed which needs to be packed into bags before delivering it to
the customers. This is done by a bag loading machine (S1 in Figure 1). The resulting bags are
stored in the storage and waiting to be delivered. It is also possible to deliver feed directly from
the cells if they are of type 3 (loading cells). A cell can only contain one material, representing
a specific type of product, at a time. In contrast to cells, the storage may contain an arbitrary
number of different materials and is not capacitated.

One production step is represented by a task, which requires a certain quantity of a certain
material. This quantity must be taken from a cell c connected via a path to the machine processing
the task. The cell c is then called the input cell of this task. One exception are tasks processed by
the mixing machine, which do not require any material. The mixing machine is therefore also
called a source. Every task t produces a certain material and quantity, which may be different
from the consumed one. The produced material must be stored in a cell having a certain type,
which is called the output cell of t. If t is processed by the bag loading machine, its produced
material must be stored in the storage instead.

In practice, many tasks have identical properties, such as the required and produced material
and quantity. This is because they are part of a bigger production step, called a job. In general,
tasks of the same job can be processed by different machines of the same type (e.g. they can be
processed by two different pressing machines). Other job-specific parameters are the earliest start
time, which is the same for all tasks of this job, and the processing times for tasks belonging to
this job.

The processing times specified for one job may be different on different machines. Additionally
to the processing time, there is also a machine-specific transfer time for every job, which is the
time needed to transport the material produced by one task of the job to its output cell. If tasks
of the same job are processed multiple times in a row on the same machine, every consecutive
task can be processed while the material from its predecessor is still being transported, i.e. the
successor task does not need to wait until the end of its predecessor’s transfer time. Such a task is
called parallelizable. However, this is not possible if the predecessor task is part of a different
job. For illustration, assume a machine has the sequence T1,T2,T3,T4, where T1,T2 and T4 belong
to the same job, but T3 does not. Then, T2 is parallelizable and can be started after T1 has finished
processing, but before the end of its transfer time. The other tasks are not parallelizable since
they all have a predecessor task which is part of a different job.

Material can only be transported between machines and cells if they are connected by a path. A
special constraint which needs to be considered is that some paths are in conflict with each other,
meaning that they are not allowed to be active (i.e. used to transport material) at the same point of
time. For practical reasons, the paths transporting the required material to and from the machine
processing a task are considered as active during the transfer and processing time of the task.
Furthermore, only one task at a time can transport material to a cell and only one task at a time
can take material from a cell (but these two tasks are allowed to do this at the same time).

There are two types of delivery orders: Loading deliveries and bag-loading deliveries. Deliveries
of the former type take the required material directly from one or multiple cells, which must be
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2.1. Example Instance

of type 3, while bag-loading deliveries consume the material from the storage. A delivery order
may require multiple materials in different quantities. Every delivery has a due date which is also
an earliest start date, meaning that the delivery cannot be delivered before that point of time. The
objective of the problem is to minimize the total tardiness, i.e. the sum of the differences between
the actual start time of every delivery and its due date.

In practice, trucks are usually collecting the materials required by delivery orders. Since the
arrival time of these trucks cannot be planned exactly, there is a loading time needed, meaning
that after the start of a delivery, the cells are assumed to contain the provided material until the
loading time is finished. The storage can be freed instantly at the start of a bag-loading delivery
since it is not capacitated.

In general, the problem to be solved consists of scheduling every task of a given set of tasks on
one of its feasible machines and assigning the cells where the required material is taken from
and the produced material is transported to. The scheduling part of the problem is currently
solved using dispatching rules, which assign the tasks to machines and fix an order of all tasks
assigned to one machine. However, these rules do not consider the assignment of cells. In this
thesis, we are formulating and solving this problem: Assuming we already have fixed for every
machine a sequence of tasks, for each task the cells storing the material consumed and produced
are determined and exact starting times are assigned to every task and delivery order. We are
referring to this problem as the Cell Assignment Problem, as a key aspect of a solution is the
assignment of cells storing the material produced and consumed by the tasks.

2.1 Example Instance

An example instance of the CAP using the network from Figure 2.1 is specified in Figure 2.2. Path
conflicts, earliest start times for jobs, and due dates for deliveries are omitted in the illustration.

On the top left, the task sequence for each machine is depicted. Since a task can be uniquely
identified by the machine processing it, its position in the sequence, and the job it belongs to,
only the latter is specified for each task in the sequence.

Furthermore, two delivery orders are specified. For each order, the required materials and
quantities are denoted. For example, D1 requires a quantity of 5 of material 4 and a quantity of 50
of material 5. Additionally, it is specified whether the material needs to be taken from the storage
(in case of a bag-loading delivery) or cells. Remember that only cells of type 3 (loading cells)
can be used to provide material for delivery orders.

For each job j, the material required and produced is denoted. Furthermore, the quantity required
and produced by one task of j is stated. For jobs processed by the mixing-machine M1, these
parameters are not required, since they do not consume material. Additionally, the required type
of output cell is specified for every job. The material produced by tasks of job J6, which are
processed by the bag-loading machine, must be transported to the storage. Finally, for each job,
the processing and transfer time for one task of this job is depicted. Since these times depend on
the machine processing the task, they are stated for each of the eligible machines.

7



2. THE CELL ASSIGNMENT PROBLEM

M1 : J1,J3,J5,J5

P1 : J2

P2 : J2,J4

S1 : J6,J6

Deliveries D1 D2

req. mat. {Mat4, Mat5} {Mat2}

req. quan. {5,50} {30}

bag-loading false true

Jobs J1 J2 J3 J4 J5 J6

mat. req. - Mat1 - Mat3 - Mat2

mat. prod. Mat1 Mat2 Mat3 Mat4 Mat5 Mat2

quan. req. - 20 - 10 - 15

quan. prod. 20 15 10 5 25 15

req. cell type Type 1 Type 2 Type 1 Type 3 Type 3 Storage

proc. times {M1 : 15} {P1 : 30,P2 : 15} {M1 : 3} {P2 : 10} {M1 : 10} {S1 : 30}

trans. times {M1 : 4} {P1 : 10,P2 : 6} {M1 : 5} {P2 : 5} {M1 : 5} {S1 : 0}

Figure 2.2: Example instance using the network illustrated in Figure 2.1

In the following, a few steps of a solution approach are illustrated. Since at the beginning, all
cells are empty, no tasks requiring material can be started. The first task of M1 belongs to job J1,
which does not require material. Therefore, J1 is started. Its product is transported to C1, which is
indicated by the colored path in Figure 2.3.

After 15 minutes of processing and 4 minutes of transfer time, the task is finished. C1 now
contains the produced material, i.e. a quantity of 20 of material 1 (indicated by the red color).
Now M1 can resume with the next task. Furthermore, the first task of P1 can be started using the
material contained in C1. This step is illustrated in Figure 2.4.

After 3 minutes of processing and 5 minutes of transfer time, the second task of M1 is completed.
The produced material can potentially be used for the second task of P2 as this task belongs to
job J4 which requires a quantity of 10 of material 3. However, this task cannot be started at the

8



2.1. Example Instance

M1 : J1,J3,J5,J5

P1 : J2

P2 : J2,J4

S1 : J6,J6

Figure 2.3: First step of the production process.

M1 : J1,J3,J5,J5

P1 : J2

P2 : J2,J4

S1 : J6,J6

Figure 2.4: Second step (19 minutes after start)
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2. THE CELL ASSIGNMENT PROBLEM

moment, since the first task on P2 needs to be processed before. M1 resumes with its next task.
This step is depicted in Figure 2.5.

M1 : J1,J3,J5,J5

P1 : J2

P2 : J2,J4

S1 : J6,J6

Figure 2.5: Third step of production process (27 minutes after start)

Since on M1, two tasks of J5 are processed in a row, the fourth task does not need to wait for the
completion of the transfer time of the third one. Therefore, after 10 minutes of processing time,
the fourth task of M1 can be started. Since C5 will be occupied by the material produced by the
third task, another path is chosen. This step is not shown, but Figure 2.6 illustrates the state after
the third task is finished (after 5 more minutes of transfer time).

Since the fourth task already started 5 minutes ago, it only requires 5 more minutes of processing
and 5 minutes of transfer time to be completed. The resulting state is depicted in Figure 2.7. Now,
the instance is not solvable anymore: Delivery order D1 requires a quantity of 5 of material 4.
Since D1 is not a bag-loading delivery, the required material must be taken from loading cells,
which are cells of type 3. However, both loading cells are already occupied with material 5. This
material is also required by D1 and cannot be removed until all requirements of this delivery are
satisfied. Since a cell can only store one material at once, none of the loading cells is allowed to
store material 4 anymore.

The instance could be solved by choosing cell C6 for storing the material produced by both tasks
belonging to job J5 since this cell has enough capacity for the amount of material produced, in
contrast to cell C5. Then C5 could be used to store material 4, which would be sufficient to satisfy
the requirements of delivery order D1.

10



2.1. Example Instance

M1 : J1,J3,J5,J5

P1 : J2

P2 : J2,J4

S1 : J6,J6

Figure 2.6: Fourth step of production process (42 minutes after start)

M1 : J1,J3,J5,J5

P1 : J2

P2 : J2,J4

S1 : J6,J6

Figure 2.7: Fifth step of production process (52 minutes after start)
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2. THE CELL ASSIGNMENT PROBLEM

2.2 Related Work

The CAP can be viewed as a special case of the resource-constrained project scheduling problem
(RCPSP). In [HB10] fundamental variants and models for this problem are discussed. An updated
survey is provided in [HB22], considering new extensions of the RCPSP that emerged in the
last decade. In the general RCPSP, activities (which may correspond to tasks in the CAP) of a
project need to be scheduled. The order of the activities is constrained by predecessor relations.
Furthermore, each activity requires and consumes different quantities of one or multiple resources
(which may correspond to material in the CAP), that renew themselves over time.

The objective of the classical RCPSP is to minimize the makespan, i.e. the finishing time of the
last activity. However, other variants concerning the minimization of tardiness with respect to
certain due dates, similar to the objective of the CAP, exist. One version of the RCPSP where
activities have due dates is discussed in [WLZ20]. In contrast to the CAP, they consider weights
for each activity and the weighted tardiness as the objective.

In the CAP, resources do not renew themselves but are provided by tasks. This variant of the
RCPSP is an extension to so-called cumulative resources. A version of this problem where the
availability of resources at a time is upper-bounded, which is similar to cell capacities in the CAP,
is considered in [BGZ11]. However, the problem described does not include finding a schedule
for activities on multiple machines working in parallel, which plays a key role in the CAP.

Other versions of the RCPSP extending the resource concept are considered by [Fu14] and
[ZSN17]. They introduce a new resource category called materials. These materials are consumed
by activities and can be re-ordered if necessary. In addition to finding an activity schedule,
deciding when which material should be ordered is part of the proposed problems. We may
interpret a delivery in the CAP as an activity in such an extension of the RCPSP. A task providing
the required material can then be viewed as ordering material for the respective delivery. However,
tasks in the CAP are subject to resource requirements as well, which is not the case for material
orders in the considered problems.

Another interesting variant of the RCPSP is the preemptive RCPSP, where activities can be
interrupted. Although in the CAP, the interruption of tasks is prohibited, we can interpret a job
(consisting of multiple tasks) as an activity in the RCPSP, which may be interrupted between the
executions of its tasks. Since the CAP allows consecutive tasks to overlap timewise if and only
if they are part of the same job, the interruption of a job results in setup times for its successor.
Variants of the preemptive RCPSP with setup times for interrupted activities are discussed
in [LVDVDC19] and [ANM14]. In the considered problem formulations, the interruption of
activities is allowed at discrete time points. The CAP is more restrictive in this regard since jobs
can only be interrupted between the execution of tasks and tasks may differ in processing time,
i.e. the intervals between potential interruptions are not necessarily equal.

Another important aspect of our problem is that the demand for multiple deliveries needs to be
met, where each delivery needs a set of tasks to be finished beforehand to produce the required
material. Therefore, a delivery can be interpreted as a project in a multi-project variant of the
RCPSP. A version of this problem where each project has a due date which is also its earliest
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2.2. Related Work

finishing time is discussed in [BY10]. This is similar to the concept of due dates in the CAP.
However, in the problem described, there are explicit predecessor constraints given, whereas in
the CAP these arise implicitly by material requirements. Furthermore, in contrast to the CAP, the
parallel execution of activities is not allowed.

Although the CAP shares characteristics with these extensions of the RCPSP, some aspects are
not covered by any proposed variant. For example, the concept of machines does not appear in
the survey provided by [HB22]. In this sense, the CAP is more similar to the job-shop scheduling
problem (JSSP). An overview of the main aspects and variations of the JSSP is provided in
[XSRH22]. In the general JSSP, jobs are split into so-called operations, which must be processed
in a predefined order. Each operation is assigned to one of multiple machines which needs a
certain processing time to complete the operation. The goal of the JSSP is to find operation
sequences for all machines s.t. the makespan is minimized.

By interpreting a task in the CAP as an operation contributing to a bigger job, a similarity to the
JSSP emerges in the sense that in both problems, fragments of a job are processed by predefined
machines and a feasible sequence of these fragments over all machines needs to be found.
However, one difference between these problems is that while in the JSSP, finding a sequence for
each machine is part of the problem, the machine-internal job sequences are fixed in the CAP.
Furthermore, the classical JSSP is not subject to resource constraints. Respective problem variants
appear in the literature, one example is the resource-constrained flexible job-shop scheduling
problem (RCFJSP), discussed in [FTSCC06]. Here, an operation needs (renewable) resources
to be processed. Since in the CAP, resources are not renewable, it can be seen as an extension
to cumulative resources. However, in the flexible version of the Job Shop Scheduling Problem,
the operations can be assigned to any machines, whereas in the CAP these assignments are fixed.
Additionally, the resource constraints in the RCFJSP allow every job to potentially access every
resource available. In contrast, in the CAP resources are consumed from cells and the assignment
of cells storing the material consumed and produced by tasks plays a key role when solving the
CAP.

A rather practice-oriented problem with resource constraints similar to those in the CAP is
the Grain silo location-allocation problem discussed in [MKKT18]. Here, food grain must be
transported from procurement centers to demand points and on the way needs to be stored in
silos coming in two different levels (similar to the different cell types in the CAP). The quantity
produced and consumed at the different locations is known beforehand and the assignment of
silos is a key aspect of the problem. Although there is no concept of machines, we can interpret
the transportation of food grain to and from silos as tasks that need to be processed. In contrast
to the CAP, where multiple materials exist, in the considered problem there is only one type of
product. Furthermore, the relocation of silos plays an important role, whereas cell locations are
not relevant in the CAP.

To conclude, although there are many problems sharing characteristics with the CAP, to the best
of our knowledge no problem includes consideration of multiple machines operating in parallel
on a production network, which constrains the availability of resources in the way it happens in
the CAP. Thus, innovative solution methods are required to tackle this specific problem.
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CHAPTER 3
Exact Methods

In this chapter, we propose a high-level constraint model M1 for the CAP which can be used as an
exact solution approach. This model additionally serves as a formal specification for the CAP. M1
is described in Section 3.1. Additionally, we investigated a second model by partly adapting the
solution representation and reformulating constraints, which resulted in the model M2 described
in Section 3.2. Model M2 requires some additional assumptions on the instances. First, that
there are at most two paths between the same resource and cell. The second assumption concerns
conflicting paths and is further described in Section 3.2.1. Both assumptions were satisfied by the
instances we consider in this thesis.

3.1 High-Level Constraint Model M1

This model makes use of high-level constraints to provide a rather direct specification of the CAP.

3.1.1 Input

Input C M P R J T D

Set of Cells Materials Paths Resources Jobs Tasks Delivery Orders

Table 3.1: Input sets

The input for M1 consists of a set of cells, materials, paths, resources1, jobs, tasks, and delivery
orders. The respective notations are specified in Table 3.1. Each object is described by the
parameters stated in Table 3.2. The 3 cell types are represented by the integers 1-3. Although the
cellReq-parameter requires a cell type as value, it may also take the dummy type 0, representing
that the produced material must be transported to the storage. The encoding of cell types is

1The term resource is used as a synonym for machine in the following.
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3. EXACT METHODS

specified in Table 3.3. Since in general a cell can have several types, a Boolean parameter
cellO f Typei, j is needed, stating for every cell i if it is of type j.

The union of resources and cells is considered as the set N of nodes. This set represents the
domain of the start and end locations of paths. Since paths may also end in the storage, N is
extended by 0, which represents the storage.

For each task, the resource processing it is specified, as well as to which job it belongs. Tasks
on the same resource are assumed to be given in the order they need to be processed, i.e. if
resO f Taski = resO f Taski+1, i+ 1 is the task coming directly after i in the sequence of the
respective resource.

3.1.2 Variables

A solution consists for every task t of an assignment of paths used to transport material to and
from t, as well as the start time of t. The endtime of t can be directly derived from its start.

To keep track of the contents of cells and the storage, the production process is modeled as a
sequence of events sorted by time. Since the contents of cells or the storage change only at
the end of a task or a delivery, a proper event always corresponds to such an incident. In the
following the set of proper events is called E. The variable taskDelO f Eventi therefore represents
the task or delivery which ends at event i. The materials and quantities contained in the cells and
the storage is updated after every event by respective helper variables.

Additionally, a solution contains for every delivery d its start time, as well as which material
and quantity required by d is provided by which cells. These values will always be 0 for sack
deliveries2 since they only need material from the storage.

The variables and their intended meaning are described below. Note that the domain of some
variables is extended by a dummy value, which is indicated by the subscript 0. This has various
reasons: pathToTask is allowed to be 0 for tasks processed by resources without incoming paths.
The set E0 extends the set of proper events by the special event 0, representing the start of the
production process. In case of the matA f ter and cellProvMat variables, the value 0 represents
that no material is contained in the respective cell.

The objective is to minimize the total tardiness, i.e. for each delivery the the difference between
its due date and its start time:

min ∑
i∈D

dueDatei − startO f Deliveryi

It must be noted that the difference between the due date and the start of a delivery cannot be
negative, since a delivery is not allowed to start before its due date.

2The term sack delivery is in the following used as a synonym for bag-loading delivery.
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3.1. High-Level Constraint Model M1

Parameter Domain Meaning

capi N maximum capacity of cell i

Cell parameters cellO f Typei, j bool cell i is of type j

∀i ∈C, j ∈{1,2,3} initMati M material contained by cell i initially

initQuani N quantity contained by cell i initially

Storage parameters initStorQuani N quantity of material i contained by
∀i ∈ M storage initially

Path parameters startLi N startLocation of path i

∀i, j ∈ P endLi N endLocation of path i

con fi, j bool paths i and j are conflicting

delReqQuani, j N quantity of material j required for
Delivery params. delivery order i

∀i ∈ D, j ∈ M sackDeliveryi bool Delivery order i requires material
from the storage

dueDatei N due date of delivery order i

matProdi M material produced by tasks of job i

quanProdi N quantity produced by one task of job i

matReqi M material required by tasks of job i

Job parameters quanReqi N quantity required by one task of job i

∀i ∈ J, j ∈ R processTimei, j N processing time for one task of job i on resource j

transTimei, j N transfer time for one task of job i on resource j

earliestStarti N earliest start time of any task of job i

cellReqi {0,1,2,3} cell type required after job i

Task parameters resO f Taski R resource processing task i

∀i ∈ T jobO f Taski J job of task i

Table 3.2: Input Parameters for M1

ID 0 1 2 3

Cell type Storage Pre-Press Sacking Loading

Table 3.3: Encoding of cell types
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Variable Domain Meaning

pathToTaski P0 material is transported to task i over
this path

pathFromTaski P material is transported from task i over
Task Vars. this path

∀i ∈ T startO f Taski N start time of task i

endO f Taski N end time of task i including
transportation time

taskDelO f Eventk T ∪D task / delivery ending at the kth event

timeO f Event j N time when the jth event is happening

startO f Event j N start time of task/delivery ending at the
Event Vars. jth event

∀i ∈C, j ∈ E0, isDeliveryEventk bool true iff event k corresponds to the end of
k ∈ E,m ∈ M a delivery

quanA f teri, j N quantity contained by cell i after event j

matA f teri, j M0 material contained by cell i after event j

storQuanA f term, j N quantity of material m contained by
storage after event j

Delivery Vars. startO f Delivery j N time when delivery j is started

∀i ∈C, j ∈ D cellProvQuani, j N quantity provided by cell i for delivery j

cellProvMati, j M0 material provided by cell i for delivery j

Table 3.4: Variables used in M1

3.1.3 Constraints

M1 can be encoded by the following constraints, which are subdivided into different categories,
depending on their function.

Location Constraints

pathToTaski ̸= 0 ⇐⇒ ∃p ∈ P | endLp = resO f Taski,∀i ∈ T (1.1)

startLpathFromTaski = resO f Taski,∀i ∈ T (1.2)

pathToTaski ̸= 0 =⇒ endLpathToTaski = resO f Taski,∀i ∈ T (1.3)
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3.1. High-Level Constraint Model M1

cellReq jobO f Taski = 0 =⇒ endLpathFromTaski = 0,∀i ∈ T (1.4)

cellReq jobO f Taski ̸= 0 =⇒ cellO f TypeendLpathFromTaski ,cellReq jobO f Taski
,∀i ∈ T (1.5)

Constraints 1.2 and 1.3 ensure that the assigned path to/from a task ends in/starts from the
resource processing the task. Since some tasks are processed by a resource having no incoming
paths, in this case, pathToTask is set to a dummy path 0 by constraint 1.1. Constraints 1.4 and
1.5 force that the path from a task ends in a cell having the required cell type, or being the storage
(type 0), respectively.

Conflict Constraints

i ̸= j∧ (startO f Taski < endO f Task j ∧ startO f Task j < endO f Taski) =⇒
¬con fpathToTaski,pathToTask j ∧¬con fpathFromTaski,pathFromTask j ,∀i, j ∈ T (1.6)

i ̸= j∧ (startO f Taski < endO f Task j ∧ startO f Task j < endO f Taski)∧
resO f Taski ̸= resO f Task j ∧ pathToTaski ̸= 0∧ pathToTask j ̸= 0

=⇒ startLpathToTaski ̸= startLpathToTask j ,∀i, j ∈ T (1.7)

i ̸= j∧ (startO f Taski < endO f Task j ∧ startO f Task j < endO f Taski)∧
resO f Taski ̸= resO f Task j ∧ endLpathFromTaski ̸= 0

=⇒ endLpathFromTaski ̸= endLpathFromTask j ,∀i, j ∈ T (1.8)

Constraint 1.6 ensures that if the execution of two tasks overlap, the respective paths used to/from
the tasks do not conflict. Constraints 1.7 and 1.8 are needed additionally to prohibit overlapping
tasks from delivering to/from the same cell with some exceptions: If for at least one of these tasks,
pathToTask = 0, i.e. the task is processed by a mixing-resource (having no incoming paths),
constraint 1.7 is not required and if the task delivers to the storage, constraint 1.8 is not required,
since it is allowed to deliver to the storage concurrently. Another exception for both constraints
happens if the overlapping tasks are processed by the same resource, which is only possible if the
task j executed later is parallelizable, in which case it is allowed to use the same cells.

Timing Constraints

endO f Taski = startO f Taski + processTimeresO f Taski, jobO f Taski

+transTimeresO f Taski, jobO f Taski ,∀i ∈ T (1.9)
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3. EXACT METHODS

resO f Taski = resO f Task j ∧ i > j =⇒ startO f Taski ≥ endO f Task j

−[ jobO f Taski = jobO f Task j] · transTimeresO f Taski, jobO f Taski ,∀i, j ∈ T (1.10)

startO f Taski ≥ earliestStart jobO f Taski ,∀i ∈ T (1.11)

startO f Deliveryi ≥ dueDatei,∀i ∈ D (1.12)

Constraint 1.9 links the variables representing the start and end time of tasks. Constraint 1.10
prohibits two tasks that are processed by the same resource from overlapping, with the exception
that the successor task can start within the transfer time of its predecessor if they are part of the
same job. Finally, constraints 1.11 and 1.12 ensure that a task/delivery does not start before the
earliest start of its corresponding job, or its due date, respectively.

Event Constraints

timeO f Eventi−1 ≤ timeO f Eventi,∀i ∈ E (1.13)

i ̸= j ⇐⇒ taskDelO f Eventi ̸= taskDelO f Event j,∀i, j ∈ E (1.14)

taskDelO f Eventi ∈ D ⇐⇒ isDeliveryEventi,∀i ∈ E (1.15)

timeO f Eventi = [¬isDeliveryEventi] · endO f Taskt

+[isDeliveryEventi] · (startO f Deliveryt +[¬sackDeliveryt ] ·60)

where t = taskDelO f Eventi,∀i ∈ E (1.16)

startO f Eventi = ¬isDeliveryEventi · startO f Taskt

+isDeliveryEventi · startO f Deliveryt

where t = taskDelO f Eventi,∀i ∈ E (1.17)

20



3.1. High-Level Constraint Model M1

Constraint 1.13 forces that events are sorted by their time points in ascending order. Constraint
1.14 ensures that every event represents a different task or delivery and, since the domain of
events is exactly the union of the domain of tasks and deliveries, which are disjoint, every task
and delivery is represented by a unique event. Constraint 1.15 forces that for all delivery events
isDeliveryEvent is true, whereas for all task events is evaluates to false. Constraints 1.16 and 1.17
link the start and time of an event with the start/end of its corresponding task/delivery. It must
be noted that in Constraint 1.16 a case distinction between sack and loading deliveries is made:
While the former do not require any time (i.e. the start equals the end time), loading deliveries
need a loading time of 60 minutes.

Requirement Constraints

¬isDeliveryEventi ∧ pathToTaskt ̸= 0∧quanReq jobO f Taskt > 0∧
(timeO f Evente > startO f Taskt ∨ e = max( j ∈ E0 | timeO f Event j ≤ startO f Eventi)

=⇒ matA f terstartLpathToTaskt ,e = matReq jobO f Taskt ∧
quanA f terstartLpathToTaskt ,e ≥ quanReq jobO f Taskt

where t = taskDelO f Eventi,∀i ∈ E,e ∈ 0 . . . i−1 (1.18)

isDeliveryEventi ∧¬sackDeliveryd ∧ cellProvMatc,d ̸= 0∧
(timeO f Evente > startO f Deld ∨ e = max( j ∈ E0 | timeO f Event j ≤ startO f Eventi)

=⇒ matA f terc,e = cellProvMatc,t
where d = taskDelO f Eventi,∀i ∈ E,∀e ∈ 0 . . . i−1,c ∈C (1.19)

∑
i∈E

cellProvQuanc,d [isDeliveryEventi ∧¬sackDeliveryd ∧ cellProvMatc,d = m

∧(timeO f Evente > startO f Deld ∨ e = max( j ∈ E0 | timeO f Event j ≤ startO f Eventi)

where d = taskDelO f Eventi]≤ quanA f terc,e,∀e ∈ 0 . . . i−1,c ∈C,m ∈ M (1.20)

¬sackDeliveryi =⇒ ∑
c∈C

(cellProvMatc,i = j) · cellProvQuanc,i

= delReqQuani, j,∀i ∈ D, j ∈ M (1.21)

¬cellO f Typei,3 =⇒ cellProvQuani, j = 0,∀i ∈C, j ∈ D (1.22)
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Constraints 1.18 - 1.20 ensure that after every event e < i satisfying certain criteria, the material
and quantity requirements of the task/delivery d ending at event i are met. These criteria are the
following: Either e happens after the start of d, which together with e < i implies that e happens
during the execution of d, or e is the last event happening before the start of d. Note that in
constraint 1.20 after event e the quantity contained in c must be at least the sum of quantities
provided by all deliveries taking some material m from c and overlapping with the execution of
the task/delivery ending at e or happening directly after e. Here summing over all these deliveries
is necessary because it is allowed that multiple deliveries take material concurrently from one
cell. Since constraints 1.19 and 1.20 refer to the variables deciding how much quantity and
which material is provided by which cell for the delivery, constraint 1.21 is needed additionally
to ensure that in total the right amount of the right material is provided. Constraint 1.22 prohibits
non-loading cells from providing material for deliveries.

Inventory constraints

quanA f teri, j = quanA f teri, j−1 +¬isDeliveryEvent j ·
(−(startLpathToTaskt = i) ·quanReq jobO f Taskt

+(endLpathFromTaskt = i) ·quanProd jobO f Taskt )

−isDeliveryEvent j ·¬sackDeliveryt · cellProvQuani,t

where t = taskDelO f Event j,∀ j ∈ E, i ∈C (1.23)

storageQuanA f teri, j = storageQuanA f teri, j−1 +¬isDeliveryEvent j ·
(endLpathFromTaskt = 0∧matProd jobO f Taskt = i) ·quanProd jobO f Taskt

−isDeliveryEvent j · sackDeliveryt ·delReqQuant,i

where t = taskDelO f Event j,∀ j ∈ E, i ∈ M (1.24)

quanA f teri, j+1 > 0∧matA f teri, j ̸= 0

=⇒ matA f teri, j+1 = matA f teri, j,∀ j ∈ E, i ∈C (1.25)

¬isDeliveryEventi ∧ endLpathFromTaskt ̸= 0 =⇒ matA f terendLpathFromTaskt ,i

= matProd jobO f Taskt where t = taskDelO f Event j,∀ j ∈ E (1.26)

0 ≤ quanA f teri, j ≤ capi,∀i ∈C, j ∈ E0 (1.27)
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3.1. High-Level Constraint Model M1

storageQuanA f teri, j ≥ 0,∀i ∈ M, j ∈ E0 (1.28)

These constraints ensure that the cell/storage content is altered in a feasible way after every event.
Constraints 1.23 and 1.24 calculate the cell/storage quantity and constraint 1.25 forces that if a
cell is nonempty before and after an event, the material contained stays the same. Constraint 1.26
ensures that the material contained in the output cell of a task is the material produced by the
task. Finally, constraints 1.27 and 1.28 restrict the domain of the quantity variables s.t. they are
positive and the cell capacity is not exceeded.

Initialization constraints

timeO f Event0 = 0∧ startO f Event0 = 0 (1.29)

quanA f terc,0 = initQuanc ∧matA f terc,0 = initMatc,∀c ∈C (1.30)

storageQuanA f teri,0 = initStorageQuani,∀i ∈ M (1.31)

The initialization constraints initialize the variables concerning event 0, which represents the start
of the manufacturing process, to the initial values.

Symmetry breaking constraints

quanA f terc,e = 0 ⇐⇒ matA f terc,e = 0,∀c ∈C,e ∈ E0 (1.32)

sackDeliveryi =⇒ cellProvQuanc,i = 0∧
cellProvMatc,i = 0,∀i ∈ D,c ∈C (1.33)

cellProvQuani, j = 0,↔ cellProvMati, j = 0,∀i ∈C, j ∈ D (1.34)

In some cases multiple different assignments to a variable lead practically to the same solution,
if the other variables are fixed. To give an example, if a cell is empty, this cell could contain an
arbitrary material without violating any of the constraints formulated in the previous sections.
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The emerge of such symmetric solutions increases the size of the search space and can be avoided
by formulating symmetry breaking constraints.

Constraint 1.32 prohibits an empty cell from containing a material different from 0. Constraint
1.33 forces cells to provide quantity and material 0 for sack deliveries, since these deliveries only
need material from the storage. Constraint 1.34 forces a cell to provide the dummy material 0 if
it does not provide quantity for a delivery and vice versa.

3.2 Alternative Model M2

As an alternative to M1, the solution representation and constraints are partly adapted with the
motivation of giving a more efficient problem formulation. This is mainly achieved by refor-
mulating the conflict constraints and requirements of deliveries and by introducing predecessor
variables to decrease the number of generated constraints. To accomplish that, a different input
format is required and additional assumptions on the structure of the input are taken. Although
this makes the model unusable for special cases of the CAP, the instances considered in this thesis
satisfy these assumptions.

3.2.1 Input

The cell- and storage parameters used in M2 are the same as in M1 (see Table 3.2). The first
difference compared to M1 is that while in M1 the property that a resource is a source is computed
by a constraint checking if an incoming path exists, in M2 this is computed in the preprocessing
phase and specified as a resource parameter isSourcei. Furthermore, the notion of paths is
completely removed. Connections between resources and cells are specified indirectly using
the new resource parameters noOutPathExists and noInPathExists. Note that they also allow
cell 0 as argument, which represents that the respective resource is not connected to the storage.
Another difference compared to M1 is that in the input of M2 for every resource i the subset
of tasks processed by i is specified explicitly by the tasksO f Resi parameter. Although this is
redundant information, it makes it possible to decrease the number of constraints generated. Note
that some constraints refer to the set tasksO f Res+i , which is defined as tasksO f Resi without the
first task processed by i.

Parameter Domain Meaning

isSourcei bool resource i has no incoming paths ∀i ∈ R

noOutPathExistsi, j bool no path starting from res. i ∀i ∈ R, j ∈C0
and ending in cell j exists

noInPathExistsi, j bool no path starting from cell j ∀i ∈ R, j ∈C0
and ending in res. i exists

tasksO f Resi ⊆ T tasks processed by resource i ∀i ∈ R

Table 3.5: New resource parameters for M2
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To encode conflicting paths, conflicts between tuples of resource-cell pairs are introduced. In the
following, such a pair (r,c) is considered as active if any of the paths connecting r and c is active.

We distinguish between two types of conflicts: The simpler type is a so called pair-conflict
between two paths p1 and p2, where p1 is the only path connecting resource r1 with cell c1
and p2 is the only path connecting resource r2 with cell c2. The set of pair conflicts is denoted
by K2. These conflicts are represented using 4 arrays, where the value of each array at index i
represents either one of the resources or one of the cells involved in pair conflict i. Since the
direction of the corresponding paths could be ambiguous using this formulation, we additionally
made use of the fact that in realistic instances, conflicts only appear between paths starting from
a resource and ending in a cell. Therefore, only these paths are considered. For example, if
pairCon f lictR11 = r1, pairCon f lictR21 = r2, pairCon f lictC11 = c1 and pairCon f lictC21 = c2,
then pair conflict 1 is the conflict between the path connecting r1 and c1 and the path connecting
r2 and c2.

Parameter Domain Meaning

pairCon f lictR1i R first resource of pair conflict i ∀i ∈ K2

pairCon f lictR2i R second resource of pair conflict i ∀i ∈ K2

pairCon f lictC1i C first cell of pair conflict i ∀i ∈ K2

pairCon f lictC2i C second cell of pair conflict i ∀i ∈ K2

Table 3.6: New pair-conflict parameters for M2

The more complex triple conflicts, represented by the set K3, occur when there are two paths
p1 and p2 between the same resource r and cell c where p1 conflicts with different paths than
p2. Then, for each pair of paths q1,q2 where p1 conflicts with q1 and p2 conflicts with q2, the
following holds: While one of the paths of p1 and p2 is active, not both q1 and q2 can be used.
Let s1,s2 be the resources and d1,d2 the cells connected by the paths q1 and q2 respectively. Then
we can break this down to resource-cell pairs by prohibiting the activation of both (s1,d1) and
(s2,d2) while the combination (r,c) is used. This abstraction however requires some additional
assumptions: First, that p1 and p2 are the only paths between r and c. Since the number of
paths connecting the same resource and cell is at most 2 in realistic instances, they satisfy this
assumption. Second, that if there is a path between s1 and d1 which is not q1 (or symmetrically
for s2, d2 and q2), it conflicts with p1 or p2, since otherwise is could be used as an alternative
path which can be activated independently. The realistic instances also satisfied this criterion.

Since most of the deliveries arising in practice only require one material, the delReqQuan
parameters used in M1 turned out to be a very sparse matrices, which resulted in the generation of
many zero-sum constraints. To avoid this, the set of subdeliveries S is added to the input of M2,
where one subdelivery represents the requirement of one material by one delivery. Therefore, there
is only a certain quantity of one material required by each subdelivery. To define the requirements
of a delivery, for each delivery the corresponding subset of subdeliveries is specified.

Another difference between M1 and M2 is that in the latter the set of jobs is completely removed.
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Parameter Domain Meaning

tripleCon f lictR1i R first resource of triple conflict i ∀i ∈ K3

tripleCon f lictR2i R second resource of triple conflict i ∀i ∈ K3

tripleCon f lictR3i R third resource of triple conflict i ∀i ∈ K3

tripleCon f lictC1i C first cell of triple conflict i ∀i ∈ K3

tripleCon f lictC2i C second cell of triple conflict i ∀i ∈ K3

tripleCon f lictC3i C third cell of triple conflict i ∀i ∈ K3

Table 3.7: New triple-conflict parameters for M2

Parameter Domain Meaning

quanReqBySubDeli N quantity required by subDelivery j ∀i ∈ S

matReqBySubDeli M material required by subDelivery j ∀i ∈ S

subDelsO f Deli ⊆ S subdeliveries belonging to delivery i ∀i ∈ D

Table 3.8: New delivery parameters for M2

Instead, all job-specific properties are computed for each task in a preprocessing phase. The
notion of jobs would still be necessary since tasks can be started in parallel if they are part of the
same job and are scheduled consecutively on the same resource. Instead of using this formulation,
this property is explicitly defined for each task i as isParallelizablei. Furthermore, for each task t
the set of cells that are infeasible choices for storing the material produced by t due to their cell
type is computed.

3.2.2 Variables

Since there are no paths in M2, the variable sets pathToTask and pathFromTask are replaced
by variable sets inCellTask and outCellTask. Note that both variable sets are allowed to
take the dummy value 0, where inCellTask = 0 represents that the resource is a source and
outCellTask = 0 represents that the task delivers to the storage. Another difference between
M1 and M2 is that in the latter the taskDelO f Event variables are replaced by the variables
eventO f Task and eventO f Del. Furthermore, the startO f Event variables are removed. Their
only use case in M1 is finding for every task/delivery i the last event before the start of i, since
its requirements must be satisfied after this event. Therefore, new variables predEventO f Task,
predEventO f Del, predTimeO f Task and predTimeO f Del are defined. Note that the material
required must be available during the whole duration of a task/delivery, which is handled in
M1 by enforcing that the material is available after every event overlapping the duration of the
consuming task/delivery. To decrease the number of generated constraints in this way, in M2
the additional potentialQuanA f teri, j variables are introduced, representing the potential quantity
contained in cell i after event j, which is defined by the actual quantity contained minus the
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Parameter Domain Meaning

matProdi M material produced by task i ∀i ∈ T

quanProdi N quantity produced by task i ∀i ∈ T

matReqi M material required for task i ∀i ∈ T

quanReqi N quantity required for task i ∀i ∈ T

processTimei N processing time for task i ∀i ∈ T

transTimei N transfer time for task i ∀i ∈ T

earliestStarti N earliest start time of task i ∀i ∈ T

cellReqi [0,3] cell type required after task i ∀i ∈ T

resO f Taski R resource processing task i ∀i ∈ T

isParallelizablei bool task i executes the same job as its ∀i ∈ T
predecessor task on the same resource

in f TypeForTaski, j bool cell j is not of type cellReqi ∀i ∈ T, j ∈C

Table 3.9: New task Parameters for M2

material required by any tasks/deliveries consuming from cell i which have already started or
have j as predecessor event. Note that no corresponding variables for the storage are needed,
since it is not capacitated.

The objective is the same as in M1:

min ∑
i∈D

dueDatei − startO f Deliveryi

3.2.3 Constraints

M2 can be encoded by the following constraints, which are subdivided into different categories,
depending on their function.

Location Constraints

inCellTaski = 0 ⇐⇒ isSourceresO f Taski ,∀i ∈ T (2.1)

inCellTaski ̸= j,∀i ∈ T, j ∈C where ¬isSourceresO f Taski ∧noInPathExistsresO f Taski j (2.2)

outCellTaski ̸= j,∀i ∈ T, j ∈C where noOutPathExistsresO f Taski j (2.3)
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Variable Domain Meaning

inCellTaski C0 cell providing material for task i

outCellTaski C0 cell storing material produced by task i

Task Vars. startO f Taski N start time of task i

∀i ∈ T endO f Taski N end time of task i including
transportation time

eventO f Taski E event representing the end of task i

predEventO f Taski E0 last event happening before task i starts

predTimeO f Taski N time of predEventO f Taski

timeO f Event j N time when the jth event is happening

Event Vars. quanA f teri, j N quantity contained by cell i after event j

i ∈C, j ∈ E, potentialQuanA f teri, j N potential quantity contained by cell i after event j

k ∈ M matA f teri, j M0 material contained by cell i after event j

storQuanA f terk, j N quantity of material k contained by
storage after event j

startO f Delivery j N time when delivery j is started

cellProvQuani, j N quantity provided by cell i for delivery j

Delivery Vars. cellProvMati, j M0 material provided by cell i for delivery j

∀i ∈C, j ∈ D eventO f Del j E event representing the end of delivery j

predEventO f Del j E0 last event happening before delivery j starts

predTimeO f Del j N time of predEventO f Del j

Table 3.10: Variables used in M2

outCellTaski = 0,∀i ∈ T where cellReqi = 0 (2.4)

outCellTaski ̸= j,∀i ∈ T, j ∈C where cellReqi ̸= 0∧ in f TypeForTaski, j (2.5)

inCellTaski ̸= outCellTaski,∀i ∈ T (2.6)

Constraints 2.1 - 2.5 are just translations from constraints 1.1 - 1.5 using the new variables.
Note that compared to the old formulation, in constraint 2.1 no existential statement is needed
and constraints 2.2 - 2.5 do not use variables in indices anymore, which may result in better
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performance. The additional Constraint 2.6 prohibits a task to use the same cell as in- and out-cell.
Although this is theoretically allowed by the other constraints and also by model M1, in realistic
production instances this is not possible due to the network structure. Therefore, Constraint 2.6
decreases the size of the search space although it is a redundant constraint, assuming a realistic
network structure.

Timing Constraints

endO f Taski = startO f Taski + processTimei + transTimei,∀i ∈ T (2.7)

startO f Task j ≥ endO f Task j−1,∀i ∈ R, j ∈ tasksO f Res+i where ¬isParallelizable j (2.8)

startO f Task j ≥ endO f Task j−1 − transTime j,∀i ∈ R, j ∈ tasksO f Resi

where j−1 ∈ tasksO f Resi ∧ isParallelizable j (2.9)

startO f Taski ≥ earliestStarti,∀i ∈ T (2.10)

startO f Deliveryi = predTimeO f Deli,∀i ∈ D where dueDatei ≤ predTimeO f Deli (2.11)

startO f Deliveryi = dueDatei,∀i ∈ D where dueDatei > predTimeO f Deli (2.12)

Constraints 2.7 and 2.10 are translations from constraint 1.9 and 1.11 using the new task-specific
input parameters. Constraints 2.8 and 2.9 are a more efficient formulation of constraint 1.10 since
only linearly many constraints (in the number of tasks) are generated. They make use of the fact
that tasks on the same resource are given in the scheduled order and deal separately with the
case that a task j and its predecessor on the same resource can be parallelized or not. Constraints
2.11 and 2.12 ensure that a delivery cannot start before its due date, but additionally exploit that
in an optimal solution a delivery must start as soon as it is satisfied and its due date is reached.
Constraint 2.11 therefore forces that an overdue delivery starts directly after its predecessor event
is finished while constraint 2.12 ensures that a delivery satisfied before its due date t starts as
soon as t is reached. The fact that it must be satisfied comes from the requirement and inventory
constraints, stating that delivery requirements must be met after its predecessor event.
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Conflict Constraints

outCellTaski = outCellCon f lictC1k ∧outCellTask j = outCellCon f lictC2k =⇒
¬(startO f Taski < endO f Task j ∧ startO f Task j < endO f Task j),∀i, j ∈ T,k ∈ K2

where resO f Taski = outCellCon f lictR1k ∧ resO f Task j = outCellCon f lictR2k (2.13)

outCellTaskr = tripleCon f lictC1i ∧outCellTasks = tripleCon f lictC2i ∧
outCellTaskt = tripleCon f lictC3i =⇒

¬(startO f Taskr < endO f Tasks ∧ startO f Tasks < endO f Taskr)∨
¬(startO f Taskt < endO f Tasks ∧ startO f Tasks < endO f Taskt),

∀r,s, t ∈ T, i ∈ K3 where resO f Taskr = tripleCon f lictR1i ∧
resO f Tasks = tripleCon f lictR2i ∧ resO f Taskt = tripleCon f lictR3i (2.14)

inCellTaski ̸= inCellTask j,∀i, j ∈ T where j > i∧ inCellTaski ̸= 0∧
startO f Taski < endO f Task j ∧ startO f Task j < endO f Taski ∧

(resO f Taski ̸= resO f Task j ∨¬isParallelizable j) (2.15)

outCellTaski ̸= outCellTask j,∀i, j ∈ T where j > i∧outCellTaski ̸= 0∧
startO f Taski < endO f Task j ∧ startO f Task j < endO f Taski ∧

(resO f Taski ̸= resO f Task j ∨¬isParallelizable j) (2.16)

Constraint 2.13 encodes that for every pair of tasks i, j processed by resources which are conflict-
ing when certain out-cells are used (no matter which path to these cells is chosen), if tasks i and j
use these cells respectively, then they must not overlap temporally. Constraint 2.14 is a similar
constraint dealing with triple conflicts: In this case, there are two paths connecting the resource
and out-cell used by task s, where one path conflicts with the path connecting the resource and
out-cell used by task r and the other one conflicts with the path connecting the resource and
out-cell used by task t. Therefore, task r or task t must not overlap temporally with task s, since
otherwise none of the two paths between the resource and out-cell used by s can be activated.
Constraints 2.15 and 2.16 ensure that for every pair of tasks which overlap temporally they must
use different in and out cells since they are not allowed to access the same cell at the same time.
One exception is if i and j are executed on the same resource and j is allowed to run in parallel.
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Event Constraints

timeO f Eventi−1 ≤ timeO f Eventi,∀i ∈ E (2.17)

allDi f f erent({eventO f Taski | i ∈ T}∪{eventO f Deli | i ∈ D}) (2.18)

eventO f Task j−1 < eventO f Task j,∀i ∈ R, j ∈ tasksO f Res+i (2.19)

timeO f EventeventO f Taski = endO f Taski,∀i ∈ T (2.20)

timeO f EventeventO f Deli = startO f Deliveryi +60,∀i ∈ D where ¬sackDeliveryi (2.21)

timeO f EventeventO f Deli = startO f Deliveryi,∀i ∈ D where sackDeliveryi (2.22)

Constraint 2.17 equals constraint 1.13. The global constraint 2.18 equals constraint set 1.14. The
redundant constraint 2.19 is using the property that the tasks of a resource are specified in the
order they are scheduled to decrease the size of the search space. Constraints 2.20 - 2.22 encode
constraint 1.16, dealing with each case separately.

Predecessor Constraints

predTimeO f Taski ≤ startO f Taski,∀i ∈ T (2.23)

predTimeO f Taski ≥ timeO f Event j,∀i ∈ T, j ∈ E0

where j < eventO f Taski ∧ timeO f Event j ≤ startO f Taski (2.24)

predEventO f Taski = j =⇒ predTimeO f Taski = timeO f Event j,

∀i ∈ T, j ∈ E0 where j < eventO f Taski (2.25)
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predTimeO f Deli ≤ startO f Deli,∀i ∈ D (2.26)

predTimeO f Deli ≥ timeO f Event j,∀i ∈ D, j ∈ E0

where j < eventO f Deli ∧ timeO f Event j ≤ startO f Deli (2.27)

predEventO f Deli = j =⇒ predTimeO f Deli = timeO f Event j,

∀i ∈ D, j ∈ E0 where j < eventO f Deli (2.28)

As already pointed out, M2 uses predecessor variables to reformulate requirement constraints.
Therefore, new predecessor constraints are needed to define the behaviour of these variables.
Constraints 2.23 and 2.24 ensure that predTimeO f Taski is upper bounded by the start of task i,
but at least as big as the time of any event happening before. Constraint 2.25 is needed additionally
to force that predTimeO f Taski is the time of an event. To generate less constraints, only events
j < eventO f Taski, i.e. events happening before the end of task i, are considered as potential
predecessor events. Constraints 2.26 - 2.28 are the corresponding formulations for the delivery
variables.

Requirement Constraints

matA f terinCellTaski,predEventO f Taski = matReqi,∀i ∈ T where quanReqi > 0 (2.29)

matA f teri,predEventO f Del j = cellProvMati, j,∀i ∈C, j ∈ D where cellProvQuani, j > 0 (2.30)

∑
c∈C

(cellProvMatc,i = matReqBySubDel j) · cellProvQuanc,i

= quanReqBySubDel j,∀i ∈ D, j ∈ subDelsO f Deli (2.31)

cellProvMati, j ̸= m,∀i ∈C, j ∈ D,m ∈ M where

¬sackDelivery j ∧m /∈ {matReqBySubDelk | k ∈ subDelsO f Del j} (2.32)
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cellProvQuani, j = 0,∀i ∈C, j ∈ D where ¬cellO f Typei,3 (2.33)

Constraints 2.29 and 2.30 are weaker versions of 1.18 and 1.19, since they only force the material
after the predecessor event of a task/delivery to match the material required / provided by the
respective cell. The quantity constraints are handled by inventory constraints 2.40-2.42 which are
described in further detail below. The advantage of this formulation over the one used in M1 is
that the constraints are not checking for every event if it is the predecessor, but refer directly to the
predecessor event using the respective variables. Constraint 2.31 is a translation of constraint 1.21
using subdeliveries. Since a delivery contains no subdeliveries for materials which are not (i.e. in
a quantity of 0) required, constraint 2.32 is needed additionally to prohibit cells from providing
such materials. Constraint 2.33 equals constraint 1.22, ensuring that material for deliveries is
taken from loading cells only.

Inventory constraints

quanA f teri, j = quanA f teri, j−1 +quanProdt ,∀i ∈C, j ∈ E, t ∈ T

where i = outCellt ∧ j = eventO f Taskt (2.34)

quanA f teri, j = quanA f teri, j−1 −quanReqt ,∀i ∈C, j ∈ E, t ∈ T

where i = inCellt ∧ j = eventO f Taskt (2.35)

quanA f teri, j = quanA f teri, j−1,∀i ∈C, j ∈ E, t ∈ T

where i ̸= inCellt ∧ i ̸= outCellt ∧ j = eventO f Taskt (2.36)

quanA f teri, j = quanA f teri, j−1 − cellProvidingQuani,d ,∀i ∈C, j ∈ E,d ∈ D

where j = eventO f Deld (2.37)

quanA f teri, j+1 > 0∧matA f teri, j ̸= 0

=⇒ matA f teri, j+1 = matA f teri, j,∀ j ∈ E, i ∈C (2.38)

matA f terc,i = matProdt ,∀i ∈C, j ∈ E, t ∈ T where i = eventO f Taskt ∧ c = outCellt (2.39)
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potentialQuanA f teri, j = potentialQuanA f teri, j−1 +quanProdk

−∑
t∈T

quanReqt [ j = predEventt ∧ c = inCellt ]

− ∑
d∈D

cellProvidingQuani,d [ j = predEventd ∧¬sackDeld ],

∀i ∈C, j ∈ E,k ∈ T where i = outCellk ∧ j = eventO f Taskk (2.40)

potentialQuanA f teri, j = potentialQuanA f teri, j−1

−∑
t∈T

quanReqt [ j = predEventt ∧ c = inCellt ]

− ∑
d∈D

cellProvidingQuani,d [ j = predEventd ∧¬sackDeld ],

∀i ∈C, j ∈ E,k ∈ T where i ̸= outCellk ∧ j = eventO f Taskk (2.41)

potentialQuanA f teri, j = potentialQuanA f teri, j−1

−∑
t∈T

quanReqt [ j = predEventt ∧ c = inCellt ]

− ∑
d∈D

cellProvidingQuani,d [ j = predEventd ∧¬sackDeld ],

∀i ∈C, j ∈ E,k ∈ D where j = eventO f Delk (2.42)

storageQuanA f teri, j = storageQuanA f teri, j−1 − ∑
d∈D,s∈subDelsO f Deld

quanReqBySubDels

[ j = predEventd ∧ sackDeld ∧ i = matReqBySubDels]+quanProdk,

∀i ∈ M, j ∈ E,k ∈ T where i = matProdk ∧ j = eventO f Taskk ∧outCellk = 0(2.43)

storageQuanA f teri, j = storageQuanA f teri, j−1 − ∑
d∈D,s∈subDelsO f Deld

quanReqBySubDels

[ j = predEventd ∧ sackDeld ∧ i = matReqBySubDels],

∀i ∈ M, j ∈ E,k ∈ T where (i ̸= matProdk ∨outCellk ̸= 0)∧ j = eventO f Taskk (2.44)

storageQuanA f teri, j = storageQuanA f teri, j−1 − ∑
d∈D,s∈subDelsO f Deld

quanReqBySubDels

[ j = predEventd ∧ sackDeld ∧ i = matReqBySubDels],

∀i ∈ M, j ∈ E,k ∈ D where j = eventO f Delk (2.45)
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0 ≤ quanA f teri, j ≤ capi,∀i ∈C, j ∈ E0 (2.46)

storageQuanA f teri, j ≥ 0,∀i ∈ M, j ∈ E0 (2.47)

Constraints 2.34 - 2.37 are implementing constraint 1.23, dealing with each case separately.
Similarly, constraints 2.38 and 2.39 are translations from 1.24 and 1.25 using the new variables.
Constraints 2.40 - 2.42 ensure that the new variables representing the potential quantity of a
cell after an event behave as intended: After an event i, the potential quantity is reduced by the
quantity consumed by any task or delivery having i as predecessor event, meaning that i is the
last end event happening before their start. It is feasible to consume the quantity already after
event i, since no material will be added before the start of the respective tasks and deliveries. If i
represents the end of a task k, the material produced by it must be added into its out cell, which
is enforced by constraint 2.40. Constraints 2.43 - 2.45 implement the quantity change of the
different materials contained in the storage. Here, similar to the potential quantity of cells, the
material required by a sack delivery is consumed already after its predecessor event. Since the
storage is not capacitated, there is no need to differentiate between potential and actual quantity
contained in the storage. Note that in these constraints the quanReqBySubDel-variables are used
and that each subdelivery of a delivery requires exactly one material, which is specified by the
matReqBySubDel-variable. Similar to constraint 2.40, constraint 2.43 ensures that the quantity
produced by a task k delivering to the storage (which is indicated by outCellk = 0) must be added
into the storage after the respective event.

Initialization constraints

timeO f Event0 = 0 (2.48)

quanA f terc,0 = initQuanc ∧matA f terc,0 = initMatc∀c ∈C (2.49)

potentialQuanA f terc,0 = initQuanc − ∑
t∈T

quanReqt [predEventt = 0∧ c = inCellt ]

∧matA f terc,0 = initMatc,∀c ∈C (2.50)

storageQuanA f teri,0 = initStorageQuani − ∑
d∈D,s∈subDelsO f Deld

quanReqBySubDels

[predEventd = 0∧ sackDeld ∧ i = matReqBySubDels],∀i ∈ M (2.51)
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Constraints 2.48 and 2.49 equal constraints 1.29 and 1.30. The new constraint 2.50 ensures the
initial potential quantity is calculated as intended. Similarly, constraint 2.51 calculates the initial
potential storage quantities.

Symmetry breaking constraints

quanA f terc,e = 0 ⇐⇒ matA f terc,e = 0,∀c ∈C,e ∈ E0 (2.52)

cellProvQuanc,i = 0∧ cellProvMatc,i = 0,∀i ∈ D,c ∈C where sackDeli (2.53)

cellProvQuani, j = 0,↔ cellProvMati, j = 0,∀i ∈C, j ∈ D (2.54)

These constraints equal the symmetry-breaking constraints 1.32 - 1.34 from M1 up to some minor
reformulations.
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CHAPTER 4
Metaheuristic Approach

In this chapter, we develop an alternative approach to solve the CAP using a Simulated Annealing
based local search. A construction heuristic for the problem is proposed to provide initial
solutions for Simulated Annealing. We continue by describing the solution representation and
the neighborhood operators used. Furthermore, a modified solution cost is presented, which
incorporates the number of hard constraint violations and is required to evaluate infeasible
solutions. Finally, the full procedure of the metaheuristic approach is outlined.

4.1 Construction Heuristic

The construction heuristic focuses on finding a feasible solution for the given instance. The
heuristic works essentially by processing an event queue Q, where an event usually represents the
end of a task or delivery. In some cases, which are further described below, an event represents
the potential start of a task or delivery.

The initial phase of the construction heuristic is outlined in Algorithm 4.1. It starts by sorting the
deliveries by their due date in ascending order and checking for each delivery if it is satisfied,
which means that in total enough quantity of the required material is contained in one or multiple
loading cells in the case of a loading delivery or in the storage in the case of a sack delivery.
Some deliveries may be satisfied although their due date has not been reached yet. In this case, a
potential start event for the corresponding delivery is added at the time of its due date into the
event queue, which will be processed later. After starting all satisfied overdue deliveries, the
procedure tryToStartPendingTasks() checks for every pending task if its requirements are met,
in which case the task is started.

A task j is defined as pending if the resource r processing it is currently free and j is the next
task processed by r. The procedures checking tasks and deliveries for satisfiability are defined in
Algorithm 4.2. Note that starting a task or delivery sets the variables representing the start of a
task/delivery as well as the variables determining for each cell the material and quantity provided.
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Furthermore, the potential quantity contained in the respective cells is updated. The potential
quantity contained in a cell c is the quantity contained minus the quantity that will be consumed
from c by any tasks or deliveries that have already started.

Algorithm 4.1: Initial phase of the construction heuristic

1 Procedure initialPhase():
2 order deliveries by due date;
3 for d ∈ D do
4 tryToStartDelivery(d);
5 end
6 tryToStartPendingTasks();

Algorithm 4.2: Procedures checking satisfiability of pending tasks and deliveries

1 Procedure tryToStartDelivery(d):
2 if d is not queued and delivery is satisfied then
3 if due date of d reached then
4 start delivery;
5 else
6 mark d as queued;
7 insert potential start event for delivery d into Q at due date;
8 end
9 end

10 Procedure tryToStartPendingTasks():
11 for r ∈ R do
12 if r is currently free then
13 tryToStartNextTask(r);
14 end
15 end
16 Procedure tryToStartNextTask(r):
17 j = next task to be processed by r;
18 if j is not queued and (r.isSource∨ p := f indInPathForNextTask(r) ̸= null)∧q :=

f indOutPathForNextTask(r) ̸= null then
19 if earliest start of j reached then
20 start task j on resource r using incoming path p and outgoing path q;
21 else
22 mark j as queued;
23 insert potential start event of task j on resource r into Q at earliest start;
24 end
25 end
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The requirements of a task j processed by resource r are met if a feasible incoming path for j
(except the case that r is a source) and a feasible outgoing path for j can be found. Assuming that
j is the next task to be processed by r, the procedures f indInPathForNextTask(r) (Algorithm
4.3) and f indOutPathForNextTask(r) (Algorithm 4.4) respectively return a feasible incoming
and outgoing path for j, if one exists, and null otherwise. If the requirements of a pending task
are met before its earliest start, a potential start event for this task is added into Q at the time of
its earliest start.

Algorithm 4.3: Procedure for finding a feasible incoming path

1 Procedure findInPathForNextTask(r):
2 j = next task to be processed by r;
3 for p ∈ paths ending in r do
4 c = p.startLocation;
5 if c is currently not delivering another resource ∧ no path conflicting with p is

currently active ∧ material contained in c = j.matReq ∧ potential quantity
contained in c ≥ j.quanReq then

6 return p;
7 end
8 end
9 return null;

A path ending in r is a feasible incoming path for j if it does not conflict with any currently active
path and starts from a cell currently not delivering any other resource. Furthermore, the cell must
contain enough potential quantity of the material required by j.

If r is a sacking resource, there is only one path starting from r, which is the path connecting r to
the storage. This path is a feasible outgoing path for a task processed by r in any case. If r is not a
sacking resource, a path starting from r is a feasible outgoing path for j if it ends in a cell c which
is of the type required by j, currently not delivered by any other resource and not conflicting
with any currently active paths. Furthermore, c must be connected to a resource processing a
successor task of j. A successor task of a task j is defined as a task that has not started yet and
requires the material produced by j. Additionally, c needs to have enough potential capacity for
the quantity produced by j. The potential capacity of a cell c is its remaining capacity minus the
quantity consumed by tasks/deliveries that have already started. Since the material produced by
a task is placed in its output cell not until its end, cells having too little remaining capacity but
sufficient potential capacity can be considered as potential output cells.

It remains to calculate at which point of time c will be a feasible output cell for j. A cell c is a
feasible output cell for task j if it is empty or contains the same material which is produced by j.
Additionally, c must have enough remaining capacity for the quantity produced by j. If these
requirements are satisfied when f indOutPathForNextTask is called, j can be started using path
p. Otherwise, j can only be started using path p if c will be a feasible output cell for j at the end
of its process and transfer time. Therefore, if one or multiple tasks and deliveries consuming
enough capacity are currently in progress, j can be started as soon as its end aligns with the end
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Algorithm 4.4: Procedure for finding a feasible outgoing path

1 Procedure findOutPathForNextTask(r):
2 j = next task to be processed by r;
3 if r is sacking-resource then
4 return path starting from r and ending in the storage;
5 end
6 for p ∈ paths starting from r and ending in a cell of type cellReq j do
7 c = p.endLocation;
8 if ( j has no successor task ∨ c has an outgoing path to a resource processing a

successor task of j) ∧ c is currently not delivered by another resource ∧ no path
conflicting with p is currently active ∧ the potential capacity of c is
≥ j.quanProd then

9 if (c is empty or material contained in c = j.matProd) and remaining
capacity of c ≥ j.quanProd then

10 return p;
11 end

// c is currently not a feasible output cell for j
12 t = calcPotentialStart(c, j);
13 if t ≤ currentTime then
14 return p;
15 else
16 insert potential start event for task j into Q at time t;
17 end
18 end
19 end
20 return null;

of the task/delivery after which c is a feasible output cell for j. This point of time is calculated by
the procedure calcPotentialStart(c, j). Let this point of time be t. If t does not lie in the future,
j can be started immediately, since c will be a feasible output cell at the end of j. Otherwise, a
potential start event for j is added into Q at time t. At this point of time, tryToStartNextTask(r)
will be called again (if j is still the next task to be processed by r).

Whenever starting a task or delivery, an event representing its end is added into the event queue
Q at the respective point of time. After the initial step, the construction heuristic starts iterating
over Q and handling the events. Start events are handled simply by checking if the respective
task/delivery is still satisfied, in which case it is started. When handling a task start event it is
additionally necessary to check if the task is still pending, since multiple potential start events for
the same task can be added by f indOutPathForNextTask, where each event marks the potential
start of j using a different output cell. At an end event, the content of affected cells and the
storage are updated. If the event represents the end of a task j, some deliveries requiring material
produced by j may be satisfied now, so each of these deliveries is checked for satisfiability and
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started if possible. All pending tasks are tried to be started as well, as the end of j may result in
less path conflicts or provide material necessary for other tasks. Since deliveries remove material,
they may free a cell necessary for the execution of a task, so the pending tasks are checked for
satisfiability also at the end of each delivery. Therefore, handling an event may add one or more
events into the event queue, if new tasks or deliveries are satisfied. The procedure handling events
is described in Algorithm 4.5.

The event queue is processed until either all tasks and deliveries ended, in which case the returned
solution can be assumed to be feasible, or if none of the pending tasks and deliveries can be
satisfied. In this case, a random pending task is started.1 Since it is not satisfied, this results
in an infeasible solution. Note that the start of a task adds the corresponding end event into Q,
which then can be continued processing as before. An overview of the construction heuristic is
described in Algorithm 4.6.

Algorithm 4.5: Procedure for handling events

1 Procedure handleEvent(e):
2 if e is a potential start event for task j on resource r and j is still pending then
3 if time of event e = earliest start of j then

// earliest start reached
4 mark j as not queued;
5 end
6 tryToStartNextTask(r);
7 else if e is potential start event for delivery d then
8 mark d as not queued;
9 tryToStartDelivery(d);

10 else if e is task end event then
11 update content of cells/storage;
12 for d ∈ deliveries requiring material produced by task do
13 tryToStartDelivery(d);
14 end
15 tryToStartPendingTasks();
16 else

// delivery end event
17 update content of cells/storage;
18 tryToStartPendingTasks();
19 end

1We can exclude the case that unsatisfied deliveries, but no pending tasks exist, since in a solvable instance the
material required by all deliveries must be available after all tasks finished.
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Algorithm 4.6: Construction Heuristic

1 initialPhase();
2 while Q ̸= /0 do
3 handleEvent(Q.pop());
4 end
5 if pending tasks exist then

// Solution is infeasible, start random unsatisfied task
6 r = random resource with pending task j;
7 start j on r with random incoming and outgoing path;
8 go to 2;
9 end

4.2 Solution Representation

In contrast to the solution representations used for the exact methods, we do not want to consider
every minute as a possible start time of a task or delivery since this would result in an unnecessarily
large search space. Therefore, in the solution representation used for Simulated Annealing,
we relinquished the time variables and instead introduced the variable set startEvent, where
startEventi indicates which task or delivery starts as ith event (the value of such a variable is
either the id of a task or of a delivery, assuming that tasks and deliveries have disjoint domains).

Variable Domain Meaning

startEventi T ∪D task/delivery starting at position i ∀i ∈ E

pathToTaski P0 material is transported to task i over this path ∀i ∈ T

pathFromTaski P material is transported from task i over this path ∀i ∈ T

cellProvQuani, j N quantity provided by cell i for delivery j ∀i ∈C, j ∈ D

cellProvMati, j M material provided by cell i for delivery j ∀i ∈C, j ∈ D

Table 4.1: Variables used in Simulated Annealing

A solution can now uniquely be identified by the global sequence of start events together with the
path assignments specified by the pathToTask and pathFromTask variables and the variable sets
cellProvQuan and cellProvMat, indicating for each cell the quantity and material provided for
each delivery. From these variables, the optimal start times and the respective objective value
are calculated by a dispatching algorithm that iterates over the start events in the given order
and dispatches the next task/delivery as soon as it is satisfied. The algorithm works similarly to
the construction heuristic but has less freedom since all variables except those determining the
starting times are fixed and a predefined sequence of start events is given. As in the construction
heuristic, after all events have been handled, the next event is started even if it is not satisfied.
This allows the dispatching of infeasible solutions.
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Dispatching the start times using this method excludes many solutions, but only suboptimal ones:
Assuming that the sequence of start events is fixed, in every optimal solution using this sequence
a task or delivery is started as soon as it is satisfied. This is because it does not make sense to
wait, since no other task or delivery can be started instead due to the predefined sequence.

4.3 Neighborhood operators

We designed and implemented four types of neighborhood operators, also called moves, which
operate on the variables specified in Table 4.1. After applying a move, the start times are
re-dispatched as described above to calculate the objective value. It is often unnecessary to
re-dispatch completely: It might be that all start times happening before a certain point of time
t are not affected by the move, but everything happening after t must be re-dispatched. The
calculation of this t depends on the applied move and is described in further detail in the following
sections.

4.3.1 Task-Path-Change move

This move changes the out-path p of a task j, which is the path used to transport the material
produced by j. Let j be processed by resource r. Then the new out-path of j is changed to another
path q which must be generally feasible for j. This means, that q starts from the resource r where
j is processed by and ends in a cell c of type required by j. Furthermore, if j has one or multiple
successor tasks (requiring the material produced by j) processed by resources s1, . . .sn, c must
be connected to at least one of these resources since the successor task must be able to use the
material produced by j. 2

Depending on the chosen task j, additional changes must be applied. If j has a successor task k
processed by resource q, j is called an intermediate task. In this case, the path used to transport
the material consumed by k must be changed to a path starting from cell c to ensure that the
material can be used by k. An example application of such a move is shown in Table 4.1. If j has
no successor task, it is called a final task and produces material directly required by a delivery
d. Then, there are two cases to consider: Either j is processed by a sacking resource r, which
implies that there is only one feasible path from r (namely the path to the storage), so the move
has no effect. Otherwise, the material produced by j is stored in a loading cell, and the change
of the out-path p of j to path q might also change which cell stores the produced material and
provides it for delivery d. Therefore, the respective cellProvMat and cellProvQuan variables
need to be adapted. A move of this type is illustrated in Table 4.2.

After changing the respective variables, the solution must be re-dispatched since a new path
assignment of a task j might enable another task k to start earlier or later (e.g. if the out-path used
by k conflicts with the old or new out-path of j, respectively). Although the new path assignment
might influence the start times of tasks or deliveries that overlap temporally with j and events

2Note that general feasibility for j is a property that does not change during the production process. Therefore,
it is weaker than the property of being a feasible outgoing path for j (as defined in Section 4.1) since the latter also
depends on the point of time by considering inventory and conflict constraints.
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=⇒

Figure 4.1: Changing the out-path of an intermediate task

=⇒

Figure 4.2: Changing the out-path of a final task

happening later, all tasks and deliveries ending before the start of j cannot be influenced. For
any delivery d, even a more relaxed condition holds, since its start time can only be influenced
indirectly by the change of start times of tasks producing material required by d. Therefore it is
sufficient to compute the earliest starting time t of all tasks overlapping with j, and keep all start
times happening before t. The remaining solution must be re-dispatched.
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4.3.2 Job-Path-Change move

In general, it makes sense to use the same path for all tasks executing the same job since they
produce the same material, and occupying multiple cells with one material is often not necessary.
Therefore we introduced a compound move changing the out-path of all tasks j1 . . . jn executing
the same job on the same resource (since otherwise no common path exists) to a path q generally
feasible for all these tasks (which is identical to being generally feasible for any of these tasks).

Additional changes concerning the pathToTask, cellProvMat, and cellProvQuan variables of
the affected successor tasks and deliveries are applied, as described in Section 4.3.1, for each
move individually. In contrast, re-dispatching the solution is only necessary for calculating the
objective value and therefore carried out after all moves have been applied.

Let j1 be the earliest task of j1 . . . jn. Then, as argued in Section 4.3.1, the start times of tasks
and deliveries ending before the start of j1 are not affected, but the remaining solution must be
re-dispatched.

4.3.3 Reinsert move

Given the sequence of start events specified by the startEvent variables, this move removes an
event e and re-inserts it at another point in the sequence. One scenario where this move can be
useful is if there are two satisfied tasks on different resources, but only one of them can be started
because they would have to consume material from the same cell. In this case the construction
heuristic randomly starts one of these jobs, which might result in a suboptimal solution. Such
decisions can be reverted by changing the order of start events.

An example-application of a reinsert move is illustrated in Figure 4.3: Assume that the tasks J1
and J2 both require the material contained in C2 and are processed by P1 and P2 respectively. In
the solution illustrated on the left, J1 starts before J2. By reinserting J2 before J1, the solution on
the right is obtained.

Let e represent the start of the i-th task processed by resource r. Then e must be inserted between
the start events of the tasks processed by resource r on position i−1 and i+1.3 This is because
the resource-internal sequence is fixed and must not be violated. A sequence of start events
satisfying the resource-internal sequences is called a resource-feasible sequence. Although only
allowing such sequences restricts the diversity of single moves, it is still possible to explore all
resource-feasible sequences just by applying moves of this type. This can be done by iteratively
reinserting the first task processed by r at the start of the sequence and the last one at the end, the
second task after the first one, and so on.

Since the dispatching algorithm iterates over the start events, all events happening before the new
position i of the reinserted event cannot be affected by a move of this type. It follows that the
solution must be re-dispatched from that point on only.

3Two exceptions are if i = 1 or i is equal to the number of tasks processed by r. In this case, there is no bound in
the direction of the beginning or the end of the sequence, respectively.
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. . . ,J1, . . . ,J2

=⇒

. . . ,J2,J1 . . .

Figure 4.3: Reinserting J1 after J2

4.3.4 Swap move

This move simply swaps a start event e1 with its successor e2 in the sequence of start events. As
explained in Section 4.3.3, violations of resource-internal sequences are not permitted, which
means that a swap is only allowed if e1 and e2 are not start events of tasks processed by the same
resource. The motivation for this move comes from the observation that in some cases optimal
start event sequences can be obtained from sequences returned by the construction heuristic by
applying a small number of moves of this type.

By applying such a move, the start times happening before e1 and e2 cannot be affected. Therefore
it is sufficient to re-dispatch the sequence from e2 on (which happens before e1 in the modified
solution).

4.4 Modified Solution Cost

As already pointed out, the construction heuristic might return an infeasible solution. Since
Simulated Annealing must be able to evaluate and compare such solutions, it is not sufficient
just to use tardiness as the objective to be minimized as this could result in preferring infeasible
solutions with lower tardiness over feasible ones. Therefore, we incorporated the number of
violated hard constraints into the solution cost considered by Simulated Annealing.

To ensure that infeasible solutions are evaluated worse than feasible ones independent of their
tardiness, the penalty M for hard constraint violations must be chosen large enough. Thus, we
considered M to be an instance-dependent upper-bound on the tardiness by assuming that every
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Violation Violated Constraint(s)

Two active paths conflict (each conflicting pair is penalized with M) Constraint 1.6

Two active paths use the same input-cell Constraint 1.7

Two active paths use the same output-cell Constraint 1.8

At the start of a task its input cell does not contain the material required Constraint 1.18

At the start of a task its input cell contains too little potential quantity Constraint 1.18

At the end of a task, its output cell contains wrong material Constraint 1.26

At the end of a task, its output cell does not have enough remaining capacity Constraints 1.23, 1.27

At the start of a delivery, a providing cell does not contain correct material Constraint 1.19

At the start of a delivery, a providing cell contains too little potential quantity Constraint 1.20

At the start of a sack delivery, the storage contains too little quantity
of some required material Constraints 1.24, 1.28

Table 4.2: Potentially violated hard constraints

delivery order starts at the latest possible point of time, which is the scheduling horizon. It follows
that all feasible solutions have solution cost ≤ M.

The violations potentially happening are listed in Table 4.2. Each violation adds a factor of M to
the solution cost. The table includes references to formal definitions of the violated constraints
based on the constraint programming model M1. This is to provide a better understanding and
should not be interpreted too accurately.

4.5 Simulated Annealing

Simulated Annealing is a metaheuristic proposed by [KGV83]. It is a variant of local search,
inspired by the cooling process of annealing in solids. Starting from an initial solution, e.g. a
solution provided by the construction heuristic or a randomly generated one, the current solution
is iteratively modified using a set of moves. A random move is applied to the current solution, and
if it does not worsen the solution, the move is accepted, i.e. the modified solution becomes the
current solution. If the move brings no improvement, it is still accepted with a certain probability,
which correlates with the so-called temperature. The temperature initially is high (specified
by Tmax) and decreases after every iteration by a cooling rate α . Thus, at the beginning many
non-improving moves are accepted, but as the algorithm converges, it becomes more similar
to a Hill-Climber, which is a local-search technique for finding local optima by only accepting
improving moves. The idea behind Simulated Annealing is to escape local optima by initially
exploring a large amount of the search space and doing the fine-grained optimization at the end.

We considered a variant of Simulated Annealing which adapts the cooling rate s.t. a desired
minimum temperature Tmin is reached approximately when a certain time l elapsed, where l
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Algorithm 4.7: Simulated Annealing

1 Procedure simulatedAnnealing(initialSolution):
2 currentSolution = initialSolution;
3 bestSolution = initialSolution;
4 Tcurrent = Tmax;
5 i = 0;
6 while time limit not reached do
7 newSolution = randomNeighbour(currentSolution);
8 if accept(newSolution) then
9 currentSolution = newSolution;

10 if currentSolution is better than bestSolution then
11 bestSolution = currentSolution;
12 end
13 end
14 i++;
15 r = i·(l−elapsedTime)

elapsedTime ;

16 α = r
√︁

Tmin/Tcurrent ;
17 Tcurrent = Tcurrent ·α
18 end

represents the time limit. To achieve this, the number of iterations is counted by a counter i
and after every iteration, the number r of remaining iterations is estimated. The cooling rate α
can then be calculated s.t. it behaves as intended by the formula r

√︁
Tmin/Tcurrent , where Tcurrent

represents the current temperature. The pseudo-code for this variant of Simulated Annealing is
specified in Algorithm 4.7.

The function randomNeighbour(s) applies one of the moves specified in Section 4.3 on the given
solution s and returns the resulting solution s′. As the name indicates, selecting the applied move
is a probabilistic procedure, which works as follows: First, the type of move is determined. A
probability is given for each of the 4 types considered, s.t. the 4 probabilities sum up to 1. The
move type can therefore be selected by a roulette wheel procedure using these probabilities.
Thereafter, the move-specific parameters are determined. These depend on the move type and are
specified in Table 4.3. Within the feasible parameter choices4 the move-specific parameters are
selected uniformly at random.

The acceptance criterion for moves is represented by the accept-function. As already pointed
out, if the new solution (i.e. the solution after the move) is equal to or better than the current
solution, it is accepted in any case. Otherwise, it is accepted with probability e−δ/Tcurrent , where
δ is the cost of the new solution minus the cost of the current solution. Thus, δ is positive iff
the considered move worsens the current solution. The acceptance probability depends on δ in
such a way that more worsening moves are accepted less likely than moves changing the cost

4see Section 4.3 for more details
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Move type Parameter Domain Meaning

Task-Path-Change t T task which changes its out-path

p P new out-path for t

Job-Path-Change j J job indicating set of affected tasks

r R resource indicating set of affected tasks

p P new out-path for all tasks executing j on r

Reinsert e E reinserted start event

i E new position of event e

Swap e E event which is swapped with its successor event

Table 4.3: Move-specific Parameters

only by a small degree. Furthermore, the probability of accepting a move depends on the current
temperature, where a higher temperature results in a higher probability.
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CHAPTER 5
Experiments

To evaluate the various approaches, a large set of instances is needed. Therefore, a random
instance generator is proposed and the properties of the generated instances are listed. Hereafter,
the automated tuning procedure to determine the parameters for Simulated Annealing is outlined
and the best-evaluated configurations are presented. Finally, the experimental setup is described
and an overview of the results is provided.

5.1 Instances

We were provided one real-life instance by our industrial partner. For a systematic evaluation of
the various solving approaches, a larger set of instances was required. To accomplish that, we
developed an instance generator based on real-life instances.

5.1.1 Instance Generator

The generator works as follows: From a given real-life instance, a fraction of delivery orders is
deleted randomly, which also decreases the number of materials required by such. The respective
materials might still be required by tasks, so in a consecutive step, all tasks not contributing to
any remaining delivery are removed. A task contributes to a delivery d if it produces material
directly required by d or if it has a successor task contributing to d. Thus, exactly the tasks
producing material that is either directly or indirectly required by some remaining delivery are
kept. The resulting instance might now contain resources with an empty task sequence, which can
be removed. This makes all cells that are only connected to such resources unusable, so they can
also be deleted, together with the respective paths. Finally, all materials that are neither required
by any task nor delivery are removed together with all cells initially containing such material.

The instances generated using the described method turned out to have a simple structure: For
all instances that were small enough to be solved optimally by one of the exact methods, the
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construction heuristic found the optimal solution as well.1 One possible explanation for this
is that in the realistic instance provided, every job produces and consumes a unique material
and it is never the case that tasks executing the same job are processed by different resources.
Thus, for all intermediate tasks producing the same material, there is only one feasible successor
resource, which must be reachable from the out-cells chosen by these tasks to yield a feasible
solution. Since the construction heuristic only considers cells satisfying this criterion, this might
be sufficient to solve the provided instances optimally.

Therefore, we modified the generator to increase the structural complexity of generated instances,
while maintaining the reduced size to keep the instances solvable by the exact methods. To
accomplish that, the instance generator re-assigns the tasks over all feasible resources and shuffles
the resource sequences. This makes the instances harder to solve, in the sense that there is a much
broader choice of feasible intermediate cells. However, there is no guarantee that the instances
generated in this way are still solvable since it might be that the cells reachable from the new
resources executing a task lack the required capacity.

Model M2 requires additional criteria to be satisfied by instances to be applicable. In Section
3.2.1 we formulated these criteria, which regarded the structural complexity of conflicts and the
maximum number of paths between the same resource and cell. We argued that these assumptions
are satisfied by real-life instances. It is important to note that the instance generator does only
remove parts of the given network. Since the generation is based on a real-life instance, the
generated instances satisfy the assumptions as well. This makes M2 applicable to these instances.

5.1.2 Generated Instances

We generated 160 instances which can be divided into 4 different size categories, containing 40
instances each. The instances of one category share the same number of delivery orders, which is
between 1 and 4, depending on the category. It must be noted that the number of resources, tasks,
etc. may still have high variance within one category since they depend on which deliveries are
remaining and the materials required by them. The size range of the categories can be seen in
Table 5.1.

Category #Deliveries #Resources #Cells #Paths #Materials #Jobs #Tasks

1 1 1-4 22-36 30-116 1-2 1-3 2-20

2 2 1-5 22-37 30-129 1-3 2-5 4-26

3 3 1-5 23-37 32-129 2-4 3-7 6-34

4 4 2-5 31-37 58-133 3-5 5-9 11-39

Table 5.1: Size categories of generated instances

These instances were divided into a set of 60 (15 of each category) tuning and 100 (25 of each
category) testing instances. The tuning instances were used to tune the parameters of Simulated

1This was only the case for preliminary instances, not for the instances used for evaluation, which were constructed
by the modified generator.
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Annealing (see Section 5.2). The final evaluation of the exact and heuristic methods (outlined in
Section 5.4) was performed on the testing instances.

5.2 Tuning

Multiple parameters appear in the Simulated Annealing algorithm. They can have a major impact
on the solving process and therefore also on the quality of the solution returned. Since the choice
of these parameters is not straightforward, we performed systematic parameter tuning using irace,
a software package proposed by [LIDLP+16] for automatic algorithm configuration by iterated
racing procedures.

Parameter Possible Values Default

Tmax [1000,100000] 10000

Tmin {10−3,10−2,10−1,1} 10−2

pTask−Path−Change {0,10,20,30,40,50} 30

pJob−Path−Change {0,10,20,30,40,50} 30

pReinsert {0,10,20,30,40,50} 20

pSwap {0,10,20,30,40,50} 20

Table 5.2: Tuning parameters

The variant of Simulated Annealing applied by us makes use of the parameters Tmax and Tmin,
indicating the initial and final temperature. Meaningful ranges for these parameters depend on
the solution costs appearing and are hard to determine beforehand. Thus, a broad value range is
chosen. Note that for the initial temperature, each integer between 1000 and 100000 is allowed.
The other parameters appearing are the probabilities pt for applying a move of type t (specified
for each of the four move types). Since it is not possible to explore the whole parameter space just
by applying one type of move, as it might be necessary to change path assignments and the global
sequence of events, we only considered probabilities up to 50 percent. An additional constraint
concerning the probability values is that they must sum up to 100. The parameters to be tuned,
together with their value ranges and default values2 can be seen in Table 5.2.

We fixed a tuning budget of 60000 runs of Simulated Annealing with a time limit of one
minute each. In each run, one of the 60 tuning instances was tried to be solved. The superior
configurations according to our results are listed in Table 5.3. It is noticeable that the probability
for the swap move equals 0 in the top 3 configurations. A possible explanation for this is that
every swap move can be simulated by a reinsert move.

2When using irace, it is recommended to specify default values for the parameters to be tuned.
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Tmax Tmin pTask−Path−Change pJob−Path−Change pSwap pReinsert

64637 1 10 40 0 50

87573 1 30 40 0 30

72333 1 10 40 0 50

86193 10−1 30 40 10 20

Table 5.3: Best configurations returned by irace, from top to bottom

5.3 Experimental Setup

All experiments (including tuning) were performed on a computing cluster with 13 nodes, each
featuring two Intel Xeon E5-2650 v4 CPUs (12 cores @ 2.20GHz).

The models M1 and M2 described in Chapter 3 were implemented in the solver-independent
constraint modeling language MiniZinc v2.8.5 [NSB+07]. We performed preliminary experi-
ments by evaluating the developed models using different solvers. From the solvers tested by
us (Gecode v6.3.0 [Gec19], Chuffed v0.13.1 [GC23], Gurobi v10.0.1 [Gur23], CP-Sat v9.10
[PD24]), both models achieved best results when solved with CP-Sat. Thus, this solver was
chosen for further evaluation. Both models were evaluated on each of the 100 testing instances
using 8 cores with a time limit of 1 hour per model and instance.

On each testing instance, 10 runs of Simulated Annealing were performed, starting from the
solution provided by the construction heuristic. We used the best parameter configuration found
by irace in the tuning phase (see Table 5.3). Each run was given a time limit of one minute.

5.4 Results

An overview of the results is provided in tables 5.4 - 5.6. The instance names are encoded as
set.number, where set indicates the size category (see Table 5.1) and number is a unique id
within the set. It must be noted that some instances are not listed. This means that all 4 algorithms
found the optimal solution.

The four values listed in the table section Objective Value indicate the objective value, i.e. the total
tardiness, of the solutions found by constraint programming models M1 and M2, the construction
heuristic (CH) and Simulated Annealing (SA), respectively. The best objective values of the
feasible solutions provided are formatted in bold. Since the exact methods do not always return a
solution in time, the symbol - represents that no solution was found. If a constraint programming
model proved the unsatisfiability of an instance, this is denoted as UNSAT. In contrast to the
constraint programming models, the heuristics sometimes returned an infeasible solution. In this
case, the number of hard constraint violations is specified instead of the objective. The minimum
objective value (or number of constraint violations, if all solutions were infeasible) found over
the 10 runs is denoted for Simulated Annealing.
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Furthermore, the average (AvgObj), standard deviation (StdDev) and average deviation (AvgDev)
of the objective values of feasible instances found in the 10 runs of Simulated Annealing are
specified. Additionally, the number of feasible solutions returned (feas) and the average number
of hard constraint violations (AvgVio) are denoted.

Objective Value Simulated Annealing

Instance M1 M2 CH SA AvgObj StdDev AvgDev feas AvgVio

1.2 284 284 2 vio 284 284.00 0.00 0.00 10 0.0
1.4 204 204 6 vio 204 204.30 0.90 0.54 10 0.0

1.11 284 284 2 vio 284 284.00 0.00 0.00 10 0.0
1.12 341 341 9 vio 341 341.60 1.20 0.96 10 0.0
1.17 341 341 9 vio 341 343.40 3.23 2.88 10 0.0
1.18 98 98 1 vio 98 98.00 0.00 0.00 10 0.0
1.19 135 135 2 vio 135 135.00 0.00 0.00 10 0.0
1.20 40 40 1 vio 40 40.00 0.00 0.00 10 0.0
1.21 135 135 2 vio 135 135.00 0.00 0.00 10 0.0
1.22 68 68 1 vio 68 68.00 0.00 0.00 10 0.0
1.23 328 328 3 vio 328 328.00 0.00 0.00 10 0.0
2.1 55 55 1 vio 55 55.00 0.00 0.00 10 0.0
2.3 118 118 5 vio 1 vio - - - 0 1.0
2.4 - - 6 vio 1962 2086.14 140.88 120.78 7 0.5
2.5 - - 5 vio 2483 2488.40 5.97 4.20 10 0.0
2.6 - 616 4 vio 616 677.13 91.36 62.69 8 0.7
2.7 231 231 1 vio 231 231.00 0.00 0.00 10 0.0
2.8 229 229 5 vio 229 244.50 15.95 15.60 10 0.0

2.11 - - 1 vio 635 635.00 0.00 0.00 10 0.0
2.12 327 327 5 vio 327 336.10 25.33 15.18 10 0.0
2.14 - 164 164 164 164.00 0.00 0.00 10 0.0
2.16 - - 5 vio 469 485.50 16.50 16.50 4 0.6
2.17 - - 4 vio 764 767.90 3.30 2.88 10 0.0
2.21 104 104 1 vio 104 104.00 0.00 0.00 10 0.0
2.24 31 31 2 vio 31 31.00 0.00 0.00 10 0.0
2.25 - 568 4 vio 568 568.60 1.20 0.96 10 0.0

Table 5.4: Results of Instance Sets 1 and 2

In the experiments we performed, all solutions found by the exact methods are optimal, i.e. they
either returned the optimal solution together with an optimality proof or no solution at all. This
is interesting since in general, the CP-Sat solver might also return suboptimal solutions. One
possible explanation for this phenomenon is that optimizing a feasible solution and proving its
optimality might be relatively easy compared to finding one.
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Objective Value Simulated Annealing

Instance M1 M2 CH SA AvgObj StdDev AvgDev feas AvgVio

3.1 - - 9 vio 1 vio - - - 0 1.9
3.2 - - 817 817 817 0 0 10 0.0
3.3 - UNSAT 8 vio 2 vio - - - 0 2.3
3.6 202 202 1 vio 202 207.6 5.5 3.08 10 0.0
3.7 - UNSAT 16 vio 2 vio - - - 0 3.2
3.8 699 699 1 vio 699 699 0 0 10 0.0
3.9 - 575 6 vio 575 796.67 89.34 69.48 9 0.1
3.11 - - 1 vio 749 771.1 27.08 26.52 10 0.0
3.12 - UNSAT 5 vio 2 vio - - - 0 2.2
3.13 - - 2 vio 290 293 9 5.4 10 0.0
3.14 - - 10 vio 3092 3092 0 0 1 2.1
3.15 - - 539 539 539 0 0 10 0.0
3.16 - - 11 vio 1 vio - - - 0 2.4
3.17 206 206 295 295 295 0 0 10 0.0
3.18 - - 1 vio 939 939 0 0 10 0.0
3.19 - - 382 382 382 0 0 10 0.0
3.20 - - 6 vio 1493 1496.3 4.54 3.48 10 0.0
3.21 - 396 1 vio 396 432 46.76 42 5 0.5
3.22 140 140 180 168 175.3 5.76 5.64 10 0.0
3.23 - - 10 vio 1 vio - - - 0 2.2
3.24 - UNSAT 6 vio 2 vio - - - 0 2.0
3.25 - 809 809 809 809 0 0 10 0.0

Table 5.5: Results of Instance Set 3

As one can see, both constraint programming models found the optimal solution for all instances
of instance set 1 (since the instances solved optimally by all approaches are not listed). In contrast,
for multiple larger instances evaluated, M2 found a solution in time, while M1 did not. M2
provided unsatisfiability proofs for 8 instances, whereas M1 could only prove the unsatisfiability
of instance 4.10.

It is noticeable that for most of the instances where the optimum is known3, the construction
heuristic either found the optimal solution or an infeasible one. In the two cases where it is known
that the construction heuristic returned a feasible and sub-optimal solution (instances 3.17 and
3.22), Simulated Annealing could not find the optimal solution as well.

While the construction heuristic returned feasible (and optimal) solutions for approximately half
of the instances from sets 1 and 2 (which are mostly not listed), its success rate became smaller

3Since we generated the instances randomly, the optimal solution for an instance is known only if one of the
constraint programming models found a solution.
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Objective Value Simulated Annealing

Instance M1 M2 CH SA AvgObj StdDev AvgDev feas AvgVio

4.1 - - 2 vio 1295 1296.50 2.01 1.80 10 0.0
4.2 - - 4169 4169 4169.00 0.00 0.00 10 0.0
4.3 - - 3 vio 1596 1702.14 66.72 62.41 7 0.5
4.4 - 418 1 vio 1 vio - - - 0 1.0
4.5 - 435 3 vio 435 449.30 23.46 20.02 10 0.0
4.6 - 1142 1142 1142 1142.00 0.00 0.00 10 0.0
4.7 - UNSAT 22 vio 8 vio - - - 0 9.4
4.9 - UNSAT 2 vio 1 vio - - - 0 1.0
4.10 UNSAT UNSAT 2 vio 2 vio - - - 0 2.0
4.11 - 1930 2 vio 1 vio - - - 0 1.2
4.12 - - 1 vio 853 1056.57 496.20 347.27 7 0.3
4.13 - - 1291 1291 1291.00 0.00 0.00 10 0.0
4.14 - - 1 vio 1494 1495.50 1.50 1.50 2 0.8
4.15 - - 751 751 751.00 0.00 0.00 10 0.0
4.16 - - 2 vio 498 498.00 0.00 0.00 4 0.6
4.18 - - 8 vio 2926 3076.60 176.39 158.04 10 0.0
4.20 - UNSAT 10 vio 2 vio - - - 0 3.0
4.21 - - 12 vio 4 vio - - - 0 4.6
4.22 - - 1528 1528 1528.00 0.00 0.00 10 0.0
4.24 - - 647 647 647.00 0.00 0.00 10 0.0
4.25 - - 1996 1996 1996.00 0.00 0.00 10 0.0

Table 5.6: Results of Instance Set 4

when solving larger instances. Simulated Annealing was able to improve suboptimal solutions
of the construction heuristic for most of the instances, at least through minimizing the number
of constraint violations. Known exceptions are instances 3.17 and 4.4. For some instances that
were not improved by Simulated Annealing, we do not know if the solution provided by the
construction heuristic was already optimal or not. For instances where the optimum is known,
Simulated Annealing was able to find optimal solutions in most of the cases. Exceptions are
instances 2.3, 3.17, 3.22, 4.4 and 4.11.

We showed that the improvement performed by Simulated Annealing compared to the construction
heuristic is statistically significant, by applying the Wilcoxon signed-rank test, with the costs of
initial solutions provided by the construction heuristic and the average costs of solutions found by
Simulated Annealing, over all instances. Here we considered the solution cost with incorporated
constraint violations since this was the main difference between the solutions returned by the
two approaches. We formulated the null hypothesis that the costs of solutions provided by the
construction heuristic are not significantly higher. The hypothesis was rejected with a p-value of
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less than 0.001, which means that the probability of this is very low.

The improvement performed by the only successful run of Simulated Annealing on instance 3.14
is illustrated in Figure 5.1. The x-axis shows the time passed in seconds, while the y-axis depicts
the solution cost including penalized constraint violations. A dot represents the solution cost of a
new optimal solution found at a specific point of time. The plot on the right shows only the time
fragment after a feasible solution has been found.

Comparing model M2 with Simulated Annealing, it can be seen that Simulated Annealing
was able to find more feasible solutions. This holds especially for the larger instances in our
experiments. However, no clear dominance of one of these approaches regarding solution quality
is evident.

We chose a subset of instances to compare the time required to find optimal solutions by M2
and Simulated Annealing. We analyzed this on the set of instances solved by M2 and every
run of Simulated Annealing optimally, although the construction heuristic returned an infeasible
solution. Furthermore, a few outliers where M2 needed 5-10 minutes to find optimal solutions
were not considered. These instances can be interpreted as the subset of instances where both
approaches performed similarly. Two boxplots illustrating the required time in seconds for solving
the respective set of instances optimally by M2 and the individual runs of Simulated Annealing
are provided in 5.2. It can be seen that on average, Simulated Annealing is faster in finding
optimal solutions. However, it must be noted that it is not always successful in solving instances
optimally and that in contrast to the exact methods, no optimality proof is provided by Simulated
Annealing.

Additionally, we tested the developed approaches on the real-life instance provided by our
industrial partner with increased time limits of multiple hours. Due to the large instance size,
none of the exact methods was able to find solutions. In contrast, the construction heuristic
successfully solved the real-life instance. No improvement was performed by applying Simulated
Annealing on the resulting solution.
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Figure 5.1: Decrease of solution cost over time in seconds during a successful Simulated
Annealing run on instance 3.14

Figure 5.2: Comparison of the time in seconds to reach optimal solutions on a selected subset of
instances
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CHAPTER 6
Conclusion

This thesis tackled a challenging real-life problem which consists of scheduling jobs in a produc-
tion network and assigning cells as storage facilities. A formal problem specification has been
provided and various solving approaches have been developed. These include two constraint
models that can be used as exact approaches with the potential to construct optimal solutions for
the considered problem. Furthermore, a construction heuristic and a novel metaheuristic approach
have been designed to find high-quality solutions quickly.

The first exact method considered is constraint programming based on the high-level constraint
programming model M1. By reformulating the representation of path conflicts and deliveries and
by introducing additional predecessor variables for events to decrease the number of generated
constraints, the model M2 is provided, which can be used as an alternative constraint programming
model.

Additionally, a Simulated Annealing-based local search procedure has been applied to the problem
as a metaheuristic solution approach. To accomplish this, first, a construction heuristic for the
generation of initial solutions has been developed. Furthermore, a solution representation for
local search and four novel types of moves to modify existing solutions have been designed.

Since only one real-life instance was available to us, the need for artificial instances emerged.
Therefore, a randomized instance generator was implemented, and 160 instances were created.
These instances were used to perform extensive parameter tuning and test the quality of solutions
provided by the different approaches.

Experimental results showed that exact solvers based on constraint programming model M1 or
M2 are able to solve the majority of the evaluated smaller instances optimally. It turned out that
the model M2 performed better than the high-level model M1 on some of the larger instances
evaluated. While the construction heuristic sometimes constructed good solutions even for larger
instances, where none of the exact methods could find solutions in time, it often achieved worse
results than the exact methods when solving smaller instances. Simulated Annealing could
improve infeasible solutions provided by the construction heuristic in most of the cases. The
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majority of them were repaired and for some other solutions, at least the number of violated
hard constraints could be lowered. If an instance was known to be solvable, feasible solutions
were found by Simulated Annealing with a few exceptions. The cost of these solutions matched
the optimal cost for most of the instances where the optimum is known. Although the real-life
instance was too large to be solved by the exact approaches, the construction heuristic could
successfully be used to provide a feasible solution.

Many of the constraints formulated in the constraint models refer to job intervals. Therefore,
possible future work could consider the development of a model using interval variables, which
may allow more efficient formulations of such constraints. Furthermore, it would be interesting
to investigate more neighborhood operators, which could, for example, change path assignments
and the order of events within one move.
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Overview of Generative AI Tools Used

No generative AI tools were used while working on this thesis.
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