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Abstract

Dominant neural network architectures such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) are inherently local and require deep networks
to incorporate distant information. Early work on visual attention allowed the modelling
of non-local structures through sequences of local glimpses, and more recently, the
Transformer family of networks revolutionised neural attention by using self-attention to
process all inputs in parallel.

This thesis explores applications of neural attention mechanisms in computer vision,
focusing on modelling long-range dependencies in three domains: historical document
analysis, biomedical data processing, and stereo-image compression. Moreover, it intro-
duces new methods that use attention mechanisms to address specific challenges in these
domains.

A visual attention-based method for extracting text baselines from images of historical
handwritten texts is presented. The proposed method relies on a network that sequentially
shifts attention along text lines to determine polygon coordinates. The method allows for
direct learned prediction of text baseline coordinates rather than relying on heuristics.

In the biomedical domain, the thesis introduces the Flowformer model, an efficient variant
of the Transformer architecture designed to process large flow cytometry samples for
cancer cell detection. The proposed approach differs from traditional methods by using
global attention to model samples holistically. As a result, it achieves state-of-the-art
performance in cancer cell identification across multiple datasets.

Finally, two stereo image compression models, SASIC and ECSIC, are presented, which
use cross-attention mechanisms to model the mutual information between stereo image
pairs. These methods achieve state-of-the-art compression performance by efficiently
capturing redundancies between images while maintaining fast runtimes.

This thesis provides explicit solutions to real-world problems in document analysis,
biomedical data processing, and image compression. It also demonstrates the effectiveness
of neural attention in dealing with different long-range dependencies.
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Kurzfassung

Populäre neuronale Netzwerkarchitekturen wie Convolutional Neural Networks (CNNs)
oder Recurrent Neural Networks (RNNs) sind per Konstruktion lokal und benötigen übli-
cherweise tiefe Netzwerke, um nicht-lokale Abhängigkeiten zu modellieren. Frühe Arbeiten
zur Neural Attention ermöglichten die Modellierung von nicht-lokalen Strukturen durch
Sequenzen von lokalen Glimpses. In 2017 revolutionierte die Transformer-Netzwerkfamilie
Neural Attention, indem sämtliche Positionen und Features eines Samples parallel verar-
beitet wurden, durch die Verwendung von Self-Attention.

Diese Dissertation erforscht Anwendungen von Methoden der Neural Attention in der
Computer Vision. Der Fokus liegt dabei auf der Modellierung von nicht-lokalen Abhän-
gigkeiten innerhalb von Daten in drei verschiedenen Anwendungsbereichen: Historische
Dokumentenanalyse, biomedizinische Daten verarbeitung und Stereo-Bildkompression.
Es werden neue Methoden vorgestellt, die Neural Attention verwenden, um spezifische
Herausforderungen in diesen Bereichen zu bewältigen.

Es wird eine Methode vorgestellt, die auf Visual Attention basiert und zur Extraktion
von Textzeilen aus Bildern historischer Manuskripte dient. Die vorgeschlagene Methode
basiert auf einem Netzwerk, das Bilder von Dokumenten sequentiell verarbeitet, um
Textlinien als Polygonkoordinaten zu bestimmen. Die Methode ermöglicht eine direkte,
erlernte Vorhersage von Textlinienkoordinaten ohne Rückgriff auf Extraktionsheuristiken.

Im biomedizinischen Bereich wird in der Dissertation das Flowformer-Modell vorgestellt.
Es handelt sich dabei um eine effiziente Variante der Transformer-Architektur, die in
der Lage ist, selbst große Flowzytometrie-Proben für die Erkennung von Krebszellen
zu verarbeiten. Das Modell unterscheidet sich von traditionellen Methoden durch die
Verwendung von Global Attention, um Proben ganzheitlich zu modellieren. Die Methode
erreicht State-of-the-Art-Leistung bei der Identifizierung von Krebszellen über mehrere
Datensätze.

Abschließend werden zwei Stereo-Bildkompressionsmodelle vorgestellt: SASIC und ECSIC.
Beide Modelle verwenden Cross-Attention, um die gemeinsame Information zwischen
Stereobildpaaren zu modellieren. Diese Methoden erreichen State-of-the-Art Kompres-
sionsleistung, indem sie Redundanzen zwischen Bildern erfassen und gleichzeitig die
Laufzeiten minimal halten.

xi



In dieser Dissertation werden explizite Lösungen für reale Probleme in der Dokumenten-
analyse, der biomedizinischen Datenverarbeitung und der Bildkompression vorgestellt.
Weiter zeigt diese Arbeit die Wirksamkeit von Neural Attention bei der Lösung von
Anwendungen, die nicht-lokale Abhängigkeiten erfordern.
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CHAPTER 1
Introduction

Neural attention describes several techniques inspired by the attention mechanism in the
human brain. These methods work by allowing neural networks to attend to different
locations in the data, either sequentially or in parallel. This property enables these
networks to learn non-local structures and sequences. This thesis discusses problems in
three domains (historical document images, flow cytometry data, and stereo images),
each with unique challenges, and proposes attention-based methods for each.

1.1 Motivation
Since 2012, when AlexNet [KSH12] won the ImageNet [DDS+09] competition, deep neural
networks have proven to be a capable method for various applications. In computer
vision, Convolutional Neural Networks (CNNs) are typically used to extract features
learned from a large dataset. For sequential data, recurrent neural networks and their
derivatives, such as Long Short-Term Memory cells (LSTMs) [HS97] and Gated Recurrent
Units (GRUs) [WTD+18] have similarly outperformed other methods at the time for
tasks like machine translation [BCB15] or speech recognition [GMH13].

However, these methods, by design, process data locally. While local features have been
shown to work well for a wide variety of tasks, some problems might benefit from a
more holistic view, and others require features that are inherently non-local and span
over long distances. CNNs consist of layers that are collections of learnable local filters.
Every layer can only extract local features from the preceding layer’s output. Only
by stacking multiple layers is it possible to extract features that can model non-local
dependencies. However, this requires deep networks. For example, a stack of 10 layers
of 3 × 3 convolutions with a stride of 1 has a receptive field of 21 × 21. To achieve
receptive fields that span entire images, deep networks are required, along with stratified
convolutions and aggressive pooling. This leads to problems like loss of information
due to pooling and increased resource requirements due to deeper networks. Recurrent
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1. Introduction

neural networks are, in theory, capable of storing information for arbitrary long distances.
However, in practice, the gradients corresponding to long-range dependencies often either
blow up or vanish [HS97]. A remedy for this was proposed in Hochreiter et al. [HS97]
with the Long Short-Term Memory cell. However, their sequential design prevents them
from being trained in parallel.

To address these challenges, Vaswani et al. [VSP+17a] proposed the Transformer network.
It is a feed-forward network that processes a fixed-length sequence of embedding vectors
in a single forward pass. The network comprises a sequence of Transformer layers that
have the self-attention operation at their core1:

SelfAttn(X) = softmax


XWQW ⊺
KX⊺

√
d


XWV . (1.1)

Here, X ∈ RN×m represents the N input vectors. The matrices WQ ∈ Rm×d, WK ∈ Rm×d

and WV ∈ Rd×d indicate the linear embedding maps and d denotes the dimensionality of
the embedding space. Notably, this operation is permutation equivariant (permutations of
the input sequence, i.e. permutations in the dimension N of X). Thus, typical sequence
applications where the input order has some relevance require additional positional
embedding [VSP+17a] of the input.

The attention mechanism draws inspiration from the human brain’s ability to selectively
focus on particular aspects of the environment. This selective view of data improves
the capabilities of a network to handle tasks involving complex data structures and
relationships, such as the sequential and spatial dependencies found in natural language
and visual scenes, by emphasizing relevant information while disregarding extraneous
details.

Unlike CNNs or RNNs, attention allows the modelling of arbitrarily long-range depen-
dencies in a single layer. This can be seen from eq. (1.1) by observing that every position
of X attends (i.e. a dot product is performed to compare the embedding vectors at two
positions) to every other position in X. However, the size of the resulting matrix

XWQW ⊺
KX⊺ =: AttnMatrix ∈ RN×N (1.2)

grows quadratically O(N2) in the sequence length. For this reason, the sequence was
originally restricted to a local neighbourhood [VSP+17a]. This prevents the method from
being directly applied to longer sequences without additional considerations. Recently,
there have been a plethora of works that address these issues [TDA+20, TDBM20].
However, these methods typically focus on problems from natural language processing.
Only recently, variants of the Transformer have been proposed that work on images
[DBK+20, LLC+21], and these methods process images in a patch-based manner. Since
these initial patches are projected to embedding vectors with a simple linear layer, the
architecture can struggle with smaller local structures.

1The self-attention blocks of the original Transformer also contain residual connections, element-wise
linearities and layer normalization.

2



1.1. Motivation

Accurate modelling of non-local dependencies is necessary for various applications, such as
understanding long text documents in NLP, modelling long-range dependencies between
objects at different locations in images, and modelling holistic information in data.
While the problem of modelling long text documents has received much interest from
academia and industry due to recent developments in Large Language Models (LLMs)
for many more niche applications, such as stereo image data or specific medical data
types, the problem of modelling such non-local structures with neural attention is still
underexplored.

This thesis investigates the problem of modelling long-range dependencies by focusing
on three variants of neural attention. For each variant, novel methods for a specific
application where attention has the potential to solve previously open problems are
developed.

1. Visual Attention for predicting linear sequences in images: Text baselines
in historical handwritten documents are notoriously difficult to identify [DKF+17].
The ink in these documents is often degraded, shows bleed-through from text written
on the back and has a high variation in writing styles and languages. Detecting
the text baselines is a necessary step in current methods for handwritten text
recognition. These methods are typically based on sequences of windows, which
rely on extracted text baselines. Current methods aim to detect text baselines,
typically with segmentation methods followed by heuristic rules to extract a polygon
[GLS+19]. However, a reliable segmentation requires large amounts of training data
of documents with a similar structure to the test data. Furthermore, because the
full document page needs to be processed at once, the GPU memory is a natural
bottleneck for the maximal document resolution. This thesis investigates how
the sequential nature of these baselines can be exploited to extract baselines in a
recurrent manner using visual attention techniques.

2. Efficient Self-Attention to capture long-range information in large sam-
ples: Acute leukaemia is the most frequent cancer in children and adolescents.
Identifying cancer cells and assessing the treatment response is typically performed
based on cell marker measurements of a bone mark sample. These samples are
processed by Flow Cytometer Machines (FCM) that measure the surface proteins
and return a vector of marker intensities (i.e. for a sample containing n cells with
m markers being measured, an FCM machine returns a high dimensional point
cloud ∈ Rn×m). These samples typically contain 105 − 106 cells. The structure
of this data type prevents naive applications of existing methods like CNNs or
RNNs. Current methods for blast detection in FCM data either work by estimating
the density with traditional parametric methods like Gaussian Mixture Methods
[RDS+19] that are unable to model complicated structures due to their inherent
bias and are computationally expensive during inference or by ignoring long-range
dependencies and processing different cells independently of each other [LSR+18]
which results in fixed decision boundaries. These models have difficulty coping
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1. Introduction

with variations in the population distribution in samples from different sources (e.g.
different clinical centres, different operators, different FCM machines) and different
patients. Correct identification of cancer cells requires a holistic view of the whole
sample [RDS+19], which motivates the work conducted in this thesis. This thesis
investigates how to learn the global structure of FCM files and use it to accurately
detect blast cells.

3. Modelling mutual information in stereo image pairs with cross attention:
Stereo images consist of a pair of images from the same scene taken from different
locations. Due to the resulting overlap in the field of view, these image pairs have
substantial mutual information I(l, r). Conventional compression of stereo images
treats both images in a pair as separate, ignoring any shared information and
therefore leading to suboptimal compression bitrates R(l) + R(r) ≤ R(l) + R(r) −
I(l, r). A method capable of modelling this shared information can substantially
improve compression performance.
Some methods attempt to do this with heuristic matching methods [MMSW06].
Others employ 3D convolutions to process a disparity cost volume [LWU19b]
or homographic warping [DYY+21]. However, these methods are slow or only
able to model linear warpings. In recent years, learned methods for compression
have outperformed traditional methods in PSNR [BLS17] and perceptual metrics
[MTTA20]. These methods typically follow the structure proposed by Ballé et al.
[BLS17] of an encoder-decoder network, trained end-to-end with a rate-distortion
loss, optionally with the inclusion of side information via an additional encoder-
decoder network [BMS+18] or autoregressive components [MBT18]. These models
are typically fully-convolutional which might lead to sub-optimal performance
because convolutions apply a fixed set of filters independent of the input (i.e. they
are not data-specific), and they have been shown to act as high pass filters [PK22]
amplifying the noisy (i.e. high entropy but low importance) aspects of images.
Attention has been shown to counteract some of these issues [PK22], and its data
specificity can help model sample-dependent disparity distributions that, in some
instances like outdoor scenes, require accurate modelling of non-local connections
between both images in a stereo image pair.

1.2 Overview of Contributions
The field of neural attention in vision has changed while writing this thesis. While
initial work on attention in vision followed the structure of the seminal work from
Xu et al. [XBK+15] with an RNN guiding the attention of a CNN that performs the
actual prediction (typically called visual attention), nowadays attention is understood
synonymously with the Transformer architecture [VSP+17a]. The contributions in this
thesis follow a clear progression of research. The initial work targets visual attention,
while the remainder of the thesis mainly focuses on variants and applications of the
attention mechanism employed in the Transformer family of models. Each contribution
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1.2. Overview of Contributions

targets applications in one of the three domains: Historical document images, flow
cytometry data, and stereo images. The domains investigated are sufficiently different to
allow the investigation of various aspects of attention and other meanings of long-range.

Visual Attention for predicting linear sequences in images This work presents
a novel method that extracts text baselines without any heuristics, relying solely on a
visual attention network that "follows" the text line from start to end and extracts the
line polygon coordinates. This work is published in the proceedings of the International
Conference for Pattern Recognition 2020 (ICPR) [WS21].

Efficient Self-Attention to capture holistic information in large samples This
work presents a novel method that processes full FCM samples using an efficient Trans-
former variant. The model performs global attention and predicts binary labels to
differentiate cancer cells from healthy cells. Global attention allows the model to extract
holistic features that lead to predictions that are robust with respect to population
changes due to operator or clinical laboratory differences. It is the first neural network
that achieves state-of-the-art performance on multiple public datasets while being fast
enough to process a complete sample in less than a second. This work is published in the
Journal for Computers in Biology and Medicine [WRW+22b].

Modelling mutual information in stereo image pairs with cross attention In
this work, two methods are proposed for the compression of stereo image pairs. The
first model, SASIC [WKXS22], combines heuristic warping with a decoder that performs
stereo attention. It is published in the proceedings of the Conference for Computer Vision
and Pattern Recognition 2022 (CVPR). The second method, ECSIC, works without any
heuristics and instead models the mutual information between the images of a stereo
image pair with the stereo cross-attention module and two stereo context modules. It
is published in the proceedings of the Winter Conference on Applications of Computer
Vision 2024 (WACV) [WKK+24]. Both methods achieved state-of-the-art performance
on popular open stereo image datasets at the time of publication.

Finally, the following publications were part of my research but are not covered in this
thesis:

• Matthias Wödlinger and Robert Sablatnig. Classification and segmentation of
scanned library catalogue cards using convolutional neural networks. In Proceedings
of the Joint Austrian Computer Vision and Robotics Workshop 2020, pages 90–91.
Austrian Association for Pattern Recognition (ÖAGM/AAPR), 2020

• Lisa Weijler, Florian Kowarsch, Matthias Wödlinger, Michael Reiter, Margarita
Maurer-Granofszky, Angela Schumich, and Michael N Dworzak. Umap based
anomaly detection for minimal residual disease quantification within acute myeloid
leukemia. Cancers, 14(4):898, 2022
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• Florian Kowarsch, Lisa Weijler, Matthias Wödlinger, Michael Reiter, Margarita
Maurer-Granofszky, Angela Schumich, Elisa O Sajaroff, Stefanie Groeneveld-Krentz,
Jorge G Rossi, Leonid Karawajew, et al. Towards self-explainable transformers
for cell classification in flow cytometry data. In International Workshop on In-
terpretability of Machine Intelligence in Medical Image Computing, pages 22–32.
Springer, 2022

• Thomas Heitzinger, Matthias Woedlinger, and David G Stork. Artist-specific style
transfer for semantic segmentation of paintings: The value of large corpora of
surrogate artworks. Electronic Imaging, 34(13):186–1, 2022

• Alexander Bayerl, Manuel Keglevic, Matthias Wödlinger, and Robert Sablatnig.
Impact of learned domain specific compression on satellite image object classification.
In 26th Computer Vision Winter Workshop (CVWW), 2023

• Jan Kotera, Matthias Wödlinger, and Manuel Keglevic. Learned lossy image
compression for volumetric medical data. In 26th Computer Vision Winter Workshop
(CVWW), 2023

• Florian Kowarsch, Lisa Magdalena Weijler, Matthias Gerold Wödlinger, Florian Kle-
ber, Margarita Maurer-Granofszky, Michael Reiter, and Michael Dworzak. Explain-
able visualization techniques for transformers in flow cytometry data. [Conference
Presentation]. 26th Computer Vision Winter Workshop (CVWW), 2023

• Florian Kowarsch, Margarita Maurer-Granofszky, Lisa Weijler, Matthias Wödlinger,
Michael Reiter, Angela Schumich, Tamar Feuerstein, Simona Sala, Michaela Nováková,
Giovanni Faggin, et al. Fcm marker importance for mrd assessment in t-cell acute
lymphoblastic leukemia: An aieop-bfm-all-flow study group report. Cytometry Part
A, 105(1):24–35, 2024

1.3 Thesis Structure
The remainder of this thesis is structured as follows. Chapter 2 reviews the scientific
literature on neural attention. After a brief discussion of historical works, the development
of neural attention for language and vision is discussed. The remainder of the thesis
discusses methods developed during my doctoral research. Each method uses some
variant of neural attention to solve problems in the fields of document analysis, cancer
research and image compression. The fields were chosen to show different aspects of
long-range dependency problems. Chapter 3.1 presents a method for detecting text lines
in historical documents with handwritten text. The method shows how visual attention
can be used to detect linear sequences in images. Chapter 3.2 presents a Transformer
model for detecting cancer cells in bone marrow samples from blood cancer patients
using global sample information. The data, a type of high-dimensional point cloud, is
unsuitable for traditional approaches, demonstrating the versatility of neural attention.
In Chapter 3.3, two methods for stereo image compression are presented. The methods
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1.3. Thesis Structure

show how cross-attention can be used to model redundancies between two images of a
stereo-image pair. Finally, a conclusion is given in Chapter 4.
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CHAPTER 2
Related Work

In the human brain, attention is a complex neural function that allows perceptual focus
on a phenomenon or object while filtering out external stimuli [NZY21]. Biological
attention mechanisms can be divided into two types based on what drives attention
[TCW+95, NZY21]. In bottom-up unconscious attention, also called saliency attention,
external stimuli drive the target of attention. For example, a bright neon light, typically
used for emergency exit signs, attracts attention in a dimly lit room such as a cinema.
The max-pooling operation can be considered an algorithmic realization of this type
of attention. The second type of attention is top-down conscious attention, also called
focused attention. Here, attention is task-driven and consciously focused on a specific
phenomenon or object. An example would be a person reading a line of text. Methods
typically categorized as neural attention, such as the self-attention operation in the
popular Transformer network [VSP+17a], are of the second type.

The remainder of this chapter is structured as follows: A brief discussion of early work on
attention is given in Section 2.1, followed by a discussion of visual attention in Section 2.2
and self-attention in Section 2.3. Section 2.4 provides an overview of Transformers in
vision. Finally, recent developments in optimizing the runtime/reducing the complexity
of Transformers are discussed in Section 2.5.

2.1 Early Work
Initial works of modelling attention are motivated by early discoveries in neuroscience
[DD95] that understood attention as a filter, shaping neural activity to allow for efficient
processing of relevant visual information. Inspired by such research and attention in the
early primate visual system, Itti et al. [IKN98] propose the concept of a saliency map that
selects specific locations in an image based on multiscale image features. The authors
apply linear filters to extract colour, intensity and orientation features at 9 different
scales. These extracted features are then used to compute a set of feature maps, each
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2. Related Work

capturing a different aspect of the visual scene. These feature maps are then normalized
and combined into a single saliency map, highlighting the most selected areas of the
image. The saliency map is computed in a parallel and distributed manner, allowing for
fast scene analysis.

More recently, in 2014, Bahdanau et al. [BCB15] proposed attentional mechanisms for
text data. The authors introduce a new approach to machine translation that allows the
model to focus on (or "pay attention to") different parts of the source sentence at different
translation stages. This new method contrasts with conventional sequence-to-sequence
models that attempt to encode the entire source sentence into a fixed-size vector. The
approach works by conditioning the output at each step i on the previous output yi−1,
the hidden state si, and a context vector ci resulting from an attention operation on the
input sequence.

p(yi|y1, . . . , yi−1, x) = g(yi−1, si, ci). (2.1)

Here g denotes the RNN. The context vector ci is the weighted sum of encoded represen-
tations of the inputs h1, . . . , hn:

ci =
�

j

αijhj (2.2)

with the weights
αij = exp(aij)�

k exp(aik) (2.3)

where
aij = a(si−1, hj) (2.4)

computes the similarity between the last hidden state si−1 and the encoded inputs hj

(aij is in [BCB15] called the alignment model and denoted with eik). The similarity is
computed with a neural network trained with the rest of the model. See Figure 2.1 for
an overview of the abovementioned mechanism. This architectural design allows access
to the complete input sequence in every step. This is in stark contrast to a naive RNN
formulation that processes the input sequence sequentially and, therefore, does not have
access to future elements and strongly favours locality.

A different approach to model attention in the visual domain is proposed by Mnih et
al. [MHGK14]. In their work, Mnih et al. model attention with a sequential decision
process of a goal-oriented agent interacting with a visual environment. Instead of
processing a whole image at once,ural network fh is trained to select a sequence of specific
regions to focus on, akin to the functioning of the human visual system. At each step, a
glimpse sensor ρ extracts multiple resolution patches ρ(xt, lt−1) around the current region
l[t−1 of focus. These patches are then processed with the glimpse network fg that encodes
the extracted patches and current location into the glimpse representation gt. In every
step, the RNN fh takes the glimpse representation as input together with the previous
hidden state ht−1 to produce the new internal state ht. Finally, based on the hidden
state, in every step, the location network fl predicts the next location and the action
network fa predicts the next action/classification. The full architecture can be seen in
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Figure 2.1: Diagram of a single decoding step in attention-based neural machine transla-
tion. Taken from Bahdanau et al. [BCB15].

lt-1

gt

Glimpse
Sensor

xt
ρ(xt , lt-1)

θg0

θg1
θg2

Glimpse Network : fg( θg )

lt-1

gt

ltat

lt

gt+1

lt+1at+1

ht ht+1

fg(θg)

ht-1

fl(θl)fa(θa)

fh(θh)

fg(θg)

fl(θl)fa(θa)

fh(θh)

xt

ρ(xt , lt-1)lt-1

Glimpse Sensor

A)

B)

C)

Figure 2.2: An overview of the method proposed in Mnih et al. [MHGK14]. Taken from
the original paper.

Figure 2.2. The training process is formulated as a reinforcement learning problem and
trained with REINFORCE [Wil92], optimizing attention policies and classification tasks
simultaneously. The proposed approach leads to significant computational efficiency, as
the model learns to focus on the most informative parts of the image, thereby avoiding
the need to process the entire image at high resolution.

The works above build the archetypes for a large part of the literature on neural attention.
Bahdanau et al. [BCB15] forms the basis of self-attention and the Transformer [VSP+17a]
family of models (see Section 2.3 and Section 2.4) and Mnih et al. [MHGK14] presents
the general idea of works on visual attention.
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Figure 2.3: Examples for semantically correct attention. White regions indicate attention
focus. Underlined words show the corresponding word. Taken from Xu et al. [XBK+15].

2.2 Visual Attention
Following the seminal work of Mnih et al. [MHGK14], Lei Ba. et al. [BMK15] extend
the idea to real-world image tasks and multiple object recognition in a single image.
The authors introduce a model that employs Long-Short-Term Memory units [HS97] to
process a sequence of glimpses (local image patches) to localize and recognize multiple
objects in an image. The attention mechanism allows the model to dynamically decide
which regions of the image to focus on, thereby improving the efficiency and accuracy of
object recognition. For training, the model only requires class labels.

Another line of research aims to apply visual attention to image captioning. Xu et
al. [XBK+15] propose a method for image captioning that consists of a CNN feature
extractor and an LSTM with attention to predicting the caption. In the encoding step,
they extract features using the intermediate layer outputs of a VGG [SZ14] network.
Due to downsampling in the VGG network, this results in separate image features for
each of the 14 × 14 image patches of the input image. During decoding, the recurrent
neural network employs the attention mechanism proposed in Bahdanau et al. [BCB15] to
generate a caption while attending to specific locations of the input image. The authors
distinguish between soft and hard attention. In soft attention, the network attends to
each location by computing a weighted sum of the features, with the weights describing
the importance of a given location for the final prediction. The resulting method is
differentiable and can be optimized end-to-end with backpropagation. In hard attention,
the network attends to only one region at each step, and REINFORCE is used to train
the network. Figure 2.3 shows visualizations of the resulting attention patterns.

Zhu et al. [ZGBFF16] propose a similar method for grounded question answering in
images. They encode the image with a CNN and then create a joint encoding of the image
and question by processing it with an LSTM. In the decoding stage, the model picks an
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answer from multiple choices based on its memory while attending to localized VGG
image features with a soft attention mechanism. A similar method is introduced by Yang
et al. [YHG+16], where they propose Stacked Attention Networks (SANs), which use
multiple layers of attention mechanisms to refine query-related image regions iteratively.
Chen et al. [CZX+17] additionally use channel-wise attention connections in the CNN.

Finally, some works use visual attention to generate images [Gra13, GDG+15]. Here, a
pair of encoding/decoding RNNs is trained as a variational autoencoder to iteratively
construct images through an accumulation of modifications. Additionally, the model is
able to selectively attend to parts of the scene while ignoring others.

2.3 Transformers
In 2017, Vaswani et al. [VSP+17a] proposed the Transformer architecture, a feed-forward
neural network capable of processing an entire sequence in a single forward pass rather than
iteratively with an RNN. Figure 2.4 shows an overview of the Transformer architecture.

The model consists of an encoder and a decoder, each consisting of a sequence of 6
identical layers. Each of these layers has two sub-layers. The first is a scaled dot-
product self-attention layer, and the second is a position-wise fully connected (i.e. 1D
convolutional) network with two layers. Both layers have residual connections and layer
normalization [BKH16]. Self-attention can be understood as a special case of attention.
For a set of dk dimensional queries Q ∈ RN×dk , keys K ∈ RN×dk and dv dimensional
values V ∈ RN×dv the attention operation

Attention(Q, K, V ) = softmax


QK⊤
√

dk


V (2.5)

performs a weighted mean of the values V , where the weights are the similarities between
the query/key pairs. The softmax is over all keys and ensures that the weights sum to
one. The division by

√
dk normalizes the attention scores and improves the stability

of the gradient flow. Here, the similarity function is the dot-product of queries and
keys scaled by the square root of the dimension d, which is why this particular version
is called scaled-dot-product-attention. In the case of self-attention all three matrices,
Q, K and V are derived from the dmodel dimensional input X ∈ RN×dmodel via linear
transformations QW Q

i , KW K
i and V W V

i with the weight matrices W Q, W K ∈ Rdmodel×dk ,
W V ∈ Rdmodel×dv . In addition to that, the self-attention operation in [VSP+17a] is applied
multiple times in parallel with different learnable weights, called multihead-attention.
From the input, a set of h query, key and value matrices are computed with different
weight matrices W Q

i , W K
i , W V

i each. After the self-attention operation, each of these
heads is combined with a fully connected layer W O that receives all heads as input (see
Figure 2.5).

MultiHeadAttn(Q, K, V ) = Concat(head1, . . . , headh)W O (2.6)
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Figure 2.4: An overview of the Transformer archi-
tecture. Taken from Vaswani et al. [VSP+17a].

Figure 2.5: The Multihead at-
tention operation. Taken from
Vaswani et al. [VSP+17a].

where
headi = Attention(QW Q

i , KW K
i , V W V

i ). (2.7)

The complete scaled-multi-head-dot-self-attention is then

MultiHeadSelfAttention(X) = MultiHeadAttn(X, X, X). (2.8)

The Transformer encoder consists solely of self-attention layers. The decoder also
contains cross-attention connections where the keys and values come from the output of
the encoder, and the queries come from the output of the previous decoder layer. After
each attention layer, a two-layer position-wise fully connected network is applied (see
Figure 2.4). The Transformer model was originally proposed for machine translation,
i.e. a sequence-to-sequence task, which requires two additional modifications to the
architecture described above. During training, the attention operation of the decoder
is prevented from cheating by attending to future inputs. This is done by masking
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non-causal query/key combinations in the attention matrix

A = softmax


QK⊤
√

dk


. (2.9)

Furthermore, the Transformer architecture, as described above, is fully permutation
equivariant, meaning any encoding of information in the order of inputs in the sequence
cannot be modelled with this architecture alone. To solve this issue, the input is
augmented with a positional embedding before being fed into the first layer. There are
different variants of positional encoding, both learned and fixed [DSS22]. In the original
formulation of the Transformer [VSP+17a], a fixed Fourier embedding PE is added to
each input X

PE(n, i) =

sin


n
100002i/dmodel


i even

cos


n
100002i/dmodel


i odd

(2.10)

where n denotes the position in the sequence, i the dimension and dmodel the dimensionality
of the input X.

The Transformer model is, in principle, capable of modelling arbitrary long sequences.
However, in practice, the required memory is the bottleneck when scaling to longer input
sequences. The attention mechanism requires pair-wise similarity scores for queries and
keys, which leads to quadratic O(n2) memory and runtime complexity. Possible solutions
for these issues are discussed in Section 2.5. The original Transformer model was proposed
for machine translation [VSP+17a] and contained both encoder and decoder. It is trained
in a supervised manner on English-German sentence pairs. Follow-up work explored
options for general pre-training of Transformers.

The BERT model [DCLT19] is an encoder-only Transformer pretrained on a large corpus
of text data. During training, the model receives text where some input positions are
masked. The model is then supposed to predict the correct token for every masked
position. BERT can be used for classification tasks by processing the output of a separate
[cls] token in a fully connected network that is fine-tuned for specific tasks. For the
time, the proposed BERT model was considered very large, with 340 million parameters.
DistilBERT [SDCW19] is a distilled BERT model optimized for efficient deployment.
The model has fewer parameters than BERT and only a small drop in performance.
ALBERT [LCG+19] is another BERT-like model with a reduced parameter count that
uses parameter sharing across layers. Other approaches modify the training process.
RoBERTA [LOG+19] essentially scales up the training and achieves improved performance
over BERT. ELECTRA [CLLM20] aims to improve efficiency by reformulating the pre-
training objective to a discriminative task. Instead of predicting masked tokens, they
employ a small generator network that perturbs the input and trains the ELECTRA
model on the discriminative task of detecting corrupted tokens. The BERT model also
forms the basis of the Vision Transformer [DBK+20] that is discussed in Section 2.4.
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An alternative to the masked bidirectional pre-training proposed in the BERT paper
[DCLT19] is pre-training with autoregressive next-token prediction. The GPT models
[RWC+19, BMR+20a, Ope23] are decoder-only Transformers trained on a large corpus
of text in an autoregressive manner, i.e. given a sequence of tokens, predict the next
token. They observe consistent improvements when scaling both model size and dataset
size. The trained models show emergent behaviour and zero-shot capabilities.

2.4 Transformers for Vision
While initially only proposed for natural language processing, recent works apply networks
containing self-attention operations to image data. Wang et al. [WGGH18] propose
non-local neural network modules that can be understood as a generalization of the
self-attention operation. The non-local operation is defined as

yi = 1
C(x)

�
j

f(xi, xj)g(xj) (2.11)

for input (xi)i∈I and output yi at position i (in space for images or spacetime for videos).
f and g are typically learned during training. C(x) is a normalization factor. for

g(x) = Wgxf(xi, xj) = e(Wθxi)⊤Wφxj (2.12)

the operation is identical to the self-attention operation from Vaswani et al. [VSP+17b].
The resulting module is capable of modelling long-range dependencies but suffers from the
quadratic complexity of the attention operation. To circumvent this issue, Ramachandran
et al. [RPV+19] employ local self-attention. They replace every convolution in a ResNet
[HZRS16] with a self-attention operation restricted to a local rectangular window to
mimic the local receptive field of a convolution. The model performs best if the initial
convolutions in the ResNet, the stem, are kept convolutional while the remaining convo-
lutions are replaced with local self-attention operations. Unlike these approaches that
add self-attentional components into CNNs or CNN-inspired architectures, the Vision
Transformer (ViT) [DBK+20] directly applies the Transformer model from [VSP+17b]
to images. Inspired by the BERT model [DCLT19], the ViT consists of a Transformer
encoder with an additional class [cls] token applied to a sequence of image patches. The
model architecture can be seen in Figure 2.6. To process a 2D image with a Transformer,
which was initially introduced for sequence modelling1, the image is split into patches,
and each patch is flattened and processed with a linear layer. The resulting patch
encodings are used as input for the BERT-like encoder-only Transformer. Learnable
1D positional encodings are used to embed the positional information. The model was
initially proposed for image classification. The ViT shows only modest results when com-
pared to CNNs when trained on mid-sized datasets like ImageNet [DDS+09, HWC+22]
but outperforms them when pre-trained on larger datasets like JFT-300M. For smaller

1The order information is encoded via positional encoding.
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Figure 2.6: The ViT architecture. Taken from [DBK+20].

datasets, the inductive locality bias of convolutions is beneficial when pre-trained on a
sufficient scale. Transformers are capable of learning higher quality intermediate repre-
sentations [RUK+21, HWC+22]. Contrary to CNNs, the ViT is capable of modelling
long-range dependencies in a single layer. However, since the initial patches are projected
to embedding vectors with a simple linear layer, the architecture can struggle with
smaller local structures. Multiple follow-up works tackle this issue. TNT [HXW+21]
further divides the patches into sub-patches and introduces a Transformer-in-Transformer
architecture to utilize these sub-patches. SwinTransformer [LLC+21, LHL+22] performs
local attention in a window and applies different window shifts for different layers to
allow for cross-window connections. Others apply the vision Transformer architecture
to settings other than image classification. The Detection Transformer DETR proposed
by Carion et al. [CMS+20] treats the object detection task as a set prediction problem.
DETR encodes an image with a CNN followed by a Transformer encoder. In the decoder,
the network performs cross-attention between a set of learned embeddings, object queries.
The output of this cross-attention operation is processed with another Transformer and
followed by a linear layer that predicts the output. The resulting models perform on
par with Faster R-CNN on COCO [LMB+14] but show poor performance on smaller
objects [HWC+22]. To address this, Zhu et al. [ZSL+20] proposed Deformable DETR,
a variant of DETR. Instead of global cross-attention connections between the object
queries and the encoded image, Deformable DETR introduces a deformable attention
module that only attends to a small set of key positions. The resulting method achieves
better performance and faster training and inference speeds. Other works applied ideas
from ViT to segmentation tasks [ZLZ+21, WZA+21, WXW+21].

While the original ViT is trained supervised, Radford et al. [RKH+21] propose CLIP, a

17



2. Related Work

multimodal model consisting of one Transformer encoding text and a ViT encoding an
image trained in parallel with a contrastive loss on image-text pairs. During training,
a batch of images is processed with a Vit, and the corresponding batch of captions is
processed with the language Transformer. The resulting embedding vectors are compared
with dot-product similarity. The training loss ensures that similarities between correct
image/caption pairs are high and incorrect ones are low. The resulting model can then be
used for zero-shot tasks by probing it with a language prompt. For example, to measure
zero-shot accuracy on ImageNet, one can probe the model with A photo of a {object},
where {object} is replaced by each ImageNet class. Then, the class with the highest
similarity between image encoding and prompt encoding can be considered the prediction.
CLIP achieves 76.2% top-1 accuracy on ImageNet-1K in a zero-shot setting, i.e. without
using any ImageNet training labels.

How do Vision Transformers differ from CNNs? CNNs have, by design, an implicit
locality prior. This missing prior in ViTs is often assumed to be responsible for the worse
performance of vanilla ViTs in general computer vision tasks like object detection or
semantic segmentation [LMW+22]. Variants like the SwinTransformer [LLC+21, LHL+22]
reintroduce such a local prior to circumvent these issues. When directly comparing
Multihead Self-Attention (MSA) with convolutions, it can be shown that these exhibit
opposite behaviour in some aspects, as evidenced by Park et al. [PK22]:

Flatter loss landscape MSAs lead to a flatter loss landscape, as measured by the
average magnitude of the Hessian eigenvalues during training. A flatter loss landscape is
generally associated with improved generalization and robustness [LXT+18], suggesting
that ViTs learn better representations than CNNs.

Non-convex loss: The loss function of ViT is non-convex, whereas, for ResNets, it is
nearly convex [PK22]. The non-convexity can lead to suboptimal training, particularly
during early stages [JSF+20] and for smaller training datasets. This explains the sub-par
results of ViTs in these scenarios. This phenomenon explains the subpar performance of
ViTs on medium-sized datasets like ImageNet compared to CNNs. Several strategies can
mitigate this issue:

• Employing loss landscape smoothing methods

• Utilizing Global Average Pooling

• Restricting MSA to local windows (local attention)

• Training on larger datasets

MSAs act as low-pass filters : Convolutions act as high-pass filters, while MSAs
function as low-pass filters. See Figure 2.7 for visualization of the feature variance
after different operations. MSA reduces variance, effectively acting as a low-pass filter,
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while convolutions increase feature variance. This behaviour can be attributed to the
aggregation of feature maps in MSA, essentially forming an ensemble of input features. As
shown in eq. (2.5), the attention operation computes a weighted sum of the values, which
are themselves the image of a linear map applied to the input. Since the softmax caps
these weights by 1, preventing the amplification of outlier features and instead mixing
them with the remaining features, thus reducing variance. This perspective of MSAs
as low-pass filters and convolutions as high-pass filters suggests that a complementary
approach combining both architectures may yield superior results in various computer
vision tasks [PK22].
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Figure 2.7: Convolutions increase feature variance, and MSA reduces variance. White,
grey, and blue areas are convolutions, MSA, and subsampling, respectively. Taken from
Park et al. [PK22].

2.5 Efficient Transformers
The feed-forward approach of the Transformer is more efficient than sequential processing
with an RNN as long as the sequence length is shorter than the dimensionality of
the embedding [VSP+17a]. Furthermore, the attention matrix from eq. (1.1) grows
quadratically O(n2) in size with increasing sequence length n, making available memory
a bottleneck for longer inputs, and the computational demand grows quadratically.
These issues have been the source of several recent works (for an extended discussion
and benchmarks of the different methods, see [TDBM20, TDA+20]). In the Reformer
[KKL19] paper, the authors observe that the typical attention matrix is sparse, with
only a few positions contributing substantially to the result. They reduce the complexity
to O(n log n) through locality-sensitive hashing between layers to cluster the inputs and
only apply attention locally. Additionally, they work with invertible layers to further
reduce memory requirements. Another approach that uses the sparsity of the attention
matrix is the BigBird model [ZGD+20] that replaces the full attention operation with a
sum of local attention, randomly sampled attention and attention to fixed predefined
positions, which results in linearly scaling complexity O(n). Another line of research
works by interpreting the self-attention mechanism as a kernel method [TBY+19] and
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linearising the kernel k [CLD+20, KVPF20] as shown in eq. (2.13).

Attn(Qi, K, V ) = softmax(QiK
⊺

√
d

)V

=
�

j k(Qi, Kj)Vj�
j k(Qi, Kj) =

�
j φ(Qi)⊺φ(Kj)Vj�

j φ(Qi)⊺φ(Kj)

(2.13)

The function φ in eq. (2.13) maps to an infinite-dimensional vector space. However,
Katharopoulus et al. [KVPF20] show that by instead approximating it with the com-
putationally simpler function φ : x �→ elu(x) + 1, the complexity of the self-attention
operation becomes linear O(n) with only a small reduction in performance. Rather
than modifying the similarity function, in Choromanski et al. [CLD+20], the softmax
function is approximated with orthogonal random features, which also results in linear
complexity O(n). The Set Transformer [LLK+19b] replaces the self-attention operation
with two cross-attention operations to achieve O(nk) for a fixed k ≪ n. This is achieved
by replacing self-attention blocks with Induced Set Attention Blocks (ISAB):

ISAB(X) = MAB(X, MAB(Im, X)) (2.14)

where

MAB(X, Y ) = LayerNorm(H(X, Y ) + rFF (H(X, Y ))) (2.15)
H(X, Y ) = LayerNorm(X + MultiHeadAttn(X, Y, Y )) (2.16)

with a feed forward network F (·) and Im ∈ Rm×d are m trainable induced points. To see
why this reduces the complexity from quadratic to linear in the input length, notice that in
each application of MAB in eq. (2.14), one of the two inputs has sequence length m making
the total complexity O(nk + kn) = O(nk). A similar idea is used in the Perceiver model
from Jaegle et al. [JGB+21]. The Perceiver uses an asymmetric attention mechanism
that iteratively refines inputs into a compressed latent bottleneck, enabling scalability
for handling large-sized inputs. The input is connected to the latent stream via multiple
cross-attention connections, allowing for efficient processing of large inputs and making it,
in principle, modality agnostic. A completely different approach to improve the efficiency
of the Transformer is presented by FlashAttention [DFE+22], which introduces an I/O-
aware exact attention algorithm designed to enhance the performance of Transformers,
particularly when dealing with long sequences. FlashAttention performs tiling to minimize
the number of memory operations between the GPU’s high bandwidth memory (HBM)
and on-chip SRAM. FlashAttention-2 [Dao23] further tweaks the algorithm to reduce
the number of non-matrix multiplication floating-point operations (FLOPs), parallelizing
the computation of attention across thread blocks (even for a single head) to increase
occupancy and distributing the work more effectively within each thread block.

The methods above only give a brief overview of more efficient alternatives to the
original Transformer model. Tay et al. [TDBM20] outline a general taxonomy of different
approaches shown in Figure 2.8.

20



2.6. Summary

Performer
(Choromanski et al., 2020)

Linformer
(Wang et al., 2020b)

Linear
Transformer

(Katharopoulos et al., 2020)

Set Transformer
(Lee et al., 2019)

Transformer-XL
(Dai et al., 2019)

Memory
Compressed

(Liu et al., 2018)

ETC
(Ainslie et al., 2020)

Sparse Transformer
(Child et al., 2019)Image Transformer

(Parmar et al., 2018)

Synthesizer
(Tay et al., 2020a)

Longformer
(Beltagy et al., 2020)

Big Bird
(Zaheer et al., 2020)

Axial Transformer
(Ho et al., 2019)

Blockwise Transformer
(Qiu et al., 2019)

Sinkhorn
Transformer

(Tay et al., 2020b)

Reformer
(Kitaev et al., 2020)

Compressive
Transformer

(Rae et al., 2018)

Routing
Transformer
(Roy et al., 2020)Funnel

Transformer
(Dai et al., 2020)

Random Feature Attention
(Peng et al., 2021)

Long Short
Transformer
(Zhu et al., 2021)

Poolingformer
(Zhang et al., 2021)

Nystromformer
(Xiong et al., 2019)

Adaptive
Sparse

Transformer
(Correia et al., 2019)

Product Key
Memory

(Lample et al., 2019)

GShard
(Lepikhin et al., 2020)

Switch
Transformer
(Fedus et al., 2021)

TokenLearner
(Ryoo et al., 2021)Perceiver

(Jaegle et al., 2021)

Clusterformer
(Wang et al., 2020)

Scaling Transformer
(Jaszczur et al., 2021)

Low-Rank Transformer
(Winata et al., 2020)

Clustered Attention
(Vyas et al., 2020)

CC-Net
(Huang et al., 2018)

GLaM
(Du et al., 2021)

Swin
Transformer

(Liu et al., 2020)

Charformer
(Tay et al., 2021)

Figure 2.8: Taxonomy of efficient Transformer architectures [TDBM20].

2.6 Summary
This chapter started with a historical overview of neural attention research. Early work
aimed to replicate biological attention [DD95, TCW+95] and focused on attention in
vision, the work that forms the basis for most modern methods came from NLP [BCB15].
These ideas from Bahdanau et al. [BCB15] were subsequently extended to vision in various
visual attention methods [XBK+15, SZ14, ZGBFF16]. In 2017, Vaswani et al. [VSP+17b]
proposed the Transformer model, which has since been established as the template
architecture for neural attention models. Follow-up work has focused on pre-training
strategies [DCLT19] and extending the architecture to vision [DBK+20, LLC+21]. A
major bottleneck of the original Transformer is its quadratic complexity, which motivated
follow-up work aimed at modifying the architecture to achieve sub-quadratic and even
linear complexity [XLC+20, TDBM20], albeit with trade-offs in performance.
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CHAPTER 3
Methodology

This chapter discusses the methodology and results of the research conducted for this
thesis. Each section focuses on one specific application and begins with a brief discussion
of the application’s relevant related work, followed by a discussion of the proposed
methods, results and a conclusion.

3.1 Modelling Text Baselines with Visual Attention
Handwritten Text Recognition (HTR) is the extraction of machine-readable text from
images of handwritten documents. While modern methods allow text extraction with
only minor errors for images of modern printed documents allow [HCH+19], historical
handwritten documents still present a challenge to current methods [SRT+17]. Recent
advances [TW19, MKW17, CMV+19] have seen methods that approach handwritten
text recognition (HTR) on entire document pages, bypassing the need for preliminary
extraction of text baselines. Nevertheless, the dominant approach to HTR involves the
initial extraction of text lines, followed by the conversion of images into textual data via
sequential processing of the text lines in a second step[GLS+19]. Errors in text baseline
segmentation often cause HTR inaccuracies, highlighting the need for robust baseline
extraction techniques [SRT+17].

This thesis introduces a novel method that uses a recurrent CNN to determine baseline
coordinates from document images, using only start points and angles as inputs. The
proposed model employs visual attention to follow the linear structure of textual baselines
in document images. Instead of processing the entire image, the method uses a small
recurrent subnetwork that focuses on specific locations in the image and processes baseline
sequences linearly. This methodology represents an alternative to traditional approaches
to text baseline extraction as it eliminates the need for heuristic post-processing steps. It
includes a technique to determine start points and angles through a semantic segmentation
CNN, which then assists the recurrent CNN in extracting baseline coordinates. Both
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components allow end-to-end training by using only baseline coordinates as labels.
Contrary to heuristic post-processing steps used in other methods [GLS+19], this allows
for rapid adaptation to new document layouts and types by incorporating additional
training examples without requiring modifications of the underlying algorithms.

Contrary to the remainder of this thesis, the model described in this section is not based
on self-attention or a related mechanism. Instead, the proposed method can be more
broadly categorized as falling in the visual attention category (as described in Section 2.2),
where an input image is processed in a sequence or local windows instead of all at once,
similar to Xu et al. [XBK+15]. Such a linear sequence of local attention (glimpses) is a
natural fit for text baselines, which are themselves linear structures in possible larger
images.

The approach focuses on historical documents since these provide the most significant
challenges [DKF+17, DKSG19]. The model is trained and validated on the cBAD 2019
dataset [DKSG19]. An example prediction on an image from the cBAD 2019 test set
demonstrates the predictive capability of the system (see Figure 3.1).

The following sections describe other baseline recognition efforts and explain the proposed
methodology and results on the cBAD dataset.

Note: This Section is based on work previously published in the Proceedings of the
International Conference for Pattern Recognition (ICPR) 2020[WS21]. The text has been
adapted and, in some cases, except stated otherwise, directly reproduced to maintain the
precision and specificity of the original work. All figures are taken without modification
from the cited paper.

3.1.1 Related Work

Text-baseline recognition of historical documents has seen significant contributions
in recent years, particularly with the introduction of CNNs. Methods using Fully
Convolutional Networks (FCN) [LSD15] have proven effective by treating baseline
recognition as a pixel-wise classification challenge, especially on historical datasets
[GLS+19, BDKES18, FLMS18, SHM+18]. In these CNN-based approaches, the seg-
mentation process is followed by heuristic post-processing methods to derive baseline
coordinates from the segmentation masks. For example, Gruning et al. [GLS+19] present
a two-stage approach using an adapted U-Net with residual connections and an atten-
tion mechanism, followed by a bottom-up clustering approach to extract the baseline
coordinates. Schone et al. [SHM+18] use an FCN to predict the entire perimeters of text
lines. Parallel developments in HTR demonstrate methods that infer text baselines as
an integral part of HTR, such as Wigington et al. [WTD+18], who implement a three-
network system that determines start points, predicts text line coverage, and extracts
text in a single end-to-end optimizable pipeline.
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3.1. Modelling Text Baselines with Visual Attention

Figure 3.1: A sample output of the proposed method on a document from the cBAD test
set. The red dots denote the predicted baseline coordinates, and the green lines depict
the resulting baseline.
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3.1.2 Methodology
Extracting baseline coordinates from document images is an essential step in document
image analysis. The proposed method applies two steps for effectively extracting text
baselines as coordinates:

1. Segmentation of the input image: This involves pixel-wise analysis to identify
starting points, termination points, baseline regions, and text regions.

2. Retrieving the coordinates: Commencing from identified starting points, the method
follows the baselines to capture the coordinate data.

This procedure is designed to be modular, allowing for the substitution of the initial
point and angle generation with alternative techniques.

3.1.2.1 Segmentation of Baselines

The recurrent CNN presented in Section 3.1.2.2 relies on baseline starting points for
extraction. To obtain baseline start point candidates (in the typical case where they are
not provided), a semantic segmentation model is applied to the page image, yielding
pixel-wise predictions for the following classes start-point, endpoint, baseline, text, border,
and background. Including the text class, which includes a region of predetermined height
above the baselines, improves model learning and avoids segmentation gaps. Meanwhile,
the border class, defined as a filled sphere of uniform width around the start and endpoints,
helps to distinguish proximal points during training but is excluded post-training.

The CNN used for segmentation is based on the U-Net [RFB15] and Large Kernel
Matters architectures [PZY+17] with a ResNeXt50 encoder [XGD+17] pre-trained on
ImageNet. ResNeXt50 was chosen because it provides a reasonable trade-off between
performance and size compared to other methods on the cBAD 2019 dataset. The
upsampling operation is performed using nearest neighbour upsampling, followed by
3 × 3 convolutions instead of deconvolutions to avoid checkerboard artefacts [ODO16].
The network is augmented by a Global Convolutional Network (GCN) module and a
boundary refinement module [PZY+17], where the GCN consists of parallel 1 × k and
k × 1 convolutions, with k = 9 and c = 25. Additionally, to aid the recurrent CNN (see
Section 3.1.2.2) during the later recurrent prediction stage, the segmentation maps are
combined with the input image to form a three-channel image consisting of the greyscale
document image and the segmentation maps for baseline and text (see Figure 3.2).

3.1.2.2 Retrieval of Baseline Coordinates

The next stage involves the Line Rider model, a dual recurrent CNN framework designed
to predict the coordinates of a baseline and identify its endpoint. At each step, the model
processes an image patch with two CNNs.
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3.1. Modelling Text Baselines with Visual Attention

Grayscale

Figure 3.2: The segmentation output for baselines and text is combined with the grayscale
input image to form a three-channel tensor.

For each baseline, the model is initialized with the starting point, the starting angle and
the estimated window size, which corresponds to the scale of the text and the distance
to adjacent baselines. Image patches are extracted and transformed into a 32 × 32 pixel
input to the CNNs. The angle predictor CNN uses a regression approach to predict the
sine and cosine components of the angle, resulting in more accurate results than direct
angle prediction.

The extracted image patch size and the length of each baseline segment are determined
by the window size. This is calculated individually for every baseline and should reflect
the writing size and the spacing between adjacent baselines. As the cBAD dataset lacks
annotations for text heights, we estimate the window size using the distance between the
start point of the baseline and the start points of adjacent lines. Using these parameters,
we extract an image region with a height equal to the window size, a width four times
the window height, and the appropriate angle, positioning the start point at the center
of the left window border.

Based on the start points (xn, yn), window angle αn and the predicted values sinn+1 and
cosn+1 and using the trigonometric identities cos(a + b) = cos(a) cos(b) − sin(a) sin(b)
and sin(a + b) = sin(a) cos(b) + cos(a) sin(b) the next baseline coordinate (xn+1, yn+1)
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Layer Filter size Padding Channels
Input / / 3
Conv2d 3 × 3 0 16
Conv2d 3 × 3 2 32
MaxPool2d 2 × 2 0 32
Conv2d 3 × 3 0 64
Conv2d 3 × 3 2 64
MaxPool2d 2 × 2 0 64
Conv2d 3 × 3 0 128
Conv2d 3 × 3 0 128
Conv2d 3 × 3 0 128
MaxPool2d 2 × 2 0 128
Flatten / / 128
Linear / / 2

Table 3.1: The CNN that is used to predict the angle of the next window. Next Window
Predictor CNN in Figure 3.3. ReLUs are used after every convolutional layer, and tanh
is used in the output layer.

and window angle αn+1 is computed according to

xn+1 = xn + s · [cos(αn) cosn+1 − sin(αn) sinn+1],
yn+1 = yn − s · [sin(αn) cosn+1 + cos(αn) sinn+1],

αn+1 = αn + arctan
 sinn+1

cosn+1


,

(3.1)

where s denotes the step size. s is set to half the width (and therefore also two times
the height of the input window). A step size larger than half the width can exceed the
baseline end if it is not in the current window. Furthermore, a step size that is too large
increases prediction error in case of incorrectly predicted angles. A small step size, on the
other hand, makes the method more computationally demanding. The chosen step size
of half the width was empirically found to provide the best trade-off. An adaptive step
size could provide further performance improvements, but in initial experiments, it made
the model less stable since the model collapsed to very small baselines in some cases.

During training, the ground truth baseline is split into segments of constant length step
size. The entire process is differentiable. The model architecture is described in Table 3.1.

The baseline endpoint is determined by a separate CNN, described in Table 3.2, which is
optimized for determining whether the current baseline terminates at a given position.
The architecture of this network is designed to predict the location of the endpoint and
the length of the last segment. The length prediction is a regression task with a mean
squared error loss, and the endpoint detection is trained as a binary prediction problem
with a binary cross-entropy loss. The ground truth labels for endpoint detection are

28



3.1. Modelling Text Baselines with Visual Attention

Line End
Detector CNN

Length

End (Y/N)

No

Yes

Compute last baseline coordinate
with cos(α), sin(α) and length

Compute Affine
transformation matrix from
cos(α), sin(α), step size

Next Window
Predictor CNN

cos(α)

sin(α)

End of
baseline?

Image patch Next image patch

Figure 3.3: One step in the Line Rider Network. The input image patch is fed into the
two CNNs. The line-end-CNN 3.2 predicts the end of the baseline and the length of the
last baseline segment, while the next-window-CNN 3.1 predicts the angle of the next
window. If the end of the baseline is reached, the last baseline coordinate is computed
from the predicted values. Otherwise, the length output of the line-end-CNN is ignored,
and the next window is extracted according to the output of the next-window-CNN.

Layer Filter size Padding Stride Channels
Input / / 3
Conv2d 3 × 3 0 × 1 / 32
Conv2d 3 × 3 0 × 1 1 × 1 64
MaxPool2d 3 × 3 0 / 64
Conv2d 3 × 3 0 × 1 1 × 1 128
Conv2d 3 × 3 0 × 1 1 × 1 128
Conv2d 5 × 1 0 × 1 / 128
Flatten / / 10 · 128
Linear / / 2

Table 3.2: The CNN used to predict the end of baselines and the length of the last
segment. Line End Detector CNN in Figure 3.3. ReLUs are used after every convolutional
layer and sigmoid function on the output layer.

smoothed with a Gaussian kernel to account for baselines where the end is ambiguous or
close to segment boundaries.

The iterative mechanism of window extraction and subsequent prediction is graphically
represented in Figure 3.3.

3.1.2.3 Training

The proposed model was trained and evaluated on the cBAD 2019 dataset [DKSG19],
which contains 3028 images from historical documents with diverse layouts and writings.
These images were pre-processed and labelled with text regions, baselines and specific
image areas. The dataset was divided into training, evaluation, and test subsets containing
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755, 755, and 1511 images respectively. Text-baseline annotations were represented as
polygonal chains.

Segmentation Prior to segmentation, the images were pre-processed by rescaling to
standardize the minimum side to a length of 1024 pixels. The model was trained for 80
epochs using a cross-entropy loss function and the Adam optimizer [KB14] with a learning
rate of 4 · 10−4. During training, the images were randomly cropped to 1024 × 1024
pixels. Random rotations were employed as data augmentation with a rotation within
α ∈ [−20◦, 20◦] and a 70% in 30% of cases and α ∈ {−90◦, 0◦, 90◦} otherwise.

Labels for baseline training were created by dividing baselines into segments of constant
width and creating polygonal regions of fixed height for text annotation. The start and
endpoints were labelled with solid circles and outlined by rings surrounding these points.

Line Rider Model The Line Rider architecture was configured to process full-page
images, each rescaled to 1024 × 1024 pixels.

Two different training scenarios were evaluated: 1) direct use of the original raw document
image and 2) enhancement of the document image with the baseline segmentation output.
In the latter case, the segmentation results were merged with the document image by
stacking the probability masks for both baseline and text classifications in the channel
dimension with the greyscale image representation, as shown in Figure 3.2.

During the initial training phases, the model tends to diverge from the correct baseline
when making incorrect predictions. This happened in particular in the early stages of
training. To mitigate the effect of this on longer baselines, the coordinates in the recurrent
process were reset from the predicted to the ground coordinates each nth iteration, with
n incremented by one after every 400 steps, capped at 8.

Data augmentation was applied, consisting of random perturbations to the window
dimensions, starting points, angles, and predicted coordinates for each image fragment.

The model was trained with a learning rate of 4 · 10−4 for only 5 epochs. The model
converges very quickly due to its small size (see Table 3.1 and Table 3.2).

3.1.3 Evaluation
The performance of the proposed Line Rider model is evaluated on the cBAD 2019 test
set[DKSG19] in Section 3.1.3.1 and the impact of additional segmentation information in
Section 3.1.3.2.

3.1.3.1 Model Configurations and Performance

For the quantitative evaluation of the predictions, the evaluation tool provided as part of
the cBAD 2019 competition was used1. This script checks whether the predicted baselines

1https://github.com/Transkribus/TranskribusBaseLineEvaluationScheme
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3.1. Modelling Text Baselines with Visual Attention

Figure 3.4: A visual exploration of challenges encountered in applying the proposed
method on samples from the cBAD 2019 dataset. The top row shows the processed
segmentation outputs—denoted by initiation markers in blue, termination points in red,
boundary classifications in purple, and text lines in grey—with the original input images
complemented by superimposed predicted baselines. The bottom row shows the predicted
baselines overlayed onto the input images. Predicted baseline coordinates are pictured
with red dots and green lines to visualize the resulting predicted baseline polygons. The
left example shows an incorrectly predicted window size and a missed baseline (due to the
failure of the segmentation network to identify the starting point correctly). The example
on the right illuminates an end-of-line recognition failure, resulting in an erroneous
confluence of predicted baselines.
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Figure 3.5: Illustrative results of the segmentation model applied to cBAD 2019 dataset
test images. The first row visualizes the segmentation model’s output: initiation points
(blue), termination points (red), boundary class (purple), and baselines (green) with text
regions (grey). The second row presents the input image overlaid with the predicted
baselines, where red dots represent the predicted baseline coordinates, connected by lines
(green).

Name Precision Recall F1 score
Proposed model 0.872 0.890 0.881
ARU-Net [GLS+19] (Winner cBAD 2019) 0.937 0.926 0.931
Configuration A
(With GT start points and angles
and with segmentation)

0.953 0.974 0.963

Configuration B
(With GT start points and angles
and without segmentation)

0.882 0.972 0.924

Configuration C
(Without GT start points and angles
and without segmentation)

0.788 0.768 0.778

Table 3.3: Results on the cBAD 2019 test dataset. Configurations I and II utilize ground
truth points and angles from the test set, which were inaccessible during the cBAD 2019
contest.
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are within a tolerance range of the ground truth baselines and counts a predicted point
as detected, if so, and undetected otherwise. The resulting scores are measured in terms
of precision, recall and F1 score. The analysis uses two different model configurations:

1. Using only the page images to extract start points and orientations through seg-
mentation, similar to the cBAD 2019 protocol (referred to as the "proposed model"
in Table 3.3).

2. Introducing the ground truth initiation points and orientations alongside the page
images (as represented by Configuration A and C in Table 3.3) to evaluate the
performance of the line rider network independently of the segmentation network.

3.1.3.2 Influence of segmentation on model accuracy

The effect of integrating the segmentation with the raw images on the accuracy of the
line rider was further evaluated by dividing the second configuration into Configuration A
(using both the raw images and the segmentation masks for baselines and text regions) and
Configuration B (using only the raw images). The quantitative results are presented in
table 3.3. While the proposed method is outperformed by ARU-Net, the best-performing
method on cBAD 2019, the disparity in performance between models with and without
ground truth data (proposed model vs Configuration A) indicates that inaccuracies
in the prediction of initiation point and orientation have a significant impact on the
overall results. Furthermore, the difference in performance between Configuration A
and Configuration B shows that the additional segmentation data helps the line rider to
estimate the endpoints of the baselines accurately.

3.1.3.3 Qualitative Insights

Figure 3.5 shows predictions for a selection of typical document images from the cBAD
2019 test set. The proposed method is able to correctly predict baselines in a wide variety
of settings, layouts, writing styles and orientations. Figure 3.4 shows two failure cases
of the proposed method. Typical errors are undetected baseline start points, incorrect
window size and overlapping baselines due to undetected baseline endpoints.

3.1.4 Conclusion
In this section, a novel model that predicts text baselines with a recurrent CNN was
presented. The model is based on a visual attention mechanism to follow the text and
predicts the baseline coordinates in a recurrent manner, following the line sequentially.
The method can be used as long as the starting points of the baselines are known or in a
stand-alone manner using the proposed segmentation model. The model can be trained
end-to-end using document images with text baselines marked as polygons. An analysis of
the errors in the proposed pipeline compared to those of the method proposed by Gruning
et al. [GLS+19], as shown in table 3.3, shows that inaccuracies are mainly due to the
misdetection or non-detection of start points. This is particularly evident for documents
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with start points close together, resulting in overlapping predictions. Ambiguity in the
location of the start-point further amplifies these detection challenges, as illustrated in
Figure 3.4. The model requires little training and converges after only 5 epochs on the
755 images of the cBAD 2019 training set due to the compact structure of the CNNs.
The time required for inference on a document depends on the number of baselines and
the window size chosen, resulting in variability that contrasts with more uniform methods
such as those described in [GLS+19].
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Figure 3.6: An example prediction (bottom row) of the proposed method and the
corresponding manual labelling (top row). Red dots denote blast, and blue dots denote
non-blast cells. Every plot shows a different 2-dimensional projection of the same
underlying FCM data sample. For this visualization, 5000 cells are randomly sampled
from a single sample of the bue dataset. The prediction is from a model trained on vie14
(see Table 3.4 for a description of the datasets).

3.2 Modelling Flow Cytometry Data with Global
Attention

Acute Lymphoblastic Leukaemia (ALL) is a malignant disorder of lymphoid progenitor
cells. It is the most common haematological malignancy in children and adolescents with
relapse rates of treated patients of 15 − 20% [PRL08]. Minimal residual disease (MRD)
- the proportion of leukaemic cells (blast cells) remaining after treatment - is one way
of monitoring the progress of treatment. Low MRD levels early in treatment have been
shown to be strong predictors of better outcomes [Cam10]. For this reason, the correct
assessment of MRD levels is an integral part of modern treatment. However, the detection
of blast cells in a sample often depends on the global structure of the sample, requiring a
non-local method that provides a holistic understanding of the sample [RDS+19].

Multiparameter Flow Cytometry (FCM) is a reliable method for obtaining estimates
of MRD levels during treatment [DFP+02]. It involves staining a sample of a patient’s
blood or bone marrow with a specific combination of fluorescence-labelled antibodies
that bind to cell antigens. In the flow cytometer machine, the cells are then illuminated
by a selection of lasers that allow the detection and measurement of physical properties
(granularity, size) and biological properties by detecting the antibodies as they bind to
the respective antigens. The resulting data for a single cell (an event) is a collection of
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measurements of cell surface marker concentrations (see Figure 3.6 for an example of
FCM data as seen during clinical routine). However, manual analysis of FCM data is
time-consuming, subjective, and dependent on the operator’s experience, which motivates
the need for an automated approach.

Contribution To tackle the shortcomings of manual gating, several methods have been
proposed that allow automated FCM analysis. However, the structure of FCM data sam-
ples proves to be challenging for neural network-based approaches as these often require
data points on a grid (e.g. convolutional neural networks for a 2d grid or recurrent neural
networks for sequences). Some methods [SLR+19, LSR+18] circumvent this problem by
applying neural networks on single cells instead of samples; however, these approaches
can only learn static decision boundaries and cannot capture global sample information.
In this section, a novel method is presented for the detection of blast cells and MRD quan-
tification, which is capable of capturing long-range information in the entire data space by
attending to all events in a sample at once. The method is a variant of the Transformer
[VSP+17b, LLK+19a] model and can detect blast clusters in these high-dimensional
samples, which requires a holistic understanding of the samples. The code is available on
GitHub (https://github.com/mwoedlinger/flowformer) and a pretrained model is also
available via the huggingface library (https://huggingface.co/matth/flowformer).

The remainder of this Section is structured as follows: After a discussion of the related
work in the next Section 3.2.1, the method is presented in Section 3.2.2, and the results
are discussed in Section 3.2.3.

Note: Parts of this Section are based on work previously published in the Journal for
Computers in Biology and Medicine [WRW+22a]. The text has been adapted and, in
some cases, except mentioned otherwise, directly reproduced to maintain the precision
and specificity of the original work. All figures, except otherwise indicated, are taken
without modification from the cited paper.

3.2.1 Related Work
Manual gating methods identify cells based on 2-dimensional projections of the (higher-
dimensional) FCM data. Automated methods, on the other hand, can exploit the entire
parameter space. Typically, these methods aim to assign the correct population to each
individual cell. This produces an output similar to manual gating. This output can be
used directly in clinical routine (e.g. for MRD quantification) or as a starting point for
further data analysis.

Several works formulate the automated FCM analysis as an unsupervised learning problem,
using nonparametric density estimation or clustering methods [SBD+15, AFH+13]. One
line of research that has recently shown promising results in both unsupervised [NDR+14,
DAYR14, JWF16] and supervised [RRK+16, RDS+19] settings is Gaussian Mixture
Models (GMM). In SWIFT [NDR+14], the conventional GMM algorithm is adapted
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to detect rare sub-populations better; BayesFlow [JWF16] uses a hierarchical Bayesian
model where expert knowledge can be incorporated through informative priors. [RRK+16]
accounts for inter-sample variation with a supervised approach where GMMs are matched
to GMMs of a labelled reference dataset. The method is further developed in [RDS+19],
where a closed-form optimization is introduced into the fitting process. Deep learning
has been successfully applied to the automated processing of image cell data [IAB+21,
IAB+21]. However, apart from these imaging FCM applications [NDBS20, EKB+17,
LCD+18], there are few examples of successful application of deep neural networks to
FCM data. In [LSR+18, SLR+19, LSS+17], neural networks based on fully connected
layers that work on single events are presented. However, these methods can only learn
fixed decision boundaries to separate biologically meaningful subpopulations. More
recently, a method has been proposed in [ZMH+20] that transforms FCM data into image
space and processes it with a trained CNN.

3.2.2 Methodology
This section begins with a brief discussion of the structure of FCM data, followed by a
detailed description of the network architecture.

FCM Data A single sample is represented by a matrix E ∈ RN×m (the event matrix),
where N is the number of cells in the sample (typically 105 − 106, the exact value for N
is different for individual samples) and m is the number of markers (typically 10 − 20
for the datasets studied in this thesis, the exact number depends on the antibodies
used). The number of cells N and markers m can vary between samples. To ensure
consistency between samples from other centers and simplify the architecture, the markers
are restricted to a base panel of markers present in each sample, i.e. m is kept fixed, and
non-base panel marker measurements are discarded during training and testing. Follow-up
work investigates ways to extend this method to arbitrary marker combinations[WKR+24].
For each index n ∈ {1, . . . , N}, En ∈ Rm is a quantitative representation of the surface
markers on cell n. Ignoring the ordering of cells induced by the FCM machine (i.e.
samples are represented as a set of vectors instead of a sequence), a sample can also be
viewed as a bag of features (where a feature is the marker measurement vector for a
single cell).

3.2.2.1 Network Architecture

The underlying data is unstructured, i.e. not on a low-dimensional grid such as images
(2D grid) or text (1D grid). It can be thought of as a kind of point cloud in a higher
dimensional space (the number of markers and, therefore, the dimensionality of the events
is typically 10 − 20 in the datasets considered in this thesis) that lacks the symmetries
often found in applications in 3D Euclidean space. Attention-based methods such as the
Transformer [VSP+17a] are in principle capable of handling such data, but the memory
requirements of these models grow quadratically with the size of the input [KVPF20],
preventing a naive application to FCM data. To circumvent this problem, a variation of
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the standard Transformer block can be considered: In Lee et al. [LLK+19a], the standard
multi-head self-attention block is replaced by a two-step procedure. For a given input set
X ∈ RN×m and k ∈ N and a learned set of parameters I ∈ Rk×h:

1. Latent features h ∈ Rk×h are extracted by performing an attention operation
between the set of learnable parameters I ∈ Rk×h as query and the input set X as
key and value input.

2. The resulting hidden features h are used as key and value input for a second
attention computation with the input X as query.

This Induced Attention Block (IAB) breaks the original O(N2) operation into two O(N ·k)
operations, which avoids the problem of quadratic complexity (with k ≪ N held constant).
The latent features can capture global sample information, and the full operation is
permutation equivariant [LLK+19a], justifying its application to set data. It should be
pointed out that the network as a whole is permutation equivariant, not invariant, i.e.
the order of samples in input and output is identical, but the actual computation is
independent of this ordering. This allows the identification of output and input positions
and, therefore, training with a simple binary classification loss. Using the multi-head
attention block from [VSP+17b]

MHA(X, Y ) = LayerNorm(X + A(X, Y, Y )) (3.2)

with the Layernorm from [BKH16] and the attention operation A (with d being the
embedding dimension)

A(X, Y, Z) = softmax(XY ⊤
√

d
)Z. (3.3)

The MHA is then combined with a row-wise feed-forward layer rFF to create a Multi-head
Attention Block (MHAB)

MHAB(X, Y ) = LayerNorm(H + rFF(H)) (3.4)
where H = LayerNorm(X + MHA(X, Y, Y )). (3.5)

Given a set of induced points I, the Induced Attention Block IAB can then be defined
as a sequence of MHABs, the first performing cross-attention between the induced points
and the input and the second performing cross-attention between the input and the
output of the first block

IAB(X) = MHAB(X, MHAB(I, X)). (3.6)

2 Using the Induced Attention Block as a building block, one can define a novel neural
network that processes a sample of FCM data in a single forward pass.

2The first Transformer block can be understood as a HopfieldPooling layer from [RSL+20] while the
second block performs the computation of the Layer Hopfield.
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(a) The network architecture. The input consists of a sample
represented by the event matrix. For every input cell, a binary
classification label is predicted (indicated by the colours blue
and red).

IAB

(b) The induced attention block
from eq. (3.6) as introduced in
[LLK+19a] with the learnable
parameters I in green and the
TransformerBlock from eq. (3.4)
in blue.

Figure 3.7: Architecture of the FCM Transformer. Adapted from Wödlinger et
al. [WRW+22a].

The network (see Figure 3.7, a) is defined as a sequence of four IABs with a row-wise linear
classification layer head, trained with binary cross-entropy loss. Unlike other Transformer
models designed for images or text, the raw marker measurements are directly fed into
the model without any positional coding. The number of induced points is set to m = 16,
the latent embedding dimension to d = 32 and the number of attention heads to 4 for all
three layers.

The resulting model, called Flowformer in the results section, is comparatively lightweight
with only ≈ 28k parameters and can process ≈ 150 samples/s on an NVIDIA GeForce
Titan X3.

Flowformer++ This paragraph describes Flowformer++, an improvement of the
original flowformer model in multiple aspects, which achieves superior performance for
most experiments. The Flowformer++ model has not yet been published outside this
thesis.

The induced attention layer described above consists of two MHAB submodules, each
containing a single row-wise feed-forward layer. Geva et al. [GSBL20] show that having

3Only counting the forward pass of the model, i.e. ignoring the time needed for data loading.
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Table 3.4: Description of the FCM datasets used for experiments.

Name City Years #
vie14 Vienna 2009-2014 200
vie20 Vienna 2015-2020 319
vie Vienna 2009-2020 519
bln Berlin 2015 72
bue Buenos Aires 2016-2017 65

two consecutive feed-forward layers can act as a learned key-value storage, improving the
knowledge capabilities of these models. Motivated by these findings, the ISAB blocks
in the Flowformer++ model contain two successive feed-forward layers separated by a
ReLU for each rFF layer in the original Flowformer model. This essentially doubles the
feedforward layers compared to the Flowformer model. These additional dense layers
increase the number of parameters to ≈ 93k. In addition, affine transformations and
Gaussian resampling of the data points are applied as data augmentation during training.
Besides these modifications, the architecture is identical to the original Flowformer model,
i.e. it is an encoder-only-Transformer with ISAB blocks instead of vanilla Transformer
blocks.

3.2.3 Evaluation
This section begins with a brief discussion of the data in Section 3.2.3.1 and the training
in Section 3.2.3.2, followed by the evaluation in Section 3.2.3.3.

3.2.3.1 Data

The proposed method is evaluated on publicly available data4 from three different clinical
centers as well as one internal dataset (vie20). The data consists of bone marrow samples
from paediatric patients diagnosed with B-ALL on day 15 after induction therapy. For
all samples, ground truth information is available for blast and non-blast cells obtained
by manual gating. Table 3.4 provides an overview of the data sets.

Vienna The Vienna dataset was collected at the St. Anna Children’s Cancer Research
Institute (CCRI) between 2009 and 2020 using an LSR II flow cytometer (Becton
Dickinson, San Jose, CA) and FACSDiva v6.2. The dataset is labelled vie and contains
519 samples. The Vienna samples are split into two disjunct datasets:

• vie14: This dataset contains 200 samples collected between 2009 and 2014. It
is identical to the vie dataset in [RDS+19]. The samples were stained using a
conventional seven-colour drop-in panel ("B7") consisting of the following liquid

4flowrepository.org
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fluorescent reagents: CD20-FITC/ CD10-PE/ CD45-PerCP/ CD34-PE-Cy7/ CD19-
APC/ CD38-Alexa-Fluor700 and SYTO 41.

• vie20: This dataset contains 319 samples collected between 2016 and 2020. The
samples were stained using dried format tubes (DuraClone™, "ReALB") consisting
of the fluorochrome conjugated antibodies CD58-FITC/ CD34-ECD/ CD10-PC5.5/
CD19-PC7/ CD38-APC-Alexa700/ CD20-APC-Alexa750/ CD45-Krome Orange
plus drop-in SYTO 41.

Berlin The bln Dura [RDS+19] (hereafter referred to as bln) dataset contains 72 samples
collected at the Charité Berlin in 2016. These samples were acquired on a Navios flow
cytometer (Beckmann Coulter, Brea, CA) and assessed by 8-colour multiparameter FCM
("B8") using a customized dried format tube (DuraClone™, Beckmann Coulter) consisting
of the seven fluorochrome-conjugated antibodies CD58, FITC/CD10, PE/CD34,
PerCPCy5. 5/CD19, PC7/CD38, APC/CD20, APC-Alexa750/CD45, Krome Orange
plus drop-in SYTO 41.

Buenos Aires The bue Dura [RDS+19] (hereafter referred to as bue) dataset consists
of 65 samples collected at the Garrahan Hospital in Buenos Aires between 2016 and 2017.
The staining panel is identical to the bln Dura set (based on the DuraCloneTM cocktail
tube, "B8"). Data were acquired on a FACSCanto II (Becton Dickinson, San Jose, CA)
using FACSDiva v8.0.1.

3.2.3.2 Training

The proposed method is evaluated for cross-platform compatibility by training separate
models for each of the four datasets discussed in the subsection above and then testing
these models on each other dataset (except vie, as it is only a combination of vie14 and
vie20 ). This results in 12 experiments. In addition, the model is evaluated on a random
train/test split of the combined vie dataset, giving a total of 13 experiments. Additional
experiments are provided to show that the proposed method can be trained on as few as
10 samples and still achieve competitive results. For these experiments, only 10 samples
are used for validation.

Flowformer: The Flowformer model is trained using the Adam optimiser [KB14] with
an initial learning rate of 1e−3 and a cosine annealing scheduler [LH16] with 10 iterations
and a minimum learning rate of 2e − 4. It is trained for 100 epochs with a batch size of 1
and evaluated on the test with the best checkpoint as measured by the average F1 score
on the validation set.

Flowformer++: The Flowformer++ model is trained for 180 epochs using the AdamW
optimizer and a cosine annealing learning rate scheduler.
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Table 3.5: The experimental results evaluated with precision (p), recall (r), average
F1-score (avg F1) and median F1-score (med F1). The method is compared to Reiter
et al. [RDS+19]. Boldface values indicate the best-performing method for a specific
train/test dataset combination.

train test p r avg F1
med F1 med F1 med F1
Flowformer Flowformer++ [RDS+19]

vie vie 0.81 0.83 0.81 0.94 0.96 -
bue 0.63 0.84 0.66 0.87 0.83 0.68

bln vie14 0.77 0.83 0.77 0.90 0.89 0.35
vie20 0.79 0.77 0.74 0.87 0.89 0.48
bln 0.56 0.92 0.62 0.77 0.90 0.50

bue vie14 0.76 0.88 0.79 0.90 0.93 0.84
vie20 0.79 0.74 0.72 0.88 0.93 0.86
bln 0.78 0.82 0.75 0.90 0.94 0.81

vie14 bue 0.82 0.81 0.78 0.95 0.98 0.84
vie20 0.81 0.74 0.73 0.89 0.94 0.86
bln 0.64 0.87 0.66 0.81 0.95 0.25

vie20 bue 0.82 0.69 0.71 0.86 0.96 0.81
vie14 0.82 0.69 0.84 0.95 0.95 0.89

3.2.3.3 Results

The experimental results are listed in Table 3.5. The quality of the results is assessed in
terms of average precision (p), average recall (r), average F1 scores (avg F1) and median
F1 scores (med F1) where blasts are considered "positive" and non-blasts are "negative".
For samples with no blasts or very few blasts (see the leftmost region in Figure 3.10,
especially the first 10 samples where no blasts are present), the F1 score is not a good
measure of performance because misclassification of individual cells can have a significant
effect on the F1 score that is not reflected in the clinical significance. In particular, for
samples with zero blasts, misclassifying a cell as a blast cell will result in a F1 score of 0
while the MRD is ≈ 0, making such a single false prediction clinically insignificant while
having a significant impact on the average F1 score. For these reasons, the median F1
score is preferred to the average F1 score for measuring model performance.

The method is compared with the GMM-based model described in Reiter et al. [RDS+19],
which is evaluated on the vie14, vie20, bln and bue datasets. The complete set of results
for the experiments performed can be seen in Table 3.5. The existing approach [RDS+19]
is outperformed in all experiments. The proposed method is significantly faster with
inference times of 5ms versus 3000ms for the GMM-based approach [RDS+19]. For
bue/bln in particular, the Flowformer model only achieves a median F1 score of 0.77
with a precision of 0.56 and a recall of 0.92, suggesting that performance may degrade
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Figure 3.8: F1 scores and predicted MRD values for the test set of the vie experiments.
Each point represents a single sample, with the colour indicating the F1 score (colours
going from red = 0.0 to green = 1.0). The dashed lines correspond to MRD values of
5e − 4, which is the minimal resolution required for patient stratification according to the
current international therapy trials of the allied study groups of the iBFM consortium.
Predictions that are either less than 3 times or more than 1/3 of the true MRD are
considered acceptable (correct) predictions. [DGR+08].

for sufficiently different data sources. However, adding 5 random samples from the test
set to the training set and testing on the remaining samples improves the median F1
score, precision and recall to 0.87, 0.7 and 0.91, respectively, indicating that when a small
amount of labelled data is available, the cross-laboratory performance of the flowformer
method can be significantly improved. In general, it can be seen that the proposed
method performs better for samples with larger MRD values when measured in terms
of F1. Figure 3.9 shows the average F1 score for all samples with an MRD value above
the threshold given by the value on the x-axis for the vie test set. Samples with a low
F1 score predominantly have a lower MRD, i.e. a lower number of blast cells. For low
MRD values, the flowformer model tends to overestimate the true value more often than
it underestimates it. This can be seen in Figure 3.8, where the ground truth MRD is
plotted against the predicted MRD. A different visualization is given in Figure 3.10
where the true MRD, the predicted MRD and the F1 score are given for each sample.
The Flowformer++ model performs better for every experiment except bln/bue and
bln/vie14. See Appendix A for additional MRD plots, calibration histograms for the
Flowformer++ model for each experiment, and a more extensive comparison between
the Flowformer and Flowformer++ models.
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Figure 3.9: Running average of F1 scores against ground truth MRD values, i.e. for a
given MRD value x, the line shows the average of F1 scores of all samples within the vie
test set with an MRD value greater than or equal to x. Due to the logarithmic scale, the
11 samples in the vie test set with MRD values of 0 are not shown, which explains the
mismatch between the lowest running average of 0.88 and the mean across the test set of
0.81.
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Figure 3.10: F1 scores (red dots), ground truth MRD values (purple lines) and predicted
MRD values (green line) for the vie test set.

44



3.2. Modelling Flow Cytometry Data with Global Attention

3.2.4 Conclusion
In this section, a novel method for automated cell population identification is proposed
and trained for blast cell detection in B-ALL FCM data. The method is based on a
lightweight neural network that allows fast (≈ 150 samples/s) processing of samples with
105 − 106 cells on an NVIDIA GeForce GTX TITAN X. It is trained in a supervised
manner on as few as 65 samples of data from three different sources, while still being
capable of generalizing to unseen data. The method differs from existing approaches that
utilize neural networks for automated FCM analysis [SLR+19, LSR+18] in that it relies
heavily on attention. This allows the network to model the holistic properties of samples
rather than relying solely on local features as in existing work [LSR+18]. The quadratic
complexity due to the long range of the attention operation is circumvented by using a
SetTransformer[LLK+19a] inspired architecture, where the original O(n2) complexity is
replaced by two operations of O(nk), where k ≪ n.
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3.3 Modelling Stereo Image Redundancies with Stereo
Cross Attention

Stereo Image Compression (SIC) aims to compress the two images of a stereo image
pair more efficiently by exploiting their mutual information. This process is similar
to the lossy compression of individual images, aiming to decrease the storage and
transmission bit rate while preserving the content integrity and perceptual quality.
Stereo cameras, particularly in applications such as autonomous driving and virtual
reality streaming, require high compression rates and low latency in encoding and
decoding for seamless recording or streaming. In this context, learned compression
techniques, characterized by their symmetric encoding and decoding durations, offer
an advantage over traditional methods where fast decoding is often achieved at the
expense of slow encoding. These learned methods convert images into a latent space
representation, which is then quantized and encoded into a bitstream using a learned
probability distribution, followed by entropy coding. They are trained end-to-end to
optimize the balance between bitrate and distortion, to minimize the cross-entropy
between the actual latent distribution and its estimated model. Learned compression
methods have recently surpassed conventional techniques such as BPG [Bel14] in single
image compression [MBT18]. Given the substantial mutual information in stereo image
pairs, an ideal method for compressing stereo images should approach the bitrate of
one image in the pair, significantly outperforming the independent compression of each
image. However, the challenges posed by occlusions and the different fields of view in
stereo setups make it difficult to achieve significant bitrate reductions. Early learned
compression models for stereo image data focused on modelling the disparity between
the image pairs to create a dense warp field [LWU19a] or applying a rigid homography
transform [DYY+21] to support image registration to exploit their similarities. However,
these methods are computationally expensive and inefficient for transmitting dense
disparity maps through the bitstream. Furthermore, incorrect or noisy disparity map
predictions can increase the transmitted images’ bitrate by introducing additional noise
into the latent. Neural attention is a promising idea that could help to overcome these
problems. A neural attention connection between the left and right image streams
allows for input-specific information transfer between the left and right image streams.
Furthermore, if one restricts oneself to rectified images, the problem of the quadratic
complexity of neural attention becomes tractable if attention itself is restricted to the
epipolar line. The use of such a stereo cross-attentional connection allows the learned
modelling of stereo redundancies without explicit computation of any form of warping.
In this thesis, two methods are described that implement two types of stereo image
attention and achieve SOTA performance at the time of publication:

Stereo Attention for Stereo Image Compression (SASIC): In the SASIC model,
the left image is encoded with the encoder and hyperprior encoder modules, similar to
single image encoding. After the encoder has processed the right image, the optimal
horizontal shifts (minimizing the mean square error) are determined for each channel of
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its latent representation concerning the corresponding channel of the left image latent,
and the two shifted channels are subtracted so that only the residual is encoded for the
right latent. This is motivated by the observation that the dominant rigid transformation
between rectified images in a stereo pair is a horizontal shift, and working in latent space
results in a larger effective disparity range for a given shift due to downsampling. In
addition, a stereo attention module is used in the decoder to connect the left and right
image streams and allow the model to accurately decode the joint latent. The code is
available on GitHub: https://github.com/mwoedlinger/sasic.

Epipolar Cross Attention for Stereo Image Compression (ECSIC): The ECSIC
model for stereo image compression omits explicit disparity estimation. The network is
structured as an autoencoder and incorporates a hyperprior [BMS+18] based entropy
model. It features a unique stereo attention module within the encoder and decoder,
which allows simultaneous processing of both images in the stereo pair. The novel stereo-
attention module connects the left and right streams via a cross-attention connection.
Attention is restricted to the epipolar line, thus avoiding the problems of quadratic
complexity of the attention operation. Additionally, two stereo context modules are
implemented within the entropy model, which improves the estimation accuracy by using
the left image as a reference for the right image. The code is available on GitHub:
https://github.com/mwoedlinger/ecsic.

The remainder of this section is structured as follows. In Section 3.3.1, a brief review
of the existing literature on image compression (traditional/learned/stereo) is given; in
Section 3.3.2, the SASIC and ECSIC models are described. The results and ablation
studies are discussed in Section 3.3.3, and a discussion in Section 3.3.4 concludes the
section.

Note: This section is based on previously published work. The SASIC model was
published in the Proceedings of the Conference for Computer Vision and Pattern Recog-
nition (CVPR) 2022 [WKXS22], and the ECSIC was published in the Proceedings of the
Winter Conference on the Applications of Computer Vision 2024 [WKK+24]. The text
has been adapted and, in some cases (including the introduction to this section), directly
replicated to maintain the precision and specificity of the original work. In particular,
the method sections are taken directly from the original publications. All figures are
taken without modification from the cited paper.

3.3.1 Related Work

Modern image compression techniques can be broadly grouped into two main categories:
traditional and learned. Traditional methods rely on manually designed transformations
of the input image into its latent form. In contrast, learned methods use data-driven
optimization of the rate-distortion loss to learn the transformation. Both methods use
an entropy coder to transform the discrete latent representation to and from a minimum
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length bitstream and vice versa, and an approximate inverse transform is used for image
reconstruction.

Traditional Methods The Joint Photographic Experts Group (JPEG) created the
JPEG standard in 1992 [Wal92]. The image codec includes a fixed 8x8 block tiling, chroma
subsampling, a discrete cosine transform, and multiple prediction modes for subsequent
blocks. Its successor, JPEG2000 [SCE01], introduces multi-resolution processing using a
discrete wavelet transform. Recent advances in compression technology have been primar-
ily in video, with modern image codecs typically introduced as intra-frame compression
in modern video codecs, including BPG [Bel14] (derived from HEVC [SOHW12]), AVIF
[All22] (based on AV1), and VVC-intra [BWY+21]. Although VVC-intra offers superior
compression efficiency among traditional codecs, its practical adoption is hampered by
its slow encoding, the lack of readily available production-ready decoders, and restrictive
licensing issues.

Learned Methods Initial breakthroughs in learned image compression were made
by Toderici et al. [TOH+16], who developed a recurrent neural network-based method
for variable-rate image compression. Ballé et al. [BLS17] further advanced the field by
introducing an autoencoder-based model that trains with a rate-distortion loss for a given
target bitrate, using a fixed parameterized latent distribution for the entropy model.
Later work by the same group replaced the fixed latent entropy model with a per-pixel
Gaussian distribution, where the parameters are tailored for each input image using a
hyperprior module [BMS+18] or an autoregressive context module [MBT18, MAT+18],
significantly improving performance. Subsequent improvements to this basic structure of
an encoder/decoder augmented with a hyperprior/autoregressive entropy model have
been varied, including modifications to the model architecture [CSTK20, GYP+21,
XCC21, HYP+22], advances in quantization techniques [TSCH17, GZFC21b], and new
theoretical approaches to the optimization challenge [YBM20]. Significant efforts have
also been dedicated to refining the context model [MS20, QTS+20, HZS+21, GZFC21a,
HYP+22, KGB+22]. Recent innovations show performance improvements by integrating
Transformers or other attention mechanisms, mainly in the hyperprior and context model
[KGB+22, QSL+22, KHL22], and also in the primary autoencoder [ZYC22, ZSZ22]. A
distinct research trajectory focuses on enhancing the realism of reconstructed images
alongside the traditional goal of rate-distortion optimization. This is mainly achieved by
GANs [TAL18, ATM+19, MTTA20, GSG+21, HYY+22], but also by other generative
models such as denoising diffusion models [TSHM22, GPW+23].

Stereo Image Compression Stereo image compression uses the mutual information
between the left and right images of a stereo pair to save bitrate. Although similar to
video frame compression, the disparity in stereo images is not adequately captured by
optical flow, making direct application of video codecs less effective. Among traditional
methods, MV-HEVC [MMSW06] extends the HEVC video codec for multi-view sequences,
offering robust performance but lacking support for higher bit-depth processing and 444
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chroma mode. Huang et al. [HSD+21] introduced a learnable lossless stereo compression
method based on explicit disparity estimation and image warping.

Several learned methods have been proposed for learned lossy stereo compression: The
DSIC method by Liu et al. [LWU19a] uses a conditional entropy model where features from
the first encoded image, warped by disparity, are used to encode the second image. Deng
et al. [DYY+21] introduced the HESIC method, where the second image is warped using
an estimated homography and only the residual is encoded, complemented by a context-
based entropy model and a final quality enhancement module to minimize bitrate and
improve reconstruction quality. Zhang et al. [ZSZ23] propose the LDMIC method, which
uses decoder-only cross-attention connections for distributed multi-view compression. The
encoder module is shared between different views and encodes each separately, while the
decoder connects different views with an attention layer. Additionally, an autoregressive
entropy model is used for improved entropy coding. Mital et al. [MÖGG23] propose
a similar approach for distributed source coding, where a correlated image is available
during decoding.

3.3.2 Methodology
Two methods for stereo image compression are presented in this section. The SASIC
model [WKXS22] uses cross-attention connections only in the decoder and a channel-wise
translation transform (an image shift) as a cheap (i.e. few additional bits) alternative to
a full disparity warp in the latent. The ECSIC model [WKK+24] is an improvement over
SASIC and includes no disparity modelling heuristics. Instead, the stereo cross-attention
module is naturally included in both the encoding and decoding parts of the model. In
addition, an improved context module is proposed.

3.3.2.1 SASIC

Figure 3.11 shows an overview of the proposed method. It compresses a stereo image
pair into two streams that are connected in the latent entropy model and the decoder.
The hyperprior model estimates the parameters of the latent entropy model. For a
given stereo image pair x1, x2, in the first step, the left image is encoded independently
from the right image. Then the right image is processed by the encoder module E, and
the optimal channel-wise horizontal shift for the quantized left latent ŷ1 is computed
such that the MSE to the right latent y2 is minimal. For each channel c in the latent
representations y2, the optimal shift sc = argmins MSE

�
y

(c)
2 − shifts(y(c)

1 )
�

is determined,
where shifts(y) is defined as a tensor of the same size as y but shifted horizontally (with
respect to the original image) by s pixels (zero-padded if necessary). Instead of y2, only
the residuals are encoded, defined for each channel as y

(c)
res = y

(c)
2 − shiftc(y(c)

1 ). The
search range for sc for the experiments is limited to 64 pixels (in the downsampled latent
representation) in one direction only (stereo disparity has only one polarity). The optimal
shift can be found efficiently using a convolution in the horizontal direction (achieved by
appropriate padding) and element-wise operations to compute the MSE. It is, therefore,
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Figure 3.11: The full architecture of the proposed method. The structure of submodules
is shown in Figure 3.12 and Figure 3.13. The arithmetic encoder AE and the arithmetic
decoder AD are not relevant during training. The bitstreams are pictured with a
checkerboard pattern. Dotted lines are connections that are not relevant during training,
and dashed lines show connections between the left and the right sides.

not significantly more demanding than other common operations in CNNs. The residual
between the right latent and the shifted left quantized latent

yres := E(x2) − shift(ŷ1) (3.7)

is then encoded. During decoding, the left latent is decoded first and then the shifted
left quantized latent shift(ŷ1) is added to the quantized residual ŷres to obtain the right
latent

ŷ2 := ŷres + shift(ŷ1). (3.8)

In the final step, ŷ1 and ŷ2 are processed jointly in the decoder modules D1, D2.

Applying a channel-wise shift is computationally cheap and requires almost no additional
side information. Since the encoder performs 4× downsampling, a maximum shift of 64
pixels in the latent corresponds to a shift of 256 pixels in the original image. This equals
to 72 bits of side information (6 bits times 12 latent channels), which for a 512×512
input image results in an overhead of only ≈ 0.00027 bits/pp. Furthermore, a simple
shift is also theoretically motivated by the fact that for a rectified stereo image pair, a
shift describes the transformation between the two image planes.

Encoding modules and quantization The encoder/decoder architecture is loosely
based on the single image compression method proposed in [XLC+20]. The encoder
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Figure 3.12: The top row shows the architecture of encoder E and hyper-encoder hE .
The bottom row shows the decoder of the hyperprior with the decoder for the left image
bottom left and the decoder for the right image bottom right. In all experiments N = 192
and M = 12

module E and the hyperprior encoders h1
E and hres

E each consist of four convolutional
layers with Parametrized Rectified Linear Units (PReLUs) [HZRS15] as nonlinearities.
The structure of the encoder modules is shown in the top row of Figure 3.12. For both
encoder modules, downsampling occurs in the second and third convolution, resulting in
a 4× downsampling for the latent and 16× downsampling for the hyperlatent compared
to the size of the inputs x1, x2. The same encoder module E (i.e. shared weights) is
used for the left and right images, and the same architecture for h1

E and hres
E (with

separate weights). Motivated by the discussion in [PFBK21], during training, the noise
approximation quantization [BLS17] is used for the rate loss, and a straight-through
estimation (STE) quantization is used for the distortion loss.

Decoding The architectures of the hyperprior decoders follow the same general struc-
ture of four convolutional layers with PReLUs as nonlinearities; see the bottom row
of Figure 3.12. The hyperprior decoder for the left image h1

D receives the quantized
hyperlatent ẑ1 as input and performs nearest neighbour upsampling after the second and
third convolutional layers. The hyperprior decoder for the residual hres

D receives both
the 4× upsampled quantised hyperlatent ẑres and the shifted ŷ1 as input. There is no
additional upsampling after the convolutional layers in hres

D . The final decoder modules
D1 and D2 again consist of four convolutional layers with PReLU activation functions
and upsampling after the second and third convolution, but with stereo attention modules
(SAM) from [YWW+20] before the first three convolutional layers connecting the left
and right decoder streams; see overview in Figure 3.13. SAM works by computing an
attention mask between the left and right inputs, which is used to warp left to right and
vice versa. The input is stacked with the warped image in the channel dimension and
processed by the next convolutional layer. Attention is computed only between positions
on the same epipolar line (assuming the images are rectified), which avoids the problem
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of quadratic complexity in the sequence length of the attention mechanism.

Entropy estimation Optimal entropy estimation is essential for the rate loss term
during training and for correct bitrate allocation during testing. For stereo image
compression, where a pair of images with mutual information H(x1, x2) > 0 is compressed
together, using the left latent as side information in the entropy model of the residual
can in principle reduce the bitrate even further. As discussed in 3.3.2.1, the quantization
of the latent and hyperlatent is approximated with noise during training ỹ = y + ϵ and
z̃ = z + ϵ with ϵ ∼ U(−0.5, 0.5) following Balle et al. [BLS17]. During testing, ỹ and
z̃ are replaced with their integer quantized equivalents ŷ and ẑ. Similar to [BMS+18],
a hyperprior model extracts meta-information z̃n, n ∈ {1, 2} to reduce the entropy of
the latents ỹn, n ∈ {1, 2}. Following the discussion in [BMS+18], the probability of the
hyperprior z̃n is modelled by a convolution of a parametric probability function qz̃n and
a uniform distribution u.

pz̃n(z̃n | θz̃n) = (qz̃n ∗ u)(z̃n) (3.9)

where θz̃n denotes the parameters of qz̃n and u(τ) = [−0.5,0.5](τ). pz̃n(z̃n | θz̃n) can then
be expressed via the cumulative density function Fz̃n of qz̃n :

pz̃n(z̃n | θz̃n) =
� ∞

−∞
qz̃n(τ | θz̃n) [−0.5,0.5](z̃n − τ)dτ

= Fz̃n(z̃n + 0.5|θz̃n) − Fz̃n(z̃n − 0.5|θz̃n)

The probability density function of qz̃n is modelled as a fully factorized Laplacian
distribution

Lapµn,bn
(z̃n) =

�
i

1
2bn;i

exp


−|z̃n;i − µn;i|
bn;i


, (3.10)

where i denotes the pixel index and the parameters µn;i ∈ R, bn;i ∈ R+ are shared between
all positions in a channel. The set of parameters (µn, bn) are denoted by θz̃n .

The latent distributions are modelled as convolutions of a parametric probability function
qỹn , with n ∈ {1, res}, and a uniform distribution u.

pỹ1(ỹ1 | z̃1, θỹ1) = (qỹ1 ∗ u)(ỹ1) (3.11)
pỹres(ỹres | ỹ1, z̃res, θỹres) = (qỹres ∗ u)(ỹres) (3.12)

The distributions are conditioned on the hyperpriors z̃n and the parameters of the
hyperprior decoder θỹn . For the residual latent ỹres, the probability distribution is
additionally conditioned on ỹ1 by using the shifted ỹ1 as an additional input to the
decoder of the hyperprior hres

D . The first latent qỹ1 is modelled as a fully factorized
Laplacian and, contrary to the hyperlatents where the learned parameters are shared
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Figure 3.13: The decoder architecture. The SAM blocks contain the stereo attention
module proposed in [YWW+20]. The number of channels N is set to 192.

for each position for a given channel, a different set of parameters is predicted for each
position and channel with

θỹ1 = h1
D(ẑ1) (3.13)

θỹres = hres
D (ẑres, shift(ŷ1)). (3.14)

The total rate is then the sum of the cross entropies for z̃1, ỹ1, z̃res, ỹres:

R = Ex1,x2∼px

� − log2 p(ỹ1, z̃1 | θz̃1 , θỹ1)
− log2 p(ỹres, z̃res | ỹ1, θz̃res , θỹres)

	
,

(3.15)

where px denotes the true distribution of the input data.

Training The model is trained with the rate-distortion loss

L = R + λD, (3.16)

where R is the rate term from eq. (3.15) and D denotes the distortion metric, which is
equal to the sum of the MSE values for the left and right images between the inputs
x1, x2 and the predictions x̂1, x̂2,

D = Ex1,x2∼px

� ∥x1 − x̂1∥2 + ∥x2 − x̂2∥2 	
. (3.17)

The model is trained for different values of λ ∈ {1e−3, . . . , 4e−1} to achieve different
desired target bitrates. For each bitrate, the model is trained from scratch for ≈ 8 · 105

steps. The initial learning rate is set to 10−4 and decreased by a factor of 10 after 400k
steps. The Adam optimizer [KB14] is used as the optimizer, and a batch size of 1 is used
for all runs. The model is trained on random crops of size 256×256.
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Figure 3.14: An overview of the architecture of the ECSIC model. The left and right
streams are coloured red and blue, respectively. The encoder E, decoder D, hyperprior
encoder hE , and decoder hD jointly process the left and right image streams and run in
parallel. The stereo context modules cy and cz are only included in the right stream and
use input from the left stream as contextual information. The Stereo Cross Attention
(SCA) modules connect the left and right streams (shown as ⊗). Submodules in green
(Quantizers (Q) and Arithmetic Encoder/Decoder (AE/AD)) do not contain trainable
parameters. The bitstreams are marked with a checkerboard pattern. Dashed lines
connecting to AD indicate predicted entropy parameters.

3.3.2.2 ECSIC

The proposed method follows the common structure [BMS+18] consisting of the main
autoencoder and hyperprior, to which two non-autoregressive context modules are added;
see overview in Figure 3.14. In the main branch, consisting of the encoder E and the
decoder D, the input image pair (xl, xr) is transformed into the latent representation
(yl, yr) and quantized to discrete tensors (ŷl, ŷr), which form the bitstream. The decoder
D reconstructs the output images (x̂l, x̂r). In the hyperprior branch, the hyperencoder
hE transforms the latents into (zl, zr), which are again quantified into (ẑl, ẑr) and stored
in the bitstream as side information. They are then used by the hyper-decoder hD to
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Figure 3.15: The left columns shows encoder E and decoder D. The right columns
show the encoder and decoder of the hyperior hE and hD. N = 192 and M = 48 for
all experiments. Conv2d denotes 2d convolutional layers, and ConvT2d 2d transposed
convolutional layers. The initial three convolutional and PReLU layers in the encoder
have shared weights between the left and right streams.

estimate the entropy parameters of the latents (ŷr, ŷr). All these modules jointly process
the left and right images in parallel.

Two non-autoregressive stereo context modules cy and cz are added to the right image
stream to help estimate the entropy parameters of the right image latents ŷr and
hyperlatents ẑr respectively, using the information already available from the left side.
The left and right image streams are further connected by the proposed Stereo Cross
Attention (SCA) modules (see Section 3.3.2.2), which are included in all modules that
connect both streams – in encoder/decoder and hyper-encoder/hyper-decoder —and also
in the stereo context cy.

The resulting method can be trained end-to-end with the rate-distortion loss (see
Sec. 3.3.2.2) on any dataset of stereo image pairs. Unlike other recent methods [DYY+21,
ZSZ23], the proposed method does not include any autoregressive components, which
allows for fast encoding and decoding (see Sec. 3.3.3.3).
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Encoding modules and quantization The encoder E and the decoder D each consist
of four convolutional layers with three down/upsampling steps each for left and right, a
SCA module, and PReLU [HZRS15] activation functions. The hyperprior encoder and
decoder also use three convolutional layers with two down/upsampling steps each, an
SCA module, and PReLU activation functions. The first convolutional layers in the
encoder E have shared weights between the left and right streams. Network diagrams for
each module can be found in Figure 3.15. Each quantization operation applies integer
rounding to the mean-subtracted input. For example, for the left latent:

ŷl = round(yl − µl) + µl, (3.18)

where µl is the estimated mean of the distribution of yl. Analogously for yr, zl, and zr.

Stereo Cross Attention Module A new Stereo Cross Attention (SCA) module is
proposed to facilitate the flow of non-local information between the left and right image
compression streams. It performs cross-attention between the corresponding epipolar
lines. For each location in one image, the attention domain is the corresponding horizontal
row in the other image. By restricting attention to the corresponding epipolar lines
(restricting it to horizontal lines for rectified images), the problem of quadratic memory
complexity of vanilla attention can be circumvented, and all are processed in parallel.
The resulting method still has quadratic complexity, but only in the width rather than
the total number of pixels O(w2h). The structure of the SCA module is shown in
Figure 3.16. The layer norm is only applied to queries and keys (not values, which are
the final output). In the Multi-Head Attention (MHA) block, 1D convolutions with a
kernel size of 3 are used instead of linear embeddings. Other variants of position encoding
[SUV18, VSP+17b] were explored, but no impact on overall performance was found. The
SCA module is included in all submodules that combine both streams in E, D, hE , hD,
and also in the stereo context cy; see Figure 3.14. In E and hE , the SCA module is
applied after all downsampling layers and before the final convolutional layer. In D and
hD, the module is applied after the first upsampling layer.

Entropy estimation Following the hyperprior structure of [BMS+18], a pair of hy-
perlatents ẑl, ẑr is used as side information for the entropy parameter estimation of the
main latents ŷl, ŷr. In the following paragraphs, tensors (non-scalars) are written in bold,
θ(·) denotes entropy parameters and φ(·) other learnable or predicted parameters.

The distribution of the left hyperlatent ẑl is modelled by a channelwise Laplacian
distribution Lapµ,b with parameters θl

z := (µl
z, bl

z) for each channel of ẑl learned during
training and fixed afterwards. The distribution of the right hyperlatent is modelled by a
factorized Laplace distribution with parameters θr

z := (µr
z, br

z) for each pixel. These are
predicted adaptively for each input. Similarly, the distribution of the main latents ŷl/r is
also modelled by a factorised Laplace distribution with parameters (θl

y, θr
y).
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Figure 3.16: The proposed Stereo Cross Attention (SCA) module. The left and right
streams are coloured red and blue, respectively. LN denotes layer norm, and MHA
denotes multi-head attention block with arguments (output dimension × embedding
dimension × heads). The streams denoted q, k, and v refer to the standard query, key
and value terminology.

To reduce the bitrate, the right image entropy model is conditioned on information from
the left stream. Two stereo context modules, cy and cz, are included for this purpose; see
Figure 3.17.

The left hyperlatent entropy parameters are learned. The right hyperlatent entropy
parameters θr

z are predicted by cz from ẑl and a set of fixed (learnable) parameters φzr :

θr
z = cz(ẑl, φzr ). (3.19)

During encoding (decoding), ẑl is first encoded (decoded) using its fixed entropy model
and then used to encode (decode) ẑr using the entropy parameters predicted by cz.

The parameters θl
y of the distribution of the left latent ŷl are predicted from the two

hyperlatents ẑl, ẑr by the hyperprior decoder hD. Similar to the previous case, the
decoded left latent ŷl is used to aid entropy parameter estimation of the right latent. For
this, the context module cy is included, which predicts the entropy parameters of the
right latent

θr
y = cy(ŷl, φyr ) (3.20)

from the already decoded left latent and the second output φyr of the hyper decoder hD.

Loss Function The rate-distortion loss is used

L = R + λD, (3.21)

where R denotes the rate and D the distortion loss term; λ ∈ R is a trade-off parameter
that determines the average bitrate of the trained model. The distortion loss term is the
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Figure 3.17: The context modules cz and cy. Top: cz predicts the entropy parameters
of the right hyperlatent ẑr from the left hyperlatent ẑl and a set of learned parameters
φzr . Bottom: cy predicts the entropy parameters of the right latent ŷr from the left
latent ŷl and partial output of the hyper-decoder hD denoted φyr . In the experiments,
N = 192 and M = 48. The arguments after the convolutions denote (output dimension
× kernel/stride).

expectation of the mean squared errors

D(xl, xr) = Exl,xr∼px

�
∥xl − x̂l∥2

2 + ∥xr − x̂r∥2
2
�
. (3.22)

The estimated rate is given by the cross-entropy between the predicted distribution of
the entropy model and the true distribution of the latents/hyperlatents. The total rate
loss is then the sum of the rates of the latents and the hyperlatents:

R = Exl,xr∼px

� − log2 p(ẑl | θl
z)

− log2 p(ẑr | φcz , φzr , ẑl)
− log2 p(ŷl | φhd, ẑr, ẑl)
− log2 p(ŷr | φcy , φhd, ŷl, ẑr, ẑl)

	
,

(3.23)

where φhd, φcy , φcz denote the parameters of the hyperprior decoder and the proposed
stereo context modules cy and cz respectively, and p(. . .) are the Laplace distributions
specified in the previous Section 3.3.2.2.

Since the quantization operation has a zero derivative almost everywhere, it must be
replaced by some proxy expression during training. As in [BLS17], the quantization
operation is approximated with additive uniform noise for the rate loss (similarly for
yr, zl and zr).

ỹl = yl + U(−0.5, 0.5). (3.24)
Following Minnen et al. [MS20], a straight-through estimation quantization is used for
the distortion loss during training.
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Training The ECSIC model is trained for ≈ 1.3 · 106 steps. The Adam optimizer is
used, and the initial learning rate is set to 10−4 for batches of size 1 and reduced to 10−5

after 106 steps. The λ values are adjusted according to the target bitrate.

3.3.3 Evaluation

This section begins with a summary of the data sets used to evaluate the proposed methods,
followed by details on the training parameters. This is followed by a presentation of the
rate-distortion curves and an ablation study.

Datasets: The proposed methods are evaluated using two popular stereo image datasets,
namely Cityscapes [COR+16] and InStereo2k [BWX+20], which each provide different
stereo image environments. Cityscapes consists of different disparity stereo pairs from
driving scenarios, while InStereo2k is dedicated to indoor environments with objects
positioned closer to the camera. The Cityscapes dataset, comprising 5000 urban street
scene stereo pairs taken in German cities, provides images with a resolution of 2048×1024,
divided into 2975 image pairs for training, 500 for validation and 1525 for testing. The
images are cropped by 64, 256 and 128 pixels from the top, bottom and sides, respectively,
to remove vehicle components and rectification artefacts. The InStereo2k dataset, which
contains 2060 stereo images of indoor scenes, divides its 1080 × 860 resolution images
into 2010 for training and 50 for testing. These images are symmetrically cropped in a
minimal way to ensure that height and width are multiples of 32.

Codecs: The methods are evaluated against a comprehensive collection of both tra-
ditional and learned codecs, which can be categorized into single-image compression
(BPG), video compression (HEVC), multi-view compression (MV-HEVC, LDMIC) and
stereo image compression (HESIC/HESIC+, DSIC). For BPG [Bel14], each frame is
processed separately, and chroma subsampling is omitted. The video codecs HEVC
[SOHW12] and VVC [BWY+21] process stereo image pairs as two-frame video sequences,
again with chroma subsampling disabled to prevent PSNR degradation. For HEVC, the
reference implementation5 is used with the main_444_12 profile. VVC results are from
Zhang et al. [ZSZ23], using the lowdelay_p setup and YUV444 format. MV-HEVC6

[MMSW06] is used in its two-view intra-mode configuration and only supports 4:2:0
chroma mode, which affects PSNR at higher bitrates. Results for learned methods such as
DSIC [LWU19a] and HESIC+ [DYY+21] are derived from their respective publications.
The LDMIC [ZSZ23] results are shown for both the full LDMIC model, including an
autoregressive context model, and the simplified LDMIC (fast) without the autoregressive
elements.
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Figure 3.18: Rate-distortion curves of SASIC and ECSIC compared to other codecs on
Cityscapes (left) and InStereo2K (right) datasets measured by PSNR and MS-SSIM.

Table 3.6: Relative quality difference (PSNR gain at the same bitrate; higher is better) and
bitrate difference (bitrate gain for the same PSNR; lower is better) of the benchmarked
methods w.r.t. BPG. The best results are in bold, and the second best are underlined.

Cityscapes InStereo2k
Method BD-PSNR [dB]↑ BD-Rate [%]↓ BD-PSNR [dB]↑ BD-Rate [%]↓
ECSIC 2.86 -51.90 1.57 -42.08
LDMIC 2.07 -42.20 1.26 -41.03
LDMIC (fast) 1.35 -29.66 0.87 -30.40
SASIC 0.98 -22.40 0.38 -15.43
DSIC 0.07 -3.35 - -
HESIC+ - - 0.37 -14.90
VVC 3.12 -56.24 0.86 -31.02
HEVC 1.14 -25.78 0.45 -15.09
MV-HEVC 0.41 -10.07 0.19 -4.96
BPG 0.0 -0.0 0.0 -0.0
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3.3.3.1 Rate-Distortion Curves

The Peak Signal to Noise Ratio (PSNR) rate-distortion curves can be seen in Figure 3.18.
In addition, Bjøntegaard Delta bitrate (BD-rate) and BD-PSNR scores [Bjo01a] are
reported for each codec vs. BPG for Cityscapes and InStereo2K in Table 3.6. On
InStereo2k, ECSIC outperforms all other codecs tested. On Cityscapes, ECSIC performs
worse than VVC for low bpp (bits per pixel) (< 0.15) but is the first learned method to
outperform VVC on PSNR for bpp > 0.15. All other codecs are outperformed by ECSIC.
The second best learned method, LDMIC, relies on autoregressive entropy modelling in
the default version, rendering it much slower than SASIC and ECSIC (see Section 3.3.3.3).
The fast version of LDMIC without autoregressive context performs much worse with
a BD-rate compared to ECSIC of 24.35% for InStereo2k and 49.23% for Cityscapes.
At the time of their respective releases, SASIC and ECSIC were the best-performing
learned methods for Cityscapes and InStereo2k while performing on par with HEVC on
Cityscapes.

ECSIC also outperforms the other learned SIC models, DSIC and HESIC+. HESIC+
relies on explicit warping to remove spatial redundancy by using a homography to warp
between the left and right images. While both SASIC and ECSIC use a cross-attention
connection in the decoder, the ECSIC model does not use explicit warping and additional
cross-attention connections during encoding and in the entropy modelling submodules.
The performance gap between SASIC and ECSIC shows the effectiveness of the additional
modules and the new SCA layer. See Appendix B for qualitative results on a selection of
the Cityscapes and InStereo2k test images. ECSIC also outperforms the other learned
SIC models, DSIC and HESIC+. HESIC+ relies on explicit warping to remove spatial
redundancy by using a homography to warp between the left and right images. While
both SASIC and ECSIC use a cross-attention connection in the decoder, the ECSIC
model does not use explicit warping and additional cross-attention connections during
encoding and in the entropy modelling submodules. The performance gap between SASIC
and ECSIC shows the effectiveness of the additional modules and the new SCA layer.
See Appendix B for qualitative results on a selection of the Cityscapes and InStereo2k
test images.

3.3.3.2 Ablatation Study

This section provides an ablation study that examines the effects of the submodules of
SASIC in Section 3.3.3.2 and of ECSIC in Section 3.3.3.2. In Section 3.3.3.3, the encoding
and decoding runtimes are evaluated and compared with other methods.

SASIC This section compares the submodules of the SASIC model and examines their
effect on the overall rate-distortion curves. A comparison of these cases can be seen in
Figure 3.19. In addition, Bjøntegaard Delta PSNR (BD-PSNR)[Bjo01b] and BD-Rate

5https://vcgit.hhi.fraunhofer.de/jvet/HM
6http://hevc.info/mvhevc
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Figure 3.19: Ablation study: Comparison of the effects of the latent shift residual coding
(green) and the stereo attention sub-modules (SA) on the rate-distortion performance.
SA is used only in the image decoder (red) or the hyperprior decoder (purple). The full
proposed method (blue) and the original backbone (orange) are shown for reference.

Table 3.7: Comparison of BD-Rate (lower is better) and BD-PSNR (higher is better)
between the backbone model and each of the cases.

Cityscapes InStereo2k
Method BD-PSNR [dB]↑ BD-Rate [%]↓ BD-PSNR [dB]↑ BD-Rate [%]↓
SASIC -23.42 1.05 -11.28 0.38
Case 1 -14.58 0.67 -2.28 0.07
Case 2 -19.70 0.80 -10.6 0.31
Case 3 -17.78 0.73 -8.97 0.28
Backbone 0.0 0.0 0.0 0.0

values are given in Table 3.7. BD-PSNR approximates the quality gain for equivalent
bitrate (higher is better), and BD-Rate approximates the bitrate saving percentage for
equivalent quality (negative and lower is better).

• SASIC (proposed): The SASIC model combines all the improvements, i.e.
backbone + shift + stereo attention in the decoder and hyperprior decoder. It is
identical to the SASIC model in Figure 3.18.

• Backbone: In the Backbone model, both images are compressed independently,
with the model used to compress the left image in the SASIC model.

• Backbone + shift (case 1): In this case, the stereo attention modules connecting
D1 and D2 in Figure 3.11 are removed, leaving only the connections between ŷ1
and y2 and hres

D . After training, it can be seen from the RD-curves in Figure 3.19
that the model performs significantly worse than the full model, indicating that the
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stereo attention in the decoder helps to reduce the bitrate further. The BD rate in
table 3.7 shows that the remaining connection still gives a significant improvement
for Cityscapes compared to the backbone model where no such links are present.
For InStereo2k, the improvements are smaller.

• Backbone + stereo attention in decoder (case 2): In this case the connection
between ŷ1 and y2 as well as hres

D is removed. The decoder of the hyperprior
model for the right image is replaced by the decoder of the left model (Figure 3.12
bottom left) while keeping the stereo attention connection between D1 and D2.
The resulting model performs significantly better than the backbone but still worse
than the full SASIC model.

• Backbone + stereo attention in decoder and hyperprior decoder (case
3): To demonstrate the effectiveness of the connections in the latent, which are
not present in case 2, an architecture based only on a stereo attention connection
is investigated in this case. Three connections are added between the hyperprior
decoders in case 2, similar to the decoder connections. From Table 3.7, it can be
seen that stereo attention alone is inferior in performance to the full SASIC model.
The resulting model performs even worse than the simpler case 2 model.

ECSIC This paragraph compares the submodules of the ECSIC model and examines
their effects on the overall rate-distortion curves. A comparison of these cases can be seen
in Figure 3.20. In addition, Bjøntegaard Delta PSNR (BD-PSNR)[Bjo01b] and BD-Rate
values are given in Table 3.8 for Cityscapes and in Table 3.9 for InStereo2k.

• Backbone: To assess the impact of individual components on stereo compression
performance, each ablation of the ECSIC model is compared to a Backbone model
obtained by stripping the ECSIC model of both context modules cy and cz (the
entropy modelling for left and right is independent of each other) and removing each
SCA module in the remaining architecture (including the corresponding activation
functions of each SCA layer). The result is two separate models that compress the
left and right images of a stereo image pair independently.

• ECSIC (proposed): The proposed method with all additions as shown in Fig-
ure 3.14. The biggest gains over the backbone model are at low bit rates. For
example, for Cityscapes, the BD-rate limited to low PSNR (34 − 38dB) shows a
bitrate saving of 37.0%, while in the high PSNR range (44 − 46dB), the difference
is reduced to 19.0%. The maximum asymptotic theoretical bitrate saving that
can be achieved is 50.0%, which corresponds to compressing a stereo pair at the
bitrate of a single frame. In reality, the optimum is even lower due to occlusions
and non-overlapping fields of view in the stereo pair.

• Only encoder SCA: The backbone model is extended by adding a single SCA
layer to the encoder E. The resulting model shows no significant improvement over
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Figure 3.20: Rate-distortion curves for ECSIC with varying modifications for Cityscapes
(left column) and InStereo2k (right column) measured by PSNR.

the backbone. However, it has been found that adding SCA modules in the encoder
improves performance if corresponding SCA modules are present in the decoders.

• Only decoder SCA: The backbone model is extended by adding a single SCA
layer in the decoder D. Contrary to only adding SCA in the encoder, adding a
single SCA layer in the decoder already gives an improvement of 11.7% over the
backbone method on Cityscapes.

• No context modules: Removing the context modules cy and cz results in a rate
reduction of 12.5% compared to the full ECSIC model.

The comparison shows that both the proposed context modules cy and cz, as well as the
proposed SCA modules, enable better compression of stereo images when compared to
the single image compression backbone model that compresses both images independently.
Furthermore, the experiments suggest that the SCA module works best in the decoding
parts of the model. However, it was found that SCA modules in the encoding part of the
model, in conjunction with SCA modules in the corresponding decoding parts, lead to
the best overall performance. Experiments were also conducted with different variants of
positional encoding [SUV18, VSP+17b], but no impact on compression performance was
observed.

3.3.3.3 Runtimes

Fig. 3.21 shows the average encoding and decoding times of SASIC and ECSIC compared
to other methods on the InStereo2k dataset (i.e. the images are already rectified). The
conventional methods BPG, HEVC and MV-HEVC were evaluated on a single-core Intel
Xeon Gold 6230R processor (times taken from Zhang et al. times [ZSZ23]). For LDMIC,
their reported encoding and decoding times [ZSZ23] (measured on an NVIDIA RTX
3090 GP U) are shown. For SASIC and ECSIC, the encoding and decoding times are
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Table 3.8: Relative quality difference (PSNR gain at the same bitrate; higher is better) and
bitrate difference (bitrate gain for the same PSNR; lower is better) of the benchmarked
methods on Cityscapes with respect to the backbone model. BD-Rates restricted to a
low PSNR range (34 − 38dB) and a high PSNR range (44 − 46dB) are also reported.

Method BD-PSNR [dB]↑ BD-Rate [%]↓ BD-Rate [%]↓
low PSNR

ECSIC (proposed) 1.49 -30.18 -36.96
No context modules 1.02 -21.45 -26.95
Only decoder SCA 0.54 -11.72 -15.57
Only encoder SCA 0.02 -0.40 -0.36
Backbone 0.0 -0.0 -0.0

Table 3.9: Relative quality difference (PSNR gain at the same bitrate; higher is better) and
bitrate difference (bitrate gain for the same PSNR; lower is better) of the benchmarked
methods on InStereo2k with respect to the backbone model. BD-Rates restricted to a
low PSNR range (32 − 36dB) and high PSNR range (38 − 40dB) are also reported.

Method BD-PSNR [dB]↑ BD-Rate [%]↓ BD-Rate [%]↓
low PSNR

ECSIC (proposed) 0.77 -19.96 -37.04
No context modules 0.63 -18.20 -27.67
Only decoder SCA 0.32 -9.36 -15.57
Only encoder SCA 0.0 -0.70 -2.53
Backbone 0.0 -0.0 -0.0

measured on an NVIDIA RTX 3090 GPU. The proposed method shows low encoding
and decoding times, beating all other methods in this benchmark.

3.3.4 Conclusion
In this section, two methods for stereo image compression have been presented.

The SASIC model adapts a single image compression model with a hyper-prior entropy
model with two additions: 1) a global shift and warp in the latent domain so that only
the residual for the right image is encoded and 2) stereo attention connections in the
decoder. Both modifications have been shown to improve compression performance in
the ablation study. The resulting model achieved SOTA on Cityscapes and InStereo2k at
the time of publication.

Similar to the SASIC model, the ECSIC model can be considered an adaptation of a
single image compression model with a hyperprior entropy model. Unlike SASIC, it
does not include explicit warping but instead makes extensive use of stereo attention
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Figure 3.21: Encoding and decoding times of SASIC and ECSIC against other codecs on
a logarithmic scale. The reported times are averages over the InStereo2k test set. All
learned methods run on a GPU.

connections to allow implicit modelling of any disparity warping. In addition, two stereo
context modules were proposed to improve entropy modelling. The effectiveness of these
components was demonstrated in the ablation study. The resulting model is fast in
encoding and decoding and outperforms all other learned compression methods on the
two benchmark stereo image datasets, Cityscapes and InStereo2k.

Modelling redundancies between the left and right images in a stereo image pair for
image compression is challenging for several reasons. Firstly, using disparity warping to
reduce redundancy requires transmitting disparity maps over the bitstream, increasing
the bitrate, and any inaccuracies in the predicted disparity maps introduce additional
noise into the model, further increasing the required bitrate. However, less powerful
warping approaches such as homographies[DYY+21], while requiring significantly fewer
bits to transmit (in fact, they are practically negligible for all but very low bitrates), are
not powerful enough. Architecturally, models based solely on CNNs lack data specificity
and require computationally expensive operations like 3D convolutions[LWU19b]. Stereo
attention provides a solution to these problems, allowing for learned accurate modelling of
stereo disparities without the need to transfer additional metainformation. However, the
naive application of the attention operation is computationally infeasible for all but small
images due to the quadratic memory and runtime complexity of the attention operation.
A solution can be found by restricting the attention to the epipolar line, reducing the
complexity from quadratic in pixel count to linear in width. For rectified stereo image
pairs, where matching points between left and right images in a stereo image pair can
always be assumed to lie on the same epipolar line, this is equivalent to restricting
the attention operation to horizontal lines. This allows a significant simplification of
the stereo cross-attention operation. Such a cross-attention operation can be useful for
encoder and decoder modules and entropy modelling, as seen in the ablation studies in
this section.
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3.4 Summary
This chapter comprised three different applications, each of which demonstrates a different
form of long-range dependency modelling using some form of attention.

Section 3.1 investigates the task of detecting textual baselines in historical document
images. Textual baselines are linear sequences on document images that can span
over the entire page. The proposed method is inspired by works on visual attention
[XBK+15, JSZ+15] and extracts text baselines using a recurrent architecture from a
sequence of extracted image patches by following the baseline.

Section 3.2 tackles the task of blast cell detection in bone marrow flow cytometry samples
from ALL patients. Existing methods process samples event-wise, i.e. every cell is
classified independently, resulting in fixed decision boundaries. However, the underlying
biological decision boundaries are not fixed, with different phenotypes and even different
flow cytometry machines or operators having a significant impact on the distribution of
blast cells in a sample [RRK+16]. The Flowformer model is a variant of a Transformer
than can process entire samples at once. It can, therefore, capture relative dependencies
between different events in a sample and global structures. Table 3.5 shows that it is
also capable to generalize to data from different clinics and operators to some extent,
while being trained on only 66 samples.

Finally, in Section 3.3, two methods for stereo image compression are presented. Stereo
image pairs typically have overlapping fields of view, resulting in a high amount of mutual
information that allows potentially more efficient compression than compressing both
images separately. However, this requires accurate matching of corresponding objects
and points between the two images. The SASIC and ECSIC models use attention to
model the dependencies between the left and right images without the need for separate
disparity estimation. The resulting methods outperform other methods on two public
stereo image datasets [COR+16, BWX+20].
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CHAPTER 4
Conclusion

Three different applications have been investigated in this thesis, each of which requires
accurate modelling of a different set of long-range dependencies.
The first application, modelling text baselines in handwritten documents, requires the
modelling of long linear sequences in the document images. This thesis proposes a model
that uses visual attention to follow the sequence through the image. Given the starting
points of the text lines, this method allows end-to-end processing of the document image,
avoiding the need for heuristics to extract baseline coordinates. Unlike other methods at
the time, this allows direct prediction of baseline coordinates without relying on heuristics
to extract the coordinates from a segmentation output [GLS+19]. The proposed model
processes document images in sequences of local images, keeping memory requirements
low. However, the starting points of the baselines are required to initiate the recurrent
process. As shown in Table 3.3, the model can be used without any segmentation and
as a follow-up to any baseline detection method. However, not using the segmentation
results leads to a small drop in detection performance. A disadvantage of this method
is that it requires start points of text baselines for the recurrent model to work, and
relying on a separate segmentation model requires a separate training step and additional
memory requirements. Follow-up work could improve this by extracting potential start
points using a region proposal network instead of a more expensive segmentation model.
The second application, modelling cell populations in flow cytometry data, requires
modelling global dependencies in high dimensional point clouds. Associating these high-
dimensional point clouds with a "bag of word embeddings" motivated the model proposed
in Chapter 3.2, where a Transformer model was introduced that takes cell measurements
directly as input without any positional embedding, allowing flow cytometry samples to
be processed in a single forward pass. However, these samples often contained up to 1M
cells, which made a naive application of Transformers difficult due to the quadratic growth
in complexity. The model presented in this thesis, therefore, makes use of a variant of
the Transformer layer initially proposed by Lee et al. [LLK+19a], which introduces a
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fixed length, learned "intermediate set" of k induced points, resulting in a reduction in
complexity from O(n2) to O(nk). The resulting model successfully generalizes to data
from other hospitals, demonstrating that the model accurately models global structures
rather than relying solely on position to classify cells like existing neural models [LSR+18].
The model called Flowformer was the first neural network to achieve SoTA results on
this task. The model is lightweight, with only ≈ 28k parameters, allowing it to run
on a CPU, even on older hospital hardware. The main bottleneck for improving this
method is the lack of training data. This is particularly true for the more challenging
acute myeloid leukaemia, which is rarer than acute lymphoblastic leukaemia, resulting in
significantly less training data while also being more heterogeneous. In addition, because
the Transformer model is trained on a specific set of features (corresponding to cell surface
markers), applying it to data from a laboratory with different markers requires retraining
or ignoring unseen features. Therefore, follow-up work is mainly concerned with removing
this requirement, which would improve the generalizability of the method while allowing
training on more diverse training sets [WKR+24]. Another line of research not explored
in this thesis is general pretraining on large amounts of unlabeled data. Online collections
such as the Flowrepository1 contain large quantities of flow cytometry from different
laboratories around the world. Since Transformer models, in particular, have been
shown to exhibit impressive scaling behaviour as the amount of training data [KMH+20]
increases, extensive pretraining could help the model to generalize. However, unlike
NLP data, which contains sequential data where autoregressive pretraining is possible,
flow cytometry data lacks this linear structure, which requires a different pretraining
objective. These future directions are mainly concerned with improving the performance
of these methods on unseen data. Another potential research direction not discussed
in this thesis is the explainability of these methods. The transformer model presented
in this thesis does not provide an explanation for its prediction and can be considered
a black box from a clinician’s perspective, making it impossible to rely entirely on its
predictions in clinical routine. Follow-up work by our group has led to a modification of
the Transformer model in this thesis that, instead of modelling blast cell prediction as
a binary classification problem, reproduces the manual gating process used in clinical
routine [KWW+22]. This is achieved by replacing the linear classification decoder layer in
the model from Section 3.2 with a DETR [CMS+20] inspired decoder block that directly
predicts a sequence of polygons that iteratively restricts the data space.

The third application, the modelling of stereo redundancies for stereo image compres-
sion, requires the modelling of dependencies between a pair of stereo images. These
dependencies are sample-dependent and can be highly non-local in high disparity regions.
Furthermore, image compression models often require fast decoding speeds, mainly
when used as part of a video compression codec, where real-time decoding is needed.
This makes it challenging to model long-range dependencies with deep convolutional
networks or networks based on computationally expensive 3D convolutions. The two
methods presented in this thesis circumvent these problems by connecting the left and

1https://flowrepository.org/
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right images in a stereo-image pair via cross-attention. By restricting attention to the
epipolar line, the resulting layer allows efficient modelling of redundancies in stereo
images. In addition, entropy models are proposed that allow conditioning of the right
image on the left via one-way cross attention during entropy encoding and decoding. The
experiments assume rectified images since the most popular public benchmark datasets
such as Cityscapes [COR+16] and InStereo2k [BWX+20] consist only of rectified images,
making the method conceptually simpler. In the case of an unrectified stereo image pair,
the method would have to be adapted by computing the epipolar line on the fly and
restricting attention to the epipolar line by sampling positions for key/value pairs from
points on the corresponding line in the other image. Both methods achieved SoTA at
the time of publication, both in terms of compression performance and speed (assuming
a GPU; otherwise, traditional methods are still competitive for decoding speed). Unlike
other learned stereo image compression models such as HESIC or DSIC, the proposed
models are lightweight, allowing their use in resource-constrained environments. Unlike
the recent LDMIC model, the proposed methods do not rely on autoregressive compo-
nents, enabling fast encoding/decoding times. However, to achieve real-time coding,
the proposed methods require a GPU, which may not be available depending on the
application. While real-time is often not a strict requirement for image compression
methods, real-time decoding speeds are required for video compression methods. Achiev-
ing real-time decoding is still an active area of research for learned compression methods,
with the first successful real-time codecs for mobile devices being proposed only very
recently [vRSL+24], although so far only for single image/video compression, and not for
stereo image data, making an adaption of these ideas to stereo image data an attractive
direction for future research. Another research direction not explored in this thesis is
the compression of stereo video data. In principle, the proposed methods can be used as
an intra-frame compression method of a video codec that treats left and right images
separately for the remaining steps. However, since left and right images show mostly
the same objects due to overlapping fields of view, the motion compensation vectors are
expected to be highly similar, allowing further reduction in bitrate. Finally, the methods
in this thesis are optimized for PSNR and MS-SSIM rather than for maximum perceptual
quality. Measuring perceptual quality is an active area of research and a recurring task in
the Challenge on Learned Image Compression (CLIC), the popular compression workshop
held annually at CVPR. However, at the time of writing, no single approach has been
established. Instead, methods optimizing for perceptual quality such as HiFi [MTTA20]
typically use a linear combination of conventional metrics such as MSE and perceptual
metrics such as Learned Perceptual Image Patch Similarity (LPIPS) [ZIE+18], VGG loss
terms [SZ14] and a GAN [GPAM+20] loss term. The total loss is then a weighted mean
of all these, where the weights are determined heuristically. Optimizing for perceptual
metrics makes comparison with other methods difficult, and it is unclear what effect this
has on potential downstream tasks such as follow-up detection or segmentation networks
on the compressed stereo images. I believe finding a reliable perceptual metric would
have the most significant potential impact on the future development of stereo-image
compression and image and video compression in general.
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The first application discussed, text baseline detection in handwritten documents, is
based on recurrent visual attention inspired by early work by Xu et al. [XBK+15], and
the rest of this thesis uses an attention mechanism inspired by the attention operation
in the Transformer model [VSP+17a]. While visual attention allows for more memory-
efficient processing of the input by only scanning the input in a sequence of smaller
windows, the self-attention operation is notorious for its memory requirements, which
grow quadratically with the input size. In return, self-attention (as well as most of
its variants [TDBM20, TDA+20]), can be more naturally parallelized during training
due to the absence of recurrent components, can be more naturally parallelized during
training, allowing for better scaling and explaining the recent dominance of Transformers
among foundation models for NLP [BMR+20b, AAA+23, VSP+17a]. For applications
such as text baseline detection, where smaller architectures are sufficient, parallelizability
is less critical than for large foundation models. One advantage of attention-based
networks over convolutional networks in vision is that the former is data-specific [PK22].
Park et al.[PK22] identify data specificity as the primary reason for the generalization
capabilities of attention-based architectures. Data specificity helps in modelling flow
cytometry patterns by allowing the network to move beyond fixed decision boundaries
and modelling stereo image redundancies by enabling the network to perform comparison
operations to deal with input-dependent disparity distributions. However, as seen in this
work, applications of self-attention networks often require additional care in handling
the memory requirements of the attention operation. This can be done by working with
modifications of the full attention operation, such as the IAB of Chapter 3.2 (there are
now a number of variants, each with different trade-offs, see Tay et al. [TDBM20] for an
overview), or by using application-specific prior knowledge to constrain the operation,
such as the stereo attention module of Chapter 3.3, which used the fact that relevant
points in the other image must necessarily be on the epipolar line.

Transformers have dominated much of natural language processing research since the
seminal work of Vaswani et al. [VSP+17a]. While initially designed for text, recent work
has introduced the Transformer model to vision, with ViT being its most prominent
representative [DBK+20]. The scalability [HBM+22, KMH+20] and novel methods for
pre-training [RKH+21, BMR+20a] have made attention-based models the architecture of
choice for a wide range of tasks. However, scaling these models requires a trade-off between
long-range dependencies and model size due to the quadratic memory requirements of
self-attention, making the question of how to optimally model long-range dependencies
one of the most pressing challenges of current foundational models, particularly for
language. Therefore, the importance of efficiently modelling long-range dependencies
extends beyond the specific applications discussed in this thesis, and recent developments
in instruction-tuned language models have made the problem highly relevant to both
research and industrial applications. As a result, many exciting ideas have emerged
in the last two years that will likely form the basis of future research in this area.
Notable examples include hardware-aware implementations of the Transformer such as
FlashAttention [DFE+22, Dao23], which make efficient use of the memory hierarchy of
some GPUs to achieve significant speedups without any loss of performance or RoPE
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scaling [LYZ+23, SAL+24], a method for extending the range of Transformers after
pretraining.

In conclusion, this thesis contributes to the growing body of work on attention-based
models and highlights their versatility and adaptability in three different applications.
The thesis presents the challenges in overcoming them and hopefully helps the reader
push the boundaries of what is possible with attention-based approaches.
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APPENDIX A
Additional Results for

Flowformer++

This chapter contains additional experimental results comparing the Flowformer and
Flowformer++ models and detailed calibration results for Flowformer++.

A.1 Ablation study: Flowformer vs Flowformer++
This section contains additional training runs for the Flowformer model to allow a better
comparison with the Flowformer++ model (which has different training configurations
from the original model). Table A.1 shows the median F1 scores for the original
Flowformer model (ep100), the model trained for 180 epochs (180ep), and an additional
run (++training) where all training parameters match those of the Flowformer++
training. The performance drops compared to the original training runs. This is due to
overfitting on the training sets, which was not observed for the Flowformer++ model.
Additionally, on a qualitative note, the Flowformer++ training appears much more stable.
The ablation study demonstrates that the better performance of the Flowformer++
model is not due to the longer training.
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Table A.1: The median F1-scores for each configuration. Boldface values indicate the
best-performing method for a specific train/test dataset combination. The Flowformer
100ep is identical to the Flowformer method in Section 3.2.

train test Flowformer Flowformer++ [RDS+19]
100ep 180ep ++training

vie vie 0.94 0.89 0.91 0.96 -
bue 0.87 0.67 0.80 0.83 0.68

bln vie14 0.90 0.81 0.84 0.89 0.35
vie20 0.87 0.75 0.81 0.89 0.48
bln 0.77 0.71 0.78 0.90 0.50

bue vie14 0.90 0.85 0.86 0.93 0.84
vie20 0.88 0.75 0.85 0.93 0.86
bln 0.90 0.85 0.85 0.94 0.81

vie14 bue 0.95 0.91 0.90 0.98 0.84
vie20 0.89 0.83 0.85 0.94 0.86
bln 0.81 0.72 0.73 0.95 0.25

vie20 bue 0.86 0.86 0.85 0.96 0.81
vie14 0.95 0.91 0.91 0.95 0.89

A.2 Calibration
This section provides MRD curves and calibration histograms for the Flowformer++
model for the experiments discussed in Tab. 3.5. Tab. A.2 shows the Expected Calibration
Error (ECE) for the Flowformer++ model. Formally, the Expected Calibration Error
(ECE) is defined as follows: Let B1, B2, . . . , BM be M equally-sized bins for the predicted
probabilities, where in our case M is set to 10. For each bin Bm, we define:

• The number of predictions falling into bin Bm nm.

• The total number of predictions N .

• The accuracy of the predictions in bin Bm acc(Bm).

• The average confidence (predicted probability) of the predictions in bin Bm

conf(Bm).

The ECE is then calculated as:

ECE =
M�

m=1

nm

N
|acc(Bm) − conf(Bm)| (A.1)
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Table A.2: Expected Calibration Error of the Flowformer++ model for the experiments
discussed in Chapter 3.2.

train test ECE
vie vie 0.051

bue 0.141
bln vie14 0.228

vie20 0.068
bln 0.181

bue vie14 0.057
vie20 0.221
bln 0.049

vie14 bue 0.220
vie20 0.250
bln 0.091

vie20 bue 0.163
vie14 0.060

This formulation captures the difference between the predicted probabilities (confidence)
and the true accuracy across different probability ranges. A lower ECE indicates better
calibration, with an ECE of 0 representing perfect calibration.

To compute the ECE, the predicted probabilities for all cells in the test set are collected
in the bins {[0, 0.1], (1, 0.2], . . . , (0.9, 1.0]}. Then, the mean of the absolute differences
between the measured and expected probabilities is computed. For example, the expected
probability for the bin (0.2, 0.3] would be 0.25, meaning the probability that the cells
predicted to belong to the positive class with probability 0.2 − 0.3 should belong to the
positive class on average with probability 0.25.
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Figure A.1: F1 scores and predicted MRD values for vie experiment. The colors show
the F1 score and the dashed lines correspond to MRD values of 5e − 4 which is the lower
necessary resolution for patient stratification.
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Figure A.2: Calibration of the vie experiment. The bar height corresponds to the
fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.3: F1 scores and predicted MRD values for bln_bue experiment. The colors
show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which is the
lower necessary resolution for patient stratification.
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Figure A.4: Calibration of the bln_bue experiment. The bar height corresponds to the
fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.5: F1 scores and predicted MRD values for bln_vie14 experiment. The colors
show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which is the
lower necessary resolution for patient stratification.
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Figure A.6: Calibration of the bln_vie14 experiment. The bar height corresponds to the
fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.7: F1 scores and predicted MRD values for bln_vie16-20 experiment. The
colors show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which
is the lower necessary resolution for patient stratification.
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Figure A.8: Calibration of the bln_vie16-20 experiment. The bar height corresponds to
the fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.

81



A. Additional Results for Flowformer++

10μ 2 5 100μ 2 5 0.001 2 5 0.01 2 5 0.1 2 5 1
10μ

2

5

100μ
2

5

0.001
2

5

0.01
2

5

0.1
2

5

1

0

0.2

0.4

0.6

0.8

f1_score

gt

pr
ed

Figure A.9: F1 scores and predicted MRD values for bue_bln experiment. The colors
show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which is the
lower necessary resolution for patient stratification.
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Figure A.10: Calibration of the bue_bln experiment. The bar height corresponds to the
fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.11: F1 scores and predicted MRD values for bue_vie14 experiment. The colors
show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which is the
lower necessary resolution for patient stratification.
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Figure A.12: Calibration of the bue_vie14 experiment. The bar height corresponds to
the fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.13: F1 scores and predicted MRD values for bue_vie16-20 experiment. The
colors show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which
is the lower necessary resolution for patient stratification.
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Figure A.14: Calibration of the bue_vie16-20 experiment. The bar height corresponds
to the fraction of events, with a predicted probability in the given range, that correspond
to true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.15: F1 scores and predicted MRD values for vie14_bln experiment. The colors
show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which is the
lower necessary resolution for patient stratification.
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Figure A.16: Calibration of the vie14_bln experiment. The bar height corresponds to
the fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.17: F1 scores and predicted MRD values for vie14_bue experiment. The colors
show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which is the
lower necessary resolution for patient stratification.
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Figure A.18: Calibration of the vie14_bue experiment. The bar height corresponds to
the fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.19: F1 scores and predicted MRD values for vie14_vie16-20 experiment. The
colors show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which
is the lower necessary resolution for patient stratification.
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Figure A.20: Calibration of the vie14_vie16-20 experiment. The bar height corresponds
to the fraction of events, with a predicted probability in the given range, that correspond
to true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.21: F1 scores and predicted MRD values for vie16-20_bln experiment. The
colors show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which
is the lower necessary resolution for patient stratification.
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Figure A.22: Calibration of the vie16-20_bln experiment. The bar height corresponds to
the fraction of events, with a predicted probability in the given range, that correspond to
true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.23: F1 scores and predicted MRD values for vie16-20_bue experiment. The
colors show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which
is the lower necessary resolution for patient stratification.
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Figure A.24: Calibration of the vie16-20_bue experiment. The bar height corresponds
to the fraction of events, with a predicted probability in the given range, that correspond
to true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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Figure A.25: F1 scores and predicted MRD values for vie16-20_vie14 experiment. The
colors show the F1 score and the dashed lines correspond to MRD values of 5e − 4 which
is the lower necessary resolution for patient stratification.
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Figure A.26: Calibration of the vie16-20_vie14 experiment. The bar height corresponds
to the fraction of events, with a predicted probability in the given range, that correspond
to true predictions. For a perfectly calibrated model the histogram would follow a linear
trend with 5% for the left most and 95% for the right most bar.
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APPENDIX B
Qualitative Stereo Image

Compression Results

B.1 SASIC
This section provides additional qualitative results for examples from the InStereo2k
dataset in Fig. B.1 and for the Cityscapes dataset in Fig. B.2. The example images
always show the right image of the stereo image pair.

Original BPG bpp = 0.277, PSNR = 32.30 HEVC bpp = 0.277, PSNR = 32.98 MV-HEVC bpp = 0.262, PSNR = 32.59 SASIC bpp = 0.253, PSNR = 33.08

Figure B.1: A qualitative comparison on an image from the InStereo2K test set.
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Figure B.2: A qualitative comparison on an image from the Cityscapes test set. We show
the same image in both columns with two different zoomed-out regions.
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B.2 ECSIC
This section provides additional qualitative results for examples from the InStereo2k
dataset in Fig. B.3 and for Cityscapes in Fig. B.4 and Fig. B.5. The example images
always show the right image of the stereo image pair.

Figure B.3: A qualitative comparison on images from the InStereo2K test set.
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B. Qualitative Stereo Image Compression Results

Figure B.4: A qualitative comparison on images from the Cityscapes test set.
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B.2. ECSIC

Figure B.5: A qualitative comparison on images from the Cityscapes test set.
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