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Abstract
Let 𝐴 ∈ Mat𝑚×𝑛(ℝ) be a matrix. In this paper, we inves-
tigate the set Bad𝐴 ⊂ 𝕋𝑚 of badly approximable targets
for 𝐴, where 𝕋𝑚 is the 𝑚-torus. It is well known that
Bad𝐴 is a winning set for Schmidt’s game and hence is
a dense subset of full Hausdorff dimension. We investi-
gate the relationship between the measure of Bad𝐴 and
Diophantine properties of 𝐴. On the one hand, we give
the first examples of a nonsingular𝐴 such that Bad𝐴 has
full measure with respect to some nontrivial algebraic
measure on the torus. For this, we use transference the-
orems due to Jarnik and Khintchine, and the parametric
geometry of numbers in the sense of Roy. On the other
hand, we give a novel Diophantine condition on 𝐴 that
slightly strengthens nonsingularity, and show that under
the assumption that 𝐴 satisfies this condition, Bad𝐴 is
a null-set with respect to any nontrivial algebraic mea-
sure on the torus. For this, we use naive homogeneous
dynamics, harmonic analysis, and a novel concept that
we refer to as mixing convergence of measures.
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1 INTRODUCTION

1.1 The origins of this work

This paper stems from an effort to understand the state of affairs regarding the validity of
several statements claimed to be true in [26, sections 2.2, 3.2], whose proof relied on a care-
less observation made by the third author, which is false, as was pointed out to us by David
Simmons.
In this paper, we revisit this discussion and prove some of the statements claimed in [26]

under slightly stronger assumptions. We also provide constructions of examples showing that
some of the statements made in [26] are false and maybe more importantly, we present some
open problems.
In order to present the discussion in an organicmanner and keep the readermotivated, we open

with a self-contained introduction to the subject. In Section 2.8, we will elaborate further regard-
ing what is exactly the mistake in [26] and the current state of affairs regarding the questionable
statements there.

1.2 Inhomogeneous Diophantine approximation

One of the main themes in the theory of inhomogeneous Diophantine approximations is to
analyze, for a matrix

𝐴 =
(
𝜃1 ⋯ 𝜃𝑛

)
∈ Mat𝑚×𝑛(ℝ),

the rate at which the group generated by the columns of 𝐴 in ℝ𝑚 approximates a given target
vector 𝜂 ∈ ℝ𝑚 modulo the integers. More precisely, let ‖ ⋅ ‖ denote choices of norms on ℝ𝑛 and
ℝ𝑚 and let ⟨⋅⟩ denote the induced distance on the 𝑚-torus 𝕋𝑚 ∶= ℝ𝑚∕ℤ𝑚. This theory tries to
understand, for a given 𝜂 ∈ 𝕋𝑚 the rate at which the sequence

min {⟨𝐴𝑞 − 𝜂⟩ ∶ 𝑞 ∈ ℤ𝑛, ‖𝑞‖ ⩽ 𝑄}

approaches zero (if at all) as𝑄 → ∞. One way to do this is to fix amonotonely increasing function
𝜓 ∶ ℝ>0 → ℝ>0 and investigate

lim inf
𝑞∈ℤ𝑛,‖𝑞‖→∞

𝜓(‖𝑞‖)⟨𝐴𝑞 − 𝜂⟩. (1.1)

Themost natural andwidely investigated function𝜓 is𝜓(𝑡) = 𝑡𝑛∕𝑚. A heuristic reason forwhy this
is a natural choice for 𝜓 is that under the constraint ‖𝑞‖ ⩽ 𝑄 on the coefficient vector 𝑞 ∈ ℤ𝑛, we
have roughly𝑄𝑛 points in {𝐴𝑞 mod ℤ ∶ ‖𝑞‖ ⩽ 𝑄} ⊂ 𝕋𝑚 and since the𝑚-torus is𝑚-dimensional,
if we split it to 𝑄𝑛 boxes of the same size, their side length is 𝑄−𝑛∕𝑚. This is why the rescaling by
𝑄𝑛∕𝑚 leads to an interesting discussion.
The most basic question one might ask about (1.1) is whether it is positive or not. Indeed a

classical subset of the torus, which is widely investigated, is the set of badly approximable targets
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for 𝐴:

Bad𝐴 ∶=

{
𝜂 ∈ 𝕋𝑚 ∶ lim inf

𝑞∈ℤ𝑛,‖𝑞‖→∞
‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − 𝜂⟩ > 0

}
. (1.2)

In this paper, we investigate the structure of Bad𝐴 and its relation to Diophantine conditions on
𝐴. The following classical result says that Bad𝐴 is never empty.

Theorem 1.1 (Theorem X, Chapter IV [4]). For any 𝐴 ∈ Mat𝑚×𝑛(ℝ), there exists an 𝜂 ∈ ℝ𝑚 for
which

inf
𝑞∈ℤ𝑛⧵{0}

‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − 𝜂⟩ > 0. (1.3)

This result was amplified significantly as follows:

Theorem1.2 (Theorem 1.4 in [8] or Theorem 1 in [16]).For any𝐴 ∈ Mat𝑚×𝑛(ℝ), the setBad𝐴 ⊂ 𝕋𝑚

is awinning set for Schmidt’s game. As a consequence, it is a dense subset of fullHausdorff dimension.

For the notion of winning and Schmidt games, see the seminal paper [23]. See also [2] where
the fact that Bad𝐴 has full Hausdorff dimension was first proved. Theorem 1.2 says that Bad𝐴 is
large from the dimension point of view. In this paper, we are interested in investigating its size
from themeasure theoretical point of view. The basic question that we investigate is the following:

Question 1.3. Given a probability measure 𝜇 on 𝕋𝑚, what can be said about 𝜇(Bad𝐴) and how
does this relate to the Diophantine properties of 𝐴.

To examplify a situationwhereQuestion 1.3 has an easy answer,wenote the following. Consider
the case 𝑛 = 1 in which case𝐴 = 𝜃 is a single column vector (or rather a point in 𝕋𝑚). Assume its
coordinates satisfy that 1, 𝜃1, … , 𝜃𝑚 are linearly dependent over ℚ. This is equivalent to the fact
that the cyclic subgroup generated by 𝜃 in 𝕋𝑚 is not dense. In fact, in such a case, {𝑞𝜃 ∶ 𝑞 ∈ ℤ} is
a union of finitely many cosets of a lower dimensional subtorus. In particular, any 𝜂 outside this
lower dimensional submanifold belongs to Bad𝜃. In particular, we get

𝜇(Bad𝜃) = 1

for various measures 𝜇. For example, for 𝜇 being the Lebesgue measure on 𝕋𝑚 as well as many
algebraic measures according to the following definition.

Definition 1.4. A probability measure 𝜇 on 𝕋𝑚 is said to be algebraic if there is a subspace 𝑈 <

ℝ𝑚 whose image in 𝕋𝑚 is closed (i.e.,𝑈 ∩ ℤ𝑚 is a lattice in𝑈), and 𝜇 is the𝑈-invariant probability
measure supported on a single𝑈-orbit in 𝕋𝑚. We exclude the possibility of𝑈 = {0} by saying that
𝜇 is nontrivial.

TheDiophantine condition saying that 1, 𝜃1, … , 𝜃𝑚 are linearly dependent overℚ is very strong.
A relaxation of it is the famous notion of singularity:
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Definition 1.5 (Singularity). We say that 𝐴 ∈ Mat𝑚×𝑛(ℝ) is singular if, for every 𝜀 > 0, for all
large enough 𝑄,

𝑄𝑛∕𝑚 min {⟨𝐴𝑞⟩ ∶ 𝑞 ∈ ℤ𝑛 ⧵ {0}, ‖𝑞‖ ⩽ 𝑄} < 𝜀. (1.4)

Assuming nonsingularity of𝐴, we have the following result from [26] that answers Question 1.3
for the Lebesgue measure on 𝕋𝑚.

Theorem 1.6 [26]. Let𝐴 ∈ Mat𝑚×𝑛(ℝ) be nonsingular and let 𝜆𝕋𝑚 denote the Lebesgue probability
measure on 𝕋𝑚. Then, 𝜆𝕋𝑚(Bad𝐴) = 0.

As pointed out in Section 1.1, there is a mistake in the paper [26]. Theorem 1.6 is a special
case of [26, Theorem 2.3], which in the generality stated there turns out to be false as we will see
below. But, the argument presented there, for the case of the measure 𝜆𝕋𝑚 , is robust enough to
carry through. We will provide a full proof of Theorem 1.6 reproducing the argument of [26] in
Section 4. This proof will also serve as an introduction to the proof of one of our main results
Theorem 2.11 in Section 6. We note that since [26], several alternative proofs for Theorem 1.6 have
appeared. See [13, Corollary 1.4], [18, Theorem 1], and [1, Theorem 1.3] and also [12, Theorem 1.2]
for the 1-dimensional case. See also Remark 1.21 and Theorem 8.4 for a slightly stronger result
than Theorem 1.6, which we prove in Section 8.
Since David Simmons spotted the gap in [26, sections 2.2, 3.2], the third author tried to rule

regarding the validity/falsity of the results there, most notably regarding [26, Theorem 2.3], which
implies that if𝐴 is nonsingular, then 𝜇(Bad𝐴) = 0 for every nontrivial algebraic measure 𝜇 on 𝕋𝑚.
One of the main results we present in this paper is the following construction, which shows that
this statement may fail drastically. In it we choose 𝑛 = 1 and take 𝐴 = 𝜃 to be a vector.

Theorem 1.7. Let 𝑚 ∈ ℕ with 𝑚 > 2. There exists 𝜃 ∈ ℝ𝑚, which is nonsingular and an 𝜂 ∈ ℝ𝑚

such that, for every (𝑡3, … , 𝑡𝑚) ∈ ℝ𝑚−2, we have

inf
𝑞∈ℤ⧵{0}

|𝑞|1∕𝑚⟨𝑞𝜃 − (𝜂 + 𝑡3𝐞3 +⋯ + 𝑡𝑚𝐞𝑚)⟩ > 0.

In particular, Bad𝜃 contains a coset of a subtorus of codimension 2 and as a consequence, there are
nontrivial algebraic measures 𝜇 satisfying 𝜇(Bad𝜃) = 1.

This theorem is proved as Theorem 7.7. Here, 𝐞3, … , 𝐞𝑚 denote last𝑚 − 2 standard basis vectors
for ℝ𝑚.

Remark 1.8. We note here that it is very likely that Theorem 1.7 could be generalized to 𝑛 > 1. This
would probably involve using the new theory of parametric geometry of numbers as in [7]. We
were content with using this theory as presented in [20], which seems to give only the 𝑛 = 1 case.

Remark 1.9. We note here that we were unable to provide a construction of nonsingular 𝜃 ∈ ℝ𝑚

such that 𝜇(Bad𝜃) > 0 for an algebraic measure corresponding to a codimension 1 subtorus. In
particular, the case 𝑚 = 2 remains open. That is, is there a nonsingular vector 𝜃 ∈ ℝ2 and an
algebraic measure 𝜇 on 𝕋2 of dimension 1 such that 𝜇(Bad𝜃) > 0?
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Weproceed to state versions of ourmain result, which could be viewed as an amendment of [26,
Theorem 2.3]. We introduce a novel Diophantine condition on 𝐴 that strengthens nonsingularity
and ensures that 𝜇(Bad𝐴) = 0 for any nontrivial algebraic measure 𝜇 on 𝕋𝑚. This Diophantine
condition is a bit elaborate to state and is dynamical in nature.
Let 𝑑 ∶= 𝑛 +𝑚. Let𝑋 denote the space of unimodular (i.e., covolume 1) lattices inℝ𝑑. As usual

𝑋 is identifiedwith the quotient SL𝑑(ℝ)∕ SL𝑑(ℤ) via g SL𝑑(ℤ) ↔ gℤ𝑑. This identification gives rise
to a topology on 𝑋 (the quotient topology), as well as to a natural action of SL𝑑(ℝ) on 𝑋. Given
𝐴 ∈ Mat𝑚×𝑛(ℝ), we consider the lattice

𝑥𝐴 ∶=

[
𝐼𝑚 𝐴

0 𝐼𝑛

]
ℤ𝑑. (1.5)

Of particular interest to our discussion is the following one-parameter subgroup:

ℎ𝑡 ∶=

[
𝑒𝑛𝑡𝐼𝑚 0

0 𝑒−𝑚𝑡𝐼𝑛

]
∈ SL𝑑(ℝ), 𝑡 ∈ ℝ. (1.6)

The so-called Dani correspondence (see [5]) says that many of the Diophantine properties of
𝐴 could be read from the topological and statistical properties of the orbit {ℎ𝑡𝑥𝐴 ∶ 𝑡 ⩾ 0}. In
particular, we have the following famous characterization of singularity.

Theorem 1.10 [5, Theorem 2.14]. A matrix 𝐴 ∈ Mat𝑚×𝑛(ℝ) is singular if and only if the orbit
{ℎ𝑡𝑥𝐴 ∶ 𝑡 ⩾ 0} is divergent.

Here the orbit is said to be divergent if the map 𝑡 ↦ ℎ𝑡𝑥𝐴 is a proper map from ℝ⩾0 to 𝑋 (i.e.,
preimages of compact sets are compact). Our novel Diophantine condition on𝐴 is a relaxation of
singularity that is stated in terms of a topological property of the orbit {ℎ𝑡𝑥𝐴 ∶ 𝑡 ⩾ 0}.

Definition 1.11 (Asymptotic accumulation points). Let 𝑥 ∈ 𝑋. We define the set of asymptotic
accumulation points of 𝑥 as

𝜕(𝑥) ∶=

{
𝑦 ∈ 𝑋 ∶ there is an unbounded sequence (𝑡𝑘)𝑘∈ℕ ⊂ ℝ⩾0 with lim

𝑘→∞
ℎ𝑡𝑘𝑥 = 𝑦

}
.

Definition 1.12 (Accumulation sequences and 𝑘-divergence). Let 𝑥 ∈ 𝑋. A sequence

𝐼 = (𝑥0 = 𝑥, 𝑥1, … , 𝑥𝑘) ⊂ 𝑋𝑘+1 with 𝑥𝑖+1 ∈ 𝜕(𝑥𝑖) for 𝑖 = 0, … 𝑘 − 1

is called an accumulation sequence of length 𝑘 + 1 for 𝑥. If

𝑘 = sup {length(𝐼) − 1 ∶ 𝐼 is an accumulation sequence for 𝑥},

we say 𝑥 is 𝑘-divergent. A matrix 𝐴 is said to be 𝑘-divergent if the lattice 𝑥𝐴 is.

Remark 1.13. The set 𝜕(𝑥) and as a consequence the definition of 𝑘-divergent lattices depend
on the semigroup {ℎ𝑡 ∶ 𝑡 ⩾ 0}. Versions of these notions could be investigated for other groups
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6 of 50 MOSHCHEVITIN et al.

and semigroups. We choose to work with this particular semigroup because of the relation to
Diophantine approximation given by the Dani correspondence as reflected in Theorem 1.10.

Note that by Theorem 1.10, saying that 𝐴 is singular is the same as saying it is 0-
divergent. In the following results, we assume 𝐴 is not 𝑘-divergent for small values of 𝑘.
This gives enough dynamical richness for the orbit {ℎ𝑡𝑥𝐴 ∶ 𝑡 ⩾ 0} for our arguments to carry
through.

Theorem 1.14. Assume 𝐴 ∈ Mat𝑚×𝑛(ℝ) is not 𝑘-divergent for any 0 ⩽ 𝑘 ⩽ 𝑑 − 2 (in other words,
the lattice 𝑥𝐴 has an accumulation sequence of length 𝑑), and that gcd(𝑚, 𝑛) = 1. Then, for any
nontrivial algebraic measure 𝜇 on 𝕋𝑚, we have

𝜇(Bad𝐴) = 0.

Remark 1.15. The assumption gcd(𝑛,𝑚) = 1 appearing in some of our results is curious. We are
not sure how much of it is an artifact of the method of proof. See Lemma 6.2 and Corollary 6.3
where this assumption enters the discussion. This assumption is not entirely redundant though,
as the case 𝑛 = 𝑚 is generally false. See Example 2.12.

Theorem 1.14 could be restated more explicitly as follows. Since any 𝓁-dimensional subtorus
of 𝕋𝑚 can be presented as a product of a 1-dimensional subtorus and an 𝓁 − 1-dimensional
one, by Fubini’s theorem, we see that the general statement of Theorem 1.14 follows from the
corresponding statement for 1-dimensional subtori. Since 1-dimensional subtori of 𝕋𝑚 are in 1-
2 correspondence to primitive integral vectors (up to sign), the following is a restatement of
Theorem 1.14.

Theorem 1.16. Assume 𝐴 ∈ Mat𝑚×𝑛(ℝ) is not 𝑘-divergent for any 0 ⩽ 𝑘 ⩽ 𝑑 − 2 (in other words,
the lattice 𝑥𝐴 has an accumulation sequence of length 𝑑), and gcd(𝑛,𝑚) = 1. Then, for any 𝑝0 ∈ ℤ𝑚

and 𝜂 ∈ ℝ𝑚, we have for Lebesgue almost every 𝑡 ∈ ℝ

lim inf
𝑞∈ℤ𝑛,‖𝑞‖→∞

‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − (𝑡𝑝0 + 𝜂)⟩ = 0.

Theorems 1.14 and 1.16 give the answer to Question 1.3 for the case when 𝜇 is algebraic. Our
techniques give the following stronger result, which deals with the 1-dimensional Lebesgue mea-
sure sitting on an immersed line in the direction of 𝐴𝑞0 + 𝑝0 for any given 𝑞0 ∈ ℤ𝑛, 𝑝0 ∈ ℤ𝑚.
These immersed lines are closed if 𝑞0 = 0.

Theorem 1.17. Assume 𝐴 ∈ Mat𝑚×𝑛(ℝ) is not 𝑘-divergent for any 0 ⩽ 𝑘 ⩽ 𝑑 − 2 (in other words,
the lattice 𝑥𝐴 has an accumulation sequence of length 𝑑), and that gcd(𝑛,𝑚) = 1. Then, for any
𝑝0 ∈ ℤ𝑚, 𝑞0 ∈ ℤ𝑛, and 𝜂 ∈ ℝ𝑚, we have for Lebesgue almost every 𝑡 ∈ ℝ

lim inf
𝑞∈ℤ𝑛,‖𝑞‖→∞

‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − (𝑡(𝐴𝑞0 + 𝑝0) + 𝜂)⟩ = 0.

Theorem 1.17 reduces to Theorem 1.16 if we choose 𝑞0 = 0. Theorem 1.17 follows from the more
general Theorem 2.11 below as we show after its formulation in Section 2.6.
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Remark 1.18. Note that when𝑚 = 1 and 𝑛 ⩾ 2, Theorems 1.16, 1.14 and 1.17 are weaker than The-
orem 1.6 because there is only one nontrivial algebraic measure on 𝕋1 = 𝕋𝑚. So in this case, there
is no need to assume 𝑥𝐴 is not 𝑘-divergent for 0 ⩽ 𝑘 ⩽ 𝑑 − 2. It is enough to assume it is not
𝑘-divergent for 𝑘 = 0.

Remark 1.19. It is nontrivial to construct 𝐴, which is 𝑘-divergent. Using the emerging theory
of parametric geometry of numbers, 𝑘-divergent lattices are constructed in [14] and in fact, the
Hausdorff dimension of the set of 𝑘-divergent lattices is calculated there. Curiously enough, the
vector 𝜃 ∈ ℝ𝑚 constructed in Theorem 1.7 must be 𝑘-divergent for some 𝑘 = 1,… , 𝑑 − 2.

Remark 1.20. This remark pertains to a possible variant on how to define Bad𝐴. In Equation (1.2),
we took a liminf as 𝑞 ∈ ℤ𝑛, ‖𝑞‖→∞. It is sometimes desirable to restrict attention to coeffi-
cient vectors 𝑞, which belong to some subset. The most natural situation in which this arises
is when 𝑛 = 1, that is, 𝑞 ∈ ℤ but we are interested in 𝑞 → ∞ rather than |𝑞|→∞. In many dis-
cussions in Diophantine approximations, it is trivial to connect two such questions but in our
inhomogeneous setting, it does not seem to be true that for a given vector 𝜃 ∈ ℝ𝑚 and a target
𝜂 ∈ ℝ𝑚

lim inf
𝑞→∞

𝑞1∕𝑚⟨𝑞𝜃 − 𝜂⟩ = 0⟺ lim inf|𝑞|→∞
|𝑞|1∕𝑚⟨𝑞𝜃 − 𝜂⟩ = 0.

If one defines a variantBad+𝐴 ofBad𝐴 using the restriction that ‖𝑞‖→∞ and all the coordinates of
𝑞 are positive, then we expect that the techniques of this paper should be strong enough to prove
versions of Theorems 1.6 and 1.14. Such statements are stronger because Bad𝐴 ⊂ Bad+𝐴. Here is an
outline of how one might do this: One defines a version of the value set 𝑉𝐹(𝑦) (see Definition 2.4)
that restricts attention to the values 𝐹 takes on the grid points in the cone in ℝ𝑑 corresponding to
the last𝑛-coordinates being positive. One then proves a version of Lemma 2.9, where instead of the
nondegeneracy degree defined in Definition 2.8, one considers only grid points in the cone. The
rest of the argument then follows the same path as in this paper. We note that there are results in
the literature regarding homogeneous Diophantine approximations with sign constraints on the
coefficients. See [17, 19, 24, 27, 28].

Remark 1.21. As we saw in Theorem 1.6, if 𝐴 is nonsingular, then 𝜆(Bad𝐴) = 0. A natural ques-
tion that comes to mind is if the opposite statement is true, namely, is it true that if 𝐴 is singular,
then 𝜆(Bad𝐴) > 0. As we shall now explain, this is not the case. In fact, we can give an explicit
Diophantine condition on 𝐴, which gives rise to a class of matrices strictly containing the non-
singular matrices (and in particular, this class contains some singular matrices), such that for
𝐴 in this class, 𝜆(Bad𝐴) = 0. In particular, this shows that there are singular matrices 𝐴 with
𝜆(Bad𝐴) = 0. The definition of the Diophantine class ofmatrices is stated in terms of the sequence
of best approximations and is tightly related and motivated by the discussions in the papers [18]
and [13]. We note that in [13], another complementary Diophantine class is defined, which is
a subclass of the singular matrices, and it is proved there that for such matrices 𝐴, one has
𝜆(Bad𝐴) = 1.
In order to define our new Diophantine condition properly, one needs a bit of notation and ter-

minology andhencewe postpone the exact formulation of the result to Section 8. SeeDefinition 8.1
and Theorem 8.4.
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8 of 50 MOSHCHEVITIN et al.

1.3 A few open problems

Nontrivial coset intersection

In Theorem 1.7, the codimension 2 coset is completely contained inBad𝐴. Example 2.12 also shows
a similar phenomenon. The most basic question one might state here is the following: Are there
examples of nonsingular matrices 𝐴 and 1-dimensional algebraic measures 𝜇 on 𝕋𝑚 such that
𝜇(Bad𝐴) > 0 and the support of 𝜇 not fully contained in Bad𝐴.

Codimension 1 algebraic measures

Can one construct a nonsingular matrix 𝐴 such that 𝜇(Bad𝐴) > 0 for an algebraic measure 𝜇 of
dimension 𝑑 − 1?

The coprimality condition

It is not clear to us at the moment if the condition gcd(𝑚, 𝑛) = 1 in Theorem 1.14 can be relaxed.
Example 2.12 suggests that the case 𝑛 = 𝑚 is false.

𝑘-divergence

Our definition of 𝑘-divergence for a matrix 𝐴 is dynamical but we expect that similarly to singu-
larity, there should be a purely Diophantine characterization of this property, although we were
not able to pin down such a condition. Even in the case 𝑛 = 𝑚 = 1, where 𝐴 is a number, and
0-divergence is characterized by rationality, we do not have a clean characterization of the notion
of 𝑘-divergence (for general 𝑘) using continued fractions.
A question that emerges from Theorem 1.7 is the following: In Theorem 1.7, we construct a

nonsingular vector that violates the conclusion of Theorem 1.14 and hence it must be 𝑘-divergent
for some 1 ⩽ 𝑘 ⩽ 𝑑 − 2. For which values of 𝑘 can this be achieved? A possible reformulation of
this question might be: For a given 1 ⩽ 𝑘 ⩽ 𝑑 − 2, is it possible to construct 𝑘-divergent matrices
𝐴 and algebraic measures 𝜇 on 𝕋𝑚 such that 𝜇(Bad𝐴) > 0?

Beyond algebraic measures

In the context of Theorems 1.6 and 1.14, it is natural to ask what happens for other natural classes
of measures. Given a natural class  of measures on 𝕋𝑚, can one pin down exact Diophantine
conditions on 𝐴, which ensure that for all 𝜇 ∈ , 𝜇(Bad𝐴) = 0? Examples of  can be, smooth
measures on submanifolds, Hausdorff measures on certain fractals, or measures whose Fourier
coefficients satisfy certain conditions.

Zero-one law

Is it always the case that 𝜇(Bad𝐴) ∈ {0, 1} for algebraic measures on 𝕋𝑚. For what classes of mea-
sures does such a zero-one lawhold? The following simple observation gives an affirmative answer
in the case that 𝜇 is an algebraic measure supported on a subgroup (rather than a coset):
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GRIDS AND DIVERGENCE 9 of 50

Proposition 1.22. Let 𝜇 be an algebraic measure supported on a subgroup of 𝕋𝑚. Then, for any
𝐴 ∈ Mat𝑚×𝑛(ℝ), we have 𝜇(Bad𝐴) ∈ {0, 1}.

Proof. Let 𝑇 ∶ 𝕋𝑚 → 𝕋𝑚 denote the homomorphism 𝜂 ↦ 𝑇(𝜂) ∶= 2𝜂. Then, as 𝜇 is the Haarmea-
sure on a subgroup, 𝜇 is 𝑇-invariant and ergodic (see [9, Corollary 2.20]). We will therefore finish
the proof once we show 𝑇−1(Bad𝐴) ⊂ Bad𝐴. This is equivalent to showing

𝜂 ∉ Bad𝐴 ⇒ 2𝜂 ∉ Bad𝐴 .

Indeed, if 𝜂 ∉ Bad𝐴, then by definition

lim inf
𝑞∈ℤ𝑛,‖𝑞‖→∞

‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − 2𝜂⟩ = 0

and so necessarily

lim inf
𝑞∈ℤ𝑛,‖𝑞‖→∞

‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − 2𝜂⟩ ⩽ lim inf
𝑞∈ℤ𝑛,‖𝑞‖→∞

‖2𝑞‖𝑛∕𝑚⟨𝐴2𝑞 − 2𝜂⟩
⩽ 2𝑛∕𝑚+1 lim inf

𝑞∈ℤ𝑛,‖𝑞‖→∞
‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − 𝜂⟩ = 0

and so 2𝜂 ∉ Bad𝐴. □

2 FROM INHOMOGENEOUS APPROXIMATIONS TO VALUE SETS
OF GRIDS

In this section, we introduce most of the notation and terminology used in the paper, state the
main Theorem 2.11, and prove some basic results like the Inheritance Lemma 2.6.

2.1 Euclidean space

Throughout the paper, we fix integers𝑚, 𝑛 ⩾ 1 and set

𝑑 ∶= 𝑚 + 𝑛.

Vectors in ℝ𝑑 will be denoted 𝑢, 𝑣, 𝑤, and so forth. The decomposition of a vector in ℝ𝑑 to its first
𝑚 coordinates and last 𝑛 coordinates will be important from time to time. Hence, when we write
a vector as ( 𝑣𝑤 ), the reader should interpret 𝑣 ∈ ℝ𝑚,𝑤 ∈ ℝ𝑛. Given two subsets 𝐴, 𝐵 ⊂ ℝ𝑑, we
denote 𝐴 + 𝐵 = {𝑣 + 𝑤 ∶ 𝑣 ∈ 𝐴,𝑤 ∈ 𝐵}.

2.2 The space of lattices

We let 𝑋 denote the space of unimodular lattices in ℝ𝑑. Although it can be confusing, we denote
lattices by small letters𝑥, 𝑥1, 𝑥2, and so forth. Itwill be important to us to think of𝑋 as a topological
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10 of 50 MOSHCHEVITIN et al.

space, and thus be able to discuss, for example, a converging sequence (𝑥𝑙)𝑙∈ℕ in 𝑋. At the same
time, we wish to keep in mind that a lattice 𝑥 ∈ 𝑋 is also viewed simply as a subset of ℝ𝑑.
A simple way to understand the topology on 𝑋 is to note that the group 𝐺 ∶= SL𝑑(ℝ) acts tran-

sitively on 𝑋, where the action (g , 𝑥) ↦ g𝑥 is induced by the linear action of 𝐺 on ℝ𝑑. That is,
given a lattice 𝑥 ∈ 𝑋 and g ∈ 𝐺, the lattice g𝑥 is simply the linear image of 𝑥 under the linear
map induced by multiplication by g on column vectors.
It is easy to see that this action is transitive and that the stabilizer group of the standard lattice

ℤ𝑑 is Γ ∶= SL𝑑(ℤ). We therefore obtain bijection gΓ ↔ gℤ𝑑 between the formal coset space 𝐺∕Γ
and the space 𝑋. An immediate advantage of this is that the quotient 𝐺∕Γ is naturally equipped
with a topology—the quotient topology with respect to the natural projection map 𝐺 → 𝐺∕Γ. In
fact, since Γ < 𝐺 is discrete, this map is a covering map. In particular, we have the following sim-
ple result, which allows us to explicitly understand convergence in 𝑋 and will be used without
reference throughout.

Lemma 2.1. A sequence (𝑥𝑙)𝑙∈ℕ in𝑋 converges to a lattice 𝑥 ∈ 𝑋 if and only if there exists a sequence
𝜀𝑙 ∈ 𝐺, 𝜀𝑙 → 𝑒 (𝑒 being the identity element), such that for all 𝑙, 𝜀𝑙𝑥𝑙 = 𝑥.

2.3 The space of grids

Most of our discussion will take place in a topological space 𝑋 ⊂ 𝑌. Again, we first introduce 𝑌
as an abstract set and then explain how to equip it with a topology.

Definition 2.2. A unimodular grid in ℝ𝑑 is a subset of the form

𝑥 + 𝑣 ∶= {𝑢 + 𝑣 ∶ 𝑢 ∈ 𝑥},

where 𝑥 ∈ 𝑋 and 𝑣 ∈ ℝ𝑑.

The space of all unimodular grids will be denoted by 𝑌. Note that in the representation of a
grid 𝑦 ∈ 𝑌 as 𝑦 = 𝑥 + 𝑣, the lattice 𝑥 is uniquely determined (it is obtained by translating 𝑦 so
that it would contain 0) but the translation vector 𝑣 is only well-defined modulo 𝑥. Note also that
𝑋 ⊂ 𝑌—any lattice is a grid and a grid 𝑦 is a lattice if and only if 0 ∈ 𝑦.
In order to induce a topology on 𝑌, we follow the same line of thought as before. Let

𝐺′ ∶= ASL𝑑(ℝ) ∶=

{(
g 𝑣

0 1

)
∈ SL𝑑+1(ℝ) ∶ g ∈ SL𝑑(ℝ), 𝑣 ∈ ℝ𝑑

}
and consider the action of 𝐺′ on ℝ𝑑 given by(

g 𝑣

0 1

)
⋅ 𝑢 = g𝑢 + 𝑣.

Thus, the matrix
( g 𝑣
0 1

)
∈ 𝐺′ acts on ℝ𝑑 as an affine map obtained by applying the linear map g

followed by the translation by 𝑣.
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GRIDS AND DIVERGENCE 11 of 50

The action of 𝐺′ on ℝ𝑑 induces an action on subsets of it and as a consequence 𝐺′ acts on 𝑌.
It is easy to see that this action is transitive and that the stabilizer group of the standard grid ℤ𝑑

is Γ′ = ASL𝑑(ℤ) (i.e., the matrices in 𝐺′ whose entries are integral). We therefore identify 𝑌 with
𝐺′∕Γ′ via

( g 𝑣
0 1

)
Γ′ ↔ gℤ𝑑 + 𝑣 and equip 𝑌 with the quotient topology with respect to the natural

quotient map 𝐺′ → 𝐺′∕Γ′. The following lemma is left to be verified by the reader.

Lemma 2.3. Let 𝑦, 𝑦𝑙 ∈ 𝑌, 𝑙 ∈ ℕ be grids and assume 𝑦𝑙 →𝑙→∞ 𝑦. Then, for any vector 𝑣 ∈ 𝑦, there
exist vectors 𝑢𝑙 ∈ 𝑦𝑙 such that 𝑢𝑙 → 𝑣.

We note that although the transitive action of 𝐺′ on 𝑌 is used to define the topology, this action
will not play any other role in this paper. But, the group 𝐺 acts on subsets of ℝ𝑑 and thus acts on
𝑌 in a way that extends its action on 𝑋. The 𝐺-action on 𝑌 will be paramount to our discussion.

2.4 The projection from grids to lattices and its fibers

Let 𝜋 ∶ 𝑌 → 𝑋 denote the map that sends a grid 𝑦 to the unique lattice 𝑥 such that 𝑦 = 𝑥 + 𝑣 for
some 𝑣 ∈ ℝ𝑑. We leave it to the enthusiastic reader to check that 𝜋 is a continuous proper map,
where proper means that preimages of compact sets are compact.
Given a lattice 𝑥 ∈ 𝑋, the fiber 𝜋−1(𝑥) =

{
𝑥 + 𝑣 ∶ 𝑣 ∈ ℝ𝑑

}
is nothing but the collection of all

cosets of the lattice 𝑥 inℝ𝑑. As such it is equal to the torusℝ𝑑∕𝑥. The space𝑌 can be thus thought
of as the union of all possible tori (of volume 1) of ℝ𝑑. We alternate between writing 𝜋−1(𝑥) and
ℝ𝑑∕𝑥 throughout but wish to stress here that we can (and will) alternate between thinking of a
tori ℝ𝑑∕𝑥 as

∙ the compact abelian group ℝ𝑑∕𝑥,
∙ a closed subset of 𝑌 obtained as a fiber 𝜋−1(𝑥),
∙ a collection of grids (subsets of ℝ𝑑)

{
𝑥 + 𝑣 ∶ 𝑣 ∈ ℝ𝑑

}
.

Finally note that 𝜋 intertwines the 𝐺-actions on 𝑋,𝑌. That is, the following diagram commutes:
For any g ∈ 𝐺,

This captures the fact that if we are given an element g ∈ 𝐺 and two lattices 𝑥1, 𝑥2 ∈ 𝑋 such
that g𝑥1 = 𝑥2, then when we act with g on 𝑌, g maps the fiber 𝜋−1(𝑥1) onto the fiber 𝜋−1(𝑥2).
Indeed the map 𝑥1 + 𝑣 ↦ g(𝑥1 + 𝑣) is an isomorphism between the compact abelian groups
ℝ𝑑∕𝑥1, ℝ

𝑑∕𝑥2.

2.5 Subtori, Haar measures, and algebraic measures

As noted above, for a lattice 𝑥 ∈ 𝑋, the fiber 𝜋−1(𝑥) = ℝ𝑑∕𝑥 is a 𝑑-dimensional compact abelian
groupwe refer to as a torus.We nowdiscuss its closed connected subgroups, theirHaar probability
measures, and their translates.

 20417942, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12262 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [07/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 50 MOSHCHEVITIN et al.

Let 𝑥 ∈ 𝑋 be a lattice. A linear subspace 𝑈 < ℝ𝑑 is called 𝑥-rational if 𝑈 ∩ 𝑥 contains a basis
of𝑈. It is well known that there is a 1-1 correspondence between 𝑥-rational subspaces and closed
connected subgroups of ℝ𝑑∕𝑥. Let 𝑈 < ℝ𝑑 be a 𝑥-rational subspace. For any grid 𝑦 ∈ ℝ𝑑∕𝑥, the
set 𝑦 + 𝑈 ⊂ ℝ𝑑∕𝑥 is a coset of the closed subgroup 𝑥 + 𝑈 < ℝ𝑑∕𝑥 and it supports a unique 𝑈-
invariant probability measure. We refer to such measures as algebraic measures on ℝ𝑑∕𝑥. When
the lattice 𝑥 (the trivial element of the torus) belongs to the support of the measure, we refer to
the measure as a Haar measure on a subtorus.

2.6 Value sets and inheritance

Let 𝐹 ∶ ℝ𝑑 = ℝ𝑚 ⊕ ℝ𝑛 → ℝ be the map

𝐹

((
𝑣

𝑤

))
= ‖𝑣‖𝑚 ⋅ ‖𝑤‖𝑛.

Recalling the one-parameter subgroup {ℎ𝑡 ∶ 𝑡 ∈ ℝ} < 𝐺 defined in (1.6), we note that 𝐹 is ℎ𝑡-
invariant. That is, for any 𝑡 ∈ ℝ and any 𝑢 ∈ ℝ𝑑, 𝐹(ℎ𝑡𝑢) = 𝐹(𝑢). Geometrically, when ℎ𝑡 acts
linearly on ℝ𝑑, it acts on the level sets of 𝐹. Note that although ℎ𝑡 does not act transitively on
the level sets, it does act cocompactly on each level set of the form 𝐹−1(𝑠) for 𝑠 > 0. This will not
be used explicitly in the paper but has conceptual importance toward the claim that understand-
ing the values 𝐹 takes on a subset of ℝ𝑑 can be attacked by analyzing how this set changes under
the action of ℎ𝑡. This is the idea behind our results.

Definition 2.4. Given a grid 𝑦 ∈ 𝑌, we define the value set of 𝑦 to be

𝑉𝐹(𝑦) = {𝐹(𝑢) ∶ 𝑢 ∈ 𝑦}.

The fundamental questions in geometry of numbers, which guide us are as follows: What can
be said about the value sets 𝑉𝐹(𝑦)? Is it dense or discrete? Is 0 an accumulation point or not?
Does its closure contain a ray? For the sake of the discussion in this paper, we make the following
definitions.

Definition 2.5. A grid 𝑦 ∈ 𝑌 is a dense values grid or 𝑦 is 𝐷𝑉𝐹 if

𝑉𝐹(𝑦) = 𝐹(ℝ𝑑) = [0,∞).

The following lemma is a fundamental tool in our discussion. It serves as the entry point of
dynamics to our discussion.

Lemma 2.6 (Inheritance lemma). Let 𝑦1, 𝑦2 ∈ 𝑌 be grids and assume the orbit-closure
{ℎ𝑡𝑦1 ∶ 𝑡 ∈ ℝ} in 𝑌 contains 𝑦2. Then, 𝑉𝐹(𝑦2) ⊂ 𝑉𝐹(𝑦1).

Proof. Let 𝑣 ∈ 𝑦2. We show that 𝐹(𝑣) can be approximated by elements from 𝑉𝐹(𝑦1). Let 𝑡𝑙, 𝑙 ∈ ℕ

be a sequence of real numbers such that ℎ𝑡𝑙𝑦1 → 𝑦2. By Lemma 2.3, there are vectors 𝑢𝑙 ∈ ℎ𝑡𝑙𝑦1
such that 𝑢𝑙 → 𝑣. The vector𝑤𝑙 ∶= ℎ−1𝑡𝑙

𝑢𝑙 belongs to the grid 𝑦1 and by the ℎ𝑡-invariance of 𝐹 that
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GRIDS AND DIVERGENCE 13 of 50

we have together with the continuity of 𝐹, we have

𝐹(𝑤𝑙) = 𝐹(ℎ𝑡𝑙𝑤𝑙) = 𝐹(𝑢𝑙) →𝑙→∞ 𝐹(𝑣).

This shows 𝐹(𝑣) ∈ 𝑉𝐹(𝑦1) and finishes the proof. □

The way in which the Inheritance Lemma 2.6 will enter our proofs and help us establish that
certain grids are 𝐷𝑉𝐹 is the following.

Proposition 2.7. Let 𝑦 ∈ 𝑌 be a grid. If there exists a lattice 𝑥 ∈ 𝑋 such that the orbit-closure
{ℎ𝑡𝑦 ∶ 𝑡 ∈ ℝ} in𝑌 contains a full coset of a 𝑑 − 1-dimensional subtorus in the fiber 𝜋−1(𝑥) = ℝ𝑑∕𝑥,
then 𝑦 is 𝐷𝑉𝐹 .

For the proof, we will need the following definition and lemma.

Definition 2.8. The nondegeneracy degree of 𝐹 is the minimal dimension 𝓁 such that for any
grid 𝑦 and any 𝓁-dimensional subspace 𝑈 < ℝ𝑑, one has 𝐹(𝑦 + 𝑈) = [0,∞).

Lemma 2.9. The nondegeneracy degree of 𝐹 is 𝑑 − 1.

Proof. Let

𝑦 = ℤ𝑑 + 1∕2 ⋅
⎛⎜⎜⎝
1

⋮
1

⎞⎟⎟⎠.
Let 𝑈 < ℝ𝑑 be the codimension 2 subspace given by 𝑈 = {( 𝑣𝑤 ) ∶ 𝑣1 = 0,𝑤𝑛 = 0}. Note that the
first and last coordinates of the vectors in 𝑦 + 𝑈 are at least 1∕2 in absolute value. Therefore, their
𝐹-value is ⩾ 2−𝑛 ⋅ 2−𝑚 = 2−𝑑. This shows that the nondegeneracy degree is at least 𝑑 − 1.
On the other hand, let 𝑈 < ℝ𝑑 be a 𝑑 − 1-dimensional space, let 𝑦 be a grid. We will show

𝐹(𝑦 + 𝑈) = [0,∞). Let
(

𝑣1

𝑤1

)
, … ,

(
𝑣𝑑−1

𝑤𝑑−1

)
be a basis for 𝑈. Let

𝑟1 = rank ( 𝑣1 ⋯ 𝑣𝑑−1 ), 𝑟2 = rank ( 𝑤1 ⋯ 𝑤𝑑−1 ).

Since the rank of thematrixwhose columns are the basis of𝑈 is𝑑 − 1 = 𝑚 + 𝑛 − 1, it is impossible
to have both 𝑟1 < 𝑚 and 𝑟2 < 𝑛. Assume for concreteness that 𝑟1 = 𝑚. Choose a vector

( 𝑝
𝑞

)
∈

𝑦 such that 𝐹(
( 𝑝
𝑞

)
) > 0 (this is always possible because grids always contain points in ℝ𝑑

>0
for

example). We can solve the system of equations

−𝑝 = 𝑎1𝑣
1 +⋯ + 𝑎𝑑−1𝑣

𝑑−1

because we assume 𝑟1 = 𝑚. Therefore, the affine subspace
( 𝑝
𝑞

)
+𝑈 contains a vector of the form(

0
𝑤

)
.

Assume for the moment that the norms defining 𝐹 are the Euclidean norms. The restricted
function 𝐹|(𝑝

𝑞

)
+𝑈

is the square root of a polynomial in 𝑑 − 1 variables that attains the

 20417942, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12262 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [07/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 50 MOSHCHEVITIN et al.

value 0 because of the above argument and also attains the value 𝐹(
( 𝑝
𝑞

)
) > 0. Hence it is

a nonconstant polynomial and so we conclude that 𝐹(
( 𝑝
𝑞

)
+𝑈) = [0,∞), which finishes the

proof.
We leave it to the reader to deduce the general case, where the norms used to define 𝐹 are not

assumed to be the Euclidean norms, from the Euclidean one (use the equivalence of norms and
the mean-value theorem). □

Proof of Proposition 2.7. A subtorus of dimension 𝑑 − 1 in 𝜋−1(𝑥) = ℝ𝑑∕𝑥 is a subgroup of the
form 𝑥 + 𝑈 where 𝑈 < ℝ𝑑 is a 𝑑 − 1-dimensional subspace whose image in ℝ𝑑∕𝑥 is closed. A
coset of such a subtorus is a set of the form 𝑥 + 𝑣 + 𝑈 for such a subspace𝑈 and a vector 𝑣 ∈ ℝ𝑑.
If the closure {ℎ𝑡𝑦 ∶ 𝑡 ∈ ℝ} contains all the grids in such a set, then by the Inheritance Lemma 2.6
we have

𝑉𝐹(𝑦) ⊃
⋃
𝑢∈𝑈

𝑉𝐹(𝑥 + 𝑣 + 𝑢) = [0,∞),

where the last equality follows from Lemma 2.9. □

In our discussion, we will fix a lattice 𝑥 and a probability measure 𝜇 on the torus ℝ𝑑∕𝑥 and try
to say something about 𝜇

({
𝑦 ∈ 𝜋−1(𝑥) ∶ 𝑦 is 𝐷𝑉𝐹

})
.

Definition 2.10. Given 𝑥 ∈ 𝑋 and a probability measure 𝜇 on ℝ𝑑∕𝑥, we say that 𝑥 is 𝜇-almost
surely 𝐷𝑉𝐹 if 𝜇-almost any 𝑦 is 𝐷𝑉𝐹 .

The following is one of the main results of the paper. The reader should recall Definition 1.12.

Theorem 2.11. Assume gcd(𝑚, 𝑛) = 1. If 𝑥 ∈ 𝑋 has an accumulation sequence of length 𝑑, in other
words 𝑥 is not 𝑘-divergent for any 0 ⩽ 𝑘 ⩽ 𝑑 − 2, then 𝑥 is 𝜇-almost surely grid 𝐷𝑉𝐹 with respect to
any algebraic measure 𝜇 on 𝜋−1(𝑥). In fact, 𝜇-almost any 𝑦 ∈ 𝜋−1(𝑥) satisfies that the orbit closure
{ℎ𝑡𝑦 ∶ 𝑡 ⩾ 0} ⊂ 𝑌 contains a coset of a 𝑑 − 1-dimensional subtorus of ℝ𝑑∕𝑥𝑑−1.

We now deduce Theorem 1.17 from Theorem 2.11 and explain how to link the discussion about
𝐷𝑉𝐹 grids to the discussion about the set of badly approximable targets Bad𝐴.

Proof of Theorem 1.17 assumingTheorem2.11. Let𝐴, 𝑝0, 𝑞0, 𝜂 be as in the statement of Theorem 1.17.
Consider the lattice 𝑥𝐴 defined in (1.5) and the 1-dimensional algebraic measure 𝜇 on ℝ𝑑∕𝑥𝐴
supported on the 1-dimensional subtorus given by the 𝑥𝐴-rational subspace

𝑈 ∶=

{(
𝑡(𝐴𝑞0 + 𝑝0)

𝑡𝑞0

)
∶ 𝑡 ∈ ℝ

}

and translation
(
−𝜂

0

)
. Theorem 2.11 says that 𝜇-almost any grid is 𝐷𝑉𝐹 . In other words, for

Lebesgue almost any 𝑡 ∈ ℝ, 𝐹

(
𝑥𝐴 −

(
𝑡(𝐴𝑞0 + 𝑝0) + 𝜂

𝑡𝑞0

))
is dense in [0,∞). In particular, for
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GRIDS AND DIVERGENCE 15 of 50

Lebesgue almost any 𝑡, 𝐹 attains arbitrarily small positive values on the grid

𝑥𝐴 −

(
𝑡(𝐴𝑞0 + 𝑝0) + 𝜂

𝑡𝑞0

)
=

{(
𝑝 + 𝐴𝑞 − 𝑡(𝐴𝑞0 + 𝑝0) − 𝜂

𝑞 − 𝑡𝑞0

)
∶ 𝑞 ∈ ℤ𝑛, 𝑝 ∈ ℤ𝑚

}
.

For a vector
(
𝑝 + 𝐴𝑞 − 𝑡(𝐴𝑞0 + 𝑝0) − 𝜂

𝑞 − 𝑡𝑞0

)
in the above set, we have

𝐹

((
𝑝 + 𝐴𝑞 − 𝑡(𝐴𝑞0 + 𝑝0) − 𝜂

𝑞 − 𝑡𝑞0

))
= ‖𝑞 − 𝑡𝑞0‖𝑛‖𝑝 + 𝐴𝑞 − 𝑡(𝐴𝑞0 + 𝑝0) − 𝜂‖𝑚.

This quantity cannot become positive and arbitrarily small using finitely many 𝑞’s and
so we get that there exists a sequence 𝑞𝑖 ∈ ℤ𝑛 and 𝑝𝑖 ∈ ℤ𝑚 such that ‖𝑞𝑖‖→∞ and‖𝑞𝑖‖𝑛‖𝑝𝑖 + 𝐴𝑞𝑖 − 𝑡(𝐴𝑞0 + 𝑝0) − 𝜂‖𝑚 is a sequence of positive numbers going to zero. In
particular,

lim inf
𝑞∈ℤ𝑛,‖𝑞‖→∞

‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − (−𝑡(𝐴𝑞0 + 𝑝0) + 𝜂)⟩ = 0

as desired. □

2.7 An intriguing example

We end this section with the following example, which shows that the assumption gcd(𝑛,𝑚) = 1

is not entirely an artifact of the method of proof (see Lemma 6.2 and Corollary 6.3, for the point
where this assumption enters our discussion). It shows that the statement of Theorem 2.11 can
fail drastically when 𝑛 = 𝑚 ⩾ 2.

Example 2.12. Take any 2-lattice in the plane
(
𝑎 𝑏
𝑐 𝑑

)
ℤ2 and find a translate

( 𝑠1
𝑠2

)
satisfying

inf
𝑞1,𝑞2∈ℤ

|𝑎𝑞1 + 𝑏𝑞2 + 𝑠1| ⋅ |𝑐𝑞1 + 𝑑𝑞2 + 𝑠2| ∶= 𝜀 > 0. (2.1)

The existence of such 𝑠1, 𝑠2 is tightly related to Theorems 1.1 and 1.2. A proof for this existence can
be found in [6, Theorem 1].
Now choose 𝑛 = 𝑚 for any positive integer 𝑚 and take a matrix g ∈ SL𝑑(ℝ) whose 1st and

𝑚 + 1th rows are

(𝑎, 0, … , 0, 𝑏, 0, … , 0)

(𝑐, 0, … , 0, 𝑑, 0, … , 0)

where the 𝑏 and the 𝑑 are the𝑚 + 1-coordinates.
Let us denote by 𝐩 ∶ ℝ𝑑 → ℝ2 the projection on the 1st and 𝑚 + 1th coordinates. For such a

choice of g , for any grid of the form 𝑦 = gℤ𝑑 + 𝑢, where

𝑢 = (𝑠1, ∗, … , ∗, 𝑠2, ∗, … , ∗)tr, (2.2)
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16 of 50 MOSHCHEVITIN et al.

we have

𝐩(𝑦) =

(
𝑎 𝑏

𝑐 𝑑

)
ℤ2 +

(
𝑠1
𝑠2

)
.

Since we have the lower bound, for ( 𝑣𝑤 ) ∈ ℝ𝑑,

𝐹(( 𝑣𝑤 )) = ‖𝑣‖𝑚‖𝑤‖𝑚 ⩾ |𝑣1|𝑚|𝑤1|𝑚,
we deduce from (2.1) that

inf 𝑉𝐹(𝑦) ⩾ 𝜀𝑚 > 0

and in particular 𝑦 is not 𝐷𝑉𝐹 . Note that this is where it is important that 𝑛 = 𝑚. By the general
shape (2.2) of the translate 𝑢 giving the grid 𝑦, this shows that the set of grids of gℤ𝑑, which are
not 𝐷𝑉𝐹 , contains a coset of a codimension 2 subtorus.
We note that it is not hard to make the choices in the above general construction in a way that

the ℎ𝑡-orbit of gℤ𝑑 is bounded and in particular, this lattice is not 𝑘-divergent for any 𝑘. This
shows that Theorem 2.11 fails drastically when 𝑛 = 𝑚. It also serves as a counterexample to [26,
Theorem 2.3] for the regime 𝑛 = 𝑚 ⩾ 2. The counterexample we present in Theorem 1.7 is more
sophisticated and deals with the regime 𝑛 = 1 and𝑚 > 2.
A possible choice of the parameters is given by choosing 𝑛 = 𝑚 = 2, 𝑑 = 4,

g = 𝛼

⎛⎜⎜⎜⎜⎝
1 0

√
2 0

0 1 0
√
2

1 0 −
√
2 0

0 1 0 −
√
2

⎞⎟⎟⎟⎟⎠
,

where 𝛼 is chosen so that det g = 1. We shall ignore the multiplicative factor 𝛼 below. To see that
the orbit ℎ𝑡gℤ4 is bounded, we use Mahler’s criterion, which says that a set of lattices in 𝑋 has
compact closure if and only if there is a uniform lower bound on the lengths of nonzero vectors
in lattices in the set. Here, the general form of a nonzero vector in a lattice in

{
ℎ𝑡gℤ

4 ∶ 𝑡 ∈ ℝ
}
is

of the form

⎛⎜⎜⎜⎜⎝
𝑒𝑡(𝑞1 + 𝑞3

√
2)

𝑒𝑡(𝑞2 + 𝑞4
√
2)

𝑒−𝑡(𝑞1 − 𝑞3
√
2)

𝑒−𝑡(𝑞2 − 𝑞4
√
2)

⎞⎟⎟⎟⎟⎠
,

where (𝑞1, 𝑞2, 𝑞3, 𝑞4) ≠ (0, 0, 0, 0). Assuming for concreteness that (𝑞1, 𝑞3) ≠ (0, 0), we get that the
length of the above 4-dimensional vector is bounded below by the length of the 2-dimensional
vector (

𝑒𝑡(𝑞1 + 𝑞3
√
2)

𝑒−𝑡(𝑞1 − 𝑞3
√
2)

)
.
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GRIDS AND DIVERGENCE 17 of 50

Now this is a vector whose product of coordinates equals 𝑞2
1
− 2𝑞2

3
, which is a nonzero integer and

so it is impossible that both of the coordinates are smaller than 1 in absolute value. This shows
that the length of the 4-dimensional vector above is at least 1 as well.

2.8 The mistake in [26]

Themain result in [26] is Theorem 2.2 there. This theorem is solid and has interesting applications
beyond the discussion of this paper, namely, for functions other than 𝐹. Themistake in that paper
is in sections 2.2 and 3.2 where the main theoremwas applied to the function 𝐹 (denoted there by
𝑃𝑛,𝑚) under the false statement that 𝐹 has nondegeneracy degree 1 according to Definition 2.8 of
this paper.We now comment on the validity/falsity of each of the statementsmade in [26, sections
2.2, 3.2].

∙ [26, Theorem 2.3] is not true in the generality stated. It is true for the Haar measure on ℝ𝑑∕𝑥

as we prove in Corollary 4.3 in this paper. On the other hand, we saw in Example 2.12 and in
Theorem 1.7 that [26, Theorem2.3] is not true for some choices of𝑛,𝑚 and algebraicmeasures of
codimension 2. We do not know at this point if the statement holds for codimension 1 algebraic
measures. In particular, the simplest case that remains open is the following:

Question 2.13. In the notation of this paper, let 𝑑 = 3,𝑚 = 2, 𝑛 = 1. Let 𝑥 ∈ 𝑋 be a lattice with
a nondivergent ℎ𝑡-orbit. Is it true that for any nontrivial algebraic measure 𝜇 on ℝ3∕𝑥, we have
that 𝑥 is 𝜇-almost surely𝐷𝑉𝐹? Is it true that for 𝜇-almost any grid 𝑦, 0 ∈ 𝑉𝐹(𝑦)? Specializing to
vectors, given a nonsingular column vector 𝜃 ∈ ℝ2, is it true that Bad𝜃 is a null set with respect
to any algebraic measure on 𝕋2?

∙ [26, Theorem 3.4] is true as stated. This follows fromCorollary 4.3 and Theorem 1.6 of this paper.
∙ [26, Theorem 3.7] is false in the generality stated. Theorem 1.7 shows that it is false for some
algebraic measures.

∙ [26, Corollary 3.8] is under question. We do not yet have a counterexample. The statement does
hold if one replaces the nonsingularity assumption by the stronger assumption that the vector
is not 𝑘-divergent for 0 ⩽ 𝑘 ⩽ 𝑑 − 1. This is a special case of Theorem 1.17.

3 GENERALITIES ABOUTMEASURES

3.1 Borel measures and weak* convergence

In this section, we present the elementary theory we will use regarding regular Borel measures
on topological spaces. Although the discussion is widely known, we include it here for the sake
of completeness, which some readers might appreciate.
Throughout this section, we assume all topological spaces to be locally compact second count-

able Hausdorff spaces. This puts us in a setting in which every Borel measure, which gives finite
measure to compact sets, is automatically regular. Suchmeasures are called Radonmeasures. Fur-
thermore, we will only discuss finite measures so the condition one finiteness on compacta will
be automatic.
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18 of 50 MOSHCHEVITIN et al.

In later sections, when we apply the theory presented here, we will only be concerned with
the spaces 𝑌,𝑋 and their subspaces. Nevertheless, we try to keep the discussion here abstract for
clarity.

Definition 3.1 (Topology on regular complex Borel measures). Let 𝑍 be locally compact second
countable Hausdorff space. Consider the Banach space 𝐶0(𝑍, ℂ) of complex continuous functions
vanishing at infinity with the supremum norm. Its dual, by [21, Theorem 6.19], is isometric to
(𝑍), the vector space of complex Radon measures on 𝑍 endowed with the norm induced by
total variation (cf. [21, Chapter 6]). The bilinear duality pairing is given by integration:

(𝜙, 𝜇) ↦ ∫𝑍 𝜙𝑑𝜇.

We endow (𝑍) with the weak* topology. That is, the smallest topology making all the
functionals

𝜇 ↦ ∫𝑍 𝜙𝑑𝜇 (where 𝜙 ∈ 𝐶0(𝑍, ℂ))

continuous. We denote by1(𝑍) the set of measures with norm ⩽ 1, the set of real positive mea-
sures by+(𝑍), and the set of real positive measures of norm 1 by (𝑍). This last set is the set of
Borel probabilities on 𝑍. We have a partial order on(𝑍) given by

(𝜇 ⩾ 𝜈) ⟺
(
𝜇 − 𝜈 ∈ +(𝑍)

)
.

Given 𝜇 ∈ (𝑍), we define the support of 𝜇, supp 𝜇 to be the complement of the set⋃
{𝑉 ⊂ 𝑍 ∶ 𝑉 is open and 𝜇(𝑉) = 0}.

Lemma 3.2. Let 𝑍 be a second countable locally compact Hausdorff space and let 𝜇, 𝜈 ∈ (𝑍). If
𝐷 ⊂ 𝐶0(𝑍, ℂ) spans a dense subspace of functions, then

(𝜇 = 𝜈) ⟺

(
∫𝑍 𝜙𝑑𝜇 = ∫𝑍 𝜙𝑑𝜈 for all 𝜙 ∈ 𝐷

)
.

Proof. The implication ⟹ is trivial. The other implication follows from the fact that 𝜇, 𝜈 are
continuous linear functionals on 𝐶0(𝑍, ℂ). □

An example to keep in mind for the applicability of the above lemma is when 𝑍 = 𝕋𝑚 and 𝐷 is
the set of characters 𝐷 =

{
𝑒2𝜋𝑖⟨𝑥,𝑝⟩ ∶ 𝑝 ∈ ℤ𝑚

}
.

Lemma 3.3. Let 𝑍 be a locally compact second countable Hausdorff space. In the weak* topology,
the unit ball1(𝑍) is compact. Furthermore, when 𝑍 is compact, (𝑍) is compact.
Proof. The first statement is the Banach–Alaoglu theorem. See [22, Theorem 3.15]. For the second
statement, note that

+(𝑍) = ∩𝜙⩾0,𝜙∈𝐶0(𝑍,ℂ)

{
𝜇 ∶ ∫𝑍 𝜙𝑑𝜇 ⩾ 0

}
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GRIDS AND DIVERGENCE 19 of 50

is weak* closed and when 𝑍 is compact, 𝟏𝑍 (the constant function 1) is an element of 𝐶0(𝑍, ℂ) and
so the subset (𝑍) = {𝜇 ∈ +(𝑍) ∶ ∫𝑍 𝟏𝑍𝑑𝜇 = 1

}
is also closed. Therefore, (𝑍) ⊂ 1(𝑍) is a

closed subset and hence compact (note that the weak* topology is Hausdorff). □

Lemma 3.4. Let 𝑍 be a locally compact second countable Hausdorff space. Then, the unit ball
1(𝑍) with the weak* topology is metrizable.

Proof. Under our assumptions, 𝐶0(𝑍, ℂ) contains a countable dense set. Call it (𝜙𝑖)𝑖∈ℕ ⊂ 𝐶0(𝑍, ℂ).
We leave it to the reader to check that the topology on1(𝑍) induced by the metric

dist(𝜇, 𝜈) ∶=

∞∑
𝑖=1

1

2𝑖‖𝜙𝑖‖||||∫ 𝜙𝑖𝑑(𝜇 − 𝜈)
||||

coincides with topology on1(𝑍) induced by the weak* topology on(𝑍). Alternatively, apply
Lemmas 3.3 and 3.2 to use [22, (c) of p. 63]. □

Definition 3.5 (Pushforwards of measures). Let 𝑍 and 𝑍′ be locally compact second countable
Hausdorff spaces. If𝑓 ∶ 𝑍 → 𝑍′ is a Borelmeasurablemap between them and𝜇 ∈ (𝑍), we have
the pushforward of 𝜇 by 𝑓 in(𝑍′) defined by the formula:

(𝑓∗𝜇)(𝐸) ∶= 𝜇(𝑓−1(𝐸)) for every Borel 𝐸 ⊂ 𝑍′.

It is straightforward to check that for any bounded measurable function 𝜙 ∶ 𝑍′ → ℂ, we have the
equality

∫𝑍′ 𝜙𝑑(𝑓∗𝜇) = ∫𝑍 𝜙◦𝑓𝑑𝜇,

and that this formula characterizes 𝑓∗𝜇.

Lemma 3.6. Let 𝑍, 𝑍′, 𝑍′′ be locally compact second countable Hausdorff spaces. Let 𝜇 ∈ (𝑍),
and say we have measurable maps 𝑓 ∶ 𝑍 → 𝑍′ and g ∶ 𝑍′ → 𝑍′′. Then,

(g◦𝑓)∗(𝜇) = g∗(𝑓∗𝜇) in(𝑍′′).

Proof. This follows at once from Definition 3.5. □

Lemma 3.7. Let 𝑍, 𝑍′ be locally compact second countable Hausdorff spaces and let 𝑓 ∶ 𝑍 → 𝑍′ be
continuous and proper. Then,

𝑓∗ ∶ (𝑍) → (𝑍′)

is continuous with respect to the weak* topologies.

Proof. It is clear that 𝑓∗ is a linear map. It is thus enough to show that preimages of basic
open neighborhoods of 0 are open. A basic weak* open neighborhood of 0 ∈ (𝑍′) is given
by, for 𝜖 > 0, 𝜙 ∈ 𝐶0(𝑍

′, ℂ),
{
𝜈 ∶ | ∫ 𝜙𝑑𝜈| < 𝜖

}
. It follows from the definition of 𝑓∗ that for
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20 of 50 MOSHCHEVITIN et al.

𝜙 ∈ 𝐶0(𝑍, ℂ), 𝜖 > 0,

(𝑓∗)
−1

{
𝜈 ∈ (𝑍′) ∶

||||∫ 𝜙𝑑𝜈
|||| < 𝜖

}
=

{
𝜇 ∈ (𝑍) ∶

||||∫ 𝜙◦𝑓𝑑𝜇
|||| < 𝜖

}
.

Since 𝑓 is continuous and proper, 𝜙◦𝑓 ∈ 𝐶0(𝑍, ℂ) and so the right-hand side is a basic open
neighborhood of 0 as well. □

The following lemma is used to justify a step in a particular argument. The reader should skip
it and return to it when referred to.

Lemma 3.8. Let 𝑍, 𝑍′, 𝑍′′ be locally compact second countable Hausdorff spaces. Let (𝑓𝑙)𝑙∈ℕ and
(g𝑙)𝑙∈ℕ be sequences of continuous proper functions from 𝑍 → 𝑍′ and 𝑍′ → 𝑍′′, respectively. Let 𝜇 ∈

(𝑍), 𝜈 ∈ (𝑍′), and 𝜂 ∈ (𝑍′′) be measures and assume we have the weak* convergence

lim
𝑛→∞

(𝑓𝑙)∗𝜇 = 𝜈 and lim
𝑙→∞

(g𝑙)∗𝜈 = 𝜂.

Then, there are subsequences (𝑝𝑙)𝑙∈ℕ and (𝑞𝑙)𝑙∈ℕ of ℕ such that we have the weak* convergence

lim
𝑙→∞

(g𝑝𝑙◦𝑓𝑞𝑙 )∗𝜇 = 𝜂.

Proof. Since the maps on measures (𝑓𝑙)∗ and (g𝑙)∗ have operator norm less than or equal to 1, we
might as well assume 𝜇, 𝜈, and 𝜂 are in the unit balls of their respective measure spaces.
By Lemma 3.4, the weak* topologies on the unit balls 1(𝑍), 1(𝑍

′), and 1(𝑍
′′) are

metrizable. Let 𝑙 ∈ ℕ and consider the metric ball

𝐵1(𝑍
′′)(𝜂, 𝑙

−1) ⊂ 1(𝑍
′′)

with center 𝜂 and radius 𝑙−1 in this metric. By convergence of ((g𝑙)∗𝜈)𝑙∈ℕ, there exists some 𝑝𝑙 ∈ ℕ

with

(g𝑝𝑙 )∗𝜈 ∈ 𝐵1(𝑍
′′)(𝜂, 𝑙

−1).

By Lemma 3.7, there is some 𝛿 > 0 with

𝜈 ∈ 𝐵1(𝑍
′)(𝜈, 𝛿) ⊂ (g𝑝𝑙 )

−1
∗

(
𝐵1(𝑍

′′)(𝜂, 𝑙
−1)
)
. (3.1)

By the convergence of ((𝑓𝑙)∗𝜇)𝑙∈ℕ, we see that there exists 𝑞𝑙 ∈ ℕ with

(𝑓𝑞𝑙 )∗𝜇 ∈ 𝐵1(𝑍
′)(𝜈, 𝛿). (3.2)

Combining Equations (3.1) and (3.2), we see that

(g𝑝𝑙 )∗◦(𝑓𝑞𝑙 )∗𝜇 ∈ 𝐵1(𝑍
′′)(𝜂, 𝑙

−1).

Varying 𝑙 ∈ ℕ gives us our sequence. □
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GRIDS AND DIVERGENCE 21 of 50

The following lemma is used to justify a step in a particular argument. The reader should skip
it and return to it when referred to.

Lemma 3.9. Say 𝑍 and 𝑍′ are locally compact second countable metric spaces with distance func-
tions dist𝑍 and dist𝑍′ , respectively. Let 𝜇 ∈ (𝑍). Suppose we have sequences of continuous maps
(𝑓𝑙)𝑙∈ℕ, (g𝑙)𝑙∈ℕ from 𝑍 → 𝑍′ with the property:

lim
𝑙→∞

sup
𝑧∈𝑍

dist𝑍′ (𝑓𝑙(𝑧), g𝑙(𝑧)) = 0.

If there exists a weak* limit

lim
𝑙→∞

(𝑓𝑙)∗𝜇 = 𝜈 in(𝑍′),

then we also have the same weak* limit

lim
𝑙→∞

(g𝑙)∗𝜇 = 𝜈.

Proof. We can assume 𝜇 ≠ 0. Let 𝜙 ∈ 𝐶0(𝑍
′, ℂ) and let 𝜀 > 0. Since 𝜙 is uniformly continuous,

there is a 𝛿 > 0 such that(
dist𝑍′ (𝑧

′
1, 𝑧

′
2) < 𝛿

)
⇒
(||𝜙(𝑧′1) − 𝜙(𝑧′2)

|| < 𝜀

2
(‖𝜇‖)−1).

Choose 𝑙1 ∈ ℕ large enough so that, for all 𝑙 > 𝑙1,

sup
𝑧∈𝑍′

𝑑𝑍′(𝑓𝑙(𝑧), g𝑙(𝑧)) < 𝛿.

Choose 𝑙2 ∈ ℕ large enough so that, for all 𝑙 > 𝑙2,

||||∫𝑍′ 𝜙𝑑(𝑓𝑙)∗𝜇 − ∫𝑍′ 𝜙𝑑𝜈
|||| < 𝜀

2
.

For 𝑛 > max{𝑙1, 𝑙2}, we compute

||||∫𝑍′ 𝜙𝑑(g𝑙)∗𝜇 − ∫𝑍′ 𝜙𝑑𝜈
|||| = ||||∫𝑍 𝜙◦g𝑙𝑑𝜇 − ∫𝑍′ 𝜙𝑑𝜈

||||
=
||||∫𝑍 (𝜙◦g𝑙 − 𝜙◦𝑓𝑙))𝑑𝜇 + ∫𝑍′ 𝜙𝑑(𝑓𝑙)∗𝜇 − ∫𝑍′ 𝜙𝑑𝜈

||||
⩽
𝜀

2
+
𝜀

2
. □

3.2 Mixing convergence

A key concept that plays a role in the proof of Theorem 2.11 is the notion of mixing convergence of
measures, which was introduced in [26, Definition 4.1]. We review this concept for completeness.
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22 of 50 MOSHCHEVITIN et al.

Definition 3.10 (Mixing convergence). Let 𝑍 and 𝑍′ be locally compact second countable Haus-
dorff spaces. Let 𝜇 ∈ (𝑍) and let 𝜈 ∈ (𝑍′). Let (𝑓𝑙)𝑙∈ℕ be a sequence of measurable maps from
𝑍 → 𝑍′. We say (𝑓𝑙)𝑙∈ℕmixes 𝜇 to 𝜈 if, for every absolutely continuous probability measure 𝜂 ≪ 𝜇

in (𝑍), we have
lim
𝑙→∞

(𝑓𝑙)∗𝜂 = 𝜈. (3.3)

Note that by taking 𝜂 = 𝜇, we see that mixing convergence is stronger thanweak* convergence.
We will use the following reformulation of mixing convergence.

Proposition 3.11. In the notation of Definition 3.10, (𝑓𝑙)∗ mixes 𝜇 to 𝜈 if and only if

lim
𝑙→∞∫𝑍 𝜙(𝑓𝑙(𝑧))𝜓(𝑧)𝑑𝜇(𝑧) =

(
∫𝑍 𝜓𝑑𝜇

)(
∫𝑍′ 𝜙𝑑𝜈

)
(3.4)

for all 𝜙 ∈ 𝐶0(𝑍
′, ℂ), 𝜓 ∈ 𝐿1(𝑍, 𝜇).

Further, the condition of (3.4) holds if it does on subsets of 𝐿1(𝑍, 𝜇) and 𝐶(𝑍′, ℂ) spanning
dense subspaces.

Proof. Consider the bilinear map ⟨⋅, ⋅⟩𝑙 ∶ 𝐶0(𝑍′, ℂ) × 𝐿1(𝑍, 𝜇) → ℂ given by

⟨𝜙, 𝜓⟩𝑙 = ∫𝑍 𝜙(𝑓𝑙(𝑧))𝜓(𝑧)𝑑𝜇(𝑧).

By the Radon–Nikodym theorem, the condition 𝜂 ≪ 𝜇, 𝜂 ∈ (𝑍), in Definition 3.10 is equivalent
to the fact that there exists a density 𝜓 ∈ 𝐿1(𝑍, 𝜇) such that 𝜂 = 𝜓𝑑𝜇 and 𝜓 ⩾ 0, ∫𝑍 𝜓𝑑𝜇 = 1. Inter-
preting the definition of weak* convergence, we see that Definition 3.10 is equivalent to requiring
that Equation (3.4) holds for any 𝜙 ∈ 𝐶0(𝑍

′, ℂ) and any 𝜓 ∈ 𝐿1(𝑍, 𝜇) with 𝜓 ⩾ 0 and ∫𝑍 𝜓𝑑𝜇 = 1.
Since both sides of (3.4) are linear in 𝜓 and 𝐿1(𝑍, 𝜇) is spanned by positive functions of integral 1,
this equation must hold for all 𝜓 ∈ 𝐿1(𝑍, 𝜇) as claimed in the proposition.
For the last sentence in the proposition, we note the inequality

|⟨𝜙, 𝜓⟩𝑙| ⩽ ‖𝜙‖∞ ⋅ ‖𝜓‖𝐿1(𝑍,𝜇). (3.5)

If we know (3.4) for collections𝐷1 ⊂ 𝐶0(𝑍
′, ℂ), 𝐷2 ⊂ 𝐿1(𝑍, 𝜇), then the bilinearity of ⟨⋅, ⋅⟩𝑙 and the

inequality (3.5) allows to propagate (3.4) to the closures of the spans of𝐷1, 𝐷2 in the corresponding
Banach space. □

The following proposition is the source of the almost any part in our main Theorem 2.11 and its
derivatives.

Proposition 3.12. Let 𝑍 and 𝑍′ be locally compact second countable Hausdorff spaces. Let 𝜇 ∈

(𝑍) and let 𝜈 ∈ (𝑍′). Let (𝑓𝑙)𝑙∈ℕ be a sequence of continuous maps from 𝑍 → 𝑍′, which mixes
𝜇 to 𝜈. Then, for 𝜇 almost every 𝑧 ∈ 𝑍, we have

{𝑓𝑙(𝑧) ∶ 𝑙 ∈ ℕ} ⊃ supp 𝜈.
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GRIDS AND DIVERGENCE 23 of 50

Proof. As supp 𝜈 ⊂ 𝑍′, it has a countable dense set 𝐷. It is enough to show that for any 𝑧′ ∈ 𝐷,
𝜇-almost any 𝑧 satisfies that {𝑓𝑙(𝑧)} visits any open neighborhood of 𝑧. Since there is a countable
base for the topology of 𝑍′, it is enough to fix a neighborhood 𝑈 of 𝑧′ and show that 𝜇-almost
any 𝑧 satisfies that for some 𝑙, 𝑓𝑙(𝑧) ∈ 𝑈. By way of contradiction, there exists 𝑧′ ∈ 𝐷 and an open
neighborhood 𝑈 of 𝑧′ such that the set

𝑆 = {𝑧 ∈ 𝑍 ∶ ∀𝑙, 𝑓𝑙(𝑧) ∉ 𝑈}

has positive 𝜇-measure.
Consider the nonzero indicator function 𝟙𝑆 ∈ 𝐿1(𝜇) and the probability measure 𝜂 ∶=

𝜇(𝑆)−1𝟙𝑆𝑑𝜇, which is absolutely continuous with respect to 𝜇. By definition of mixing conver-
gence, we have (𝑓𝑙)∗𝜂 → 𝜈. In particular, if we choose a nonzero function 𝜙 ∈ 𝐶𝑐(𝑍

′, ℂ) with
compact support contained in 𝑈 and such that 𝜙 ⩾ 0 and 𝜙(𝑧′) > 0, then the above weak*
convergence implies

lim
𝑙→∞

𝜇(𝑆)−1 ∫𝑍 𝜙(𝑓𝑙(𝑧))𝟙𝑆(𝑧)𝑑𝜇(𝑧) = ∫𝑍′ 𝜙𝑑𝜈.

However, the left-hand side is zero for all 𝑙 by the definition of 𝑆,𝑈, and 𝜙, while the integral on
the right-hand side is positive since 𝑧′ ∈ supp 𝜈 and 𝜙 was chosen nonnegative and positive at 𝑧′.
We arrive at a contradiction and conclude the proof. □

4 PROOF OF THEOREM 1.6

In this section, we reproduce (as promised in the introduction) the proof of Theorem 1.6, which
appeared implicitly in [26]. The proof relies on the notion of mixing convergence of measures and
elementary theory of characters. Although Theorem 1.6 is not essential for the proof of our main
result Theorem 2.11, its proof is a simplified version of the one for Theorem 2.11 and prepares the
reader for the discussion in Section 6.

Definition 4.1 (Tori and characters). Let 𝑑 ∈ ℕ. If 𝑥 ⊂ ℝ𝑑 is a lattice, a character on ℝ𝑑∕𝑥 is a
continuous group homomorphism

𝜒 ∶ ℝ𝑑∕𝑥 → ℂ ⧵ {0}.

Linear combinations of characters are dense in 𝐶(ℝ𝑑∕𝑥, ℂ). See, for example, [21, 4.24]. If 𝜇 ∈

(ℝ𝑑∕𝑥), Lemma 3.2 and the linearity of integrals show that 𝜇 is uniquely determined in
(ℝ𝑑∕𝑥) by the values {

∫ℝ𝑑∕𝑥
𝜒𝑑𝜇 ∈ ℂ ∶ 𝜒 is a character

}
. (4.1)

When 𝜇 is the Haar probability on ℝ𝑑∕𝑥, the set of values in (4.1) is 1 if 𝜒 is the identity character
and 0 otherwise. On ℝ𝑑, we use the standard inner product (⋅|⋅) and, for the lattice 𝑥 ⊂ ℝ𝑑, we
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24 of 50 MOSHCHEVITIN et al.

define the dual lattice

𝑥∗ ∶=
{
𝑣 ∈ ℝ𝑑 ∶ for all 𝑎 ∈ 𝑥 we have (𝑣|𝑎) ∈ ℤ

}
.

The set of characters of ℝ𝑑∕𝑥 can then be identified with 𝑥∗ where, for 𝑣 ∈ 𝑥∗ and𝑤 ∈ ℝ𝑑∕𝑥, we
have

𝜒𝑣(𝑤 + 𝑥) ∶= exp (2𝑖𝜋(𝑣|𝑤)).
The lattice ℤ𝑑 is self-dual.

Recall the notation ℎ𝑡 in (1.6) and Definition 1.11. The following proposition shows how nondi-
vergence relates tomixing convergence. Its corollary together with the the Inheritance Lemma 2.6
relate the discussion to the notion of almost sure 𝐷𝑉𝐹 (see Definition 2.5).

Proposition 4.2. Let 𝑥0, 𝑥1 ∈ 𝑋 be two lattices with 𝑥1 ∈ 𝜕(𝑥0). Accordingly, let (𝑡𝑙)𝑙∈ℕ be a diver-
gent sequence of positive reals and let (𝜀𝑙)𝑙∈ℕ ⊂ 𝐺 be a sequence converging to the identity such that

𝜀𝑙ℎ𝑡𝑙𝑥0 = 𝑥1 for all 𝑙 ∈ ℕ. (4.2)

Then, 𝜀𝑙ℎ𝑡𝑙 mixes the Haar measure 𝜆ℝ𝑑∕𝑥0
to the Haar measure 𝜆ℝ𝑑∕𝑥1

.

Proof. Note, the condition (4.2) ensures that the sequence of matrices (𝜀𝑙ℎ𝑡𝑙 )𝑙∈ℕ induces group
morphisms

ℝ𝑑∕𝑥0 → ℝ𝑑∕𝑥1.

We use the same notation for these induced maps. We let 𝜇 be the Haar probability on ℝ𝑑∕𝑥0, 𝜈
be the Haar probability on ℝ𝑑∕𝑥1, and claim that the sequence (𝜀𝑙ℎ𝑡𝑙 )𝑙∈ℕ mixes 𝜇 to 𝜈. In order
to show this, we must check, in light of Proposition 3.11 and the comments in Definition 4.1,
that for every 𝑏 ∈ 𝑥∗

1
and 𝑎 ∈ 𝑥∗

0
and corresponding characters 𝜒𝑎 and 𝜒𝑏 on ℝ𝑑∕𝑥0 and ℝ𝑑∕𝑥1,

respectively, we have

lim
𝑙→∞∫ℝ𝑑∕𝑥0

𝜒𝑏(𝜀𝑙ℎ𝑡𝑙 (𝑧))𝜒𝑎(𝑧)𝑑𝜇(𝑧)
?
=

(
∫ℝ𝑑∕𝑥0

𝜒𝑎𝑑𝜇

)(
∫ℝ𝑑∕𝑥1

𝜒𝑏𝑑𝜈

)
. (4.3)

For the right side, we have(
∫ℝ𝑑∕𝑥0

𝜒𝑎𝑑𝜇

)(
∫ℝ𝑑∕𝑥1

𝜒𝑏𝑑𝜈

)
=

{
1 if 𝑎 = 0 and 𝑏 = 0

0 if 𝑎 ≠ 0 or 𝑏 ≠ 0
. (4.4)

For the left side, we rewrite it as

lim
𝑙→∞∫ℝ𝑑∕𝑥0

exp(2𝑖𝜋((𝜀𝑙ℎ𝑡𝑙 )
𝑇𝑏 + 𝑎)|𝑧)𝑑𝜇(𝑧), (4.5)
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GRIDS AND DIVERGENCE 25 of 50

where we have taken the transpose of the matrix (𝜀𝑙ℎ𝑡𝑙 ). When 𝑏 = 0, Equations (4.4) and (4.5)
clearly coincide. We now check equality when 𝑏 ≠ 0.
Fix 0 ≠ 𝑏 ∈ 𝑥∗

1
and 𝑎 ∈ 𝑥∗

0
. The right-hand side of (4.3) equals 0. The sequence on left-hand

side of this equation, ∫
ℝ𝑑∕𝑥0

𝜒(𝜀𝑙ℎ𝑡𝑙 )
𝑇𝑏+𝑎(𝑧)𝑑𝜇(𝑧), is a sequence of integrals of characters onℝ𝑑∕𝑥0.

As such, it is a sequence of 1’s and 0’s according to whether the character is trivial or not. We
will therefore finish once we establish that the vectors (𝜀𝑙ℎ𝑡𝑙 )

𝑇𝑏 + 𝑎 ∈ 𝑥∗
0
are nonzero for all large

enough 𝑙. We have

(𝜀𝑙ℎ𝑡𝑙 )
𝑇𝑏 + 𝑎 = 0 ⟺ −ℎ−1𝑡𝑙

𝑎 = 𝜀𝑇
𝑙
𝑏.

Write 𝑎 = ( 𝑣𝑤 )with 𝑣 ∈ ℝ𝑚,𝑤 ∈ ℝ𝑛. By (1.6), we see that ℎ−1𝑡𝑙 𝑎 =
(
𝑒−𝑛𝑡𝑙 𝑣
𝑒𝑚𝑡𝑙 𝑤

)
and since 𝑡𝑙 → ∞, this

sequence of vectors either diverges or converges to zero. In any case, it is impossible that it will
coincide with the sequence 𝜀𝑇

𝑙
𝑏 → 𝑏 ≠ 0 for infinitely many 𝑙’s (where here we have used that 𝜀𝑙

converges to the identity and the assumption that 𝑏 ≠ 0). □

Applying Proposition 3.12, we obtain the following corollary.

Corollary 4.3. Let 𝑥0 ∈ 𝑋 be a lattice in ℝ𝑑 and assume {ℎ𝑡𝑥0 ∶ 𝑡 ⩾ 0} is nondivergent. Then, 𝑥0 is
𝜆ℝ𝑑∕𝑥0

-almost surely 𝐷𝑉𝐹 .

Proof. By the nondivergence assumption, we deduce the existence of a lattice 𝑥1 ∈ 𝜕(𝑥0). As a
consequence, we get the existence of a divergent sequence of reals 𝑡𝑙 and a sequence 𝜀𝑙 → 𝑒 in
𝐺 satisfying 𝜀𝑙ℎ𝑡𝑙𝑥0 = 𝑥1. By Proposition 4.2, we conclude that 𝜀𝑙ℎ𝑡𝑙 mixes 𝜆ℝ𝑑∕𝑥0

to 𝜆ℝ𝑑∕𝑥1
. An

application of Proposition 3.12 shows that, for 𝜆ℝ𝑑∕𝑥0
-almost every grid 𝑦 ∈ 𝜋−1(𝑥0) = ℝ𝑑∕𝑥0,

we have
{
𝜀𝑙ℎ𝑡𝑙 𝑦 ∶ 𝑙 ∈ ℕ

}
⊃ 𝜋−1(𝑥1). Since 𝜀𝑙 → 𝑒, we deduce that

{
ℎ𝑡𝑙𝑦 ∶ 𝑙 ∈ ℕ

}
⊃ 𝜋−1(𝑥1). An

application of the Inheritance Lemma 2.6 shows that for 𝜆ℝ𝑑∕𝑥0
-almost any grid 𝑦,

𝑉𝐹(𝑦) ⊃
⋃
𝑣∈ℝ𝑑

𝑉𝐹(𝑥1 + 𝑣) = 𝐹(ℝ𝑑) = [0,∞).

This means exactly that 𝑥0 is 𝜆ℝ𝑑∕𝑥0
-almost surely grid DV. □

We end this section with the following:

Proof of Theorem 1.6. Let 𝐴 be as in the statement and let 𝑥𝐴 be as in (1.5). By Theorem 1.10, the
nonsingularity of𝐴 is equivalent to the fact that 𝜕(𝑥𝐴) ≠ ∅ and so Corollary 4.3 applies and gives
us that 𝑥𝐴 is 𝜆ℝ𝑑∕𝑥𝐴

-almost surely 𝐷𝑉𝐹 . This can be rephrased as saying that for Lebesgue almost
any

(
𝜂
𝑤

)
∈ ℝ𝑑 the grid 𝑥𝐴 −

(
𝜂
𝑤

)
is 𝐷𝑉𝐹 . For each such

(
𝜂
𝑤

)
, we therefore have

𝐹

(
𝑥𝐴 −

(
𝜂

𝑤

))
= 𝐹(

{(
𝑝 + 𝐴𝑞 − 𝜂

𝑞 − 𝑤

)
∶ 𝑝 ∈ ℤ𝑚, 𝑞 ∈ ℤ𝑛

}
= {‖𝑞 − 𝑤‖𝑛‖𝑝 + 𝐴𝑞 − 𝜂‖𝑚 ∶ 𝑝 ∈ ℤ𝑚, 𝑞 ∈ ℤ𝑛}
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26 of 50 MOSHCHEVITIN et al.

contains arbitrarily small positive values. Because using finitely many 𝑞’s cannot produce
infinitely many arbitrarily small positive values, we deduce the existence of a sequence 𝑞𝑖 ∈

ℤ𝑛 with ‖𝑞𝑖‖→∞ and 𝑝𝑖 ∈ ℤ𝑚 such that ‖𝑞𝑖 − 𝑤‖𝑛‖𝑝𝑖 + 𝐴𝑞𝑖 − 𝜂‖𝑚 is a sequence of positive
numbers approaching zero. In particular,

lim inf
𝑞∈ℤ𝑛‖𝑞‖→∞

‖𝑞‖𝑛∕𝑚⟨𝐴𝑞 − 𝜂⟩ = 0

and so 𝜂 ∉ Bad𝐴. This shows 𝜆𝕋𝑚(Bad𝐴) = 0 as desired. □

5 CONVERGENCE OF PROBABILITIES ON TORI AND THE COSET
LEMMA

In the previous section, we proved Corollary 4.3, which is reminiscent of Theorem 2.11. In it one
assumes 𝑥0 is not divergent and deduces that 𝑥0 is almost surely grid 𝐷𝑉𝐹 with respect to the
algebraic probability measure 𝜆ℝ𝑑∕𝑥0

. A key input in the proof was that pushforwards of 𝜆ℝ𝑑∕𝑥0
converge mixingly (Proposition 4.2). Since Theorem 2.11 deals with any nontrivial algebraic prob-
ability measure onℝ𝑑∕𝑥0, we will need to further analyze how such probabilities converge under
pushforwards.

Theorem 5.1. Let 𝑥 ∈ 𝑋 be a lattice and ℝ𝑑∕𝑥 be the corresponding torus. Let 𝜇𝑙 be a sequence of
Haar probability measures on it corresponding to the 𝑥-rational subspaces𝑉𝑙 . Assume, 𝜇𝑙 → 𝜈 in the
weak* topology. Then:

(1) the subspace 𝑉∞ ∶=
⋂

𝑗 span
(⋃

𝑙>𝑗 𝑉𝑙

)
is 𝑥-rational;

(2) 𝑉∞ is the smallest subspace containing all but finitely many of the 𝑉𝑙 ’s;
(3) 𝜈 is the Haar probability measure corresponding to the 𝑥-rational subspace 𝑉∞;
(4) dim𝜈 ⩾ lim sup𝑙 dim𝜇𝑙;
(5) dim𝜈 = lim sup𝑙 dim𝜇𝑙 if and only if there are infinitely many 𝑙’s with 𝑉𝑙 = 𝑉∞.

Proof. (1) Each space𝑈𝑗 ∶= span
(⋃

𝑙>𝑗 𝑉𝑙

)
is 𝑥-rational as it is spanned by 𝑥-rational spaces. In

turn, 𝑉∞ is 𝑥-rational as the intersection of such spaces.
(2)We have that𝑈𝑗 is a descending sequence of subspaces and hence it stabilizes. Let 𝑗0 be such

that 𝑈𝑗0
= 𝑉∞. It follows from the definition of 𝑈𝑗0

that 𝑉∞ contains all but finitely many of the
𝑉𝑗 ’s. Moreover, if 𝑉 is a subspace containing all but finitely many of the 𝑉𝑗 ’s, then by definition
𝑈𝑗 < 𝑉 for some 𝑗 and so 𝑉∞ < 𝑉.
(3) Because the characters {𝜒𝑎 ∶ 𝑎 ∈ 𝑥∗} span a dense subspace of 𝐶0(ℝ𝑑∕𝑥, ℂ), Lemma 3.2

implies that any probability measure 𝜇 on ℝ𝑑∕𝑥 is characterized by its Fourier coefficients{
�̂�(𝑎) ∶= ∫ 𝜒𝑎𝑑𝜇 ∶ 𝑎 ∈ 𝑥∗

}
.

Since characters on compact abelian groups integrate to 0 or 1 with respect to the Haar measure
according to the triviality of the character, the subset of (ℝ𝑑∕𝑥) consisting of Haar measures on
subtori is characterized as follows:𝜇 is theHaarmeasure corresponding to the 𝑥-rational subspace
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GRIDS AND DIVERGENCE 27 of 50

𝑉 < ℝ𝑑 if and only if

for any 𝑎 ∈ 𝑥∗, �̂�(𝑎) ∈ {0, 1},

and �̂�(𝑎) = 1⟺ 𝑎 ∈ 𝑉⟂ ∩ 𝑥∗.
(5.1)

From the definition of 𝑉∞ and elementary properties of ⟂, we have

𝑉⟂
∞ =

⋃
𝑗

⋂
𝑙>𝑗

𝑉⟂
𝑙
. (5.2)

We show that 𝜈 is the Haar measure corresponding to the 𝑥-rational subspace 𝑉∞ using the char-
acterization (5.1) of Haar measures. Since characters are continuous and 𝜈 is a weak* limit of
Haar measures, we have that for any 𝑎 ∈ 𝑥∗, �̂�(𝑎) ∈ {0, 1}. For each 𝑎 ∈ 𝑥∗, we are left to check
that �̂�(𝑎) = 1 if and only if 𝑎 ∈ 𝑉⟂

∞.
We know by the weak* convergence assumption that �̂�𝑙(𝑎) converges and thus stabilizes. Thus,

�̂�(𝑎) = 1 if and only if for all large enough 𝑙, we have �̂�𝑙(𝑎) = 1. Because 𝜇𝑙 is the Haar measure
corresponding to𝑉𝑙, this is equivalent to saying that for all large enough 𝑙, 𝑎 ∈ 𝑉⟂

𝑙
, which by (5.2)

means that 𝑎 ∈ 𝑉⟂
∞.

(4) As noted before,𝑉∞ = span
(
∪𝑙>𝑗0𝑉𝑙

)
for some 𝑗0 and so the inequality dim𝜈 = dim𝑉∞ ⩾

lim sup𝑙 dim𝑉𝑙 = lim sup dim𝜇𝑙 is immediate.
(5) From the equality 𝑉∞ = span

(
∪𝑙>𝑗0𝑉𝑙

)
, it is clear that dim𝑉∞ = lim sup𝑙 dim𝑉𝑙 if and

only if 𝑉∞ = 𝑉𝑙 for infinitely many 𝑙’s. □

The following corollary deals with limits of algebraic probability measures on a torus.

Corollary 5.2. Let 𝑥 ∈ 𝑋 be a lattice and let 𝜇𝑙 ∈ (ℝ𝑑∕𝑥) be a sequence of algebraic measures
corresponding to the 𝑥 rational subspaces 𝑉𝑙 and translations 𝑤𝑙 . If 𝜇𝑙 converges to 𝜈, then 𝜈 is alge-
braic, dim𝜈 ⩾ lim sup𝑙 dim𝜇𝑙 , and if there is equality, for infinitely many 𝑙’s 𝑉𝑙 is a fixed subspace
of dimension dim𝜈.

Proof. It is enough to prove the statement for a subsequence. Denote by 𝜇0
𝑙
the Haar probability

measures corresponding to 𝑉𝑙 so that 𝜇𝑙 = (𝓁𝑤𝑙
)∗𝜇

0
𝑙
. Here, 𝓁⋅ denotes translation. By taking a

subsequence,wemay assume that the𝜇0
𝑙
→ 𝜈0 for some 𝜈0 ∈ (ℝ𝑑∕𝑥) and furthermore that𝑤𝑙 →

𝑤 in ℝ𝑑∕𝑥. By Theorem 5.1, 𝜈0 is a Haar probability measure. It follows from Lemma 3.9 that

𝜈 = lim
𝑙
𝜇𝑙 = lim

𝑙
(𝓁𝑤𝑙

)∗𝜇
0
𝑙
= (𝓁𝑤)∗𝜈

0,

which means that 𝜈 is algebraic. Moreover, Theorem 5.1 also gives

dim𝜈 = dim𝜈0 ⩾ lim sup
𝑙

dim𝑉𝑙

with equality possible only if infinitely many of the 𝑉𝑙’s are equal to the 𝑥-rational subspace
corresponding to 𝜈0. □

The next lemma captures the following example as a general phenomenon.
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28 of 50 MOSHCHEVITIN et al.

Example 5.3. Consider the sequence of maps (𝛾𝑙)𝑙∈ℕ ∶ 𝕋1 → 𝕋2 induced by the sequence of
matrix maps [

𝑙

1

]
∶ ℝ → ℝ2.

Let 𝑆 ⊂ 𝕋2 be the 1-dimensional closed connected subgroup corresponding toℝ𝐞1, the span of the
first basis vector in ℝ2. Then, for 𝑡 ∈ [0, 1], which is irrational, the closure of the set{[

𝑡𝑙

𝑡

]
+ ℤ2 ∈ 𝕋2 ∶ 𝑙 ∈ ℕ

}

contains a coset of 𝑆.

Lemma 5.4 (The Coset Lemma). Let 𝑞 ∈ ℕ and let (𝛾𝑙)𝑙∈ℕ be a sequence of continuous group mor-
phisms from 𝕋1 → 𝕋𝑞 . Let 𝜇 ∈ (𝕋1) and 𝜈 ∈ (𝕋𝑞) denote the full Haar probabilities. Assume we
have the weak* convergence

lim
𝑙→∞

(𝛾𝑙)∗𝜇 = 𝜈. (5.3)

Then, there is a codimension 1 closed connected subgroup 𝑆 ⊂ 𝕋𝑞 such that, for𝜇 almost every 𝑧 ∈ 𝕋1,

{𝛾𝑙(𝑧) ∈ 𝕋𝑞 ∶ 𝑙 ∈ ℕ} ⊃ 𝑆 + 𝑧′ for some 𝑧′ ∈ 𝕋𝑞 depending on 𝑧.

Proof. The lemma is trivially true if 𝑞 = 1 since we may take the identity subgroup. We assume
𝑞 > 1.Without loss of generality, assume that each 𝛾𝑙 ∈ Mat𝑞×1(ℤ) and acts in𝕋1 bymultiplication
on column vectors (a 1 × 1 column vector).Weuse 𝛾𝑇

𝑙
to denote the transposematrix inMat1×𝑞(ℤ).

If (𝛾𝑙)𝑙∈ℕ mixes 𝜇 to 𝜈, we are done by Proposition 3.12. In particular, we get something much
stronger than the desired conclusion. That is, for 𝜇 almost every 𝑧, the set {𝛾𝑙(𝑧) ∈ 𝕋𝑞 ∶ 𝑙 ∈ ℕ} is
dense. We proceed, assuming that (𝛾𝑙)𝑙∈ℕ fails to mix 𝜇 to 𝜈.
Note that it is enough to prove the statement for a subsequence of 𝛾𝑙. Moreover, if we replace 𝛾𝑙

by 𝛾𝛾𝑙 for a fixed 𝛾 ∈ SL𝑞(ℤ), then it is enough to prove the statement for the new sequence 𝛾𝛾𝑙.
Thus, along the proof, we will take subsequences and replace 𝛾𝑙 by appropriate linear images of
𝛾𝑙 and by abuse of notation, allow ourselves to continue and denote the new sequence by 𝛾𝑙.
By the bilinearity of formula (3.4), the failure of mixing means that there are integer vectors

𝑎 ∈ ℤ and 𝑏 ∈ ℤ𝑞 such that, if we denote by 𝜒𝑎 and 𝜒𝑏 the respective characters on 𝕋1 and 𝕋𝑞, we
have

lim
𝑙→∞∫𝕋1 𝜒𝑏(𝛾𝑙(𝑧))𝜒𝑎(𝑧)𝑑𝜇(𝑧) ≠

(
∫𝕋1 𝜒𝑎𝑑𝜇

)(
∫𝕋𝑞 𝜒𝑏𝑑𝜈

)
.

In other words, we have

lim
𝑙→∞∫𝕋1 exp(2𝑖𝜋(𝑎 + 𝛾𝑇

𝑙
(𝑏)|𝑧))𝑑𝜇(𝑧) ≠ (∫𝕋1 𝜒𝑎𝑑𝜇

)(
∫𝕋𝑞 𝜒𝑏𝑑𝜈

)
.
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GRIDS AND DIVERGENCE 29 of 50

Thus, 𝑏 is nonzero. As the right-hand side is 0 in this case, the left-hand side must equal 1 for
infinitely many 𝑙’s, so we may assume after passing to a subsequence that

𝛾𝑇
𝑙
(𝑏) = −𝑎 for all 𝑙 ∈ ℕ. (5.4)

Without loss of generality, we can assume 𝑏 is primitive. Let 𝛾 ∈ SL𝑞(ℤ) be such that

𝛾𝑇(𝐞𝑞) = 𝑏, (5.5)

where 𝐞𝑞 ∈ ℤ𝑞 is the 𝑞th vector in the standard basis. On replacing 𝛾𝑙 by 𝛾𝛾𝑙, we see that we may
assume without loss of generality 𝑏 = 𝐞𝑞. By (5.4), we deduce that

𝛾𝑙 =

[
𝛾′
𝑙

−𝑎

]
(5.6)

for all 𝑙, where 𝛾′
𝑙
∈ Mat(𝑞−1)×1.

Now we view 𝛾′
𝑙
∶ 𝕋1 → 𝕋𝑞−1 as a sequence of homomorphisms and let 𝜈′ denote the Haar

probability measure on 𝕋𝑞−1. Note that the weak* convergence (𝛾′
𝑙
)∗𝜇 → 𝜈′ follows from the

assumed convergence (𝛾𝑙)∗𝜇 → 𝜈 by composition with the projection 𝕋𝑞 → 𝕋𝑞−1 that forgets the
last coordinate. This relies on Lemma 3.7.

Claim 5.4.1. The sequence 𝛾′
𝑙
must mix 𝜇 to 𝜈′.

Proof. If not, by the same logic as above, there must be some 𝛾′ ∈ SL𝑞−1(ℤ) and 𝑎′ ∈ ℤ such that,
on replacing 𝛾′

𝑙
by 𝛾′𝛾′

𝑙
and on passing to a subsequence, we have

𝛾′
𝑙
=

[
𝛾′′
𝑙

−𝑎′

]
.

This means that after an appropriate replacement of 𝛾𝑙, we have

𝛾𝑙 =

⎡⎢⎢⎢⎣
𝛾′′
𝑙

−𝑎′

−𝑎

⎤⎥⎥⎥⎦. (5.7)

Let 𝛿 ∈ SL2(ℤ) be such that 𝛿
(
𝑎′
𝑎

)
= ( ∗0 ) and let 𝛾 ∈ SL𝑞(ℤ) be equal to the identity matrix with

the bottom right 2 × 2 block replaced by 𝛿. Then, by the choice of 𝛿 and (5.7), we have that the last
coordinate of 𝛾𝛾𝑙 is 0. Replacing 𝛾𝑙 by 𝛾𝛾𝑙, we see that the image of the homomorphism 𝛾𝑙 ∶ 𝕋1 →

𝕋𝑞 is contained in the subtorus defined by requiring the last coordinate to vanish. This contradicts
the weak* convergence (𝛾𝑙)∗𝜇 → 𝜈 and so finishes the proof of the claim. □

We apply Proposition 3.12 to the sequence of homomorphisms 𝛾′
𝑙
∶ 𝕋1 → 𝕋𝑞−1 and conclude

that for 𝜇-almost any 𝑦 ∈ 𝕋1, the sequence of images
{
𝛾′
𝑙
𝑦 ∈ 𝕋𝑞−1

}
is dense. For each such 𝑦, we
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30 of 50 MOSHCHEVITIN et al.

have by (5.6) that

{𝛾𝑙𝑦 ∶ 𝑙 ∈ ℕ} =

{(
𝛾′
𝑙
𝑦

−𝑎𝑦

)
∈ 𝕋𝑞 ∶ 𝑙 ∈ ℕ

}
and so {𝛾𝑙𝑦 ∶ 𝑙 ∈ ℕ} contains a coset (depending on 𝑦) of the subtorus obtained by requiring the
last coordinate to vanish. □

6 PROOF OF THEOREM 2.11

Here is a sketch of the proof of Theorem 2.11 that should motivate the technicalities to come. The
proof uses as an input an accumulation sequence (𝑥0, 𝑥1, … , 𝑥𝑑−1). We start with a 1-dimensional
algebraic measure 𝜇 on the torus ℝ𝑑∕𝑥0 and track what happens to the measure 𝜇 when we push
it using sequences ℎ𝑡𝑙 witnessing that 𝑥1 ∈ 𝜕(𝑥0), 𝑥2 ∈ 𝜕(𝑥1), and so forth. At each step, we may
assume the measures converge and we move from an algebraic measure on ℝ𝑑∕𝑥𝑖 to an algebraic
measure onℝ𝑑∕𝑥𝑖+1. The requirement regarding the length of the accumulation sequence is there
to ensure that at the last step we must see the Haar probability measure on ℝ𝑑∕𝑥𝑑−1. The proof
ends by invoking the Coset Lemma 5.4 and using the Inheritance Lemma 2.6 together with the
fact that the nondegeneracy degree of 𝐹 is 𝑑 − 1, which is Lemma 2.9.
In order for this strategy to work, we must know that the dimension of the algebraic measure

we obtain in the limit at each stage jumps by at least 1. This is the goal of the next section and the
reason for our assumption gcd(𝑚, 𝑛) = 1.

6.1 Jump in dimension

Consider the Euclidean space ℝ𝑑 with the standard inner product. Fix a dimension 1 ⩽ 𝑘 ⩽ 𝑑

and consider the 𝑘th exterior power ∧𝑘ℝ𝑑. On this vector space, we induce an inner product by
declaring the standard basis vectors 𝐞𝐼 orthogonal. Here, 𝐼 is a multi-index of length 𝑘, that is, a
sequence 1 ⩽ 𝑖1 < ⋯ < 𝑖𝑘 ⩽ 𝑑 and 𝐞𝐼 ∶= 𝐞𝑖1 ∧⋯ ∧ 𝐞𝑖𝑘 . We denote by 𝑘 the set of all multi-indices
of length 𝑘.
The following lemma is left as an exercise. It explains how the exterior power relates to our

discussion: We deal with algebraic measures supported on a subtorus of ℝ𝑑∕𝑥 where 𝑥 ∈ 𝑋 is a
lattice. Such a subtorus corresponds to an 𝑥-rational subspace𝑉 and to a vector in the appropriate
exterior power obtained by wedging a ℤ-basis of 𝑉 ∩ 𝑥.

Lemma 6.1. Let 𝐮 = 𝑢1 ∧⋯ ∧ 𝑢𝑘 ∈ ∧𝑘ℝ𝑑 . Then, ‖𝑢‖ is the 𝑘-dimensional volume of the paral-
lelepiped spanned by 𝑢1, … , 𝑢𝑘 in ℝ𝑑 . In particular, if 𝑉 < ℝ𝑑 is a 𝑘-dimensional subspace and
𝑣1, … , 𝑣𝑘, 𝑤1, … ,𝑤𝑘 are ℤ-bases of a lattice in 𝑉, then 𝑣1 ∧⋯ ∧ 𝑣𝑘 = ±𝑤1 ∧⋯ ∧ 𝑤𝑘 .

Each linear map g ∶ ℝ𝑑 → ℝ𝑑 induces uniquely a linear map

∧g ∶ ∧𝑘ℝ𝑑 → ∧𝑘ℝ𝑑

characterized by theway it acts on pure tensors: For all 𝑣1, … , 𝑣𝑘 ∈ ℝ𝑑,∧g(𝑣1 ∧⋯ ∧ 𝑣𝑘) = (g𝑣1) ∧

⋯ ∧ (g𝑣𝑘). We consider the semigroup of matrices (ℎ𝑡)𝑡∈ℝ⩾0
∈ 𝐺 as in (1.6) and consider their
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GRIDS AND DIVERGENCE 31 of 50

linear action on ℝ𝑑 by multiplication on column vectors. These induce the family of linear maps

(∧ℎ𝑡)𝑡∈ℝ⩾0
∶ ∧𝑘ℝ𝑑 → ∧𝑘ℝ𝑑,

which are simultaneously diagonalizable. A basis of orthogonal eigenvectors is given by the stan-
dard basis vectors {𝐞𝐼 ∶ 𝐼 ∈ 𝑘} as we will show below. We split the indices [𝑑] ∶= {1, … , 𝑑} into
𝐽+ ∶= {1, … ,𝑚} and 𝐽− ∶= [𝑑] ⧵ 𝐽+. With this notation it is easy to see that for any multi-index
𝐼 ∈ 𝑘,

(∧ℎ𝑡)𝐞𝐼 = exp
(
(|𝐼 ∩ 𝐽+|𝑛 − |𝐼 ∩ 𝐽−|𝑚)𝑡

)
⋅ 𝐞𝐼. (6.1)

We denote

𝛼𝐼(𝑡) ∶= exp
(
(|𝐼 ∩ 𝐽+|𝑛 − |𝐼 ∩ 𝐽−|𝑚)𝑡

)
(6.2)

and note that if the exponent (|𝐼 ∩ 𝐽+|𝑛 − |𝐼 ∩ 𝐽−|𝑚) is not zero, then 𝛼𝐼(𝑡) → ∞ or 𝛼𝐼(𝑡) → 0 as
𝑡 → ∞.

Lemma 6.2. Assume gcd(𝑛,𝑚) = 1. Then, for any 1 ⩽ 𝑘 < 𝑑, there is no 𝐼 ∈ 𝑘 such that 𝛼𝐼(𝑡) ≡ 1.
Moreover, for any 𝑢 ∈ ∧𝑘ℝ𝑑, we have that ‖(∧ℎ𝑡)𝑢‖ either diverges or converges to 0 as 𝑡 → ∞.

Proof. Fix 𝑘 as in the statement and let 𝐼 ∈ 𝑘. By Equation (6.2), if 𝛼𝐼(𝑡) ≡ 1, then there are
1 ⩽ 𝑎 ⩽ 𝑏 ⩽ 𝑘 such that 𝑎 + 𝑏 = 𝑘 and 𝑎𝑛 − 𝑚𝑏 = 0. By the gcd assumption, we deduce that𝑚|𝑎
and 𝑛|𝑏. But this gives that 𝑑 = 𝑚 + 𝑛 ⩽ 𝑎 + 𝑏 = 𝑘 < 𝑑, which is absurd.
Finally, if 𝑢 ∈ ∧𝑘ℝ𝑑, we may write 𝑢 =

∑
𝐼∈𝑘 𝑎𝐼𝐞𝐼 . By (6.1), we have

(∧ℎ𝑡)𝑢 =
∑
𝐼∈𝑘

𝑎𝐼(∧ℎ𝑡)𝐞𝐼 =
∑
𝐼∈𝑘

𝛼𝐼(𝑡)𝑎𝐼𝐞𝐼.

By the first part, for each 𝐼, lim𝑡→∞ 𝛼𝐼(𝑡) ∈ {0,∞}, and hence we deduce that ‖(∧ℎ𝑡)𝑢‖→∞

unless 𝑎𝐼 = 0 for every 𝐼 for which 𝛼𝐼(𝑡) → ∞, in which case, ‖(∧ℎ𝑡)𝑢‖→ 0. □

Corollary 6.3. Assume gcd(𝑚, 𝑛) = 1. Suppose 𝑥0, 𝑥1 ∈ 𝑋 are lattices such that 𝑥1 ∈ 𝜕(𝑥0). Let
𝑡𝑙 → ∞ and 𝐺 ∋ 𝜀𝑙 → 𝑒 be such that 𝜀𝑙ℎ𝑡𝑙𝑥0 = 𝑥1. Then, if 𝑈 < ℝ𝑑 is a 𝑘-dimensional 𝑥0-rational
subspace with 1 ⩽ 𝑘 < 𝑑, it is not possible that the sequence of subspaces 𝜀𝑙ℎ𝑡𝑙𝑈 stabilizes.

Proof. Suppose on the contrary that the 𝑥1-rational subspace 𝜀𝑙ℎ𝑡𝑙𝑈 is independent of 𝑙 and denote
it by 𝑉. Note that 𝜀𝑙ℎ𝑡𝑙 (𝑈 ∩ 𝑥0) = 𝑉 ∩ 𝑥1. Choose a basis 𝑢1, … , 𝑢𝑘 of 𝑈 ∩ 𝑥0 and denote 𝐮 ∶=

𝑢1 ∧⋯ ∧ 𝑢𝑘 ∈ ∧𝑘ℝ𝑑. We have that for any 𝑙,

(∧𝜀𝑙)(∧ℎ𝑡𝑙 )(𝐮) = ∧(𝜀𝑙ℎ𝑡𝑙 )(𝐮) = (𝜀𝑙ℎ𝑡𝑙𝑢1) ∧⋯ ∧ (𝜀𝑙ℎ𝑡𝑙𝑢𝑘).

The right-hand side is a pure tensor obtained by wedging a basis of the lattice 𝑥1 ∩ 𝑉 in 𝑉 and
hence, by Lemma 6.1 does not depend on 𝑙 (up to a sign maybe). In particular, the norm of this
vector is bounded above and below (away from 0). On the other hand, the left-hand side goes to
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32 of 50 MOSHCHEVITIN et al.

infinity or to zero by Lemma 6.2 because the operators ∧𝜀𝑙 converge to the identity map on ∧𝑘ℝ𝑑.
This gives the desired contradiction. □

Theorem 6.4 (Jump in dimension). Assume gcd(𝑚, 𝑛) = 1. Let 𝑥0, 𝑥1 ∈ 𝑋 with 𝑥1 ∈ 𝜕(𝑥0). Let
𝜇 be an algebraic measure on ℝ𝑑∕𝑥0 of dimension 1 ⩽ 𝑘 < 𝑑. Then, there is a divergent sequence
(𝑡𝑙)𝑙∈ℕ ⊂ ℝ⩾0 with

lim
𝑙→∞

(ℎ𝑡𝑙 )∗𝜇 = 𝜈 in the weak* topology of(𝑌),

where 𝜈 is an algebraic measure on ℝ𝑑∕𝑥1 and moreover,

dim𝜈 ⩾ 𝑘 + 1. (6.3)

Proof. Choose a divergent sequence (𝑡𝑙)𝑙∈ℕ ⊂ ℝ⩾0 witnessing 𝑥1 ∈ 𝜕(𝑥0). Let (𝜀𝑙)𝑙∈ℕ ⊂ 𝐺 be a
sequence converging to the identity with

𝜀𝑙ℎ𝑡𝑙𝑥0 = 𝑥1 for all 𝑙 ∈ ℕ.

Acting on 𝑌 rather than on 𝑋, the above equation says that 𝜀𝑙ℎ𝑡𝑙 maps 𝜋
−1(𝑥0) = ℝ𝑑∕𝑥0 to

𝜋−1(𝑥1) = ℝ𝑑∕𝑥1 and is in fact a group homomorphism between these two tori. By Lemma 3.3,
we can assume that we have a weak* limit

lim
𝑙→∞

(ℎ𝑡𝑙 )∗𝜇 = lim
𝑙→∞

(𝜀𝑙ℎ𝑡𝑙 )∗𝜇 = 𝜈 ∈ (𝜋−1(𝑥1)), (6.4)

where the equality on the left follows by applying Lemma 3.9 and noting that (𝜀𝑙)𝑙∈ℕ converges to
the identity in 𝐺. An application of Corollary 5.2 shows that 𝜈 must be algebraic.
It remains to establish (6.3). Assume that the algebraic measure 𝜇 on ℝ𝑑∕𝑥0 corresponds to

the 𝑥0-rational subspace 𝑈 ⊂ ℝ𝑑. Then, the measures (𝜀𝑙ℎ𝑡𝑙 )∗𝜇 ∈ (ℝ𝑑∕𝑥1) are algebraic mea-
sures that correspond to the 𝑥1-rational subspaces 𝑉𝑙 ∶= 𝜀𝑙ℎ𝑡𝑙𝑈 and are thus of a fixed dimension
𝑘. Applying Corollary 5.2, we deduce that dim𝜈 ⩾ 𝑘 and that if dim𝜈 = 𝑘, then along a subse-
quence, 𝜀𝑙ℎ𝑡𝑙𝑈 is a fixed 𝑥1-rational subspace. This contradicts Corollary 6.3 because we assume
gcd(𝑚, 𝑛) = 1 and 1 ⩽ 𝑘 < 𝑑. □

The following corollary bootstraps Theorem 6.4 for a long accumulation sequence. This is used
in order to reach the dimension of the nondegeneracy degree of 𝐹 as appears in Lemma 2.9.

Corollary 6.5. Assume gcd(𝑚, 𝑛) = 1. Let 𝑥0 ∈ 𝑋 be a lattice with an accumulation sequence
(𝑥0, … , 𝑥𝑟) ∈ 𝑋𝑟+1. Let 𝜇 be an algebraic measure on ℝ𝑑∕𝑥0 of dimension 1 ⩽ 𝑘 < 𝑑. Then, there
is a divergent sequence (𝑡𝑙)𝑙∈ℕ ⊂ ℝ⩾0 with

lim
𝑙→∞

(ℎ𝑡𝑙 )∗𝜇 = 𝜈 in the weak* topology of(𝑌),

where 𝜈 is an algebraic measure on ℝ𝑑∕𝑥𝑟 and moreover,

dim𝜈 ⩾ min {𝑘 + 𝑟, 𝑑}. (6.5)
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GRIDS AND DIVERGENCE 33 of 50

Proof. We prove this by induction on the length of the accumulation sequence 𝑟. When 𝑟 = 1,
this is Theorem 6.4. Assume the statement holds for accumulation sequences of length 𝑟 − 1 ⩾ 1

and let 𝑥0, … , 𝑥𝑟, 𝜇 be as in the statement. By the induction hypothesis, there exists a sequence
𝑡𝑙 → ∞ such that (ℎ𝑡𝑙 )∗𝜇 → 𝜂, where 𝜂 is an algebraic measure in (ℝ𝑑∕𝑥𝑟−1) of dimension ⩾

min {𝑘 + 𝑟 − 1, 𝑑}. Applying Theorem6.4 to𝑥𝑟−1, 𝑥𝑟 wededuce the existence of a sequence 𝑠𝑙 → ∞

such that (ℎ𝑠𝑙 )∗𝜂 → 𝜈 where 𝜈 ∈ (ℝ𝑑∕𝑥𝑟) is an algebraic measure with dim𝜈 ⩾ min {𝑘 + 𝑟, 𝑑}.
An application of Lemma 3.8 gives the existence of sequences 𝑝𝑙, 𝑞𝑙 of natural numbers such that

ℎ𝑠𝑝𝑙+𝑡𝑞𝑙
= (ℎ𝑠𝑝𝑙

)∗(ℎ𝑡𝑞𝑙
) ∗ 𝜇 → 𝜈,

which finishes the proof. □

We now come to the following proof:

Proof of Theorem 2.11. Let 𝑥 ∈ 𝑋 be as in the statement and

(𝑥 = 𝑥0, 𝑥1, … , 𝑥𝑑−1) ∈ 𝑋𝑑

be an accumulation sequence of length 𝑑 for 𝑥. Let 𝜇 on𝜋−1(𝑥) be an algebraicmeasure. Similarly
to the argument showing the equivalence between the formulations of Theorems 1.14 and 1.16,
we may assume that 𝜇 is 1-dimensional. Applying Corollary 6.5, we see that there is a sequence
of times (𝑡𝑙)𝑙∈ℕ ⊂ ℝ⩾0 and an algebraic measure 𝜈 on 𝜋−1(𝑥𝑑−1) such that lim𝑙→∞(ℎ𝑡𝑙 )∗𝜇 = 𝜈.
Moreover, because of the inequality (6.5), we must have dim𝜈 = 𝑑 so that in fact, 𝜈 is the Haar
probability measure on ℝ𝑑∕𝑥𝑑−1. Let (𝜀𝑙)𝑙∈ℕ ⊂ 𝐺 be a sequence converging to the identity with

𝜀𝑙ℎ𝑡𝑙𝑥 = 𝑥𝑑−1 for all 𝑙 ∈ ℕ.

Acting on𝑌 rather on𝑋, the above equationmeans that actingwith 𝜀𝑙ℎ𝑡𝑙 maps the fiber𝜋
−1(𝑥0) =

ℝ𝑑∕𝑥0 to𝜋−1(𝑥𝑑−1) = ℝ𝑑∕𝑥𝑑−1. Applying theCoset Lemma 5.4, we see that for𝜇 almost every 𝑦 ∈

𝑌, the closure
{
𝜀𝑙ℎ𝑡𝑙 𝑦 ∈ 𝑌 ∶ 𝑙 ∈ ℕ

}
contains a coset of a subtorus ofℝ𝑑∕𝑥𝑑−1 of dimension 𝑑 − 1.

Since (𝜀𝑙)𝑙∈ℕ converges to the identity, the same is true for the set
{
ℎ𝑡𝑙𝑦 ∈ 𝑌 ∶ 𝑙 ∈ ℕ

}
where 𝑦 lies

in a set of full𝜇measure. Proposition 2.7 implies that each such grid 𝑦 is𝐷𝑉𝐹 andwe are done. □

7 DUAL APPROXIMATION, TRANSFERENCE THEOREMS, AND A
COUNTEREXAMPLE

In order to prove Theorem 1.7, we switch to the dual setting of approximation of linear
forms to make use of some powerful transference theorems due to Jarnik and Khintchine (see
Theorem 7.5). We need some notation.

Definition 7.1 (Irrationality measure function). Let 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑚) ∈ ℝ𝑚. We define Ψ ∶

[1,∞) → [0,∞) by

Ψ(𝑡) = min {⟨𝑎1𝜃1 +⋯ + 𝑎𝑚𝜃𝑚⟩ ∶ 𝑎𝑖 ∈ ℤ and 0 < |𝑎𝑖| ⩽ 𝑡 for 𝑖 = 1, …𝑚}.
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34 of 50 MOSHCHEVITIN et al.

F IGURE 1 Here is a graph of Ψ to remember the notation.

This function is piecewise constant and nonincreasing. Its points of discontinuity occur at integer
values. We denote these integers by the increasing sequence (𝑀𝑙)𝑙∈ℕ ⊂ ℕ and write the images as
(see Figure 1)

𝜁𝑙 ∶= Ψ(𝑀𝑙) for all 𝑙 ∈ ℕ.

We have the following basic estimate.

Lemma 7.2. For every 𝜃 ∈ ℝ𝑚 and associated irrationality measure function Ψ, we have

Ψ(𝑡) ⩽ 𝑡−𝑚.

Proof. This follows from Minkowski’s convex body theorem [25, II, Theorem 2B]. □

A key fact we use is the following.

Proposition 7.3. Let 𝑚 be an integer with 𝑚 > 2. There exists 𝜃 ∈ ℝ2 with irrationality measure
function Ψ satisfying, for some positive constants 𝐶1 and 𝐶2, the inequalities

Ψ(𝑡)𝑡𝑚 ⩽ 𝐶1 for all 𝑡 ⩾ 1,

and

𝐶2 ⩽ Ψ(𝑡)𝑡𝑚 for an unbounded set of 𝑡 ⩾ 1.

Remark 7.4. Since the proof of this uses the parametric geometry of numbers as in the paper [20]
and requires additional notation, its proof is deferred to the Appendix.

The conditions above are related to the Diophantine properties of the (column) vector 𝜃 ∈ ℝ2

by the following transference theorem.

Theorem 7.5 [11, Theorem 7]. Suppose 𝜃 ∈ ℝ2 with associated irrationality measure function Ψ.
Suppose further, we have an integer𝑚 > 2 and a constant 𝐶1 > 0 with

Ψ(𝑡)𝑡𝑚 ⩽ 𝐶1 for all 𝑡 ⩾ 1.
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GRIDS AND DIVERGENCE 35 of 50

Then, there exists 𝜂 = (𝜂1, 𝜂2) ∈ ℝ2 with

inf
𝑞∈ℤ⧵{0}

|𝑞|1∕𝑚⟨𝑞𝜃 − 𝜂⟩ > 0.

Next, we see that the second property in 7.3 is useful in extending the components of the
(column) vector 𝜃 ∈ ℝ2 to obtain a nonsingular one in higher dimensions.

Theorem 7.6. Assume 𝜃 = (𝜃1, 𝜃2) ∈ ℝ2 with irrationality measure function Ψ. Suppose 𝑚 is an
integer with𝑚 > 2, and we have a constant 𝐶2 > 0 with

𝐶2 ⩽ Ψ(𝑡)𝑡𝑚 for an unbounded set of 𝑡 ⩾ 1. (7.1)

Then, for Lebesgue almost every (𝜃3, … , 𝜃𝑚) ∈ ℝ𝑚−2, the vector (𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑚) ∈ ℝ𝑚 is nonsin-
gular.

Proof. First, recall the sequence of integers (𝑀𝑙)𝑙∈ℕ associated to the irrationality measure func-
tion Ψ. The condition (7.1) means there is an infinite subset 𝐼 ⊂ ℕ such that, for each 𝑙 ∈ 𝐼, we
have

𝐶2 ⩽ Ψ(𝑀𝑙)𝑀
𝑚
𝑙+1

. (7.2)

Next, we need some auxiliary claims:

Claim 7.6.1. Let 0 < 𝛿 < 1∕2. Given a nonzero integer vector (𝑎3, … , 𝑎𝑚) ∈ ℤ𝑚−2 and𝑀 ∈ ℕ, let
𝑆(𝑀, 𝛿, 𝑎3, … , 𝑎𝑚) denote the set of integer vectors (𝑎0, 𝑎1, 𝑎2) ∈ ℤ3 for which

max
𝑖=1,2

|𝑎𝑖| < 𝑀

and for which there exists (𝜃3, … , 𝜃𝑚) ∈ [0, 1]𝑚−2 with

|𝑎0 + 𝑎1𝜃1 + 𝑎2𝜃2 + 𝑎3𝜃3 +⋯ + 𝑎𝑚𝜃𝑚| ⩽ 𝛿.

Then,

#𝑆(𝑀, 𝛿, 𝑎3, … , 𝑎𝑚) ⩽ 18𝑀2(|𝑎3| + … |𝑎𝑚| + 1).

Proof of Claim 7.6.1. Say (𝑎0, 𝑎1, 𝑎2) ∈ 𝑆(𝑀, 𝛿, 𝑎3, … , 𝑎𝑚). We see that 𝑎0 must certainly satisfy

−(𝑎1𝜃1 + 𝑎2𝜃2) − (|𝑎3| +⋯ + |𝑎𝑚|) − 𝛿 ⩽ 𝑎0 ⩽ −(𝑎1𝜃1 + 𝑎2𝜃2) + (|𝑎3| +⋯ + |𝑎𝑚|) + 𝛿.

Whence, for fixed (𝑎1, 𝑎2), there are at most

2(|𝑎3| + … |𝑎𝑚| + 1)

options for 𝑎0. Moreover, there are 2𝑀 + 1 ⩽ 3𝑀 options for each of 𝑎1 and 𝑎2. This gives us the
required bound. □
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36 of 50 MOSHCHEVITIN et al.

For an integer vector (𝑎0, 𝑎1, … , 𝑎𝑚) ∈ ℤ𝑚+1 with (𝑎3, … , 𝑎𝑚) nonzero,𝑀 ∈ ℕ and 0 < 𝜀 < 1∕2,
we define the open subset 𝐵𝑀,𝜀(𝑎0, … , 𝑎𝑚) ⊂ [0, 1]𝑚−2 as:{

(𝜃3, … , 𝜃𝑚) ∈ [0, 1]𝑚−2 ∶ |𝑎0 + 𝑎1𝜃1 + 𝑎2𝜃2 + 𝑎3𝜃3 +⋯ + 𝑎𝑚𝜃𝑚| < 𝜀

𝑀𝑚

}
.

Further, we define 𝐵𝑀,𝜀 as the union

⋃{
𝐵𝑀,𝜀(𝑎0, … , 𝑎𝑚) ∶ (𝑎0, … , 𝑎𝑚) ∈ ℤ𝑚+1, (𝑎3, … , 𝑎𝑚) ≠ 0, max

𝑖=1,…,𝑚
|𝑎𝑖| < 𝑀

}
.

We use 𝜆 to denote the Lebesgue measure on ℝ𝑚−2. Viewing the inequality occurring in the def-
inition of 𝐵𝑀,𝜀(𝑎0, … , 𝑎𝑚) in terms of an inner product with a unit vector multiple of (𝑎3, … , 𝑎𝑚),
we see that

𝜆(𝐵𝑀,𝜀(𝑎0, … , 𝑎𝑚)) ⩽ (𝑚 − 2)(𝑚−3)∕2 2𝜀

𝑀𝑚
√
𝑎2
3
+⋯ + 𝑎2𝑚

. (7.3)

Claim 7.6.2. For any𝑀 ∈ ℕ and 𝜀 with 0 < 𝜀 < 1∕2, we have

𝜆(𝐵𝑀,𝜀) < 𝐾𝜀,

where 𝐾 > 0 is a constant depending only on𝑚.

Proof of Claim 7.6.2. We have the union

𝐵𝑀,𝜀 =
⋃

(𝑎3,…,𝑎𝑚)∈ℤ
𝑚−2⧵{0},|𝑎3|,…,|𝑎𝑚|<𝑀

⋃{
𝐵𝑀,𝜀(𝑎0, … , 𝑎𝑚) ∶ (𝑎0, 𝑎1, 𝑎2) ∈ 𝑆(𝑀, 𝜀∕𝑀𝑚, 𝑎3, … , 𝑎𝑚)

}
.

Applying the estimates of Claim 7.6.1 and (7.3), we get

𝜆(𝐵𝑀,𝜀) ⩽
∑

(𝑎3,…,𝑎𝑚)∈ℤ
𝑚−2⧵{0},|𝑎3|,…,|𝑎𝑚|<𝑀

18𝑀2(|𝑎3| + … |𝑎𝑚| + 1) ⋅
2𝜀(𝑚 − 2)(𝑚−3)∕2

𝑀𝑚
√
𝑎2
3
+⋯ + 𝑎2𝑚

.

This gives us the claim. □

Consider the sets, for a fixed 0 < 𝜀 < 1∕2 and each 𝑙 ∈ 𝐼,

𝑊𝑙(𝜀) ∶= [0, 1]𝑚−2 ⧵ 𝐵𝑀𝑙,𝜀
.

Let𝑊(𝜀) be the limsup set

𝑊(𝜀) ∶=
⋂
𝑝∈ℕ

⋃
𝑙>𝑝
𝑙∈𝐼

𝑊𝑙(𝜀)
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GRIDS AND DIVERGENCE 37 of 50

and let

𝑊 ∶=
⋃

0<𝜀<1∕2

𝑊(𝜀).

For each 𝑙 ∈ 𝐼 and 0 < 𝜀 < 1∕2, we have from Claim 7.6.2

𝜆(𝑊𝑙(𝜀)) ⩾ 1 − 𝐾𝜀.

Thus,𝑊(𝜀) is a decreasing intersection of sets each of which has measure greater than or equal
to (1 − 𝐾𝜀). This gives

𝜆(𝑊(𝜀)) ⩾ 1 − 𝐾𝜀 for all 0 < 𝜀 < 1∕2.

In particular, we have 𝜆(𝑊) = 1. Now let (𝜃3, … , 𝜃𝑚) ∈ 𝑊 and consider the vector (𝜃1, … , 𝜃𝑚) ∈

ℝ𝑚. There is some 0 < 𝜀 < 1∕2 for which (𝜃3, … , 𝜃𝑚) ∈ 𝑊(𝜀). In particular, we have an infinite
number of 𝑙 ∈ 𝐼 such that (𝜃3, … , 𝜃𝑚) ∉ 𝐵𝑀𝑙,𝜀

.
Fix such an 𝑙 > 1. It follows from the definitions that, for each (𝑎0, … , 𝑎𝑚) ∈ ℤ𝑚+1 with

(𝑎3, … , 𝑎𝑚) ≠ 0 andmax𝑖=1,…,𝑚 |𝑎𝑖| < 𝑀𝑙, we have

|𝑎0 + 𝑎1𝜃1 + 𝑎2𝜃2 + 𝑎3𝜃3 +⋯ + 𝑎𝑚𝜃𝑚| ⩾ 𝜀

𝑀𝑚
𝑙

.

Further, if we have (𝑎0, … , 𝑎𝑚) ∈ ℤ𝑚+1 withmax𝑖=1,…𝑚 |𝑎𝑖| < 𝑀𝑙 and (𝑎3, … , 𝑎𝑚) = 0, then

|𝑎0 + 𝑎1𝜃1 + 𝑎2𝜃2 + 𝑎3𝜃3 +⋯ + 𝑎𝑚𝜃𝑚| = |𝑎0 + 𝑎1𝜃1 + 𝑎2𝜃2|
⩾ Ψ(𝑀𝑙−1)

⩾
𝐶2
𝑀𝑚

𝑙

,

wherewe use the hypothesis (7.2) in the last inequality. If we put 𝑡 = 𝑀𝑙 −
1

2
and if we letΦ denote

the irrationality measure function of (𝜃1, … , 𝜃𝑚) ∈ ℝ𝑚, we get

Φ(𝑡)𝑡𝑚 ⩾
1

2𝑚
min{𝜀, 𝐶3} > 0.

Allowing 𝑙 to vary, we see that (𝜃1, … , 𝜃𝑚) ∈ ℝ𝑚 is nonsingular. □

We finally come to our counterexample.

Theorem 7.7. Let𝑚 be an integer with𝑚 > 2. Let (𝜃1, 𝜃2) ∈ ℝ2 be as in Proposition 7.3. Then, there
exists a (𝜃3, … , 𝜃𝑚) ∈ ℝ𝑚−2 and a (𝜂1, 𝜂2) ∈ ℝ2 such that

(a) the augmented vector

𝜃 = (𝜃1, … , 𝜃𝑚) ∈ ℝ𝑚

is nonsingular;
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38 of 50 MOSHCHEVITIN et al.

(b) for any (𝜂3, … , 𝜂𝑚) ∈ ℝ𝑚−2, the augmented vector 𝜂 = (𝜂1, … , 𝜂𝑚) ∈ ℝ𝑚 satisfies

inf
𝑞∈ℤ⧵{0}

|𝑞|1∕𝑚⟨𝑞𝜃 − 𝜂⟩ > 0.

In particular, we have a nonsingular 𝜃 ∈ ℝ𝑚 with Bad𝜃 containing the translate of an 𝑚 −

2-dimensional subtorus in 𝕋𝑚.

Proof. We apply Theorem 7.6 to obtain part (a). We apply Theorem 7.5 to obtain (𝜂1, 𝜂2) ∈ ℝ2. We
then compute

inf
𝑞∈ℤ⧵{0}

|𝑞|1∕𝑚 max
𝑖=1,…,𝑚

⟨𝑞𝜃𝑖 − 𝜂𝑖⟩ ⩾ inf
𝑞∈ℤ⧵{0}

|𝑞|1∕𝑚 max
𝑖=1,2

⟨𝑞𝜃𝑖 − 𝜂𝑖⟩,
>0

where we used the conclusion of Theorem 7.5 in the last inequality. □

8 A STRENGTHENING OF THEOREM 1.6

In this section, we wish to define a Diophantine class of matrices in  ⊂ Mat𝑚×𝑛(ℝ) such that strictly contains the class of nonsingular matrices and such that for any 𝐴 ∈ , 𝜆(Bad𝐴) = 0,
where 𝜆 is the 𝑚-dimensional Lebesgue measure on 𝕋𝑚. We begin by introducing the necessary
terminology and notation for the definition of .
In this part of the paper, we assume that || ⋅ || is the sup-norm, that is for a vector 𝑧 =

(𝑧1, … , 𝑧𝑠) ∈ ℝ𝑠, we have ||𝑧|| = max1⩽𝑖⩽𝑠 |𝑧𝑖|.
Recall that in our notation 𝑑 = 𝑚 + 𝑛. Suppose that the columns 𝜃1, … , 𝜃𝑛 of our𝑚 × 𝑛matrix

𝐴 = (𝜃1⋯ 𝜃𝑛)

are linearly independent over ℚ and consider the irrationality measure function

Ψ𝐴(𝑡) = min
𝑞∈ℤ𝑛∶0<||𝑞||⩽𝑡⟨𝐴𝑞⟩,

which is a piecewise constant function decreasing to zero. Let

𝑀1 < 𝑀2 < … < 𝑀𝑙 < 𝑀𝑙+1 < …

be the infinite sequence of all the points where Ψ𝐴(𝑡) is not continuous and

𝜁𝑙 = Ψ𝐴(𝑀𝑙), 𝜁𝑙 > 𝜁𝑙+1

be the corresponding sequence of values of the function. In particular,

𝜁𝑙 = min
𝑞∈ℤ𝑛∶0<||𝑞||<𝑀𝑙+1

⟨𝐴𝑞⟩.
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GRIDS AND DIVERGENCE 39 of 50

The main properties of the function Ψ𝐴(𝑡) are discussed, for example, in [15]. From Minkowski
convex body theorem, it follows that

Δ𝑙 ∶= 𝑀𝑛
𝑙+1

𝜁𝑚
𝑙
⩽ 1 (8.1)

and 𝐴 is singular if and only if Δ𝑙 → 0 as 𝑙 → ∞.
It is well known (see, e.g., [3]) that the values of𝑀𝑙 grow exponentially, that is,

𝑀𝑙+3𝑑+1 ⩾ 2𝑀𝑙 (8.2)

for all 𝑙.
We now have enough notation and terminology in order to define the Diophantine class of

matrices for which our result holds.

Definition 8.1. Let  ⊂ Mat𝑚×𝑛(ℝ) be the collection of matrices 𝐴 such that there exists an
increasing sequence 𝑙𝑘 such that

(1)
∑∞

𝑘=1 Δ
𝑑−1
𝑙𝑘

= ∞;

(2) 𝐻𝑘 ∶= sup𝑘1⩾𝑘+1

(
𝜁𝑙𝑘1
Δ𝑙𝑘1

)𝑚

⋅
(

𝑀𝑙𝑘+1

Δ𝑙𝑘

)𝑛

→ 0, 𝑘 → ∞.

Proposition 8.2. If 𝐴 is a nonsingular matrix, then 𝐴 is in .
Proof. For nonsingular 𝐴, there exists a sequence 𝑙𝑘 such that

inf
𝑘
Δ𝑙𝑘

> 0. (8.3)

So item (1) of Definition 8.1 holds for any subsequence of 𝑙𝑘. It also follows from (8.3) and
monotonicity of 𝜁𝑙 that we can choose a subsequence of 𝑙𝑘 to satisfy

𝐻𝑘 ≪ 𝜁𝑚
𝑙𝑘+1

𝑀𝑛
𝑙𝑘+1

=

(
𝑀𝑙𝑘+1

𝑀𝑙𝑘+1+1

)𝑛

𝜁𝑚
𝑙𝑘+1

𝑀𝑛
𝑙𝑘+1+1

⩽

(
𝑀𝑙𝑘+1

𝑀𝑙𝑘+1+1

)𝑛

,

where we have used (8.1) in the last inequality. We can now take a subsequence of 𝑙𝑘 and use the
exponential growth of the sequence𝑀𝑙 to arrange that item (2) will hold. □

The following proposition shows that the class  strictly contains the class of nonsingular
matrices.

Proposition 8.3. There exists a singular matrix 𝐴 ∈ .
Proof. It is well known, andmay be easily deduced using the theory of templates, that for any func-
tion 𝜌(𝑙) that satisfies lim𝑙→∞ 𝜌(𝑙) = 0, there exists amatrix𝐴withΔ𝑙 ≍ 𝜌(𝑙). For our construction
below, we choose 𝐴 such that

Δ𝑙 ≍ 𝑙
− 1
2(𝑑−1) .
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40 of 50 MOSHCHEVITIN et al.

The fact that 𝐴 is singular follows since Δ𝑙 → 0. We now show that the lower bound Δ𝑙≫𝑙
− 1
2(𝑑−1)

implies 𝐴 ∈ .
Take 𝑙𝑘 = 𝑘2. Then, because of the lower bound, we have that

∑
𝑘 Δ

𝑑−1
𝑙𝑘

diverges, so item (1) is
satisfied. Moreover, the lower bound for Δ𝑙 implies that for any 𝑘1 ⩾ 𝑘, we have the inequality

1

Δ𝑛
𝑙𝑘1
Δ𝑚
𝑙𝑘

≪𝑘
𝑑

𝑑−1
1

,

meanwhile from (8.1) and (8.2), it follows that

𝜁𝑚
𝑙𝑘1
𝑀𝑛

𝑙𝑘+1
⩽
𝑀𝑛

𝑘2+1

𝑀𝑛
𝑘2
1
+1

≪ 2
−
𝑛(𝑘2

1
−𝑘2)

3𝑑+1 .

So

𝐻𝑘 ⩽ sup
𝑘1⩾𝑘+1

𝑘
𝑑

𝑑−1
1

⋅ 2
−
𝑛(𝑘2

1
−𝑘2)

3𝑑+1

= sup
𝑗⩾1

(𝑘 + 𝑗)
𝑑

𝑑−1 ⋅ 2
−
𝑛(2𝑘𝑗+𝑗2)

3𝑑+1

≪ 𝑘
𝑑

𝑑−1 ⋅ 2
− 2𝑛𝑘

3𝑑+1 → 0, as 𝑘 → ∞,

and so item (2) is also valid. □

Wenow arrive to themain result of this section, which strengthens Theorem 1.6 and also shows
that the fact that Bad𝐴 is a null-set with respect to the𝑚-dimensional Lebesgue measure does not
characterize nonsingularity.
The proof of the following result ismotivated by [13, Theorem 1.7] and is based on an application

of Minkowski successive minima theory and modifies the proof from [18].

Theorem 8.4. For any 𝐴 ∈ , one has 𝜆𝕋𝑚(Bad𝐴) = 0.

Proof. Let 𝐴 be any matrix and let Δ𝑙, 𝜁𝑙 be as above. For 𝜂 = (𝜂1, … , 𝜂𝑚) ∈ ℝ𝑚, let us denote

𝐵𝑙(𝜂) =

[
𝜂1, 𝜂1 +

2𝑑𝜁𝑙
Δ𝑙

]
×⋯ ×

[
𝜂𝑚, 𝜂𝑚 +

2𝑑𝜁𝑙
Δ𝑙

]
⊂ ℝ𝑚. (8.4)

We will need the following:

Lemma 8.5. Let 𝑅𝑙 =
𝑑𝑀𝑙+1

Δ𝑙
. Then, for any 𝜂, the box 𝐵𝑙(𝜂) contains a point of the form 𝐴𝑞 − 𝑝

with

||𝑞|| ⩽ 𝑅𝑙, 𝑞 ∈ ℤ𝑛, 𝑝 ∈ ℤ𝑚. (8.5)
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GRIDS AND DIVERGENCE 41 of 50

Proof. Fix 𝑙 and consider parallelepiped

Π𝑙 = {𝑧 = (𝑞, 𝑝) ∈ ℝ𝑑 ∶ ||𝑞|| < 𝑀𝑙+1, ||𝐴𝑞 − 𝑝|| < 𝜁𝑙}.

Let 𝜆1 ⩽ 𝜆2 ⩽ … ⩽ 𝜆𝑑 be the successiveminima for the parallelepipedΠ𝑙 with respect to the lattice
ℤ𝑑. As the volume of Π𝑙 is equal to 2𝑑Δ𝑙, by Minkowski theorem, we know that

𝜆1⋯ 𝜆𝑑 ⩽ Δ−1
𝑙
.

But Π𝑙 does not contain nontrivial integer points and so 𝜆1 ⩾ 1. We see that 𝜆𝑑 ⩽ Δ−1
𝑙

and the
closure of 𝜆𝑑 ⋅Π𝑙 contains 𝑑 independent integer points. So, the closed parallelepiped

Π̂𝑙 = closure of 𝑑Δ−1
𝑙
Π𝑙 ⊃ 𝑑𝜆𝑑Π𝑙

contains a fundamental domain of the lattice ℤ𝑑. This means that any shift

Π̂𝑙 + 𝑤, 𝑤 ∈ ℝ𝑑 (8.6)

contains an integer point. But any parallelepiped{
𝑧 = (𝑞, 𝑝) ∈ ℝ𝑑 ∶ ||𝑞|| ⩽ 𝑅𝑙, 𝐴𝑞 − 𝑝 ∈ 𝐵𝑙(𝜂)

}
is of the form (8.6), which proves the Lemma. □

We continue with the proof of Theorem 8.4 by following the argument from [18] and choosing
the parameters there more carefully.
Assume now that the matrix 𝐴 belongs to  and let 𝐻𝑘 be as in Definition 8.1. Fix a positive

𝜀 < 1

2
and define a sequence of positive reals 𝜙𝑘 < 1 such that

lim
𝑘→∞

𝜙𝑘 = 0, (8.7)

𝜙𝑘 ⩾ 𝑑𝑑
(
3

𝜀

)𝑚
𝐻𝑘, (8.8)

and

∞∑
𝑘=1

𝜙𝑘Δ
𝑑−1
𝑙𝑘

= ∞. (8.9)

This is possible because by item (2) of Definition 8.1 the right-hand side of (8.8) tends to zero,
and as we have the divergence in item (1), 𝜙𝑘 can tend to zero slow enough to satisfy divergence
condition (8.9). Define

𝑊𝑘 =

⌈
Δ𝑙𝑘

2𝑑𝜁𝑙𝑘

⌉𝑚
.
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42 of 50 MOSHCHEVITIN et al.

Note that as
𝑀𝑙𝑘+1

Δ𝑙𝑘
→ ∞ as 𝑘 → ∞, it follows from item (2) of Definition 8.1 that

𝜁𝑙𝑘
Δ𝑙𝑘

→ 0, 𝑘 → ∞, (8.10)

and so using (8.10), we see that 𝑊𝑘 → +∞, as 𝑘 → ∞. We cover the cube [0, 1)𝑚 by 𝑊𝑘 boxes
𝐵𝑙𝑘 (𝜂𝑖1,…,𝑖𝑛 ) of the form (8.4) with

𝜂𝑖1,…,𝑖𝑛 =

(
𝑖1𝑑𝜁𝑙𝑘
Δ𝑙𝑘

, … ,
𝑖𝑛𝑑𝜁𝑙𝑘
Δ𝑙𝑘

)
, 0 ⩽ 𝑖1, … , 𝑖𝑛 <

⌈
Δ𝑙𝑘

2𝑑𝜁𝑙𝑘

⌉
, 𝑖1, … , 𝑖𝑛 ∈ ℤ,

which have disjoint interiors.

We note that at least 𝑊′
𝑘
=

(⌈
Δ𝑙𝑘
2𝑑𝜁𝑙𝑘

⌉
− 1

)𝑚

∼ 𝑊𝑘 of these boxes are contained in the cube

[0, 1)𝑚. Moreover, Lemma 8.5 shows that in each of these boxes there is a point of the form𝐴𝑞 − 𝑝

satisfying (8.5) with 𝑙 = 𝑙𝑘.
Put

𝛿𝑘 =
𝜙

1
𝑚

𝑘

𝑅
𝑛
𝑚

𝑙𝑘

= 𝜙
1
𝑚

𝑘
⋅

(
Δ𝑙𝑘

𝑑𝑀𝑙𝑘+1

) 𝑛
𝑚

.

It is clear that 𝛿𝑘 ⩽ 𝜙
1
𝑚

𝑘
⋅
𝜁𝑙𝑘
Δ𝑙𝑘

because from (8.1) we deduce Δ𝑑
𝑙𝑘
⩽ Δ𝑙𝑘

= 𝑀𝑛
𝑙𝑘+1

𝜁𝑚
𝑙𝑘
, and this gives(

Δ𝑙𝑘
𝑑𝑀𝑙𝑘+1

) 𝑛
𝑚

<
𝜁𝑙𝑘
Δ𝑙𝑘

.

As in the proof from [18], we take

𝑊′′
𝑘
=

⎡⎢⎢⎢⎢⎣

⌈
Δ𝑙𝑘
2𝑑𝜁𝑙𝑘

⌉
− 1

3

⎤⎥⎥⎥⎥⎦

𝑚

∼
𝑊′

𝑘

3𝑚
∼
𝑊𝑘

3𝑚

boxes of the form

𝐼[𝑘]
𝑖

=
[
𝜉[𝑘]
1,𝑖

− 𝛿𝑘, 𝜉
[𝑘]
1,𝑖

+ 𝛿𝑘

]
×⋯ ×

[
𝜉[𝑘]
𝑚,𝑖

− 𝛿𝑘, 𝜉
[𝑘]
𝑚,𝑖

+ 𝛿𝑘

]
, 1 ⩽ 𝑖 ⩽ 𝑊′′

𝑘
(8.11)

with the centers at certain points

𝜉[𝑘]
𝑖

= (𝜉[𝑘]
1,𝑖
, … , 𝜉[𝑘]

𝑚,𝑖
) = 𝐴𝑞[𝑘]

𝑖
− 𝑝[𝑘]

𝑖
, 𝑞[𝑘]

𝑖
∈ ℤ𝑛, 𝑝[𝑘]

𝑖
∈ ℤ𝑛, |𝑞[𝑘]

𝑖
| ⩽ 𝑅𝑙𝑘 , 1 ⩽ 𝑖 ⩽ 𝑊′′

𝑘
,

which belong to boxes

𝐵𝑙𝑘 (𝜂𝑖1,…,𝑖𝑛 ) with 𝑖1 ≡ … ≡ 𝑖𝑛 ≡ 1 (mod 3). (8.12)

In each of such boxes 𝐵𝑙𝑘 (𝜂𝑖1,…,𝑖𝑛 ), we take just one point 𝜉𝑖 . Then,

𝐼[𝑘]
𝑖

∩ 𝐼[𝑘]
𝑖′

= ∅, 𝑖 ≠ 𝑖′. (8.13)
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GRIDS AND DIVERGENCE 43 of 50

Consider two values 𝑘1 > 𝑘. Recall that 𝐼[𝑘]
𝑖

is an 𝑚-dimensional box with edge 2𝛿𝑘. The centers
of the boxes 𝐼[𝑘1]

𝑖
by the construction are distributed in 𝐼[𝑘]

𝑖
uniformly and so

♯{𝑖1 ∶ 1 ⩽ 𝑖1 ⩽ 𝑊′′
𝑘1
, 𝐼

[𝑘1]
𝑖1

∩ 𝐼[𝑘]
𝑖

≠ ∅} ⩽

(
2𝛿𝑘∕

(
6 ⋅

𝜁𝑙𝑘1
Δ𝑙𝑘1

)
+ 1

)𝑚

. (8.14)

We note that by condition (8.8) we have

1 ⩽ 𝜀 ⋅ 2𝛿𝑘∕

(
6 ⋅

𝑑𝜁𝑙𝑘1
Δ𝑙𝑘1

)
(8.15)

because as 𝑘1 ⩾ 𝑘 + 1, we have

𝛿𝑘 = 𝜙
1
𝑚

𝑘
⋅

(
Δ𝑙𝑘

𝑑𝑀𝑙𝑘+1

) 𝑛
𝑚

⩾ 𝑑
𝑑
𝑚
3

𝜀

𝜁𝑙𝑘1
Δ𝑙𝑘1

.

Recall that 𝜆(𝐼[𝑘]
𝑖
) = (2𝛿𝑘)

𝑚 and𝑊′′
𝑘1
∼ 1

3𝑚
⋅
(

Δ𝑙𝑘1
2𝑑𝜁𝑙𝑘1

)𝑚

. So for 𝑘 large enough, we deduce from

(8.14) and (8.15) an upper bound

♯{𝑖1 ∶ 1 ⩽ 𝑖1 ⩽ 𝑊′′
𝑘1
, 𝐼

[𝑘1]
𝑖1

∩ 𝐼[𝑘]
𝑖

≠ ∅} ⩽ 𝜆(𝐼[𝑘]
𝑖
)𝑊′′

𝑘1
(1 + 2𝑚𝜀). (8.16)

Now we consider the union

𝐸𝑘 =

𝑊′′
𝑘⋃

𝑖=1

𝐼[𝑘]
𝑖
.

By (8.13), we get

𝜆(𝐸𝑘) =
∑
𝑖

𝜆(𝐼[𝑘]
𝑖
) ≍ 𝛿𝑚

𝑘
𝑊𝑘 ≍ 𝜙𝑘Δ

𝑑−1
𝑙𝑘

and so by (8.9), we see that
∞∑
𝑘=1

𝜆(𝐸𝑘) = ∞. (8.17)

Then from (8.16) for 𝑘1 > 𝑘, we have

𝜆(𝐸𝑘 ∩ 𝐸𝑘1) ⩽ (1 + 2𝑚𝜀)𝜆(𝐸𝑘)𝜆(𝐸𝑘1). (8.18)

It follows from [10, Theorem 18.10] that for the set

𝐸 = {𝜂 ∶ ∃ infinitely many 𝑘 such that 𝜂 ∈ 𝐸𝑘},

we have

𝜆(𝐸) ⩾ lim sup
𝑡→∞

(∑𝑡
𝑘=1 𝜆(𝐸𝑘)

)2∑𝑡
𝑘,𝑘1=1

𝜆(𝐸𝑘 ∩ 𝐸𝑘1)
⩾

1

1 + 2𝑚𝜀
,

by (8.17) and (8.18). As 𝜀 is arbitrary, we see that 𝜆(𝐸) = 1.
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44 of 50 MOSHCHEVITIN et al.

Finally, if 𝜂 ∈ 𝐸, then there exist infinitelymany 𝑘 such that for each 𝑘, there exists 𝑞 ∈ ℤ𝑛 with||𝑞|| ⩽ 𝑅𝑙𝑘 and 𝑝 ∈ ℤ𝑛 such that ||𝐴𝑞 − 𝑝 − 𝜂|| ⩽ 𝛿𝑘. In particular, from the definition of 𝑅𝑙𝑘 for
these (𝑝, 𝑞), we get

||𝐴𝑞 − 𝑝 − 𝜂|| ⋅ ||𝑞|| 𝑛𝑚 ⩽ 𝛿𝑘𝑅
𝑛
𝑚

𝑙𝑘
= 𝜙

1
𝑚

𝑘
.

We see that condition (8.7) leads to the inclusion Bad𝐴 ∩ [0, 1)𝑚 ⊂ [0, 1)𝑚 ⧵ 𝐸, which finishes the
proof. □

APPENDIX A: ROY’S PARAMETRIC GEOMETRY OF NUMBERS
As it was mentioned before, the existence results from Propositions 7.3 and 8.3 as well as the main
result from the paper [14] can be deduced bymeans of existence results from parametric geometry
of numbers obtained in [20] and [7]. In particular, here in the Appendix, we show how one can
get Proposition 7.3.
Definition A.1 (Log-minima functions). Let 𝜃 = (𝜃1, 𝜃2) ∈ ℝ2. For 𝑄 ∈ ℝ with 𝑄 ⩾ 1, we define
the convex body

(𝑄) ∶= {𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ ℝ3 ∶ ‖𝑣‖ ⩽ 1, |𝑣1𝜃1 + 𝑣2𝜃2 + 𝑣3| ⩽ 𝑄−1
}
.

For 𝑗 = 1, 2, 3, we define the successive minima functions 𝜆𝑗 ∶ [1,∞) → ℝ:

𝜆𝑗(𝑄) ∶= min
{
𝑟 ∈ ℝ ∶ 𝑟(𝑄) contains 𝑗 independent vectors of ℤ3

}
and the log-minima functions 𝐿𝑗 ∶ [0,∞) → ℝ:

𝐿𝑗(𝑞) = log(𝜆𝑗(𝑒
𝑞)).

The relation between the first log-minima function and the irrationality measure function for
a vector 𝜃 ∈ ℝ2 is given by the following proposition.

Proposition A.2. Let 𝜃 ∈ ℝ2. Let 𝐿1 be the first associated log-minima function and let Ψ be the
associated irrationality measure function. If, for some constants 0 < 𝐴 < 1 and 0 < 𝐵, the equation

𝐿1(𝑞) > 𝐴𝑞 − 𝐵 (A.1)

is satisfied for an unbounded set of 𝑞 ∈ ℝ⩾0, then the equation

Ψ(𝑡) ⩾ 𝑒
−𝐵−ln(1+‖𝜃‖)

𝐴 𝑡1−
1
𝐴

is satisfied for an unbounded set of 𝑡 ∈ ℝ⩾0.

Proof. If, for some 𝑞 > 0, (A.1) holds, then from the definitions we have{
𝑣 ∈ ℝ3 ∶ ‖𝑣‖ ⩽ 𝑒𝐴𝑞−𝐵, |𝑣1𝜃1 + 𝑣2𝜃2 + 𝑣3| ⩽ 𝑒𝐴𝑞−𝐵𝑒−𝑞

}
∩ ℤ3 = {0}. (A.2)
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GRIDS AND DIVERGENCE 45 of 50

Now let 𝐶 = ln(1 + ‖𝜃‖). Suppose, by way of contradiction,
Ψ(𝑒𝐴𝑞−𝐵−𝐶) < 𝑒𝐴𝑞−𝐵−𝐶𝑒−𝑞.

This gives the existence of 𝑎 = (𝑎1, 𝑎2) ∈ ℤ2 with 0 < ‖𝑎‖ ⩽ 𝑒𝐴𝑞−𝐵−𝐶 and some 𝑏 ∈ ℤ for which

|𝑎1𝜃1 + 𝑎2𝜃2 + 𝑏| < 𝑒𝐴𝑞−𝐵−𝐶𝑒−𝑞. (A.3)

Thus,

|𝑏| = |𝑏 + (𝑎1𝜃1 + 𝑎2𝜃2) − (𝑎1𝜃1 + 𝑎2𝜃2)|
< 𝑒𝐴𝑞−𝐵−𝐶𝑒−𝑞 + ‖𝜃‖𝑒𝐴𝑞−𝐵−𝐶
⩽ 𝑒𝐴𝑞−𝐵𝑒−𝐶(1 + ‖𝜃‖) = 𝑒𝐴𝑞−𝐵.

(A.4)

Since 𝐶 ⩾ 0, we have

max{|𝑎1|, |𝑎1|, |𝑏|} ⩽ 𝑒𝐴𝑞−𝐵 and |𝑎1𝜃1 + 𝑎2𝜃2 + 𝑏| ⩽ 𝑒𝐴𝑞−𝐵𝑒−𝑞,

which contradicts (A.2). Thus, we must have

Ψ(𝑒𝐴𝑞−𝐵−𝐶) ⩾ 𝑒𝐴𝑞−𝐵−𝐶𝑒−𝑞.

If we substitute 𝑡 = 𝑒𝐴𝑞−𝐵−𝐶 , we get

Ψ(𝑡) ⩾ 𝑒
−𝐵−𝐶
𝐴 𝑡1−

1
𝐴 ,

which is the required result. □

Proposition A.3. Let 𝜃 ∈ ℝ2, let 𝐿1 be the associated first log-minima function, and let Ψ be the
associated irrationalitymeasure function. Suppose, for some constants 0 < 𝐴 < 1and 0 < 𝐵, we have

𝐿1(𝑞) ⩽ 𝐴𝑞 + 𝐵 for all sufficiently large 𝑞 ∈ ℝ⩾0. (A.5)

Then, the irrationality measure function satisfies

Ψ(𝑡) ⩽ 𝑒𝐵∕𝐴𝑡1−
1
𝐴 for all 𝑡 ∈ ℝ⩾0 sufficiently large.

Proof. This is again a change of variables. Equation (A.5) implies that, for all large 𝑞,

𝑒𝐴𝑞+𝐵(𝑒𝑞) ∩ ℤ3 ≠ {0}.

Unwinding the definitions, we obtain

Ψ(𝑒𝐴𝑞+𝐵) ⩽ 𝑒𝐴𝑞+𝐵𝑒−𝑞 for all sufficiently large 𝑞.

Putting 𝑡 = 𝑒𝐴𝑞+𝐵, we get the required conclusion. □
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46 of 50 MOSHCHEVITIN et al.

The log-minima functions (𝐿1, 𝐿2, 𝐿3) are modeled by the following functions.

Definition A.4 [20], Definition 4.1 of 𝑛-systems. Let 𝐼 ⊂ [0,∞) be a subinterval. A 3-system on 𝐼
is a continuous piecewise linear map 𝑃 = (𝑃1, 𝑃2, 𝑃3) ∶ 𝐼 → ℝ3 such that

(S1) for each 𝑞 ∈ 𝐼, we have

0 ⩽ 𝑃1(𝑞) ⩽ 𝑃2(𝑞) ⩽ 𝑃3(𝑞) and 𝑃1(𝑞) + 𝑃2(𝑞) + 𝑃3(𝑞) = 𝑞;

(S2) if 𝐻 is a nonempty open subset on which 𝑃 is differentiable, then there is an integer 𝑟 with
1 ⩽ 𝑟 ⩽ 3 such that 𝑃𝑟 has slope 1 on 𝐻 while the other components of 𝑃 are constant;

(S3) if 𝑞 is an interior point of 𝐼 where 𝑃 is not differentiable and if the integers 𝑟, 𝑠 for which
𝑃′𝑟(𝑞

−) = 𝑃′𝑠(𝑞
+) = 1 also satisfy 𝑟 < 𝑠, then we have

𝑃𝑟(𝑞) = 𝑃𝑟+1(𝑞) = ⋯ = 𝑃𝑠(𝑞).

Remark A.5. Piecewise linear means the points of 𝐼 where 𝑃 is not differentiable has discrete
closure in ℝ and 𝑃 is linear on each connected component of the complement (in 𝐼) of the
nondifferentiable points. The notation 𝑃′𝑟(𝑞

−) and 𝑃′𝑠(𝑞
+) denote the left and right derivatives,

respectively (assuming 𝑞 is not in the boundary of 𝐼).

We have the following fundamental theorem.

TheoremA.6 [20] Theorem 4.2. For each 3-system 𝑃 on an interval [𝑞0,∞), there is a 𝜃 ∈ ℝ2 such
that, considering the log-minima function 𝐿 = (𝐿1, 𝐿2, 𝐿3) ∶ [𝑞0,∞) → ℝ3 associated to 𝜃, we have

𝐿 − 𝑃 is bounded on [𝑞0,∞).

We are finally ready for the following:

Proof of Proposition 7.3. Let𝑄 ∈ ℝ satisfy𝑄 > 2. Consider the following graphs of three piecewise
linear functions on the interval [1, 𝑄 − 1] (see Figure A.1).
Here is the precise definition of the function 𝑃 ∶ [1, 𝑄 − 1] → ℝ3:

(𝑃1(𝑞), 𝑃2(𝑞), 𝑃3(𝑞)) ∶=

⎧⎪⎪⎨⎪⎪⎩

(
1

𝑄+1
, 1

𝑄+1
+ 𝑞 − 1, 𝑄−1

𝑄+1

)
; 1 ⩽ 𝑞 ⩽

2𝑄−1

𝑄+1(
1

𝑄+1
, 𝑄−1

𝑄+1
, 𝑄−1

𝑄+1
+ 𝑞 − 2𝑄−1

𝑄+1

)
; 2𝑄−1
𝑄+1

⩽ 𝑞 ⩽
𝑄2−𝑄+1

𝑄+1(
1

𝑄+1
+ 𝑞 − 𝑄2−𝑄+1

𝑄+1
, 𝑄−1

𝑄+1
, (𝑄−1)2

𝑄+1

)
; 𝑄

2−𝑄+1

𝑄+1
⩽ 𝑞 ⩽ 𝑄 − 1

. (A.6)

We leave it to the reader to check that 𝑃 satisfies Definition A.4 on [1, 𝑄 − 1]. We now extend
this function to a 3-system on all of [1,∞); We let 𝐼0 ∶= [1, 𝑄 − 1]. For each 𝑙 ∈ ℕ, we inductively
define the interval 𝐼𝑙 as the closed interval of length (𝑄 − 1)𝑙 × length(𝐼0) that is contiguous and
to the right of 𝐼𝑙−1. We let 𝑓𝑙 be the linear, orientation-preserving bijection from 𝐼𝑙 to 𝐼0, and define

𝑃(𝑞) ∶= (𝑄 − 1)𝑙𝑃(𝑓𝑙(𝑞)) for 𝑞 ∈ 𝐼𝑙. (A.7)
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F IGURE A . 1 The orange, blue and olive graphs are called 𝑃1, 𝑃2, 𝑃3 respectively.

Note that 𝑃 is well defined: For if we have 𝑞 ∈ 𝐼𝑙−1 ∩ 𝐼𝑙,

(𝑄 − 1)𝑙𝑃(𝑓𝑙(𝑞)) = (𝑄 − 1)𝑙𝑃(1)

= (𝑄 − 1)𝑙
(

1

𝑄 + 1
,

1

𝑄 + 1
,
𝑄 − 1

𝑄 + 1

)
= (𝑄 − 1)𝑙−1

(
𝑄 − 1

𝑄 + 1
,
𝑄 − 1

𝑄 + 1
,
(𝑄 − 1)2

𝑄 + 1

)
= (𝑄 − 1)𝑙−1𝑃(𝑄 − 1)

= (𝑄 − 1)𝑙−1𝑃(𝑓𝑙−1(𝑞)).

We have the following straightforward claim, which we write out completely. The reader might
prefer to do it themselves.

Claim A.6.1. The function 𝑃 = (𝑃𝑖)𝑖=1,2,3 ∶ [1,∞) → ℝ is a 3-system with

(a) 𝑃1(𝑞) ⩽
𝑞

𝑄+1
for all 𝑞 ⩾ 1;

(b) if 𝑞 is the right endpoint of 𝐼𝑛, then 𝑃1(𝑞) =
𝑞

𝑄+1
.

Proof. 𝑃 is continuous and piecewise linear since it is so on each interval 𝐼𝑙. Moreover, the maps
𝑓𝑙 ∶ 𝐼𝑙 → 𝐼0 have slopes (𝑄 − 1)−𝑙, which cancels with the scaling factor (𝑄 − 1)𝑙 of formula (A.7).
Thus, Definition A.4(S1, S2) become clear. We leave it to the reader to check Definition A.4(S3) at
the end points of 𝐼𝑙 for each 𝑙 ∈ ℕ. Thus, 𝑃 is a 3-system.
For parts (a) and (b), we first prove that for each 𝑙 ∈ ℕ ∪ {0}, we have

𝐼𝑙 =
[
(𝑄 − 1)𝑙, (𝑄 − 1)𝑙+1

]
.
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This is true for 𝐼0 by definition. We let 𝑙 ⩾ 1 and write 𝐼𝑙 = [𝑎𝑛, 𝑏𝑛]. We compute, using induction,
that

𝑎𝑙 = 𝑎𝑙−1 + (𝑄 − 1)𝑙−1 length(𝐼0) = (𝑄 − 1)𝑙−1 + (𝑄 − 1)𝑙−1(𝑄 − 2) = (𝑄 − 1)𝑙.

Similarly, for 𝑏𝑛, we have

𝑏𝑙 = 𝑏𝑙−1 + (𝑄 − 1)𝑙(𝑄 − 2) = (𝑄 − 1)𝑙 + (𝑄 − 1)𝑙(𝑄 − 2) = (𝑄 − 1)𝑙+1.

Part (a) for 𝑞 ∈ 𝐼0 is clear from formula (A.6). For 𝑙 ∈ ℕ and 𝑞 ∈ 𝐼𝑙 = [𝑎𝑙, 𝑏𝑙], we can then
compute

𝑃1(𝑞) = (𝑄 − 1)𝑙𝑃1(𝑓𝑙(𝑞))

⩽ (𝑄 − 1)𝑙
𝑓𝑙(𝑞)

𝑄 + 1
.

Now 𝑞 ↦ (𝑄 − 1)𝑙𝑓𝑙(𝑞) is a linear function of slope 1 passing through the point

(𝑎𝑙, (𝑄 − 1)𝑙) = ((𝑄 − 1)𝑙, (𝑄 − 1)𝑙).

Thus, (𝑄 − 1)𝑙𝑓𝑙(𝑞) = 𝑞 on the domain of 𝑓𝑙 and so we have 𝑃1(𝑞) ⩽ 𝑞(𝑄 + 1)−1.
For part (b), we have

𝑃1(𝑏𝑙) = (𝑄 − 1)𝑙𝑃1(𝑓𝑙(𝑏𝑙)) = (𝑄 − 1)𝑙
𝑄 − 1

𝑄 + 1
=

𝑏𝑙
𝑄 + 1

. □

We now apply Theorem A.6 to the 3-system 𝑃 and obtain a 𝜃 ∈ ℝ2 with a constant 𝐵 > 0 such
that

|𝐿1(𝑞) − 𝑃1(𝑞)| ⩽ 𝐵 for all 𝑞 ∈ [1,∞).

Here 𝐿1 is the first log-minima function associated to 𝜃 as in Definition A.1. Claim A.6.1 then
shows

𝐿1(𝑞) ⩽
𝑞

𝑄 + 1
+ 𝐵 for all 𝑞 ∈ [1,∞)

and that

−𝐵 − 1 +
𝑞

𝑄 + 1
< 𝐿1(𝑞) for an unbounded set of 𝑞 ∈ [1,∞).

Applying Propositions A.2 and A.3, we see the existence of constants 𝐶1, 𝐶2 for which

Ψ(𝑡) ⩽ 𝐶1𝑡
−𝑄 for all sufficiently large 𝑡 ⩾ 1

and

𝐶2𝑡
−𝑄 ⩽ Ψ(𝑡) for an unbounded set of 𝑡 ⩾ 1.

Here, Ψ is the irrationality measure function associated to 𝜃. □
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