
Atomic Instruction und
Cache-Unterstützung in VADL

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Simon Himmelbauer
Matrikelnummer 12044925

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Wien, 29. Oktober 2024
Simon Himmelbauer Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Atomic Instruction and
Cache-Support for VADL

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Simon Himmelbauer
Registration Number 12044925

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Vienna, October 29, 2024
Simon Himmelbauer Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Simon Himmelbauer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. Oktober 2024
Simon Himmelbauer

v

Acknowledgements

First and foremost, I would like to thank my parents and my brother for their unconditional
mental and financial support as well as always being available when I needed them.

Furthermore, thank you to all my friends and library companions who cheered me up
when work or other things in life were simply too much. I want to specifically thank my
friends Johanna and Jeff as well as especially my girlfriend Emma for holding through
with me during these turbulent times.

Special thanks go to my supervisor Prof. Andreas Krall for providing me the opportunity
to work on this project and always being available for feedback and further advice. Last
but not least, I want to thank the entire VADL team for providing assistance, particularly
in the beginning of the project.

vii

Kurzfassung

Die Entwicklung von neuen Prozessoren für domän-spezifische Anwendungen stellen
eine herausfordernde Aufgabe dar, die mit vielen Komplexitäten und Kosten verbunden
ist. Prozessorbeschreibungssprachen wie die Vienna Architecture Description Language
(VADL) ermöglichen schnelle "design space exploration", da AnwenderInnen die Struktur
und das Verhalten ihrer Architektur beschreiben und die VADL Generatoren automatisch
Compiler, Linker, Assembler, Simulatoren und sogar synthetisierbare Hardware in einer
Hardwarebeschreibungssprache erzeugen können.

Allerdings ist VADL noch weit entfernt, um alle Funktionen moderner Prozessoren
ab zu bilden. Erstens unterstützt es keine Übersetzung von virtuellen zu physischen
Adressen, was zum Starten aktueller Betriebssysteme benötigt wird. Zweitens kann
VADL atomare Instruktionen nicht modellieren. Allerdings sind diese fundamental für
Mehrkernprozessoren, insbesondere für die Implementierung von parallelen Algorithmen
für den Befehlssatz einer bestimmten Architektur. Letztlich besitzen fast alle gängigen
CPUs in PCs, Handys und Einplatinencomputer mehrere Cacheebenen, um Speicher-
Latenzzeiten zu verkürzen und dadurch die Ausführung zu beschleunigen. VADL bietet
jedoch keine Möglichkeit zur Modellierung von Caches und Cache-Hierarchien. In dieser
Arbeit erweitern wir VADL und die generierten Simulatoren, um all die vorhin genannten
Aspekte zu integrieren.

Um die genannten Funktionalitäten zu demonstrieren, implementierten wir atomare
Instruktionen für unsere RISC-V RV32 und AArch64 VADL Spezifikationen. Außerdem
erweiterten wir VADL, sodass Caches und beliebige Cache-Hierarchien definiert werden
können. Für diesen Zweck präsentieren wir einen neuen Cachesimulator, welchen wir von
Grund auf an die Anwendungsfälle von VADL angepasst haben. Um den Einfluss von
Caches besser verstehen zu können, kann der Simulator sowohl funktionale als auch hard-
warespezifische Aspekte, wie zum Beispiel Kohärenzzustände und Nachrichten, welche
über den Interconnect gesendet werden, simulieren. Wir validierten die Genauigkeit des
Cachesimulators durch einen Vergleich mit gem5, ein im Forschungsumfeld etablierter
Allzwecksimulator. Zu guter Letzt implementierten wir den Sv32 Adressübersetzungsal-
gorithmus der RISC-V Architektur in VADL.

ix

Abstract

Designing new processors for domain-specific applications can be a cumbersome task due
to the high complexity and costs involved. Hence, processor description languages, such
as the Vienna Architecture Description Language (VADL), enable rapid design space
exploration because users may describe the structure and behavior of their architecture
and the VADL generators automatically produce compilers, linkers, assemblers, simulators
and even synthesizable hardware in a hardware description language.

However, VADL is still away from allowing to design all features modern processors
provide. Firstly, it does not support translation from virtual to physical addresses
necessary for properly booting modern operating systems. Secondly, VADL cannot model
atomic instructions. However, they are fundamental for multi-core processors, particularly
when implementing parallel algorithms on the given instruction set architecture. Finally,
almost all CPUs, found in PCs, phones and even single-board computers, employ multiple
levels of caches in order to reduce memory latencies and hence, speed up execution.
However, VADL does not offer a way to model caches and cache hierarchies. In this
work, we extend VADL and its generated simulators to integrate all these aforementioned
aspects.

To showcase our proposed features, we implemented atomic instructions for our RISC-V
RV32 and AArch64 VADL specifications. Furthermore, we extended VADL to allow
defining caches and arbitrary cache hierarchies. For this purpose, we present a new
cache simulator designed from scratch tailored towards the use cases of VADL. In order
to understand the impact of caching, the simulator is capable of simulating high-level
functionality and low-level aspects such as coherence states and messages sent via the
interconnect. We validated parts of its accuracy by comparing it to gem5, which is a
general purpose simulator well-established in academia. Finally, we implemented the
Sv32 address translation scheme of the RISC-V ISA in VADL.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Aim of the Thesis and Expected Results 3
1.3 Research Questions . 4
1.4 Methodology . 5
1.5 Structure of this Thesis . 5

2 Background 7
2.1 Vienna Architecture Description Language (VADL) 7
2.2 Caches and Cache Coherence . 13
2.3 Memory Consistency Model . 19
2.4 Atomic Instructions . 23
2.5 Virtual Address Space and Address Translation 25

3 Related Work 29
3.1 Cache Simulation . 29
3.2 Processor Description Languages . 33

4 Implementation 35
4.1 Atomic Instruction Support . 35
4.2 Address Translation . 46
4.3 Cache . 48
4.4 Write Buffers . 63

5 Evaluation 69
5.1 Benchmark Setup . 69
5.2 Results . 71

xiii

6 Future Work 77

7 Conclusion 81

A Common Atomic Primitives 83

B Sv32 Memory Translation 87

C VADL Implementation of RV32 A-Extension 91

D VADL Benchmark Configuration 93

E Additional Results 95

List of Figures 99

List of Tables 101

List of Algorithms 103

Listings 105

Acronyms 107

Bibliography 109

CHAPTER 1
Introduction

1.1 Problem Statement and Motivation
In a world where Moore’s Law slowly converges toward its limit, manufactures follow the
trend of packing more and more cores onto the same die. When designing an out-of-order
multi-scalar and/or multicore architecture, additional aspects become relevant:

1. What memory model do architects want to implement?

2. What instructions do they require in order to provide stronger guarantees than
given by the memory model?

3. How does all of this affect the cache coherency between cores?

We explain the relevance of these questions in the following paragraphs. We begin with
why a CPU even needs a memory model? Modern processors implement a variety of
techniques to keep their pipeline busy and therefore, increase its performance. Examples
are multiple layers of caches as well as out-of-order and speculative execution. For
instance, a CPU might prefetch certain memory loads in order to hide their latency as
much as possible. In addition, CPUs commonly have multiple layers of caches in order
to avoid costly accesses to main memory. These caches are often tied to a specific set
of cores (e.g. Level 1 caches are usually tied to a single core, while the level 2 cache is
shared). This means that a store to a certain memory location is not necessarily visible
to other threads because they might access an older value in their local cache. These
tricks work fine in single-threaded use cases because they are designed to be transparent
to the underlying process. However, when working with parallel algorithms, the effects of
these techniques become apparent. So how can a software engineer implement a parallel
algorithm correctly? This is where the memory/concurrency model comes into action:
The memory model of an architecture describes how memory accesses can be reordered

1

1. Introduction

(e.g. the memory model might guarantee that the CPU keeps all stores in the same
order). The concurrency model often relates to the underlying microarchitecture. For
instance, x86 implements the total store order (TSO) model which originates from the
fact that each core has a FIFO write-buffer to hide the latency of commencing a write
directly to memory [NSH+20, p. 3]. This is why the memory model and the underlying
caching architecture are closely related which answers why question one and three matter
to a CPU architecture designer.

To answer the second question, consider our software engineer who now has a memory
model explaining how the underlying microarchitecture affects the correctness of a parallel
algorithm. What if it turns out that the provided guarantees are too weak? Modern
architectures provide so-called memory fences or barriers to handle this problem. A fence
instruction prevents the CPU from ordering a memory access across its location, just like
an actual fence. Weaker architectures (weak refers to the memory model) often provide
different types of fences, varying in strength but also in performance costs. Thus, it is
again up to the architecture designer to define what fences are necessary which again
largely depends on the memory model as well as underlying caching mechanism. We
observe that these three concepts closely interact with each other.

Last but not least, concurrent languages and multicore machines additionally require
support for atomic operations. For instance, take two threads A and B which each
increment a value stored at some memory location n number of times. The expected
result is 2n. Each increment operation consists of three steps: Loading the value (read),
incrementing it (modify) and storing the result back (write). Now take thread A that loads
the initial value 0 and then stops. Next, thread B executes the increment operation n
times. Now A continues, increments 0 and stores the result (one) back to memory. Hence,
the final value (n) of thread B is not considered and simply overwritten. We observe
that the final result does not equal to 2n. Note that the strength of the memory model
does not impact the correctness here because even in case our CPU executes the program
in program order and has no caches, which in consequences means every store is visible
in a total order, the execution previously described may still occur. Instead, engineers
require a certain class of atomic operations that combine all three steps (read, modify
and write) into a single observable step. The most common classes are fetch-and-modify
(-Add, -Sub, etc.) and compare-and-swap (CAS).

Following these design considerations, we focus on the job of a CPU architect. The
Vienna Architecture Description Language (VADL) is a processor description language
(PDL) that allows developers to design a CPU on all levels, from the instruction set and
ABI down to the underlying microarchitecture. Currently, VADL misses support for the
following aspects:

• Atomic instructions: As mentioned above, some concurrent and parallel algo-
rithms require certain synchronization primitives to function correctly. This requires
the architecture to provide certain instructions such as memory fences/barriers
or read-modify-write (RMW) instructions. Thus, VADL must support a way to

2

1.2. Aim of the Thesis and Expected Results

prevent reorderings in case of memory barriers as well as a way to define atomic
operations.

• Caches and Memory Hierarchy: VADL currently does not support any type
of CPU cache. However, they are imperative for fast CPUs, even in the case of
single-threaded processors. Furthermore, when designing atomic instructions on a
microarchitectural level, their effect becomes more interesting in combination with
caches. A flexible mechanism to define caches could also allow VADL developers to
more easily experiment with different hierarchies, sizes and coherence protocols.
Furthermore, simulation facilitates design space exploration (DSE) [BKP20].

• Memory Model A memory model is required in order to properly define what
kind of synchronization instructions are necessary. For instance, a sequentially
consistent architecture does not require any form of fence instructions, while a more
relaxed model might want to provide different types of barriers, each with different
strengths and guarantees.

1.2 Aim of the Thesis and Expected Results
The goal is to lay a foundation for defining out-of-order multi-scalar and multicore
processors in VADL. This means VADL must support the following aspects:

• Definition of caches and declaration of memory hierarchy: The goal is
to declare the total and line size, associativity, replacement policy and coherence
protocol of a cache. As part of this thesis, one idea is to configure caches via
annotations, a syntactical mechanism provided by VADL.

• Definition of address translation: While not strictly necessary for multicore
processors, we want to add support for defining address translation from virtual to
physical addresses. Since memory management units (MMUs) themselves utilize
caches such as the translation lookaside buffer (TLB), this topic conveniently
matches the task of implementing a caching subsystem.

• Definition of atomic instructions: This specifically includes fetch-and-modify,
compare-and-swap and load-reserved/store-conditional. The goal is to support
all atomic operations provided by ARMv8 AArch64 [Arm21, C3.2.6, C3.2.12.1 -
C3.2.12.4] and RISC-V RV32 (Standard Extension for Atomic Instructions, Version
2.1) [RIS19].

• Declaration of memory model: The architect must specify what memory model
is desired for the instruction set architecture. It is important that this model is
then fully respected by both the instruction set and underlying microarchitecture.
Ultimately, a developer should be able to define an arbitrary axiomatic or operational
model. However, this thesis focuses on a set of specific models.

3

1. Introduction

In order to meaningfully test these features, the instruction set simulator (ISS) and
cycle accurate simulator (CAS) will be extended to support these language features. For
the ISS, it is sufficient to handle atomic instructions and address translation because
microarchitectural details such as caching are not relevant here. On the other side, the
CAS must support all aspects of the hardware.

Needless to say, the effects of caching behavior and atomic instructions become more
apparent in multicore scenarios. However, both simulators currently do not support
multithreading and adding multithreading support is specifically not in the scope of
this thesis. However, we can measure how emulating the cache hierarchy affects the
throughput of the CAS. In addition, the simulator should be capable of tracking cache-
specific information such as miss rate.

1.3 Research Questions
RQ1: How can we extend VADL to enable developers to fully model and implement
atomic instructions such as Fetch-And-Modify, CAS and memory fences (as provided by
ARMv8 and RISC-V)?

As mentioned above, we want to offer VADL developers the possibility to specify arbitrary
atomic instructions. Our idea is to study the set of operations provided by common ISAs,
such as x86, ARM, RISC-V and Power, to help us derive what features are necessary to
cover their use cases.

RQ2: How can memory models and cache coherence be efficiently and correctly imple-
mented in a simulator?

This question primarily concerns the cache and write buffer simulation. Correctness
is particularly important for design space exploration because developing hardware
prototypes for a new chip design is costly. Needless to say, accuracy is a broad term. In
the context of this thesis, we decided to implement a functional cache simulator, based on
the definition from Brais et al. [BKP20]. Hence, we want to simulate behavioral events
such as cache misses, coherence state changes and interconnect topographies. Some
simulators go into more detail and consider detailed timings such as how long a message
needs to traverse the interconnect. However, we think this has a significant impact on
the performance of the simulation and hence, believe that this additional overhead is not
worth for the purposes of VADL.

RQ3: What performance impact does cache emulation have on the cycle accurate simu-
lation?

A cache simulator might have a considerable influence on the overall performance of the
simulator. Consider a simple system with just an instruction cache: The CAS requires
constant interaction with the cache simulator because the cache must be consulted for
every single instruction fetch. Hence, we want to evaluate how the cache simulation
impacts the overall runtime of our CAS.

4

1.4. Methodology

1.4 Methodology
We begin with an onboarding phase in order to become familiar with the current state
of the project which includes VADL itself, the VADL frontend, VADL intermediate
representation (VIR) and the instruction set simulator (ISS) as well as cycle accurate
simulator (CAS). Next, we design two to three proof-of-concept specifications in VADL to
support address translation, caches and atomic instructions so that they comply with the
goals described in section 1.2. Regarding RQ1, deciding on the most concise and intuitive
version should be based on an empirical study, as conducted by [PSZ21]. However, this is
not in the scope of this thesis. Instead we compare our design to existing solutions and
base our preference on personal opinions. This version will be integrated into VADL in
addition to both the ISS and CAS receiving the necessary support to simulate caching,
address translation and atomic instructions (RQ2).

As mentioned in section 1.2, one of the stated goals is the ability to implement all atomic
instructions of ARMv8 and RISC-V in VADL. The latter can be validated using the
official RISC-V test suite1. While ARM provides a validation framework as well, it is
unfortunately not publicly available [MRSM16]. Hence, we verify their correctness by
hand. Next, we evaluate the impact of simulating the caching subsystem by comparing its
throughput to a version without caching (RQ3). Furthermore, we verify the functionality
of the cache hierarchy by measuring cache-specific data such as hit and miss rate and
comparing them to a state-of-the-art simulator such as gem5 [BBB+11,LAA+20] (RQ2).

1.5 Structure of this Thesis
Chapter 2 introduces the reader to theoretical concepts of caches, memory translation and
atomic instructions. In addition, we present an overview of VADL. Chapter 3 summarizes
current research on the topics of PDLs and cache simulation. In Chapter 4, we state our
language design choices for defining caches, write buffers, memory hierarchies, atomic
instructions as well as address translation in VADL. We also present our cache and write
buffer simulator. Next, we discuss our VADL specifications of atomic instructions and
performance findings in terms of cache simulation and address translation in Chapter
5. Finally, we propose further improvements and extension to VADL in Chapter 6 and
conclude our thesis in Chapter 7.

1https://github.com/riscv-software-src/riscv-tests

5

https://github.com/riscv-software-src/riscv-tests

CHAPTER 2
Background

This section introduces the reader to several concepts fundamental to understanding the
goal of this thesis. Note that many sections talk about memory accesses. We use the
terms ’reads’ and ’loads’ as well as ’writes’ and ’stores’ interchangeably.

2.1 Vienna Architecture Description Language (VADL)
The Vienna Architecture Description Language (VADL) is a PDL for designing all
aspects of a processor, ranging from the instruction set architecture (ISA), application
binary interface (ABI) to the microarchitecture (MiA). It was developed at the Technical
University of Vienna as part of a research project [Sch20,Mih23,Sch22,Gra21,HHH+24,
HK23]. The following Listing provides an overview of some of the features part of VADL:

1 constant MLen = 32
2
3 using BitsM = Bits<MLen>
4 using SIntM = SInt<MLen>
5 using UIntM = UInt<MLen>
6
7 function lessthan (a: SIntM, b: SIntM) -> Bool = a < b
8
9 import rv32i::RV32I

10
11 instruction set architecture RV32IM extending RV32I = {}
12 application binary interface ABI for RV32IM = {}
13 user mode emulation UME for CPU = {}
14 assembly description Assemble for RV32IM = {}
15 micro processor CPU implements RV32IM with ABI = {}
16 micro architecture FiveStage implements CPU = {}

Listing 2.1: Overview of the Vienna Architecture Description Language.

7

2. Background

Lines 11-16 define the different aspects of a CPU architecture. Note that depending on
the use case, not all definitions are required. For instance, an ISS does not require a MiA
specification, while the compiler generator may optionally use the additional information
to improve instruction scheduling for instance. Needless to say, meaningful cycle-accurate
simulation relies on a MiA. Lines 1-9 in Listing 2.1 present some structural features of
VADL. For instance, constant definitions can be used to easily switch between 32- and
64-bit address width while keeping the same ISA definition. The using keyword can be
compared to C’s typedef. VADL also provides functions as seen on Line 7. Here, the
function lessthan takes two arguments a and b both of type SIntM and returns a value
of type bool. Note that functions must be pure in VADL. Hence, any side effects are
forbidden, such as reading or writing from/to memory. We additionally want to highlight
the strict separation of ISA and MiA. All instructions, registers and memory are defined
generically in an ISA definition, while the MiA is only concerned with execution of said
instruction set. This enables CPU engineers to write multiple MiAs for the same ISA.

The VADL frontend then takes a VADL specification and allows to generate a compiler
backend, simulators as well as a hardware description language, which can be synthesized
on an FPGA. To be more precise, the VADL frontend currently supports generating an
LLVM compiler backend, instruction set simulator (ISS), a cycle accurate simulator (CAS)
as well as Chisel for hardware description. However, the general design goal of VADL and
its frontend is to support arbitrary backends. Hence, the VADL generators accommodate
a common intermediate language called the VADL intermediate representation (VIR)
which conceptually follows static single assignment (SSA) form. This section introduces
some of the core features of VADL.

2.1.1 Instruction Set Architecture

An ISA definition fundamentally consists of the following construction:

1 instruction set architecture SYS = {
2 using Byte = Bits<8>
3 using Index = Bits<5>
4 using Address = Bits<32>
5
6 program counter PC : Address
7 memory MEM : Address -> Byte
8 register file X : Index -> Byte
9 // ...

10 }

Listing 2.2: Basic instruction set architecture (ISA).

The example above defines an ISA with the name SYS and showcases some general aspects
of VADL. Bits<N> is a primitive type representing a bit vector of size N . VADL also
provides specialized integer types UInt<N> and SInt<N> to represent unsigned integer

8

2.1. Vienna Architecture Description Language (VADL)

(with modulo arithmetic) as well as signed integers using the two’s complement. The
using directive allows to alias a type with a more relevant identifier in the given context.
For example, in Listing 2.2, Line 4 defines a specific Address type. Thus, using this new
type provides more semantical information than using the primitive Bits<32> directly.
Furthermore, this allows developers to more easily reuse the ISA definition. For instance,
if users want to support an address width of 64, they will need to change only one line of
code. Having to alter the size only at one location additionally tends to be less error-prone.
Line 6 defines a program counter named PC having the type Address (Bits<32>). Next,
the architecture needs some memory, which is called MEM and defined on Line 7. Observe
that MEM is actually a function mapping an address to a single Byte (defined as Bits<8>
on Line 2). Register definitions are similar, however, the argument describes an index
i to access the ith register. Thus, the size of the argument also implies the amount of
registers of the given register file. In our case, index is a bit vector of size five and thus,
the architecture has 25 = 32 registers.

Next, in order to complement the ISA with an instruction, the specification first requires
information about the structure of an instruction. Consider the following example of a
format definition:

1 instruction set architecture RV32I extending SYS = {
2 format FormatB : Byte = {
3 arg : Index,
4 res : Index,
5 opc : Bits<6>
6 }
7 // ...
8 }

Listing 2.3: Format definition in VADL.

The format keyword defines a format with the name FormatB and the type Byte. Hence,
this type of instruction consists of 16 bits. These bits are separated into three fields: arg,
res and opc. Recall that Index is defined as a bit vector of size five. Thus, all fields
summed up result in 16 bits. Note that the order of the fields matters in how they are
layed out in memory, as seen in Figure 2.1. We also want to highlight another feature of
VADL: An ISA can be based on another ISA specification using the extending keyword.
Compare this to the approach of RISC-V which is separated into several extensions [RIS19].
VADL allows to define the base architecture as RV32I and an implementation including
integer multiplication and division (M-extension) can be provided separately by defining
a new ISA via instruction set architecture RV32IM extending RV32I. Next follows
a definition of our first instruction:

9

2. Background

7 6 5 4 3 2 1 0

FormatB

arg res opc

15 14 13 12 11 10 9 8

Figure 2.1: Memory layout of our example format definition FormatB.

1 instruction LOAD : FormatB = {
2 let addr = (0x1000’0000 as UInt<32>) + (X(arg) as UInt<32>) in {
3 X(res) := MEM(addr)
4 }
5 }
6 encoding LOAD = {
7 opc = 0b0010
8 }
9 assembly LOAD = (mnemonic, " ", register(res), ",", register(arg))

Listing 2.4: Instruction definition in VADL.

Lines 1-5 define the semantics of an instruction called LOAD using the previously defined
FormatB as a structure. All fields of the format are directly accessible within the definition.
The Listing 2.4 shows how the address is calculated from a fixed base address and an offset
stored in register X(arg). On line 3, the value stored at the address is loaded and saved
in register X(res). Observe how the arg and res fields are used as parameters within
the definition. Recall that our format definition also contains the field opc. Needless
to say, the CPU instruction decoder must be able to uniquely identify the appropriate
instruction. Generally, instructions have a fixed structure (defined via a format in VADL)
and a part of it, called the opcode, identifies what instruction to execute [PH17, p. 198].
Hence, we added an opc field in Listing 2.3. Line 7 establishes the static structure of
an instruction in the encoding. In theory, these steps are sufficient for a simulator or
hardware generator. However, the compiler generator also requires information about
the structure of the assembly language, defined on Line 9. A VADL developer simply
specifies the syntax and the VADL generators automatically produce the appropriate
grammar. However, many instructions share a similar structure in practice and hence,
manually defining the assembly string for each instruction leads to a lot of boilerplate
code. VADL provides additional helper functions to avoid this situation: The mnemonic
builtin uses the identifier of the instruction for matching. For instance, assume our ISA
also had two instructions named ADD and STORE. We could write the following code:

1 assembly ADD, LOAD, STORE =
2 (mnemonic, " ", register(res), ",", register(arg))

Listing 2.5: Handling multiple instructions with a single assembly definition.

10

2.1. Vienna Architecture Description Language (VADL)

The register builtin matches the field of a format to a register. The VADL frontend
includes a semantical analysis to check on what register file the field is used [Sch22]. For
instance, consider an architecture with a separate set of address and data registers, called
A and D respectively. Next, assume an instruction LOAD D1, A2 that loads the value stored
at address A2 in memory and saves the data to register D1. Without the aforementioned
analysis, the assembler would need to assume that any register file is valid. Hence, it
would accept LOAD D1, D2 for example. The analysis ensures that the VADL frontend
only generates rules for registers that are actually used by the specific instruction.

2.1.2 Application Binary Interface

This section presents how CPU engineers may specify an application binary interface
(ABI) in VADL. We continue with the example introduced in Section 2.1.1.

1 application binary interface ABI for RV32I = {
2 alias register a0 = X(0)
3 alias register a1 = X(1)
4 alias register a2 = X(2)
5 alias register a3 = X(3)
6 alias register sp = X(31)
7
8 [alignment : Bits<8>]
9 stack pointer = sp

10 return address = X(29)
11 frame pointer = X(30)
12 return value = [a0]
13 function argument = [a{0..3}]
14 caller saved = [a{0..3}, X(4), X(5), X(6), X(7)]
15 callee saved = [X(8), X(9), X(10), sp]
16 }

Listing 2.6: ABI definition in VADL.

First, we introduce another VADL concept on Line 7 called annotations. They equip the
subsequent element with additional attributes. What type of annotations are supported
depends on the specific object. In our example, the stack pointer definition has the
annotation alignment, specifying that the stack pointer must always be aligned to eight
bits. Listing 2.6 also shows definitions of several typical elements of an ABI which should
mostly be self-explanatory. Observe that VADL also supports aliasing registers commonly
used by architectures [RIS19, p. 137]. For instance, a0 and sp map to the registers
X(0) and X(31) respectively. Aliases additionally help save some boilerplate code, for
instance, when defining function arguments on Line 13. Here, a{0..3} expands into
a0, a1, a2, a3.

11

2. Background

1 micro processor CPU implements RV32I with ABI = {
2 start = 0x8000’0000
3 stop = PC = 0xeeee’eeee
4
5 exception invalid = {
6 }
7
8 startup = {
9 }

10 }

Listing 2.7: Microprocessor definition in VADL.

2.1.3 Microprocessor and Microarchitecture

The idea of the micro processor section is to describe general behavior that are independent
from a MiA. As seen in Listing 2.7, this includes defining the start address of execution,
a stop condition (mostly relevant for simulation), exception handling as well as including
startup code to execute before the user-supplied binary. Last but not least, we can specify
a MiA for our micro processor CPU, as seen in Listing 2.8.

1 micro architecture P3 implements CPU = {
2 stage FETCH -> (fr : FetchResult) = {
3 // ...
4 }
5
6 stage DECODE -> (ir : Instruction) = {
7 // Previous stage result accessible via FETCH.fr
8 }
9

10 stage EXECUTE = {
11 // Previous stage result accessible via DECODE.ir
12 }
13 }

Listing 2.8: Microarchitecture definition in VADL.

This definition only presents a small subset of the MiA features. Our example implements
the CPU micro processor in a three-stage pipeline MiA called P3. The pipeline is separated
into three stages named FETCH, DECODE and EXECUTE where each stage can access the
output of the previous one.

12

2.2. Caches and Cache Coherence

2.2 Caches and Cache Coherence
In a modern processor, reading or writing to main memory usually belongs to the slowest
aspects in the pipeline of a CPU. Thus, modern compilers try to generate code which
minimizes the amount of accesses to main memory by keeping values in registers. However,
accessing main memory becomes unavoidable at some point and in order to bridge the
gap, CPUs provide multiple levels of caches that contain a subset of main memory. The
size of a cache is considerably smaller than main memory (e.g. the Cortex-X1 has an
L1 data cache of size 64 kB [Arm20, p. A6-74]). How does a system determine what
data to store in the cache? The concept of caching is based on temporal and spatial
locality [PH17, p. 738]. The former assumes that a value that has recently been accessed
is likely to be accessed again, while the latter assumes that data closely located has a high
probability to be accessed as well. For example, consider an array A in the programming
language C and the common case of iterating through all elements in A. Recall that an
array always represents a continuous part in memory. Instead of loading each element
individually from main memory, a cache may fetch a larger region surrounding the first
element and thus, accessing subsequent elements in A will be much faster because they
are already contained in the cache. This block of data, fetched from memory at once, is
called the cache line. Its size can vary among microarchitectures, but many, such as the
Cortex X1, have a cache line size of 64 bytes [Arm20].

There exist several approaches for managing cache lines. One is to store them in an
array-like manner as seen in 2.2 which is called a direct-mapped cache. To determine
the location of a cache line, the controller considers the index of an address which directly
maps to an entry in the cache. The size of the index depends on the amount of cache
lines. For instance, a cache with 1024 entries requires log2(1024) = 10 bits. However, the
mapping from address to index is surjective. In other words, multiple addresses map to
the same index. The tag in combination with the index uniquely identifies a memory
region and thus, the controller must store the tag in addition to the data in order to
check whether the cache line corresponds to the requested memory region. If the tag does
not match, the cache line needs to be evicted and the requested data must be fetched
from main memory. Next, as mentioned above, a cache line contains several bytes. The
offset precisely determines a specific element within the cache line. The size of the offset
directly correlates with the size of the cache line. For instance, a cache line of size 64
bytes requires log2(64) = 6 bits. Finally, the size of the tag consists of the remaining parts
of the address: Size of address− log2(Number of cache entries)− log2(Size of cache line).
To continue with our example, this corresponds to 32 − 10 − 6 = 16 bits. [PH17, p.
754-764]

The advantage of a direct-mapped cache is its constant lookup time and thus, it scales
well with the size of the cache. However, consider a program which accesses different
memory regions but all addresses map to the same index. Then the single cache line
in the cache needs to be constantly evicted, while other indices of the cache remain
completely unused. An alternative approach is to manage its cache lines in a set instead
of an array. Thus, the index becomes irrelevant and only the tags are considered. This

13

2. Background

31 0515

Tag Index Offset

0

1

1022

1023

...

Tag Data

Address:

Cache

31 05

Tag Offset

Tag Data

Address:

Fully associative
Set

31 0514

Tag Index Offset

0

512
...

Tag Data

Address:

Cache

2-way
Set

Figure 2.2: Basic examples for a cache of size 64 KiB in three different variations from
left to right: Direct-mapped, fully associative and 2-way set associative. An address is
separated into a tag, index and offset. Sizes of each parameter depend on the configuration
of the cache. Index maps to the entry in the cache, tag determines whether cache line
corresponds to the same memory region. Offset corresponds to offset within cache line.
Figure inspired by [PH17, p. 762]

.

type of cache is called fully associative and allows full utilization of the entire cache
because the controller only needs to evict a cache line if the set is full. This adds more
complexity though: The decision on what cache line the cache controller decides to
evict (called the replacement policy) might impact the performance of the system.
For example, consider a worst-case situation where the CPU alternatingly accesses two
memory regions (mapping to two different cache lines) and the controller always replaces
one with the other. Here, this scenario completely eliminates the benefits of a cache.
CPU vendors have come up with several schemes. Basic ones include round-robin,
random, least-frequently used (LFU) or least-recently used (LRU). For instance, the
Cortex X1 uses pseudo-LRU for its L1 data and instruction caches [Arm20, p. A6-74].
Since LRU is difficult to implement in hardware and particularly does not scale with the
amount of cache lines, this replacement policy is often approximated, hence the name
pseudo-LRU [PH17, p. 861]. There exist also more thorough and complex schemes,
such as Static and Dynamic Re-reference Interval Prediction (SRRIP/DRRIP) [JTSE10],
Sampling Dead Block Prediction (SDBP) [KTJ10] and Signature-based Hit Predictor
(SHiP) [WJH+11].

A fully-associative cache might seem clearly superior to its direct-mapped counterpart
because it is able to fully utilize the entire cache. However, implementing a fully associative
cache requires comparing the tags of all cache lines which incurs additional overhead and
might be infeasible to achieve in hardware. However, there exists a way to combine both
ideas: Instead of having one large set, the cache can be divided into several sets and each
set corresponds to a certain index. Each set can then hold multiple cache lines with the
same index. This is called a set associative cache. For instance, a cache with sets of
size 4 is called a 4-way set associative cache. Which configuration is most desirable highly
depends on several factors. For instance, a fully associative cache might be feasible if the
cache is not very big and/or a cache miss induces a high penalty [PH17, S. 860].

Last but not least, caches can be distinguished in terms of how they handle writes.

14

2.2. Caches and Cache Coherence

Thread 1 Thread 2
A = 1 while(A == 0)

Figure 2.3: Example execution for cache coherency. A is initialized with 0. Inspired
by [NSH+20].

A write through cache forwards all writes directly to memory, while a write back
configuration writes a value to the cache and thus, the modified data will be written
back to memory once the cache line is evicted. [PH17, S. 862]

2.2.1 Cache Coherence

Modern CPUs usually have several layers of caches where each layer tends to be bigger
but also slower to access. For instance, the Intel Ice Lake Client Microarchitecture has a
L1 access latency of five cycles, while L2 already needs 13 cycles [Int24, p. 2-21]. This is
called the cache or memory hierarchy because if a requested memory region does not
exist in the level 1 cache, then it has to be fetched from the second level. If it also does
not exist there, it needs to be loaded from the third level and so forth. Next, consider
multi-core CPUs where another property of a cache becomes relevant: A cache may be
shared by multiple cores or is local to a core. For instance, modern CPU cores usually
have their own L1 data and instruction caches but the L2 cache could be shared by all
cores. Observe that this introduces another problem: Consider the example program in
Figure 2.3. Thread 2 begins execution and since A is initialized to 0, the loop will be
continuously executed. Thread 1 then stores A = 1. In a system that only consists of
main memory, thread 2 will see the value written by 1 and exit the loop. Next, consider
a system where each core has a local cache. Thread 2 remains stuck in the loop. Why?
Both threads have a copy of A in their local caches. Since 2 executes first, A == 0.
Once thread 1 stores A = 1, this value is only updated in its local cache and thus, not
visible by 2. Even if thread 1 decides to evict the cache line at some point and writes
A = 1 back to memory, thread 2 will not realize that the value has been modified. This
example shows the necessity for the system to provide additional guarantees, which are
called coherence invariants. There exist different variations of these properties, such
as token coherence [MHW03]. However, they are conceptually similar and we stick to
the definition from [NSH+20, p. 13]: The authors describe two safety invariants called
Single-Writer, Multiple-Read (SWMR) and Data-Value invariant. The former describes
that at any point of time either one core may exclusively read and write to a location
or multiple entities may only read from the same location. This concept allows us to
separate memory accesses into single-writer and multiple-reader epochs. The Data-Value
invariant states that the value of a memory location at the end of an epoch is equal to
the value at the beginning of the succeeding epoch. Both invariants solve our previous
example: The first epoch starts when thread 2 acquires read-only access to A where
A == 0. Once thread 1 attempts to write A = 1, thread 2 loses access to A and thus,
a new single-writer epoch begins. Finally, thread 2 tries to read from A again, leading

15

2. Background

to a new read-only epoch. Due to our Data-Value invariant, the value of A must be 1
because the write epoch ended with A == 1. Thus, thread 2 exits the loop. This results
in so-called cache coherence and both the SWMR and Data-Value property comprise
the safety invariants of cache coherence.

In order to provide cache coherence, cache and memory controllers implement a finite
state-machine (FSM) associated with each cache line. One of the simplest protocols is
the MSI protocol. The name corresponds to the three main states that a cache line
can be associated with. This protocol closely matches the SWMR invariant where the
modified state describes that the cache controller is allowed to read and write, while
the shared state denotes read-only access. All caches are connected via a bus to the
memory. If a cache requires access to a memory region, they send a request on the bus,
including the access type (read-only or read-write) as well as the address. The other cache
entities monitor the bus to react accordingly. For instance, if some caches have a certain
memory location in the shared state and some cache then requests read-write access, the
other caches will see those messages and evict their copies of the same location. Thus,
these type of protocols are called snooping cache coherence protocols. Another common
protocol family are directory coherence protocols [LLG+90]. The main problem with
a snooping-based system is that all messages are broadcasted to all entities and every
cache controller has to process these messages, limiting scaling. Directory coherence
protocols follow the idea that there exists a global view on the state of a memory location
(the directory) and thus, requests are sent directly to the directory. The directory then
forwards the message accordingly. For instance, if a cache A requests read-write access,
while another cache B currently owns the location, the directory will forward the message
from A to B, which then evicts the cache line and sends it to A directly.

2.2.2 Common Cache Coherence protocols

The design of the cache coherence protocol heavily depends on the structure of the cache
hierarchy. Relevant aspects include the amount of levels, whether the cache should be
write through or write back, inclusive-or-exclusive and whether the protocol must support
non-uniform memory access (NUMA) configurations. All these properties particularly
determine what transitional states are required. Note that there are usually two sets of
states: One for the cache and another for the memory controller. To keep this section
easier to understand, we want to stick to the states of the former. We begin by introducing
some of the more common protocols in their base configuration:

MSI: This protocol consists of three states Modified, Shared and Invalid. The first allows
read and write access, while the second one is restricted to read-only access. Note that
among all caches only one controller can be in the Modified state for the same cache
line. However, multiple readers may access the same data in a read-only manner and
therefore, the Shared state can be obtained by multiple entities at the same time. Note
that the cache lines in the Shared state are always clean, which means a cache controller
may simply evict the cache line without needing to write it back to memory. Needless to

16

2.2. Caches and Cache Coherence

say, a cache holding a line in a Modified state needs to write the data back to memory
before eviction.

MESI: Another common protocol (e.g. implemented by the Cortex X1 [Arm20]), which
adds an Exclusive state, is called MESI. To understand the motivation for this version,
consider the following case: Assume the CPU first reads from a memory region and
then writes to the same location. Hence, a cache using only MSI first asks for read-only
access on the bus, which puts the cache line in the Shared state. However, then a
write is performed and thus, the controller must ask for write permissions on the bus.
Observe that this adds additional latency to the write instruction even though the cache
technically already contains the cache line which causes needless traffic on the bus. The
goal of the Exclusive state is to resolve this issue. The memory controller explicitly
keeps track of whether some cache currently has read-only-access to a specific cache line,
which is not relevant in the MSI protocol (it must only know whether a cache has write
permissions). Hence, once a cache requests read-only permission and the controller knows
that no other cache currently has access to the same line, the controller explicitly informs
the requester that it is currently the only user of this cache line. Thus, the cache may
put the line in the Exclusive state. The advantage now is that once the CPU writes to
the location, it may silently upgrade the cache to the Modified state without consulting
the bus. However, this also means that if a cache evicts a line in the Exclusive state, it
must explicitly notify the memory controller on the bus. The reason is that the latter
cannot distinguish between whether a cache line is in an Exclusive or Modified state due
to the cache having the ability to silently upgrade the line.

MOSI: This protocol adds the Owned state to the FSM. We briefly explain the motivation:
When a cache has a cache line in the Modified state and another core requests read-only
access, the cache downgrades the state to Shared and has to send the data to both the
requester as well as to the memory controller. The reason is that the Modified state
implies ownership of the data. By downgrading its own state to Shared, the ownership gets
lost and thus, it is vital to explicitly transfer the data to the memory controller. Observe
the following potential issues: The cache might need to send the data twice, depending
on whether caches and memory controller are connected to the same bus [NSH+20, p.
128]. Furthermore, the memory controller commits the data to memory which might
incur a bottleneck in case memory must be frequently accessed. These disadvantages are
avoidable by keeping the ownership information: Recall that the Modified state implies
ownership. Thus, if another cache requests read-only access, the cache line downgrades to
the Owned state. It is now also read-only but dirty. This means our cache keeps ownership
information and only if eviction of this cache line is required, the cache controller needs
to explicitly write the data back to the memory controller.

MOESDIF: This is the protocol mentioned in the amd64 programmer reference [Adv24a,
p. 192]. The additional letters D and F refer to Dirty and Forward respectively. The
former is similar to the Exclusive state as the cache line is also read-only and can be
upgraded to Modified without consulting the interconnection first. However, the cache
line in the Exclusive state is clean, while this is not the case for Dirty. In case of an

17

2. Background

eviction, both states mandate the cache to notify the other entities but the Dirty state
additionally requires the cache line to be sent back to memory. The Forward state is
a microarchitectural optimization. Considering a simple MSI protocol, a read request
must be handled by the directory or memory controller. Thus, data is fetched from
memory, even though another cache might already have the same cache line which could
provide the data much faster. The Forward state allows a cache to respond to a read
request from another entity.

2.2.3 Write/Store Buffers

In the previous section, we discussed how caches reduce latency of memory accesses while
keeping coherence. We want to highlight another hardware technique that is relevant
for the topics discussed in this thesis. As described in the previous sections, writing to
memory can be quite costly, even when using a write-back cache. Recall that in order
to write data the cache needs to request write permissions from the memory controller.
This state is exclusive unlike read-only access, where multiple threads may share the
same memory region at the same time. Thus, if multiple writers need to write to the
same location, they need to constantly take each other’s permissions to access the line.
The AMD64 Programmer’s manual mentions that writes may also stall memory reads,
presumably due to limited ports to the memory, which can potentially stall the entire
execution pipeline [Adv24a, p. 202]. The system can reduce the impact of said situations
using a write or store buffer. When executing a store, the value is not sent to the
cache directly, but instead stored in the write buffer. In fact, the cache does not even
require to contain the affected memory region. The actual store occurs at a later point
for several reasons, such as when the store buffer is full. This might raise the question
whether a store buffer simply defers the problem to a later time because the system
has to commit to memory at some point anyway. In essence, the question is valid but
deferring to a later point may have several advantages: For example, the system can
commit all stores at the same time which can be more efficient, especially when there are
several stores affecting the same cache line. In addition, the system might write back
values step-by-step if it observes that memory/cache contention is low at the moment.
Hence, as long as the CPU generates less writes than the write buffer can commit to
memory, the latency of a store can be completely eliminated [PH17, p. 769]. In addition,
consider a thread writing to the same location as a previous store that is still contained
in the buffer. The write buffer can simply overwrite the value of a previous store to the
same location, reducing the amount of writes that actually have to be committed to the
cache and memory. This optimization is called write coalescing.

An important question to consider is how write buffers affect the correctness of a multi-
core system. Recall that a cache coherence protocol is actually necessary to maintain
assumptions of a memory-only system. Take a system where each core has a private store
buffer. In a single-threaded context and for true dependencies (read-after-write), if the
write has not yet been committed to memory, the read returns the value from the buffer.
This mechanism is called store forwarding [TA13]. For a multi-threaded environment,

18

2.3. Memory Consistency Model

Thread 1 Thread 2
1: x = 1 1: r1 = y
2: y = 1 2: r2 = x

Figure 2.4: Litmus test, x and y are initialized to 0. [MHAM11]

Thread 1 Thread 2
1: x = 1 1: while(flag == false) goto 1
2: flag = true 2: r1 = x

Figure 2.5: Litmus test, x and flag are initialized to 0 and false respectively. [MHAM11]

Cycle Thread 1 Thread 2 Coherence State of x Coherence State of flag
1 flag = true Read-only for 2 Read-Write for 1
2 while(flag == false) Read-only for 2 Read-only for 2
3 r1 = x Read-only for 2 Read-only for 2
4 x = 1 Read-Write for 1 Read-only for 2

Figure 2.6: Possible cache coherent execution of litmus test 2.5. Thread 2 reads flag = true
at cycle 2 and x = 0 at cycle 3. Taken from [NSH+20].

consider the example in Figure 2.3, which we used to explain the motivation behind
cache coherence protocols. Thread 2 may only continue if it sees A ”= 0. When thread 1
stores A = 1 to its private write buffer, the value is not yet visible to 2. Nevertheless, the
value must be committed to cache or memory eventually, making it visible to all threads.
However, Section 2.2.1 explains how cache coherence protocols are an abstraction over
a memory-only system and hence, cache coherence still preserves a total order over all
memory accesses. But since write buffers are private to each core, a core observes its
own writes before other hardware threads in the system. Therefore, each core might
observe a different order of loads and stores. Whether a certain order is allowed depends
on the memory consistency model specified by the ISA. Refer to Section 2.3 for more
information.

2.3 Memory Consistency Model
It might seem that cache coherence is sufficient to model multi-threaded programs.
Consider the example in Figure 2.4: We are interested in the possible values of r1 and r2.
Needless to say, the result depends on the order of execution which is non-deterministic in
a parallel environment. The obvious cases are r1 = r2 = 0 and r1 = r2 = 1 where thread
2 has executed its code before thread 1 and vice versa respectively. Another possible
execution is that thread 1 runs Line 1, then thread 2 executes its program and then
thread 1 continues to execute Line 2 which yields r1 = 0 ∧ r2 = 1. What might come as
a surprise is that r1 = 1 ∧ r2 = 0 is also a possible result. The reason is that modern
hardware, thanks to out-of-order execution, can decide to reorder the store at Line 1

19

2. Background

of thread 1 after Line 2 which is valid from an isolated single-threaded perspective. Of
course, one might argue that this example is impractical because the program relies on
non-deterministic behavior even when assuming every line is executed in-order. Consider
a more practical example in Figure 2.5. Thread 2 loops endlessly while a flag is equal to
false. This flag could represent several practical scenarios such as a mutex to a resource
or notifying another thread that new data is available for further processing. Taking the
latter case, thread 2 is supposed to see the newly available data once it gets notified via
the flag. However, Figure 2.6 shows a valid cache-coherent execution which yields r1 = 0.

Observe that a cache coherence protocol is a way to hide the abstraction over the memory
subsystem in order for the caches to behave like a cacheless system [NSH+20, p. 21].
However, it does not specify how memory accesses to different locations are related to
each other. This is where the memory consistency model or just memory model
comes into affect. A memory model describes all possible values for a certain input that
reading from memory can yield. These results are called MC executions [NSH+20]. Unlike
in a deterministic single-threaded environment, there can be multiple options, similarly to
the example given in Figure 2.4. Example models are sequential consistency (SC), total
store order (TSO), the C11 Memory Model or Linux Kernel Memory Model (LKMM).
Observe that a memory consistency model exists for both hardware and software. When
translating from one model to another, the compiler or tool must ensure that the target
model disallows all executions forbidden by the source model. The target model might be
stronger in the sense that it disallows more executions than the source model. Consider
an example of compiling C code using C11 atomics to the RISC-V architecture. First
of all, the compiler must ensure to reorder reads and writes only as long as it does
not violate the C11 memory model. However, this might not be sufficient because the
hardware’s weaker model allow it to reorder these operations during execution. Therefore,
the compiler needs to insert special fence or barrier instructions at certain points. We
introduce these instructions in Section 2.3.4.

Memory models can be formally defined. There exist several methods which can be
divided into operational or axiomatic models [AMT14]. Some ISAs use these tools to
model their architecture’s memory behavior such as RISC-V [RIS19, p. 191]. However, a
lot of formalism can be hard to understand and hence, vendors often also supply so-called
litmus tests. These are small multithreaded code snippets that explain what outcomes
are allowed and what are not [NSH+20, p. 262]. Figures 2.4 and 2.5 show simple examples
for litmus tests.

2.3.1 Sequential Consistency

Sequential consistency (SC) was originally defined by Lamport [Lam79] and consists of
two properties:

1. Each read and write must be committed in the order defined by the program (also
called program order).

20

2.3. Memory Consistency Model

2. All memory operations are serviced via a single FIFO-queue.

The second property implies an interesting observation: There exists a single global view
on memory and hence, all threads see all memory operations in the same order. In other
words, consider every pair of loads-loads, loads-store, store-load and store-store occurring
in the program (program order). SC ensures that all threads observe these pairs in the
same order. While being very strict, it is also the most intuitive to understand. The
result of these properties is that sequential consistency only allows executions which
are formed by some combined sequential execution. Considering our litmus test from
Figure 2.4, the result r1 = 1 ∧ r2 = 0 is disallowed by SC. The load from y must happen
before the load from x by property (1). r1 = 1 and r2 = 0 implies that y = 1 happens
before x = 1, considering that both variables are initialized with 0. However, this yields a
contradiction because y = 1 before x = 1 does not respect the program order of thread 1.

2.3.2 Total Store Order
Another common memory model is total store order (TSO), provided by x86 for example.
In general, TSO is quite similar to SC with one notable exception: A load may be
reordered before a store unless the store-load pair accesses the same memory location
because TSO must still preserve read-after-write dependencies. Thus, threads can observe
their own write operations before other threads. However, once a write becomes globally
visible, all other threads observe the same order [NSH+20, p. 39-44]. One might ask what
benefits does TSO have over SC since the differences are rather subtle. The important
aspect is that allowing loads to be reordered before a store enables the use of a FIFO
write buffer, explained in Section 2.2.3. Thus, writes do not need to be committed
to cache/memory immediately which can improve throughput. Note that the buffer
may not use write-coalescing as TSO still needs to preserve store-store order unless the
implementation can guarantee the preservation via some other mechanism.

2.3.3 Weak/Relaxed Memory Model
There exists no general notion of a weak memory model, but more like a family of weak
memory models. SC and TSO are often called ’strong’ memory models because they still
preserve per-thread memory operations [NSH+20, p. 55]. Weaker or relaxed memory
models allow both the hardware and the compiler to more aggressively optimize code
execution. However, when certain orderings are required, additional fence instructions
must be inserted which might not be necessary on an architecture such as x86. RISC-V,
ARMv8 and IBM Power are prominent examples for having variations of more relaxed
memory models. Even among them, the strength of their respective memory model varies.
For instance, RISC-V provides multi-copy atomicity, ARMv8 defines its architecture as
’other-multi-copy atomic’ and IBM Power does neither [RIS19,Arm21,Ope21]. Multi-copy
atomicity and other-multi-copy atomicity describe that all writes, once they are globally
visible, are observed in the same order by all threads. However, threads may see their
own writes in a different order in order to preserve program order [Arm21, RIS19, p.

21

2. Background

(1) li t1, 1
(2) sw t1, 0(s0)
(3) fence
(4) sw t1, 0(s1)

Figure 2.7: Example of a memory fence in the RISC-V ISA. Code snippet from the
"PPOCA" store buffer forwarding litmus test [RIS19, p. 166].

B2-224, p. 185]. This property is inherently fulfilled by TSO (see Section 2.3.2) but for
instance, the memory model of RISC-V still allows write coalescing or write reorderings
which would be forbidden under TSO.

The Power ISA is an interesting case which does not enforce multi-copy atomicity. Thus,
different threads may observe reads and writes in different orders and hence, there exists
no global order of memory operations. On the one side, this makes writing parallel
software more difficult because developers and compilers need to be more explicit about
when synchronization is required. On the other side, microarchitecture designers have
more freedom to speed up execution. For instance, multi-copy atomicity essentially
enforces that a write buffer must be private to each thread (at least from a behavioral
perspective). However, a Power core is allowed to read a value from another core’s write
buffer before it is committed to global cache/memory. This leads to a situation where a
thread may observe memory operations in a different order than other cores.

2.3.4 Memory Fences
In the previous section, we introduced several common memory models used by more
popular ISAs. This helps us understand how a core may reorder loads and stores as
well as how they are observed by other threads. But what if the memory model of the
hardware does not provide sufficient guarantees for a particular algorithm? In order to
enforce stronger constraints, ISAs provide so-called memory fences. As the name might
imply, a fence instruction ensures that all memory-related operations occurring before the
fence in program order are observed before the ones occurring after the fence in program
order. For instance, consider the code snippet in Figure 2.7. (3) shows the use of a fence
instruction as provided by RISC-V. Assume that 0(s0) and 0(s1) are both initialized to
0 and correspond to different memory locations. Without a fence, the memory model
of RISC-V would allow another core to observe the store of (4) before (2). The fence
ensures that (2) is always observed before (4). On a side note, an analogous example
for x86 does not require a memory fence because TSO implicitly preserves store-store
ordering.

Depending on the strength of the consistency model of an ISA, different types of fences
might be provided. This is particularly the case for architectures with weaker memory
models because depending on the situation, a full memory fence might not be necessary.
For instance, the RISC-V instruction fence w, w prevents any write after the fence to
be observed before a write before the fence. However, loads may still be reordered freely

22

2.4. Atomic Instructions

across the fence. This might reduce the performance impact of an explicit synchronization
when a complete order preservation is not actually required.

2.4 Atomic Instructions
A multicore CPU requires synchronization primitives in order to allow software developers
to implement parallel algorithms. The most common family of instructions are read-
modify-write (RMW) operations, such as fetch-and-add (FAA) or compare-and-swap
(CAS). While these instructions consist of multiple steps, atomicity guarantees that all
these steps appear to other threads as if they were executed in a single step. The question
is what instructions are sufficient to implement parallel algorithms? This requires a
formal way to assess the power of an atomic operation. The consensus problem states that
multiple threads propose a value each and then, need to agree on one of those values. An
algorithm solving the consensus problem is called a consensus protocol. We specifically
focus on wait-free protocols because implementing a parallel wait-free algorithm requires
that the atomic primitives of the CPU are wait-free themselves. An algorithm is wait-free
if all threads finish execution in a finite number of steps. Next, the consensus number
assesses the strength of a consensus protocol. This number corresponds to how many
threads are able to agree on one of their proposed values. For instance, a consensus
number of two states that the algorithm can only agree on a value for at most two
threads. Three or more threads are not supported. Note that the consensus number can
be infinite in which case there is no limit for how many threads the consensus protocol
can decide upon at most [HSLS20].
Most interestingly, atomic registers are proven to have a consensus number of one.
Informally, consider two threads A and B deciding on the value. The question is how can
the system determine which thread accessed the register first? Consider the case where A
reads from the register and B also executes an operation (either a read or write). There
exist two possibilities: In the first one, B executes its operation first and hence, it won the
consensus. In the other one, A reads first, then B applies its operation and thus, A won
the consensus. However, both scenarios are indistinguishable to B because the side effect
of A reading from the shared register is not visible to B. There are also other cases which
need to be formally considered, however, the argument is similar, namely that neither
thread cannot differentiate the outcome. Therefore, atomic registers have consensus
number of one. Thus, even if one was to built a CPU with shared registers between cores,
simple loads and stores to those registers would not suffice for implementing parallel
algorithms. This shows the need for dedicated atomic instructions. Let us consider the
family of RMW operations, such as a FAA operation. This operation has a consensus
number of exactly two. Very informally, consider a protocol where each thread stores its
proposed value in an array where the id of the thread corresponds to the index in the
array. Next, a decision variable is initialized to zero and each thread increments the value
via a FAA. Recall that a FAA returns the current value and atomically increments the
value by one in the memory. The thread loading the value zero has won the consensus,
while all other threads, which must receive a non-zero value by definition of a FAA, have

23

2. Background

cas:
lr.w t0, (a0) # Load value from memory
bne t0, a1, fail # a1 contains expected value
sc.w t0, a2, (a0) # Try to update. a2 contains new value
bne t0, cas # Retry if store-conditional failed
li a0, 0 # Indicate success as return value
jr ra # Return
fail:
li a0, 1 # Indicate failure as return value
jr ra # Return

Figure 2.8: Example for a CAS function using LR/SC instructions provided by RISC-V
ISA. Code snippet from [RIS19, p. 50].

lost and thus, the winning thread’s value will be chosen. In case of two threads, the
losing thread clearly knows who the winning thread is because the array has size two
and one element belongs to the losing thread and thus, the other remaining element
must contain the decided value. However, in the case of more than two threads, the
losing threads cannot determine which thread won the consensus. Thus, FAA only has
consensus number two.

Finally, let us consider a CAS operation. A CAS has three operands, an address, an
expected value and an updated value. First, the currently stored value is loaded from the
given address and compared to the expected value. Next, if they match, the CPU stores
the updated value at the same address. All of this happens atomically. We construct a
consensus protocol based on a CAS. A decision variable x is initialized to zero. Next,
each thread proposes its value in an array where the thread id corresponds to the index
in the array. Each thread tries to exchange the value stored at x with its own thread id.
Note that we assume that there cannot be a thread with an id zero. Only one thread will
be able to replace the initial value stored at x, which is the winning thread. All other
threads see the winning thread’s id so they also know which thread won the consensus.
Thus, the consensus number is infinite, assuming that integers are unbounded.

Finally, we want to introduce universality: A primitive is universal if and only if it is
powerful enough to support arbitrary wait-free algorithms. An operation with consensus
number n is universal for a system with at most n processes [Her91, p. 125]. Thus,
we can conclude that a compare-and-swap operation is sufficient to implement parallel
algorithms for any system. ARMv8 and amd64 provide dedicated instructions called
CAS and CMPXCHG respectively. The former is atomic by default, while the latter requires
a LOCK prefix [Adv24b,Arm21]. While these instructions would be sufficient in theory
and thus, can be used to implement other RMW operations such as FAA, most ISAs
still provide dedicated fetch-and-add, fetch-and-and, etc. instructions, presumably for
performance reasons as they are often required in practice.

Some architectures, most notably RISC-V, Power and ARMv8, support even more

24

2.5. Virtual Address Space and Address Translation

powerful primitives called load-reserve (other names include load-exclusive or load-link)
and store-conditional (also named store-exclusive) [Arm21,RIS19,Ope21]. We continue
with load-reserved (LR) and store-conditional (SC) but the other names can be used
interchangeably. An LR instruction loads a value from memory and additionally creates a
reservation. A store-conditional stores a value to memory if and only if such a reservation
to the specified address exists. This reservation is cleared by stores from the same or
other threads but may also be cleared spuriously e.g. due to a context switch. Observe
that this functionality can be used to implement a compare-and-swap and other RMW
operations such as for RISC-V in Figure 2.8. The question might arise why such a
more verbose construction is required if a CAS already provides an infinite consensus
number? LR/SC is popular for RISC architectures because they might not have an
instruction format for three source operands such as RISC-V [RIS19, p. 48]. Another
reason is that, albeit being the same consensus class, LR/SC is slightly more powerful
than a CAS because it does not suffer from the ABA-problem [HSLS20, p. 244]. An
ABA-problem occurs in the following situation: Suppose thread 1 loads value A from
location a and then, pauses before applying a CAS to exchange it for some other value.
In the meantime, thread 2 runs and applies the CAS to exchange A for B at location
a. Next, it runs another CAS to exchange B back to A. Next, thread 1 continues with
its CAS which succeeds because the stored value is still A as expected for thread 1,
even though the stored value A does not correlate with the value A that was originally
loaded by thread 1. However, if the code used a LR/SC pair to conduct the exchange,
thread 1’s operation will fail because another store was executed between its load and
the store-conditional. ABA-issues commonly occur in memory management scenarios
where internal data structures are recycled for reuse [HSLS20, p. 241].
Recall that when an LR-like instruction is executed, the core makes a reservation of the
given address. Note that the hardware usually does not remember the entire address but
ignores some least-significant bits. Thus, a single reservation covers an entire memory
region and the size is defined by the reservation granule [Ope21, p. 1049]. Thus, as long
as the address of a subsequent conditional store translates to the same reservation region,
the store will succeed albeit the address not being equal. The reservation granule can
vary between MiAs [Arm21, p. B2-312] [Ope21, p. 1049].

2.5 Virtual Address Space and Address Translation
When user space programs access memory on modern systems, the addresses do not
correspond to physical addresses of the real memory. Instead, they work with virtual
addresses which get translated into physical addresses on access. Similarly to how a cache
is organized in cache lines, physical addresses are separated into pages. The mapping
is defined by a page table which is usually unique for each user space process. Usually,
a dedicated register holds the address to the beginning of the current page table. The
upper bits of a virtual address are then mapped to a physical address while the remaining
bits designate the offset within the page [RIS21, p. 79]. Using a virtual address space
has many advantages:

25

2. Background

1121

VPN[1] VPN[0]

31 0

page offset

Figure 2.9: Structure of a RISC-V Sv32 virtual address. [RIS21, p. 79]

1121

PPN[1] PPN[0]

33

page offset

Figure 2.10: Structure of a RISC-V Sv32 physical address. [RIS21, p. 80]

9 719

PPN[1] PPN[0] RSW

31

D A G U X W R V

6 5 4 3 2 1 0

Figure 2.11: Structure of a RISC-V Sv32 PTE. The field RSW is reserved for software.
Flags are dirty D, accessed A, global G, accessible to user mode U, execute X, write W,
read R and valid V. [RIS21, p. 80]

• Address space separation: The virtual address space differs for each process,
providing some degree of isolation between multi processes. For instance, this
prevents one process to maliciously or unintentionally modify the memory of
another process, potentially corrupting it. [PH17, p. 819]

• Physical memory management: Since the mapping can be freely configured by
the operating system, pages in the physical memory can be freely moved around.
Furthermore, operating systems employ a technique called ’swapping’, allowing to
store less frequently used pages on the hard disk in order to use the memory for
other purposes. [PH17, p. 829]

• Memory Protection: The type of access to memory regions can be restricted.
For instance, the text section containing the executable data should not be writable
in order to prevent bugs in software to be exploited, allowing the attacker to
dynamically rewrite the machine code. Similarly, memory pages marked writable,
such as the heap or stack, should not be executable. macOS on Apple Silicon even
enforces a ’write xor execute’ scheme on all processes [app].

• Memory-mapped I/O: Most modern operating systems utilize the virtual address
space to allow processes to map files from the file system into their address space.
A mapped file is usually not copied entirely into memory but rather parts of the
data once they are actually accessed. In essence, buffer management is delegated
to the kernel. This allows programs to automatically benefit from other features
mentioned above, such as swapping and memory sharing when several process map
the same file into memory. [IEE18]

26

2.5. Virtual Address Space and Address Translation

Virtual memory needs to be supported by the hardware to properly work. The piece of
hardware responsible is called a memory management unit (MMU) [Arm21, p. D8-6565].
When the processor wants to access some location in memory via a virtual address, the
address must be translated into a physical address. As an example, we want to present
the approach of the RISC-V architecture. RISC-V provides several sizes of the virtual
address space. We consider the smallest mode, Sv32 for a 32-bit paged virtual memory
system [RIS21]. A page is 4 KiB and thus, the 12 least significant bits of a virtual address
corresponds to the offset. The remaining 20 bits are called the virtual page number
(VPN) which are split into two 10 bits parts. The reason is that RISC-V employs a
multi-level page table. If RISC-V did not do this, then a single page table would require
at least 220 entries. Since each page-table entry (PTE) uses four bytes, this would lead
to a page table of four MiB, even though most entries might not even be used. Now
imagine having just a 1000 processes running on the system, where all page tables alone
already consume almost 4 GiB. Having a multi-level page table allows to reduce the size
of the page table. In the case of RISC-V, splitting the address into two 10 bits parts
decreases the size of the page table to 210 = 1024 entries. Since a PTE needs four bytes,
an entire page table conveniently fits on a single page itself.

The translation begins by using the VPN[1] as an index into the page table. The address
of the current page table is stored in the satp register. Next, look at the page entry
as seen in Figure 2.11. The physical page number (PPN) corresponds to the upper
bits of a page-aligned physical address but its meaning depends on several flags. Most
importantly, the V flag determines whether the entry is valid. If the flag is not set, a
page-fault exception is raised. A page-fault does not necessarily mean that a program
accessed an invalid address. It could also mean that the kernel swapped a memory page
out onto the disk and thus, must now reload the page into physical memory. Next, the
processor core checks the permission flags R, W and X corresponding to read, write
and execute. If all of them are unset but the page is valid, then the PPN points to a
second-level page table. The process is then repeated but now the VPN[0] is used as an
index. Otherwise, the PTE entry is a leaf entry. Last but not least, the processor checks
whether the permission flags align with the current operation and an exception is raised
otherwise. Finally, the PPN is used to reconstruct the physical address.

As observed in Figure 2.11, the PTE contains additional flags, most notable the D (dirty)
and A (accessed) flags. The former indicates that a page has been written to, while
the latter corresponds to any type of read, write or execute access. Both are set by the
hardware and can be used to optimize memory management in the kernel because unlike
memory caches, the page table is usually managed by software [PH17]. For instance, the
D flag can be used to determine whether a memory mapped file needs to be actually
written back to disk. The A flag might be helpful to determine what memory page to
evict in case of high memory usage. In addition, the RSW field is ignored by a RISC-V
implementation and specifically designed to be used by the operating system.

Observe that accessing memory via a virtual address introduces several additional
steps with potential overhead accordingly. Continuing with our RISC-V example, the

27

2. Background

translation process itself takes two memory accesses in the worst case, one for accessing
the root page table entry and a second one for the second-level page table if applicable.
Only then can the actual memory access be conducted. In order to minimize this impact,
hardware designers have introduced a cache for the translation, called the translation
lookaside buffer (TLB) [PH17, p. 834]. The behavior is very similar to a memory cache
as the TLB maps a virtual address to a physical one. Since the TLB is not exhaustive, it
stores a tag of the virtual address to ensure the entry matches. If an entry cannot be
found in the TLB (a TLB miss), the hardware first tries to fetch the entry from the page
table. If the entry is actually invalid, a page-fault is raised. An L1 TLB is usually fully
associative because misses are rather expensive [PH17,Arm20]. Some microarchitectures,
such as the Cortex-X1, additionally store an address space identifier (ASID) to indicate
what context the entry belongs to. This allows to switch between processes with different
address spaces without having to invalidate the TLB first [Arm20].

28

CHAPTER 3
Related Work

3.1 Cache Simulation
There exists a wide range of cache simulators, all varying in terms of goals, use case and
hence, their design. Brais et al. analyzed more than 20 different simulators [BKP20]. The
authors classified them into several categories based on different attributes. For starters,
a simulator can be functional or timing. The former merely focuses on the functionality
of a cache, while the latter also takes latencies on the interconnect, bus port widths
and other microarchitecture-specific properties into account. Next, there exist several
ways of how a simulation may be conducted. For instance, some simulators execute or
emulate the target program to imitate the behavior of a cache, while others use previously
recorded memory-traces which are then replayed by the cache simulator. Finally, some
simulators are designed as standalone programs but many have been developed as part
of a general simulator, which also replicate other parts of a computer system.

Dinero IV is an older but often cited cache simulator [EH]. It is capable of simulating
multiple-cache levels and separate data and instruction caches based on memory traces.
Note that Dinero IV can be used only for basic statistical purposes such as cache miss rate.
It does not actually store and load data and also does not consider any timing-related
information. Hence, cache coherence is also not in the scope of this simulator.

gem5 is a widely popular full-system simulator that supports simulation of several
ISAs, types of memory, GPUs and more with a varying degree of accuracy. The core
parts are written in C++ but Python is used for setting up the configuration of the
simulator [BBB+11, LAA+20]. It also includes two types of cache simulation, called
’classic’ caches and Ruby. The former implements a highly-configurable MOESI snooping-
based protocol, while the latter is a framework to model arbitrary cache coherence
protocols. Ruby provides a domain specific language called SLICC and is used for
specifying the set of states, transitions and resulting actions in the state machine. gem5

29

3. Related Work

ships with several cache coherence protocols written in SLICC, such as a directory-based
two-level MESI. Ruby is designed for accurate timing simulation and hence, can be
considerably slower compared to functional simulators.

Ubal et al. developed a simulation framework for CPU-GPU computing called Multi2Sim
[UJM+12]. Initially, the simulator was designed for simulating the x86 instruction set in
combination with a specific AMD graphics card. However, the simulator has since been
extended to support several ISAs and graphics card microarchitectures [ea]. Multi2Sim
uses a fixed 6-state coherence protocol. Several attributes, such as associativity, block
size and replacement policy, can be configured via configuration files. The simulator
separates the cache definition from the interconnect and hence, allows users to define a
flexible topography of the cache hierarchy. The simulator itself is functional and records
basic statistics, such as amount of memory accesses and cache hit rate.

Cachegrind is a high-precision tracing profiler [cac]. It is distributed as part of valgrind,
a popular debugging and profiling tool. Cachegrind’s primary purpose is to accurately
measure the amount of instructions executed. In addition, the tool allows simulating the
behavior on the memory hierarchy. The hierarchy is fixed to a private level 1 data and
instruction and a shared level 2 cache. Configuration options are limited to total size,
associativity and line size. The authors mention that the behavior approximates an AMD
Athlon from 2002. Note that cachegrind does not emulate the given program, unlike
gem5 or Multi2Sim. The program is still executed by the host CPU natively. Hence, this
also limits design space exploration (DSE) because other microarchitectural properties or
even ISSs cannot be simulated.

Jaleel et al. developed the cache simulator called CMP$im [JCLJ08]. Unlike previously
mentioned simulators, it is not execution-based but instead relies on instrumentation using
the Pin analysis tool [LCM+05]. CMP$im inserts instrumentation code for every memory
access which is then redirected through the cache simulator. Users may define typical
attributes such as cache size, associativity and replacement policy but also configure the
hierarchy in terms of levels whether a level is shared or private as well as inclusion policy.
According to the authors, CMP$im employs a MESI-based cache coherence protocol.

pycachesim is another functional cache simulator written in Python [pyc]. It can simulate
arbitrary inclusive memory hierarchies with support for several replacement policies,
arbitrary associativity and cache line sizes as well as write policies, such as write-through
and write-allocate. However, its focus lies on simulating single-core hierarchies and hence,
does not consider cache coherence at all. There exists no state-tracking for cache lines
except for whether they are dirty. The simulator is designed to be used in Python but
the core has been written in C to ensure high performance.

Next, MultiCacheSim is a simulator focused on coherence simulation [mul]. The simulator
allows allocating an unbounded amount of caches that can be accessed concurrently.
The project includes an implementation of the MSI and MESI coherence protocols but
specifically mentions its openness for extension. In addition, it is written in pure C++
and does not require any external dependencies. One drawback of this simulator is that

30

3.1. Cache Simulation

it does not allow defining a memory hierarchy. Hence, the simulation only differs between
reads serviced from the cache or remotely. This means that more complex multi-level
cache coherence protocols cannot be sufficiently simulated.

zsim is a highly parallel simulator with the stated goal to efficiently simulate even 1024-
core CPUs while retaining a high-level of accuracy [SK13]. The authors explain that a lot
of cache simulators pass messages in order to handle synchronization between conflicting
cache accesses. However, this introduces a significant overhead and thus, they opted
for a shared-memory design instead. One challenge of developing a parallel CAS is that
accuracy might suffer because parallel execution is non-deterministic and hence, could
impair the accuracy of a real system. A purely single-threaded simulator, such as gem5,
does not suffer from this issue. However, this approach also limits the scalability of a
system. Note that multicore systems, even with 3-digits core counts, have become more
common and therefore, scalability will be even more relevant. The authors of zsim showed
that a high level of accuracy can be achieved even with a parallel design. They validated
their simulator against a real 6-core Intel Xeon CPU using the full SPEC CPU2006
suite and according to their results, their average L1 data cache misses per thousand
instructions (MPKI) is off by 1.14. While they also briefly mention a comparison to
other simulators, they do not compare themselves to gem5 as it was validated against a
different CPU architecture. Furthermore, as mentioned by [BKP20], note that validation
against real hardware may lead to over-generalization and hence, simulating other types
of systems could lead to varying degrees of accuracy. However, we should mention that
zsim is limited to x86-64 simulation and importantly, does not allow configuration of the
cache coherence protocol, which we deem important for our purposes of VADL.

McSimA+ is another x86 timing simulator with a focus on accurately simulating manycore
MiAs [ALOJ13]. While similar to zsim, McSimA+ focuses on simulating asymmetric
architectures where the same die contains two different sets of cores. One is usually a set
of high performance cores, while the other consists of slower but more energy-efficient
ones. The cache simulation part of McSimA+ is highly detailed and provides three
coherence protocols used in real MiAs. For instance, the ’DRAM-dir’, found in the Alpha
21364, stores the directory in memory but additionally employs a cache situated in the
memory controller. Furthermore, McSimA+ respects the topology of the interconnect in
its timing simulation.

Miller et al. developed Graphite, a parallel and distributed simulator for manycore
systems [MKK+10]. Similarly to zsim and McSimA+, the goal of Graphite is to simulate
manycore machines efficiently, while utilizing the power of a multicore host. However,
the authors take a different approach by distributing simulation threads across multiple
machines, which allows them to employ more parallelism at the cost of sacrificing accuracy.
The authors specifically mention that they do not strive for cycle-accurate simulation.
Most noteworthy, the simulated program is not required to be designed for distributed
execution, as any pthreads-based program is compatible. Graphite is divided into modules
which can be separately configured and exchanged. The memory module is responsible
for imitating the cache hierarchy and coherence. The authors implemented two cache

31

3. Related Work

coherence protocols: A directory-based MSI protocol, which can be fixed to a certain
number of sharers, as well as the LimitLESS protocol [CKA91]. The memory subsystem
uses a fixed hierarchy, consisting of a private L1 and L2 cache. However, they claim
that thanks to Graphite’s flexible architecture, a new module using another memory
configuration can be easily developed and used instead. Graphite uses a message-based
architecture for distributing events (e.g. a cache coherence request) and communication
occurs via TCP between hosts. The authors investigated the performance overhead of
the cache coherence protocols using a benchmark that runs almost perfectly parallel and
hence, little sharing is needed. However, read-only code, such as shared libraries, need
to be shared across all hosts. Hence, the authors limited the directory to fixed number
of sharers (e.g. 4) which means that w.l.o.g. if a fifth sharer requests some read-only
data, the memory controller is forced to evict the data from the previous four sharers.
Thus, the authors were able to observe almost perfect scaling with the number of threads
until it increases above the set number of sharers in the directory. While the paper also
includes an evaluation of the cache miss rates, the authors do not mention any validation
of their cache simulation.

Carlson et al. used Graphite as a foundation for their own simulator, called Sniper
[CHE11]. Graphite models the timing of a system by assuming fixed latencies for
instruction execution, cache misses and failed branch predictions. Graphite specifically
does not take into account that superscalar execution may hide some of these latencies.
The authors believe that this model is not accurate enough but needless to say, true
cycle-accurate simulation requires considerably more computational power. Hence, they
propose a middle ground called interval simulation. The idea is that miss events (branch
mispredictions, cache and TLB misses) divide the execution into intervals. The simulator
keeps track of instruction windows that are necessary for tracking the simulated execution
time. These windows match the size of the reorder buffer of a CPU. This allows Sniper to
more accurately determine latencies. For instance, if the instruction cache reports a miss,
then the penalty is added to the simulated time. If the CPU triggers a misprediction, a
fixed latency plus the depth of the reorder buffer will be added as the latter must be
completely drained and refilled. Regarding the cache simulation, Carlson et al. also
made several contributions to Graphite. Most notably, they added a cache hierarchy
with shared caches, while the caches in Graphite were completely private. This causes
additional overhead in the simulation but it should be noted that the authors of Sniper
focus on running the simulator on the same machine, while Graphite is specifically
designed for distributed computing across multiple hosts.

Ren et al. developed HORNET, which is a multithreaded and highly-configurable cycle-
accurate simulator [RLC+12]. Their focus lies on variable memory hierarchies and
interconnect topologies. HORNET ensures coherence either via a simple MSI protocol or
a distributed shared cache.

Finally, SiNUCA is a simulator with a focus on validation [AVD+15]. Instead of comparing
the simulator directly with real hardware, they developed a suite of microbenchmarks
that were used to reverse engineer undocumented behavior of the target machines which

32

3.2. Processor Description Languages

include an Intel Core 2 Duo and Sandy Bridge processor. It only provides a MOESI
cache coherence protocol. However, the authors claim their simulator is highly flexible
and can be easily extended for other ISAs and MiAs.

3.2 Processor Description Languages
Processor description languages (PDLs) have been invented for designing hardware
architectures. A specification may consist of several aspects such as instruction set
architectures (ISAs), microarchitectures (MiAs) or other software- and hardware-related
features. A PDL specification can then be used to generate hardware prototypes, test
programs, compilers and/or simulators. According to [MD08], PDLs can be separated
into three categories. On one side, structural PDLs operate on the RTL-level, making
them suitable for cycle-accurate simulation and hardware synthesis. On the other side,
behavioral PDLs define the semantics of an ISA but do not concern themselves with
details of a hardware implementation. Thus, they are suitable for ISSs and compiler
generation. Mixed PDLs include both structural and behavioral features.

Expression is a mixed PDL supporting a wide range of processor types, including digital
signal processors as well as VLIW and superscalar architectures [HGG+99]. The structural
part is separated into individual components, which can be a pipeline stage, data path,
port, cache or memory among other features. Since the language is inspired by Lisp,
properties are described as nested lists. Caches can be configured in terms of line size,
associativity, replacement policy, write policy and access time. We think it is noteworthy
that the language features a special operation mappings section, which allows handcrafting
certain ISA-specific compiler optimizations. For instance, a multiplication, where the
immediate value is a power of 2, can be replaced by a corresponding shift-left instruction.
Expression follows several automation methodologies such as DSE, compiler, simulator
and hardware generation.

LISA is also a mixed PDL. The behavioral section allows to define instruction encoding,
syntax description and semantics. The latter is based on the C language. The structural
side of LISA provides ways to describe the timing behavior of registers and individual
instructions. The main goal of the language is to allow designing on a high level of
abstraction, which is the behavioral side of the system, but go into more detail as needed.
If necessary, LISA provides all constructs to enable cycle-accurate simulation. However,
based on our research, LISA is not capable of defining caches nor memory hierarchies.

nML is an industry-proven PDL [FVPF95]. It consists of a structural part which defines
storage elements of the architecture. The instruction set is described with an attributed
grammar using AND- and OR-rules. Depending on the generated artifact, the language
allows defining additional attributes. For instance, the syntax attribute correlates to the
assembler syntax of an instruction, while the action attribute describes its semantics.
While nML does not support cache definitions, users can describe networks and buses
which are called transitory storage. Unlike with static storage, the system cannot read
from a transitory component more than once.

33

3. Related Work

ISDL is a behavioral PDL focused on VLIW architectures and supports assembler,
compiler and ISS generation [HHD97]. Its focus clearly lies on tool generation and hence,
allows inclusion of C code as part of an ISDL specification which will be injected into the
according artifact. An instruction definition is separated into an encoding, semantics as
well as timing information. In addition, the language enables defining constraints which
is important for VLIW architectures where grouping several instructions is possible.

MIMOLA was one of the earliest PDLs [Mar84]. Its purpose originated in the need to
develop specialized chips that could execute a specific algorithm in hardware [MD08, p.
35]. Unlike other hardware description languages at the time, like VHDL or SystemC,
MIMOLA was primarily designed for hardware synthesis. The language allows defining
programs in PASCAL-inspired syntax. The program can be an instruction-set interpreter
in which case arbitrary code can be executed by the synthesized hardware. MIMOLA
also allows to describe structural aspects of a program. MIMOLA itself has no built-in
notion for registers or memory and hence, the programmer is responsible for defining
modules which model their features accordingly.

ArchC is a PDL based on the hardware description language SystemC [ARB+05]. The
authors state that SystemC is too generic to enable automatic tool generation and
hence, they increased the abstraction level with ArchC to achieve this. Both ArchC and
SystemC consist of a set of C++ libraries in order to enable hardware modeling. Hence,
the language follows an object-oriented approach. Resources (memory, register banks,
pipeline, etc.) are declared as member variables of an architecture. The constructor can
then be used to setup additional properties of these components. Caches can also be
defined and configured including cache line size, associativity, replacement policy. The
constructor can then be used to establish a connection between the different caches as
well as memory, which yields the memory hierarchy.

Sail is a more recent, purely behavioral PDL [ABC+19]. The language is primarily
designed for describing the semantics of an ISA. It enables generation of simulators, ISA
tests and theorem-prover-definitions for Coq, Isabelle or HOL4. Furthermore, engineers
can model memory consistency model in Sail, which can then generate rmem files. rmem1

is a tool incorporating an operational model to describe memory model semantics. Using
an ELF executable or litmus test, the tool enumerates all legal executions.

1https://github.com/rems-project/rmem

34

https://github.com/rems-project/rmem

CHAPTER 4
Implementation

This section explains the design choices made to support atomic instructions, caches
and write buffers in VADL as well as the necessary changes to the frontend. Before
talking about the implementation, we want to highlight a certain aspect of this section.
While VADL provides documentation and loads of examples, including a mature Aarch64
and RV32IM implementation, it lacks a formal specification. This thesis does not aim
to formalize VADL, however, we want to contribute first steps in this direction by
providing a specification for the changes made to the language in the context of this
thesis. If the VADL frontend deviates from the specification, then this is considered
a bug. As an example as well as a first specification, we consider our definition of
implementation-defined behavior, slightly adapted from the C17 standard [ISO18]:

VADL Specification 1
Implementation-defined behavior is unspecified behavior where each implementation should
document how the choice is made.

In other words, if a VADL specification contains implementation-defined behavior, the
consequences can vary from generator to generator.

Last but not least, we want to highlight that VADL only knows about bits but has no
concept of bytes or words because ISAs often assume different sizes. However, most
architectures commonly used have agreed on these definitions at least being a multiple of
eight. While VADL does not impose such a restriction (e.g. defining a word to be the size
of 11 bits is possible), we implicitly assume 1 byte = 8 bits in this thesis for simplicity.

4.1 Atomic Instruction Support
In Section 2.4, we explain why an ISA needs to provide atomic instructions in order to
correctly implement parallel algorithms. Thus, VADL must be able to allow designers to

35

4. Implementation

Abbreviation Description
LR Load-reserved
SC Store-conditional

CAS Compare-and-swap
SWAP Swap
FAM Fetch-and-modify
AM Atomic modify

Table 4.1: Common definitions for several atomic primitives.

define atomic primitives. We begin by explaining our design rationale and then discuss
how our solution is implemented in the VADL frontend.

4.1.1 Language Design
We have shown that LR/SC are the most powerful primitive because they do not suffer
from the ABA-problem and their consensus number is infinite. Hence, VADL must clearly
allow defining these type of instructions. Nonetheless, most ISAs support other dedicated
atomic instructions as a convenience. Before designing a solution for the VADL language,
we look at several ISAs to understand the primitives they provide and should be able to
be implemented by VADL. Since many instructions are similar but might have different
mnemonics or names in general, we define our own notion for several atomic primitives,
defined in Table 4.1. We distinguish coarsely between basic types of operations. FAM
and AM are similar as both atomically apply an operation to the memory. The former
additionally loads the old value (usually into some register). We do not distinguish
between the type of modification applied in an AM and FAM because, in our view, the
actual modification function is not relevant for the general semantics of these instructions.

We consider several architectures in Appendix A, including RISC-V, Power, Hexagon,
amd64 and ARMv8, and map their provided instructions to our notion of atomic primitives.
We observe that most ISAs specify LR and SC instructions. amd64 is a notable exception.
As seen in Tables A.1, A.5 and A.6, RISC-V, Power and ARMv8 provide a rich set of
FAM and AM instructions. RISC-V and ARMv8 specify dedicated mnemonics while
Power uses a generic instruction where a third operand (called function code) specifies
the type of modification operation. amd64 handles atomic operations quite differently.
First, atomicity is provided via a special lock prefix supported on several arithmetic
and logical instructions. However, this means that if a developer or compiler wants to
implement FAM operations they need to rely on a CMPXCHG instruction except for addition
and subtraction due to the existence of the XADD instruction.

From this, we can derive several aspects:

• LR/SC is an essential functionality for most ISAs. Thus, VADL needs to provide
first-class support.

36

4.1. Atomic Instruction Support

1 [lock]
2 instruction FAA : FormatB = {
3 MEM(addr) := X(res) + MEM(addr)
4 }

Listing 4.1: Fetch-and-add example using the lock annotation.

1 [lock]
2 instruction CFAA : FormatB = {
3 if zeroflag then
4 {
5 MEM(addr) := X(res) + MEM(addr)
6 }
7 }

Listing 4.2: Conditional fetch-and-add example using the lock annotation.

1 [lock]
2 instruction DFAA : FormatB = {
3 MEM(addr) := X(res) + MEM(addr)
4 MEM(addr + 1) := X(res) + MEM(addr + 1)
5 }

Listing 4.3: Double fetch-and-add example using the lock annotation.

• FAM and AM operations can be quite diverse. VADL should offer the flexibility
to include arbitrary modifying operations and not be limited to a specific set of
instructions.

For the second point, we can take direct inspiration from the ISAs presented in Appendix
A. Consider amd64 and its lock prefix: From a syntactical perspective, it provides a
convenient mechanism to mark an arbitrary instruction as atomic without the need to
remember additional mnemonics. VADL supports annotations which can be attached
to several entities of the language. Using this feature we can syntactically resemble
the lock prefix used by amd64 as seen in Listing 4.1. The annotation enforces that all
memory accesses within the instruction definition are atomic, which we achieve by locking
the appropriate memory locations or cache lines. However, this approach has several
disadvantages:

37

4. Implementation

1. Since we need to lock certain memory locations or cache lines, the order of locking
matters in order to prevent deadlocks. Consider the definition of a double FAA in
Listing 4.3. Our analysis might determine that we first lock location addr and then
addr + 1. Next, assume we have an analogous definition of a double fetch-and-sub
(FAS). However, the analysis might determine that we first lock addr + 1 and then
addr. We observe that if thread A executes a double FAA and thread B a double
FAS on the same address in parallel, the system might deadlock because A manages
to lock addr and B to lock addr + 1 but they cannot progress because they need
to wait for each other to unlock their addresses.

An easy solution to this problem is to lock addresses in a uniform manner either
by going upwards (lowest address first) or downwards (highest address first). We
could ensure that our analysis deterministically locks addresses in the order they
are specified and put the responsibility on the developer to ensure this order
matches some global order of locking addresses either up- or downwards. However,
considering we want to support arbitrary atomic instructions, assume an instruction
that takes two addresses to be locked from two registers as an input. In this situation,
the chip designer also needs to conditionally ensure their orderings at runtime to
maintain the correct order. However, this makes our analysis more complicated
because the lock order is not static anymore. In addition, this introduces the
problems mentioned in the subsequent paragraph 2.

2. The lock annotation might be too restraining because it locks all memory locations
accessed within the instruction definition. However, the chip designer might want
to only lock certain locations used. Another example would be a more complex
system having several memory interfaces and only one of them should be locked.
In addition, consider a conditional instruction, such as in Listing 4.2, which only
executes if a certain flag is set. Here, the lock annotation might needlessly lock
the respective memory locations in case the flag is not set. This issue could easily
be fixed by locking locations only when they are actually accessed. However, this
introduces further semantical questions: When will the lock be freed again? At the
end of the current scope/block statement? This might violate atomicity guarantees
of the lock annotation if e.g. memory is accessed again unconditionally after the
if statement. We think this leads to a lot of implicit behavior which a VADL
developer might not expect.

We conclude that while our proposed lock annotation seems very convenient to use, it
induces a lot of implicitness that can lead to the aforementioned problems. This led us
to a more explicit approach:

38

4.1. Atomic Instruction Support

1 instruction FAA : FormatB = {
2 MEM(addr).lock
3 MEM(addr) := X(res) + MEM(addr)
4 }

Listing 4.4: Fetch-and-add example using the lock method call.

Unlike our previous example in Listing 4.1, the VADL developer must explicitly provide
the address and memory interface via a lock method call. The location will be exclusive
until the end of the current scope (e.g. block statement), solving 2. For issue 1, the
designer is fully responsible for preventing deadlocks. What about the situation, where
an instruction locks two arbitrary locations received as input via two registers? Since the
locking is now explicitly part of the control flow, the designer can use an if statement to
check which address is lower or higher and lock accordingly. Technically, the lock method
call solves our aforementioned issues. Semantically, this approach has several caveats.
The developer must know that the lock call has a side effect that lasts until the end of
the current block statement. Hence, a beginner reading the same code listing might not
be able to deduce this knowledge purely from its syntactical structure. Let us consider
another design:

1 instruction FAA : FormatB = {
2 let addr = X(arg) + offset in
3 lock MEM(addr) in {
4 MEM(addr) := X(res) + MEM(addr)
5 }
6 }

Listing 4.5: Fetch-and-add example using the lock statement.

This version is technically equivalent to the method call in Listing 4.4, however, the scope
of the lock becomes more obvious in our opinion. To be more precise, the lock is only
held in the statement following the in keyword. Seasoned VADL developers might notice
a similarity to the let statement as it has similar semantics: A let statement assigns a
value to a variable which is visible only within the statement after the in keyword. Thus,
the lock statement introduces a similarity to other language features, which should keep
the complexity of VADL reasonable. Finally, we provide a formal definition:

VADL Specification 2 (Semantics of lock statement)
A lock statement lock m<n>(l) in inner locks the memory instance m at location l
and all following n bytes before its inner statement. The lock is released it at the end
of the inner statement. All memory operations occurring within the range [l, l + n) and
while the lock is held, are observed as a single atomic step.

Note that <n> can be omitted if n = 1.

39

4. Implementation

1 instruction set architecture ISA = {
2 register reservedAddress : Address
3
4 instruction LR : FormatB = {
5 let addr = X(arg) in {
6 X(res) := MEM(addr)
7 reservedAddress := addr
8 }
9 }

10
11 instruction SC : FormatB = {
12 let addr = X(arg) in
13 lock MEM(addr) in {
14 if reservedAddress = addr then {
15 MEM(addr) := X(res)
16 X(0) := 0
17 } else {
18 X(0) := 1
19 }
20 reservedAddress := 0x0
21 }
22 }
23 }

Listing 4.6: Example for an LR/SC implementation using existing VADL primitives.

When considering our notion of atomic primitives from Table 4.1, the lock statement
allows us to implement CAS, SWAP, FAM, and AM operations because we can lock one
or more memory locations and apply arbitrary operations before freeing the lock again.
Thus, all operations within a lock statement seem atomic from an external observer. LR
and SC are a bit more difficult to implement with a lock statement. The reason is that
the other primitives are completely isolated. In other words, their entire effect can be
applied within a single instruction semantics. However, LR/SC are separate operations
by definition but work only in conjunction with each other. However, the lock statement
is restricted within the definition of a single instruction. This means we need a way
to cross instruction boundaries via some global state. Several ISAs define this state as
reservation state [RIS19] or marking [Arm21]. First, we analyze a set of ideas to model
reservations in VADL:

1. Utilizing existing ISA-VADL primitives: VADL already provides sufficient
functionality to define LR/SC-type of instructions. Listing 4.6 shows an example of
how they could be implemented. The LR (Lines 4-9) instruction stores the reserved
address in a register, while the SC counterpart (Lines 11-22) stores the value to
memory if and only if the given address matches the address reserved in the register.
Note that we take advantage of our newly designed lock statement (Line 13) in order

40

4.1. Atomic Instruction Support

1 micro architecture MIA = {
2 [granularity 28]
3 [reservation manager]
4 logic reservedAddress
5 }

Listing 4.7: Example for an LR/SC reservation manager using the logic element.

to ensure that no other processor can access the same memory location between
the address checking (Line 14) and the actual store (Line 15). Finally, we reset the
register to zero in either case and store a status value to register X(0) to notify
the program about the outcome of the conditional store. Needless to say, resetting
the reserved address must be done in any type of memory write in order to comply
with the basic semantics of LR/SC.

2. Utilizing existing MiA-VADL primitives: The way a processor handles
memory reservation could be defined in the MiA section of a specification. VADL
provides the powerful logic element, shown in Listing 4.7. Line 3 specifies the
primary purpose of the logic element, which we decided to call reservation manager.
All other annotations describe the properties of the element. This example contains
the granularity attribute on Line 2. Its purpose is to describe the size of a marked
region. Recall from Section 2.4, that this property may vary between different
MiAs.

3. Provide first-class primitives for reservations: Since LR/SC primitives are
crucial for many ISAs, VADL could provide first-class functions to support such
constructs. Listing 4.8 presents an example with an LR instruction (Lines 2-5)
which loads a value from memory and specifically requests exclusive access to it.
The function call to loadExclusive loads the value from cache or memory and
additionally registers a reservation. We decided to choose the name loadExclusive
instead of loadReserved because the functionality could also be used for other
purposes such as speculative prefetching. The term exclusive also provides more
clarity in our point of view.
The SC instruction (Lines 7-16) checks whether a certain memory location is still
exclusively owned and reserved using another builtin method call isExclusive.
If yes, the store will be performed. Similarly to the version presented in Listing
4.6, the instruction must lock the memory location first in order to prevent a race
condition between the address checking (Line 10) and the actual store (Line 11).

All these presented options are not mutually exclusive and in fact, may complement each
other. The reason is that ISAs themselves often define mandatory parts but leave some
aspects to individual implementations. For instance, take the POWER ISA: A processor

41

4. Implementation

can hold at most one reservation at any time and the size of a reservation is 2n but n
depends on the MiA [Ope21, p. 1049]. Hence, we argue that VADL needs to represent
LR/SC on multiple levels. For instance, options 2 and 3 could be used in conjunction,
where Listing 4.8 represents the general LR/SC behavior and the logic element shown
in Listing 4.7 defines MiA-specific aspects.

Within the context of this thesis, we decided to implement option 3. While 1 can already
be used since it relies purely on previously existent functionality, we believe that LR/SC
are important primitives that should receive first-class support in the Vienna Architecture
Description Language (VADL). Finally, we do not further consider option 2 in this thesis,
however, it can be added in the future as an extension. Hence, we describe the semantics
of loadExclusive and isExclusive in more detail:
VADL Specification 3 (Semantics of loadExclusive)
The expression MEM(addr).loadExclusive requests exclusive memory access to location
addr in addition to loading the value stored at addr. In addition, the address addr will
be marked as reserved.

When talking about exclusivity, this means that the cache controller (of the simulator or
generated hardware) requests read-only or writable access, depending on the underlying
cache coherence protocol.

VADL Specification 4 (Semantics of isExclusive)
The expression MEM(addr).isExclusive returns true if and only if there exists a cor-
relating loadExclusive, called with the exact same address addr, that happened before
and no other globally visible memory write on the same location or cache line occurred
in-between. Otherwise, the expression returns false.

Note that isExclusive specifically returns false, if there exists no correlating loadExclusive
call, even though the cache line might coincidentally be owned exclusively. In addition,
we impose the requirement that addresses must match. The reason is that LR/SC pairs
are often used for implementing RMW operations (e.g. CAS) and hence, usually operate
on the exact same address. To our knowledge, there exists no practical algorithm that
specifically takes advantage of the granularity of a reserved region (e.g. via an LR/SC
pair where the LR loads from address a but the correlating SC stores at the neighboring
address a + 1).

4.1.2 Integration into VADL Frontend
This section begins with the integration of the lock statement. The grammar is shown in
Listing 4.9.

Recall the semantics of the lock statement from Specification 2. A lock is acquired before
and released after the execution of the inner statement. This behavior is quite similar
to a pattern known as Resource acquisition is initialization (RAII), commonly used in

42

4.1. Atomic Instruction Support

1 instruction set architecture ISA = {
2 instruction LR : FormatB = {
3 let addr = X(arg) in
4 X(res) := MEM(addr).loadExclusive
5 }
6
7 instruction SC : FormatB = {
8 let addr = X(arg) in
9 lock MEM(addr) in

10 if MEM(addr).isExclusive then {
11 MEM(addr) := X(res)
12 X(0) := 0
13 } else {
14 X(0) := 1
15 }
16 }
17 }

Listing 4.8: Example implementation for LR/SC instructions using builtin method calls.

1 LockStatement
2 : LOCK
3 expression=ConcreteCallExpression
4 IN
5 statement=Statement
6 ;

Listing 4.9: Grammar definition of the lock statement.

C++ and Rust. VADL does not support such constructs. Thus, we introduce a new
AstRAIIPass into the VADL frontend. As the name suggests, the pass operates on the
AST because we need to precisely know where the inner statement begins and ends. This
information is not available in the VIR anymore. The pass checks for an occurrence of a
lock statement and resolves it to a block statement. The block begins with a direct call
expression to lock(Memory Reference, Address, Size), then follows with the inner part
of the lock statement and ends with a call to unlock(). The latter does not have any
arguments because resources are freed in the reverse order of how they were requested.
The loadExclusive and isExclusive methods are also resolved in the same pass, even
though they technically do not exhibit a RAII pattern. This concludes the lowering of
our atomic primitives to the VIR.

The generated VIR can be translated directly into an ISS. However, the CAS needs to
take additional considerations into account: Recall that the CAS shares a lot of code with
the hardware generator. This means that unlike the ISS which sequentially executes every

43

4. Implementation

VIR instruction, hardware tries to generally execute more parts in parallel. Needless to
say, data and control flow dependencies need to be taken into account. Recall that a
lock must be acquired before the inner statement and released immediately afterwards.
Thus, we need to ensure that the CAS generator respects this order of operations.
The VADL frontend includes a special data structure called instruction progress graph
(IPG). This graph is used to arrange VIR operations, such as memory reads/writes or
executing an instruction semantics, and generate the pipeline according to the MiA while
executing as many VIR operations as possible within a single clock cycle. Each node in
the graph represents a single VIR instruction, while every edge denotes a dependency.
There exist three types of dependencies, OPERAND, RESULT and REQUIREMENT. The latter is
particularly important for our use case: Locking or unlocking a memory location invokes
the builtin lock or unlock process, accomplished via an InstInstruction. We define
every read/write to a memory instance m as rm and wm respectively and an isExclusive
call to memory instance m as em. Let Iml be the set of VIR instructions of types rm, wm

or em occurring between a lock l of memory instance m and unlock u in program order,
hence Iml = { i | ∀i ∈ [l, . . . , u], t(i) ∈ {rm, wm, em} } where t(i) denotes the type of VIR
instruction i. Next, we add a REQUIREMENT edge from every i ∈ Iml to the corresponding
lock l as well as the same type of edge from the unlock u to every i ∈ Iml. These
adjustments ensure that the semantics of VADL specification 2 are maintained.
Finally, we needed to adapt the VirControlFlowEliminationPass which is responsible
for eliminating control flow by applying a busy code motion. The algorithm moves
every instruction within a condition to the initial basic block. This might introduce
additional computations although the involved branch will not actually be executed.
In typical compiler optimizations, this is undesirable, however, hardware can execute
these instructions in parallel, assuming we disregard the resulting size of the chip. Thus,
the computational overhead can be neglected in theory. However, these additional
computations matter once they have a side effect that should only apply in certain
circumstances. The pass handles this situation by replacing side effect instructions,
including reads and writes, with a conditional version that only applies the side effect if
the condition is satisfied. This means we needed to adapt the code motion to additionally
consider locks and unlocks:

• A lock and unlock within a conditional branch may only be applied if the
condition is true. This means we need to change an InstInstruction to a
ConditionalInstInstruction. The latter did not exist in the VIR before and
was added to the intermediate language for this purpose.

• The code motion must still respect the semantics of the lock statement, as defined
by Specification 2. Hence, if a(n) (un-)conditional read and write instruction or
isExclusive call from between a lock and unlock gets moved before the lock (in
order to eliminate the basic block of a branch), the lock must be moved as well.

Finally, we need to ensure that these primitives are provided by the memory subsystem.
For the cache simulation, we refer the reader to Section 4.3 for more in-depth explanations.

44

4.1. Atomic Instruction Support

1 class Memory {
2 std::optional<Address> m_linkedAddress;
3
4 Data read(Address);
5 void write(Address, Data);
6 template<size_t N>
7 void lock(Address address);
8 void unlock();
9

10 void register_link(Address address) {
11 m_linkedAddress = address;
12 }
13
14 bool is_linked(Address address) {
15 return m_linkedAddress.has_value()
16 && *m_linkedAddress == address;
17 }
18
19 template<size_t N>
20 void clear_link(Address address) {
21 if(m_linkedAddress.has_value()
22 && (address <= *m_linkedAddress
23 && m_linkedAddress < (address + N))) {
24 m_linkedAddress = std::nullopt;
25 }
26 }
27 };

Listing 4.10: Memory interface

In a cacheless system, it is the responsibility of the memory to implement these primitives.
The Memory class in Listing 4.10 is responsible for simulating memory using an anonymous
memory map. It provides a read and write function where Data corresponds to the
type of a single unit (e.g. in a byte-addressable system, Data corresponds to a uint8_t),
while Address maps to the type of an address (e.g. uint32_t for a system with 32-bit
memory). The lock/unlock, register_link and is_linked functions correspond to the
VADL primitives lock statement, loadExclusive and isExclusive respectively. The
clear_link function acts as a helper function to remove a link in case of a write occurring
in-between. The template parameter N represents the size of a write in order to check
whether the access overlaps with the reserved address. Both lock and unlock are no-ops
because the ISS and CAS are limited to single-threaded simulation and thus, the memory
simulation was not designed to be thread-safe. Since multicore simulation is not in the
scope of this thesis, adding a proper locking mechanism introduces needless overhead
and thus, is not considered here.

In order to support the loadExclusive and isExclusive primitives, the simulator needs
to remember the reserved address in the m_linkedAddress variable. Observe that this

45

4. Implementation

2130

MODE ASID

31

PPN

0

Figure 4.1: Structure of the satp register for RV32. [RIS21, p. 73]

4359

MODE ASID

63

PPN

0

Figure 4.2: Structure of the satp register for RV64. [RIS21, p. 73]

means that only the address of the most recent loadExclusive will be reserved. However,
Specification 4 only enforces that some previous loadExclusive must have happened
before but not necessarily the most recent one. We looked at some popular ISAs and found
that most of them put a lot of constraints on what assumptions software developers can
make about reservations. For instance, both Power and RISC-V specifically mention that
each processor can hold at most one reserved address at a time [Ope21, p. 1049] [RIS19, p.
49]. ARMv8 defines a conditional store to an address different from the preceding LR
as ’constrained unpredictable’ [Arm21, p. B2-313]. Thus, hardware manufacturers
have engineered more general solutions, such as hardware transactional memory (HTM).
However, some of them, most notably Intel [int] and IBM [Ope21, p. 1363], have removed
this functionality from modern processors. Hence, we argue that having more than one
reservation at the same time is unusual or at least impractical to be implemented in
hardware.

4.2 Address Translation
This section presents how we extended VADL to support translation from virtual to
physical addresses. The goal was to implement the ’Page-based 32-bit Virtual-Memory
System’ (Sv32) from RISC-V [RIS21, p. 79] for our RV32 VADL specification. Never-
theless, we also considered other translation schemes, such as from Armv8 [Arm21] and
AMD64 [Adv24a]. They generally share a lot of common aspects such as table-walking
or memory protection by differentiating between read, write and execute accesses. Our
initial idea was to keep memory translation simple for VADL developers. For instance,
the structure of a page-table entry could be described via a format definition and anno-
tations could be used to mark important aspects of memory translation, such as what
bit represents whether an entry is valid. However, the detailed implementations of these
translation schemes differ in subtle ways that we decided that VADL should enable
full flexibility in order to accurately model these translation processes. The language
already provides so-called processes to write arbitrary code (apart from the usual VADL
limitations that no loops or recursive calls are allowed). Thus, we want to present how
we implemented the Sv32 memory translation using VADL processes.

First, consider the components of the Sv32 system. The satp register defines the

46

4.2. Address Translation

1 instruction set architecture ISA = {
2 [translate VMEM]
3 memory MEM : Address -> Data
4
5 process VMEM(addr: Address, type: VADL::AccessType)
6 -> (out: Address) = {
7 out := addr + 0x8000
8 }
9 }

Listing 4.11: Toy example for applying a memory translation scheme to an ISA specifica-
tion. Additionally showcases the use of the builtin AccessType enumeration.

configuration of the address translation process. Figures 4.1 and 4.2 show the structure
for RV32 and RV64 respectively. The Mode field determines what translation scheme
should be used. As of this writing, RISC-V specifies four different variants Bare, Sv39,
Sv48 and Sv57 for RV64 as well as Bare and Sv32 for RV32 [RIS21, p. 75]. For instance,
zero corresponds to no translation and protection, while a value of one enables the
Sv32 virtual memory system in the case of RV32. The address space identifier (ASID)
determines the current address space identifier in order to avoid flushing the translation
lookaside buffer (TLB) in case of context switches. Finally, the physical page number
(PPN) field encodes the address of the current page table. Since page tables have a
fixed size and alignment of four KiB, it is sufficient to store the 22 most significant
bits. The translation procedure translates a 32-bits virtual to a 34-bits physical address.
Their structures as well as the translation process itself are presented in Section 2.5. We
implemented the algorithm in VADL which we present in Appendix B.

Listing 4.11 presents a minimum example where the translation function VMEM adds a
fixed offset to the input address addr (Line 7). The output value out is then passed
on to the memory object MEM. The translation annotation on the memory definition
enables address translation. Its second property defines the name of the responsible
translation process, which corresponds to VMEM in this case (Line 2). Every read or write
access within an instruction definition invokes said procedure before it accesses the actual
memory. We added a new pass called VirMemoryTranslationReplacementPass to the
frontend, which is responsible for injecting these process calls. In addition, we adapted
the VirSimulatorBehaviorPass in order to inject a call to the translation process before
the next instruction is fetched from memory. Needless to say, the VMEM process must
be able to differentiate between these types of accesses. Note the second argument of
VMEM which is of type VADL::AccessType. It is a builtin enumeration that contains the
three variants, Read, Write and Execute. The VADL type checker ensures the process is
called with the correct variant, representing the underlying access. While VADL already
contains several builtin definitions, builtin enumerations are a novelty which required
some adjustments to the frontend. Currently, only VADL processes can be used as an

47

4. Implementation

argument to the translation annotation and its signature must match a fixed structure:
The first argument as well as the output value must be of the same type as the input
argument to the corresponding memory object. The second argument must be the builtin
VADL::AccessType.

The Sv32 implementation, shown in Listing B.3, provides a more thorough example for
a memory translation scheme. We named the translation process VMEM as well, which
acts as the entrypoint for the translation by checking the mode of the satp register. If
the mode is zero, the virtual address (first argument) is directly mapped to the physical
address. Otherwise, the SV32 translation procedure will be invoked. Note that we limit
physical addresses to 32-bits for simplicity purposes and due to signature limitations
mentioned above.

4.3 Cache

Another aspect of this thesis is to extend the MiA section of VADL to support caches
and arbitrary memory hierarchies. We begin with the language side and then consider
the simulation of the cache hierarchy.

4.3.1 Language Design

1 [evict roundRobin] // Replacement policy = round robin
2 [prot snooping_wb_mesi] // Cache Protocol
3 [entries = 1024] // index = 1024 entries
4 [blocks = 64] // 64 blocks per cache line
5 [nSet = 2] // 2-way set-associative
6 [attachedTo L2]
7 [dataCache]
8 [instructionCache]
9 cache L1 : Bits<32> -> Bits<8>

Listing 4.12: Cache configuration in VADL.

The VADL language already provides a basic syntax for defining caches. Listing 4.12
shows an example definition of an L1 cache. Readers familiar with VADL might notice
that the syntax is almost identical to a memory definition. A cache is basically a function
that receives an address as an input and yields some data as an output. As described
in Section 2.2, caches exist in a variety of forms and configurations, most notably how
the cache controller keeps caches consistent. Cache model languages, such as Ruby, try
to consider all of these aspects. However, this also implies a high level of complexity,
even for simple cache coherence protocols. Thus, we decided to prefer configurability
and simplicity over flexibility, inspired by Multi2Sim concise configuration options [ea, p.
114]. We believe this allows VADL developers to easily add caches to their MiA without

48

4.3. Cache

requiring deep knowledge on this topic. All configurable attributes are shown in Listing
4.12, which can be set via annotations.

entries on Line 3 refers to the total number of cache lines in the cache. nSet on Line
5 defines the associativity of the cache. For instance, a value of two means that each
set contains two entries. In case this option is not provided, VADL defaults to a value
of one which corresponds to a direct-mapped cache. If entries = nSet, we have a fully
associative cache. Note the correlation between these two options. Both determine the
number of sets in the cache. Using our example in Listing 4.12, since the cache has a
total of 1024 cache lines and each set has two entries, there exist 512 sets in the cache.
blocks determines the number of blocks of a single cache line. A block corresponds to
a single addressable unit. In the case of our example, a 32-bit address returns an 8-bit
value. Thus, a single block corresponds to 8 bits and 64 blocks denote a cache line size
of 64 bytes. All three mentioned options directly impact the sizes of the index and tag.
Continuing with our example, we previously determined that our cache has 512 entries
and thus, our index requires log2(512) = 9 bits. One cache line contains 64 blocks and
thus, we have an offset size of log2(64) = 6 bits. The remaining most significant bits
construct the tag. Thus, the tag has size 32 − log2(512) − log2(64) = 17 bits.

Next, observe the evict annotation on Line 1. This setting allows VADL developers
to select a replacement policy in case a set does not have an empty entry available.
We decided to provide three policies, random, round-robin and least-recently used
(LRU). Next, Line 2 defines the cache coherence protocol used by the controller. We
currently support six options: snooping_wb_msi, snooping_wb_mesi, snooping_wb_mosi,
directory_wb_msi, directory_wb_mesi and directory_wb_mosi. Each value refers to
either a snooping- and directory-based version of an MSI, MESI or MOSI protocol
(see Section 2.2.2). wb is an abbreviation for write back (see Section 2.2). Finally,
we need to specify how cache misses should be handled. This is achieved via the
attachedTo annotation where the VADL developer may provide the identifier of a fallback
source. This can either be another cache or memory which allows to construct arbitrary
cache/memory hierarchies. This covers the basic configuration of a cache in VADL.
A cache may be used similarly to a memory instance. For instance, the statement
let x = L1<4>(0x1F) in reads four bytes at address 0x1F from our example cache in
Listing 4.12 and L1(0x1F) := 0x42 stores the value 0x42 at the same location.

Now recall that VADL strictly separates the ISA from the MiA definition. Since caches
are a microarchitectureal aspect, they cannot be directly used in the ISA. In order to
redirect memory accesses within instruction definitions, we decided to handle this use
case via the dataCache annotation as seen in Listing 4.12: There can only be at most
one data cache in the MiA section. The VADL frontend will then redirect all memory
usages within instruction definitions to the cache marked as entrypoint. Similarly, we
added another annotation called instructionCache to instruct the VADL frontend to
fetch instructions from the marked cache instead of from memory directly. Note that
unlike in our example, data and instruction cache can be separate definitions which is
common in most MiAs.

49

4. Implementation

4.3.2 Implementation
Before talking about the actual implementation, we want to introduce our terminology
for certain components in the memory hierarchy:

• A cache controller or just cache manages one instance of a cache, including its
data and states. It is connected to one specific interconnect. If a cache wants to
fetch data, it needs to consult the interconnect. The response may originate from
another cache or the memory/last-level cache (LLC) controller in case no other
cache has the currently requested data. The exact procedure depends on the cache
coherence protocol.

• An interconnect represents a network of arbitrary topology.

• A memory or LLC controller manages the global state of data in memory and
additionally, represents the gateway to memory or the upper level. Despite its
name, the memory/LLC controller can be connected to another cache too. For
instance, in a system with a L1 and L2 cache, the L1 memory controller is also a
L2 cache controller.

Next, we describe our desired functional as well as non-functional requirements. The
goal is to be able to simulate the following cache coherence protocols:

• Snooping MSI, MESI and MOSI protocols with write-back support

• Directory MSI, MESI and MOSI protocols with write-back support

While the difference might seem subtle, snooping- and directory-based protocols differ
substantially. Recall from Section 2.2 that in a snooping-based protocol, all entities
observe all coherence messages via a bus. On the contrary, directory-based protocols send
messages directly to the recipient. It should be noted that some implementations do not
require Point-to-Point connections [NSH+20, p. 180]. Nonetheless, directory protocols
tend to be more explicit. For instance, the protocols presented in [NSH+20] send explicit
invalidation messages in case a cache requests mutable access, while other entities have
shared copies in their caches. In a snooping-based protocol, this invalidation occurs
implicitly because all messages and requests are observed in a global order which does
not apply to a point-to-point interconnect. Hence, we define the following non-functional
characteristics:

• Extendability: As described in Section 2.2, the vast amount of design possibilities
of caches make it difficult to design a simulator that allows to simulate arbitrary
cache configurations. Nonetheless, we strive for a software architecture that allows
adaptations of the simulator. This particularly applies to implementing new cache-
coherence protocols.

50

4.3. Cache

Interconnect

CacheController

Snooping
MSI

Protocols

n

MemoryController

1

1

1

Interconnect
Thread

Extensions

LockedCache

StalledCacheLine

1

0..1

0..1
1

1 Access Thread per
CacheController

Finite State
Machine

Snooping
MESI

Snooping
MOSI

Directory
MSI

Directory
MESI

Directory
MOSI

1
1

1

1

Figure 4.3: Overview of the cache simulator architecture. The yellow rectangle represents
the interconnect which is responsible for distributing messages by invoking the message
handler of each CacheController as well as MemoryController (see Algorithm 4.3).
The consequence of a message is determined by the finite state-machine (FSM), which
corresponds to one of the designated coherence protocols. Note how the CacheController
is also surrounded by a green rectangle. This corresponds to the thread reading/writing
from/to the cache. Only one thread may access one instance of the CacheController but
the amount of caches are unbounded.

• Performance: Cycle accurate simulation is already quite slow compared to an
ISS. Thus, we want to keep the impact of the cache simulation low.

• Thread-safe: While VADL does not yet support designing multicore architectures
and hence, neither the ISS nor CAS simulators are multithreaded, the cache
simulator must support a multithreaded environment to be future-proof.

In order to fulfill the second point, only low-level compiled languages, such as Rust,
C(++) and Go can be considered. Since the ISS and CAS are already written in C++,
we decided to choose the same language in order to keep build system and maintainability
simple. Furthermore, C++ provides templates which are a construct to parameterize
classes and functions at compile-time. Since the CAS is individually generated for each
VADL specification, the VADL frontend is able to configure the cache simulator at
compile-time. Hence, we decided to use templates as a configuration mechanism to
potentially allow the C++ compiler to even more aggressively optimize the code.

In order to support a flexible cache simulator, we designed an architecture that separates

51

4. Implementation

general cache management aspects from the coherence protocol itself. A simplified
version of the architecture is shown in Figure 4.3. We separate the system into cache-,
interconnect- and memory-related parts. Recall that the former does not necessarily
refer to actual memory but to the gatekeeper from the cache to the next level, which
could be memory but also another independent cache. The actual state transitions are
handled by the individual coherence protocols, implemented as FSMs. In order for the
cache controller to understand the semantics of a given state, the coherence protocols
must provide certain primitive functions:

• is_readable: Whether the given state allows read-access.

• is_writable: Whether the given state allows write-access. Note that is_writable
=⇒ is_readable.

• is_wait_for_data: Whether the given state denotes a transitional state waiting
for the data to arrive.

• requires_notification: Whether the memory controller must be notified about
eviction. Note that this does not imply whether the data needs to be sent back as
well. For instance, a MESI protocol with an Exclusive state must explicitly notify
the memory controller about eviction. The cache might have silently upgraded the
line to Modified and hence, the controller cannot distinguish between these two
states.

• is_promotable: Whether the given cache can be upgraded from read-only to
read-write without explicitly sending a request on the interconnect.

• request_read: Retrieve the follow-up state to gain read access.

• request_write: Retrieve the follow-up state to gain write access.

• request_evict: Retrieve the follow-up state to evict a cache line.

The first two points are used for handling access to the cache line. For instance, when
a thread wants to write certain data to some location, the controller can check with
is_writable whether the given state allows writing without actually knowing about the
underlying state. requires_notification tells the controller whether it must send the
data back to the upper level cache or memory before evicting the line. As explained
in Section 2.2.2, the MESI protocol includes an Exclusive state, which is read-only
but allows upgrading to a writable state without consulting the interconnect first. The
is_promotable method enables this specific use case.

Next, we present the basic procedure for reading from the cache, presented in Algorithm
4.1. Based on the index i and the tag t extracted from address a, the cache line is
retrieved on Line 4. The tag of l does not necessarily match t but l is guaranteed to
correspond to the entry at index i (direct-mapped) or one of the entries in the set located

52

4.3. Cache

Algorithm 4.1: Basic algorithm for read access.
input : Address a
output : Result r

1 i ← index(a);
2 t ← tag(a);
3 o ← offset(a);
4 l ← get_cache_line(i, t);
5 if l.invalid ∨ l.tag ”= t then
6 if l.state.requires_notification() then
7 interconnect.push(Evict(l, a)); // Notify about eviction
8 l.state ← l.state.request_evict();
9 l.wait_until(l.state.invalid_state());

10 end
11 interconnect.push(Read(a)) ; // Request read access for a
12 l.tag ← t;
13 l.state ← l.state.request_read();
14 l.wait_until(l.state.is_readable());
15 end
16 r ← l[o];

at i (set-associative). If the cache is set-associative and does not contain a line matching
the tag t, then some line in set i is selected by the replacement policy. Nonetheless, the
simulator needs to check whether the tag matches on Line 5. If yes, it can commence
reading from the offset o within the cache line and return the value on Line 16. Otherwise,
the system needs to evict the line and ask for read-only access on the interconnect (Line
11-14). In addition, it might be necessary to notify the memory controller or other entities
about the eviction. Hence, the cache sends a corresponding message, which might contain
the current cache line, via the interconnect before requesting new data (Line 6-9). For
instance, this applies if the currently contained memory region is in the Modified state.
Observe that the system does not check on Line 5 whether the cache line is actually
readable. Recall that is_writable =⇒ is_readable. In other words, our algorithm
assumes that there exists no write-only state. Thus, since it checks whether the cache
line is valid, we can imply readability on Line 16.

The algorithm for writing to the cache is quite similar, as seen in Algorithm 4.2. In
addition to checking whether the cache line is valid and tags match, the simulator needs
to ensure that the cache line permits writing. Using the is_promotable primitive, the
controller can check whether it may upgrade the cache line for free (Lines 6-7). Otherwise,
it checks whether the line needs to be evicted (Line 9). Unlike in the read-case, the tags
might match but the cache does not have write permissions. Consider the Owned state
of the MOSI protocol. This state is read-only but dirty and hence, requires its data
to be written back when evicted. However, if our algorithm wants to upgrade a cache

53

4. Implementation

Algorithm 4.2: Basic algorithm for write access.
input : Address a, Data d

1 i ← index(a);
2 t ← tag(a);
3 o ← offset(a);
4 l ← get_cache_line(i, t);
5 if l.invalid ∨ l.tag ”= t ∨¬ l.state.is_writable() then
6 if l.tag = t ∧ l.state.is_promotable() then
7 l.state ← l.state.request_write();
8 else
9 if l.tag ”= t ∧ l.state.requires_notification() then

10 interconnect.push(Evict(l, a)); // Notify about eviction
11 l.state ← l.state.request_evict();
12 l.wait_until(l.state.invalid_state());
13 end
14 interconnect.push(Write(a)) ; // Request write access for a
15 l.tag ← t;
16 l.state ← l.state.request_write();
17 l.wait_until(l.state.is_writable());
18 end
19 end
20 l[o] ← d;

line from Owned to Modified, eviction is not necessary and would otherwise diminish the
advantages of this protocol.

Both algorithms show how we separate cache management from the coherence protocol.
The primitives described previously allow the controller to inquire about the permis-
sions of the corresponding state. Furthermore, the request_evict, request_read and
request_write functions return the corresponding successor state based on the current
one. As a simple example, consider the MSI protocol. If the cache line was invalid,
request_write will return the transitional InvalidToModified state. In the case of both
tags being equal but the cache line is read-only (Shared state), the same function will
return the SharedToModified state.

In order to simulate the parallel effects of a cache coherence protocol, the simulator
spawns a thread per interconnect to handle message distribution across all caches and
the memory controller. In an earlier design of the cache simulator, each cache, memory
and interconnect had a dedicated message handling thread. However, initial tests have
revealed that the synchronization overhead heavily impacted the throughput of the
simulation, which stands in contrast to our goal of a high-performance cache simulator.
In addition, debugging became significantly more difficult.

In the current architecture, as seen in Figure 4.3, each cache controller may be accessed by

54

4.3. Cache

Algorithm 4.3: Basic algorithm handling incoming messages on the intercon-
nect.

input : Message m
1 Procedure handle_message():
2 i ← index(m.address);
3 t ← tag(m.address);
4 l ← get_cache_line(i, t);
5 if l.exists then
6 l.transition(m);
7 l.notify();
8 end
9 foreach s ∈ Mrs do

10 handle_message(s);
11 end
12 Mrs ← {};
13 end

a single thread. Hence, they are not thread-safe but the number of caches is unbounded.
When the thread requests read or write access via the interconnect, the dedicated
interconnect thread processes these messages by invoking the message handler of each
cache and memory controller, seen in Algorithm 4.3. The wait_until function, seen in
Algorithms 4.1 and 4.2, puts the initiating thread to sleep while it awaits a state change.
How messages are distributed depends on the network topology. In a bus, when the
cache sends a message through the interconnect, the message must be processed by all
responsible entities (e.g. the cache(s) and/or memory which currently own or have a copy
of the requested cache line). The response is then sent back via the bus and must be
processed by every entity. The Point-to-Point interconnect can send messages directly to
the corresponding entity. Hence, messages have a destination id attached to them. The
simple algorithm shown in 4.3 presents the message processing side of a single cache entity.
We observe that the algorithm must check whether its cache contains the affected address
on Line 5. This is particularly important for bus-based coherence protocols as every
entity observes all messages and therefore, they must check whether they are affected by
the given message m. For directory-based protocols, it depends on the organization of
the directory. As mentioned, some directories group set of cores when tracking sharer and
owner information. In fact, directories can be organized without any backing store, called
Null Directory, at all [NSH+20, p. 176]. In case the cache contains the corresponding
cache line, the message handling is delegated to the underlying cache coherence protocol
using the transition function. Again, we show how the simulator clearly separates
general cache management responsibilities from the protocol. The transition function
might change the state of the cache line, update its data or even invalidate it (e.g. when
another thread has requested write-access). After the transition, the cache notifies other
threads about a change on Line 7. This notify function directly correlates with the

55

4. Implementation

wait_until used in 4.1 and 4.2. When wait_until is called, the thread awaits a change
in the cache line state. An invocation of notify triggers the waiting thread to check for
the inner condition (e.g. whether the cache line is now writable).

Next, the message handling procedure may process stalled messages (Lines 9-11). We
required this functionality for our implementation of some directory-based protocols as
they sometimes delay certain messages. Last but not least, we want to highlight the
extension mechanism of the simulator. In order to keep the logic of the cache simulator
simple as well as remaining open to future changes, extensions can be dynamically added
to the controller itself. These extensions must provide certain callback functions which
are invoked at several points of the controller. We utilize this mechanism for two features
required for VADL:

• StalledCacheLine

• LockedCache

Both are quite similar but are internally designed for different use cases: The Stalled-
CacheLine is an extension that prevents a newly fetched cache line from being evicted
until the core has accessed its data at least once. The idea here is that since the message
handler runs on a separate thread, the situation might occur that a newly acquired cache
line is evicted before the other thread had a chance to actually execute the cache access,
potentially preventing forward progression of the entire system. The LockedCache
similarly prevents a cache line from being evicted. However, the former is optimized for
implicitly locking a single cache line, while the latter can support arbitrarily many lines.
In addition, a line must be explicitly locked by calling the extension’s lock function. This
feature is necessary in order to support the lock statement introduced in Section 4.1.

Finally, we want to briefly showcase the cache coherence protocols we decided to imple-
ment:

• SNOOPING_WB_MSI

• SNOOPING_WB_MESI

• SNOOPING_WB_MOSI

• DIRECTORY_WB_MSI

• DIRECTORY_WB_MESI

• DIRECTORY_WB_MOSI

We refer to Section 2.2 for an explanation of all the involved states. The snooping-based
protocols communicate via a single shared bus. Furthermore, these protocols require
atomic transactions. A transaction is atomic if a request completes (receives a response)

56

4.3. Cache

before any following request to the same memory region where a region corresponds to
the size of a cache line [NSH+20, p. 114]. Otherwise, the coherence protocols would
require additional transient states in order to handle the case of interleaved requests. All
directory-based protocols use a point-to-point interconnect. All protocols are write-back
schemes, hence, the reason they contain WB in their names.

4.3.3 Integration into VADL Frontend

1 template<unsigned N, class T>
2 void read(T& data, uint32_t address);
3
4 template<unsigned N, class T>
5 void write(T data, uint32_t address, size_t mask = ~0U);

Listing 4.13: Functions provided by the current Memory class.

The cache simulator was designed as a standalone simulator to be used in different
environments. The memory interface of the CAS supports the function shown in Listing
4.13. The mask parameter provides a way to only write certain bytes of the data. Each
bit in the mask corresponds to a byte in the input. For instance, the mask 0b101 writes
only the first and third least significant byte but ignores the second least one. The
template parameter N defines the number of bytes accessed by the read or write. The
memory subsystem supports arbitrary sizes when accessing memory. For a cache, this
is a bit more tricky because an arbitrarily sized read or write to a cache might span
multiple cache lines. Arbitrary sizes within a single cache line are supported directly by
the simulator. What if a memory access crosses cache line boundaries? ARMv8 describes
read or write as single-copy atomic, if and only the address is aligned to the size of
the access. Informally, single-copy atomicity is defined that if two threads execute two
stores S1 and S2, the value committed to memory must be either but never a mixture
between them. Similarly a load L1 and S1 occurring at the same time, L1 observes either
S1 or the previous value stored at the same location but never a mixture [Arm21, p.
B2-222]. RISC-V [RIS19, p. 84] and amd64 [Adv24a, p. 195] have similar behavior. Some
ISAs permit MiAs to not support misaligned memory accesses at all [RIS19, p. 25]. If
misaligned loads and stores are allowed, the result is usually undefined in multi-threaded
environments [Adv24a, p. 195] because a single load might need to be split up into two or
more memory reads in case the request crosses cache line boundaries. Hence, we decided
to pose no restrictions on what value the cache may return in case of crossing a cache
line boundary in the simulator.
VADL Specification 5
A read or write to a cache, which spans across more than one cache line, is implementation-
defined behavior, unless all affected cache lines are locked.

If an ISA does not support misaligned memory accesses, then the cache can be designed

57

4. Implementation

1 template<size_t N, class T>
2 void write(T data, uint32_t address, const size_t mask = ~0U) {
3 clear_exclusive<N>(address);
4
5 if(cache.isWithinCacheLine<N>(address)) {
6 cache.apply_mutable(address, [&](auto &line, auto offset) {
7 for(size_t i = 0; i < N; i++) {
8 if(((0x1 << i) & mask) != 0) {
9 line.store(offset + i,

10 static_cast<uint8_t>(data >> (8 * i)));
11 }
12 }
13 });
14 } else {
15 for(uint32_t i = 0; i < N; i++) {
16 if(((0x1 << i) & mask) != 0) {
17 cache.store(address + i,
18 static_cast<uint8_t>(data >> (8 * i)));
19 }
20 }
21 }
22 }

Listing 4.14: Simplified version of the write function in the cache.

in a way that all regular loads and stores always remain within a cache line. The size of a
line must simply be greater or equal to the largest possible memory access. For instance,
if the machine supports 8-byte loads, then the cache line size must be a multiple of eight.
If atomicity for misaligned addresses or larger access sizes are required (e.g. due to vector
or floating point instructions), the VADL developer is responsible for locking the affected
memory region using a lock statement beforehand.

Listing 4.14 shows a simplified version of the write method from the memory interface
presented in Listing 4.13. On Line 3, the simulator clears the link to an address if the
link is within the range [a, a + N) where a denotes the input address address. Similarly
to the implementation of LR/SC in the memory class (see Listing 4.10), we use an
std::optional as we decided to limit our simulation to having at most one reservation
per core. Lines 5-21 conduct the actual write to the cache. The apply_mutable function
is provided by the simulator that requests read and write access to the given address and
calls the lambda with exclusive mutable access to the cache line. In the lambda call, we
check for each byte whether it should be stored. The offset parameter provides the offset
within the cache line of the given address. Furthermore, we need to consider the case
where writes cross cache line boundaries (checked on Line 5). If yes, we need to store each
byte individually on Lines 15-20. While this might look similar to the case where a write
remains within a single cache line, the bytes written may not appear atomically to other
observers. The reason is that in-between each iteration of the loop, another cache may

58

4.3. Cache

1 template<size_t N, class T>
2 void read(T &data, uint32_t address) {
3 if(cache.isWithinCacheLine<N>(address)) {
4 result = is_linked(address) ?
5 cache.load<T, true>(address) :
6 cache.load<T>(address);
7 } else {
8 for(auto i = 0U; i < N; i++) {
9 result |= cache.load<uint8_t>(address + i) << (8 * i);

10 }
11 }
12 }

Listing 4.15: Simplified version of the read function in the cache.

receive access to the affected cache line and modify its data in-between before the cache
line is re-requested on the next iteration. In the other case, the apply_mutable function
ensures that the cache line is stalled until the given function has finished execution.
Hence, the effect of the function is atomic to other entities.

The read function is presented in Listing 4.15. First, we check on Line 3 whether
loading N bytes from the input addresses crosses a cache line boundary. If yes, the
simulator reads each byte individually. Otherwise, we can load the entire value in one
step from the simulator. Note that we also check whether an address was registered
via a loadExclusive. If yes, we specifically request write-access (by passing true as a
second template parameter to the load function) in order to obtain the cache line in an
exclusive state. We observe that we do not check for a link in case of crossing cache
line boundaries. Crossing cache line boundaries usually stem from misaligned memory
accesses which is not supported by most ISAs for impracticability reasons [RIS19, p. 49].

In Listing 4.16 we show the lock function of the CAS as well as its counterpart, the
unlock function, in Listing 4.17. Since addresses are unlocked in the reverse order, we
can simply put the address on a stack, seen on Line 1 in Listing 4.16. However, we
observe that we actually store a set of addresses instead of individual ones. The template
parameter N denotes the number of bytes to be locked. This means the memory region
[address, address + N) will be locked and this range might affect more than one cache
line. Therefore, the simulator needs to store all addresses within the range corresponding
to all relevant cache lines. The conditional statement on Lines 8 and 9 effectively ensures
that we skip duplicates that would otherwise represent the same cache line. In the unlock
function in Listing 4.17, we take the topmost set of addresses on the stack and unlock
the corresponding cache lines (Lines 6-8).

Both snippets additionally showcase the use of extensions. Since we wanted to separate
the locking mechanism from the general cache management, the LockedCache extension
is responsible for this feature. The extension method enables access to its underlying

59

4. Implementation

1 std::stack<std::vector<uint32_t>> globalLockedAddresses;
2
3 template<size_t N>
4 void lock(uint32_t address) {
5 std::vector<uint32_t> lockedAddresses;
6 for(auto i = 0; i < N; i++) {
7 auto aligned = align_address<CACHE_LINE_SIZE>(address + i);
8 if(lockedAddresses.empty()
9 || lockedAddresses.back() != aligned) {

10 lockedAddresses.push_back(aligned);
11 cache.extension().inner<1>().lock(aligned);
12 cache.request_writable(aligned);
13 }
14 }
15 globalLockedAddresses.emplace(lockedAddresses);
16 }

Listing 4.16: Simplified version of the lock function in the cache.

1 void unlock() {
2 if(globalLockedAddresses.empty()) {
3 throw std::runtime_error("No address has been locked");
4 }
5 auto addresses = globalLockedAddresses.top();
6 for(auto a : addresses) {
7 cache.extension().inner<1>().unlock(a);
8 }
9 globalLockedAddresses.pop();

10 }

Listing 4.17: Simplified version of the unlock function in the cache.

functions (Line 11 in Listing 4.16 and Line 7 in Listing 4.17).

The extension itself is presented in Listing 4.18. The simulator stores the address in a
two-layered contiguous array. We make use of the fact that we can organize the locked
addresses in a similar manner as the cache itself. The simulator traverses the first layer
via the index of the address, while the second one corresponds to a set of the cache
and hence, we have to check every tag in the second layer. Observe that the extension
utilizes a lazy locking mechanism. The actual locking is deferred to a later point, namely,
in the before_transition function. This is a callback invoked by the cache controller
when it receives a message on the interconnect and the message affects a cache line in
its cache. The function is called before the state machine gets invoked (basically, before
Line 6 in Algorithm 4.3). The callback checks whether the address of the cache line is

60

4.3. Cache

1 class LockedCache {
2 std::array<std::array<
3 std::optional<uint32_t>, N_WAY>, N_ENTRIES> lockedLines;
4
5 public:
6 auto lock(uint32_t address) {
7 // Add to lockedLines based on index of address
8 }
9 auto unlock(uint32_t address) {

10 // Remove from lockedLines
11 }
12
13 auto before_transition(CacheLine &line) {
14 auto entry = find_entry(line.address);
15
16 if (entry.has_value() && line.state().is_writable()) {
17 line.wait_until([&](auto &) {
18 return !entry.value()->has_value()
19 || entry.value()->value() != info.tag;
20 });
21 }
22 }
23 };

Listing 4.18: Simplified version of the LockedCache extension.

supposed to be locked in addition to checking whether the cache line is writable. The
latter condition is important because we only want to stall a message if it would lead to
an eviction or downgrade of the cache line. Checking for writability is sufficient, because
once the cache has acquired the address in a read-write state, we want to keep this state
until the address is unlocked again. Note that this means that when lock is called with
some address, the cache does not necessarily contain the cache line corresponding to this
address. Hence, we need to request mutable access to a cache line on Line 12 in Listing
4.16 to ensure that the lock mechanism is actually enforced.

Nevertheless, if all conditions on Line 16 are satisfied, the simulator stalls the cache line
until the address was unlocked again (Lines 17-19). The reason it stalls is because the
callback is executed by the message handler thread. Therefore, if the callback does not
return, the message handler is blocked and hence, the entire interconnect cannot process
any further messages.

We want to emphasize that this approach is not necessarily deadlock-free. Consider
the following situation where thread 1 locks two cache lines A and B (e.g. due to an
unaligned atomic operation). Recall that the simulator needs to request writable access
for both lines. Next, another thread also requests access to line A. Consider the following

61

4. Implementation

order of these requests on the bus:

W1(A) =⇒ D1(A) =⇒ R2(A) =⇒ W1(B) (4.1)

W1(A)/R1(A) denote a write and read request from thread 1 to cache line A. D1(A)
corresponds to the response containing the writable data for thread 1. Note that the
execution shown above deadlocks the entire system because thread 1 cannot progress
as it awaits the lock for cache line B. However, the message R2(A) entered the bus
before W1(B) and hence, must be processed in the same order. But thread 1 stalls the
processing of R2(A) due to the lock. The reason is that the protocols presented in this
thesis require a pipelined bus. Pipelined means that the total order of the requests on
the bus matches the order of the corresponding responses [NSH+20, p. 134].

This issue can be resolved in different ways:

• Backoff mechanism: Continuing our example from above, we could extend the
simulator to have first-class support for locking multiple cache lines which we call
multilock. Then thread 1 could detect that thread 2 tries to acquire a cache line
from one of the cache lines in the multilock, which 1 has already locked but it has
not yet managed to lock all of those cache lines. If thread 1 enters this situation, it
can backoff to give up on cache line A in order to process the message by thread 2
in order to then restart the transaction of locking both lines A and B.
However, this approach does not guarantee forward progress of thread 1 because it
may be continuously interrupted by other threads. In fact, the backoff mechanism
can theoretically lead to livelock of the system in case two threads try to multilock
both A and B and their messages always intertwine similarly to the execution
shown in 4.1.

• Multi-Request transactions: The issue can be easily prevented if multiple
requests can be atomically sent on the bus. This guarantees that no request from
another thread can interfere with the locking of multiple cache lines.

• Non-atomic transactions: An alternative to a pipelined bus is a split transaction
bus. This means that responses might have a different order on the bus than their
corresponding requests. While this does not require adaption of the simulator,
the cache coherence protocol itself must be equipped with additional intermediate
states to account for this behavior. [NSH+20, p. 132]

Since VADL as a language does not support multicore systems yet, this issue cannot
occur in the CAS as of this thesis. Therefore, we decided to leave a solution open for
future work.

Finally, we want to briefly mention how we adapted VADL to divert memory accesses to
the cache. Recall that instructions are defined in the ISA section and hence, cannot utilize
the cache directly. As mentioned in Section 4.3.1, the language provides the dataCache

62

4.4. Write Buffers

1 [size = 8] // Amount of slots in the buffer
2 [coalescing] // Whether coalescing should be activated
3 [attachedTo L1] // Backend to write/read data to/from
4 [flushPolicy opportunistic] // Flush if cache line is readable
5 [write buffer]
6 logic writebuffer

Listing 4.19: Example definition of write buffer.

annotation on a cache definition so that the frontend knows what cache it should use as
a new target for reads and writes from/to memory within an instruction semantics. We
added a new pass to the VADL frontend called VirMemoryAccessReplacementPass which
conducts the replacement on the VIR code.

4.4 Write Buffers
In Section 2.2.3, we showed the advantages of using a write or store buffer in a micro-
processor. As part of this thesis, we extended VADL to support defining such buffers in
the MiA section of a specification. We decided to utilize the powerful logic element of
VADL. Figure 4.19 provides an example for a write buffer definition. The annotation
write buffer corresponds to the primary annotation and marks the logic element as a
write buffer component. All others are called secondary annotation and describe several
properties of the buffer. The size annotation denotes how many entries the buffer
contains. The size of an entry implicitly depends on the attachedTo annotation which
tells the VADL frontend for which component it should buffer stores. This can be either
a memory definition, in which case the size corresponds to the data bus width of the MiA,
or a cache definition, where the size matches the size of a cache line. We decided against
letting VADL developers freely choose the size of an entry because when attaching to a
cache, an entry size that mismatches the cache line size, can lead to undesired alignment
issues when data from the buffer is written back. Hence, we see no practical reason
to allow arbitrary write buffer entry sizes. Next, coalescing defines whether the write
buffer may coalesce or overwrite a write with an existing entry that matches the same
address. This may or may not be allowed depending on the memory model of an ISA.
Last but not least, the flushPolicy defines the behavior of when data should be flushed
from the buffer. We defined a preset of three policies:

• lazy: In this mode, the simulator flushes only when absolutely necessary such when
the buffer is full. Note that if the flushPolicy is omitted, this is the default policy.

• opportunistic: In this mode, the precise behavior depends on the attached
component. In case of a cache, when new data is written to the buffer, it checks
whether the cache line corresponding to the address happens to be in the cache.

63

4. Implementation

If yes, all entries affecting the cache line are written to the cache. The idea of
this policy is that if the data already exists in the cache, a write to it might be
nearly for ’free’. If the cache line happens to be in a Modified state, this will be
the case, as in practice, L1 access latency tends to be very low [Int24]. Even if
the state does not allow writability, upgrading the cache line might not require
a lot of cycles. For instance, if the cache employs a MESI coherence protocol,
the cache line could be in Exclusive state and hence, an upgrade to the Modified
state comes without consulting the network first. Hence, we believe that this policy
might be particularly effective for coalescing buffers. Non-coalescing buffers require
special considerations because the write order must be maintained. Therefore, if
the system wants to flush one specific entry, all writes ordered before it must be
written back first. This might limit the effectiveness of the opportunistic policy.
Finally, when using a memory as the attached backend, we assume that the system
can always write back to memory without contention. Needless to say, this will
be limited by the amount of read and write ports in case the CPU accesses the
memory in other ways (e.g. for fetching an instruction).

• fullCacheLine: This flush policy flushes an entry once the entry becomes full.
Our intuition is the following: Data bus widths are usually larger than the size of a
typical load instruction. For instance, the amd64 manual mentions that certain
instructions may utilize write-combining buffers which combine 64 bytes in order
to transfer them in a single burst to main memory [Adv24a, p. 203]. Since entries
in the write buffer are always aligned on the cache line size or data bus width, the
fullCacheLine policy takes advantage of this by flushing an entry once it is full.
In case of a memory, a single transfer over the data bus is required and in case
of a cache, the corresponding cache line needs to be requested only once. In fact,
one could come up with an additional optimization to not request the data of the
cache line, since it will be replaced entirely anyway, but to broadcast the new data
from the write buffer over the interconnect. Needless to say, the cache coherence
protocol needs to account for this scenario.
Lastly, Figure 4.4 shows an example of how and when a single entry in a coalescing
buffer turns full. Note that in a non-coalescing buffer, a slot can only be full if a
single write matches the size of an entry and is aligned. Hence, this policy might
be less useful in this case.

Based on the non-functional criteria described in Section 4.3.2, we implemented the write
buffer simulator in C++ 20 using only standard library features apart from boost for its
logging facility. The Algorithm presented in 4.4 shows how data is read from a buffer.

|r| denotes the size of r. Basically, the algorithm handles every byte of the output value
r individually. The reason is that partial writes might lead to fragmentation of data,
especially in a non-coalescing buffer. Thus, for each byte and entry in the buffer (Lines
1-2), it checks whether the corresponding entry contains a value for the address a + i
(Line 3). If yes, we continue from Line 1. If no entry contains the value, then the buffer

64

4.4. Write Buffers

32 bytes @ 0xa0

0xa0 0xc0

0xa0 0xc0

32 bytes @ 0xc0

Figure 4.4: Example of how two individual stores are merged into the same write buffer
entry. The first store writes 32 bytes at address 0xa0. The grey-shaded area remains
unused. The second store writes 32 bytes to address 0xc0 resulting in a merge with the
entry of the previous store.

Algorithm 4.4: Basic algorithm for reading from the buffer.
input : FIFO-Buffer b, Address a
output : Result r

1 foreach i ∈ {0, . . . , |r|} do
2 foreach e ∈ reverse(b) do
3 if (a + i) ∈ e.a then
4 r[i] ← e[a + i];
5 Continue from 1 ;
6 end
7 end
8 r[i] ← LLC(a + i);
9 end

must fall back to its attached storage, either a cache or memory (Line 8). Observe that
the algorithm must iterate the entries in reverse order, assuming a FIFO buffer. This
is necessary for a non-coalescing buffer because a read must return the value from the
latest write in order to comply with program order. In terms of runtime complexity, the
algorithm is in O(|r| ∗ |b|) where |r| and |b| respectively denote the size of r in bytes and
the amount of entries in the buffer. Both the size of r and b should remain reasonably
small in practice but considering this algorithm must be invoked for every read regardless
of whether the buffer actually contains any data of the requested address, this complexity
might have a noticeable impact on the runtime of the simulation. We evaluate the
performance of our implementation in Section 5.

Nevertheless, we propose some ideas to improve the complexity. For coalescing buffers,
the FIFO property is not necessary. Hence, the simulator could maintain entries in a hash
table instead, where the aligned address maps to the corresponding entry. As all hash
table operations are constant, this improves the complexity of the algorithm to O(|r|).
When using a non-coalescing buffer, the order of writes must be maintained. In addition,
the same address might have multiple entries. Therefore, the hash table idea could be
used as an addition to the FIFO queue. The table establishes a mapping between a

65

4. Implementation

specific address and a reference to an entry containing the latest value. Another tiny
improvement could be to read more bytes if possible. For instance, if the algorithm
finds an entry with a valid value for some address a, the principle of locality states that
this entry might also contain data for the subsequent bytes a + i, at most until the end
of the entry. This idea is based on two assumptions: Firstly, if an architecture allows
only aligned memory accesses (e.g. RISC-V), then loading a value from write buffer
can never cross an entry boundary (unless the write buffer has an unusual entry size
configuration, however, we assume VADL developers use sensible values in this case).
Secondly, consider reading data from some address a that was preceded by a write to the
same address. From a practical point of view, the size of the read request matches the
size of the preceded write request. Hence, a read of a different, particularly larger, size
from the same address can be considered an exceptional case.

Algorithm 4.5: Basic algorithm for non-coalesced writing to the buffer.
input : FIFO-Buffer b, Address a, Data d

1 cAddress ← align(a);
2 cEntry ← ();
3 foreach i ∈ {0, . . . , |r|} do
4 if align(a + i) ”= cAddress then
5 b.append(cAddress, cEntry);
6 cAddress ← align(a + i);
7 cEntry ← ();
8 end
9 cEntry.add(a + i, d[i]);

10 end

The write procedure for a non-coalescing buffer is shown in Algorithm 4.5. The basic
principle is similar to the read function. The function writes the data d byte-by-byte
into an entry of the buffer. Since we need to ensure that each entry is aligned to its size,
we keep track of the current entry and its associated aligned starting address, which is
calculated using the align helper function. Once the address of the current byte crosses
an alignment boundary (Line 4), we add the entry to the buffer and create a new one to
append to (Lines 5-7). The data itself is copied on Line 9, where d[i] denotes the ith
byte of d.

The coalesced version in Algorithm 4.6 is quite similar. The procedure differs on Lines
2 and 6, where it utilizes a helper function called findOrCreate. This function finds an
entry within buffer b which represents the address a (Line 2) or a+ i (Line 6). If it cannot
find such entry, it allocates a new one and appends it to b. The ith byte of d is added on
Line 8, which - unlike in the non-coalesced version - might overwrite a previously written
value.

When looking at the complexity of both procedures, Algorithm 4.5 has a linear runtime in
O(|r|). For Algorithm 4.6, this depends on the data structure of b. If it is an array, then

66

4.4. Write Buffers

Algorithm 4.6: Basic algorithm for coalesced writing to the buffer.
input : FIFO-Buffer b, Address a, Data d

1 cAddress ← align(a);
2 cEntry ← findOrCreate(b, a);
3 foreach i ∈ {0, . . . , |r|} do
4 if align(a + i) ”= cAddress then
5 cAddress ← align(a + i);
6 cEntry ← findOrCreate(b, a + i);
7 end
8 cEntry.add(a + i, d[i]);
9 end

findOrCreate has linear complexity, meaning the total runtime is quadratic in the worst
case, where each entry holds only one byte. However, b can be changed to a hash map in
a coalesced buffer, which then yields a complexity of O(|r|). However, both algorithms
offer some improvement. For instance, instead of writing each byte individually, an entire
block of data can be committed to the entry as long as the address of the highest-order
byte of the block stays within the alignment of the entry. Consider the following example:
Assume all entries are aligned on a 4-byte boundary. Next, we store four bytes at address
0x6. Hence, the first two and other two bytes go into the entries representing address 0x4
and 0x8 respectively. The algorithms presented in 4.5 and 4.6 require four iterations (one
per byte) to commit the write. Our improved version would require only two, since the
write consists of two blocks at addresses 0x6 and 0x8. In theory, the improved version
could significantly speed up the common case of aligned writes. Recall that an aligned
memory access cannot cross an alignment boundary of an entry (assuming a reasonably
configured write buffer). Hence, an aligned write always results in constant runtime
because the algorithm must commit only a single block.

Finally, we added the possibility to specify the memory model of a memory definition. A
VADL engineer may select from a one of the following models:

• Sequential consistency (SC)

• Total store order (TSO)

• RISC-V Weak Memory Ordering (RVWMO)

Listing 4.20 shows an example for how to define these orderings. As mentioned in Section
2.3, the concept of a write buffer is not compatible with all memory models. For instance,
coalescing stores violates TSO, but works in conjunction with RVWMO. The VADL
frontend verifies whether a certain combination is legal. Note that annotating a memory
model is purely for specification purposes and is not considered by any of the VADL
generators in the context of this thesis.

67

4. Implementation

1 instruction set architecture FOO = {
2 [ordering sequentialConsistency]
3 memory MEM_SC: Bits<8> -> Bits<8>
4
5 [ordering totalStoreOrder]
6 memory MEM_TSO: Bits<8> -> Bits<8>
7
8 [ordering rvWeakMemoryOrdering]
9 memory MEM_RVWMO: Bits<8> -> Bits<8>

10 }

Listing 4.20: Memory definitions with annotated memory models.

68

CHAPTER 5
Evaluation

In this chapter, we measure several aspects of our work in this thesis. We introduce
the reader to our benchmarking environment as well as the key features we wanted to
evaluate. Finally, we present our findings as well as conclusions based on our results.

5.1 Benchmark Setup
We consider different aspects of our work. Regarding write buffers and caches, we want
to evaluate the impact of the simulation on the runtime using Embench, a collection
of small benchmarks suitable for evaluating embedded platforms1. We decided to use
Embench because they do not require user mode emulation and memory allocations.
We used our VADL implementation of the RV32 instruction set, including the A- and
M-extensions, and compared four MiAs:

• P1: This is a basic single stage MiA without any caches, buffers or other extras.

• P1-WB: Similar to P1 but additionally includes a write buffer.

• P1-Cache: Similar to P1 but additionally includes an L1 data as well as instruction
and an L2 cache.

• P1-Cache-WB: Similar to P1-Cache but additionally includes a write buffer.

In addition, we compare our results to the gem5 simulator [BBB+11,LAA+20]. gem5 is
a powerful simulator supporting many features. It mainly differs between two simulation
types, atomic and timing. The former is more comparable to an ISS as memory access
latencies are not considered for instance. On the other hand, a timing CPU models

1https://github.com/embench/embench-iot

69

https://github.com/embench/embench-iot

5. Evaluation

Component Name
CPU Apple M1

Memory 16 GiB
Host Compiler gcc 14.1.1

Rv32 Cross Compiler gcc 13.2.0
Benchmark Suite embench 54fd9a0

RISC-V Compliance Suite riscv-tests 51de008
gem5 23.1

Table 5.1: Configuration of the benchmarking environment.

Property Value
Line Size 64 bytes

L1I/L1D/L2 Size 64/64/256 kiB
L1I/L1D/L2 Associativity 4/4/8-way

Eviction Policy LRU
Coherence Protocol (gem5) Snooping-based MOESI
Coherence Protocol (VADL) Snooping-based MESI

Table 5.2: Cache hierarchy setup for P1-Cache, P1-Cache-WB and gem5 Timing+Cache.
Based on the Cortex-X1 [Arm20].

latencies of memory and caches more precisely. It should be noted that this type of
simulation is still not cycle-accurate but certainly more comparable to our CAS. We
defined two configurations. The first is a simple RV32 machine without a cache hierarchy
(named gem5 Timing), while the other consists of the same memory hierarchy as P1-Cache
(called gem5 Timing+Cache). We tried to match the memory hierarchy configurations
of P1-Cache and gem5 Timing+Cache as closely as possible. The latter implements a
snooping-based MOESI protocol [LP24] as part of gem5’s ’classic caches’, while our CAS
uses the snooping_wb_mesi coherence protocol described in Section 4.3.1. The exact
configuration is shown in Table 5.2 and the corresponding VADL definitions in Appendix
D. We derived the parameters and structure of the hierarchy from the Cortex-X1 to
showcase a realistic example [Arm20]. We compared mainly two aspects of the simulation:

• Performance: In alignment with our design goals described in Section 4.3.2, the
simulation should be as fast as possible to keep the impact on the entire simulation
low.

• Accuracy: Since both our gem5 configuration and CAS share a similar setup, the
amount of cache misses and hence, the cache miss rate should be close to each
other.

Last but not least, we want to evaluate the impact on the simulation when using address
translation. We use our VADL implementation of the Sv32 memory scheme presented

70

5.2. Results

ah
a-

m
on

t6
4

cr
c3

2
cu

bi
c

ed
n

hu
ffb

en
ch

m
at

m
ul

t-
in

t
m

d5
su

m
m

in
ve

r
nb

od
y

ne
tt

le
-a

es
ne

tt
le

-s
ha

25
6

ns
ich

ne
u

pi
co

jp
eg

pr
im

ec
ou

nt
qr

du
in

o
sg

lib
-c

om
bi

ne
d

slr
e st

st
at

em
at

e
ta

rfi
nd ud

w
ik

iso
rt

m
ea

n

100

101

100

P1 P1-WB P1-Cache P1-Cache-WB gem5 Timing gem5 Timing+Cache

Figure 5.1: Embench runtime of CASs using RV32IAM (relative to P1, smaller is better).

in Appendix B. We compare our results with the same VADL specification without any
memory translation as well as a simple gem5 setup using an atomic CPU which is more
comparable to an ISS. For reference, we also executed Embench on Spike2, which is a
hand-written RISC-V ISS. For memory translation, we map the virtual address to the
exact same physical address in the page table which allows us to use the same unmodified
binary.

We setup our benchmark environment as presented in Table 5.1. For runtime evaluation,
we executed each configuration 25 times per benchmark in order to retrieve statistically
relevant results.

5.2 Results
We start with validating the correctness of our cache simulation. First, it is important to
account for what aspects of a simulation are used for validation. For instance, a timing
simulation needs to consider exact durations of sending a message via an interconnect
from one entity to another. Some cache simulators even precisely simulate the energy
consumption of accessing the cache. Since our CAS is more on the functional side,
we consider the cache miss rate as our main statistical property. We compare our
system to the gem5 configuration shown previously. One might think the optimal way to
validate the behavior of a cache simulation is by comparing it to hardware performance

2https://github.com/riscv-software-src/riscv-isa-sim

71

https://github.com/riscv-software-src/riscv-isa-sim

5. Evaluation

counters. [BKP20] discuss that using hardware events are hard to use correctly. Firstly,
an event can mean different things across different CPU vendors. For instance, consider
an unaligned memory access which crosses two cache lines. This operation triggers a
single L1 miss but does this mean that both cache lines were not available or just one
of them? Secondly, the authors mention that a mismatch on a certain metric is hard
to interpret because hardware is usually not open-source and hence, researchers can
only speculate where the mismatch originates. However, when comparing a simulator to
another open-source one, researchers can look into the code of the program to potentially
understand the source of the mismatch. Lastly, trying to fix the gap between the
simulation and hardware performance counters might lead to over-generalization because
there is no guarantee that the simulator will also correctly work for other CPU systems.
Hence, [BKP20] suggest validating a simulator against other cache simulators accepted
in academia which are in turn verified or validated against real hardware.

gem5 is often used for validating the correct behavior of a cache simulator and hence, we
decided to do the same [BKP20]. As mentioned above, we compare cache misses and
cache miss rates of the L1D cache. Note that we execute gem5 in user mode emulation
while our CAS runs in bare metal mode. Hence, the compiled benchmarks are different
binaries where one artifact is a static Linux and the other a bare metal executable.
However, we use the same compiler (seen in Table 5.1) and same optimization level (-O2).
We verified some parts of the compiled code of the benchmarking parts to ensure that
the generated code matches. We noticed that the Linux executable has a substantial
setup and teardown code which impacts the behavior of the cache simulation of gem5.
Hence, we compiled a binary with an empty main function and measured the amount of
L1D cache accesses and cache misses. This led us to a total number of 40988 memory
accesses and 807 cache misses. We subtracted these values from the results we received
when running the regular benchmarks. Hence, some values yield a negative amount of
total cache misses which stems from inaccuracies of our estimation. All results can be
found in Table E.2 in Appendix E.

At first sight, the mean relative error (36.73 %) seems high, however, note that the mean
absolute deviation of 0.0008 % is considerably small. Hence, this makes the relative
error hard to interpret because even tiniest deviations in the cache miss rates can have
a large impact on the relative error. We tried to increase the number of repetitions
within each benchmark, however, the number of cache misses for both P1-Cache and
gem5 Timing+Cache remained stable. This suggests that all memory accesses of the
benchmark fit into the entire L1 data cache.

Next, Figure 5.1 presents the runtime of the different setups relative to the P1 CAS.
While the write buffer simulation (P1-WB) increases the runtime by a mean factor of
around 1.02, the cache simulation (P1-Cache) has a slightly higher impact on the overall
simulation with a mean factor of 1.26. On the other hand, the timing gem5 configuration
is around 2.68 times slower on average, while the configuration with caches is interestingly
considerably faster, specifically by a factor of around 0.86 compared to P1. We analyzed
this oddity further by profiling both configurations of gem5 using the Linux tool perf. We

72

5.2. Results

looked at several benchmarks and found that the cache simulation is considerably faster
than gem5’s memory simulation. For instance, the wikisort benchmark spends around
222 ms within cache-related functions compared to around 1030 ms spent in the DRAM
simulation of the memory-only version. As mentioned previously, the benchmarks seem
to be tiny enough so that most of their data fit into the entire L1 data cache. Hence, the
memory simulation is barely involved in the Timing+Cache configuration (perf measured
around 0.3 ms). If we include our P1-Cache CAS into the comparison, we observe that
wikisort spends around 258 ms in the cache which indicates that our cache simulator
might still be competitive to gem5’s implementation. However, this requires further
evaluation. In addition, gem5’s simulation is more detailed in certain aspects especially
when considering the entire system which might also incur additional overhead. However,
we want to highlight that the ’classic caches’ of gem5 use a fixed cache coherence protocol
while our cache simulator provides more flexibility in this regard.

Next, when looking at Figure 5.1, the nsichneu benchmark is a significant outlier. We
again used the Linux tool perf to retrieve a flame graph of the program execution, which
revealed that a lot of CPU time is lost during synchronization. For instance, the P1-Cache
CAS spends around 29 % of the entire execution on reading from the L1 instruction
cache. 20.8 % out of the 29 % of the total execution are spent on synchronization and
waiting within the reading function. If we compare these numbers to a benchmark
where P1-Cache performs better, such as primecount, reading from the instruction cache
consumes only around 11 % of the total runtime. Analyzing flame graphs from other
benchmarks revealed that a lot of time is spent reading from instruction cache while
the data cache usually has a lower impact. Needless to say, an instruction cache is
constantly being used because every instruction fetch accesses it, while the data cache is
accessed only in certain instructions (mostly loads and stores). We provide an overview
of how much time is spent on reading/writing from/to the L1 instruction and data caches
compared to the total runtime in Table E.3. We observe a similar effect on the cubic
benchmark where the instruction cache consumes around 18 % of the entire execution
time. When looking at Figure 5.1, we see that the execution time of cubic is also noticably
above the mean value.

Our first intuition was whether the memory access pattern of the benchmarks influence
the cache simulation. In Table 5.3, we consider the Pearson correlation between absolute
runtime and total amount of memory accesses as well as absolute runtime and cache
miss rate of the L1 instruction cache. As expected, there is a strong correlation between
the amount of accesses and runtime as every additionally executed instruction leads to
longer simulation time and every instruction must be fetched from the instruction cache.
There seems to be a weak correlation between the cache miss rate and runtime as well.
If we consider the results from Table E.1, we see how cubic and nsichneu benchmarks
have a higher miss rate (0.7585 % and 4.5757 % respectively), while the median of all
benchmarks is at 0.0024 %.

Recall that our architecture uses a separate thread per interconnect to handle messages
and distribute them to all relevant entities. Hence, when some requested data is not

73

5. Evaluation

Configuration Time-Absolute Memory Accesses Time-Cache Miss Rate
P1-Cache 0.745 0.547

P1-Cache-WB 0.740 0.546

Table 5.3: Pearson correlation between several statistical events of the L1 instruction
cache.

in the cache, at least one message must be sent to the interconnect thread. However,
it might be necessary to evict a cache line first in order to make room for the newly
requested data. If said cache line is dirty, it must be explicitly sent back to the upper
level cache but the initiating thread must wait for the interconnect to finish before the
actual data can be requested. Furthermore, the same applies to the shared L2 cache.
Hence, for a single instruction fetch, the simulator must send four messages (L1I cache
eviction, L1I read request, L2 cache eviction and L2 read request) and synchronize on
each of them in the worst case. gem5 is limited to a single thread and hence, does not
suffer from synchronization overhead [ZCCJ+23].

We infer that a multithreaded architecture might not be beneficial for simulating a
single-threaded environment. Nevertheless, it would be interesting to see how our
cache simulator scales when multiple threads are involved. As mentioned above, gem5
cannot utilize more than one thread, even for simulating multicore systems [ZCCJ+23].
Unfortunately, the current CAS cannot simulate multiple threads either and hence, we
could not investigate the scalability of our cache architecture in this thesis.

Figure 5.2 presents the execution time of our RISC-V VADL specification with and without
address translation as well as the RISC-V ISS Spike and a simple gem5 configuration
using an atomic CPU. We used Spike as a baseline for our measurements. Note that the
ISS with address translation enabled has no practical impact on the execution time of
the simulator. Our ISS with and without address translation are slower by a factor of
43.88 and 44.09 compared to Spike. Originally, we expected a tiny overhead stemming
from additional memory accesses, similarly to a real system. Recall that Sv32 features
a two-level table walk. The uppermost 10 bits of the virtual address determine the
first-level entry in the table. Since the executable code sections of our benchmarks are
densely packed, those uppermost bits are equal and a second level page table is required.
Hence, executing a single instruction in the simulator takes three memory reads. Two for
accessing the first- and second-level page table entries and one for actually fetching the
instruction from physical memory [RIS21, p. 82]. Therefore, real systems employ TLBs
to cache page table entries in order to avoid additional memory latencies [PH17, p. 843].

Furthermore, our ISS, even with enabled address translation, is significantly faster
compared to gem5, which is slower by a factor of around 98.75 compared to our baseline.
In addition, gem5 uses user mode emulation and hence, does technically not even require
address translation. Spike is still considerably faster than our generated ISS, however,
note that spike is hand-written and thus, does not offer the flexibility VADL provides.

74

5.2. Results

ah
a-

m
on

t6
4

cr
c3

2
cu

bi
c

ed
n

hu
ffb

en
ch

m
at

m
ul

t-
in

t
m

d5
su

m
m

in
ve

r
nb

od
y

ne
tt

le
-a

es
ne

tt
le

-s
ha

25
6

ns
ich

ne
u

pi
co

jp
eg

pr
im

ec
ou

nt
qr

du
in

o
sg

lib
-c

om
bi

ne
d

slr
e st

st
at

em
at

e
ta

rfi
nd ud

w
ik

iso
rt

m
ea

n

101

102

ISS ISS with Address Translation gem5 Atomic

Figure 5.2: Embench runtime of ISSs using RV32IAM (relative to Spike, smaller is
better).

ISA Amount of Instructions LoC with Models LoC w/o Models
RISC-V 11 77 136
AArch64 57 277 1078

Table 5.4: Lines of code without comments for implementing several atomic instructions.

Finally, we want to evaluate the expressiveness of our language constructs for atomic
instructions, explained in Section 4.1. We implemented the entire RV32 A-extension
from the RISC-V specification [RIS19, p. 47], with the exception of the acquire-release
semantics bits. We verified the correctness using the test programs rv32ua-p-* from the
riscv-tests3 suite which is maintained by the RISC-V International organization itself.
As seen in Listing C.1, our VADL specification requires 77 lines of code without comments.
Needless to say, lines of code is only a rough measurement due to not every line of code
being equally expressive. We followed a sensible style where we put one statement or
definition per line and limit each line to 80 characters. In addition, we utilize VADL’s
powerful syntactical macro system, called models, to avoid repetitive boilerplate code.
The model AMOtype defines a typical fetch-and-modify structure, including an appropriate
encoding and assembly definition. Only the LR and SC instructions have been defined
separately. Without models, the A-extension specification increases to 136 lines of code.

We also implemented almost all atomic instructions provided by ARMv8 AArch64,
3https://github.com/riscv-software-src/riscv-tests

75

https://github.com/riscv-software-src/riscv-tests

5. Evaluation

again with the exception of the acquire-release semantics bits. This includes Load-
Exclusive and Store-Conditional as well as all operand size version (1, 2, 4, 8 and 16
bytes) [Arm21, C3.2.6, C3.2.12.1 - C3.2.12.]. As seen in Table 5.4, our implementation
requires 277 lines of code with extensive use of models. The models particularly helped
us to share encoding and assembly definitions for atomic instructions as well as reusing
code for the different operand sizes. When expanded, the resulting VADL specification
requires 1078 lines of code. While ARM provides an official but internal validation
framework [MRSM16], there exists no proper publicly available ISA test suite for AArch64
to the best of our knowledge. Therefore, we were not able to validate the correctness of
our implementation.

76

CHAPTER 6
Future Work

As discussed in Section 5, the synchronization overhead in the multithreaded architecture
of our cache simulator is considerable in single-threaded use cases. Firstly, we would
like to know whether the advantages of our design become more apparent in multicore
scenarios. As of the time of writing, VADL does not support simulating multicore CPUs.
However, the cache simulator can be used independently from VADL. Thus, one idea
to evaluate the scalability of our architecture is to record all memory accesses of a
multi-threaded benchmark using another simulator (e.g. gem5) and replay this recording
in our cache simulator. Furthermore, this would enable comparing our simulator to other
parallel benchmark suites, such as SPLASH-2 [WOT+95] or PARSEC [BKSL08]. Both
are often used for evaluating multi- and manycore simulation performance. Nevertheless,
we want to see how the simulation can be improved in single-threaded use cases. A
basic approach could be to provide a single-threaded fast path that can be enabled at
compile- or runtime. The current architecture, however, heavily relies on a multithreaded
foundation. Developing and maintaining potentially two different simulators can lead to
unnecessary maintenance burden. Hence, we propose a different solution to redesign the
current multithreaded architecture into an asynchronous one. We believe that the amount
of changes necessary is small because our simulator already divides some components
(e.g. cache, interconnect and cache controller) into individual threads. We can repurpose
these into tasks in an asynchronous environment. While this change might seem subtle,
it might have several advantages:

• A real-world hardware cache is also asynchronous by design. Hence, an asynchronous
architecture could lead to an easier more accurate behavior by simulating the
parallel/asynchronous effects of the real system.

• Many asynchronous frameworks have a scheduler that can be both single- and
multithreaded. Hence, scaling can be applied as necessary. For instance, our
current CAS does not support multithreaded CPUs yet and therefore, scheduling

77

6. Future Work

the asynchronous tasks on a single thread is certainly more efficient. However, a
properly multithreaded simulator might scale better with the number of simulated
cores and hence, an asynchronous cache simulator can be scaled on demand.

An alternative approach is to enable integration of other cache simulators or even embed
VADL’s generated simulator into other frameworks. gem5 is a mature and widely
established computer-system simulation framework and due to its modular architecture,
open to extension. The VADL frontend could generate a CPU simulator that can be
used by gem5 which gives users access to the general power of gem5 such as user mode
simulation, detailed memory simulation and simulation of other computer components
such as graphics cards. Our write buffer simulation is less impactful on the simulation.
Nevertheless, we think that there are possibilities to easily improve performance which
we proposed in Section 4.4.

Finally, our cache simulator simulates detailed behavioral aspects of several cache coher-
ence protocols. Currently, our system only tracks the amount of read and write requests
as well as whether an access hits a line in the cache. Hence, we mainly considered the
cache miss rate for validation. For accuracy purposes, we believe it would be useful to
compare additional statistical events, such as state transitions, messages sent via the
interconnect or access latencies, to other simulators (e.g. gem5). Since some of the
aforementioned properties are already simulated, we believe it should be trivial to add
these additional metrics.

On the language side of VADL, there are still several open tasks. While VADL now enables
developers to define atomic instructions, this is not sufficient for constructing multicore
systems. Most notably, defining the memory model is an important aspect of an ISA.
We currently provide a set of predefined models, however, it might be desirable to allow
defining arbitrary concurrency models. Sail supports this aspect for example [ABC+19].
But still, it should be noted that describing memory models is a complex matter on
its own [NSH+20, p. 253]. Nonetheless, VADL still needs to offer primitives to act on
the memory model. An important example are memory fence instructions which ensure
that certain loads and/or stores cannot be reordered. This is an interesting use case for
VADL because as of this writing, an instruction cannot influence the MiA due to the
strict separation between ISA and MiA. However, a fence instruction directly impacts
the behavior of the MiA by influencing the order of how instructions may be executed.
A possible solution might be to allow overriding instructions in the MiA section of a
specification. Compare this to interfaces known from other programming languages such
as Java where an interface may define default behavior for certain functions but the
implementor may choose to override their implementation. VADL could also provide
primitives for handling memory model specific aspects.

However, we believe that a more general feature can be useful in other cases too. For
instance, ISAs provide cache management instructions for clearing a cache or evicting
certain cache lines. Again, the specific semantics of a cache management instruction

78

depend on the MiA. For example, a cache flush instruction is a no-op in a cache-less
system.

Next, we want to note that while VADL now allows specifying atomic instructions,
there are different execution approaches in practice. For instance, it is common for
interconnects to apply a fetch-and-modify directly without interaction of the Core’s
ALU. ARM’s Cortex X1 differentiates between near and far atomics where the latter is
executed by the L2 or L3 cache if supported [Arm20, p. A6-79]. This is certainly a very
specific MiA implementation detail but something that VADL could support in the future
as well. In general, VADL does not consider buses or interconnects. In our cache design
presented in Section 4.3.1, caches are connected directly with each other. This is fine for
purely functional evaluations, however, one of VADL’s features is to be able to generate
RTL designs. In this case, the topography and type of the interconnect becomes relevant.
In addition, proper cycle-accurate simulation must take latencies of the interconnect into
account as well. For instance, gem5 [BBB+11] and Multi2Sim [UJM+12] allow defining
caches and interconnects separately.

Finally, VADL currently does not support defining TLB. However, the overhead of
virtual memory management has a considerable impact on real hardware. It might be
possible to reuse the cache definition introduced as part of this thesis. What might be
challenging is how the TLB can be integrated into the specification. A TLB is clearly a
microarchitectural detail but the address translation process is part of the ISA.

79

CHAPTER 7
Conclusion

This work presented our extension of VADL to support defining address translation
functions, atomic instructions and caches as well as memory hierarchies. Furthermore, we
adapted both the ISS and CAS to support these features, including a multi-threaded and
detailed cache simulator. The compiler and hardware generators were not considered.

The language design for atomic instructions was derived from current ISAs and what their
functionalities require in order to implement them in VADL. We believe that our language
constructs provide enough flexibility to add arbitrary RMW and CAS instructions as well
as LR/SC pairs. We implemented the entire A-extension of RISC-V RV32 and all atomic
instructions for our ARMv8 AArch64 VADL specifications and successfully validated the
correctness of the former.

For address translation, we considered several address translation schemes in existing ISAs.
While the basic concept (e.g. table walks) remains quite similar, the exact mechanism
differs in the minutest details. Hence, we decided to enable users to accurately implement
an address translation algorithm using existing VADL language features instead of
following a more generic, declarative style. This should also provide the possibility to
implement other related features found in modern ISAs, such as pointer authentication.

The cache simulation is certainly the largest contribution in this thesis. Our simulator
provides a detailed simulation of several cache coherence protocols, interconnects and
replacement policies while maintaining high throughput. We observed that its performance
mostly depends on the cache miss rate which we could trace back to synchronization
overhead when accessing data from an upper level cache or memory. Last but not least,
we integrated (non-)coalescing write buffers into the MiA section of VADL. Users may
also choose from a range of flush strategies, defining how the simulator writes entries in
the buffer back to cache or memory.

81

APPENDIX A
Common Atomic Primitives

This chapter presents atomic instructions provided by several common ISAs. We map
their mnemonic to our own definition of atomic primitives as defined in Table 4.1.

Instruction Primitive Additional notes
LR.W/D LR
SC.W/D SC
AMOSWAP.W/D SWAP
AMOADD.W/D FAM
AMOAND.W/D FAM
AMOOR.W/D FAM
AMOXOR.W/D FAM
AMOMAX[U].W/D FAM U . . . Unsigned
AMOMIN[U].W/D FAM U . . . Unsigned

Table A.1: Atomic instructions provided by RV32 and RV64 with the A-extension. W/D
correspond to 4/8 bytes respectively. [RIS19]

Instruction Primitive Additional notes
LL/LLD/LLDP LR 4/8/16 bytes version
SC/SCD/SCDP SC 4/8/16 bytes version

Table A.2: Atomic instructions provided by MIPS64. [Wav16]

83

A. Common Atomic Primitives

Instruction Primitive Additional notes
Rd = memw_locked/memd_locked (Rs) LR 4/8 bytes version
memw_locked/memd_locked (Rs, Pd) = Rtt SC 4/8 bytes version

Table A.3: Atomic instructions provided by Hexagon. [Qua16]

Instruction Primitive Additional notes
lock ADC AM ADD with Carry
lock ADD AM
lock AND AM
lock BTC AM Bit Test and Complement
lock BTR AM Bit Test and Reset
lock BTS AM Bit Test and Set
lock CMPXCHG CAS
lock CMPXCHG16B CAS CAS with 16 bytes
lock DEC AM Decrement by 1
lock INC AM Increment by 1
lock NEG AM Two’s Complement Negation
lock NOT AM One’s Complement Negation
lock OR AM
lock SBB AM Subtract with Borrow
lock SUB AM
lock XADD FAM
XCHG SWAP Does not require explicit lock for atomicity
lock XOR AM

Table A.4: Atomic instructions provided by amd64. [Adv24b]

84

Instruction Primitive Additional notes
LDADD FAM 1, 4 and 8 byte(s) versions available
LDCLR FAM Not And; 1, 4, 8 and 16 byte(s) versions available
LDEOR FAM Xor; 1, 4 and 8 byte(s) versions available
LDSET FAM Or; 1, 4, 8 and 16 byte(s) versions available
LDMAX FAM Signed Maximum; 1, 4 and 8 byte(s) versions available
LDMIN FAM Signed Minimum; 1, 4 and 8 byte(s) versions available
LDUMAX FAM Unsigned Maximum; 1, 4 and 8 byte(s) versions available
LDUMIN FAM Unsigned Minimum; 1, 4 and 8 byte(s) versions available
STADD AM 1, 4 and 8 byte(s) versions available
STCLR AM Not And; 1, 4 and 8 byte(s) versions available
STEOR AM Xor; 1, 4 and 8 byte(s) versions available
STSET AM Or; 1, 4, 8 and 16 byte(s) versions available
STMAX AM Signed Maximum; 1, 4 and 8 byte(s) versions available
STMIN AM Signed Minimum; 1, 4 and 8 byte(s) versions available
STUMAX AM Unsigned Maximum; 1, 4 and 8 byte(s) versions available
STUMIN AM Unsigned Minimum; 1, 4 and 8 byte(s) versions available
SWP SWAP 1, 4, 8 and 16 byte(s) versions available
CAS CAS 1, 4, 8 and 16 byte(s) versions available
LDXR LR 1, 4, 8 and 16 byte(s) versions available
STXR SC 1, 4, 8 and 16 byte(s) versions available

Table A.5: Atomic instructions provided by Aarch64. [Arm21]

85

A. Common Atomic Primitives

Instruction Primitive Additional notes
LWAT/LWAD _,_,0 FAM Add
LWAT/LWAD _,_,1 FAM Xor
LWAT/LWAD _,_,2 FAM Or
LWAT/LWAD _,_,3 FAM And
LWAT/LWAD _,_,4 FAM Unsigned Maximum
LWAT/LWAD _,_,5 FAM Signed Maximum
LWAT/LWAD _,_,6 FAM Unsigned Minimum
LWAT/LWAD _,_,7 FAM Signed Minimum
LWAT/LWAD _,_,8 SWAP
LWAT/LWAD _,_,9 CAS Value is written when not equal
LWAT/LWAD _,_,10 FAM Bounded increment
LWAT/LWAD _,_,11 FAM Increment if equal
LWAT/LWAD _,_,12 FAM Bounded decrement
stwat/stdat _,_,0 AM Add
stwat/stdat _,_,1 AM Xor
stwat/stdat _,_,2 AM Or
stwat/stdat _,_,3 AM And
stwat/stdat _,_,4 AM Unsigned Maximum
stwat/stdat _,_,5 AM Signed Maximum
stwat/stdat _,_,6 AM Unsigned Minimum
stwat/stdat _,_,7 AM Signed Minimum

stwat/stdat RS,RA,8 AM Stores RS to memory at RA and RA + 1
if RA = RA + 1

ldarx LR 1, 2, 4, 8 and 16 byte(s) versions available
stdcx SC 1, 2, 4, 8 and 16 byte(s) versions available

Table A.6: Atomic instructions provided by Power64. The ISA does not have dedicated
mnemonics for most atomic operations but rather relies on a function code operand. _ is
used as an operand placeholder. [Ope21]

86

APPENDIX B
Sv32 Memory Translation

1 format SV32Address : Word = {
2 offset [11..0],
3 vpn0 [21..12],
4 vpn1 [31..22]
5 }
6
7 format SATPFormat : Word = {
8 ppn [21..0],
9 asid [30..22],

10 mode [31]
11 }
12
13 format SV32PTE : Word = {
14 v[0],
15 r[1],
16 w[2],
17 x[3],
18 u[4],
19 g[5],
20 a[6],
21 d[7],
22 rsw[9..8],
23 ppn0[19..10],
24 ppn1[31..20],
25 ppn = (ppn1, ppn0)
26 }
27
28 [read full]
29 register satp : SATPFormat

Listing B.1: Definition of relevant Sv32 data structures.

87

B. Sv32 Memory Translation

1 process translate_sv32(va: SV32Address, pte: SV32PTE,
2 type: VADL::AccessType) -> (ppn: Address) = {
3 let invalidRead = (type = VADL::AccessType::Read)
4 & (pte.r = 0) in
5 let invalidWrite = (type = VADL::AccessType::Write)
6 & (pte.w = 0) in
7 let invalidExecute = (type = VADL::AccessType::Execute)
8 & (pte.x = 0) in {
9 if ((invalidRead | invalidWrite) | invalidExecute) then {

10 raise {
11 // Raise page-fault exception
12 }
13 } else {
14 ppn := (pte.ppn, va.offset) as Bits<32>
15 }
16 }
17 }

Listing B.2: Permission check for Sv32 translation.

88

1 process SV32(addr: SV32Address, type: VADL::AccessType)
2 -> (ppn: Address) = {
3 // Fetch from page-table
4 let pteaddr =
5 ((satp.ppn as PA) << 12) + ((addr.vpn1 as PA) << 2) in
6 let pte = MEM<4>(pteaddr as Word) as SV32PTE in {
7 if((pte.v = 0) | ((pte.r = 0) & (pte.w = 1))) then {
8 raise {
9 // Raise page-fault exception

10 }
11 } else if(((pte.x = 0) & (pte.w = 0)) & (pte.r = 0)) then {
12 // Leaf entry
13 let pte2addr =
14 ((pte.ppn as PA) << 12) + ((addr.vpn0 as PA) << 2) in
15 let pte2 = MEM<4>(pte2addr as Word) as SV32PTE in
16 let invalid = pte2.v = 0 in
17 let invalidNoReadButWrite = (pte2.r = 0) & (pte2.w = 1) in
18 let invalidNoPermissions =
19 ((pte2.r = 0) & (pte2.w = 0)) & (pte2.x = 0) in {
20 if((invalid | invalidNoReadButWrite)
21 | invalidNoPermissions) then {
22 raise {
23 // Raise page-fault exception
24 }
25 } else {
26 ppn := translate_sv32(addr, pte2, type)
27 }
28 }
29 } else {
30 ppn := translate_sv32(addr, pte, type)
31 }
32 }
33 }
34
35 process VMEM(addr: Address, type: VADL::AccessType)
36 -> (ppn: Address) = {
37 ppn := if(satp.mode = 0) then addr else SV32(addr, type)
38 }

Listing B.3: General Sv32 translation procedure.

89

APPENDIX C
VADL Implementation of RV32

A-Extension

1 instruction set architecture RV32IAM extending RV32IM = {
2 model AMOtype(name: Id, type: Id, op: Ex, funct7: Bin)
3 : IsaDefs = {
4 instruction $name : Rtype = {
5 let addr = X(rs1) in
6 let val = X(rs2) as $type in //First operand
7 //Protect region from other threads to ensure atomicity
8 lock MEM<4>(addr) in
9 let memVal = MEM<4>(addr) as $type in //Second operand

10 {
11 X(rd) := memVal //Original value always stored in register
12 MEM<4>(addr) := $op //Apply operation and store back to mem
13 }
14 }
15
16 encoding $name = {
17 funct7 = $funct7,
18 funct3 = 0b010, // 4-byte operation
19 opcode = 0b0101111
20 }
21
22 assembly $name =
23 (mnemonic, ’ ’, register(rs1), ’ ’,
24 register(rs2), ’ ’, register(rd))
25 }
26
27 $AMOtype(AMOADD ; Word ; memVal + val ; 0b00000’0’0)
28 $AMOtype(AMOAND ; Word ; memVal & val ; 0b01100’0’0)
29 $AMOtype(AMOOR ; Word ; memVal | val ; 0b01000’0’0)
30 $AMOtype(AMOXOR ; Word ; memVal ^ val ; 0b00100’0’0)

91

C. VADL Implementation of RV32 A-Extension

31 $AMOtype(AMOMAXU ; UnsignedWord ;
32 if memVal > val then memVal else val ; 0b11100’0’0)
33 $AMOtype(AMOMAX ; SignedWord ;
34 if memVal > val then memVal else val ; 0b10100’0’0)
35 $AMOtype(AMOMINU ; UnsignedWord ;
36 if memVal < val then memVal else val ; 0b11000’0’0)
37 $AMOtype(AMOMIN ; SignedWord ;
38 if memVal < val then memVal else val ; 0b10000’0’0)
39 $AMOtype(AMOSWAP ; Word ; val ; 0b00001’0’0)
40
41 instruction LR : Rtype = { //Load-Reserved
42 let addr = X(rs1) in {
43 X(rd) := MEM<4>(addr).loadExclusive //Mark address
44 }
45 }
46
47 encoding LR = {
48 funct7 = 0b00010’0’0, // No Rel/Ac-semantics
49 funct3 = 0b010, // 4-byte operation
50 rs2 = 0,
51 opcode = 0b0101111
52 }
53
54 assembly LR = (mnemonic, ’ ’, register(rs1), ’ ’, register(rd))
55
56 instruction SC : Rtype = { //Store-Conditional
57 let addr = X(rs1) in
58 //Here, we need to lock the region in order to ensure
59 //that no other thread writes between the ‘isExclusive‘
60 //check and the actual write afterwards.
61 lock MEM<4>(addr) in
62 let excl = MEM(addr).isExclusive in {
63 if excl then { //Check whether address is still marked
64 MEM<4>(addr) := X(rs2)
65 X(rd) := 0 //Indicate success
66 } else {
67 X(rd) := 1 //Indicate failure
68 }
69 }
70 }
71
72 encoding SC = {
73 funct7 = 0b00011’0’0, // No Rel/Ac-semantics
74 funct3 = 0b010, // 4-byte operation
75 opcode = 0b0101111
76 }
77
78 assembly SC =
79 (mnemonic, ’ ’, register(rs1), ’ ’,
80 register(rs2), ’ ’, register(rd))
81 }

Listing C.1: RV32 A-extension implemented in VADL.

92

APPENDIX D
VADL Benchmark Configuration

1 [evict leastRecentlyUsed]
2 [prot snooping_wb_mesi]
3 [entries = 256]
4 [blocks = 64]
5 [nSet = 4]
6 [attachedTo L2]
7 [dataCache]
8 cache L1D : Address -> Bits<8>
9

10 [evict leastRecentlyUsed]
11 [prot snooping_wb_mesi]
12 [entries = 256]
13 [blocks = 64]
14 [nSet = 4]
15 [attachedTo L2]
16 [instructionCache] // <-- Comment out to disable instruction cache
17 cache L1I : Address -> Bits<8>
18
19 [evict leastRecentlyUsed]
20 [prot snooping_wb_mesi]
21 [entries = 2048]
22 [blocks = 64]
23 [nSet = 8]
24 [attachedTo MEM]
25 cache L2 : Address -> Bits<8>

Listing D.1: VADL cache configuration of the P1-Cache. Based on the Cortex-X1 [Arm20].

93

D. VADL Benchmark Configuration

1 [size = 16]
2 [attachedTo MEM]
3 [coalescing]
4 [flushPolicy opportunistic]
5 [write buffer]
6 logic writebuffer

Listing D.2: VADL write buffer configuration of the P1-WB.

1 [evict leastRecentlyUsed]
2 [prot snooping_wb_mesi]
3 [entries = 256]
4 [blocks = 64]
5 [nSet = 4]
6 [attachedTo L2]
7 [dataCache]
8 cache L1D : Address -> Bits<8>
9

10 [evict leastRecentlyUsed]
11 [prot snooping_wb_mesi]
12 [entries = 256]
13 [blocks = 64]
14 [nSet = 4]
15 [attachedTo L2]
16 [instructionCache] // <-- Comment out to disable instruction cache
17 cache L1I : Address -> Bits<8>
18
19 [evict leastRecentlyUsed]
20 [prot snooping_wb_mesi]
21 [entries = 2048]
22 [blocks = 64]
23 [nSet = 8]
24 [attachedTo MEM]
25 cache L2 : Address -> Bits<8>
26
27 [size = 16]
28 [attachedTo MEM]
29 [coalescing]
30 [flushPolicy opportunistic]
31 [write buffer]
32 logic writebuffer

Listing D.3: VADL cache and write buffer configuration of the P1-Cache-WB. Based on
the Cortex-X1 [Arm20].

94

APPENDIX E
Additional Results

Benchmark MemAcc Misses Miss Rate
aha-mont64 4542083 40 0.0009 %

crc32 4029015 9 0.0002 %
cubic 10535005 79906 0.7585 %
edn 3541307 48 0.0014 %

huffbench 2669327 64 0.0024 %
matmult-int 3262543 26 0.0008 %

md5sum 2099758 40 0.0019 %
minver 4919146 140 0.0028 %
nbody 14165624 166 0.0012 %

nettle-aes 4467281 68 0.0015 %
nettle-sha256 4017643 132 0.0033 %

nsichneu 2238692 102435 4.5757 %
picojpeg 4475664 162 0.0036 %

primecount 4297050 9 0.0002 %
qrduino 3353854 216 0.0064 %

sglib-combined 2636565 84 0.0032 %
slre 2659985 63 0.0024 %
st 4432389 165 0.0037 %

statemate 1641312 60 0.0037 %
tarfind 1026459 22 0.0021 %

ud 3401997 51 0.0015 %
wikisort 2850992 232 0.0081 %

Table E.1: Results of tracking L1I memory accesses and cache misses of P1-Cache.

95

E. Additional Results

Be
nc

hm
ar

k
M

em
A

cc
(V

A
D

L)
M

em
A

cc
(g

em
5)

M
iss

es
(V

A
D

L)
M

iss
es

(g
em

5)
M

iss
R

at
e

(V
A

D
L)

M
iss

R
at

e
(g

em
5)

A
bs

.
Er

ro
r

R
el

.
Er

ro
r

ah
a-

m
on

t6
4

12
39

1
12

78
4

6
-1

7
0.

04
84

%
-0

.1
33

0
%

0.
08

46
%

63
.6

0
%

cr
c3

2
52

55
12

52
50

95
19

40
0.

00
36

%
0.

00
76

%
0.

00
40

%
52

.4
6

%
cu

bi
c

15
60

50
7

15
59

90
3

16
3

25
1

0.
01

04
%

0.
01

61
%

0.
00

57
%

35
.0

9
%

ed
n

11
04

21
0

10
17

78
3

71
95

0.
00

64
%

0.
00

93
%

0.
00

29
%

31
.1

1
%

hu
ffb

en
ch

72
01

81
70

39
52

15
8

22
3

0.
02

19
%

0.
03

17
%

0.
00

97
%

30
.7

5
%

m
at

m
ul

t-
in

t
12

24
44

8
12

24
85

3
17

9
21

9
0.

01
46

%
0.

01
79

%
0.

00
33

%
18

.2
4

%
m

d5
su

m
26

96
57

27
12

73
57

44
0.

02
11

%
0.

01
62

%
0.

00
49

%
30

.3
2

%
m

in
ve

r
84

16
58

84
25

26
18

27
0.

00
21

%
0.

00
32

%
0.

00
11

%
33

.2
7

%
nb

od
y

15
83

53
7

15
64

09
9

37
52

0.
00

24
%

0.
00

33
%

0.
00

10
%

28
.8

8
%

ne
tt

le
-a

es
89

25
82

88
11

13
18

3
29

6
0.

02
05

%
0.

03
36

%
0.

01
31

%
38

.9
7

%
ne

tt
le

-s
ha

25
6

56
74

90
55

65
93

17
18

0.
00

30
%

0.
00

32
%

0.
00

02
%

7.
37

%
ns

ich
ne

u
12

30
80

8
12

30
36

2
6

-1
3

0.
00

05
%

-0
.0

01
1

%
0.

00
06

%
53

.8
3

%
pi

co
jp

eg
12

94
10

4
12

26
81

5
54

92
0.

00
42

%
0.

00
75

%
0.

00
33

%
44

.3
6

%
pr

im
ec

ou
nt

87
09

29
87

13
22

7
-3

0.
00

08
%

-0
.0

00
3

%
0.

00
05

%
13

3.
44

%
qr

du
in

o
78

28
71

68
75

24
34

44
0.

00
43

%
0.

00
64

%
0.

00
21

%
32

.1
4

%
sg

lib
-c

om
bi

ne
d

97
43

47
97

61
09

95
16

5
0.

00
98

%
0.

01
69

%
0.

00
72

%
42

.3
2

%
slr

e
86

92
80

86
97

94
15

17
0.

00
17

%
0.

00
20

%
0.

00
02

%
11

.7
1

%
st

48
48

61
48

24
64

46
79

0.
00

95
%

0.
01

64
%

0.
00

69
%

42
.0

6
%

st
at

em
at

e
88

64
17

86
34

78
11

12
0.

00
12

%
0.

00
14

%
0.

00
02

%
10

.7
1

%
ta

rfi
nd

25
55

12
24

95
55

14
6

17
2

0.
05

71
%

0.
06

89
%

0.
01

18
%

17
.1

0
%

ud
66

56
95

65
88

51
19

20
0.

00
29

%
0.

00
30

%
0.

00
02

%
5.

98
%

w
ik

iso
rt

66
14

41
66

27
98

19
3

34
8

0.
02

92
%

0.
05

25
%

0.
02

33
%

44
.4

3
%

M
ea

n
-

-
-

-
-

-
0.

00
08

%
36

.7
3

%

Ta
bl

e
E.

2:
R

es
ul

ts
of

tr
ac

ki
ng

L1
D

m
em

or
y

ac
ce

ss
es

an
d

ca
ch

e
m

iss
es

of
P1
-C
ac
he

an
d
ge
m5

Ti
mi
ng
+C
ac
he

.
Fo

r
th

e
la

tt
er

,
th

e
se

tu
p

an
d

te
ar

do
w

n
m

em
or

y
op

er
at

io
ns

ar
e

no
t

ac
co

un
te

d
fo

r
an

d
he

nc
e,

so
m

e
ca

ch
e

m
iss

es
m

ig
ht

yi
el

d
ne

ga
tiv

e
va

lu
es

.

96

Benchmark L1 Data Cache L1 Instruction Cache
aha-mont64 0 % 12 %

crc32 1.6 % 12 %
cubic 1.5 % 18 %
edn 2.2 % 12 %

huffbench 3.1 % 11 %
matmult-int 4.1 % 11 %

md5sum 1.5 % 11 %
minver 2.0 % 12 %
nbody 1.2 % 13 %

nettle-aes 2.7 % 12 %
nettle-sha256 1.6 % 13 %

nsichneu 4.9 % 29 %
picojpeg 3.1 % 12 %

primecount 2.2 % 12 %
qrduino 2.3 % 11 %

sglib-combined 3.8 % 11 %
slre 3.4 % 13 %
st 1.1 % 12 %

statemate 4.4 % 11 %
tarfind 2.9 % 10 %

ud 2.2 % 11 %
wikisort 2.7 % 12 %

Table E.3: Evaluation of P1-Cache in terms of how much reading/writing from/to the L1
instruction and data caches consumes compared to the total execution. perf was used
for measuring.

97

List of Figures

2.1 Memory layout of our example format definition FormatB. 10
2.2 Basic examples for a cache of size 64 KiB in three different variations from

left to right: Direct-mapped, fully associative and 2-way set associative. An
address is separated into a tag, index and offset. Sizes of each parameter
depend on the configuration of the cache. Index maps to the entry in the cache,
tag determines whether cache line corresponds to the same memory region.
Offset corresponds to offset within cache line. Figure inspired by [PH17, p.
762] . 14

2.3 Example execution for cache coherency. A is initialized with 0. Inspired
by [NSH+20]. 15

2.4 Litmus test, x and y are initialized to 0. [MHAM11] 19
2.5 Litmus test, x and flag are initialized to 0 and false respectively. [MHAM11] 19
2.6 Possible cache coherent execution of litmus test 2.5. Thread 2 reads flag = true

at cycle 2 and x = 0 at cycle 3. Taken from [NSH+20]. 19
2.7 Example of a memory fence in the RISC-V ISA. Code snippet from the

"PPOCA" store buffer forwarding litmus test [RIS19, p. 166]. 22
2.8 Example for a CAS function using LR/SC instructions provided by RISC-V

ISA. Code snippet from [RIS19, p. 50]. 24
2.9 Structure of a RISC-V Sv32 virtual address. [RIS21, p. 79] 26
2.10 Structure of a RISC-V Sv32 physical address. [RIS21, p. 80] 26
2.11 Structure of a RISC-V Sv32 PTE. The field RSW is reserved for software.

Flags are dirty D, accessed A, global G, accessible to user mode U, execute X,
write W, read R and valid V. [RIS21, p. 80] 26

4.1 Structure of the satp register for RV32. [RIS21, p. 73] 46
4.2 Structure of the satp register for RV64. [RIS21, p. 73] 46

99

4.3 Overview of the cache simulator architecture. The yellow rectangle represents
the interconnect which is responsible for distributing messages by invoking
the message handler of each CacheController as well as MemoryController
(see Algorithm 4.3). The consequence of a message is determined by the finite
state-machine (FSM), which corresponds to one of the designated coherence
protocols. Note how the CacheController is also surrounded by a green
rectangle. This corresponds to the thread reading/writing from/to the cache.
Only one thread may access one instance of the CacheController but the
amount of caches are unbounded. 51

4.4 Example of how two individual stores are merged into the same write buffer
entry. The first store writes 32 bytes at address 0xa0. The grey-shaded area
remains unused. The second store writes 32 bytes to address 0xc0 resulting
in a merge with the entry of the previous store. 65

5.1 Embench runtime of CASs using RV32IAM (relative to P1, smaller is better). 71
5.2 Embench runtime of ISSs using RV32IAM (relative to Spike, smaller is better). 75

100

List of Tables

4.1 Common definitions for several atomic primitives. 36

5.1 Configuration of the benchmarking environment. 70
5.2 Cache hierarchy setup for P1-Cache, P1-Cache-WB and gem5 Timing+Cache.

Based on the Cortex-X1 [Arm20]. 70
5.3 Pearson correlation between several statistical events of the L1 instruction

cache. 74
5.4 Lines of code without comments for implementing several atomic instructions. 75

A.1 Atomic instructions provided by RV32 and RV64 with the A-extension. W/D
correspond to 4/8 bytes respectively. [RIS19] 83

A.2 Atomic instructions provided by MIPS64. [Wav16] 83
A.3 Atomic instructions provided by Hexagon. [Qua16] 84
A.4 Atomic instructions provided by amd64. [Adv24b] 84
A.5 Atomic instructions provided by Aarch64. [Arm21] 85
A.6 Atomic instructions provided by Power64. The ISA does not have dedicated

mnemonics for most atomic operations but rather relies on a function code
operand. _ is used as an operand placeholder. [Ope21] 86

E.1 Results of tracking L1I memory accesses and cache misses of P1-Cache. . . 95
E.2 Results of tracking L1D memory accesses and cache misses of P1-Cache

and gem5 Timing+Cache. For the latter, the setup and teardown memory
operations are not accounted for and hence, some cache misses might yield
negative values. 96

E.3 Evaluation of P1-Cache in terms of how much reading/writing from/to the L1
instruction and data caches consumes compared to the total execution. perf
was used for measuring. 97

101

List of Algorithms

4.1 Basic algorithm for read access. 53

4.2 Basic algorithm for write access. 54

4.3 Basic algorithm handling incoming messages on the interconnect. . . . 55

4.4 Basic algorithm for reading from the buffer. 65

4.5 Basic algorithm for non-coalesced writing to the buffer. 66

4.6 Basic algorithm for coalesced writing to the buffer. 67

103

Listings

2.1 Overview of the Vienna Architecture Description Language. 7
2.2 Basic instruction set architecture (ISA). 8
2.3 Format definition in VADL. 9
2.4 Instruction definition in VADL. 10
2.5 Handling multiple instructions with a single assembly definition. . . . 10
2.6 ABI definition in VADL. 11
2.7 Microprocessor definition in VADL. 12
2.8 Microarchitecture definition in VADL. 12
4.1 Fetch-and-add example using the lock annotation. 37
4.2 Conditional fetch-and-add example using the lock annotation. 37
4.3 Double fetch-and-add example using the lock annotation. 37
4.4 Fetch-and-add example using the lock method call. 39
4.5 Fetch-and-add example using the lock statement. 39
4.6 Example for an LR/SC implementation using existing VADL primitives. 40
4.7 Example for an LR/SC reservation manager using the logic element. 41
4.8 Example implementation for LR/SC instructions using builtin method

calls. 43
4.9 Grammar definition of the lock statement. 43
4.10 Memory interface . 45
4.11 Toy example for applying a memory translation scheme to an ISA specifica-

tion. Additionally showcases the use of the builtin AccessType enumeration. 47
4.12 Cache configuration in VADL. 48
4.13 Functions provided by the current Memory class. 57
4.14 Simplified version of the write function in the cache. 58
4.15 Simplified version of the read function in the cache. 59
4.16 Simplified version of the lock function in the cache. 60
4.17 Simplified version of the unlock function in the cache. 60
4.18 Simplified version of the LockedCache extension. 61
4.19 Example definition of write buffer. 63
4.20 Memory definitions with annotated memory models. 68
B.1 Definition of relevant Sv32 data structures. 87
B.2 Permission check for Sv32 translation. 88
B.3 General Sv32 translation procedure. 89

105

C.1 RV32 A-extension implemented in VADL. 91
D.1 VADL cache configuration of the P1-Cache. Based on the Cortex-X1

[Arm20]. 93
D.2 VADL write buffer configuration of the P1-WB. 94
D.3 VADL cache and write buffer configuration of the P1-Cache-WB. Based on

the Cortex-X1 [Arm20]. 94

106

Acronyms

ABI application binary interface. 2, 7, 11

AM atomic modify. 36, 37, 40, 84–86

ASID address space identifier. 28, 47

AST abstract syntax tree. 43

CAS cycle accurate simulator. 4, 5, 8, 31, 43–45, 51, 57, 59, 70–73, 77, 100

CAS compare-and-swap. 2, 4, 23–25, 36, 40, 42, 62, 72, 74, 81, 84–86, 99

DSE design space exploration. ix, xi, 3, 4, 30, 33

FAA fetch-and-add. 23, 24, 37–39, 105

FAM fetch-and-modify. 2, 36, 37, 40, 83–86

FAS fetch-and-sub. 38

FSM finite state-machine. 16, 17, 51, 52, 100

HTM hardware transactional memory. 46

IPG instruction progress graph. 44

ISA instruction set architecture. xi, 4, 7–10, 19, 20, 22, 24, 29, 30, 33–37, 40, 41, 46, 47,
49, 57, 59, 62, 63, 76, 78, 79, 81, 83, 86, 99, 101, 105

ISS instruction set simulator. 4, 5, 8, 30, 33, 34, 43, 45, 51, 69, 71, 74, 75, 81, 100

LFU least-frequently used. 14

LKMM Linux Kernel Memory Model. 20

LLC last-level cache. 50

107

LR load-reserved. 24, 25, 36, 40–43, 46, 58, 81, 83–86, 99, 105

LRU least-recently used. 14, 49

MiA microarchitecture. 7, 8, 12, 25, 30, 31, 33, 41, 42, 44, 48, 49, 57, 63, 69, 78, 79, 81

MMU memory management unit. 3, 27

NUMA non-uniform memory access. 16

PDL processor description language. 2, 5, 7, 33, 34

PPN physical page number. 27, 47

PTE page-table entry. 26, 27, 99

RAII Resource acquisition is initialization. 42, 43

RMW read-modify-write. 2, 23, 24, 42, 81

RTL register-transfer level. 33, 79

RVWMO RISC-V Weak Memory Ordering. 67

SC sequential consistency. 20, 21, 67

SC store-conditional. 24, 25, 36, 40–43, 58, 81, 83–86, 99, 105

SSA static single assignment. 8

TLB translation lookaside buffer. 3, 28, 32, 47, 74, 79

TSO total store order. 2, 20–22, 67

VADL Vienna Architecture Description Language. ix, xi, 2–5, 7–12, 31, 35–49, 51,
56–58, 62, 63, 66, 67, 69–71, 74–79, 81, 92–94, 96, 105, 106, 108

VIR VADL intermediate representation. 5, 8, 43, 44, 63

VPN virtual page number. 27

108

Bibliography

[ABC+19] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon
French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and
Peter Sewell. ISA Semantics for ARMv8-a, RISC-V, and CHERI-MIPS. Proc.
ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290384.

[Adv24a] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s Manual -
Volume 2: System Programming, March 2024.

[Adv24b] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s Manual -
Volume 3: General-Purpose and System Instructions, March 2024.

[ALOJ13] Jung Ho Ahn, Sheng Li, Seongil O, and Norman P. Jouppi. McSimA+: A
Manycore Simulator with Application-Level+ Simulation and Detailed Mi-
croarchitecture Modeling. In 2013 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pages 74–85, 2013.
doi:10.1109/ISPASS.2013.6557148.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats: Modelling,
Simulation, Testing, and Data Mining for Weak Memory. ACM Trans. Program.
Lang. Syst., 36(2), jul 2014. doi:10.1145/2627752.

[app] Porting just-in-time compilers to Apple silicon. https://
developer.apple.com/documentation/apple-silicon/
porting-just-in-time-compilers-to-apple-silicon. Accessed:
2024-04-15.

[ARB+05] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano
Araujo, and Edna Barros. The ArchC Architecture Description Language
and Tools. Int. J. Parallel Program., 33(5):453–484, October 2005. doi:
10.1007/s10766-005-7301-0.

[Arm20] Arm Limited. Arm® Cortex®-X1 Core - Technical Reference Manual, 5 2020.

[Arm21] Arm Limited. Arm®v8-M Architecture Reference Manual, September 2021.

109

https://doi.org/10.1145/3290384
https://doi.org/10.1109/ISPASS.2013.6557148
https://doi.org/10.1145/2627752
https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
https://doi.org/10.1007/s10766-005-7301-0
https://doi.org/10.1007/s10766-005-7301-0

[AVD+15] Marco Antonio Zanata Alves, Carlos Villavieja, Matthias Diener, Francis Birck
Moreira, and Philippe Olivier Alexandre Navaux. SiNUCA: A Validated Micro-
Architecture Simulator. In 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th Interna-
tional Conference on Embedded Software and Systems, pages 605–610, 2015.
doi:10.1109/HPCC-CSS-ICESS.2015.166.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput.
Archit. News, 39(2):1–7, aug 2011. doi:10.1145/2024716.2024718.

[BKP20] Hadi Brais, Rajshekar Kalayappan, and Preeti Ranjan Panda. A Survey of
Cache Simulators. ACM Comput. Surv., 53(1), feb 2020. doi:10.1145/
3372393.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
PARSEC Benchmark Suite: Characterization and Architectural Implications.
In Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’08, page 72–81, New York, NY, USA, 2008.
Association for Computing Machinery. doi:10.1145/1454115.1454128.

[cac] Cachegrind: a high-precision tracing profiler. https://valgrind.org/
docs/manual/cg-manual.html#cg-manual.cg_diff. Accessed: 2024-
09-17.

[CHE11] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulation.
In Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/2063384.2063454.

[CKA91] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories:
A Scalable Cache Coherence Scheme. SIGOPS Oper. Syst. Rev., 25(Special
Issue):224–234, April 1991. doi:10.1145/106974.106995.

[ea] Chris Barton et al. The Multi2Sim Simulation Framework. http://www.
multi2sim.org/downloads/m2s-guide-4.2.pdf. Accessed: 2024-09-
17.

[EH] Jan Edler and Mark D. Hill. Dinvero IV. https://pages.cs.wisc.edu/
~markhill/DineroIV/. Accessed: 2024-09-23.

110

https://doi.org/10.1109/HPCC-CSS-ICESS.2015.166
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3372393
https://doi.org/10.1145/3372393
https://doi.org/10.1145/1454115.1454128
https://valgrind.org/docs/manual/cg-manual.html#cg-manual.cg_diff
https://valgrind.org/docs/manual/cg-manual.html#cg-manual.cg_diff
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/106974.106995
http://www.multi2sim.org/downloads/m2s-guide-4.2.pdf
http://www.multi2sim.org/downloads/m2s-guide-4.2.pdf
https://pages.cs.wisc.edu/~markhill/DineroIV/
https://pages.cs.wisc.edu/~markhill/DineroIV/

[FVPF95] A. Fauth, J. Van Praet, and M. Freericks. Describing Instruction Set Processors
Using nML. In Proceedings the European Design and Test Conference. ED&TC
1995, pages 503–507, 1995. doi:10.1109/EDTC.1995.470354.

[Gra21] Alexander Graf. Compiler Backend Generation using the VADL Processor
Description Language. Master’s thesis, Vienna University of Technology, 2021.
doi:10.34726/hss.2021.79221.

[Her91] Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, jan 1991. doi:10.1145/114005.102808.

[HGG+99] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EX-
PRESSION: A Language for Architecture Exploration Through Compiler/Sim-
ulator Retargetability. In Design, Automation and Test in Europe Conference
and Exhibition, 1999. Proceedings (Cat. No. PR00078), pages 485–490, 1999.
doi:10.1109/DATE.1999.761170.

[HHD97] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An In-
struction Set Description Language for Retargetability. In Proceedings of
the 34th Annual Design Automation Conference, DAC ’97, page 299–302,
New York, NY, USA, 1997. Association for Computing Machinery. doi:
10.1145/266021.266108.

[HHH+24] Simon Himmelbauer, Christoph Hochrainer, Benedikt Huber, Niklas Mis-
chkulnig, Philipp Paulweber, Tobias Schwarzinger, and Andreas Krall. The
Vienna Architecture Description Language, 2024. arXiv:2402.09087.

[HK23] Christoph Hochrainer and Andreas Krall. A pred-LL (*) Parsable Typed
Higher-Order Macro System for Architecture Description Languages. In Pro-
ceedings of the 22nd ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences, pages 29–41, 2023. doi:
10.1145/3624007.3624052.

[HSLS20] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The Art
of Multiprocessor Programming, Second Edition. Elsevier, January 2020.

[IEE18] mmap - map pages of memory. Standard, IEEE and The Open Group, 2018.

[int] Intel® Transactional Synchronization Extensions (Intel® TSX)
Memory and Performance Monitoring Update for Intel® Proces-
sors. https://www.intel.com/content/www/us/en/support/
articles/000059422/processors.html. Accessed: 2024-07-17.

[Int24] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference
Manual: Volume 1, 4 2024.

[ISO18] Information technology — Programming languages — C. Standard, Interna-
tional Organization for Standardization, Geneva, CH, July 2018.

111

https://doi.org/10.1109/EDTC.1995.470354
https://doi.org/10.34726/hss.2021.79221
https://doi.org/10.1145/114005.102808
https://doi.org/10.1109/DATE.1999.761170
https://doi.org/10.1145/266021.266108
https://doi.org/10.1145/266021.266108
https://arxiv.org/abs/2402.09087
https://doi.org/10.1145/3624007.3624052
https://doi.org/10.1145/3624007.3624052
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html

[JCLJ08] Aamer Jaleel, Robert S. Cohn, Chi-Keung Luk, and Bruce Jacob. CMP $ im : A
Pin-Based OnThe-Fly Multi-Core Cache Simulator. 2008. URL: http://www.
jaleels.org/ajaleel/publications/cmpsim_mobs2008.pdf.

[JTSE10] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. High Per-
formance Cache Replacement Using Re-Reference Interval Prediction (RRIP).
In Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, page 60–71, New York, NY, USA, 2010. Association
for Computing Machinery. doi:10.1145/1815961.1815971.

[KTJ10] Samira Manabi Khan, Yingying Tian, and Daniel A. Jiménez. Sampling Dead
Block Prediction for Last-Level Caches. In 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 175–186, 2010. doi:
10.1109/MICRO.2010.24.

[LAA+20] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,
Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant
Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jer’onimo Castrill’on, Lizhong Chen, Nicolas Derumigny, Stephan
Diestelhorst, Wendy Elsasser, Marjan Fariborz, Amin Farmahini Farahani,
Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass,
Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy
Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika
Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung,
Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna,
Tommaso Marinelli, Christian Menard, Andrea Mondelli, Tiago M"uck, Omar
Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson,
Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar
Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay
Vaish, Ilias Vougioukas, Zhengrong Wang, Norbert Wehn, Christian Weis,
David A. Wood, Hongil Yoon, and ’Eder F. Zulian. The gem5 Simulator:
Version 20.0+. CoRR, abs/2007.03152, 2020. arXiv:2007.03152.

[Lam79] Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691,
1979. doi:10.1109/TC.1979.1675439.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: Building Customized Program Analysis Tools with Dynamic Instru-
mentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’05, page 190–200,
New York, NY, USA, 2005. Association for Computing Machinery. doi:
10.1145/1065010.1065034.

112

http://www.jaleels.org/ajaleel/publications/cmpsim_mobs2008.pdf
http://www.jaleels.org/ajaleel/publications/cmpsim_mobs2008.pdf
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1109/MICRO.2010.24
https://doi.org/10.1109/MICRO.2010.24
https://arxiv.org/abs/2007.03152
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and
John Hennessy. The directory-Based Cache Coherence Protocol for the DASH
Multiprocessor. In Proceedings of the 17th Annual International Symposium on
Computer Architecture, ISCA ’90, page 148–159, New York, NY, USA, 1990.
Association for Computing Machinery. doi:10.1145/325164.325132.

[LP24] Jason Lowe-Power. Classic Memory System coherence. https:
//www.gem5.org/documentation/general_docs/memory_system/
classic-coherence-protocol/, 2024. Accessed: 2024-09-27.

[Mar84] P. Marwedel. The MIMOLA Design System: Tools for the Design of Digital
Processors. In 21st Design Automation Conference Proceedings, pages 587–593,
1984. doi:10.1109/DAC.1984.1585857.

[MD08] Prabhat Mishra and Nikil Dutt. Processor Description Languages. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[MHAM11] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. Litmus Tests for
Comparing Memory Consistency Models: How Long Do They Need to Be?
In Proceedings of the 48th Design Automation Conference, DAC ’11, page
504–509, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/2024724.2024842.

[MHW03] M.M.K. Martin, M.D. Hill, and D.A. Wood. Token Coherence: Decoupling
Performance and Correctness. In 30th Annual International Symposium on
Computer Architecture, 2003. Proceedings., pages 182–193, 2003. doi:10.
1109/ISCA.2003.1206999.

[Mih23] Hristo Mihaylov. Optimised Processor Simulation with VADL. Master’s thesis,
Vienna University of Technology, 2023. doi:10.34726/hss.2023.102629.

[MKK+10] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald,
Nathan Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agar-
wal. Graphite: A Distributed Parallel Simulator for Multicores. In HPCA - 16
2010 The Sixteenth International Symposium on High-Performance Computer
Architecture, pages 1–12, 2010. doi:10.1109/HPCA.2010.5416635.

[MRSM16] M.S.Hrishikesh, Madhusudhan Rajagopalan, Sujatha Sriram, and Rashmin
Mantri. System Validation at ARM: Enabling our Partners to Build Better Sys-
tems. https://developer.arm.com/-/media/Arm%20Developer%
20Community/PDF/System%20IP/System_Validation_at_ARM_
Enabling_our_partners_to_build_better_systems.pdf?
revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=
88D9B7CF58BE13B124E43EE538D21F4D, April 2016. Accessed: 2024-09-
27.

113

https://doi.org/10.1145/325164.325132
https://www.gem5.org/documentation/general_docs/memory_system/classic-coherence-protocol/
https://www.gem5.org/documentation/general_docs/memory_system/classic-coherence-protocol/
https://www.gem5.org/documentation/general_docs/memory_system/classic-coherence-protocol/
https://doi.org/10.1109/DAC.1984.1585857
https://doi.org/10.1145/2024724.2024842
https://doi.org/10.1109/ISCA.2003.1206999
https://doi.org/10.1109/ISCA.2003.1206999
https://doi.org/10.34726/hss.2023.102629
https://doi.org/10.1109/HPCA.2010.5416635
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/System%20IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/System%20IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/System%20IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/System%20IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/System%20IP/System_Validation_at_ARM_Enabling_our_partners_to_build_better_systems.pdf?revision=a82b4e93-4118-4a3a-ba5f-70e38f6b4616&hash=88D9B7CF58BE13B124E43EE538D21F4D

[mul] MultiCacheSim: A coherent multiprocessor cache simulator. https://
github.com/blucia0a/MultiCacheSim. Accessed: 2024-09-23.

[NSH+20] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, David A. Wood, and Na-
talie Enright Jerger. A Primer on Memory Consistency and Cache Coherence.
Morgan & Claypool Publishers, 2nd edition, 2020.

[Ope21] OpenPOWER Foundation. Power ISA - Version 3.1B, September 2021.

[PH17] David A. Patterson and John L. Hennessy. Computer Organization and
Design RISC-V Edition: The Hardware Software Interface. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2017.

[PSZ21] Philipp Paulweber, Georg Simhandl, and Uwe Zdun. Specifying with Interface
and Trait Abstractions in Abstract State Machines: A Controlled Experiment.
ACM Trans. Softw. Eng. Methodol., 30(4), jul 2021. doi:10.1145/3450968.

[pyc] pycachesim - A single-core cache hierarchy simulator written in python. https:
//github.com/RRZE-HPC/pycachesim. Accessed: 2024-09-23.

[Qua16] Qualcomm Technologies, Inc. Hexagon V60/V61 Programmer’s Reference
Manual, March 2016.

[RIS19] RISC-V International. The RISC-V Instruction Set Manual - Volume I:
Unprivileged ISA, December 2019.

[RIS21] RISC-V International. The RISC-V Instruction Set Manual - Volume II:
Privileged Architecture, December 2021.

[RLC+12] Pengju Ren, Mieszko Lis, Myong Hyon Cho, Keun Sup Shim, Christopher W.
Fletcher, Omer Khan, Nanning Zheng, and Srinivas Devadas. HORNET:
A Cycle-Level Multicore Simulator. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 31(6):890–903, 2012. doi:10.
1109/TCAD.2012.2184760.

[Sch20] Hermann Schützenhöfer. Cycle-Accurate Simulator Generator for the VADL
Processor Description Language. Master’s thesis, Vienna University of Tech-
nology, 2020. doi:10.34726/hss.2021.78460.

[Sch22] Tobias Schwarzinger. Flexible Generation of Low-Level Developer Tools with
VADL. Master’s thesis, Vienna University of Technology, 2022. doi:10.
34726/hss.2023.103246.

[SK13] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA ’13, page
475–486, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2485922.2485963.

114

https://github.com/blucia0a/MultiCacheSim
https://github.com/blucia0a/MultiCacheSim
https://doi.org/10.1145/3450968
https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim
https://doi.org/10.1109/TCAD.2012.2184760
https://doi.org/10.1109/TCAD.2012.2184760
https://doi.org/10.34726/hss.2021.78460
https://doi.org/10.34726/hss.2023.103246
https://doi.org/10.34726/hss.2023.103246
https://doi.org/10.1145/2485922.2485963

[TA13] A.S. Tanenbaum and T. Austin. Structured Computer Organization. Pearson,
2013.

[UJM+12] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2Sim: A Simulation Framework for CPU-GPU Computing. In Proceedings
of the 21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, page 335–344, New York, NY, USA, 2012. Association
for Computing Machinery. doi:10.1145/2370816.2370865.

[Wav16] Wave Computing, Inc. MIPS® Architecture For Programmers Volume II-A:
The MIPS64® Instruction Set Reference Manual, June 2016.

[WJH+11] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Si-
mon C. Steely, and Joel Emer. SHiP: Signature-based Hit Predictor for
High Performance Caching. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44, page 430–441,
New York, NY, USA, 2011. Association for Computing Machinery. doi:
10.1145/2155620.2155671.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
and Anoop Gupta. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, ISCA ’95, page 24–36, New York, NY,
USA, 1995. Association for Computing Machinery. doi:10.1145/223982.
223990.

[ZCCJ+23] Niko Zurstraßen, José Cubero-Cascante, Jan Moritz Joseph, Li Yichao, Xie
Xinghua, and Rainer Leupers. par-gem5: Parallelizing gem5’s Atomic Mode. In
2023 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1–6, 2023. doi:10.23919/DATE56975.2023.10137178.

115

https://doi.org/10.1145/2370816.2370865
https://doi.org/10.1145/2155620.2155671
https://doi.org/10.1145/2155620.2155671
https://doi.org/10.1145/223982.223990
https://doi.org/10.1145/223982.223990
https://doi.org/10.23919/DATE56975.2023.10137178

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement and Motivation
	Aim of the Thesis and Expected Results
	Research Questions
	Methodology
	Structure of this Thesis

	Background
	Vienna Architecture Description Language (VADL)
	Caches and Cache Coherence
	Memory Consistency Model
	Atomic Instructions
	Virtual Address Space and Address Translation

	Related Work
	Cache Simulation
	Processor Description Languages

	Implementation
	Atomic Instruction Support
	Address Translation
	Cache
	Write Buffers

	Evaluation
	Benchmark Setup
	Results

	Future Work
	Conclusion
	Common Atomic Primitives
	Sv32 Memory Translation
	VADL Implementation of RV32 A-Extension
	VADL Benchmark Configuration
	Additional Results
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms
	Bibliography

