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Abstract

In recent  years, the  study  of  quantum many-body  systems  has  seen tremendous  experi-  

mental progress  driven by  advancements  in a  variety  of  platforms  initially  designed for  

quantum computing  applications. These  systems  are  inevitably  subject  to  decoherence  

and therefore  open system dynamics, which may  always  be  understood as  a  situation 

where  the  environment  continuously  measures  the  system and the  results  are  subsequently  

discarded. On the  other  hand, when retaining  the  measurement  results, many  interest-  

ing  properties  of  the  system can be  accessed. This  setting  of  continuously  monitored 

many-body  systems  is  becoming  increasingly  feasible  in experimental settings. 

In this  thesis, we  study  a  simplified model of  interacting  qubits  that  interpolates  be-  

tween the  two  extremes  of  fully  retaining  or  fully  discarding  the  measurement  results  

of  the  bath. We  address  the  question whether  a  single  measurement  trajectory  can be  

distinguished against  the  backdrop of  open-system dynamics  by  mapping  it  to  a  com-  

plex  “planted”  vector  Hopfield model. Since  the  concrete  dynamics  of  our  model is  fully  

chaotic, we  employ  methods  from random matrix  theory  (RMT)  to  describe  it. Using  ad-  

ditional tools  from quantum information theory, spin glass  theory  and machine  learning, 

we  identify  a  sharp transition between regimes  where  a  single  measurement  trajectory  

can be  recovered and those  where  the  system’s  dynamics  are  dominated by  open-system 

behavior. This  transition bears  resemblance  to  phase  transitions  in the  Hopfield model, 

where  a  planted memory  may  or  may  not  be  retrieved.



Zusammenfassung

In den letzten Jahren hat  das  Studium von Quantenvielteilchensystemen durch Fortschritte  

in einer  Vielzahl von Plattformen, die  ursprünglich für  Anwendungen in der  Quanten-  

informatik  entwickelt  wurden, enorme  experimentelle  Fortschritte  erlebt. Diese  Systeme  

sind unvermeidlich Dekohärenz  ausgesetzt  und unterliegen daher  der  Dynamik  offener  

Systeme, wobei solche  immer  als  eine  Situation verstanden werden kann, in der  eine  

Umgebung  das  System kontinuierlich misst  und die  Ergebnisse  anschließend verworfen 

werden. Andererseits  erhält  man durch das  Beibehalten der  Messergebnisse  Zugang  

zu vielen interessanten Eigenschaften des  Systems. Dieses  Szenario  der  kontinuierlich 

überwachten Vielteilchensysteme  wird in Experimenten zunehmend realisierbar. In dieser  

Arbeit  untersuchen wir  ein vereinfachtes  Modell interagierender  Qubits, welches  zwischen 

den beiden Extremen des  vollständigen Beibehaltens  oder  Verwerfens  der  Messergebnisse  

der  Umgebung  interpoliert. Wir  gehen der  Frage  nach, ob eine  einzelne  Quantentrajek-  

torie  vor  dem Hintergrund offener  Systemdynamiken unterschieden werden kann, indem 

wir  das  Problem auf  ein komplexes  „planted“  Vektor-Hopfield-Modell abbilden. Da  die  

konkreten Dynamiken unseres  Modells  vollständig  chaotisch sind, verwenden wir  Meth-  

oden der  Random Matrix  Theorie  (RMT)  um diese  zu beschreiben. Durch den Einsatz  

zusätzlicher  Werkzeuge  aus  der  Quanteninformationstheorie, der  Spinglastheorie  und dem 

maschinellen Lernen identifizieren wir  einen scharfen Übergang  zwischen den Bereichen, 

in denen eine  einzelne  Quantentrajektorie  wiederhergestellt  werden kann, und jenen, in 

denen das  Verhalten des  Systems  von offenen Systemdynamiken dominiert  wird. Dieser  

Übergang  ähnelt  Phasenübergängen im Hopfield-Modell, bei welchem eine  Erinnerung  

möglicherweise  wiederhergestellt  werden kann oder  nicht.
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CHAPTER 1

Introduction

Recent  experimental advancements  in various  experimental platforms  that  were  initially  

designed for  applications  in quantum computing, have  highlighted the  importance  of  

gaining  a  deeper  understanding  on the  out-of-equilibrium dynamics  of  quantum many-  

body  systems. Indeed, obtaining  more  insights  into  this  subject  could have  profound 

impact  on open questions  related to  thermalisation, chaos  and ergodicity  [1, 2]. 

One  particularly  active  area  of  research in the  study  of  far-from-equilibrium physics  is  

the  field of  open quantum systems  [3, 4]. In these  systems, one  is  usually  interested in the  

dynamics  of  only  one  or  a  few  degrees  of  freedom, known as  the  “system”, interacting  with 

all remaining  degrees  of  freedom, often referred to  as  “bath”  or  “environment”. When the  

environment  is  assumed to  follow  certain Markovian assumptions, the  resulting  dissipative  

dynamics  is  well captured by  Lindblad operators  which obey  the  celebrated GKLS master  

equation [5–7]. 

An especially  intriguing  aspect  of  open quantum systems  arises  when the  environ-  

ment  acts  as  a  meter, continuously  monitoring  the  local degrees  of  freedom of  the  system 

throughout  its  evolution. This  combination of  quantum gates  and subsequent  measure-  

ments  are  crucial for  various  practical applications  such as  state  of  the  art  measurement-  

based feedback  protocols  [8] and quantum error  correction [9]. 

One  fascinating  interpretation of  such a  setup emerges  in cases  where  measurements  

are  performed, but  the  outcomes  are  ultimately  discarded, i.e. the  meter  is  left  unread. 

The  resulting  fundamental lack  of  knowledge  about  the  state  of  the  system then forces  

us  to  describe  it  as  an average  over  possible  measurement  outcomes. This  “unraveling”  

of  the  system’s  state  into  an ensemble  of  pure  states  represents  a  common procedure  in 

the  context  of  open system dynamics  [10, 11]. 

A complementary  perspective  arises  when considering  continuously  monitored sys-  

tems, where  we  do  have  knowledge  about  the  measurement  outcomes. Here, the  resulting  

final state  of  the  system will be  conditioned on a  specific  “path”  of  measurement  out-  

comes  and is  thus  also  commonly  termed as  “quantum trajectory”  [12], corresponding  to  

a  certain pure  state  in the  unraveling  of  the  system’s  dynamics. 

More  recently  the  notion of  quantum trajectories  found its  way  to  the  many  body  

setting  where  it  led to  intriguing  new  physics, most  prominently  the  theoretical pre-  

diction [13, 14] and subsequent  experimental discovery  [15] of  “measurement  induced
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criticality”. In these  models, the  unitary  many-body  time  evolution of  the  system is  from 

time  to  time  interrupted by  local measurements  on a  fraction of  its  degrees  of  freedom. 

The  resulting  competition between unitary  dynamics, which generates  entanglement, and 

local projective  measurements, which reduce  it, then leads  to  a  sharp second-order  mea-  

surement  induced phase  transition between regimes  of  volume-law  and area-law  entan-  

glement  [16, 17]. 

Within this  broader  context, a  central focus  of  this  thesis  is  the  concept  of  “retrievabil-  

ity”. Here, retrievability  refers  to  the  ability  to  reconstruct  the  dynamics  of  an individual 

quantum trajectory  from the  noisy  backdrop of  dissipative  open system dynamics. To  

quantify  retrievability, we  employ  a  method analogous  to  a  Principal Component  Anal-  

ysis  (PCA)  but  adapted to  the  quantum setting. Specifically, the  final density  matrix  

of  the  system is  analyzed to  extract  its  largest  eigenvalue  and the  corresponding  eigen-  

state—which essentially  corresponds  to  the  first  principal component  of  the  system [18, 

19]. The  overlap between this  dominant  eigenstate  and the  specific  trajectory  of  interest  

is  then evaluated. If  this  overlap is  significant, the  trajectory  is  deemed “retrievable”, 

indicating  that  its  dynamics  remain detectable  despite  the  contributions  of  noise  and 

decoherence. 

Building  on these  concepts  we  just  elaborated on, a  fundamental question arises: 

under  what  conditions  can a  quantum trajectory  be  retrieved in the  presence  of  “noisy”  

dissipative  open-system dynamics?  

In this  thesis, we  want  to  address  this  question by  connecting  it  to  broader  themes  in 

physics  and machine  learning, such as  spin glass  theory, information retrieval or  memory  

storage. In particular, we  introduce  a  simplified model of  interacting  spins  (or  qudits), 

which interpolates  between the  two  extremes  of  fully  retaining  and fully  discarding  mea-  

surement  outcomes. Then, in order  to  perform the  aforementioned quantum PCA of  our  

system, we  embed this  task  into  a  search for  the  groundstate  of  an effective  spherical spin 

glass  model where  our  final density  matrix  takes  the  place  of  the  random coupling  matrix. 

Furthermore, to  make  the  model and subsequent  questions  regarding  the  retrievability  

of  individual trajectories  analytically  tractable, we  will prescribe  it  with an all-to-all in-  

teracting  and fully  chaotic  dynamical evolution. Such dynamics  will then allow  us  to  

effectively  describe  the  model in terms  of  random matrix  theory  (RMT), which poses  a  

powerful tool for  calculating  analytical properties  of  such non-integrable  systems. 

A key  result  of  this  work  is  the  identification and quantification of  a  sharp transi-  

tion between retrievable  and non-retrievable  regimes, reminiscent  of  phase  transitions  in 

classical systems  like  the  Hopfield network. We  further  demonstrate  that  the  eigenvalue  

spectra  of  the  evolved system provides  a  clear  signature  of  this  transition, offering  an 

intuitive  understanding  of  the  retrieval dynamics. However, it  should be  noted the  scope  

of  this  work  is  focused on short-term dynamics, where  the  evolution of  the  system is  con-  

sidered over  a  single  timestep. This  focus  enables  analytical tractability  and provides  a  

foundation for  exploring  more  complex  behavior, including  long-term dynamics, in future  

research. 

The  structure  of  this  thesis  is  as  follows: Chapter  2  introduces  the  model and theoret-  

ical framework, outlining  the  mathematical and physical principles  underlying  quantum 

trajectories  and open-system dynamics. Chapter  3  presents  the  main results, demonstrat-  

ing  the  emergence  of  a  retrievable  phase  and connecting  these  findings  to  insights  from 

machine  learning  and spin glass  theory. Chapter  4  provides  conclusions  and a  discussion 

of  future  research directions. Finally, detailed derivations  and supplementary  analyses  

are  provided in the  appendices  for  interested readers.
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CHAPTER 2

Model  and  framework

In this  chapter  we  introduce  the  general setup of  our  model and give  a  quick  overview  of  

its  theoretical preliminaries.

2.1  Introduction to  the  model
Consider  a  lattice  (circuit)  model in 1  +  1 dimensions  represented by  a  chain of l qu-  

dits  where  the  dynamics  are  given by  a  Floquet  like  time  evolution that  is  discrete  in 

time t ∈ Z. At  each individual time  step the  lattice  is  evolved by  a  unitary  operator U
which is  typically  given by  a  tensor  product  of  local unitary  gates  acting  on pairs  of  qudits  

(Fig. 2.1a). In our  model we  will relax  this  constriction of  spatial locality  and instead con-  

sider  dynamics  that  is  described by  an all-to-all coupling  between the  qudits  (Fig. 2.1b). 

To  consider  open system dynamics, we  divide  our l qudits  into n system and p environ-  

ment  or  “ancilla”  qudits  such that n + p = l. Noting  that  each individual qudit  carries  a  

local Hilbert  state  space  of  dimension d, the  total Hilbert  space  dimension of  the  system

(a) (b)

Figure  2.1: (a)  Example  of  a  spatially  local quantum circuit, such an architecture  is  

also  referred to  as  a  “brickwork”  circuit  in the  literature. Each leg  corresponds  to  an 

individual qudit  while  blue  rectangles  depict  unitary  gate  that  act  on the  Hilbert  space  

of  the  incoming  legs. By  thinking  of  this  structure  in terms  of  a  Trotterized many-body  

system, one  can interpret  it  as  universal approximation of  a  system with nearest-neighbor  

interactions  [20]. (b)  All-to-all interacting  unitary  circuit. In the  past, this  model has  

found many  interesting  applications, an example  being  the  study  of  scrambling  in black  

holes  if  the  individual gates  are  sampled from the  unitary  Haar  measure  [21, 22].
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is given by N = dim (HS) = dn while that of the environment is P = dim (HE) = dp.
Additionally, we want to define the quantity

α = P

N
, (2.1.1)

which will prove to be useful in the remaining part of the thesis. As illustrated in Fig. 2.1,
the time evolution of the circuit will be given a sequence of t unitary operators U that
couple all l qudits of the lattice simultaneously. Due to their analytical tractability, we
will focus on unitary gates that are sampled from the Haar measure on U (NP ), meaning
that U = UHaar for this work.

2.1.1 Quantum trajectories
Suppose now that after each individual time step we perform a generalized measurement
on the system. To do so, we introduce a positive operator-valued measure (POVM) which,
using Naimark’s dilation theorem, can also be regarded as projective measurement on a
larger Hilbert space. In this sense, the enlarged Hilbert space is characterized by the
space of all l qudits and the projective measurements are performed on the qudits of the
environment while storing the associated measurement outcomes after each timestep mj

in the tuple m = (m1, m2, . . . , mt). Assuming that our initial state is described by
a product state of our system ρS and the environment ρE = |0⟩⟨0|, one then readily
obtains the post measurement state of the system by performing a partial trace over the
environment of the joint evolved system, i.e. we can write (without normalization)

E [ρS]m ∝ trE
(︁
Em (ρS ⊗ |0⟩⟨0|) E†

m

)︁
, (2.1.2)

where
Em = PmtUt · · · Pm2U2Pm1U1, (2.1.3)

with the projection operators being defined in the usual way as

Pmj
= IN ⊗ |m⟩⟨m|, with {|m⟩}P −1

m=0 . (2.1.4)

m1

m2

ρS ρE

E [ρS]m
m

ρS

E [ρS]m

+ 1
2 − 1

2

Figure 2.2: Illustrative example of the concept of quantum trajectories. For simplicity,
we consider an environment consisting of only one qubit (d = 2). The projective mea-
surements are performed on the z-component of the qubit and yield either +1/2 or −1/2.
Due the probabilistic nature of the measurement process, every new experimental run
could result in a different trajectory describing ρm. One exemplary sequence of outcomes
corresponding to m = (−1/2, +1/2) is highlighted by the red path.
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The  post  measurement  state E [ρS]m now  represents  what  is  known as  a  “quantum 

trajectory”  in the  literature  [12, 23]. In this  context, the  word trajectory  refers  to  the  path 

of  measurement  outcomes  that  characterize  a  certain post  measurement  state  conditioned 

on m, see  Fig. 2.2  for  an example  [11]. 

In order  to  fully  describe  the  normalized state  of  the  system conditioned on the  mea-  

surement  outcome m, we  now  introduce  the  Kraus  operator

Am ≡  ⟨m |Ut .  .  .  Pm2U2Pm1U1 |0⟩, (2.1.5)  

which allows  us  to  write  the  channel as

E [ρS]m = AmρSA†
m

pm

, (2.1.6)  

where  the  normalization constant pm =  tr
(︁
AmρSA†

m

)︁
corresponds  to  the  probability  of  

obtaining  a  certain trajectory m.

2.1.2  Dissipative  information loss
So  far  we  have  only  considered the  situation where, upon performing  a  sequence  of  mea-  

surements  on the  circuit, we  always  keep perfect  track  of  each individual measurement  

outcome  which allowed us  to  fully  specify  the  post  measurement  of  the  system. This  

situation changes  if  we  consider  scenario  in which we  discard all the  measurement  results  

such that  we  have  no  knowledge  about  the  specific  outcomes. Such an intrinsic  lack  of  

information forces  us  describe  the  post  measurement  state ̃︀ρ as  a  statistical mixture  of  

all possible  quantum trajectories, i.e. we  have

E [ρS] = E [E [ρS]m] =
∑︁
m

pmE [ρS]m . (2.1.7)  

Considering  that  an individual trajectory  is  given by  Eq. (2.1.6), we  can rewrite  this  state  

to
E [ρS] =

∑︁
m

AmρSA†
m, (2.1.8)  

where, due  to  the  trace  preserving  condition, the  Kraus  operators  have  to  fulfill the  

condition that ∑︀
m A†

mAm =  IN . For  the  dynamics  that  we  consider  in this  thesis, this  

state  will always  tend to  the  maximally  mixed (i.e. infinite  temperature)  state  after  a  

sufficient  amount  of  time. Note  that  the  description of  this  state  would be  equivalent  

to  a  situation where, instead of  considering  measurements  on the  environment, we  have  

decoherence  of  the  system state  due  to  an interaction with some  uncontrolled bath.

2.1.3  Model  setup
As  already  stated in Chapter  1, our  goal is  to  unravel the  connections  between the  setting  

of  a  dissipative  system undergoing  decoherence  due  to  an uncontrolled interaction with 

an environment  and a  system that  is  continuously  monitored and where  we  always  have  

perfect  knowledge  about  the  outcomes  of  the  measurements. To  do  so, we  introduce  a  

model where  we  interpolate  between those  two  settings  with an interpolation parame-  

ter η ∈ [0, 1] such that  the  evolved state  of  the  system is  described by

ρ (t +  1)  = ηE [ρ (t)]m +  (1 − η) E [ρ (t)] , (2.1.9)

5



meaning that the parameter η can be seen as the probability that we keep track of the
measurement outcomes at time t. Note that the density matrix ρ does not explicitly
carry an index m, this results from an independence of the specific “unraveling” of our
model. This argument will be justified later on in Section (3.2).

Instead of considering the model for arbitrary long times, however, we will focus on
the case where the dynamics is given by only one single time step. In this case, the Kraus
operators from Eq. (2.1.5) simplify to

Am = ⟨m |U |0⟩, (2.1.10)

where we note that our previously defined tuple of measurement outcomes m now reduced
to the single outcome m obtained after the first time step. In this context, our above
defined model reduces to

ρ = ηE [ρS]m + (1 − η) E [ρS] . (2.1.11)

2.2 RMT model of the dynamics
In its present form, it is hard to analyze general properties of the model proposed in
Eq. (2.1.11). For this reason, we will instead consider an effective RMT model where we
replace the Kraus operator defined in Eq. (2.1.10) by

An = Gn√
NP

, (2.2.1)

with the entries of the N × N -dimensional complex matrix Gn being given by

(Gn)ij
i.i.d∼ 1√

2
(N (0, 1) + iN (0, 1)) , (2.2.2)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Re (λ)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Im
(λ
)

r = 1/
√
P

An = �n|U |0�
An = Gn/

√
NP

Figure 2.3: Eigenvalues of a trun-
cated Haar-unitary matrix (silver)
and an effective Kraus operator de-
scribed by RMT (gray) for N =
1024 and P = 4.

where the notation N (0, 1) denotes a normal dis-
tributed random variable with mean 0 and vari-
ance 1.

Random matrices defined this way are known
as complex Ginibre matrices in the literature [24].
The justification for Eq. (2.2.1) follows from a well
known result from the study of large Haar dis-
tributed unitary matrices, stating that any k × k
submatrix of a random n × n unitary matrix con-
verges to a matrix of independent complex Gaus-
sian random variables with mean 0 and variance 1
in the limit where n → ∞ and after multiplying it
with a normalization factor equal to

√
n [25, 26].

For our model, this implies that the effective RMT
model becomes exact in the thermodynamic limit
where the number of qudits l → ∞. Since the
eigenvalues of a complex Ginibre matrix are con-
fined to the unit disc, a result known as circular
law [24], we expect the radius of Gn/

√
NP to be

equal to 1
√

P (see Fig. 2.3).
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Let  us  now  validate  the  use  of  these  Kraus  op-  

erators  by  checking  if  they  fulfill the  necessary  conditions  to  describe  a  valid POVM, i.e. 

we  need to  show  that

A†
nAn ≥ 0, ∀n and

P∑︁
n=1

A†
nAn =  IN . (2.2.3)  

The  first  condition can be  shown easily  by  noting  that  the  eigenvalues  of  the  opera-  

tor A†
nAn follow  a  Wishart  distribution [27], hence  making  it  necessarily  a  positive  semi-  

definite  operator. The  second condition, however, does  not  hold in general. Nonethe-  

less, one  can show  that  the  condition is  fulfilled at  least  on average, i.e. that  (see  Ap-  

pendix  A.1.1)

E [M ] =  IN , with M =
P∑︁

n=1
A†

nAn. (2.2.4)  

To  check  how  this  result  fluctuates  on average, we  calculate  the  variance  which results  in 

(check  again Appendix  A.1.1  for  detailed steps)

Var [M ] = E
[︁
M2

]︁
− (E [M ])2 = q

N
IN , (2.2.5)  

showing  that  the  POVM  defined by  the  elements
{︁
A†

nAn

}︁
is  self-averaging, i.e. there  is  a  

concentration of  measure  in the  thermodynamic  limit N ≫ 1. We  conclude  that  in this  

limit  already  a  single  realization of  the  channel describes  a  valid POVM.

2.2.1  Quantum  trajectory  with random  operators
We  now  want  to  investigate  the  quantum trajectory  produced by  our  random Kraus  

operators. Because  of  the  disorder, we  are  particularly  interested in the  mean updated 

state  given by E [E [ρS]m] where E [ρS]m is  defined in the  usual way  (see  Eq. (2.1.6)). 

Dealing  with this  quantity  analytically, however, can become  very  challenging  since  the  

term in the  denominator  will usually  fluctuate  heavily  for  a  small total Hilbert  space  

dimension N  P . We  thus  want  to  investigate  the  quantity E [pm] and see  how  it  behaves  

in the  thermodynamic  limit. Doing  the  average  (see  Appendix  A.2.1)  gives  us

E [pm] =  

1
P  

, (2.2.6)  

while  the  variance  is  given by

Var [pm] = E
[︁
p2

m

]︁
− (E [pm])2 = q2

N3 . (2.2.7)  

This  shows  us  that  for  large  system sizes, N ≫ 1, the  quantity pm is  self-averaging, 

allowing  us  to  replace
pm  

N≫1−→ P −1. (2.2.8)  

Thus, assuming  that  our  initial system state  starts  out  in the  pure  state ρS = |0⟩⟨0|, the  

updated state  becomes

E [ρS]m = AmρSA†
m

P −1 =  

1
N

N∑︁
i,j=1

Gm,i0G
†
m,0j|i⟩⟨j| = |ψ(m)⟩⟨ψ(m)|, (2.2.9)
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where  we  defined
|ψ(m)⟩ =

N∑︁
i=1

cm,i|i⟩, with cm,i = Gm,i0√
N  

. (2.2.10)  

One  should note  that  this  state  is, in general, not  properly  normalized. But  since  we  

are  anyway  only  interested in the  average, we  can take  a  look  at  the  distribution of  the  

squared norm of  this  quantity. Doing  a  simple  calculation reveals  (check  Appendix  A.2.2  

for  details)
E [⟨ψ |ψ⟩] =  1. (2.2.11)  

While  the  fluctuations  around this  result  are  given by

Var [⟨ψ |ψ⟩] = E
[︁
⟨ψ |ψ⟩2

]︁
− (E [⟨ψ |ψ⟩])2 =  

1
N  

, (2.2.12)  

showing  again that  the  distribution of  the  squared norm concentrates  around a  normalized 

state  vector |ψ⟩ for N ≫ 1.

2.2.2  Dissipative  channel  with random  operators
Now  that  we  have  dealt  with the  description of  quantum trajectories  in terms  of  random 

Kraus  operators, we  want  to  turn our  attention on the  dissipative  part  of  Eq. (2.1.11). 

What  we  can show  is, that  the  eigenvalue  distribution for  this  term will follow  a  Marčenko-  

Pastur  distribution [28]. To  see  this, we  perform the  following  computation

E [ρS] =
P∑︁

n=1
AnρSA†

n =  

1
N  P

P∑︁
n=1

GnρSG†
n

=  

1
N  P

N∑︁
i,j=1

P∑︁
n=1

|i⟩⟨i|Gn|0⟩⟨0|G†
n|j⟩⟨j|

=  

1
N  P

N∑︁
i,j=1

(︃
P∑︁

n=1
Gn,i0G

∗
n,j0

)︃
|i⟩⟨j|

=  

1
N

N∑︁
i,j=1

1
P

(︁
G  G†)︁

ij
|i⟩⟨j|,

(2.2.13)  

where  we  defined the N × P dimensional matrix

Gij = Gi,j0, with 1 ≤ i ≤ N  , 1 ≤ j ≤ P  , (2.2.14)  

whose  elements  are  of  course  still distributed according  to  Eq. (2.2.2). 

By  recalling  that  the  Wishart  matrix  for  a  dataset  of P , N -dimensional random data  

vectors xn is  nothing  but  the  sample  covariance  matrix  defined as W = ∑︀P  

n=1 xnx⊤
n /P =

XX⊤/P , we  can finally  write

E [ρS] =
P∑︁

n=1
AnρSA†

n =  

1
N

N∑︁
i,j

W̃ ij|i⟩⟨j|. (2.2.15)  

Combining  this  result  with the  effective  quantum trajectory  obtained in Eq. (2.2.9)  finally  

allows  us  to  write  our  effective  model as

ρ = η|ψ⟩⟨ψ| +  (1 − η) W , where W =  

1
N

W̃ . (2.2.16)
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Observe the two different contributions to the spectrum of ρ. On one hand, if we concen-
trate on the extreme case η = 0, as already mentioned, the spectrum will be distributed
according to the famous Marčenko-Pastur distribution. With η = 1, however, the spec-
trum will be described by the eigenvalues of the pure state describing a certain quantum
trajectory, meaning that we have a single eigenvalue equal to 1 while all others are 0.
Accordingly, for values of η in between these two extreme cases, the distribution will be
described by a mixture of these two. One can therefore expect, that after crossing a
certain critical value ηc, the single peak produced by the pure state will start to emerge
out of the Marčenko-Pastur “bulk” while essentially staying “hidden” if kept below this
value. In fact, such a transition can not only be observed by varying the parameter η,
see Fig. 2.4 below, but also by variation of the size of the bath through the parameter α.
Observing the transition by sweeping over this parameter describes what is known as
a Baik-Ben Arous-Péché (BBP) phase transition in the literature [29].
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Figure 2.4: The eigenvalues λ of ρ for different values of η. The dimension of the system
and the environment are both equal to N = P = 128. We see a clear separation from
the bulk of the Marčenko-Pastur distribution for high enough values of η. The moment
this peaks disappears in the bulk of the noise indicates roughly the critical point where
we lose the ability to reconstruct the original dynamics of a single trajectory.
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CHAPTER 3

Main  results

Now  that  the  main setup of  our  model has  been established, we  now  want  to  turn our  

attention to  the  main question of  this  thesis, that  is, we  want  to  ask  for  what  strength of  

the  dissipative  part  of  our  model (Eq. (2.2.16))  are  we  still able  to  recover  the  dynamics  

defined by  the  quantum trajectory |ψ⟩. 

We  can expect  that  for  large  values  of η, the  eigenvector |0⟩ of ρ associated with the  

largest  eigenvalue  will be  very  close  to  the  state |ψ⟩. For  smaller  values, however, the  

state |0⟩ should start  to  mix  with the  eigenvectors  of  the  bulk  produced by  the  Wishart  

matrix W , implying  that  the  overlap of |0⟩ with |ψ⟩ will begin to  shrink. In what  follows  

we  are  thus  motivated to  find an analytical expression for  the  quantity

m2 = |⟨0 |ψ⟩|2. (3.0.1)  

To  accomplish this  task, we  will build up a  connection to  a  well studied problem in 

machine  learning  theory  that  we  want  to  discuss  in the  following  Section.

3.1  Connections  to  machine  learning  theory  and spin 

glasses
Unsupervised learning  is  a  branch of  machine  learning  whose  goal is  to  find hidden struc-  

tures  or  patterns  in a  given dataset. The  term “unsupervised”  emphasizes, that  the  

model, say  a  neuronal network, has  to  find this  structure  itself, i.e. there  is  no  feedback  

whatsoever  from some  outside  entity  whether  the  resulting  output  is  correct. This  differs  

to  the  branch of  supervised learning  where  such feedback  is  present. 

Suppose  now  we  are  dealing  with a  dataset  that  has  such a  hidden structure, how  

would we  go  about  finding  it?  Let  us  assume  that  the  dataset  has N observations  each for  

a  total set  of P variables, we  label the  vector  containing  the N observations  as ξµ ∈ RN , 

where µ labels  the  specific  variable  we  are  looking  at, i.e. µ =  1,  .  .  .  ,  P . The  usual 

strategy  now  is, see  [30–32] and references  therein, to  seek  for  an optimal “retrieval 

configuration” v ∈ RN , such that  the  overlap between observed data  and this  vector, i.e.

λµ =  

1√
N

v · ξµ, (3.1.1)
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is  such that  it  minimizes  a  certain energy  function that  we  write  as

E (v)  =
P∑︁

µ=1
V (λµ) , (3.1.2)  

with the  potential V (λµ). 

Note  that  we  included an additional factor 1/
√

N in Eq. (3.1.1), in many  applications  

of  unsupervised learning  the  data  vector ξµ is  assumed to  be  sampled from a  standard 

normal distribution, meaning  that  its  length approaches
√

N in the  limit  for  large N [33]. 

It  is  therefore  convenient  to  also  normalize  other N -dimensional vectors  such that  their  

length is  equal to
√

N . This  implies  that  the  minimization of  the  energy  function E (v)
has  the  additional constraint  that v2 = N . 

To  proceed, one  now  has  to  specify  the  potential V (λµ), essentially  determining  what  

kind of  unsupervised learning  algorithm will be  used. Take, for  example, the  linear  po-  

tential V (λµ)  = −λµ. In this  case, v will point  along  the  mean (or  center-of-mass)  

vector  of  the  dataset, since, in order  to  minimize  the  energy, it  will necessarily  be  given 

by v ∝ ∑︀
µ ξµ. In the  literature, this  specific  algorithm is  referred to  as  Hebbian learn-  

ing  [34]. 

Another  useful choice  we  can make  for  the  function V (λµ) is  that  of  a  quadratic  

potential, i.e. where
V (λµ)  = −λ2

µ. (3.1.3)  

In this  case, the  learning  algorithm is  known as  Oja’s  rule  [35] or  maximal variance  

learning  (i.e. principal component  analysis). Here, the  energy  function takes  the  form

E (v)  = − 1
N

P∑︁
µ=1

v⊤ξµξ⊤
µ v = − 1

N
v⊤Cv, (3.1.4)  

where C = ∑︀
µ ξµξ⊤

µ is  defined as  the  sample  covariance  matrix  of  the  data. In this  

form, it  also  becomes  evident  why  this  choice  of  potential is  known as  maximal variance  

learning. Namely, in order  to  minimize  the  given energy, the  vector v will necessarily  

point  along  the  direction of  the  eigenvector  corresponding  to  the  maximal eigenvalue  of  

the  covariance  matrix C. This, of  course, is  equivalent  to  saying  that v points  along  the  

first  principal component  of  the N × P -dimensional data  matrix X whose  columns  are  

given by ξµ. 

Let  us  now  return to  our  problem statement  and see  how  we  can map it  to  the  

framework  we  just  elaborated on. As  already  stated in Equation (3.0.1), we  are  interested 

in calculating  the  overlap between the  eigenvector  corresponding  to  the  largest  eigenvalue  

of ρ and the  state |ψ⟩. In order  to  retrieve  this  quantity, we  employ  the  method of  maximal 

variance  learning  and define  the  quadratic  energy  function

E (v)  = −v†ρv, (3.1.5)  

where  we  replaced the  transpose  with the  dagger  operation since  in our  setting v ∈ CN . 

Written in this  form, it  becomes  evident  that  our  problem can be  mapped to  the  spherical 

Sherrington-Kirkpatrick  (SSK)  spin glass  model [36] whose  Hamiltonian is  given by

E (v)  = − 1√
N

∑︁
i,j

Jijvivj, (3.1.6)
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where we identified the coupling matrix with J = ρ/
√

N . Spherical in this context
refers to the property of the system that the spins are confined to the N − 1-dimensional
sphere SN−1

(︁√
N

)︁
=

{︁
v ∈ RN : v2 = N

}︁
instead of a lattice v = {−1, 1}N as in the

usual Sherrington-Kirkpatrick (SK) model [37].
Recall that we asserted that in the extreme case of a purely dissipative channel, η = 0,

the distribution of the eigenvalues of ρ and thus of the couplings will follow a Marčenko-
Pastur distribution. For the more general case of η ̸= 0, however, the distribution will
be modified according to a “spiked”-Wishart model [29], where in our case the “spike” is
given by a rank 1 perturbation.

This perturbation can also be seen as a kind of “planted” memory if one views the en-
ergy function in Eq. (3.1.6) through the lens of a vectorized “planted” Hopfield model [38].
In this model, memory patterns are stored as stable attractors in its energy landscape.
When presented with a partial or noisy input pattern, the network aims to evolve toward
the nearest attractor, thus retrieving a stored memory. Of course this also applies to the
setting of spin glasses. Here, configurations can settle into various stable states depending
on the degree of disorder of the coupling matrix J . By analyzing the overlap between con-
figurations, we can assess whether the system is in a “retrievable” phase, dominated by
a single coherent trajectory, or in a “non-retrievable” phase where the state is effectively
randomized by decoherence.

Figure 3.1: Energy landscape of a Hopfield network or spin glass model with a cer-
tain “planted” configuration |ψ⟩. In our model, the disorder is varied via the efficiency
parameter η. For values of η above a certain critical value ηc, we observe a strongly
pronounced minima of the energy landscape which enables the ground state |0⟩ to con-
dense onto it. With η close to the critical value we observe a smoothening of the energy
landscape such that there are many equally likely configurations of the system. For η far
below the critical value the spike disappears in the bulk of the noise matrix, leading to
a condensation of the system to a false minimum. In the context of Hopfield networks,
these false minima are called spurious attractors.

To retrieve the overlap parameter, which is nothing but the mean magnetization in
the context of spin glasses, we now define the Gibbs distribution associated to the energy
function Eq. 3.1.5 as

p (v, β) = 1
Z

e−βE(v), (3.1.7)

with the “inverse temperature” β and the partition function Z which is defined in the
usual way as

Z =
∫︁

dve−βE(v). (3.1.8)

Note that as β → ∞, the Boltzmann weight exp [−βE (v)] becomes increasingly peaked at
the configuration v that minimizes E (v), corresponding to the ground state of the system.
In this limit, the partition function effectively isolates the dominant eigenstate of the
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system’s  density  matrix, which aligns  with the  quantum PCA-inspired analysis  employed 

in this  work. This  process  is  often referred to  as  Boltzmann-Gibbs  regularization, as  it  

filters  out  contributions  from higher-energy  states  and focuses  solely  on the  ground state. 

In the  context  of  this  thesis, the  ground state  corresponds  to  the  eigenvector  associated 

with the  largest  eigenvalue  of  the  density  matrix. The  overlap between this  dominant  

eigenvector  and the  quantum trajectory  of  interest  quantifies  the  “retrievability”  of  the  

trajectory. In the  following  Section we  want  to  concentrate  our  efforts  on obtaining  the  

partition function of  the  system in order  to  extract  this  overlap out  of  it.

3.2  Computing  the  overlap
Let  us  come  back  to  our  model defined in Eq. (2.2.16). As  a  first  step, it  will prove  useful 

to  write  it  back  into  its  original form where  we  had

ρ = η  

AmρA†
m

pm

+  (1 − η)
P∑︁

µ=1
AµρA†

µ. (3.2.1)  

Note  now  that  trajectory  which we  want  to  recover  is  also  present  in the  “noise”  on the  

right-hand side. Pulling  the  term where µ = m out  of  the  sum and writing pk = P −1

while  also  using  the  random matrix  representation of Am since  we  are  interested in the  

limit  for  large N and P , then allows  us  to  write

ρ = aη

N
gmg†

m +  

(1 − η)
N  P

P∑︁
µ ̸=m

gµg†
µ,

where  we  defined the N -dimensional vector Gm,i0 =  (gm)i and the  rescaled parameter

aη =  

(1  + η (P − 1))
P  

. (3.2.2)  

Given that  the  sum over  all trajectories  now  only  contains P − 1 terms, we  renormalize  

it  through a  multiplication by

ρ = aη

N
gmg†

m + bη

P − 1

P∑︁
µ ̸=m

gµg†
µ,

where  now
bη =  

(1 − η) (P − 1)
N  P  

. (3.2.3)  

Using  the  fact  that  the  spectrum of ρ is  invariant  under  unitary  transformations, we  

then define  a  unitary  operator U such that  the  transformation ρ → U ρU † gives  us  the  

simple  form u = Ugm =
(︁√

N  , 0,  .  .  .  , 0
)︁⊤ ∈ RN , where  the  factor

√
N ensures  that  the  

length of gm stays  the  same. This  makes  it  also  apparent  why  the  specific  “unraveling”  

of  the  trajectory  does  not  matter, and we  are  free  to  choose  any  convenient  one. We  thus  

end up with the  final model

ρ = aη

N
uu† + bη

P − 1

P −1∑︁
µ=1

gµg†
µ. (3.2.4)
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To  additionally  demand that  the  sampled vector v has  the  property v2 = N , we  add a  

constraint  to  the  energy  function such that

E (v,  ρ)  = −1
2v†ρv + z

2
(︁
v†v − N

)︁
, (3.2.5)  

where  the  scalar  quantity z acts  as  a  Lagrange  multiplier  and a  factor  of 1/2 was  added 

for  convenience. 

With our  energy  at  hand, we  now  define  the  Helmholtz  free  entropy  in the  usual way  

as
Φ  =  lim

N→∞
ΦN , (3.2.6)  

where ΦN is  called the  free  entropy  density  being  given by

ΦN = − 2
N

log [Z (ρ)] = − 2
N

log
[︂∫︁

dv e−β  E(v,ρ)
]︂

, (3.2.7)  

where  we  included a  non-conventional prefactor  of 2 in order  to  simplify  our  calculations  

later  on. 

It  is  now  crucial to  remark  that, through its  dependence  on the  partition function and 

thus ρ, the  free  entropy  itself  will be  subject  to  randomness. For  this  reason, comput-  

ing ΦN alone  will only  give  us  the  free  entropy  for  a  specific  realization of  the  disorder. 

Luckily, however, the  free  entropy  density  has  the  very  nice  property  that  it  is  self-  

averaging, a  concept  we  already  encountered in the  previous  Chapter. What  it  means  

is, that  for  all kind of  different  realization of  the  disorder  and in the  limit  for  very  large  

system sizes N , ΦN will concentrate  on its  average  value. Thus, in order  to  study  our  

system in the  thermodynamic  limit, it  suffices  to  compute

E [ΦN ] = − 1
N
E [log [Z (ρ)]] , (3.2.8)  

where  the  averaging  is  performed with respect  to  the  disorder  present  in ρ. In the  lit-  

erature, the  above  quantity  is  also  commonly  referred to  as  the  quenched average  of  the  

system. 

The  challenge  one  now  faces  is, that  besides  computing  the  partition function on its  

own, which by  all means  is  also  a  highly  non-trivial task, computing  the  average  of  the  

logarithm of  this  quantity  is  usually  much more  complicated and often not  analytically  

tractable. Luckily, there  exists  a  very  nice  method known as  the  replica  method that  will 

us  to  circumvent  the  problem of  computing  the  average  of  the  logarithm.

3.2.1  The  replica  method
The  basic  argument  of  the  replica  method goes  as  follows. Suppose n is  very  close  to  

zero, then
Zn = en log(Z) =  1  + n log (Z)  + O

(︁
n2

)︁
, (3.2.9)  

which implies  that
log (Z)  =  lim

n→0

Zn − 1
n  

,

leaving  us  with the  final result  that

E [log (Z)] =  lim
n→0

E [Zn] − 1
n  

. (3.2.10)
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The  scheme  for  this  calculation is  now  to  first  assume  that n ∈ N, obtain the  corre-  

sponding  average  of Zn and then perform an analytical continuation for n → 0. There  

is, however, a  problem with this  approach since  nothing  can guarantee  us  the  validity  of  

this  last  step, and we  often have  to  hope  that  the  correct  result  can be  actually  obtained 

this  way. Still, as  of  today, there  is  a  strong  trust  in the  replica  method since  it  always  

seemed to  retrieve  the  same  result  that  could be  obtained by  rigorous  computations. One  

example  of  this  was  the  seminal work  of  Giorgio  Parisi in which he  showed that  the  SK  

spin glass  model could be  solved exactly  by  the  replica  method if  one  assumes  something  

that  is  known as  “replica  symmetry  breaking”  [39]. It  was  this  insight  and a  number  of  

other  important  contributions  for  which he  was  ultimately  awarded the  Nobel Prize  in 

physics  in 2021. 

We  now  want  to  return to  our  calculation. As  stated above, we  first  assume  that n ∈ N. 

This  way, the  average  over Zn can be  interpreted as  the  expectation value  of n non-  

interacting  copies  of  our  system. Written down explicitly  it  reads

Eρ [Z (ρ)n] = Eρ

[︂(︂∫︁
dv e−β  E(v,ρ)

)︂n]︂
= Eρ

[︃∫︁ n∏︁
α=1

dv(α) e−β  E(v(α),ρ)
]︃

,

where  we  labeled each individual copy  of  the  system by  the  index α. 

Given that  the  expectation is  performed over  the  disorder  contained in ρ, which is  

realized by  the  complex  Ginibre  random matrix G, we  can now  move  the  average  to  the  

relevant  parts  of  the  equation to  obtain

Eρ [Z (ρ)n] =
∫︁ n∏︁

α=1
dv(α) exp

{︂
−z

2
(︁
v(α)†v(α) − nN

)︁
+ aη

2N
v(α)†uu†v(α)

}︂

EG

  exp
     bη

2 (P − 1)

n∑︁
α=1

P −1∑︁
µ=1

v(α)†gµg†
µv(α)

      

   ,

(3.2.11)  

where  we  gave  each copy  of v an index α. 

Given that  the  average  over G is  simply  given by  a  Gaussian integral, we  can show  

that  it  leads  to  (Appendix  B.1.1)

Eρ [Z (ρ)n] =
∫︁ n∏︁

α=1
dv(α) exp

{︃
−β  z

2
(︁
v(α)†v(α) − nN

)︁
+ β  aη

2N
v(α)†uu†v(α)

}︃
n∏︁

α=1
Eξ(α)

  exp
     β  bη

2 (P − 1)

n∑︁
α,β

ξ(α)v(α)†v(β)ξ(β)

      

  P −1

,

(3.2.12)  

where ξ(α) is  an auxiliary  scalar  field with the  property ξ(α)  

i.i.d∼  N (0, 1) that  was  in-  

troduced via  a  Hubbard-Stratonovich transformation in order  to  linearize  the  quadratic  

disorder  present  in Eq. (3.2.11). 

Something  important  to  notice  is  that  the  previously  independent  replicas  of  the  

system have  now  been coupled together  via  the  term ∝ v(α)†v(β). Such a  coupling  is  

always  produced when one  averages  over  the  disorder  and is  in fact  a  very  important  

quantity  in every  replica  calculation as  we  will see  now.
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3.2.2  The  replica  order  parameters
Looking  at  the  form of  Eq. 3.2.12  now  motivates  us  to  introduce  the  following  overlap 

parameters
Qαβ =  

1
N

v(α)†v(β) and mα =  

1
N

v(α)†u, (3.2.13)  

where Q ∈ Rn×n and m ∈ Cn. In the  theory  of  spin glasses, the  first  quantity Q is  also  

referred to  as  the  Edward-Anderson (EA)  order  parameter  [40] essentially  determining  

the  overlap between different  spin replicas  of  the  system. Additionally, one  can view m
as  an order  parameter  representing  the  magnetization of  the  system. 

Plugging  these  two  parameters  back  into  our  equations  and performing  the  Gaussian 

integral over ξ then gives  us  (see  Appendix  B.1.2)

Eρ [Z (ρ)n] =
∫︁ n∏︁

α=1
dv(α) exp

{︃
−N  β  z

2

(︃
n∑︁

α=1
Qαα − n

)︃
+ N  β  aη

2

n∑︁
α=1

mαm∗
α

}︃

exp
{︃

−N  α

2  

log
[︃
det

(︃
In − β  bη

α
Q

)︃]︃}︃
.

(3.2.14)  

As  a  next  step in our  calculations, we  now  want  to  perform the  integration over  the  

different  replicas v(α). This  poses  a  major  challenge  since  formally  we  integrate  over  the  

hypersphere SN−1
(︁√

N
)︁
. To  circumvent  this  problem, we  can take  use  of  the  “Dirac-  

Fourier”  method, which is  essentially  a  trick  to  multiply  our  equations  by  one  in a  way  

to  enforce  the  respective  definitions  of Q and m. By  then additionally  demanding  that  

the  diagonal elements Qαα =  1, we  can extend the  integral over v(α) to  all of RN since  

the δ-distributions  will automatically  enforce  that v(α) ∈ SN−1
(︁√

N
)︁
. 

The  “Dirac-Fourier”  now  works  as  follows. First, we  write  down the  two  resolution of  

identities:

1  =
∫︁

dQ
n∏︁

α,β=1
δ

(︂
Qαβ − 1

N
v(α)†v(β)

)︂
=

∫︁
dm

n∏︁
α=1

δ
(︂

mα − 1
N

v(α)†u
)︂

.

Next, we  replace  the δ-distributions  with their  corresponding  Fourier  representations, 

these  are

δ
(︂

Qαβ − 1
N

v(α)†v(β)
)︂

=
∫︁ dQ̂αβ

(4π  i/N)  

exp
[︂
Q̂αβ

(︂
N

2 Qαβ − 1
2v(α)†v(β)

)︂]︂
,  

δ
(︂

mα − 1
N

v(α)†u
)︂

=
∫︁ dm̂α

(2π  i/N)  

exp
[︁
m̂α

(︁
N  mα − v(α)†u

)︁]︁
,

where Q̂αβ and m̂α are  the  conjugate  variables  of Qαβ and mα respectively. Note  that, 

in the  above  definitions, we  absorbed a  factor 2i/N into  the  definitions  of  the  conjugate  

variables. Given that  the  integral will be  dominated by  the  saddle  point  of  the  exponential 

term in the  thermodynamic  limit, we  are  free  to  drop such prefactors  for  the  remaining  

part  of  the  calculation to  improve  readability. 

Inserting  everything  back  into  our  equation for  the  average  of  the  partition function
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and rearranging  some  terms  finally  leaves  us  with the  lengthy  expression

Eρ [Z (ρ)n] ≃
  

∫︁ n∏︁
α,β=1

dmαdm̂αdQαβdQ̂αβ

 
exp

    N

2

  n∑︁
α,β=1

Q̂αβQαβ +  2
n∑︁

α=1
m̂αmα + β  aη  

n∑︁
α=1

m2
α

  

    
exp

{︃
−N  α

2  

log
[︃
det

(︃
In − β  bη

α
Q

)︃]︃}︃  

(︃∫︁ n∏︁
α=1

dv(α)
)︃

exp
    −1

2

n∑︁
α,β

v(α)†Q̂αβv(β) −
n∑︁

α=1
m̂αv(α)†u

     ,

(3.2.15)  

where  we  killed the  term ∝ (∑︀n  

α=1 Qαα − n) since  we  already  enforced Qαα =  1. 

We  are  now  finally  in a  position to  evaluate  the  integral over  the  different  replicas v(α). 

One  can show  (again, see  Appendix  B.1.3  for  a  detailed derivation), that  the  result  of  

the  integral is  given by

exp
    N

2

  n log [2π] − log
[︁
det

(︁
Q̂

)︁]︁
+

n∑︁
α,β=1

m̂αQ̂
−1
αβm̂β

    

     . (3.2.16)  

Finally, we  are  now  able  to  collect  all terms  in the  exponent  into  a  single  function and 

write
Eρ [Z (ρ)n] ≃

∫︁
dmdm̂ dQdQ̂ e

N
2 ϕ(Q,Q̂,m,m̂), (3.2.17)  

where  the  function ϕ is  now  given by

ϕ
(︁
Q, Q̂, m, m̂

)︁
=

n∑︁
α,β=1

Q̂αβQαβ +  2
n∑︁

α=1
m̂αmα + β  aη  

n∑︁
α=1

m2
α

− α log
[︃
det

(︃
In − β  bη

α
Q

)︃]︃
+

n∑︁
α,β=1

m̂αQ̂
−1
αβm̂β

− log
[︁
det

(︁
Q̂

)︁]︁
+ n log (2π) .

(3.2.18)  

At  present, the  integral given by  Eq. (3.2.17)  does  not  seem to  be  analytically  tractable. 

In order  to  still be  able  to  evaluate  it, we  are  going  to  take  use  of  what  is  known as  

the  “method of  steepest-descent”  in the  literature. In its  basic  form (modulo  prefactors)  

it  states  that  [41] ∫︁
dx  e−M  f(x) ≈ e−M  f(x0), for M → ∞,

and where x0 denotes  the  minimum point  of f(x). 

To  justify  the  use  of  this  method for  our  analysis, let  us  remind ourselves  that  we  

wanted to  compute

Φ  = − lim
N→∞

2
N
E [log (Z)] = − lim

N→∞
2
N

lim
n→0

E [Zn] − 1
n  

.

The  next  step is  mathematically  not  rigorous  but  a  vital step in every  replica  calculation. 

Even though this  may  seem as  a  problem, as  already  mentioned above, if  often still leads
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to  correct  predictions  that  are  in line  with physical intuition and numerical simulations. 

Namely, we  swap the  order  of  the  two  limits  above  to  get

Φ  = − lim
n→0

1
n

lim
N→∞

2
N
E [Zn] .

Applying  now  Eq. (3.2.2)  to  our  integral finally  gives  us

Φ  = − lim
n→0

1
n

extr
[︁
ϕ

(︁
Q, Q̂, m, m̂,  z

)︁]︁
, (3.2.19)  

where extr [·] means, that  we  should evaluate ϕ at  its  saddle-point  where

∂  ϕ

∂Q =  0,  

∂  ϕ

∂Q̂
=  0,  

∂  ϕ

∂m =  0,  

∂  ϕ

∂m̂ =  0 and ∂  ϕ

∂  z
=  0. (3.2.20)

3.2.3  The  replica  symmetric ansatz
While  this  extremization task  may  seem unfeasible  in its  current  form, we  can employ  

something  known as  the  replica  symmetric  (RS)-ansatz  in order  to  make  it  tractable. In 

this  ansatz, one  makes  the  reasonable  assumption that  at  the  extremum all the  differ-  

ent  replicas  are  equivalent, implying  that  the  overlap Q between different  replicas  and 

the  “magnetization” m will all concentrate  on a  single  value. We  thus  parametrize  these  

order  parameters  as
Qαβ =  (1 − q) δαβ + q  , (3.2.21)

Q̂αβ =
(︁
Q̂ − q̂

)︁
δαβ + q̂, (3.2.22)

mα = m and m̂α = m̂. (3.2.23)  

Using  the  RS-ansatz, we  can now  go  back  to  Eq  (3.2.18)  and evaluate  the  corresponding  

terms. Doing  this  gives  us  (see  for  a  detailed derivation)

Φ  = −extr
   lim

n→0

1
n

 n2q  q̂ + n
(︁
Q̂ − q  q̂

)︁
+ n2mm̂ + nβ  aηm2

− nα log
[︃
1 − β  bη

α
(1 − q)

]︃
− α log

  1 − n

α  

q  β  bη(︁
1 − β  bη

α
(1 − q)

)︁  

  
− n log

[︁
Q̂ − q̂

]︁
− log

[︃
1  + n  

q̂

Q̂ − q̂

]︃
+ n log (2π)  

+nm̂2 (γ − σ)  + n2m̂2σ

  

   ,

(3.2.24)  

where  the  diagonal and off-diagonal elements  of Q̂−1 were  respectively  defined as  (as  

derived in Appendix  B.2.1)

γ = Q̂ +  (n − 2) q̂

Q̂
2 +  (n − 2) q̂Q̂ − (n − 1) q̂2

and σ = − q̂

Q̂
2 +  (n − 2) q̂Q̂ − (n − 1) q̂2

. (3.2.25)  

Note  that  we  additionally  swapped the  order  of  the  limit  and the  extremum in the  expres-  

sion for  the  free  entropy  above. This  swap can be  made  rigorous  if  one  first  extremizes  

the  function at  finite n and then lets n → 0.
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With Eq. (3.2.24)  at  hand we  are  now  in a  good position to  perform the  analytic  

continuation of n → 0. Using  the  fact  that log (1 − x) ≈  −x + O (x2) for x ≪ 1 then 

allows  us  to  evaluate  the  limit  as

Φ  = −extr
  Q̂ − q  q̂ +  2mm̂ + β  aηm2 − α log

[︃
1 − β  bη

α
(1 − q)

]︃

+ q  β  bη(︁
1 − β  bη

α
(1 − q)

)︁ − log
[︁
Q̂ − q̂

]︁
− q̂(︁

Q̂ − q̂
)︁

+ m̂2(︁
Q̂ − q̂

)︁ +  log [2π]
   ,

which now  got  transformed into  a  manageable  optimization problem over 5 scalar  vari-  

ables.

3.2.4  Minimizing  the  free  entropy
Let  us  start  this  optimization task  by  minimizing Φ w.r.t. q̂. After  some  simple  algebra  

we  arrive  at
q = − 1(︁

Q̂ − q̂
)︁2

[︁
q̂ − m̂2

]︁
. (3.2.26)  

On the  other  hand, minimization w.r.t. Q̂ gives  us

1 − 1
Q̂ − q̂  

= − 1(︁
Q̂ − q̂

)︁2

[︁
q̂ − m̂2

]︁
,

which, combined with Eq. (3.2.26), implies  that

Q̂ − q̂  =  

1
1 − q  

. (3.2.27)  

In order  to  simplify  the  following  calculations, we  now  collect  all the  terms  we  have  

evaluated so  far  and plug  them back  into Φ. To  do  so, we  take  use  of  the  expression 

above  while  also  expressing q̂ as  a  function of q and m̂2 using  Eq. (3.2.26). Doing  all this, 

then leads  us  to

Φ  = −extr
  2mm̂ + β  aηm2 + m̂2 (1 − q)  +  log [2π] +  

1
(1 − q)

−α log
[︃
1 − β  bη

α
(1 − q)

]︃
+ q  β  bη(︁

1 − β  bη

α
(1 − q)

)︁ +  log [1 − q]
   .

(3.2.28)  

What  remains  now  is  only  the  optimization over  the  variables m̂, m and q. It  is  easy  to  

confirm the  minimization w.r.t. to  the  former  gives  us  the  condition that

m̂ = − m

1 − q  

.
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Inserting  this  expression back  into Φ then gives  us  the  following  simplified form of  the  

free  entropy

Φ  = −extr
   log [1 − q] +  

1 − m2

(1 − q)  

+ β  aηm2 +  log [2π]

−α log
[︃
1 − β  bη

α
(1 − q)

]︃
+ q  β  bη(︁

1 − β  bη

α
(1 − q)

)︁  

   .

(3.2.29)  

This  allows  us  now  to  easily  compute  the  derivative  w.r.t. to m and set  it  to  zero. 

This  hands  us  the  condition that

m

(︃
β  aη − 1

(1 − q)

)︃
!=  0, (3.2.30)  

while  the  optimization w.r.t. to q gives  us

q − m2

(1 − q)2 =  

1
α  

q  β2b2
η(︁

1 − β  bη

α
(1 − q)

)︁2 .

Using  the  fact  that  Eq. (3.2.30)  can only  have  non-zero  solutions  for m if β  aη =  (1 − q)−1, 

then allows  us  to  derive  an expression for  the  overlap squared, namely

m2 = q

(︃
1 − α  b2

η

(α  aη − bη)2

)︃

We  will now  argue  that  for m2 ̸=  0, we  can expect  the  replica  overlap q to  be  positive  and 

equal to 1 since  the  replicas  become  increasingly  aligned with their  preferred direction u. 

This  will already  pave  us  the  way  to  retrieve  the  critical parameters  of  the  model, since  

it  means  that  we  can have  only  non-negative  solutions  for m2 if

α  b2
η

(α  aη − bη)2 < 1, (3.2.31)  

from which ηc and αc can be  extracted. 

To  verity  the  statement  above, let  us  compute  the  EA order  parameter q. We  start  

with the  condition that  is  given to  us  by  Eq. (3.2.30). Inserting  this  expression back  

into Φ, lets  us  conclude  that  the  free  entropy  can be  written as

Φ  = −extr
   log [1 − q] +  

1
(1 − q) − α log

[︃
1 − β  bη

α
(1 − q)

]︃

+ q  β  bη(︁
1 − β  bη

α
(1 − q)

)︁ +  log [2π]
   .

(3.2.32)  

Taking  the  derivative  w.r.t. q and setting  it  zero  this  time  gives  us

q

(1 − q)2 =  

1
α  

q  β2b2
η(︁

1 − β  bη

α
(1 − q)

)︁2 ,
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Figure 3.2: Squared overlap between our trajectory u and the most probable state of
the evolved density matrix ρ. The simulations were performed for a system of n = 11
and n = 10 spin-1/2 particles respectively. We averaged over a total of 50 runs. The
inset in (a) highlights the N−1 dependence of the critical value of η.

which is just a quadratic equation in q that can be easily solved.
We differentiate now between two cases. For α = 1, the quadratic equation above has

the two easy solutions
q0 = 0, and q1 = 1 − 1

2βbη

.

In the second case, where α ̸= 1, it can be easily shown that the two solutions are given
by

q± = 1 − 1
βbη

α

1 ± √
α

.

Since we have that β, bη and α are strictly positive, we have that all solutions fulfil the
physical intuitive condition that q ≤ 1, ∀α ≥ 0. Since, however, only solution q+ matches
with q1 in the case when α = 1, we pick q+ as our physically relevant result for the replica
overlap q, i.e. we have

q = 1 − 1
βbη

α

1 +
√

α
.

Remember that the interest for our model is given by the region where we let β → ∞
since only then the replica vector v will condense onto the groundstate of our effective
Hamiltonian. We thus justified the statement we made above since q → 1 in this limit.

This now allows us to write m2 as function of η and α alone and brings us to the final
result

m2 = 1 − αb2
η

(αaη − bη)2 . (3.2.33)

Given the form of the parameters aη and bη (Eqs. (3.2.2) and (3.2.3)) and in a setting
where N and P are sufficiently large enough, this function will be well approximated by

m2 ≈ 1 − α (1 − η)2

(Nαη − (1 − η))2 . (3.2.34)

Furthermore, returning to Eq. (3.2.31), lets us conclude that we can expect a phase
transition in the retrievability of our trajectory at the critical value

ηc =
1 +

√
α − αN

αN−1
1 +

√
α + Nα

, (3.2.35)
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which, in the limit where P = αN becomes large enough, is well approximated by

ηc ≈ 1
N

√
α

. (3.2.36)

As can be seen in Fig. 3.2a above, we have a good agreement between our analytically
derived result for m2 and numerical simulations.

Further, one can now rearrange Eq. (3.2.35) in order to retrieve the critical value of α.
Since the full solution well be given by an extremely lengthy polynomial (solvable via any
numerical software of your choice), we make the approximation that in the large P limit
we have P/ (P − 1) ≈ 1, which leads us to

αc ≈ 1
2η2N2

[︂
J (η, N) +

√︁
K (η, N)

]︂
, (3.2.37)

where

J (η, N) = 1 − 2η + η2 − 2η2N,

K (η, N) =
(︁
2η2N − η2 + 2η − 1

)︁2 − 4η4N2.

Again, we check the validity of this result by comparing it to numerical simulation in
Fig. 3.2b. Apart from the finite-size effects that appear in a region where α ≪ 1, we
again have a very good fit of our analytical derived result with the simulations. We want
to note that these finite size effects are completely natural since our assumptions about
very large values of P do not hold in the relevant region.

Below we also plot the phase diagram of our model for a specific range of α. Note
that because of the N−1 scaling of ηc, we already a see a transition to the retrievable
phase for very low values of η.
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10−1

100

η

retrievable

non-retrievable

n = 15;N = 2n

Figure 3.3: Phase diagram for a system of n = 15 spin-1/2 particles, corresponding to a
system Hilbert space dimension of N = 215 and an environment with p particles corre-
sponding to a dimension of P = 2p. The green and the red region depict the retrievable
and the non-retrievable phases of our system respectively. Parameter pairs (η, α) lying
inside the green region indicate that the evolved ρ contains enough information to recon-
struct the trajectory u.
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CHAPTER 4

Conclusion  and  outlook

In this  thesis  we  explored the  dynamics  of  open quantum many-body  systems  under  con-  

tinuous  measurements  and the  emergent  phenomena  resulting  from the  interplay  between 

quantum trajectories  and decoherence. By  employing  a  simplified model of  interacting  

particles, we  interpolated between the  extremes  of  fully  retaining  or  fully  discarding  the  

measurement  results. We  demonstrated a  sharp transition between a  regime  where  a  sin-  

gle  trajectory  could be  reconstructed from the  backdrop of  purely  dissipative  dynamics. 

Using  tools  from RMT, quantum information theory, and spin glass  theory, we  derived 

analytical expressions  for  the  order  parameters  of  the  model and identified their  critical 

values. We  further  checked the  validity  of  our  calculations  by  comparing  the  analytical 

results  to  numerical simulations  and found a  very  good fit. 

While  this  work  primarily  focused on the  behavior  of  the  system over  a  single  dis-  

crete  time  step, future  research should extend the  analysis  to  dynamics  over  arbitrarily  

long  times. A key  question to  address  is  whether  the  sharp transition observed in this  

short-term dynamics  persists  or  vanishes  over  time. Understanding  the  stability  of  the  

retrievable  phase  during  extended evolution would provide  valuable  insight  into  the  na-  

ture  of  these  transitions. Additionally, determining  whether  the  long-term behavior  of  

the  system can be  described analytically, or  if  the  complexities  of  extended dynamics  

require  alternative  approaches, poses  an intriguing  challenge. 

Finally, as  continuously  monitored quantum systems  become  increasingly  experimen-  

tally  viable, examining  the  long-term interplay  between trajectories  and decoherence  may  

have  vital impact  on the  design of  robust  quantum computing  and simulation platforms.
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APPENDIX A

Random  quantum  channels

A.1  Random  quantum  channel  constitutes  a  POVM
As  mentioned, we  want  to  show  that  the  POVM, defined by  the  Kraus  operators  in 

Equation (2.2.1), satisfies, on average, the  resolution of  identity  condition while  also  

being  self-averaging. This  means  we  have  to  show  that

E [M ] =  IN , with M =
P∑︁

n=1
A†

nAn, (A.1.1)  

and
Var [M ] = E

[︁
M2

]︁
− (E [M ])2 = q

N
IN . (A.1.2)  

The  proof  goes  as  follows:
Proof  A.1.1

E [Mij] = E
[︃

P∑︁
n=1

N∑︁
k=1

⟨i |A†
n |k⟩⟨k |An |j⟩

]︃

=
P∑︁

n=1

N∑︁
k=1

E
[︁
(An)†

k  i (An)k  j

]︁

=  

1
N  P

P∑︁
n=1

N∑︁
k=1

E
[︁
(Gn)†

k  i (Gn)k  j

]︁

=  

1
N  P

P∑︁
n=1

N∑︁
k=1

δij

= δij =  (I)ij .

(A.1.3)
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While, by  using  the  fact  that
(︁∑︀P  

n an

)︁2
= ∑︀P  

n,m anam, we  have  for  the  mean of M2

E
[︂(︁

M2
)︁

ij

]︂
= E

   P∑︁
n,m  

N∑︁
a,b,c

⟨i |A†
n |a⟩⟨a |An |b⟩⟨b |A†

m |c⟩⟨c |Am |j⟩
  

=  

1
N2P 2

P∑︁
n,m  

N∑︁
a,b,c

E
[︁
(Gn)†

ai (Gn)ab (Gn)†
cb (Gn)cj

]︁

=  

1
N2P 2

P∑︁
n,m  

N∑︁
a,b,c

[δibδbj + δnmδacδij] 

=
(︂

1  +  

1
P

)︂
δij =

(︂
1  + q

N

)︂
(IN)ij ,

(A.1.4)  

where  Wicks’ theorem [42] was  used to  arrive  at  the  third line. Combining  this  

with the  result  obtained in Equation (A.1.3)  completes  our  proof. □

A.2  State  preparation through random  channel
Here  we  show  the  self-averaging  property  of  the  quantity pm, i.e. that  the  following  holds:

E [pm] =  

1
P  

, (A.2.1)  

and
Var [pm] = E

[︁
p2

m

]︁
− (E [pm])2 = q2

N3 . (A.2.2)  

The  proof  goes  as  follows.
Proof  A.2.1
We  start  by  calculating  the  average, namely

E [pm] = E
[︁
tr

(︁
AmρSA†

m

)︁]︁
=  

1
N  P

E
[︃

N∑︁
n=1

⟨n |Gm |0⟩⟨0 |G†
m |n⟩

]︃

=  

1
N  P

N∑︁
n=1

E
[︁
Gm,n0G

†
m,0n

]︁
=  

1
P  

.

(A.2.3)
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Next, we  show  that  the  average  of  the  square  is  equal to

E
[︁
p2

m

]︁
= E

[︂
tr

(︁
AmρSA†

m

)︁2
]︂

=  

1
N2P 2

N∑︁
i,j

E
[︁
Gm,i0G

†
m,0iGm,j0G

†
m,0j

]︁

=  

1
N2P 2

N∑︁
i,j

(1  + δij)  

=  

1
P 2 +  

1
N  P 2 =  

1
P 2 + q2

N3 ,

(A.2.4)  

where  we  defined the  quantity q = N  /P . □

To  show  that  the  state  prepared by  the  measurement  is  indeed properly  normalized on 

average, we  want  to  derive
E [⟨ψ |ψ⟩] =  1 (A.2.5)  

and
Var [⟨ψ |ψ⟩] =  

1
N  

. (A.2.6)

Proof  A.2.2

The  first  property  is  easy, using  the  definition of cj given in Equation (2.2.10), we  

have
E [⟨ψ |ψ⟩] =

N∑︁
j=1

E
[︁
c∗

jcj

]︁
=

N∑︁
j=1

1
N

=  1. (A.2.7)  

For  the  second property, we  will write  the  coefficient cn as

cj =  Re (Gm,j0)  + i Im (Gm,j0)  = xj + iyj, (A.2.8)  

with
E

[︁
x2

j

]︁
= E

[︁
y2

j

]︁
= σ2 =  

1
2N  

. (A.2.9)  

This  allows  us  to  compute  the  average  of  the  squared norm as

E
[︁
⟨ψ |ψ⟩2

]︁
=

N∑︁
n,m

E [c∗
ncnc∗

mcm] 

=
N∑︁

n,m

E
[︁
x2

nx2
m

]︁
+ E

[︁
y2

ny2
m

]︁
+ E

[︁
x2

ny2
m

]︁
+ E

[︁
y2

nx2
m

]︁

=
N∑︁

n=1
E

[︁
x4

n

]︁
+ E

[︁
y4

n

]︁
+  2E

[︁
x2

n

]︁
E

[︁
y2

n

]︁
+

N∑︁
n ̸=m

E
[︁
x2

nx2
m

]︁
+ .  .  .

=
N∑︁

n=1
3σ4 +  3σ4 +  2σ4 +

N∑︁
n ̸=m

σ4 + σ4 + σ4 + σ4

=  1  +  

1
N  

,

(A.2.10)  

completing  our  proof. □
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APPENDIX B

The  replica  calculation

B.1  Computing  the  free  entropy
Lets  us  provide  in a  bit  more  detail how  one  can compute  the  average  given by

EG

  exp
     β  bη

2 (P − 1)

n∑︁
α=1

P −1∑︁
µ=1

v(α)†gµg†
µv(α)

      

   , (B.1.1)  

such that  it  leads  to  the  final result   n∏︁
α=1

Eξ(α)

  exp
     β  bη

2 (P − 1)

n∑︁
α,β

ξ(α)v(α)†v(β)ξ(β)

      

    

  P −1

. (B.1.2)

Calculation B.1.1

First  note  that  Eq. (B.1.1)  can be  rewritten to

P −1∏︁
µ=1

Egµ

[︃
exp

{︃
β  bη

2 (P − 1)

n∑︁
α=1

(︁
v(α)†gµ

)︁2
}︃]︃

=
P −1∏︁
µ=1

Egµ

   n∏︁
α=1

Eξ(α)

  exp
    ξ(α)

  

√︃
β  bη

P − 1v(α)†gµ

  

      

    

   ,

(B.1.3)  

where ξ(α)  

i.i.d∼  N (0, 1) is  the  aforementioned auxiliary  scalar  field introduced by  

the  Hubbard-Stratonovich transformation. That  the  second equality  holds  can be  

easily  seen by  observing  that  for  a  standard Gaussian random variable x we  have

Ex [exp {bx}] =  exp
{︃

b2

2

}︃
. (B.1.4)  

Now  that  we  have  linearized the  quantity  that  we  are  averaging  over, we  can 

safely  perform the  Gaussian integral over  the  disorder  by  remembering  that  the
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elements (gµ)i

i.i.d∼  N (0, 1) to  get
   n∏︁

α=1
Eξ(α)

  exp
     β  bη

2 (P − 1)

(︃
n∑︁

α=1
v(α)†ξ(α)

)︃2
      

    

  P −1

. (B.1.5)  

Finally, by  again using  the  relation that
(︁∑︀P  

n an

)︁2
= ∑︀P  

n,m anam, we  arrive  at  

Eq. (B.1.2)  which is  what  we  wanted to  show.

Next, we  want  to  incorporate  the  order  parameter Q into  Eq. 3.2.12  and show  that  

it  give  us

exp
{︃

−N  α

2  

log
[︃
det

(︃
In − β  bη

α
Q

)︃]︃}︃
. (B.1.6)

Calculation B.1.2

As  a  first  step, we  can plug  in the  definition of  the  order  parameter Q to  Eq. (B.1.2)  

to  arrive  at    n∏︁
α=1

Eξ(α)

  exp
    β  bη

2α

n∑︁
α,β

ξ(α)Qαβξ(β)

      

    

  P

. (B.1.7)  

Note  that  since  we  are  only  interested in the  large P limit, we  made  the  approx-  

imation P − 1 ≈ P . Explicitly  writing  the  Gaussian integral over  the  random 

variable ξ ∈ Rn then gives  us   1√︁
(2π)n det (In)

∫︁
dξ exp

{︃
−1

2ξ⊤
(︃

In − β  bη

α
Q

)︃
ξ

}︃  P

, (B.1.8)  

Finally, doing  the  standard Gaussian integral then gives  us

det
(︃

In − β  bη

α
Q

)︃− P
2

, (B.1.9)  

which can be  readily  rewritten in the  form of  Eq. (B.1.6).

We  now  want  to  compute  the  integral over  the  different  replicas v(α) in Eq. (3.2.15)  

and show  that  the  result  is  given by

exp
    N

2

  n log [2π] − log
[︁
det

(︁
Q̂

)︁]︁
+

n∑︁
α,β=1

m̂αQ̂
−1
αβm̂β

    

     . (B.1.10)

Calculation B.1.3
We  begin by  reminding  the  reader  that  at  the  beginning  of  our  calculations, we  

choose  the  special representation for  our  trajectory u =
(︁√

N  , 0,  .  .  .  , 0
)︁⊤

. What  

this  essentially  means  is, that  the  dot  product  in the  exponent v(α)†u will always  

pick  out  the  first  component  of  the  vector v. The  integral over  all N components  

of  the  replicas v(α) thus  essentially  decouples  into  a  product  of N − 1 integrals
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over  the  last N − 1 components  and one  integral over  the  first  component  of v(α). 

Written down explicitly, this  means  that  we  can write
[︂∫︁

dv exp
{︂

−1
2v†Q̂v

}︂]︂N−1 ∫︁
dv exp

{︂
−1

2v†Q̂v −  

√
Nm̂†v

}︂
, (B.1.11)  

where  one  has  to  be  careful since v ∈ Rn now. The  result  of  both integrals  can be  

obtained by  the  standard Gaussian integral which states  that

∫︁
dx exp

{︂
−1

2x†Ax + B†x
}︂

=

⎯⎸⎸⎷ (2π)n

det (A)  

exp
{︂1

2B†A−1B
}︂

. (B.1.12)  

Lastly, it  just  remains  to  identify B =  0 for  the  first N − 1 integrals  and B† =
−√

Nm† for  the  remaining  integral to  arrive  at  the  form given by  Eq. (B.1.10).

B.2  The  free  entropy  under  replica  symmetry
Here  we  want  to  provide  a  detailed derivation on how  to  arrive  at  the  free  entropy  given 

by  Eq. (3.2.24)  under  the  assumption of  RS. For  this, we  start  with function Φ as  given 

in Eq. (3.2.18)  and examine  the  corresponding  terms  one  by  one.
Calculation B.2.1

Calculating  the  first  term under  replica  symmetry  (Eqs. (3.2.21)  to  (3.2.23))  is  easy  

and gives  us
n∑︁

α,β

Q̂αβQαβ = n2q  q̂ + n
(︁
QQ̂ − q  q̂

)︁
. (B.2.1)  

For  the  terms  that  contain the  logarithm of  the  determinant  we  can take  use  of  the  

determinant  lemma  which states  that  [43]

det
(︁
A + uv⊤)︁

=
(︁
1  + v⊤A−1u

)︁
det (A) . (B.2.2)  

To  apply  this  method to  our  expressions, we  explicitly  rewrite  the  term contain-  

ing det (In − bη/αQ) to

log
[︃
det

(︃(︃
1 − β  bη

α
(Q − q)

)︃
1n − q  β  bη

α
dd⊤

)︃]︃
, (B.2.3)  

where, d =  (1, 1,  .  .  .  , 1)⊤ ∈ Rn. Straightforward application of  the  determinant  

lemma  then gives  us

n log
[︃
1 − β  bη

α
(Q − q)

]︃
+  log

  1 − n

α  

q  β  bη(︁
1 − β  bη

α
(Q − q)

)︁  

   . (B.2.4)  

Equivalently, the  term containing det
(︁
Q̂

)︁
leads  to

n log
[︁
Q̂ − q̂

]︁
+  log

[︃
1  + n  

q̂

Q̂ − q̂

]︃
. (B.2.5)
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The  last  non-trivial term remaining  is  now  the  expression containing  the  inverse  

of Q̂. As  already  state, we  claim that  the  inverse  can be  parameterized by

Q̂
−1
αβ =  (γ − σ) δαβ + σ, (B.2.6)  

where γ and σ are  given by  Eq. (3.2.25). This  result  can be  proven with the  well-  

known Sherman-Morrison formula  [44], which states  that  the  inverse  of  a  matrix  

given by  the  sum A + uv⊤, where A ∈ Rn×n and v, u ∈ Rn, can be  written as

(︁
A + uv⊤)︁−1

= A−1 − A−1uv⊤A−1

1  + v⊤A−1u . (B.2.7)  

Rewriting Q̂ into
Q̂ =

(︁
Q̂ − q̂

)︁
In + q̂dd⊤, (B.2.8)  

then directly  leads  to  the  desired result  that

Q̂−1 =  

1(︁
Q̂ − q̂

)︁In − 1(︁
Q̂ − q̂

)︁2
q̂(︂

1  + nq̂

(Q̂−q̂)

)︂dd⊤. (B.2.9)  

With this  expression at  hand one  can directly  read of  the  diagonal elements γ and 

off-diagonal elements σ after  a  bit  of  simple  algebra.
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POVM positive  operator-valued measure  4, 7, 24
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SK Sherrington-Kirkpatrick  12, 15

SSK spherical Sherrington-Kirkpatrick  11
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