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Abstract: In recent years, the scientific community has increasingly recognized the complex multi-
scale competency architecture (MCA) of biology, comprising nested layers of active homeostatic
agents, each forming the self-orchestrated substrate for the layer above, and, in turn, relying on the
structural and functional plasticity of the layer(s) below. The question of how natural selection could
give rise to this MCA has been the focus of intense research. Here, we instead investigate the effects
of such decision-making competencies of MCA agential components on the process of evolution
itself, using in silico neuroevolution experiments of simulated, minimal developmental biology.
We specifically model the process of morphogenesis with neural cellular automata (NCAs) and
utilize an evolutionary algorithm to optimize the corresponding model parameters with the objective
of collectively self-assembling a two-dimensional spatial target pattern (reliable morphogenesis).
Furthermore, we systematically vary the accuracy with which the uni-cellular agents of an NCA
can regulate their cell states (simulating stochastic processes and noise during development). This
allows us to continuously scale the agents” competency levels from a direct encoding scheme (no
competency) to an MCA (with perfect reliability in cell decision executions). We demonstrate that an
evolutionary process proceeds much more rapidly when evolving the functional parameters of an
MCA compared to evolving the target pattern directly. Moreover, the evolved MCAs generalize well
toward system parameter changes and even modified objective functions of the evolutionary process.
Thus, the adaptive problem-solving competencies of the agential parts in our NCA-based in silico
morphogenesis model strongly affect the evolutionary process, suggesting significant functional
implications of the near-ubiquitous competency seen in living matter.

Keywords: evolution; multi-scale competency; artificial intelligence; swarm intelligence; cells; embryos;
development; self-assembly

1. Introduction

Biological systems are organized in an exquisite architecture of layers, including molec-
ular networks, organelles, cells, tissues, organs, organisms, swarms, and ecosystems. It is
well recognized that life exhibits complexity at every scale. Increasingly realized, however,
is the fact that those layers are not merely complex but actually active “agential matter”,
which has agendas and competencies of its own [1,2]. Elsewhere, we have discussed exam-
ples of problem-solving in unconventional spaces, including transcriptional, physiological,
metabolic, and anatomical space [3].

Especially interesting is the ability of these ubiquitous biological agents to deal with
novel situations on the fly, which is not limited to brainy animals navigating 3D space
but also occurs with respect to injury, mutations, and other kinds of external and internal
perturbations (reviewed in [4]). One example of such problem-solving capabilities is the
regenerative properties of some species that can regrow limbs, organs, or entire parts of
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their bodies when amputated, and—remarkably—stop when the precisely correct target
morphology is complete [5-7]. This can be understood as cellular collectives navigating
morphospace until the desired target shape—or the goal—is reached again. Other examples
include the ability of scrambled tadpole faces to reorganize in novel ways to result in normal
frog faces [8], and the normal shape and size of structures in amphibia despite drastic
changes in cell number [9] and cell size [10], which are handled by exploiting different
molecular mechanisms to reach correct target morphologies despite novel changes in
internal components. Behavioral and morphological plasticity intersect in cases such as
tadpoles made with eyes on their tails, which nevertheless can see and learn in visual
assays without needing rounds of evolutionary adaptation [11].

The ability to navigate transcriptional and anatomical spaces, using perception—-action
loops and homeostatic setpoints, is now being increasingly targeted by biomedical and
bioengineering efforts [12,13]. A fascinating body of work exists around the question of
how neural and non-neural problem-solving capacities evolved, and how neuro-behavioral
intelligence affects evolution [14-31]. However, we and others have previously suggested
that somatic competency pre-dates neural intelligence [32-34], and has a bi-directional
interaction with the evolutionary and developmental process [1,3,35]. Thus, here, we
address the second half of the evolution-intelligence spiral: how are evolutionary processes
affected by the competency of the material? Especially important is the inclusion of the
middle layer between the genotype and phenotype. Mutation operates on genomes, and
selection operates on phenotypic performance, but in most organisms, the connection
between them is not linear or shallow—instead, developmental physiology provides a
deep reservoir of dynamics that strongly alter the process. As a contribution to the study
of evolvability and developmental mechanisms potentiating it [36-53], we established a
virtual embryogeny [54] system focused on anatomical morphogenesis by cells. In this
minimal model of morphogenesis, we were able to study the effects of different degrees of
cellular competency on the evolutionary process.

The standard understanding of (Neo-Darwinian) evolution is schematized in Figure 1A:
The genome of an organism encodes aspects of the organism’s cellular hardware, which
together define the phenotypic traits. Given a competitive environment, natural selection
then favors organisms with advantageous traits, and thus, on average, the corresponding
genes tend to get passed on to the next generations more frequently. Random mutations
may occur, consequently changing traits in the offspring phenotype. This affects the
offspring’s reproductive success during the selection stage and, in that way, good traits
prevail, and bad ones perish over time.
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Figure 1. (A-C) Illustration of different ways of genetic encodings of a phenotype of, here, a two-
dimensional smiley-face tissue composed of single cells. (A) Direct encoding: Each gene encodes a
specific phenotypic trait, here, of each specific cell type of the tissue, colored blue, pink, and white.
(B) Indirect encoding: A deterministic mapping between the genome and different phenotypic traits,
here, again of each cell type (shown for completeness, but not investigated here due to reasons dis-
cussed in the Section 5). (C) Multi-scale competency architecture: Encoding of functional parameters
of the uni-cellular agents which self-assemble a target pattern via successive local perception-action
cycles [1] (as detailed in Figure 2A). In all three panels, we schematically illustrate, from left to right,
the genome, the respective encoding mechanism, and the corresponding phenotype; colors indicate
cell types, and arrows indicate the flow of information and environmental noise, affecting each cell
during the developmental process.
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Figure 2. (A) Detailed information flow-chart of the perception—-action cycle of a particular single cell
agent, labeled i, in a neural cellular automaton (NCA)-based multi-scale competency architecture
(cf. Figure 1C and Section 3.1): Starting from a multi-cellular phenotype configuration at time
tx (left smiley-face panel), and following the thick orange arrows, each cell i perceives cell state
information about its respective local neighborhood of the surrounding tissue (respectively labeled).
This input is passed through an artificial neural network (ANN), substituting the internal decision-
making machinery of a single cell, until an action output is proposed that induces a (noisy) cell state
update in the next developmental step at time ;1 (details on labeled internal ANN operation and
ANN architectures are introduced later in Section 3.1 and Appendix A). (B) Schematic illustration—
following Ref. [1]—of the evolution of a morphogenesis process with a multi-scale competency
architecture acting as the developmental layer between genotypes and phenotypes (see Sections 3.1
and 3.2 for details): The genotype (top) encodes the structural (initial cell states) and functional
parts (decision-making machinery) of a uni-cellular phenotype (center). The cell’s decision-making
machinery is represented as a potentially recurrent ANN (yellow/orange graph) with an adjustable
competency level (red knob). Through repeated local interactions (perception—action cycles; detailed
in panel (A), the multi-cellular collective self-orchestrates the iterative process of morphogenesis and
forms a final target pattern, i.e., a system-level phenotype after a fixed number of developmental
steps (bottom left to right) while being subjected to noisy cell state updates at each step (red arrows).
The evolutionary process solely selects at the level of the system-level phenotypes (labeled Final State
at the bottom right). Based on a phenotypic fitness criterion, the corresponding genotypes, composed
of the initial cell states (bottom left) and the functional ANN parameters (top right, are subject to
evolutionary reproduction—recombination and mutation operations—to form the next generation
of cellular phenotypes that successively “compute” the corresponding system-level phenotypes via
morphogenesis, etc.
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This view has been revised by Waddington [55,56], and more recent works [57-66],
and has been the subject of vigorous debate [40,63,67-72] with respect to its capabilities
for discovery, its optimal locus of control, and the degree to which various aspects are
random (uncorrelated to the probability of future fitness improvements). Important open
questions concern ways in which the properties of development—the layer between the
mutated genotype and the selected phenotype—are evolved and in turn affect the evolu-
tionary process [36,39,45,46,73-78]. Specifically, significant work has been conducted at
the interface of evolution and learning—selectionist accounts of change and variational
accounts of change respectively [30,61,62,66,79-85]. Significant progress has been made
on the question of how evolution produces agents with behavioral competency in diverse
problem spaces [17,86-88]. We have focused on a particular kind of competency—that of
navigating anatomical morphospace [3,12,89,90]. More specifically, we here investigate
in silico the evolutionary implications of the self-orchestrated process of morphogenesis,
where local actions of single cells need to be aligned with a global policy of a multi-cellular
collective to guide the formation of a large-scale tissue, in turn affecting the underlying
evolutionary process. Work on developmental plasticity, chimeras, synthetic biobots, and
the ability to overcome novel stressors has highlighted ways in which evolution seems to
give rise to problem-solving machines, not fixed solutions to specific environments [91].

Thus, the problem-solving capacities of development, regeneration, and remodeling
ensure that in many (perhaps most) kinds of organisms, the mapping from genotype to
phenotype is not merely complex and indirect [92] (as schematized in Figure 1B) but actually
enables evolution to search the space of behavior-shaping signals, not microstates, and
exploit the modularity and triggers of complex downstream responses (cf. Figure 1C). We
have previously argued that both evolution and human bioengineers face a range of unique
problems and opportunities when dealing with the agential material of life—not passive or
even just active matter but a substrate that has problem-solving competencies and agendas
at many scales [93,94]. What selection sees is not the actual quality of the genome but the
quality of the form and function of the flexible physiological “software” that runs on the
genomically specified molecular hardware as schematically illustrated in Figure 2. This
in turn suggests that the actual progress of evolution should be significantly impacted by
the degree and kind of competency in the developmental architecture. Prior work has
suggested a powerful feedback loop between the evolution of morphogenetic problem-
solving and the effects of these competencies on the ability of evolutionary search to produce
adaptive complexity [1,35,95]. Here, we construct and analyze a new model of evolving
morphogenesis to study how different competency architectures within and among cells
impact evolutionary metrics such as rate, robustness to noise, and transferability to new
environmental challenges.

To quantitatively study the effects that different levels of competency of the decision-
making centers in a multi-scale competency architecture have on the process of evolution,
we here rely on tools from the research field of Artificial Life [96], which furthers compu-
tational and cybernetic models that mimic life-like behavior based on ideas taken from
biology; a simple example is cellular automata (CAs) [97]. In such CAs, the (numerical)
states of localized cells, organized on a discrete spatial grid, change in time via local update
rules. Although typically rather simple “hardcoded” update rules are employed, CAs
often display complex dynamics (cf. Conway’s Game of Life [98] or Lenia [99]) but are
not known to exhibit homeostatic (closed-loop) activity. An extension of CAs, termed
neural cellular automata (NCAs) [100], utilize artificial neural networks (ANNSs) as more
flexible trainable update rules, aiming to model the internal decision-making machinery
of biological cells. Employing machine learning methods, such NCAs have been trained
to perform self-orchestrated pattern formation (notably, of images from a single “seed”
cell) [101] and even the co-evolution of a rigid robot’s morphology, and its controller has
been demonstrated with such NCAs [102].

NCAs exhibit a striking resemblance to the genome-based multi-scale competency
architecture of biological life [102] as illustrated in Figure 2: an organism’s entire building
plan is encoded in its genome (corresponding to the NCA parameters), while its cells
collectively run the self-orchestrated developmental program of morphogenesis (realized
by the NCA layout and ANN architecture) via perception—action cycles at the uni-cellular
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level (cell state updates in the NCA, cf. Figure 2A). Starting from an initial cell state
configuration of the NCA, the details of a virtual organism are then, step by step, “refined”
in a collective self-organizing growth phase on the cellular level, and maintained against
cell state errors later on in the virtual organism’s lifetime. Thus, a single NCA, once trained,
guides the growth and integrity of a virtual organism’s tissue via intracellular information
processing and intercellular communication, imitating in silico the multi-scale competency-
based process of morphogenesis and morphostasis. (Notably, although an NCA update
function—the cells” ANN—is trainable in principle, current approaches pre-train (or evolve,
as in our case) the ANN parameters to subsequently study the NCA behavior (such as
simulated morphogenesis). Thus, an NCA's self-orchestrated (developmental) program
is defined by a particular set of ANN parameters rather than being acquired during the
lifetime of the NCA. Here, we investigate the efficiency at which an evolutionary process
arrives at satisfying parameters under various conditions.)

Here, we deploy a swarm of virtual uni-cellular agents on the spatial grid of an NCA.
As illustrated in Figure 2A, each uni-cellular agent’s internal decision-making machinery is
modeled by an ANN that allows each agent to independently perceive the cell states of its
adjacent neighbors on the grid and propose cell state update actions to regulate its own cell
state over time. The collective of cells thereby forms a spatial pattern or tissue of cell states
on the NCA via local communication rules.

We utilize evolutionary algorithms (EAs) [103] as a simulated evolutionary process
to optimize the parameters of such NCAs, so the uni-cellular agents evolve to collectively
self-assemble a predefined target pattern of cell states in a fixed number of developmental
steps; see Figure 2B for a flow-chart of the evolutionary process. We explicitly separate
the NCA parameters into a structural and a functional part. The structural parameters
describe the initial cell state, and the functional parameters the weights and biases of the
ANN of each agent as illustrated by the “Genome” in Figure 2B. Both the structural and
functional parts of the genome are compiled into a swarm of uni-cellular phenotypes on
the grid of the NCA. Thus, starting from an initial cell state configuration, given by the
structural part of the genome, the uni-cellular agents of the NCA run the developmental
program of morphogenesis via successive perception—action cycles (see Figure 2A) to
self-assemble in successive developmental steps a system-level phenotype, i.e., a two-
dimensional pattern of cell states on the NCA. The deviation of these final cell state
configurations from a desired target pattern—here, a Czech flag pattern or smiley-face
pattern reminiscent of that of the amphibian craniofacial pre-pattern [104]—defines the
phenotypic fitness score of a particular NCA realization. Based on an entire population of
NCAs, and on the corresponding fitness scores, the EA successively samples the genomes
of the next generation of NCAs, which, over time, evolve to reliably self-assemble the
target pattern.

The conceptually simple process of cell state updates of NCAs and the ANN-based
modeling of the uni-cellular decision-making allow us to interfere with (I) the reliability of
the cell state update executions, and (II) with the computational capacity of the ANNSs that
guide each cell’s decision-making. To vary the former (I), we introduce a decision-making
probability Pp that specifies the probability at which a proposed update of each individual
cell is executed in the environment (or omitted otherwise). Thus, by tuning the decision-
making probability from Pp = 0 to Pp = 1, we can continuously vary the behavior of the
NCA from a direct-encoding scheme without competency to a multi-scale competency
architecture with perfect reliability in cell state update executions.

To systematically vary the computational capacity of the involved ANNs (II), we
introduce independent copies of a particular sub-module of the uni-cellular agents” ANNS,
i.e., of the policy module illustrated in Figure 2A (see Sections 3.1 and 4.2 and Appendix A
for details on the ANN architectures). This increases the number of evolvable parameters of
the ANNSs, which are responsible for performing the same operation, namely, interpreting
the cell’s local environment and proposing a cell state update action. Thus, by taking the
average output of all redundant policy modules of a single agent, a cell’s decision-making
can be biased by the several redundant paths through which signals are transmitted in
the ANN, inspired by error-correcting codes [105-107]. We explicitly define a redundancy
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number R that specifies how many redundant copies of the policy module are used in the
ANN s of the cells of the NCA.

The decision-making probability (I) and the redundancy number (I) represent two levels
of competency in our system (schematically illustrated by the red arrowin Figures 1C and 2B),
which we can scale continuously (I) or discretely (II) to systematically tune the behavior of
an NCA. Throughout the manuscript, we refer to these two parameters as “competency
levels”, but we would like to stress that many more options would have been possible to
vary the competency in our system. For instance, the particular ANN architecture can have
large effects on the competency of the uni-cellular agents; a systematic investigation thereof
is out of the scope of this work. Here, we utilize two particular ANN architectures, one
based on a Feedforward (FF) and one based on a recurrent ANN architecture [108] that is
inspired by gene regulatory networks (GRNs) [109], which we thus term recurrent gene
regulatory network (RGRN), see Appendix A for details.

To study the effects of different competency levels of the decision-making centers in
a multi-scale competency architecture on the underlying evolutionary process of a mor-
phogenesis task, we systematically vary in large-scale simulations the decision-making
probability (I) and the redundancy number (II) of NCAs with FF and RGRN ANN archi-
tectures. Furthermore, we expose the corresponding NCAs to different noise conditions
during cell state updates (III) and perform several statistically independent evolution-
ary searches at each parameter combination (I-1III) to investigate the performance of the
evolutionary process of finding solutions to such noisy pattern formation tasks.

The manuscript is organized as follows: In Section 3, we describe the numerical and
computational methods applied herein. More specifically, we introduce NCAs in Section 3.1,
and describe the neuroevolution approach used to optimize the NCAs ANN parameters
based on ideas of evolution and natural selection via EAs in Section 3.2. We specify the
particular morphogenetic problem we primarily focused on—the 8 x 8 Czech flag task—in
Section 4.1, and compare in Section 4.2 the efficiency of evolving the target pattern via
a direct encoding scheme and a multi-scale competency architecture. In Section 4.3, we
functionally define and systematically vary the different tunable competency levels in our
system to illustrate the evolutionary implications of utilizing a multi-scale competency
architecture rather than a direct encoding scheme for morphogenesis tasks. We then
study the effects of allowing the evolutionary process to afford competency as a gene
during optimization in Section 4.4, and eventually investigate our multi-scale competency
approach for robustness and generalizability regarding system parameter changes in
Section 4.5, and for transferability to modified target patterns in Section 4.6. We conclude
in Section 5, and attach an appendix.

2. General Summary

Biological systems are composed of layers of organization, each level providing the
foundation for the next higher level of abstraction: membranes, DNA, and proteins form
cells, which then collectively organize into tissue and, in further hierarchical steps, into
tissues, organs, bodies, swarms, ecosystems, etc. Each of these layers has a degree of
ability to adapt in real-time to new conditions to establish and maintain specific outcomes
in terms of physiological, metabolic, transcriptional, and anatomical spaces. In other
words, evolution works with material that is not passive matter but rather has a degree
of competency—an agential material that forms the layer between the genotype and the
phenotype. Many scientific studies have been dedicated to investigating how evolution
gives rise to such intriguing problem-solving machines we call organisms. In this study, we
ask the reverse question: what is it like to evolve over such a material vs. one that passively
maps genotypes into the form and function that selection operates over—how does it affect
the process of evolution itself? We test this in silico by utilizing evolutionary algorithms to
adapt the behavior of a swarm of virtual uni-cellular agents in large-scale simulations of
virtual embryos. In our minimal model, the cells collectively self-assemble a predefined
target tissue on a neural cellular automaton. We find that competency at the cellular level
of our multi-scale model system strongly affects the resulting evolutionary process, as well
as the generalizability, evolvability, and transferability of the evolved solutions, suggesting
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the profound evolutionary implications of the highly intricate multi-scale competency
architecture of biological life.

3. Methods
3.1. Neural Cellular Automaton: A Multi-Agent Model for Morphogenesis

Cellular automata (CAs) have been introduced by von Neumann to study self-replicating
machines [97] and are simple models for Artificial Life [96]. In CAs, a discrete spatial grid
of cells is maintained over time, each cell i being attributed a binary, integer, real, or
even vector-valued state c;(#;) at each step in time f. The cell states evolve over time via
local updated rules ¢;(t;1) = fu(N;(tr)) as a function of its own ¢;(tx) and the numeri-
cal states ¢; (t;) of its i,—1  n neighboring cells on the grid that we collect in the matrix
Ni(tg) = (ciy(t), ..., ciy (1)) with ig = i. Although typically rather simple “hardcoded”
(i.e., predefined) update rules f,(-) are employed, CAs often display complex dynamics
and can even be utilized for universal computation (cf. Conway’s Game of Life [98] or
Wolfram's rule 110 [110,111]).

Neural cellular automata (NCAs) [100] extend CAs by replacing the local update rule
with more flexible [112] artificial neural networks (ANNS) f,, () — fg(-), where 6 denotes
the set of trainable parameters of the ANN (see Appendix A for details). Employing
Machine Learning, such NCAs have been trained to perform self-orchestrated pattern forma-
tion [101] (notably, of RGB images from a single “seed” pixel) and even the co-evolution of
a rigid robot’s morphology, and its controller has been demonstrated recently with NCAs in
silico [102]. Such self-orchestrated pattern formation is reminiscent of the self-regulated de-
velopment of a biological organism, from a single fertilized egg cell to a complex anatomical
form. Thus, NCAs have been proposed as toy models for morphogenesis [101].

An NCA basically represents a grid of cells that are equipped with identical ANNSs,
each perceiving the numerical cell states of its host’s local environment, N; (), and propos-
ing actions, a;(tx) = fo(N;(tx)), to regulate its own cell state

ci(tir) = ci(ty) +ai(ty) + Ce, (1)

and, in turn, the cell states of its neighbors—where we also account for potential noise ¢, in
the environment during the process of morphogenesis. Thus, each cellular agent can only
perceive the numerical states of its direct neighbors N;(#;) at an instant of time t; and, in
turn, communicate with these neighbors via cell state updates ¢;(tx, 1), following a policy
T(Ni(tr)) = fo(Ni(tr)) that is approximated by an ANN with parameters 6. Through the
lens of Reinforcement Learning [113], an NCA can thus be understood as a trainable, locally
communicating multi-agent system that can be utilized such that the collective of cells
achieves a target system-level outcome (see Appendix B for details).

In contrast to previous contributions of in silico morphogenesis experiments in
NCAs [101], we here do not use standard convolutional filters in our ANN architectures
but utilize permutation-invariant ANNs with respect to a cell’s neighbors, N;(t) (see
Figure 2A for an illustration). Inspired by Ref. [114], this is achieved by partitioning a

cell’s ANN into (i) a sensory part fe(s) (+), preprocessing its own, and the state of each

neighboring cell separately into a respective sensor embedding &; (tx) = fe(s) (ci,(tr)) € RS,
for i,—, .. N. These neighbor-wise sensor embeddings are (ii) averaged into a cell’s context

vector s;(t) = {ﬁ Zf/\]:o &, (tk)} € RR* of fixed size s, which is then used as the input

of (iii) a controller ANN féc) (), potentially with recurrent feedback connections, that

eventually outputs the cell’s action a;(f;) = fe(c) (si(tx)); for details we refer to Appendix A.

Due to the mean aggregation of a cell’s sensory embedding, each cell completely loses
its ability to spatially distinguish between neighboring (and even its own) state inputs and
thus fully integrates into the tissue locally. We would like to stress the close relation of
our approach to the concept of breaking down the computational boundaries of a cell’s
“Self” via forgetting [93] and to the scaling of goals from a single agent’s to a system-level
objective [95].
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To model the developmental process of morphogenesis, we here employ NCAs on a
two-dimensional Ny x Ny square grid with the objective that all cells of the grid assume
their correct, predefined target cell type §; after a fixed number of tp developmental time
steps, starting from an initial cell state configuration ¢;(0). We attribute a number of
Ng elements g;(t;) € RNG of the Nc-dimensional cell state c;(t;) € RNC of an NCA as
indicators for expressing one of 1,..., Ng discrete cell types such that ¢;(tx) = g;(f;) U
h;(#;); the remaining Ny = (N¢ — Ng) elements of the cell state represent hidden states
h;(t;) € RNH of a cell that can be utilized by the NCA for intercellular communication. We
explicitly define each cell’s type g;(t) as the argument (i.e., the index) of the maximum
element of the Ng-dimensional indicator vector g; (#):

gi(ty) = argmax(g;(t)). )

g€RNG

Training an NCA to assemble a predefined target pattern (realized by a set of N; =
Ny x Ny target cell types {§1,..., gNj} for the entire grid) thus boils down to finding a
suitable set of NCA parameters (cf. “Genotype” in Figure 2B) that minimizes the devi-
ation of each cell i’s type g;(fp) from §; after fp developmental time steps, i.e., after the
developmental stage of the virtual organism (cf. “System-level Phenotype” in Figure 2B,
from left to right, and details below). Here, we are interested in the evolutionary implications
of biologically inspired multi-scale competency architectures, the latter being modeled by our
morphogenetic NCA implementation. We thus introduce in Section 3.2, and utilize in
Section 4, evolutionary algorithms to evolve suitable sets of NCA parameters that maxi-
mize the fitness score based on comparing the “final” cell types of the NCA, g;(tp), with
the predefined target cell types g;.

3.2. Neuroevolution of NCAs: An Evolutionary Algorithm Approach to Morphogenesis

Evolutionary algorithms (EAs) are heuristic optimization algorithms that maintain and
optimize a set, i.e., a population X = {xy,..., xNP} of parameters X;j € RX, also termed
individuals, over successive generations to maximize an objective function, or a fitness score
r(x;j) : RX — R. Inspired by the ideas of natural selection and the DNA-based reproduction
machinery of biological life, EAs (i) predominantly select the high-fitness individuals of a
given population for reproduction, and utilize (ii) crossover and (iii) mutation operations to
generate new offspring by (ii) merging the genomic material of two high-quality individuals
from the current population x, = x; € X, and (iii) occasionally mutating the offspring
genomes X, — X, + ¢x by adding (typically Gaussian) noise to the parameters; the @
symbol indicates a genuine merging operation of two genomes, which may depend on
the particular EA implementation. In that way, a population X of individuals is guided
towards high-fitness regions in the parameter space RX, typically over many generations
of successive selection and reproduction cycles (i)—(iii).

In contrast to biological life, many use cases of EAs do not require a distinction between
individuals in the parameter space, i.e., genotypes x;, and the corresponding organisms in
their natural environment, i.e., phenotypes, p;: while the genetic crossover and mutation
operations of biological reproduction rely on bio-molecular mechanisms at the level of
RNA and DNA, i.e., are performed in the genotype space, selection typically happens at
the much more abstract level of an organism’s natural environment, i.e., in the phenotype
space. Carrying this through computationally can be resource-demanding, depending
on the complexity of a simulated environment. Nevertheless, to address the asymmetry
between genotypes and phenotypes in multi-scale competency architectures, it is essential
to evaluate the fitness score of the EA in the phenotype space instead of the genotype space

r(x]-) — r(p]-).
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We explicitly separate the genotype and phenotype representations of individuals
by introducing a biologically inspired developmental layer [1] in between genotypes and

phenotypes x; LD&> p; as illustrated in Figure 2. More precisely, we follow Section 3.1 and
ayer

model the developmental process of morphogenesis in silico by utilizing NCAs: we treat

an NCA j’s parameters, such as the set of i = 1,.. ., Nj initial cell states x](S) = {ci(0)}; and
(F)

the corresponding ANN parameters x ;= 0, as the (virtual) organism’s genome,

Xj = x]('s) Y XJ(F) = ({«i(0)},9)), )

explicitly partitioning the genome into a structural (S) and a functional (F) part, as indicated
by the superscripts. We then perform a fixed number of tp developmental steps employing
Equation (1) and interpret the corresponding set of “final” cell types {g;(fp)}; of the entire
NCA, cf. Equation (2), as the mature phenotype,

pj = {si(tp)}j, 4)

representing a two-dimensional tissue of cells.

In an effort to evolve the parameters x; of an NCA j to achieve the morphogenesis of a
two-dimensional spatial pattern of cell types p; that resembles a pattern of predefined target
cell types {§1,- .., gN]} of a total of N; cells on an Ny x Ny square grid (see Section 3.1), we
define the phenotype-based fitness score r(p;) as

r(pj) = (Zn](.G) —Nj)+rr n](.T) —7s n](.s), (5)

G)

is the number of correctly assumed cell types g;(tp) = §; after tp devel-

)

where (i) n](.

opmental steps, (ii) n](T is the number of time steps at which the entire target cell type

pattern is correctly assumed, i.e., whenever g;(f, < tp) = §; for all i, and (iii) n}s) is
the number of successive time steps t; and t;,1 < tp, where all cell types stagnate, i.e.,
where g;(ts+1) = gi(ts) for all i. With Equation (5), we thus reward the entire NCA j by
counting all correctly assumed cell types after tp developmental steps (while discounting
all incorrect cell types g;(tp) # $;), we reward maintaining the target pattern over time
with a factor of r1, and discount a stagnation of a suboptimal pattern over time by a factor
of rs. We consider the problem solved if a final fitness score of N; = Ny x Ny, is reached.
Notably, there is no explicit fitness or reward feedback at the level of the uni-cellular agents
in our system; the fitness score is solely used as the selection criterion for sampling the next
evolutionary generations, so the cellular collective needs to evolve an intrinsic signaling
mechanism to successfully perform the requested morphogenesis task.

The here proposed setting of genotypes x;, corresponding phenotypes p;, and associ-
ated fitness scores 7(p;), given by Equations (3)-(5), respectively, can be used in combination
with any black-box evolutionary or genetic algorithm. We rely on the well-established
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [103] to simultaneously evolve

the set of initial cell state configurations (i.e., structural genes, x}s) ) and the set of corre-

sponding ANN parameters of an NCA (i.e., functional genes, x](.F)) with the objective of

the purely self-orchestrated formation of two-dimensional spatial tissue as illustrated by
Figure 2A and described by Equation (1).

4. Results
4.1. The System: An Agential Substrate Evolves to Self-Assemble the Czech Flag

Evolution works with an active rather than a passive substrate, i.e., with biological cells
with agendas of their own [1]. Thus, at every stage of development during morphogenesis,

collective decisions are made at vastly different length- and time scales within an organism,
guiding the formation of the mature phenotype. We aim to model exactly this process via
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the neural cellular automata (NCAs) described in Section 3.1 and employ evolutionary
algorithms (EAs) to evolve the parameters of such NCAs so the latter perform well on
a target morphogenesis task, see Section 3.2. Without loss of generality, we consider an
Ny X Ny = 8 x 8 Czech flag pattern (as a more complex version of the classic French flag
problem of morphogenesis [115,116]) as the target pattern for our in silico morphogenesis
experiments, with a fixed number of N; = 64 cells in total, Ng = 3 distinct cell types
(colored blue, white, and red, respectively) and Ny = 1 hidden state, which renders the
dimension of the NCA cell state Nc = 4. We use a square grid of cells with N = 8 neighbors
per cell and with fixed boundary conditions (see Appendix C for details).

Starting from a genotype x; defined in Equation (3), we perform a number of fp = 25
developmental steps per morphogenesis experiment to “grow” a phenotype p;, described
by Equation (4), based on which the fitness score r(p;) is evaluated following Equation (5)
(see Figure 2B for an illustration of this process). During this entire process, we limit
the magnitude of the numerical cell state values c;(#;) at all time steps f; to the interval
lc = [—3,3], and, analogously, limit the magnitude of the proposed actions a; () of each uni-
cellular agent to the interval [, = [—1,1]. This is achieved by clipping the numerical values
of ¢;(t;y1) after a cell state update described by Equation (1), and the ANN outputs a;(t) to
the respective limits I and /. The noise level ¢ defined in Equation (1) is counted in units
of the action limits max(/,) and is thus sampled from a Gaussian distribution with zero
mean and standard deviation ¢. independently for each of the Nc = 4 cell state elements,
thus affecting the cell state updates during development; the actual numerical values for
the hyperparameters above turned out to be well suited for the problem at hand, especially
to reasonably compare and discuss simulation results for the means of this contribution but
are not crucial for the more general aspects of the evolutionary implications of multi-scale
intelligence discussed here.

To study the effects of different types of decision-making machinery within a cell,
we utilize two different architectures for the NCA artificial neural networks (ANNSs), a
Feedforward (FF) and a recurrent ANN inspired by gene regulatory networks [117-120]
(RGRNs). (The terminology FF and RGRN stems from the respective agents’ Feedforward
and Recurrent Gene Regulatory Network ANN controller layers (see Appendix A for details)).
Notably, the RGRN-agent architecture augments cells with an internal memory that is
independent of their states in the NCA and thus can not be accessed by the cells’ neighbors.
To balance the length of the structural genome x(8) and functional genome x(F) defined in
Equation (3), the two ANN architectures, FF and RGRN, are chosen such that the number
of parameters Npp = 192 and Nrgrn = 164 is roughly the same as the number of initial cell
states N; X N¢c = 64 x 4 = 256. Thus, the ANNSs utilized here—and detailed in Table A1 of
Appendix A—are tiny compared to Ref. [101].

For each experiment of evolving the parameters of an NCA, i.e., for each independent
run of the EA, we typically utilize a population X of Np = 96 individuals and a maximum
number of Nyy = 2000 generations. As the EAs ultimate fitness criterion, we consider
the average F; = (r(p;j))n; of Ng = 8 statistically independent fitness scores r(p;) of
corresponding morphogenesis simulations starting from an individual j’s genotype x; and
resulting in a corresponding phenotype p; after fp developmental steps; the developmental
program described via Equation (1) is imperfect due to the developmental noise applied to
the cell state updates and can thus lead to different, noise-induced phenotypic realizations.
Typical values used here for the corresponding reward factors defined in Equation (5) are

rr = 0.25 and rs = 0.5. We consider the problem solved if a fitness of F; = max(n](,c)) =

N; = 64 is reached, but since we reward individuals to maintain the target pattern over
time (via rr), the maximum possible fitness score after tp developmental time steps is
max(r;(p;j)) = 70.25 in this example. Further details about the hyper-parameters of the EA
and afforded computational resources can be found in Appendix D.

4.2. Direct vs. Multi-Scale Encoding: Cellular Competencies Affect System Level Evolvability
We aim in this contribution to investigate the evolutionary implications of biologically

inspired multi-scale competency architectures [1,94]. Thus, we compare two qualitatively

different evolutionary processes, both with the objective of morphogenetic pattern for-
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mation but whose genomes either (i) directly encode the phenotypic features of a two-
dimensional target pattern (cf. Figure 1A), or (ii) encode the cellular competencies of a
multi-scale architecture that gives rise to the same phenotypic features (cf. Figure 1C).
Notably, different definitions of direct and indirect encodings in multi-agent systems have
been used in the literature [54]. Here, we specifically distinguish between structural param-

eters x;s) = {c;(0)}; in the search space that directly encode features of the phenotype, i.e.,

specific initial cell types g;(0) ~ ¢; and functional parameters x](F) = 0; that indirectly, or
rather functionally, encode the target pattern by parametrizing the intercellular communi-
cation and intracellular information processing competencies of the NCA that facilitate the
self-orchestrated pattern formation process.

If no ANN at all were present in our model, i.e., 6]- = {}, and in the absence of noise
¢c = 0, we would re-establish a direct mapping between the genotype and phenotype as
¢;(0) = ¢;(tp), and thus a direct encoding of the target cell type pattern could be achieved
<i(0) = gi(tp). However, by default, we allow each cell to successively regulate its own cell
state towards a target homeostatic value via an iterative perception—action cycle defined
by Equation (1) and, moreover, to communicate in that way with neighboring cells. More
specifically, each cell updates its cell state solely based on its own and the states of its
adjacent neighbors, which, in turn, update their states based on their respective local
environment. We explicitly avoid direct environmental feedback to the cells’ perception
(such as an individual or collective reward signal) but fully restrict the NCA to intercellular
communication (via cell state updates) and intracellular information processing. These
uni-cellular agents thus exhibit a certain level of problem-solving competencies that can
be utilized for the challenge at hand, in our case, for a collective system-level objective of
forming a specific two-dimensional target pattern [95,101,102].

S)

With the explicit partitioning of the genome into a structural part, i.e., X, and a
(F)

functional part, i.e., x ;' wecan study the effect of direct vs. multi-scale, or the competency-

driven encoding of phenotypic traits in the process of evolution, and, moreover, quan-
titatively tackle the question of whether competent parts affect the process of evolution and
evolvability. In any case, the initial cell state pattern is given by the structural part of the
genome. Thus, in the absence of noise and without any active functional part in the genome,
the set of initial cell states directly represents the final pattern, while otherwise, cell states
can either be modified passively by noise in the system or actively through actions by the
cells during the developmental stage. Thus, we employ CMA-ES [103] to either evolve
the (i) structural, or both (ii) the structural and functional parts of the genome of an NCA
simultaneously with the shared objective of self-assembling an 8 x 8 Czech-flag pattern in
tp = 25 developmental time steps in the presence of noise . = 0.25 (cf. Sections 3.2 and 4.1
for details). More explicitly, in case (i), we restrict the cell state update of the NCA by
disabling all cell actions a;(f;) — a’(t;) = 0 but formally keep the functional part of the
genome in the evolutionary search. In turn, we allow the NCA in case (ii) to afford both
the structural and functional parts of the genome, thus giving the evolutionary process the
opportunity to prioritize one over the other. We thus bias the evolutionary process in case
(i) to effectively search the space of direct phenotypic encodings, while keeping the search
space dimensions balanced in both cases. The results of this experiment are presented in
Figure 3.

We can see in Figure 3 that both the evolution of the (i) direct and (ii) multi-scale
encoding schemes of the target pattern can be achieved with the presented framework,
and a fitness threshold of F; = 64 is reached after ~300-600 generations, thus solving the
problem. However, depending on the encoding scheme (i) or (ii), we can identify clear
qualitative differences in the strategy and the “efficiency” of the evolutionary process, i.e.,
how many generations it takes to reach a certain fitness threshold and eventually converge
(cf. top and bottom panel of Figure 3, respectively). The respective fitness score of the
direct case (i) grows steadily and almost monotonically over successive generations until
the threshold of F; = 64 is reached after 668 generations for that particular run, and the EA
)

for details on the threshold fitness values). In contrast, the evolutionary process of the

converges at a maximum fitness of max F () = 70.25 after 942 generations (see Section 4.1
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multi-scale case (ii) undergoes significant leaps as reflected by the corresponding fitness
score, which can increase rapidly if a suitable innovation, i.e., a favorable crossover or
mutation event in the functional parameters 9j, occurs; the initial standard deviation of the
fitness of the entire population is significantly larger compared to the direct case (i), yet
the threshold fitness of F] = 64 is reached in 428 generations, and the EA converges after

679 generations (although at a lower maximum fitness of max Pj(ii) = 69).

e n e ety e
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—— Pop. Mean
Pop. Std.
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Figure 3. Typical fitness trajectory over several generations of CMA-ES [103] of an NCA-based
8 x 8 Czech-flag morphogenesis task without (top) and with competency (bottom), corresponding
to (i) direct and (ii) a multi-scale competency encoding of the target pattern as discussed in the text,
representative of related experiments at similar system parameters (cf. Figure 4). We present the
historically- (blue) and currently best fitness value per generation (light blue), and the mean (black)
and variance (gray) of the fitness of the entire population. Moreover, the current structural fitness
(purple), the mean structural fitness of every generation (magenta), and the corresponding standard
deviation (light-pink area) are presented; in the top panel, the structural and phenotypical fitness is
equivalent, and thus only the latter is shown. The task is solved when a final fitness score of F; = 64
is reached (marked by the green dashed line), i.e., when 8 x 8 = 64 cell types are correctly assumed
after fp = 25 developmental steps. The cartoon insets represent the perception—action cycle of the
NCA, assembling an initial (random) arrangement of cell types into the target pattern; for the direct
case (top panel), the NCA ANN is disabled, which is illustrated by masking the agential parts in
the cartoon.

The results presented in Section 4.2 are based on selected evolutionary optimiza-
tion runs that are representative of related experiments with similar parameterizations.
However, one should keep in mind that such results are always susceptible to chance in
initial conditions or mutations in the EA but also to developmental noise; moreover, the
hyperparameters of the evolutionary search or even the specific ANN architectures can
influence the evolvability of such NCA systems. Thus, we present in Section 4.3 below a
more statistically significant analysis of the evolutionary implications of direct and multi-
scale encodings under various conditions of the cellular agents’ competency levels and the
developmental noise.
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Our separation of the genotype x; into a structural x](-s) = {c;(0)}; and into a functional

(F)
part X;

entire evolutionary history: we define the structural fitness as the fitness score r(p]’-‘) of a

= 0 moreover allows us to extract the structural (or genotypic) fitness along an

phenotype p; with evolved structural genes {ci(0)}; but with disabled agency a;(f;) —
a; (tx) = 0. Notably, in the direct case (i), we have p; = p]’-‘, which is illustrated in Figure 1A
and reflected in the top panel of Figure 3; the structural fitness of the multi-scale case (ii)
is explicitly visualized in the bottom panel of Figure 3. In the latter case, the structural
fitness remains essentially detached from the phenotypic fitness p]”-‘ < p; during the entire
evolutionary history (which also explains the convergence to a suboptimal maximal fitness
level of max(F;) = 69 in this particular NCA solution, as the final Czech flag pattern first
(S)

This all suggests that in contrast to (i), the EA in (ii) can make the most use of exploring the
functional part of the genome, i.e., the space of behavior-shaping signaling and information
processing [1], and, in turn, that the mere presence of competent parts drastically changes
the search space accessible to evolution [3]; to show this explicitly, we present in Appendix E
an illustration of the evolution of the morphogenesis process.

Interestingly, we still observe a slow but steady increase in the structural fitness in the
long term in case (ii), owed to the small additional reward signal r reinforcing the cellular
agents to maintain the target pattern over time. This can most efficiently be achieved if the
agent starts from a perfect set of initial cell types, representing a particular sub-space in
the parameter space that might not necessarily be easily accessible to the EA at all stages
during the evolutionary search. However, we would like to stress that such a slow transfer

of problem-specific competencies from an agential, highly adaptive functional part x](F)
a rather rigid structural part x](-s) of the genome could be a manifestation of the Baldwin
effect [14].

While remaining neutral with respect to the system level fitness score, this competency
transfer seems to affect the entire population presented in Figure 3 as reflected by the
successively increasing population-averaged structural fitness score. Notably, and as
detailed in Appendix F, we identified an associated decrease in the robustness against
increasingly noisy cell state updates of the corresponding solutions with larger structural
fitness. This suggests a reduction in uni-cellular competencies and might relate to the
“paradox of robustness” discussed in Refs. [51-53,121-127]. Through a computational lens,
such a competency transfer would also allow, as soon as the structural part of the genome is
reliable enough, to repurpose the system’s competency to adapt to other independent tasks,
and thus may facilitate the, in biology, ubiquitous effects of adaptability and polycomputing
in related systems [128].

This all illustrates that an agential material [1,94], or more precisely, a substrate
composed of competent parts, can have significant effects on the process of evolution
and evolvability, especially for morphogenesis tasks. We thus conclude that, if competent
parts are available, evolution prefers exploiting competency over direct encoding—if the
environment requires competency at all (see discussion in Section 4.3). This leads to the
conclusion that “competency at the lowest level greatly affects evolution and evolvability
at the system level”.

needs to be assembled from the corresponding imperfect initial cell configurations x

to

4.3. Evolution Exploits Competency over Direct Encoding, if Necessary

Here, we investigate the effects of varying different levels of competency at the cellular
level of a multi-scale competency architecture on the evolutionary process of morphogene-
sis. More specifically, we introduce the decision-making probability (I) Pp, which constrains
the ability of each cell individually to perform cell state updates in the environment: Pp
defines the probability at which a proposed cell state update of each individual cell in the
NCA is executed (or otherwise omitted). Thus, varying the decision-making probability
from Pp = 0 to Pp = 1 smoothly transitions the system’s behavior from a direct encoding
scheme without competency to an increasingly reliable multi-scale competency architecture
(cf. Figure 3).
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Another, somewhat hidden, level of competency we already discussed in Section 3.1
is each cell’s ANN architecture: An RGRN agent with internal memory can acquire and
execute tasks differently than a simpler FF agent without any feedback connections except
for its cell state ¢;(tx). Comparing the evolutionary implications of such functionally
different ANN architectures is, however, not trivial, and is thus kept to a minimum here.

However, we parameterize both FF and RGRN agents such that their controller part of
the ANN s (cf. Figure 1C, Section 3.1, and Appendix A) are (II) stacks of R redundant copies
of the same controller ANN, each copy with its own set of parameters, which take the same
pre-processed aggregated sensor embedding as input, and whose individual outputs are
averaged into a single action-output of a cell. Inspired by redundancy in error-correcting
codes [105,106], we thus allow cells with higher values of this redundancy number R, i.e.,
with many alternative routes through the controller part of the ANN, to—in principle—
integrate environmental signals more generally compared to R = 1, thus affecting the
cells competency.

While scaling from Pp = 0 to Pp = 1 smoothly increases a cell’s competency to reliably
regulate its cell state, increasing R enhances the computational capacities of the uni-cellular
agents. Henceforward, we interpret (I) Pp and (II) R as two competency levels in our
system, which we can vary (I) continuously and (II) discretely.

Analogous to Sections 4.1 and 4.2, we thus utilize CMA-ES to evolve the genotypic
parameters of an NCA to self-assemble the 8 x 8 Czech flag pattern under different condi-
tions (I-II), and expose the cells to different noise-levels (III) ¢, during cell state updates
defined in Equation (1).

In Figure 4A,B, we present the corresponding fitness scores of a maximum of 2000 gen-
erations of CMA-ES for different noise levels ¢ € [0,0.5], averaged over different values of
the decision-making probability Pp € {0, 12.5%,25%,50%,100%} for both FFagents and
RGRN agents. Moreover, for each realization of {. and Pp, we utilize experiments with
different redundancy numbers R € {1,2,4,8,16} and employ 15 statistically independent
EA runs for each parameter combination ¢, Pp, and R, and thus arrive at 75 statistically
(and functionally, with respect to an agent’s ANN architecture) independent fitness tra-
jectories per (Pp, ¢c) combination; see Section 4.1 and Appendix D for more details on
the EA parameters. In Figure 4C, we present the average number of generations it takes
to solve the problem (to reach a fitness threshold of F; = 64) for each combination of Pp
and &, aggregated over the agents” ANN architectures, FF or RGRN, and the respective
redundancy numbers R for 15 statistically independent EA runs each; in Figure 4D, we
present the data from Figure 4C but separately for both ANN architectures.

We observe in Figure 4 that, depending on these two parameters Pp and ¢, for no-
or very low noise levels . ~ 0, the evolutionary search is most efficient, i.e., finds the
solution in the fewest number of generations, on average, for low values of the competency
level Pp ~ 0. Thus, in these situations, direct encoding (achieved via Pp = 0) seems to
be preferable to competency-driven encodings with Pp > 0 (as indicated by the bottom
red arrow in Figure 4C); this is partly owed to the specific definition of the cell types g;(#x)
given by Equation (2), making a noiseless search very simple for the EA. However, for more
realistic, noise conditions . > 0, the situation changes drastically. With increasing the noise
level, the evolutionary efficiency of NCAs with higher competency levels is significantly
greater compared to those with low competency levels, especially for the direct encoding
scheme (as indicated by the green arrows in Figure 4C); for noise levels of {, = 0.375
and 0.5, the EA does not even find solutions for the direct encoding case with Pp = 0 in
2000 generations, as cell state updates become increasingly necessary to counteract the
noise in the system. There is a clear trend of increasing the evolutionary efficiency in our
in silico morphogenesis experiments by increasing the competency level for increasingly
difficult environments with high noise levels.

Thus, we conclude that scaling competency has a strong effect on the process of
evolution, and in realistic situations (with moderate to high noise), competency may greatly
improve the evolutionary efficiency and evolvability of collective self-regulative systems.
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Figure 4. (A,B) The average fitness per generation of the best-performing individual in a population
of 65 independent evolutionary processes of the 8 x 8 Czech flag task, evaluated from left to right
at different noise levels (decision-making probabilities) and color-coded by the decision-making
probabilities (noise-levels), for panels (A,B) respectively; solid lines mark average fitness values, the
shaded area marks the standard deviation (to lower values only), and dashed lines indicate when an
average fitness threshold of 64 is crossed, solving the problem. (C) Heatmap of the average generation
number when the fitness threshold of 64 is crossed at particular combinations of the decision-making
probability and noise level as detailed in (A,B); green and red arrows respectively indicate directions
along Pp of increasing and decreasing values of the average fitness at fixed noise values. (D) Same as
(C) but partitioned by the respective FF-agent or RGRN-agent architectures used in the respective
CMA-ES runs.

It might be noteworthy that for evolving the 8 x 8 Czech flag pattern, essentially no
qualitative difference in the evolutionary efficiency between FF agents and RGRN agents
with the given number of parameters was observed. Also, the evolutionary implications of
utilizing a number of R > 1 redundant copies within the controller ANNS of the cells of an
NCA is much less pronounced, compared to the results depicted in Figure 4 as can be seen
in Figure A8 of Appendix H. However, for more advanced problems such as assembling
a9 x 9 smiley-face pattern (see Appendix G), RGRN agents seem to outperform simpler
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FF agents significantly in terms of evolutionary efficiency. Moreover, a larger redundancy
number of R > 4 is required by the evolutionary process to more efficiently evolve the
functional parameters of an NCA compared to a direct encoding scheme, hinting at a
capacity bottleneck of the deployed ANNS.

4.4. There Is a Trade-Off between Competency and Direct Encoding Depending on
Developmental Noise

A careful analysis of the results shown in Figure 4 reveals that the largest competency
level of Pp = 1 does not result in the highest evolutionary efficiency for any presented
noise level. On the contrary, populations with slightly lower competency levels of Pp = 0.5
or even Pp = 0.25 perform best at noise levels & € {0.25,0.375,0.5} and 0.125, respectively
(as indicated by the green and red arrow ends in Figure 4C). In fact, cells with an initially
random genome (comprising the ANN and initial cell state parameters) that are forced
to make “uninformed”, i.e., initially random, decisions at every time step can interfere
with the performance of the EA, as even initially perfect cell state configurations will be
destroyed during such a randomized developmental stage. We suspect that this leads to
corresponding delays in the evolutionary search compared to situations where populations
can better rely on the structural part of the genome. Indeed, populations with “overconfi-
dent” actions can be trapped in local optima for many generations at all stages of the EA,
which, in our system, may only be resolved by very specific but random mutations of the
functional part of the genome (as we show later through Figure 5 in Section 4.4). This is
reflected in Figure 4A,B by the large deviations in the average fitness trajectories for large
Pp values.

The insights from the above lead to the questions of whether there is a “natural” or
optimal competency level, with respect to the decision-making probability Pp, or whether
a mutable competency level can be utilized by the evolutionary process to improve the
efficiency of guiding a population towards high-fitness regions in the parameter space.

(©)

Thus, we include the decision-making probability as an additional competency gene x :

into the NCA genome x; — x; = x](.s) U x](F) U x](C), cf. Equation (3), and we perform in

silico morphogenesis evolution experiments of the 8 x 8 Czech flag pattern for different

noise levels ¢, analogous to Section 4.3. We analogously limit the numerical range of the

competency gene x](.C) to the interval [—3, 3], and extract the corresponding decision-making

probability via Pp; = %(tanh(x](-c)) +1). Notably, for the experiments shown in this sub-
section, we use L, regularization on the genotypic parameters x; = (x;1, ..., x;,) through

subtracting ry, x ZZN:xl x]z ; from the fitness score defined in Equation (5), with r;, = 0.01
(the L, regularization applied to x; does not introduce a bias between the minimal Pp; = 0

and maximal Pp; = 1 competency levels, as the L, regularization is applied to x](.C), not

Pp j; both Pp ; and the L, regularization are symmetric with respect to the sign of x](g).

In Figure 5A,B, we present the evolved competency level for different noise levels
after fitness thresholds of 64 and 70 are crossed, respectively, for 10 independent lineages
per noise level for an RGRN architecture. The problem is considered solved at a fitness
of 64, but since we reward the NCAs to maintain the target pattern over time via rr in
Equation (5), a higher maximal fitness score of 70.25 can be reached after t developmental
steps for a sufficiently long evolution. Thus, we here relate Figure 5A to the evolutionary
stage of having achieved the process of morphogenesis, and Figure 5B of having achieved
morphostasis. For both cases, we essentially see two strategies emerging (see also Figure 5C-E):
(i) one, where competency is maximized very early during the evolutionary process that
then remains near the maximally possible value of Pp = 1, and (ii) a hybrid strategy where
a significantly lower competency level is assumed that still allows to solve the problem.

Notably, strategy (i) is predominantly pursued at high noise levels, where large cell
state fluctuations in the environment favor informed actions by the cellular agents. In
contrast, the second strategy (ii) emerges more frequently in lineages evolved at low noise
levels where, especially at very low noise levels ¢ ~ 0, most of the evolutionary processes
result in solutions that avoid competency altogether, and a direct encoding scheme (Pp = 0)
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is evolved. Intermediate competency levels evolve in the corresponding intermediate noise
regime. Following the trend of evolving morphogenesis (by crossing a fitness score of 64) to
morphostatsis (by converging to the maximal fitness value of ~ 70) in Figure 5A through B,
we see that the two strategies, (i) and (ii), “sharpen” during the course of the evolutionary
process such that Pp predominantly converges to the minimally or maximally possible
values of 0 and 1, depending on the environmental conditions.
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Figure 5. (A) The evolved decision-making probability Pp for different noise levels . when a fitness
threshold of 64 for the 8 x 8 Czech flag task is reached; each symbol represents an independent
lineage with a color-coding that indicates the number of generations it took for that particular lineage
to cross the specified fitness threshold. The green/orange/red dashed lines indicate at which value
of Pp the evolutionary process crossed the fitness threshold the fastest/on average/the slowest (i.e.,
in the least, average, or largest number of generations) for each noise level. (B) Same as (A) but
with a fitness threshold of 70. For both (A,B), the red/green/blue frames emphasize the noise level
¢c = 0,0.125 and 0.25 corresponding to panels (C-E), respectively: The latter show the evolution of
the decision-making probability/fitness (top /bottom left panel) and the value of the decision-making
probability as a function of the corresponding fitness during the evolutionary process of each lineage
(right panel) for all lineages (indicated via color-coding) at the specified noise level. Results are
shown for an RGRN-agent architecture with redundancy R = 1, and are qualitatively similar to those

of an FF-agent architecture.

We also illustrate the evolved competency level of the particular lineage at all noise
levels in Figure 5A,B, at which the respective fitness threshold is crossed in the minimal
and maximal number of generations (and on average) amongst all 10 independent lineages
per noise level. This clearly reveals that evolutionary processes that follow a more direct
encoding strategy (ii) can evolve the problem at hand efficiently—if this is permitted by the
developmental noise. However, when increasing the noise level, the evolutionary process
can afford to evolve—or put differently, increasingly relies on evolving—the multi-cellular
intelligence of the NCA to perform morphogenesis and morphostasis, thus following a
third strategy (iii) that integrates both strategies (i) and (ii) in a non-trivial way. We observe
in Figure 5A that the most efficient strategy for evolving morphogenesis seems indeed to
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be such a hybrid approach (iii), where a minimally necessary competency level is utilized
at a specific noise level such that the corresponding evolutionary process can, again, be
very efficient in solving the task.

Moreover, this also holds for the stage where morphostasis is reached, cf. Figure 5B:
lineages that efficiently evolved to solve morphogenesis in our experiments also (typically)
evolve to solve morphostasis efficiently. To emphasize this, we present in Figure 5C-E
the “temporal dynamics” of the population-wise highest fitness and the corresponding
competency level per generation for all lineages at selected noise levels ¢, = {0,0.125,0.25};
we also present for all corresponding lineages that have been evolved at these selected noise
levels the genotypic competency level Pp; against the corresponding phenotypic fitness
scores rj, and we find an apparent yet non-trivial relation between these two quantities:
typically, an initial rise in fitness r; in early generations is associated with a decline in Pp
which is more pronounced at lower noise levels. For intermediate noise levels 0 < . < 1,
we find that Pp often assumes a minimum (i.e., a minimally required yet finite competency
level) when the evolutionary process reaches a fitness level of ~64. We suspect that
this allows the evolving morphogenetic process to establish good starting configurations
based on changes in the structural genome, which can most efficiently be performed at a
minimal(ly necessary) competency level given a certain developmental noise level in the
environment. However, the competency is then quickly pulled towards a maximum level
of Ppj = 1 when the EA converges at a maximum fitness score of ~70, at the morphostasis
stage. For large noise levels, e.g., {c = 0.25 as depicted in Figure 5E, the competency level
rises with the corresponding fitness score in a much more monotonic way, emphasizing
the necessity of the corresponding NCAs to utilize the cellular competency to solve the
problem already at an early stage of the evolutionary process.

Curiously, we also see lineages that settle at the highest possible competency levels
throughout their evolutionary history, even in conditions without noise as can be seen
in Figure 5C: here, an initial “frozen accident” may cause an entire lineage to maintain
high competency levels due to a lack of diversity in the corresponding gene, although
this is not even necessary to solve the task. However, these high competency levels early
on during the evolutionary process can cause the population to stagnate at sub-optimal
regions in the parameter space for many generations if the corresponding policy of the
cells is sub-optimal but rigid to strategy changes via small mutations in the genome. The
population seems “trapped” until a favorable mutation or crossover event occurs in the
functional part of the genome of an individual that guides the entire population towards
higher fitness scores, eventually solving the problem. We suspect that this is also the reason
for the lower evolutionary efficiency of the “most competent” configurations (with Pp = 1)
compared to the slightly less competent cases (with Pp = 0.5) of the experiments depicted
in Figure 4 [129].

Thus, we conclude, that if the evolutionary process can afford to evolve its own
competency level, there seems to be a trade-off—during the entire course of the evolutionary
process—between “going direct” or “going competent”, depending on the developmental
noise. Moreover, the randomly initialized starting conditions may favor either direct or
multi-scale encoding strategies, which may not only affect the “final” competency level
that the evolutionary process converges to but can also greatly influence the efficiency
of the evolutionary process itself. In general, the most efficient strategy for evolving
morphogenesis tasks seems to be a non-trivial trade-off between finding a suitable initial
cell state configuration that then allows the competency-based self-assembly of the target
pattern to “kick in” and solve the task efficiently.

4.5. Competency Can Lead to Generalization

We are ultimately interested in the question of whether a substrate of competent parts
shows the ability to generalize to environmental conditions that have never been experi-
enced by its evolutionary predecessors, and hence would allow the evolutionary process to
adapt an organism to changing environmental conditions more efficiently compared to a
direct encoding scheme. Thus, we systematically vary in Figure 6 the system parameters,
i.e., the noise level and the decision-making probability competency level, for selected NCA
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solutions of the Czech flag problem that have been trained with certain sets of the system
parameters above.
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Figure 6. The average fitness score of 100 independent evaluations of selected NCA results utilized at
noise (A-D) and competency-level conditions (E,F), which have not been experienced during training
for an increased total lifetime of 100 time steps. The respective NCAs have been evolved at zero-noise
without competency (A), with evolvable competency (B), and under different noise conditions and
decision-making probabilities (C-F), with a fixed number of tp = 25 developmental steps; the results
of all panels except for (B) are based on RGRN-agent architectures with the training conditions given
by titles and dashed lines. The data presented in panels (C,E) and (D,F) are respectively based on the
same NCA solution (indicated by the dashed frames), while the noise level is varied in (C,D) at a
fixed competency level of Pp = 0.5, and the competency level is varied in (EF) at a fixed noise level
of (§c = 0.25, ¢ = 0.5)], respectively.

For instance, we utilize NCA solutions that have been evolved to solve the 8 x 8 Czech
flag problem in tp = 25 developmental steps (see above) under zero-noise conditions
without and with evolvable competency. Here, we utilize such solutions for larger noise
levels of ¢. € [0,0.5] and for lifetimes of 100 time steps and present the average fitness values
of 100 statistically independent simulations at each particular noise level in Figure 6A,B,
respectively, without any further evolutionary optimization. Analogously, we expose
NCA solutions that have evolved with a competency level of Pp = 0.5 and noise levels of
¢c = 0.25 and 0.5, respectively, to vastly different noise levels of ¢. € [0,1] compared to
the conditions during their respective evolutionary processes, and present the results in
Figure 6C,D. Eventually, we again deploy the latter NCA solutions but vary the competency
level Pc € [0,1] instead, at respectively fixed noise levels of & = 0.25 and 0.5, with the
results depicted in Figure 6E,F. Notably, we only consider the “correctness” part of the
fitness score, i.e., the first term in Equation (5) by setting rr = 0 and rg = 0.

The results in Figure 6 demonstrate that the performance of the here evolved NCAs,
optimized with evolutionary methods to assemble and maintain a target morphology over
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time at particular system parameters, differs greatly between NCA solutions that follow
the direct- or multi-scale encoding paradigms when subjected to novel environmental
conditions: The typical fitness over the lifetime of an NCA without competency that
encodes the target phenotype pattern directly (cf. Figure 6A) is constantly affected by
random fluctuations and thus decreases in fewer time steps with increasing noise levels in a
diffusive process; the duration of how long the corresponding maximum fitness score of 64
can be maintained and the speed at which the fitness eventually decays during the lifetime
of the here discussed 8 x 8 Czech flag NCA depend on the particular noise level and on
the values of the initial cell states, which are limited numerically to the interval [—3, 3] for
each cell. In contrast, NCA solutions with larger competency levels that have been evolved
at finite noise-level conditions still perform well—and can maintain the target pattern for
exceptionally long times—also when changing the system parameters dramatically (cf.
Figure 6B-F); note the noise-level axis of ¢, = 0 to 1, compared to the maximum noise
levels of {¢ = 0.5 during training.

The results in panel Figure 6B are especially curious, as the corresponding NCA
has been trained to evolve its decision-making probability alongside the structural and
functional parts of the genome at zero noise conditions. While no competency at all would
have been required to solve this task, the presented NCA solution evolved to afford a
maximum competency of Pp = 1 (cf. Figure 5C). Strikingly, this particular NCA is capable
of resisting much larger noise levels of ¢ ~ 0.25 while maintaining the pattern perfectly for
at least tp = 25 steps, and the average fitness score of 100 independent solutions does still
not drop below a certain threshold of ~~40-50 for even higher noise levels and for 100 time
steps. Notably, there appears to be a bifurcation of the long-term behavior of these NCA
solutions (not shown here) where the NCA—in some realizations—maintains the target
pattern perfectly for long times, while in other independent runs, the fitness drops quickly.

In this sub-section, we thus show that NCAs that have evolved to assembly and
maintain a target pattern within a relatively short developmental stage are capable of
maintaining the corresponding target pattern over much longer time scales—without any
further optimization—and thus show great signs of functional, morphostatic generalizabil-
ity. Moreover, the here-discussed in silico morphogenesis and morphostasis model systems
are capable of handling, essentially on the fly, system—parameter combinations that neither
they nor their evolutionary ancestors ever experienced before. Thus, we conclude that
such multi-scale competency architectures [1], whose substrate is composed of competent
rather than passive parts, can be more than capable of generalizing to changes in their
environment—within reasonable boundaries, of course—by allocating robust problem-
solving competencies at many scales [93,94].

4.6. Competency Can Augment Transferability to New Problems

Deducing from the discussion in Section 4.5 about the generalizability of multi-scale
competency architectures [1] towards changing environmental conditions, such systems
should also exhibit increased evolvability and transferability properties to new problems: if
such multi-scale competency architectures are capable of adapting their behavior towards
changing environmental conditions on the fly during a single lifetime (cf. Figure 6), this has
great consequences for the evolutionary process when environmental conditions change.

Thus, we utilized the NCA solution discussed in Figures 5C and 6D and performed
subsequent CMA-ES on the 8 x 8 Czech flag problem at changed environmental conditions,
i.e., at higher noise levels: only a single or, at most, a handful of generations are necessary
for solving the task even at intermediate and high noise levels of {. = 0.25 and 0.5.

To emphasize the potential of the transferability of multi-scale competency archi-
tectures, we here investigate the adaptation capability of pre-evolved NCAs when their
objective function is suddenly changed, i.e., when the environment starts selecting for dif-
ferent target patterns than the one they have originally been evolved for. More specifically,
we utilize NCA solutions from Section 4.3, and discussed in Figure 4, which successfully
solve the 8 x 8 Czech-flag task, and additionally perform 1000 evolutionary cycles of
CMA-ES on a related 8 x 8 blue-, white-, red-, Viennese-, blue/white-, and blue/red-flag
morphogenesis task for various noise and competency levels. We allow changes to both
the structural and functional parts of the genomes of the pre-evolved NCA.
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In Figure 7, we present the corresponding number of generations it takes for
10-60 CMA-ES runs on average to adapt a pre-evolved, i.e., “informed”, NCA solution that
can solve the 8 x 8 Czech-flag morphogenesis task to then solve the respective new morpho-
genesis task under different environmental conditions. We see a clear advantage in terms
of the evolvability and adaptability of pre-evolved individuals at high-competency levels
(in contrast to individuals with lower competency levels) so that adaptation can happen in
as few as ~10 generations. While the Czech—blue-, white- , and red-flag tasks are rather
trivial (see top panels in Figure 7), computationally, the Czech— Viennese-, blue/white-,
and blue/red-flag adaptation tasks (bottom panels in Figure 7) are more complicated. Still,
the latter can be solved in as few as ~20 generations compared to >>100 generations of
evolving a corresponding randomly initialized NCA to solve the Czech-flag problem from
scratch as shown in Sections 4.2 and 4.3.
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Figure 7. The average number of generations it takes for the CMA-ES to adapt a pre-evolved
NCA solution that can solve the 8 x 8 Czech-flag morphogenesis task to adapt, respectively, to the
8 x 8 blue-, white-, red-, Viennese-, blue/white-, and blue/red-flag morphogenesis tasks instead
(cf. panel insets) and reach a correctness fitness score of 64. We specifically adapt Czech-flag NCA
solutions that have been pre-evolved at a noise level of . = 0.25 but with corresponding competency
levels according to the horizontal axis in Figure 4, and deploy CMA-ES for 1000 generations at the
corresponding noise/competency levels depicted here on the vertical /horizontal axis, and average
over multiple CMA-ES runs and corresponding redundancy numbers R = 1, 2,4, 8, 16.

Thus, we conclude that pre-evolved (or “informed”) competency at subordinate scales
of a multi-scale competency architecture greatly enhances a collective system’s capability
of adaptation. Thus, a competent and informed substrate has great effects on a multi-scale
competency architecture’s evolvability towards changing environmental conditions and on
the transferability of already acquired (evolved) solutions to new problems.

5. Conclusions

We have investigated the evolutionary implications of multi-scale intelligence on an
example of the in silico morphogenesis of two-dimensional tissue of locally interacting
cells that are equipped with tunable decision-making machinery. More specifically, we
have utilized evolutionary algorithms (EAs) [103] to evolve the parameters of neural
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cellular automata (NCAs) [100] on morphogenesis tasks under various conditions of the
competency level of the uni-cellular agents and the developmental noise in the system.

In this model of a multi-scale competency architecture [1], a two-dimensional grid of
locally interacting cells is tasked to self-assemble and maintain a global spatial target pattern
of predefined cell types, here, primarily of a two-dimensional, 8 x 8 Czech flag pattern (we
model and investigate the evolution of the process of morphogenesis and morphostasis in
silico and deploy our framework to a self-orchestrated pattern formation task, primarily of
a two-dimensional 8 x 8 Czech flag pattern but also for other much more involved target
shapes, such as a 9 x 9 smiley face (see Appendix G)). Each uni-cellular agent’s internal
decision-making machinery is modeled by an artificial neural network (ANN), allowing
these cells to independently perceive the cell states of their adjacent neighbors on the grid
and propose actions to regulate their own cell state over time via local communication
rules. Both the ANN parameters and the initial cell states of all permanent cells represent
the parameters of the NCA and are optimized by EAs for a specific in silico morphogenesis
task, thus forming the functional and structural part of the system’s genome, respectively.

To investigate the effects of competency in a multi-scale competency architecture on
the underlying evolutionary process, we introduce (I) a “competency level” parameter
that controls the reliability of the uni-cellular agents of an NCA to regulate their cell
types during a noisy developmental stage. This allows us to continuously scale the NCA
competency level from a direct encoding scheme of the target pattern (no competency) to a
multi-scale competency architecture that self-assembles the pattern with perfect reliability
in cell decision executions. Furthermore, we introduce (II) a variable number of redundant
sub-modules in the NCA ANN, which we utilize as another “axis” of redundancy- and
computational capacity-based competency of the cells’ decision-making machinery.

In large-scale simulations, we systematically vary these two competency levels (I, II),
expose the corresponding NCA to different noise conditions (III), and perform several
statistically independent evolutionary searches at each parameter combination (I-III). In
that way, we demonstrate that an evolutionary process proceeds significantly more rapidly
(on average) on noisy pattern formation tasks when evolving the parameters of a multi-
scale competency architecture compared to evolving the target pattern directly (with no
competency involved).

Our multi-scale competency architecture model and the corresponding evolutionary
optimization process comprise several scales: At the smallest scale (1), each structural
and functional gene is represented by a floating point number. The functional genes
parameterize the behavior of artificial neurons (2), our atomic decision-making centers,
which are then hierarchically arranged into layers of artificial neurons (3), sub-modules
of interconnected layers (4), to an ANN with a predefined architecture (5). Thus, even the
uni-cellular phenotypes (6) in our system—ANN-based agents that maintain a particular
internal cell state—are composites of smaller (proto-competent) decision-making centers
down the hierarchical ladder. The composite uni-cellular agents perceive the cell states
of their grid neighbors (7) on the NCA, perform potentially several cycles of internal
calculations, and eventually update their own cell state in a single developmental step. In
that way, clusters of different tissue types (8) may be formed in successive developmental
steps. A fixed number of developmental steps comprise the lifetime of a single NCA, giving
rise to self-assembled phenotypic tissue of cell types on the entire grid of the NCA (9), e.g.,
as in our case, to the Czech flag pattern. The quality of each individual in an evolutionary
population of NCAs (10) is evaluated via a phenotypic fitness score, quantifying the
deviation of the assumed cell types from a target pattern. Based on the fitness scores of
a particular generation of NCAs, the genotypes of potentially better-adapted successor
generations are successively sampled by the EA, closing the loop (1) and forming the
largest scale in our system, an evolutionary lineage (11). Eventually, on a meta-scale
(12), we compare the efficiency of the evolutionary process at different system parameters
(I-1II), i.e., at different competency- and noise levels, by analyzing the fitness trajectories of
statistically independent lineages evaluated at the same system parameters.

We demonstrate that especially in the presence of developmental noise, affecting
cell state updates during morphogenesis, the evolutionary process favors a multi-scale
competency-based realization over a direct encoding scheme of the target pattern. More-
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over, when the competency level itself is left as an evolvable parameter to the EA, there
appears to be a non-trivial dynamical trade-off in the evolutionary process’ efficiency
between exploiting the competency level of its components or the direct, pre-patterning-
like encoding of the target pattern. We thus report that under realistic conditions (i.e., at
moderate noise levels), an evolutionary process can be significantly more efficient when
working with an agential rather than a passive material [1,94].

Notably, we explicitly omit a reward or fitness feedback from the environment to the
NCAs’ uni-cellular agents’ perception, restricting the cells” decision-making solely to the
local communication of cell state updates between grid neighbors. Thus, the cells need
to figure out their own communication protocol such that their single-agent decisions
align with the global (multi-agent) system-level objectives of assembling the correct target
pattern. These uni-cellular competencies are acquired over evolutionary time scales and
can be understood as emergent behavior-shaping signaling [1].

On a more technical note, we specifically employ permutation-invariant ANNs as
trainable update functions of the NCAs and successfully evolve the corresponding models
to perform the here studied pattern formation tasks. We thus show that, contrary to
previous assumptions [101,130], a perfect spatial resolution of neighboring cell states in an
NCA is not necessary but that a mean-aggregated neighboring cell state can be sufficient
for single cells to reliably contribute to the objective of a larger scale collective. Strikingly,
we show that such uni-cellular agents do not even need to distinguish between their own
states and the states of their neighbors to achieve this task, thus fully integrating into the
tissue locally and essentially losing their individuality [93,95].

Also, in contrast to Ref. [101] and similar work, we do not start our morphogenesis
experiments from a single “alive” cell but instead evolve the initial cell states of all perma-
nent cells on the grid of an NCA, while the uni-cellular agents are constantly challenged to
correct their state from developmental noise (notably, a process reminiscent of the denoising
steps of Diffusion Models [131-135]). This allows us to explicitly distinguish between the
evolutionary implications of (i) direct and (ii) multi-scale competency-based encodings of
the target pattern, where we either constrain the evolutionary process to (i) only evolve
the structural part of the genome, or to (ii) evolve both the structural and functional parts
simultaneously. Admittedly, the choice of the structural part of the genome limits the
scalability of the approach, as the size of the structural genome will grow correspondingly
with the number of cells in the system. However, as occurs with biomechanical [136],
biochemical [137,138] and bioelectric pre-patterning [8,94,139], the initial states of an NCA
of moderate size could be seen as a coarse-grained scaffold, based on which an NCA of
a potentially much higher resolution can run its multi-scale competency-based develop-
mental program to self-assemble a high-resolution target pattern [140]. Alternatively, we
suggest utilizing a Compositional Pattern Producing Network (CPPN) [120,141] to indi-
rectly encode the initial states of all cells on the grid of an NCA, allowing such a hybrid
approach to perform in silico morphogenesis at scale. Unfortunately, it has been proven
difficult, if not unfeasible, to exactly reproduce predefined target patterns reliably with the
neuroevolution of CPPNs alone [142], which is why we here refrained from this approach;
we emphasize, however, that gradient-based methods such as Neural Radiance Fields
(NeRFs) [143] to train CPPN-like architectures might be an interesting workaround.

We find that fully evolved NCA solutions, capable of performing the morphogenesis
tasks discussed above, show great signs of generalizability toward changing the system
parameters, and can—without any further evolutionary optimization or training—handle
noise and competency levels that are vastly different from the training conditions. Con-
sequently, this leads to the increased evolvability of such competency-based models to
changing environmental conditions: a subsequent evolutionary process can adapt a pre-
evolved solution to altered environmental conditions within a handful or sometimes even
a single generation. Moreover, we demonstrate that such pre-evolved NCA solutions can
even quickly adapt to new, yet related problems. Specifically, we modify the objective
function of our evolutionary process from the 8 x 8 Czech flag task to self-assemble a blue-,
red-, white-, Viennese-, diagonal blue/white and blue/red flag instead, respectively. In
most of these situations, an adaptation of an existing NCA solution to the new problem can
be performed in significantly fewer generations than evolving the initial 8 x 8 Czech flag
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task from a randomly initialized configuration. Typically, these adaptations happen faster
the larger the competency level of the NCA is, while for the direct encoding scheme (or
in situations with low competency), the structural part of the genome is too dominant to
allow quick adaptations by the EA. This suggests that multi-scale competency architectures
allow the underlying evolutionary process to not over-train on priors, thus augmenting
adaptability through a competent substrate.

We conclude that not only can evolutionary processes efficiently utilize and bring forth
the intriguing multi-scale problem-solving machines of biological life but that the efficiency
of such evolutionary processes, as well as the generalization abilities, evolvability, and
transferability of the corresponding phenotypic outcomes, are strongly affected by the level
of competency of the underlying agential material. An intriguing open question is whether
this implies a positive feedback loop that enhances that quality over time. Judging from the
considerable effects of scaling the competency in the here-studied still shallow multi-scale
system on a rather simple in silico evolutionary process (i.e., CMA-ES [103]), it becomes
increasingly evident that the vastly more complex multi-scale competency architecture of
biological life cycles back and thus affects the process of evolution itself.

One of the key opportunities for future work is to apply the ideas explored here
in silico to the understanding of biological mechanisms in natural systems, and to the
design of new synthetic constructs via bioengineering [144,145]. It is now known that
living tissues implement a kind of multi-scale competency architecture [94]. Problem-
solving capacities at one scale, for example, the ability to navigate anatomical morphospace
despite perturbations (embryogenesis and regeneration), rely on the communication and
cooperation of subunits. One of the emerging modalities for this underlying communication
is bioelectricity [89], and future work will explore the mapping from the bioelectrical
dynamics that implement neural-like [32] computations within cell networks to the robust
plasticity observed with respect to dynamic form and function. A closely related set of
questions concerns the implications of this computational property of all cells, not just
neurons, for the material on which biological evolution acts [1].

For future directions, our multi-scale competency framework is easily extendable to
simulate tissue growth via cell migration or division actions proposed by the underlying
ANN:Ss of the NCA. More specifically, our framework allows for a minimal set of biologically
relevant uni-cellular actions, such as cell state update, cell division, migration, cell death,
and an identity operation, only constrained by the NCA spatial grid. Furthermore, the
framework is capable of handling flexible ANN architectures, potentially allowing us
to investigate intriguing competencies, such as active inference [146], through utilizing
world model architectures [147] in a (neuro)evolutionary context. Our system, so far, has a
fixed hierarchical architecture that deviates from the scale-free competency architecture of
biological life with open-ended functional adaptation (where any abstraction layer becomes
the basis for the next one). Thus, in future work, we aim to model precisely this behavior
by introducing multiple layers of horizontal communication pathways in an NCA that the
ANN-based agents can dynamically traverse in the vertical direction. Moreover, by choosing
a proper fitness function related to measuring scale-invariant pattern formation [107,148], critical
dynamics [149-154], or applying the free-energy principle [146,155], we are confident that
we will achieve a biologically more accurate model of the scale-free dynamics and open-
ended evolution of life. Such computational models could thus further quantitative studies
of the communication strategies and boundaries of individual and groups of cells in an
agential, potentially adversarial umwelt, with possible applications in individual and
collective aging (as morphostasis defects) [156,157], or cancer research [93,94,139].
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Appendix A. Artificial Neural Networks

Inspired by biological neural circuits, an artificial neural network (ANN) is an in-
terconnected network of artificial neurons (ANs) [158-161]. Each such AN maps a set of
inputs x € R" onto a single number y € R, usually through a non-linear filter o(.): the
output of an AN can be defined as a parameterized function y = o(w - x + b), with weights
w € R" and bias b € R [162].

Commonly organized in layers of AN, a Feedforward ANN represents a parameterized
non-linear function y©") = féFF) (x(1), transforming an input x() € RNo overi =1,..., Ny
consecutive hidden layers of ANs y() € RNi to an output vector y°© € RN.. More
specifically, the output y(!) € RNi of layer i defined by

yl) = U(w(i) x4 b(i>> (A1)

becomes the input x('*1) = y(i) to the next deeper layer i + 1 through layer-wise filtered
dot products with the weight matrices W) = {w](]lc)} € RNi*Ni-1 and bias vectors b() =
(by,..., b)) € RN

Training an ANN thus boils down to optimizing a set of parameters § = {w](.l?, b]@ I
i.e., the entire network’s weights and biases such that an input is mapped (with minimal
deviation) to a desired output [113,163-165]. In this manuscript, we utilize ANNSs as the
trainable update function of a neural cellular automaton (NCA) [100] and optimize the
corresponding ANN parameters via evolutionary algorithms to study the evolutionary
implications of multi-scale intelligence on the example of morphogenesis.

Notably, in contrast to previous contributions of NCA-based morphogenesis [101],
we do not rely on predefined convolutional filters in our ANN architectures to preprocess
a cell’s local environment based on its own cell state ¢;(t) = ¢;,(fx) and the states of
its i,—1, N direct neighbors ¢; (t) at a given time step t;, which we formally collect in
Ni = (ciy (), - - -, ¢iy (t)). Instead, we utilize a trainable sensory ANN fe(s) (+) thatis applied
individually to its own and every neighboring cell state to evaluate corresponding sensor

embeddings ¢;, (t;) = fe(s) (ci, (tr)) € R®. The sensor embedding vectors of a particular cell
are averaged to form a cell-specific context vector s;(f;) = ﬁ [Z]ILO &, (tk)} € R® of fixed

size s that is permutation invariant with respect to the cell’s neighborhood on the NCA
(also see Section 3.1). This context vector s;(f;) represents the cell’s internal representation
of its local environment on the cellular grid of the NCA.

Each cell i independently proposes an update a;(#;) to its own state c;(;), potentially
at every time step f; following Equation (1). This update is computed by a controller ANN

a;(ty) = fe(c) (si(tx)), based on the cell-specific context vector s;(t). Thus, the set of ANN
parameters of the NCA comprises the sensory and controller network parameters fés) ()
and fe(c)(-).

So far, we have not specified a particular architecture for either fe(s) or fe(c) . Although
the presented approach is agnostic to the particularly chosen ANN architecture, we here
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rely on rather simple implementations of ANNs: For the sensory ANN fg(s), we utilize
a Feedforward architecture with hyperbolic tangent activation function ¢(-) = tanh (-)
with four input units, eight neurons in a single hidden layer, and eight output neurons
(defining the (s = 8)-dimensional context vector), resulting in a total of 112 parameters.
For the controller ANN, we utilize two different architectures, a Feedforward (cf. FF agent
in Section 4.1 and Equation A1) and a recurrent ANN that is inspired by both Recurrent
ANNSs (RNNs) [108] and Gene Regulatory Networks [109] (cf. RGRN agent in Section 4.1 and
Equations (A2) and (A3) below).

The Feedforward controller architecture consists of eight input units (i.e., the context
vector from the sensory ANN), a single hidden layer with six neurons and a hyperbolic tan-
gent activation function, and four output neurons without an activation function, resulting
in 82 parameters in total; thus, the genuine FF-agent architecture in the main text comprises
a total number of Npp = 194 parameters (cf. Section 4.1). The RGRN controller architecture
(see details below) consists of eight input units, a single self-regulated recurrent state with
three neurons (with an internal hyperbolic tangent activation), and four output neurons
(without an activation function), resulting in 52 parameters in total; thus the genuine RGRN-
agent architecture in the main text comprises a total number of Nrgrny = 164 parameters
(cf. Section 4.1). In Table A1, we summarize the FF-agent’s and RGRN-agent’s architectures
and parameter counts.

Table Al. Architecture and number of parameters in sensory and controller ANNs of the two
different agent architectures used in this contribution. The total number of parameters depends on
the redundancy number R of the controller ANN (cf. Section 4.1).

Sensory ANN Controller ANN
(Num. Param.) (Num. Param.) Total Num. Param.
FF agent Feedforward (112) Feedforward (82) 1124+ R x 82
RGRN agent Feedforward (112) RGRN (52) 1124+ R x 52

Finally, we define the RGRN architecture y(f;) = fg(RGRN)(x(tk), h(t;_1)) that relies
on both an instantaneous input x(t;) € R and a recurrent state h(f,_;) € RR from the
previous iteration of the network to generate an output y(t;) € RO: first, we define the
self-regulated recurrent state h(#;) as

h(ty) = (1—1) xh(t—1) + 2 x [(U - x(t) + by) + tanh(V - h(ty_1) +by)],  (A2)

which is thus maintained over time by a factor of (1 — 1) and updated by a factor of 1,
via integrating external stimuli x(#;) and recurrent memory h(f;_) through the trainable
matrices Y € Rl and vV € RH*H and bias vectors by, by € R, respectively. Second,
we evaluate the network’s output, y(t;) € R®, based on the RGRN recurrent state h(t;),
following

y(k) = ¢V - h(k) +bw), (A3)

having introduced the weight matrix YW € RO*R and bias vector byy € R®, and a non-linear
activation function o (-).

Following ideas from Ref. [109], we thus utilize with Equation (A2) an ANN that
maintains a self-regulated (or “gene regulated”) state h(t;). However—and dropping the
bias vectors for convenience below—the second term in Equation (A2), i.e., [/ - x(t) +
tanh(V - h(f;_1))], is reminiscent of the kernel of an RNN [108], thus allowing the RGRN to
integrate new information (i.e., external stimuli) into its regulatory behavior. Thus, the state
update of h(f;) corresponds to regulating the network’s recurrent state (or “gene expres-
sion”) conditional to external stimuli. Furthermore, explicitly separating the self-regulated
recurrent state from the RGRN output allows us to utilize the RGRN as a controller, i.e., to
use its output y(#;) for updating the cell state of an NCA in Equation (1).

Here, we set 71 = 0.75, 7, = 0.25 and choose ¢ (+) as the identity transformation (i.e.,
no or linear activation of the RGRN output), and we apply Equation (A2) three times
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(updating h(t;) in every cycle) before forwarding the final value of h(#;) to Equation (A3)
to generate the RGRN output.
For all ANN implementations, we here rely on PyTorch [166].

Appendix B. A Reinforcement Learning Agent’s Perception—Action Cycle

We utilize a Neural Cellular Automaton (NCA) [100] for morphogenesis tasks of
two-dimensional target patterns. In such a setting, each cell of the NCA represents an
autonomous agent that perceives details about its local environment (i.e., the cell states of
its direct neighbors on the NCA spatial grid) and proposes actions to update its own state.
Here, we summarize the terminology behind this perception-action cycle of an agent in an
arbitrary environment of a Reinforcement Learning (RL) setting [113] (see Figure 2A for
an illustration).

Based on an agent’s perception of the environment, i.e., a state s, measured at time
step t, the agent’s goal is to manipulate the environment by taking an action ay—resulting
in a state update sy in the next time step—to collect as much reward r;, € R (provided by
the environment) as possible.

Formally, an agent picks its actions according to a policy mg(s,s ) — a, ie., a
typically complicated function which might be parameterized via hidden variables 6.
Artificial neural networks (ANNSs) as universal function approximators [112] are promising
candidates that can be trained to fit an agent’s optimal policy (mapping states sy to optimal
actions ay [113]). Here, we thus utilize ANNSs as a trainable update function of an NCA
and deploy evolutionary algorithms (see Section 3.2) to find the optimal policy (here, of
morphogenesis tasks) 7tg+(s;s ) via optimizing 0% = argmax,(},s . 7,/). This enables
an agent to choose actions aiming at maximizing the expected cumulative reward (or
maximum fitness, in our terms).

The particular functional choice of the reward signal defines the agent’s task via
positive (or negative) reinforcement. In our case, the cumulative reward R, of all N, agents
(i.e., of all cells on the grid) after tp time steps is summed up to the fitness f = ) R, of the
entire NCA. There is no general procedure for creating effective reward signals.

Crucially, we here do not provide the cellular agents with environmental reward
feedback directly but only use the cumulative reward R, as a fitness criterion for the
evolutionary algorithm. Thus, the collective of cells needs to evolve a signaling strat-
egy to communicate desirable or prohibitive cell state updates during the corresponding
developmental stage.

Appendix C. Fixed Boundary Condition Handling of the Neural Cellular Automaton

We employ neural cellular automata (NCAs) with fixed boundary conditions on a
two-dimensional square grid (see Section 3.1). Each cell i is associated with integer grid-
coordinates (x;,;) on the NCA grid of size Ny x Ny, with x; € [1, Ny] and y; € [1,N,].

The neighborhood of cell i is defined by all directly adjacent cells i,—1,n, i.e., that
share a border or a corner with cell i. Since we consider a square grid in this contribution,
the grid coordinates of all N = 8 neighbor cells (x; ,y;, ) are given by the permutations of
(x; £m,y; £ n) withm,n € {0,1}, excluding the identity m = n = 0.

For cells at the boundaries of the grid, some neighbors with coordinates x; ,y; < 1or
> Ny, Ny, respectively, will be out of bounds. Thus, we clip all neighbor coordinates to the
intervals [1, Ny] and [1, N, ], respectively, via x;, — xXj = min(max(x;,,1), Ny), and y;, —
Yy, = min(max(y;,, 1), Ny), and replace the neighbor index i, with the corresponding index
i, of the respectively clipped coordinates (x;, y;r ). Collecting the numerical state values of
the neighborhood of cell i thus yields N;(ty) — N/ (t) = (ci(t), ¢ (), - -, ez (t)). The
matrix N/ (t) then represents the input of the sensory part of the NCA artificial neural
network (cf. Section 3.1).

Appendix D. Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [103] is a popular evo-
lutionary algorithm: a multivariant normal distribution is utilized to model the (genotypic-)
distribution of a set or a population of parameters that are evaluated against an objective



Entropy 2024, 26, 532

28 of 41

function. Roughly speaking, this evaluated fitness score of an individual is associated
with its probability of survival and thus for participating in the reproduction of the next
generation. The parameters of the multivariant normal distribution, i.e., the mean and
covariance matrix, are successively updated based on selecting the best individuals from a
given population (or, more precisely, by weighting the relative importance of an individual
by its fitness score) such that high-fitness individuals are generated with high likelihood by
the Gaussian model. Thus, iteratively sampling “offspring” generations and adapting the
model covariance matrix (and its mean) based on the population’s fitness scores guides the
evolutionary population toward high-fitness regions in the parameter space over successive
generations. Typically, also the numerical step size of the parameter update is adapted
according to some inter- and intra-generation fitness measures. In a nutshell [103]:

1. CMA-ES typically starts with a standard (or parameterized) multi-variant normal
distribution with the dimension given by the number of parameters (or genes).

2. At each evolutionary cycle, a new population of a fixed number of individuals is
sampled from the model.

3. Each individual is evaluated against a fitness function, which quantifies the corre-
sponding individual’s probability of being selected for reproduction to form the
next generation.

4.  The mean and covariance matrix of the normal distribution, and a step-size parameter,
are updated such that high-quality individuals are generated with high likelihood by
the generative model.

5. The process (2-5) is repeated until a convergence criterion is met.

In the CMA-ES experiments presented in this contribution, we use an initial normal
distribution with zero mean yy = 0 and a standard deviation of typically 0y = 274, and we
disable step-size adaptation.

We specifically utilize the open-source pycma Python implementation of CMA-ES
from Ref. [167]. CMA-ES utilizes floating point numbers as genes. Since we rely on the
PyTorch [166] framework to encode both structural and functional genes, we use single-
precision (32-bit) floating point numbers per default during training. Here, we study
the effects of varying the bit-precision encodings of the genes on the performance of an
evolving NCA. Relying on genetic data of the entire lineage depicted in Figure 3, we
systematically reduce the number of significance bits of the best-performing individual
for every generation, and re-evaluate the corresponding fitness scores with the altered
genome. The results depicted in Figure A1l indicate that as evolution progresses, the bit
precision of the genes of high-quality individuals can effectively be reduced by a factor of
four, rendering our approach numerically robust: while a reduced 7-bit encoding leads to
significant deviations in the re-evaluated fitness score also after convergence of ~10% (with
minimal deviations around generation 750-860, cf. Appendix F), a reduced 8-bit encoding
only induces deviations of ~1% in the converged fitness scores, and >9-bit genes virtually
encode the same behavior as their single-precision genes (here, after generation 860, cf.
Appendix F).
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Figure Al. (Top) Re-evaluation of the fitness scores of the best-performing individual per generation
of the lineage depicted in Figure 3 with modified genomes of systematically reduced floating-point
precision by first type-casting from 32-bit (single-) to 16-bit (half-)precision and further reducing the
number of significant bits (mantissa) in the genes’ binary representation from 10 to 1 (color-coded).
Thus, for the 16-bit half-precision genes, the number of bits used to encode each gene is given by 6 4- S,
with S significance (or mantissa) bits, 5 exponent bits, and 1 sign bit (following the IEEE 754-2008
standard). (Bottom) Similar to the top panel but showing the numerical difference of the historically
best fitness score (blue curve in top panel) and the re-evaluated fitness scores (thin lines); thick lines
on the bottom panel show the fitness deviation smoothed over several generations.

Appendix E. Direct vs. Multi-Scale Encoding: Morphogenetic Development over
Evolutionary Time Scales

In Figure A2, we explicitly illustrate the developmental process of the 8 x 8 Czech
flag task over evolutionary time scales for an NCA evolved at the noise level of ¢, = 0.25,
decision-making probability Pp = 50%, and redundancy number R = 4; in Figure A3,
we illustrate the same developmental process for an NCA without competency, i.e., with
Pp =0.

These two figures illustrate how the evolutionary process learns how to construct the
target pattern over generations, depending on the competency of the underlying substrate:
either driven by intercellular communication-based self-assembly of the target pattern
that continuously corrects potential errors of the developmental program, or via directly
encoding the target pattern into the structural part of the genome to resist developmental
noise for as long as possible. Moreover, while the target pattern for the competent first
case is quickly (and robustly) self-assembled and maintained over time—potentially much
longer as the tp = 25 developmental time steps the phenotypes have been selected for—
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Figure A2. The developmental process of the 8 x 8 Czech flag task (vertical axis) of selected genera-
tions over evolutionary time scales (horizontal axis) for an NCA evolved with system parameters
¢c = 0.25, Pp = 50%, and R = 4. Each pixel corresponds to a cell of the NCA, at a given developmen-
tal step and generation, in an RGB notation corresponding to the numerical values of the first three
cell states, scaled to values between [0, 1]. The top panel shows the current fitness of the respective
generations (blue), and the structural fitness at f; = 0 (purple); the green vertical dashed line marks
the generation crossing the fitness threshold of F; = 64, where we consider the problem solved.

Thus, in the former case, illustrated in Figure A2, the structural fitness of the initial
cell states (at t; = 0) remains decoupled and rather low compared to the highest fitness
of the population of the phenotypes, even long after the problem is solved. In contrast,
in the latter case, illustrated in Figure A3, the initial cell state needs to evolve towards
the target pattern directly, resulting in high structural fitness values at t; = 0, which are
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then progressively decreased by the noise during the developmental process, resulting in
correspondingly lower phenotypic fitness values.
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Figure A3. Same as Figure A2 but for an NCA without competency (i.e., Pp = 0).

Appendix F. Direct vs. Multi-scale Encoding: Neutral Transfer of Hierarchical
Competencies Affects Uni-Cellular Robustness

In Section 4.2, Figure 3, we compare an evolutionary process operating on (i) the
direct encoding of the structural traits of an 8 x 8 Czech flag pattern with the evolution
of (ii) the parameters of an NCA-based multi-scale encoding of the same pattern. Here,
we specifically investigate case (ii) more closely, relating the slow but steady long-term
improvement in the structural fitness, long after the problem is effectively converged, to the
Baldwin effect [14], and neutral evolution and the “paradox of robustness” [51-53,121-127].

In the top panel of Figure A4, we again show the entire evolutionary lineage presented
in the bottom panel of Figure 3, but we specifically contrast the structural fitness of the
historically best-performing individual with the structural fitness of the best-performing
individual of every generation. We see that after generation 860, the historically best
structural fitness (which we explicitly track for numerical reasons) deviates from the
structural fitness of the still-evolving population.
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Figure A4. (Top) The same experimental data as shown in the bottom panel of Figure 3, additionally
contrasting the structural fitness of the historically best-performing individual (dashed blue) with
the current structural fitness (purple) that corresponds to the best-performing individual from the
current generation. (Bottom) The numerical improvement in the maximum fitness score for every
generation with respect to the historically best fitness score until the respective prior generation is
drawn in a sym-log representation (linear scale between 0-1072, logarithmic above).

We interpret this slow but steady improvement in the structural fitness as a manifesta-
tion of the Baldwin effect [14], where (evolutionarily) acquired uni-cellular competencies—
here, to assemble a target pattern—are shifted to hard-wired phenotypical traits. Especially
between generations 860 and 1823, this transfer of competency is caused by corresponding
successive adaptations to the structural genomes of the entire population as reflected by
the increasing mean of the entire population’s structural fitness depicted in Figure A4.
However, this process happens without significant changes to the entire system’s fitness
score between successive generations as illustrated in the bottom panel of Figure A4, where
we explicitly present incremental numerical improvements to the lineage’s fitness score.
Thus, these adaptations to the structural genomes remain neutral with respect to the fitness
of the entire system.

Eventually, a random event in generation 1823 causes a slight improvement in the
so-far historically best fitness score of generation 860 (from f = 69.781 to 69.828). However,
this newly assigned historically best individual is now qualitatively different from the
previous one (cf. purple and blue-dashed curves in Figure A4), as its policy is shifted
from a rather competency-based NCA (generations 860-1822) to a solution that relies more
heavily on directly encoded phenotypic traits (generations > 1823). This, in turn, affects
the new solution’s robustness against increasingly noisy cell state updates as illustrated
in Figure A5: we re-evaluate the fitness score of the entire genetic lineage depicted in
Figure A4 (which we tracked in the original experiment) at modified noise levels larger
than experienced during the respective evolutionary process ¢. > 0.25. While the best-
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performing individuals for generations 750-860 can generalize well to different noise levels,
we observe successively decreasing performance of the preceding generations, especially
at higher noise levels.
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Figure A5. (Top) Re-evaluated fitness scores of the lineage depicted in the bottom panel of Figure 3
(and in Figure A4) at noise levels {. > 0.25, different from those originally experienced in the
corresponding evolutionary process; the historically best fitness score (blue) is presented as reference.
(Bottom) The numerical difference between the historically best fitness score and the fitness score of
the best-performing individual of a particular generation (thin lines); thick lines in the bottom panel
show the fitness deviation smoothed over several generations.

Thus, this could be a manifestation of the paradox of robustness, which states [51,121]
that in the presence of a higher-level control mechanism, the system’s lower-level (agential)
components may become increasingly unreliable. In our case, the higher-level mechanism
would be represented by an increasingly accurate initial cell state configuration, which
is a global system-level encoding of the target pattern. The lower-level components are
represented by the ANN-based uni-cellular agents of the NCA, performing local error
correction to assemble and maintain the target pattern through cell state updates. Notably,
and depending on the noise level, the former may be more difficult to acquire by an
evolutionary process, starting from a randomly initialized population, but the latter might
become increasingly specialized the better the structural genome is adapted.

Since for a particular noise level, a precise enough initial cell state configuration is
sufficient to solve the problem (cf. Figure 6), the NCA competencies may in such cases
become successively unnecessary in the long run, and thus lose their relevance to the
evolutionary process. Consequently, such a shift in competency renders a system less robust
against perturbations and changing environmental conditions as depicted in Figure A5
(and also reflected in Figure A1). Notably, such a combination of the Baldwin effect (shift
in competencies), neutral evolution (not affecting the system-level fitness scores), and
the paradox of robustness (less competent components) might even explain the reduced
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capabilities of NCAs pre-evolved at lower rather than higher noise levels to adapt to
modified problems of self-assembling different target patterns as observed in Figure 7.
We also conjecture that this mechanism of heterogeneous agents’ competencies co-
operating on a common system-level objective might be important for adaptability and
evolvability in biological systems. Notably, robustness mechanisms might be only partially
active. For example, chaperones that prevent proteins from misfolding allow for more
exploration of mutations while destabilizing the fold, giving the system more time to
find a restabilizing mutation (see Ref. [168]). In such cases, the "protected layers" are still
intermittently exposed to selection and unlikely to deteriorate. However, if the specialized
competencies of certain agential components can be replaced by a different mechanism
in the same organism more cheaply, these increasingly redundant components might be
repurposed to fulfill different tasks, thus potentially facilitating open-ended evolution.

Appendix G. Direct vs. Multi-Scale Encoding: Evolution and Morphogenesis of a
Smiley Face Pattern

In the main text, we primarily investigate the evolutionary implications of multi-scale
intelligence on the example of morphogenesis of an 8 x 8 Czech flag pattern. To test
whether our findings in Section 4.3 generalize to different target patterns, we here present
results for a much more involved task, namely, a 9 x 9 smiley face pattern (cf. Figure 1),
which has several internal boundaries of (i) the face, (ii) the eyes, and (iii) the mouth; all
other parameters are the same as for the 8 x 8 Czech flag task.

We thus perform an analogous study to Section 4.3, and present the results in Figure A6
(reminiscent of Figure 4C) but for redundancy numbers R > 4 (as we found that smaller
controller networks perform systematically worse on the task, suggesting a capacity bot-
tleneck of ANNs with R < 4 in this case). Analogously to the much simpler 8 x 8 Czech
task, we can learn from Figure A6 that, while in the low-noise regime, direct encoding can
lead to a more efficient evolutionary process, in situations with increasing developmental
noise, higher competency levels (here again realized via the decision-making probability)
can significantly enhance the efficiency of the evolutionary process of a morphogenesis
task. Notably, and due to computational reasons, we evaluate only two to three indepen-
dent evolutionary processes for every combination of the system parameters (noise-level,
decision-making probability, and redundancy number) for the results depicted in Figure A6.
However, the overall trend of the evolutionary efficiency of (i) directly encoding the target
pattern and (ii) encoding the functional parameters of a multi-scale competency architecture
is consistent with our previous results discussed in Section 4.3. Due to the increased com-
plexity of the 9 x 9 smiley face task, the critical noise level that separates the evolutionary
efficiency of (i) and (ii) is correspondingly shifted to larger values of, here, ¢, > 0.25 (cf.
Figure 4C).
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- 500
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Figure A6. Same as Figure 4C but for a different target pattern, namely, a 9 x 9 smiley face (inset in
left panel). Moreover, we here aggregate over R > 4.

Analogous to Figure A2, we illustrate in Figure A7 the developmental process of the
9 x 9 smiley face task over evolutionary time scales for an NCA evolved at the noise level
of {¢ = 0.25, decision-making probability Pp = 50%, and redundancy number of R = 4
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in an RGB scheme attributing the numerical values of the first three cell states, scaled to
values between [0, 1], respectively (cf. Section 3.1).
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Figure A7. Same as Figure A2 but for the 9 x 9 smiley face task, with a fitness threshold of F; = 81 (cf.
green vertical dashed line).

Appendix H. Evolution Exploits Redundancy at the Cost of a More Complex
Search Space

Analogous to Section 4.3, we here present the evolutionary efficiency of the same
morphogenesis experiments of the 8 x 8 Czech flag problem depicted in Figure 4 but present
as a function of the redundancy number R—instead of the decision-making probability
Pp—and the noise level §; for a given combination of R and ¢, we additionally utilize
different values for Pp = {0.25,0.5,1.0} and perform 15 statistically independent runs of
the EA for each parameter combination, resulting in 45 independent evolutionary runs per
(R, ¢o)-tuple.

Although there appears to be an effect of R on the evolutionary efficiency
(cf. Figure A8A,C,D), the results are less pronounced compared to Figure A8. Despite
considerable uncertainty in the evolutionary efficiency as shown in Figure A8A,B, we can
learn from the heatmaps, Figure A8C,D, that at low noise levels of ¢, = 0 or 0.125, large
R values appear favorable over lower ones, whereas, at larger noise levels of . = 0.5,
populations with lower values of R perform better on average. For intermediate noise
levels of ¢, = 0.25 and 0.375, we observe an “optimal” redundancy number of 4 in this
particular example.
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Figure A8. Similar to Figure 4 but presented for the redundancy number R vs. noise level {. and
aggregated over all values of the decision-making probability Pp > 0.25. (A,B) The average fitness
per generation of the best-performing individual in a population of 65 independent evolutionary
processes of the 8 x8 Czech flag task, evaluated from left to right at different noise levels (redundancy
numbers) and color-coded by the redundancy numbers (noise-levels), for panels (A,B) respectively;
solid lines mark average fitness values, the shaded area marks the standard deviation (to lower
values only), and dashed lines indicate when an average fitness threshold of 64 is crossed, solving the
problem. (C) Heatmap of the average generation number when the fitness threshold of 64 is crossed
at particular combinations of the redundancy number and noise level as detailed in (A,B). (D) Same
as (C) but partitioned by the respective FF-agent or RGRN-agent architectures used in the respective
CMA-ES runs.

This suggests a trade-off in the evolutionary efficiency of redundancy—as an affor-
dance of competency—and the corresponding increase in the number of overall parameters
of the functional genome.

Appendix I. Morphogenesis at Scale with a Hybrid Compositional Pattern-Producing
Network—Neural Cellular Automata Model

The particular choice of especially the structural part of the genome x](-s)

in Equation (3)
limits the scalability of our multi-scale competency approach of morphogenesis to signifi-

cantly larger systems, as the size of the structural genome will grow correspondingly with



Entropy 2024, 26, 532 37 of 41

the number of cells in the system. However, by utilizing Compositional Pattern Producing

Networks (CPPNs) [120,141], the parameters 0y of a hyper-network féH) (+) could replace
the structural genes in Equation (3) such that the initial states of each cell 7 are indirectly
encoded by the hyper-network based on their relative spatial positions (x;/Ny,y;/Ny) on

the grid of the Neural Cellular Automaton (NCA) via ¢;(0) = fg(H) (xi/Nx,yi/ Ny).

However, it has proven to be difficult, if not numerically infeasible, to reliably and
exactly reproduce a two-dimensional target pattern using CPPNs [142]. Thus, we here
propose a hybrid approach for morphogenesis at the scale of a CPPN, indirectly encoding
the initial cell states of an NCA, whose uni-cellular agents are then challenged to self-
assemble the desired target pattern in a morphogenetic developmental stage. This would
allow for scaling the target pattern arbitrarily either during training or during deployment
since the number of cells on the NCA grid does not affect the size of the (structural part of
the) genome.
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